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Abstract
A recent work of Chattopadhyay et al. (CCC 2018) introduced a new framework for the design
of pseudorandom generators for Boolean functions. It works under the assumption that the
Fourier tails of the Boolean functions are uniformly bounded for all levels by an exponential
function. In this work, we design an alternative pseudorandom generator that only requires
bounds on the second level of the Fourier tails. It is based on a derandomization of the work of
Raz and Tal (ECCC 2018) who used the above framework to obtain an oracle separation between
BQP and PH.

As an application, we give a concrete conjecture for bounds on the second level of the Fourier
tails for low degree polynomials over the finite field F2. If true, it would imply an efficient
pseudorandom generator for AC0[⊕], a well-known open problem in complexity theory. As a
stepping stone towards resolving this conjecture, we prove such bounds for the first level of the
Fourier tails.
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22:2 Pseduorandom Generators from Second Level Fourier Bounds

1 Introduction

Pseudorandom generators are widely studied in computational complexity theory. The main
focus of this paper is a new framework for the design of pseudorandom generators (abbrv.
PRGs) based on Fourier tails, introduced recently by Chattopadhyay et al. [2]. We refer to
the survey of Vadhan [14] for an introduction to pseudorandomness in complexity theory,
and assume basic knowledge with common concepts.

Let F be a family of n-variate Boolean functions, which is closed under restrictions.
Namely, for any f ∈ F , if we restrict some of the inputs of f to Boolean values, then
the restricted function is also in F . Nearly all classes of Boolean functions studied in the
literature satisfy this property.

Given an n-variate Boolean function f , its level-k Fourier tails for k = 1, . . . , n are
defined as

L1,k(f) =
∑

S⊂[n]:|S|=k

|f̂(S)|.

For a function class F of n-variate Boolean functions define

L1,k(F) = max
f∈F
L1,k(f).

Chattopadhyay et al. [2] proved a general theorem, which constructs an explicit PRG for
functions in F , assuming that F has bounded k-level Fourier tails for all k. This property is
known to hold for many classes of interest (read-once branching programs of bounded width,
low-depth circuits, low sensitivity functions, and more; see [2] for details).

I Theorem 1 ([2]). Let F be a family of n-variate Boolean functions that is closed under
restrictions. Assume that for some a, b ≥ 1 it holds that

L1,k(F) ≤ a · bk ∀k = 1, . . . , n.

Then for any ε > 0, there exists an explicit PRG for F with error ε and seed length
s = b2 · polylog(an/ε).

Note that for any n-variate Boolean function one can take a = 1, b =
√
n, and hence the

quadratic dependence on b in the seed length is optimal.
The main objective of this current work is to investigate whether PRGs can also be

obtained from weaker assumptions on the Fourier tail. Specifically, whether it suffices that
L1,k(F) is bounded for a few values of k, instead of for the full regime of k = 1, . . . , n as was
required by [2]. Our main result is that this is indeed the case: it suffices to obtain bounds
for the second level of the Fourier tail.

I Theorem 2 (Main result, informal version). Let F be a family of n-variate Boolean functions
closed under restrictions. Assume that for some t ≥ 1 it holds that

L1,2(F) ≤ t.

Then for any ε > 0, there exists an explicit PRG for F with error ε and seed length
poly(t, logn, 1/ε).

For a more precise formula for the seed length see Theorem 6. We note that the dependence
on the error parameter ε in Theorem 2 is much worse compared to Theorem 1 – polynomial
instead of poly-logarithmic. We discuss this in Section 4.
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1.1 A potential PRG for F2-polynomials and AC0[⊕]
There are known deep relationships between the ability to construct explicit pseudorandom
generators, and the ability to prove correlation bounds, for many classes of Boolean functions.
One of the few classes where the latter is known but the former is not is AC0[⊕], which is the
classes of constant-depth polynomial-size Boolean circuits with AND, OR, NOT and PARITY
gates. Classical works of Razborov [10] and Smolensky [11] prove that this class cannot
approximate the MAJORITY function. On the other hand, the problem of constructing
explicit PRGs for AC0[⊕] is a well-known open problem in complexity theory. We refer to
the survey of Viola [15] for further discussion on this challenge.

We give a concrete (and plausible in our minds) conjecture which, combined with Theorem
2, would imply such a PRG. Let Polyn,d denote the class of n-variate Boolean functions
which are computed by F2-polynomials of degree at most d. This class is clearly closed under
restrictions.

I Conjecture 3. L1,2(Polyn,d) = O(d2). That is, if p : Fn2 → F2 is a polynomial of degree d,
and f(x) = (−1)p(x), then∑

i,j∈[n],i<j

|f̂({i, j})| = O(d2).

A corollary of Conjecture 3, when combined with Theorem 2, is the construction of
explicit PRGs for degree-d polynomials over F2 with seed length poly(logn, d, 1/ε). This
would be a major breakthrough in complexity theory, as currently no PRGs are known for
polynomials of degree d = Ω(logn). We note that a similar seed length would follow from a
weaker version of Conjecture 3 with the bound L1,2(Polyn,d) ≤ poly(logn, d). However, we
conjecture that O(d2) is the correct bound.

We further note that such PRGs would directly imply PRGs for AC0[⊕].

I Claim 4. Assume that Conjecture 3 holds. Then, for any ε > 0 there exists an explicit
PRG for the class of AC0[⊕]-circuits of size s and depth e on n inputs, with error ε and seed
length poly((log(s/ε))e, logn, 1/ε).

In particular, assuming the conjecture, for any constants e and c, AC0[⊕]-circuits of size at
most nc and depth at most e have a PRG with seed length poly(logn, 1/ε) and error ε.

Proof sketch. Let f : {0, 1}n → {0, 1} be computed by an AC0[⊕] circuit of size s and
depth e. Razborov [10] and Smolensky [12] proved that there exists a distribution over
polynomials p : Fn2 → F2 of degree d = O(log(s/ε))e such that for each x ∈ {0, 1}n,
Prp[p(x) 6= f(x)] ≤ ε/3. Theorem 2 gives a PRG for polynomials of degree d with error ε/3
and seed length poly(logn, d, 1/ε). By the Razborov-Smolensky result, this PRG is also a
PRG for f with error ε. J

Evidence Supporting The Conjecture

We present three results that supports the validity of Conjecture 3:
1. As a stepping stone towards resolving Conjecture 3, we prove a bound on the first level

of the Fourier tail of low degree polynomials over F2.

I Theorem 5. L1,1(Polyn,d) ≤ 4d.

ITCS 2019



22:4 Pseduorandom Generators from Second Level Fourier Bounds

2. We note that as a special case of the main result in [3], any read-once F2-polynomial f
(i.e., a sum of monomials on disjoint sets of variables) has

L1,2(f) ≤ O(logn)8.

Getting a similar poly log(m) bound for general polynomials with m monomials, would
be sufficient for the application in Claim 4.

3. In [2] the following exponential bound was proved on the L1,2(Polyn,d):

L1,2(Polyn,d) ≤ 4 · 26d .

(as a special case of a bound on L1,k more generally.) We remark that this bound depends
only on d and not on n. Thus, if our conjecture is false, any counter-example to it must
have degree d = ω(1).

Organization

We prove Theorem 2 in Section 2. We prove Theorem 5 in Section 3. We discuss further
research in Section 4.

2 PRG from level two Fourier bounds

The main result of this section is an explicit pseudorandom generator for Boolean functions
that have bounded Fourier tails on the second level.

I Theorem 6. Let F be a family of n-variate Boolean functions closed under restrictions.
Assume that for some t ≥ 1 it holds that

L1,2(F) ≤ t.

Then for any ε > 0, there exists an explicit PRG for F with error ε and seed length
O
(
(t/ε)2+o(1) · polylog(n)

)
.

The framework to construct the PRG is similar to the one used in [2]. The first step is to
construct a fractional PRG for F that is p-noticeable. Now using the polarizing random walk
technique used in [2], we convert this fractional PRG into the required standard PRG. Our
fractional PRG is based on ideas developed in [9]. We first recall the basic framework of [2].

Pseudorandom generators

Let f : {−1, 1}n → {−1, 1} be a Boolean function. A PRG for f with error ε is a random
variable X ∈ {−1, 1}n such that

|E[f(X)]−E[f(Un)]| ≤ ε,

where Un is the uniform distribution in {−1, 1}n. It has seed length s if X can be sampled as

X = G(Us)

where G : {−1, 1}s → {−1, 1}n is an explicit function4.
X is a PRG for a class of functions F if it is a PRG for each function f ∈ F .

4 There are various notions of explicitness used in the complexity literature. For our purposes any notion
would do.
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Fractional pseudorandom generators

Let f : {−1, 1}n → {−1, 1} be a Boolean function. It has a unique multi-linear extension as
f : [−1, 1]n → [−1, 1]. A fractional PRG for f with error ε is a random variable X ∈ [−1, 1]n
such that

|E[f(X)]− f(~0)| ≤ ε.

Note that f(~0) = E[f(Un)]. It has seed length s if X can be sampled as

X = G(Us)

where G : {−1, 1}s → [−1, 1]n is an explicit function. The fractional PRG X is p-noticeable
if

E[X2
i ] ≥ p ∀i = 1, . . . , n.

From fractional PRGs to PRGs

The following is the main result of [2], which converts a fractional PRG into a standard PRG.

I Theorem 7 ([2]). Let F be a family of n-variate Boolean functions that is closed under
restrictions. Let X be a p-noticeable fractional pseudorandom generator for F with seed
length s and error ε. Then, there exists a pseudorandom generator for F with seed length
O(s · log(n/ε)/p) and error O(ε · log(n/ε)/p).

Given, the above theorem, the missing piece to get the desired PRG in Theorem 6 is to
construct an appropriate fractional PRG. The following lemma achieves exactly this.

I Lemma 8. Let F be a family of n-variate Boolean functions closed under restrictions.
Assume that for some t ≥ 1 it holds that

L1,2(F) ≤ t.

Then for any ε > 0, there exists an explicit p-noticeable fractional PRG for F with error ε
and seed length s where:

1/p = O(log(n/ε))

s = O((t/ε)2+o(1) · log(n) · log(n/ε)).

It is direct to obtain Theorem 6 from Theorem 7 and Lemma 8. We prove Lemma 8 in
the remainder of this section.

As mentioned before, the fractional PRG is constructed based on ideas developed in [9].
In particular, our fractional PRG can be seen as a derandomization of the main distribution
used in [9].

We first abstract and restate one of the main arguments in [9]. This abstraction appeared
in a blog post of Boaz Barak and Jarosław Błasiok [1]. Below, we abbreviate a Multi-Variate
Gaussian as MVG. Given a random variable Z ∈ Rn, we denote by trnc(Z) its truncation to
[−1, 1]n. That is, trnc(Z)i = min(1,max(−1, Zi)) for i ∈ [n].

I Theorem 9 ([9], restated). Let n, t ≥ 1, δ ∈ (0, 1). Let Z ∈ Rn be a zero-mean MVG
random variable with the following two properties:
(i) For i ∈ [n]: Var [Zi] ≤ 1

8 ln(n/δ) .
(ii) For i, j ∈ [n], i 6= j: |Cov[Zi, Zj ]| ≤ δ.

Let F be a class of n-variate Boolean functions which is closed under restrictions. Assume
that L1,2(F) ≤ t. Then for any f ∈ F it holds that |E[f(trnc(Z))]− f(~0)| ≤ O(δ · t).

ITCS 2019
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For completeness, we prove Theorem 9 in the appendix – the proof basically repeats
the argument in [9] but for a general multivariate Gaussian distribution, instead of the
Forrelation distribution considered there. We now show how to use Theorem 9 to construct
a p-noticeable fractional PRG for F with error ε and seed length s, where 1/p = O(log(n/ε))
and s = poly(t, log(n), 1/ε).

I. We show that a MVG distribution with the parameters needed in Theorem 9 can be
of rank ` = poly(log(n), t, 1/ε). That is, we sample ` independent N (0, 1) random
variables and apply an explicit linear transformation T : R` → Rn to get a random
variable in Rn that satisfies the two conditions of Theorem 9.

II. We discretized the above process.

Step I: Dimension Reduction

Let δ = ε/t and let ` be a parameter to be determined soon. Let C be a code on {0, 1}` with
at least n codewords, such that C is δ-balanced. Namely, every codeword in C has Hamming
weight between ( 1

2−δ)` and ( 1
2 +δ)`. Such a code can be obtained from explicit constructions

of small-biased spaces over {0, 1}`. The best known construction is by Ta-Shma [13] which
achieves ` = (logn)/δ2+o(1).

Set p = 1/(8 ln(n/δ)). Let c1, . . . , cn ∈ C be distinct codewords. Define an n× ` matrix
A given by

Ai,j =
√
p

`
· (−1)c

i
j ,

where ci = (ci1, . . . , ci`). Let Y be a random vector in R` where each Yi is an independent
N (0, 1) Gaussian. Define

Z = AY.

It is straightforward to verify from the construction that Z is a multivariate Gaussian
distribution over Rn with mean zero which satisfies that Var[Zi] = p for all i ∈ [n], and
|Cov[Zi, Zj ]| ≤ δ for all distinct i, j ∈ [n].

Step II: Discretizing the Randomness

We prove the following lemma, which allows to approximately sample a standard MVG
Y ∈ R` as needed above using a few random bits.

I Lemma 10. For any `, η > 0 there exists s = O(` · log(`/η)) and an explicit generator
G : {0, 1}s → R` such that the following holds.

Let f : [−1, 1]n → [−1, 1] be a multi-linear function, A ∈ [−1, 1]n×` and Y be a random
variable over R` where each Yi is an independent N (0, 1) Gaussian. Then

|E[f(trnc(AY ))]−E[f(trnc(AG(Us)))]| ≤ η(n+ 2).

We say that a random variable W ∈ R is a λ-approximate Gaussian if there is a correlated
standard Gaussian W ′ ∼ N (0, 1) such that Pr[|W −W ′| > λ] < λ. We will use the following
lemma of Kane [6] which shows how to approximate a Gaussian in a randomness efficient
way.

I Lemma 11 ([6]). There is an explicit construction of a λ-approximate Gaussian random
variable using O(log(1/λ)) bits of randomness.
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The generator G would simply be ` independent copies of a λ-approximate Gaussian
given by the above lemma, with λ = η

` . We denote by Y ′ = G(Us) and by Y the coupled
standard MVG in R`.

Let E denote the event that ‖Y − Y ′‖∞ ≤ λ. By a union bound, Pr(E) ≥ 1 − η.
Conditioned on E it is easy to check that ‖trnc(AY ) − trnc(AY ′)‖∞ ≤ η. Finally, we use
the multi-linearity and boundedness of f in the following lemma to finish the proof.

I Lemma 12. Let f : [−1, 1]n → [−1, 1] be a multi-linear function. Then for every x, y ∈
[−1, 1]n we have |f(x)− f(y)| ≤ n · ‖x− y‖∞.

Proof. For every i ∈ {0, 1, . . . , n} define z(i) := (x1, ..., xi, yi+1, ..., yn), note that z(n) = x

and z(0) = y. We have

f(x)− f(y) =
n∑
i=1

f(z(i))− f(z(i−1)).

Now note that since f is a multilinear function, for every i,

|f(z(i))− f(z(i−1))| = |hi(xi)− hi(yi)| ≤ |xi − yi|,

where hi(z) = f(x1, . . . , xi−1, z, yi+1, . . . , yn). The above inequality holds as hi is an affine
function mapping [−1, 1] to [−1, 1]. We thus obtain that

|f(x)− f(y)| ≤
n∑
i=1
|xi − yi| ≤ n · ‖x− y‖∞. J

Using Lemma 12 and condition on the event E we have

|f(trnc(AY ))− f(trnc(AY ′))| ≤ ηn.

As f is bounded in [−1, 1] we obtain the bound

|E[f(trnc(AY ))]−E[f(trnc(AY ′))]| ≤ ηn+ 2 Pr[¬E ] ≤ η(n+ 2).

Completing the proof

We put things together to finish the proof of Lemma 8. Recall that δ = ε/t and ` =
(logn)/δ2+o(1) = (t/ε)2+o(1) · log(n) from Step I. Set p = 1/(8 ln(n/δ)) = 1/(8 ln(nt/ε)). Let
A ∈ [−1, 1]n×` be the matrix constructed in step I. Set η = ε/(n+2) and let G : {0, 1}s → R`
be the generator constructed in step II. We take

X = AG(Us).

The arguments above show that X is a fractional PRG for F with error O(ε). In addition,
X is p-noticeable. To conclude we compute the seed length s:

s = O(` · log(`/η)) = O
(

(t/ε)2+o(1) · logn · log(n/ε)
)
.

ITCS 2019
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3 Level one Fourier bounds for polynomials

In this section we bound the level one Fourier tail of low degree polynomials over F2.

I Theorem 13. Let p : Fn2 → F2 be a polynomial of degree d, and let f(x) = (−1)p(x). Then

L1,1(f) =
n∑
i=1
|f̂(i)| ≤ 4d.

Proof. We assume for simplicity that n is even; the proof is analogous for odd n. We have
n∑
i=1
|f̂(i)| =

n∑
i=1

si ·E
x

[f(x)(−1)xi ] ,

where si = sign(f̂(i)). We may assume without loss of generality that si = 1 for all i, by
replacing xi with 1− xi whenever si = −1. Thus, it suffices to upper bound

E := E
x

[
f(x)

n∑
i=1

(−1)xi

]
.

For t = 1, . . . , n/2 define the functions Tt : {0, 1}n → {−1, 0, 1} as follows:

Tt(x) :=


−1 if

∑
xi ≥ n/2 + t

1 if
∑
xi ≤ n/2− t

0 otherwise
.

Then

E = 2
n/2∑
t=1

E
x

[f(x)Tt(x)] .

We need a few more definitions. Let Ut := {x ∈ {0, 1}n : |
∑
xi − n/2| ≥ t}. Define

Mt : Ut → F2 as Mt(x) = 0 if
∑
xi ≥ n/2 + t, and Mt(x) = 1 if

∑
xi ≤ n/2− t. Note that

Tt(x) = (−1)Mt(x) for x ∈ Ut, and Tt(x) = 0 for x /∈ Ut. Let At := {x ∈ Ut : p(x) = Mt(x)}.
Then

et := E
x

[f(x)Tt(x)] = 2|At| − |Ut|
2n .

We next apply a dimension argument similar to that used by Razborov [10] and Smolensky
[11] (we adopt a Kopparty’s presentation of the argument [7, Lemma 6]). Consider the space
of functions g : At → F2. On the one hand, its dimension is |At|. On the other hand, any
function g : Ut → F2 can be decomposed as

g(x) = g1(x)Mt(x) + g2(x),

where g1, g2 are polynomials over F2 of degree ≤ n/2− t. Thus, any function g : At → F2
can be expressed as a polynomial g(x) = g1(x)p(x) + g2(x) which is of degree ≤ n/2− t+ d.
Thus, we can bound |At| by the dimension of this linear space of polynomials,

|At| ≤
n/2−t+d∑
i=0

(
n

i

)
.
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Using the fact that |Ut| = 2
∑n/2−t
i=0

(
n
i

)
we can upper bound et by

et ≤
2
∑d
i=1
(

n
n/2−t+i

)
2n .

We thus can bound E by

E = 2
n/2∑
t=1

et ≤ 4
n/2∑
t=1

d∑
i=1

(
n

n/2−t+i
)

2n = 4
d∑
i=1

n/2−1∑
j=0

(
n
j+i
)

2n ≤ 4d. J

3.1 Level two Fourier bounds from level one bounds
We present a simple argument showing that for any family F of n-variate Boolean functions
that is closed under restrictions, a bound of L1,1(F) ≤ t implies L1,2(F) ≤ O(t ·

√
n logn).

Using this connection, we get that polynomials of degree polylog(n) have L1,2(·) at most√
n · polylog(n). Recall that we conjecture that the right bound should be polylog(n) (i.e.,

exponentially smaller). Nevertheless, even improving this bound slightly to n1/2−o(1) would
imply a non-trivial PRG fooling polylog(n)-degree F2-polynomials and AC0[⊕] circuits with
seed-length n1−o(1). In comparison, the current state of the art PRG for AC0[⊕] circuits has
seed-length n− n/polylog(n) [4].

I Claim 14. Let F be a class of n-variate Boolean functions that is closed under restrictions.
Let t ≥ 1. Assume that L1,1(F) ≤ t. Then, L1,2(F) ≤ t ·O(

√
n logn).

Proof. Let f : {−1, 1}n → {−1, 1} be some Boolean function in F . We bound L1,2(f) =∑
i<j |f̂(i, j)|. We begin by partitioning the set of coordinates of f into two disjoint parts

[n] = X ∪ Y and summing only the cross-terms L1(X,Y ) =
∑
i∈X

∑
j∈Y |f̂(i, j)|. We note

that there exists a partition [n] = X ∪ Y such that L1(X,Y ) ≥ L1,2(f)/2. This holds since a
random partition has on expectation

E
X,Y

[L1(X,Y )] =
∑
i<j

|f̂(i, j)| · (Pr[i ∈ X, j ∈ Y ] + Pr[i ∈ Y, j ∈ X]) = L1,2(f) · 1
2 .

Fix a partition (X,Y ) for which L1(X,Y ) ≥ L1,2(f) · 1
2 . In the remainder, we bound

L1(X,Y ) =
∑

i∈X,j∈Y
|f̂({i, j})| =

∑
i∈X,j∈Y

si,j · f̂({i, j})

for some sign matrix s ∈ {−1, 1}X×Y . For any fixed x ∈ {−1, 1}X we denote by fx :
{−1, 1}Y → {−1, 1} the function defined by fx(y) = f(x, y). Note that fx is a restriction of
f thus by our assumption, its L1,1 is at most t. We get

L1(X,Y ) = E
x∈{−1,1}X ,

y∈{−1,1}Y

[ ∑
i∈X,j∈Y

si,j · f(x, y) · xi · yj

]

= E
x∈{−1,1}X

[ ∑
i∈X,j∈Y

si,j · xi · E
y∈{−1,1}Y

[f(x, y) · yj ]

]

= E
x∈{−1,1}X

[ ∑
i∈X,j∈Y

si,j · xi · f̂x({j})

]
= E

x∈{−1,1}X

[∑
j∈Y

(
f̂x({j}) ·

∑
i∈X

si,j · xi

)]

≤ E
x∈{−1,1}X

[∑
j∈Y

|f̂x({j})| ·
∣∣∣∑

i∈X

si,j · xi

∣∣∣] ≤ E
x∈{−1,1}X

[
t ·max

j∈Y

∣∣∣∑
i∈X

si,j · xi

∣∣∣]

ITCS 2019
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By Chernoff’s bounds, the expectation of maxj∈Y |
∑
i∈X si,j · xi| is at most O(

√
n logn).

Thus overall L1,2(f) ≤ 2 · L1(X,Y ) ≤ 2t ·O(
√
n · logn). J

4 Further research

A clear advantage of Theorem 2 over Theorem 1 is that only bounds on the second level of
the Fourier tails are needed, instead of bounds for all levels. However, we pay a price, as the
dependence on the error parameter ε is polynomial instead of poly-logarithmic. This raises a
natural problem: can a better dependency on ε be obtained if the Fourier tails are assumed
to be bounded for several levels k? In particular, information on how many levels is needed
in order to obtain poly-logarithmic dependency on the error ε? We leave these questions to
future work.
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A Proof of Theorem 9

Throughout this section we take G to be a multivariate Gaussian distribution with zero
mean, covariances at most δ and variances at most 1. That is, if G = (G1, . . . , Gn) then
E[Gi] = 0,E[G2

i ] ≤ 1 and |E[GiGj ]| ≤ δ for i 6= j.

A.1 Preliminaries
Let f : Rn → R be a multi-linear function, defined by

f(z) =
∑
S⊆[n]

f̂(S) ·
∏
i∈S

zi, (1)

where f̂(S) ∈ R. We bound the difference between Ez∼G[f(trnc(pz))] and Ez∼G[f(pz)] for a
small p ∈ (0, 1). Note that whenever z′ ∈ [−1, 1]n, there is no difference between f(z′) and
f(trnc(z′)), and we only need to bound the difference when z′ is outside [−1, 1]n. The next
claim bounds the value of |f(z′)| when z′ is outside [−1, 1]n.

I Claim 15 ([9, Claim 5.1]). Let f : Rn → R be a multi-linear function that maps {−1, 1}n
to [−1, 1]. Let z′ ∈ Rn. Then, |f(z′)| ≤

∏n
i=1 max(1, |z′i|).

For α ∈ (0, 1), z ∈ Rn, we get that the value of |f(αz)| is bounded by
∏
i max(1, |αzi|).

The following claim bounds the latter times the indicator that αz 6= trnc(αz).

I Claim 16. Let α ∈ (0, 1/
√

4n]. Then,

E
z∼G

[ n∏
i=1

max(1, |αzi|) · 1αz 6=trnc(αz)

]
≤
∞∑
k=1

e−k/(4α2n) · nk.

Proof. For i ∈ [n] and ai ∈ N, we consider the event

ai ≤ |α · zi| < ai + 1,

denoted by Ei,ai . Since each zi is a Gaussian with mean 0 and variance at most 1, we have
Pr[Ei,ai

] ≤ e−a2
i /(2α2). Using Claim 15 we have

(∗) = E
z∼G

[ n∏
i=1

max(1, |αzi|) · 1αz 6=trnc(αz)

]
≤

∑
~a∈Nn,~a6=0n

Pr[∧ni=1Ei,ai
] ·

n∏
i=1

(1 + ai)

≤
∑

~a∈Nn,~a6=0n

min
i∈[n]
{Pr[Ei,ai

]} ·
n∏
i=1

(1 + ai)

≤
∑

~a∈Nn,~a6=0n

n∏
i=1

Pr[Ei,ai ]1/n ·
n∏
i=1

(1 + ai) (2)

We bound

Pr[Ei,ai
]1/n · (1 + ai) ≤ e−a

2
i /(2α2n) · (1 + ai) ≤ e−a

2
i /(4α2n)

ITCS 2019
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since 1 + ai ≤ eai ≤ ea2
i /(4α2n) for α2 ≤ 1/4n. We plug this estimate in Equation (2):

(∗) ≤
∑

~a∈NN ,~a6=0n

e−
∑

i
a2

i /(4α2n)

≤
∞∑
k=1

e−k/(4α2n) ·
∣∣∣{~a ∈ Nn :

∑
i

ai = k
}∣∣∣

=
∞∑
k=1

e−k/(4α2n) ·
(
n+ k − 1

k

)
≤

∞∑
k=1

e−k/(4α2n) · nk. J

I Claim 17. Let p ≤ 1/4
√
n. Let f : Rn → R be a multi-linear function that maps {−1, 1}n

to [−1, 1]. Let v ∈ [−1/2, 1/2]n. Then,

E
z∼G

[|f(trnc(v + p · z))− f(v + p · z)|] ≤ 2 ·
∞∑
k=1

e−k/(16p2n) · nk.

Proof. Let E be the event that (trnc(v + p · z) 6= v + p · z). Note that E implies the event
2pz 6= trnc(2pz) since v ∈ [−1/2, 1/2]n. Using Claim 15, we get

E
z∼G

[|f(trnc(v + p · z))− f(v + p · z)|] ≤ E
z∼G

[(1 + |f(v + p · z)|) · 1E ]

≤ E
z∼G

[(1 + |f(v + p · z)|) · 12pz 6=trnc(2pz)]

≤ E
z∼G

[(
1 +

n∏
i=1

max(1, |vi + p · zi|)
)
· 12pz 6=trnc(2pz)

]
≤ E

z∼G

[
2 ·

n∏
i=1

max(1, |vi + p · zi|) · 12pz 6=trnc(2pz)

]
.

However,
∏n
i=1 max(1, |vi + p · zi|) ≤

∏n
i=1 max(1, 1/2 + p|zi|) ≤

∏n
i=1 max(1, 2p|zi|). Using

Claim 16 with α = 2p, we get

E
z∼G

[|f(trnc(v + p · z))− f(v + p · z)|] ≤ E
z∼G

[
2 ·

n∏
i=1

max(1, 2p|zi|) · 12pz 6=trnc(2pz)

]
≤ 2 · E

z∼G

[ n∏
i=1

max(1, α|zi|) · 1αz 6=trnc(αz)

]
≤ 2 ·

∞∑
k=1

e−k/(4α2n) · nk. J

I Claim 18 (Application of Isserlis’ Theorem). Let G be a MVG distribution over Rn with
zero-mean and covariances at most δ. For S ⊆ [n], let Ĝ(S) = EZ∼G[

∏
i∈S Zi]. Then,

1. Ĝ(S) = 0 if |S| is odd.
2. |Ĝ(S)| ≤ (k − 1)!! · δk/2 if |S| = k is even.

Proof. Both items rely on Isserlis’ Theorem [5] (See also http://en.wikipedia.org/wiki/
Isserlis’_theorem) that gives a formula for the moments of any zero-mean multi Gaussian
distribution. Isserlis’ Theorem [5] states that in a zero-mean multivariate Gaussian distribu-
tion Z1, . . . , Zn, for a sequence of indices (i1, . . . , ik) ∈ [n], we have E[Zi1 · · ·Zik ] = 0 if k is
odd and E[Zi1 · · ·Zik ] =

∑∏
E[ZirZi` ], where the notation

∑∏
means summing over all

distinct ways of partitioning Zi1 , . . . , Zik into pairs and each summand is the product of the
k/2 pairs. If |S| = k is even, since the covariance of each pair in G is at most δ in absolute
value and there are at most (k − 1)!! partitions to pairs, we get |Ĝ(S)| ≤ (k − 1)!! · δk/2. J

http://en.wikipedia.org/wiki/Isserlis'_theorem
http://en.wikipedia.org/wiki/Isserlis'_theorem
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The next claim expresses the difference of a multi-linear function f on two vectors, v
and v + z, as the expected difference of random restrictions of f on 0 and 2z, provided that
v ∈ [−1/2, 1/2]n. Applying this lemma when the entries of z are infinitesimally small means
that bounded variation of random restrictions of f around 0 implies bounded variation of f
around any v ∈ [−1/2, 1/2]n.

I Claim 19 ([2, Claim 3.3], restated in [1]). Let f be a multi-linear function on Rn and
v ∈ [−1/2, 1/2]n. There exists a distribution over random restrictions ρ such that for any
z ∈ Rn,

f(v + z)− f(v) = E
ρ

[fρ(2 · z)− fρ(~0)].

Proof. Given v ∈ [−1/2, 1/2]n, we define a distribution Rv over restrictions ρ ∈ {−1, 1, ∗}n,
as follows. For each entry i ∈ [n] independently, we set ρi = 1 with probability 1/4 + vi/2,
ρi = −1 with probability 1/4 − vi/2, and ρi = ∗ with probability 1/2. Note that since
v ∈ [−1/2, 1/2]n all these probabilities are indeed non-negative.

Let ρ ∼ Rv. For any vector z ∈ Rn, we define a vector z̃ = z̃(z, ρ) ∈ Rn, as follows:

z̃i =
{
ρi if ρi ∈ {−1, 1}
2 · zi otherwise

Thus, for a fixed z ∈ Rn, the vector z̃ is a random variable that depends on ρ. We show
that for any fixed z ∈ Rn, the distribution of the random variable z̃ is a product distribution
(over inputs in Rn), and the expectation of z̃ is the vector v + z. Indeed, each coordinate z̃i
is independent of the other coordinates, and its expected value is

E
ρ∼Rv

[z̃i] = vi + zi.

Hence, since f is multi-linear and z̃ has a product distribution, by Equation (1), Eρ∼Rv
[f(z̃)]

= f(v + z). We get

f(v + z)− f(v) = E
ρ∼Rv

[f(z̃(z, ρ))]− E
ρ∼Rv

[f(z̃(~0, ρ))] = E
ρ∼Rv

[f(z̃(z, ρ))− f(z̃(~0, ρ))]

However, for any fixed ρ, we have f(z̃(z, ρ)) = fρ(2z), where fρ is attained from f by fixing
the coordinates that were fixed in ρ, according to ρ. Thus,

f(v + z)− f(v) = E
ρ∼Rv

[fρ(2 · z)− fρ(~0)]. J

A.2 The Proof
I Claim 20. Let f : {−1, 1}n → {−1, 1} be a Boolean function with L1,2(f) ≤ t. Let
p ≤ 1/2n. Then,∣∣∣ E

Z∼G
[f(pZ)]− f(~0)

∣∣∣ ≤ p2 · t · δ +O(p4 · n4 · δ2) .

Proof. By Equation (1) and since f(~0) = f̂(∅),∣∣∣∣ E
Z∼G

[f(pZ)]− f(~0)
∣∣∣∣ =

∣∣∣∣ E
Z∼G

[ ∑
∅6=S⊆[n]

f̂(S) ·
∏
i∈S

(p · Zi)
]∣∣∣∣

=
∣∣∣∣ ∑
∅6=S⊆[n]

f̂(S) · p|S| · E
Z∼G

[∏
i∈S

Zi

]∣∣∣∣
≤

n∑
k=1

pk ·
(

max
S:|S|=k

|Ĝ(S)|
)
·

∑
S⊆[n],|S|=k

|f̂(S)|

ITCS 2019
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For odd k, Claim 18 gives maxS:|S|=k |Ĝ(S)| = 0. For even k, we have maxS:|S|=k |Ĝ(S)| ≤
(k − 1)!! · δk/2 by Claim 18. Plugging these bounds in the above expression gives∣∣∣ E

Z∼G
[f(pZ)]− f(~0)

∣∣∣ ≤ p2 · δ ·
∑

S:|S|=2

|f̂(S)|+
∑

k≥4,k even
pk · δk/2 · (k − 1)!! ·

∑
S:|S|=k

|f̂(S)|

≤ p2 · δ · t+
∑

k≥4,k even
pk · δk/2 · (k − 1)!! ·

(
n

k

)
(L1,2(f) ≤ t and ∀S : |f̂(S)| ≤ 1)

≤ p2 · δ · t+
∑

k≥4,k even
pk · δk/2 · nk

≤ p2 · δ · t+O(p4 · n4 · δ2) (p ≤ 1/2n)

J

I Theorem 21 (Theorem 9, restated). Let n ∈ N, δ, σ ∈ (0, 1). Let G be a zero-mean
multivariate Gaussian distribution over Rn where Z ∼ G has the following two properties:
1. For i ∈ [n]: Var [Zi] ≤ σ2

2. For i, j ∈ [n], i 6= j: |Cov[Zi, Zj ]| ≤ δ.
Let F be a class of n-variate Boolean functions which is closed under restrictions. Assume that
L1,2(F) ≤ t. Then for any f ∈ F it holds that |E[f(trnc(Z))]− f(~0)| ≤ 4δ · t+ 4n · e−1/8σ2 .

Proof. Let m ∈ N be sufficiently large (in particular m ≥ (4n)4) and p = 1/
√
m. Let

Z(1), . . . , Z(m) ∼ G. We define m+ 1 hybrids H0, . . . ,Hm. Let H0 = ~0. For i = 1, . . . ,m, let
Hi = p · (Z(1) + . . .+Z(i)). We observe that Hm ∼ G. This is true since Hm is a multivariate
Gaussian with the same expectation and the same covariance matrix as Z ∼ G. We can
think of H0, H1, . . . ,Hm as a n-dimensional random walk. We bound∣∣E[f(trnc(Hm))]− f(~0)]

∣∣
by considering two cases depending on whether or not at some point in the random walk we
stepped outside of [−1/2, 1/2]n.

For i ∈ {0, . . . ,m}, let Ei be the event that Hi ∈ [−1/2, 1/2]n. We show that Ei happens
with high probability. In fact, we show that E = E1 ∧ E2 ∧ . . . ∧ Em happens with high
probability, with no dependency on the number of steps m. The claim follows from known
properties of Brownian motions. For j ∈ [n], let D(j) be the event that there exists an i ∈ [m]
with |(Hi)j | > 1/2. Clearly ¬E ≡ D(1) ∨ D(2) ∨ . . . ∨ D(n).

We show that for each j ∈ [n], Pr[D(j)] ≤ 4 · e−8/σ2 and then apply a union bound.
Each {(Hi)j}mi=0 is a random walk with m steps, which can be viewed as a discretization
of a one-dimensional Brownian motion. A standard one-dimensional Brownian motion (or
Wiener process) is a random process {B(t)}t≥0 with the properties: (1) B(0) = 0, (2)
for all t, s ≥ 0, B(t + s) − B(t) is independent of the past {B(t′)}t′≤t (3) for all t, s ≥ 0,
B(t + s) − B(t) ∼ N (0, s). Let σ2

j := Var[zj ]. We observe that if B is a standard one-
dimensional Brownian motion, then {B(σ2

j · i/m)}mi=0 is distributed exactly as {(Hi)j}mi=0.
Let M(t) = sup0≤s≤tB(s) and M ′(t) = inf0≤s≤tB(s). It suffices to show that M(σ2

j ) ≤ 1/2
and M ′(σ2

j ) ≥ −1/2 with high probability. Known results on Brownian motions state that
Pr[M ′(t) < −1/2] = Pr[M(t) > 1/2] = Pr[|B(t)| > 1/2] (cf. [8, Theorem 2.21]). The latter
is at most e−1/8t since B(t) ∼ N (0, t). Overall, we get

Pr[¬E ] ≤
n∑
j=1

Pr[D(j)] ≤
n∑
j=1

(
Pr[M ′(σ2

j ) < −1/2] + Pr[M(σ2
j ) > 1/2]

)
≤ 2n · e−1/8σ2
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Next, we bound |EZ(i+1) [f(trnc(Hi + p ·Z(i+1)))− f(trnc(Hi))]| conditioned on the event
Ei, for i = 0, 1, . . . ,m− 1. Let v = Hi. Condition on the event Ei, and in fact condition on
the entire history in the first i steps, which in particular fixes v. By Claim 19, we have∣∣∣∣ E

Z(i+1)
[f(v + p · Z(i+1))− f(v)]

∣∣∣∣ =
∣∣∣∣ E
Z(i+1)

E
ρ

[fρ(2p · Z(i+1))− fρ(~0)]
∣∣∣∣

≤ E
ρ

∣∣∣∣ E
Z(i+1)

[fρ(2p · Z(i+1))− fρ(~0)]
∣∣∣∣ .

By Claim 20 we have that the latter is at most (2p)2tδ + O(p4n4δ2) as long as 2p ≤
1/2n. We wish to show a similar bound on the truncated version of Hi + p · Z(i+1). Note
that conditioned on Ei, we have Hi = trnc(Hi), but this is not necessarily the case for
Hi+p ·Z(i+1). Using Claim 17 we get

∣∣EZ(i+1) [f(p · Z(i+1) + v)− f(trnc(p · Z(i+1) + v))]
∣∣ ≤

2 ·
∑∞
k=1 e

−k/(16p2n) · nk. By the triangle inequality we get∣∣∣ E
Z(i+1)

[f(trnc(v + p · Z(i+1)))− f(trnc(v))]
∣∣∣

≤
∣∣∣ E
Z(i+1)

[f(trnc(v + p · Z(i+1)))− f(v + p · Z(i+1))]
∣∣∣

+
∣∣∣ E
Z(i+1)

[f(v + p · Z(i+1))− f(trnc(v))]
∣∣∣

≤
(

2 ·
∞∑
k=1

e−k/(16p2n) · nk
)

+
(

4p2 · δ · t+O(p4n4δ2)
)
. (3)

To finish the proof, using triangle inequality we have∣∣E[f(trnc(Hm))− f(~0)]
∣∣ ≤ ∣∣E[f(trnc(Hm)) · 1E − f(~0)]

∣∣+ |E[f(trnc(Hm)) · 1¬E ]|

We bound the second summand by Pr[¬E ] since f is bounded in [−1, 1] on truncated vectors,
whereas the first summand is bounded using a telescopic sum of the m+ 1 hybrids:∣∣E[f(trnc(Hm)) · 1E)− f(~0)]

∣∣
≤

m−1∑
i=0

|E[f(trnc(Hi+1)) · 1E1∧...∧Ei+1 − f(trnc(Hi)) · 1E1∧...∧Ei ]|

≤
m−1∑
i=0

|E[f(trnc(Hi+1)) · 1E1∧...∧Ei − f(trnc(Hi)) · 1E1∧...∧Ei )]|

+ |E[f(trnc(Hi+1)) · (1E1∧...∧Ei+1 − 1E1∧...∧Ei )]|

≤
m−1∑
i=0

(
2 ·

∞∑
k=1

e−k/(16p2n) · nk
)

+
(

4p2 · δ · t+O(p4n4δ2)
)

+ E[|1E1∧...∧Ei+1 − 1E1∧...∧Ei |]

(Eq. (3), f is bounded)

≤ m ·
((

2 ·
∞∑

k=1

e−k/(16p2n) · nk
)

+ 4p2 · δ · t+O(p4n4δ2)
)

+ Pr[¬E ].

Overall,∣∣E[f(trnc(Hm))− f(~0)]
∣∣ ≤ m · ((2 · ∞∑

k=1

e−k/(16p2n) · nk
)

+ 4p2 · δ · t+O(p4n4δ2)
)

+ 2 Pr[¬E ]

= m ·
((

2 ·
∞∑

k=1

e−km/(16n) · nk
)

+ 4m−1 · δ · t+O(m−2n4δ2)
)

+ 2 Pr[¬E ]

Taking m→∞ gives the upper bound 4δ · t+2 Pr[¬E ] ≤ 4δ · t+4n ·e−1/8σ2 as promised. J
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