
Algorithmic Polarization for Hidden Markov
Models
Venkatesan Guruswami1

Computer Science Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA
venkatg@cs.cmu.edu

Preetum Nakkiran2

Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University,
33 Oxford Street, Cambridge, MA 02138, USA
preetum@cs.harvard.edu

Madhu Sudan3

Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University,
33 Oxford Street, Cambridge, MA 02138, USA
madhu@cs.harvard.edu

Abstract
Using a mild variant of polar codes we design linear compression schemes compressing Hidden
Markov sources (where the source is a Markov chain, but whose state is not necessarily observable
from its output), and to decode from Hidden Markov channels (where the channel has a state
and the error introduced depends on the state). We give the first polynomial time algorithms
that manage to compress and decompress (or encode and decode) at input lengths that are
polynomial both in the gap to capacity and the mixing time of the Markov chain. Prior work
achieved capacity only asymptotically in the limit of large lengths, and polynomial bounds were
not available with respect to either the gap to capacity or mixing time. Our results operate in the
setting where the source (or the channel) is known. If the source is unknown then compression
at such short lengths would lead to effective algorithms for learning parity with noise – thus our
results are the first to suggest a separation between the complexity of the problem when the
source is known versus when it is unknown.

2012 ACM Subject Classification Theory of computation → Error-correcting codes

Keywords and phrases polar codes, error-correcting codes, compression, hidden markov model

Digital Object Identifier 10.4230/LIPIcs.ITCS.2019.39

1 Introduction

We study the problem of designing coding schemes, specifically encoding and decoding
algorithms, that overcome errors caused by stochastic, but not memoryless, channels. Spe-
cifically we consider the class of “(hidden) Markov channels” that are stateful, with the states
evolving according to some Markov process, and where the distribution of error depends on

1 Most of this work was done when the author was visiting the Center for Mathematical Sciences
and Applications, Harvard University, Cambridge, MA. Research supported in part by NSF grants
CCF-1422045 and CCF-1814603.

2 Work supported in part by the NSF Graduate Research Fellowship Grant No. DGE1144152, and Madhu
Sudan’s Simons Investigator Award and NSF Award CCF 1715187.

3 Work supported in part by a Simons Investigator Award and NSF Award CCF 1715187.

© Venkatesan Guruswami, Preetum Nakkiran, and Madhu Sudan;
licensed under Creative Commons License CC-BY

10th Innovations in Theoretical Computer Science Conference (ITCS 2019).
Editor: Avrim Blum; Article No. 39; pp. 39:1–39:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:venkatg@cs.cmu.edu
mailto:preetum@cs.harvard.edu
mailto:madhu@cs.harvard.edu
https://doi.org/10.4230/LIPIcs.ITCS.2019.39
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

39:2 Algorithmic Polarization for Hidden Markov Models

Nice
=BSC(𝛿𝛿)

Noisy

=BSC 1
2
− 𝛿𝛿

1 − 𝑝𝑝 1 − 𝑞𝑞

𝑝𝑝

𝑞𝑞

Figure 1 A Markovian Channel: The Nice state flips bits with probability δ whereas the Noisy
state flips with probability 1/2− δ. The stationary probability of the Nice state is q/p times that of
the Noisy state.

the state.4 Such Markovian models capture many natural settings of error, such as bursty
error models. (See for example, Figure 1.) Yet they are often less understood than their
memoryless counterparts (or even “explicit Markov models” where the state is completely
determined by the actions of the channel). For instance (though this is not relevant to our
work) even the capacity of such channels is not known to have a closed form expression in
terms of channel parameters. (In particular the exact capacity of the channel in Figure 1 is
not known as a function of δ, p and q!)

In this work we aim to design coding schemes that achieve rates arbitrarily close to
capacity. Specifically given a channel of capacity C and gap parameter ε > 0, we would like to
design codes that achieve a rate of at least C−ε, that admit polynomial time algorithms even
at small block lengths n ≥ poly(1/ε). Even for the memoryless case such coding schemes
were not known till recently. In 2008, Arikan [1] invented a completely novel approach
to constructing codes based on “channel polarization” for communication on binary-input
memoryless channels, and proved that they enable achieving capacity in the limit of large
code lengths with near-linear complexity encoding and decoding. In 2013, independent works
by Guruswami and Xia [5] and Hassani et al. [6] gave a finite-length analysis of Arikan’s
polar codes, proving that they approach capacity fast, at block lengths bounded by poly(1/ε)
where ε > 0 is the difference between the channel capacity and code rate.

The success of polar codes on the memoryless channels might lead to the hope that
maybe these codes, or some variants, might lead to similar coding schemes for channels
with memory. But such a hope is not easily justified: the analysis of polar codes relies
heavily on the fact that errors introduced by the channel are independent and this is exactly
what is not true for channels with memory. Despite this seemingly insurmountable barrier,
Şaşoğlu [4] and later Şaşoğlu and Tal [9] showed, quite surprisingly, that the analysis of
polar codes can be carried out even with Markovian channels (and potentially even broader
classes of channels). Specifically they show that these codes converge to capacity and even
the probability of decoding error, under maximum likelihood decoding, drops exponentially
fast in the block length (specifically as 2−nΩ(1) on codes of length n; see also [10], where
exponentially fast polarization was also shown at the high entropy end). An extension of
Arikan’s successive cancellation decoder from the memoryless case was also given by [12],
building on an earlier version [13] specific to intersymbol interference channels, leading to
efficient decoding algorithms.

4 We use the term hidden to emphasize the fact that the state itself is not directly observable from the
actions of the channel, though in the interest of succinctness we will omit this term for most of the rest
of this section.

V. Guruswami, P. Nakkiran, and M. Sudan 39:3

However, none of the works above give small bounds on the block length of the codes as
a function of the gap to capacity, and more centrally to this work, on the mixing time of the
Markov chain. The latter issue gains importance when we turn to the issue of “compressing
Markov sources” which turns out to be an intimately related task to that of error-correction
for Markov channels as we elaborate below and which is also the central task we turn to in
this paper. We start by describing Markov source and the (linear) compression problem.

A (hidden) Markov source over alphabet Σ is given by a Markov chain on some finite
state space where each state s has an associated distribution Ds over Σ. The source produces
information by performing a walk on the chain and at each time step t, outputting a letter of
Σ drawn according to the distribution associated with the state at time t (independent of all
previous choices, and previous states).5 In the special case of additive Markovian channels
where the output of the channel is the sum of the transmitted word with an error vector
produced by a Markov source, a well-known correspondence shows that error-correction for
the additive Markov channel reduces to the task of designing a compression and decompression
algorithm for Markovian sources, with the compression being linear. Indeed in this paper
we only focus on this task: our goal turns into that of compressing n bits generated by the
source to its entropy upto an additive factor of εn, while n is only polynomially large in 1/ε.

A central issue in the task of compressing a source is whether the source is known to the
compression algorithm or not. While ostensibly the problem should be easier in the “known”
setting than in the “unknown” one, we are not aware of any formal results suggesting a
difference in complexity. It turns out that compression in the setting where the source is
unknown is at least as hard as “learning parity with noise” (we argue this in Appendix B),
if the compression works at lengths polynomial in the mixing time and gap to capacity.
This suggests that the unknown source setting is hard (under some current beliefs). No
corresponding hardness was known for the task of compressing sources when they are known,
but no easiness result seems to have been known either (and certainly no linear compression
algorithm was known). This leads to the main question addressed (positively) in this work.

Our Results

Our main result is a construction of codes for additive Markov channels that gets ε close to
capacity at block lengths polynomial in 1/ε and the mixing time of the Markov chain, with
polynomial (in fact near-linear) encoding and decoding time. Informally additive channels
are those that map inputs from some alphabet Σ to outputs over Σ with an abelian group
defined on Σ and the channel generates an error sequence independent of the input sequence,
and the output of the channel is just the coordinatewise sum of the input sequence with the
error sequence. (In our case the alphabet Σ is a finite field of prime cardinality.) The exact
class of channels is described in Definition 4, and Theorem 10 states our result formally. We
stress that we work with additive channels only for conceptual simplicity and that our results
should extend to more general symmetric channels though we don’t do so here. Prior to this
work no non-trivial Markov channel was known to achieve efficient encoding and decoding at
block lengths polynomial in either parameter (gap to capacity or mixing time).

Our construction and analyses turn out to be relatively simple given the works of Şaşoğlu
and Tal [4, 9] and the work of Blasiok et al. [2]. The former provides insights on how to
work with channels with memory, whereas the latter provides tools needed to get short block

5 The phrase “hidden” emphasizes the fact that the output produced by the source does not necessarily
reveal the sequence of states visited.

ITCS 2019

39:4 Algorithmic Polarization for Hidden Markov Models

length and cleaner abstractions of the efficient decoding algorithm that enable us to apply
it in our setting. Our codes are a slight variant of polar codes, where we apply the polar
transforms independently to blocks of inputs. This enables us to apply the analysis of [2]
in an essentially black box manner, benefiting both from its polynomially fast convergence
guarantee to capacity as well as its generality covering all polarizing matrices over any prime
alphabet (and not just the basic Boolean 2× 2 transform covered in [9]).

We give a more detailed summary of how our codes are obtained and how we analyze
them in Section 3 after stating our results and main theorem formally.

2 Definitions and Main Results

2.1 Notation and Definitions
We will use Fq to denote the finite field with q elements. Throughout the paper, we will deal
only with the case when q is a prime. (This restriction in turn comes from the work of [2]
whose results we use here.)

We use several notations to index matrices. For a matrix M ∈ Fm×nq , the entry in the
ith row, jth column is denoted Mi,j or M(i,j). Columns are denoted by superscripts, i.e.,
M j ∈ Fmq denotes the jth column of M . Note that M j

i = M(i,j). We also use the indices as
sets in the natural way. For example M≤j ∈ Fm×jq denotes the first j columns of M . M≤j≤i
denotes the submatrix of elements in the first j columns and first i rows. M≺(i,j) denotes the
set of elements of M indexed by lexicographically smaller indices than (i, j). Multiplication
of a matrix M ∈ Fm×nq with a vector v ∈ Fnq is denoted Mv.

For a finite set S, let ∆(S) denote the set of probability distributions over S. For a
random variable X and event E, we write X|E to denote the conditional distribution of X,
conditioned on E. For example, we may write X|{X1 = 0}.

The total-variation distance between two distributions p, q ∈ ∆(U) is

||p− q||1 :=
∑
i

|p(i)− q(i)|

We consider compression schemes, as a map Fnq → Fmq . The rate of a compression scheme
Fnq → Fmq is the ratio m/n.

For a random variable X ∈ [q], the (non-normalized) entropy is denoted H(X), and is

H(X) := −
∑
i

Pr[X = i] log(Pr[X = i])

and the normalized entropy is denoted H(X), and is

H(X) := 1
log(q)H(X)

I Definition 1. A Markov chainM = (`,Π, π0) is given by an ` representing the state space
[`], a transition matrix Π ∈ R`×`, and a distribution on initial state π0 ∈ ∆([`]). The rows
of Π, denoted Π1, . . . ,Π` are thus elements of ∆([`]). A Markov chain generates a random
sequence of states X0, X1, X2, . . . determined by letting X0 ∼ π0, and Xt ∼ ΠXt−1 for t > 0
given X0, . . . , Xt−1. The stationary distribution π ∈ ∆([`]) is the distribution such that if
X0 ∼ π, then all Xt’s are marginally identically distributed as π.

We consider only Markov chains which are irreducible and aperiodic, and hence have
a stationary distribution to which they converge in the limit. The rate of convergence is
measured by the mixing time, defined below.

V. Guruswami, P. Nakkiran, and M. Sudan 39:5

I Definition 2. The mixing time of a Markov chain is the constant τ > 0 such that for every
initial state s0 of the Markov chain, the distribution of state s` is exp(−`/τ)-close in total
variation distance to the stationary distribution π.

I Definition 3. A (stationary, hidden) Markov source H = (Σ,M, {S1, . . . ,S`}) is specified
by an alphabet Σ, a Markov chainM on ` states and distributions {Si ∈ ∆(Σ)}i∈[`]. The
output of the source is a sequence Z1, Z2, . . . , of random variables obtained by first sampling
a sequence X0, X1, X2, . . . according toM and then sampling Zi ∼ SXi independently for
each i. We let Ht the distribution of output sequences of length t, and H⊗st denote the
distribution of s i.i.d. samples from Ht.

Similarly, we define an additive Markov channel as a channel which adds noise from a
Markov source.

IDefinition 4. An additive Markov channel CH, specified by a Markov sourceH over alphabet
Fq, is a randomized map CH : F∗q → F∗q obtained as follows: On channel input X1, . . . , Xn,
the channel outputs Y1, . . . , Yn where Yi = Xi + Zi where Z = (Z1, . . . , Zn) ∼ Hn.

I Definition 5. A linear code is a linear map C : Fkq → Fnq . The rate of a code is the ratio
k/n.

I Definition 6. For all sets A,B, a constructive source over (A|B) samplable in time T is a
distribution D ∈ ∆(A×B) such that (a, b) ∼ D can be sampled efficiently in time at most T ,
and for every fixed b ∈ B, the conditional distribution A|{B = b} can be sampled efficiently
in time at most T .

I Proposition 7. Every Markov source with state space [`] is a constructive source samplable
in time O(n`2). That is, for every n, let Y1, . . . Yn be the random variables generated by the
Markov source. Then, the sequence Y1, . . . Yn can be sampled in time at most O(n`2), and
moreover for every setting of Y<n = y<n, the distribution (Yn|Y<n = y<n) can be sampled in
time O(n`2).

Proof. Sampling Y1, . . . , Yn can clearly be done by simulating the Markov chain, and sampling
from the conditional distribution (Yn|Y<n = y<n) is possible using the standard Forward
Algorithm for inference in Hidden Markov Models, which we describe for completeness in
Appendix A. J

Finally, we will use the following notion of mixing matrices from [7, 2], characterizing
which matrices lead to good polar codes. In the study of polarization it is well-known
that lower-triangular matrices do not polarize at all, and the polarization characteristics of
matrices are invariant under column permutations. Mixing matrices are defined to be those
that avoid the above cases.

I Definition 8. For prime q andM ∈ Fk×kq ,M is said to be a mixing matrix ifM is invertible
and for every permutation of the columns of M , the resulting matrix is not lower-triangular.

2.2 Main Theorems
We are now ready to state the main results of this work formally. We begin with the statement
for compressing the output of a hidden Markov model.

I Theorem 9. For every prime q and mixing matrixM ∈ Fk×kq there exists a preprocessing al-
gorithm (Polar-Preprocess, Algorithm 6.3), a compression algorithm (Polar-Compress,
Algorithm 4.1), a decompression algorithm (Polar-Decompress, Algorithm 4.2) and a
polynomial p(·) such that for every ε > 0, the following properties hold:

ITCS 2019

39:6 Algorithmic Polarization for Hidden Markov Models

1. Polar-Preprocess is a randomized algorithm that takes as input a Markov source H
with ` states, and t ∈ N, and runs in time poly(n, `, 1/ε, q) where n = k2t and outputs
auxiliary information for the compressor and decompressor (for Hn).

2. Polar-Compress takes as input a sequence Z ∈ Fnq as well as the auxiliary information
output by the preprocessor, runs in time O(n logn), and outputs a compressed string
Ũ ∈ FH(Z)+εn

q . Further, for every auxiliary input, the map Z → Ũ is a linear map.
3. Polar-Decompress takes as input a Markov source H a compressed string Ũ ∈ FH(Z)+εn

q

and the auxiliary information output by the preprocessor, runs in time O(n3/2`2 +n logn)
and outputs Ẑ ∈ Fnq . 6

The guarantee provided by the above algorithms is that with probability at least 1−exp(−Ω(n)),
the Preprocessing Algorithm outputs auxiliary information S such that

Pr
Z∼Hn

[Polar-Decompress(H, S; Polar-Compress(Z;S)) 6= Z] ≤ O(1
n2),

provided n > p(τ/ε) where τ is the mixing time of H.
(In the above O(·) hides constants depending k and q, but not on ` or n.)

The above linear compression directly yields channel coding for additive Markov channels,
via a standard reduction (the details of which are in Section 7.)

I Theorem 10. For every prime q and mixing matrix M ∈ Fk×kq there exists a randomized
preprocessing algorithm Preprocess, an encoding algorithm Enc, a decoding algorithm
Dec, and a polynomial p(·) such that for every ε > 0, the following properties hold:
1. Preprocess is a randomized algorithm that takes as input an additive Markov channel
CH described by Markov source H with ` states, and t ∈ N, and runs in time poly(n, `, 1/ε)
where n = k2t, and outputs auxiliary information for Hn.

2. Enc takes as input a message x ∈ Frq, where r ≥ n(1− H(Z)
n − ε), as well as auxiliary

information from the preprocessor and outputs and computes Enc(x) ∈ Fnq in O(n logn)
time.

3. Dec takes as input the Markov source H, auxiliary information from the preprocessor
and a string z ∈ Fnq , runs in time Oq(n3/2`2 + n logn), and outputs an estimate x̂ ∈ Frq
of the message x. 7

The guarantee provided by the above algorithms is that with probability at least 1−exp(−Ω(n)),
the Preprocessing algorithm outputs S such that for all x ∈ Frq we have

Pr
CH

[Dec(H; CH(Enc(C;x))) 6= x] ≤ O(1
n2),

provided n > p(τ/ε) where τ is the mixing time of H.
(In the above O(·) hides constants that may depend on k and q but not on ` or n.)

Theorem 10 follows relatively easily from Theorem 9 and so in the next section we focus
on the overview of the proof of the latter.

6 The runtime of the decompression algorithm can be improved to a runtime of O(n1+δ`2 + n logn) by a
simple modification. In particular, by taking the input matrix Z to be n1−δ ×nδ instead of n1/2 ×n1/2.
In fact we believe the decoding algorithm can be improved to an O(n logn) time algorithm with some
extra bookkeeping though we don’t do so here.

7 This can similarly be improved to a runtime of Oq(n1+δ`2 + n logn).

V. Guruswami, P. Nakkiran, and M. Sudan 39:7

3 Overview of our construction

Basics of polarization. We start with the basics of polarization in the setting of compressing
samples from an i.i.d. source. To compress a sequence Z ∈ Fn2 drawn from some source,
the idea is to build an invertible linear function P such that for all but ε fraction of the
output coordinates i ∈ [n], the conditional entropy H(P (Z)i|P (Z)<i) is close to 0 and or
close to 1. (Such an effect is called polarization, as the entropies are driven to polarize toward
the two extreme values.) Since a deterministic invertible transformation preserves the total
entropy, it follows that roughly H(Z) output coordinates can have entropy close to 1 and
n−H(Z) coordinates have (conditional) entropy close to 0. Letting S denote the coordinates
whose conditional entropies that are not close to zero, the compression function is simply
Z 7→ P (Z)S , the projection of the output P (Z) onto the coordinates in S.

Picking a random linear function P would satisfy the properties above with high probab-
ility, but this is not known (and unlikely) to be accompanied by efficient algorithms. To get
the algorithmics (how to compute P efficiently, to determine S efficiently, and to decompress
efficiently) one uses a recursive construction of P . For our purposes the following explanation
works best: Let n = m2 and view Z = (Z11, Z12, . . . , Zmm) and as an m ×m matrix over
F2, where the elements of Z arrive one row at a time. Let P row

m (·) denote the operation
mapping Fm×m2 to Fm×m2 that applies Pm to each row of separately. Let P column

m (·) denote
the operation that applies Pm to each column separately. Then Pn(Z) = P column

m (P row
m (Z))T .

The base case is given by P2(U, V) = (U + V, V).
Intuitively, when the elements of Z are independent and identical, the operation Pm

already polarizes the outputs somewhat and so a moderate fraction of the outputs of P row
m (Z)

have conditional entropies moderately close to 0 or 1. The further application of P column
m (·)

further polarizes the output bringing a larger fraction of he conditional entropies of the
output even closer to 0 or 1.

Polarization for Markovian Sources. When applied to source Z with memory, roughly the
analysis in [9], reinterpreted to facilitate our subsequent modification of the above polar
constructuion, goes as follows: Since the elements of the row Zi are not really independent
one cannot count on the polarization effects of P row

m . But, letting U = P row
m (Z) one can

show that most elements of the column of U j are almost independent of each other, provided
m is much larger than the mixing time of the source. (Here we imagine that the entries
of Z arrive row-by-row, so that the source outputs within each row are temporally well-
separated from most entries of the previous row, when m is large.) Further, this almost
independence holds even when conditioning on the columns U<j for most values of j. Thus
the operation P column

m (·) continues to have its polarization effects and this is good enough to
get a qualitatively strong polarization theorem (about the operator Pn!).

The above analysis is asymptotic, proving that in the limit of n→∞, we get optimal
compression. However, we do not know how to give an effective finite-length analysis of
the polarization process for Markovian process, as the analysis in [5, 6] crucially rely on
independence which we lack within a row.

Our Modified Code and Ingredients of Analysis. To enable a finite-length analysis, we
make a minor, but quite important, alteration to the polar code: Instead of using Pn(Z) =
P column
m (P row

m (Z))T we simply use the transformation P̃n = P column
m (Z)T (or in other words,

we replace the inner function P row
m (·) in the definition of Pn by the identity function). This

implies that we lose whatever polarization effects of P row
m we may have been counting on, but

as pointed out above, for Markov sources, we weren’t counting on polarization here anyway!

ITCS 2019

39:8 Algorithmic Polarization for Hidden Markov Models

The crucial property we identify and exploit in the analysis is the following: the Markovian
nature of the source plus the row-by-row arrival ordering of Z, implies that the distribution
of the j’th source column Zj conditioned on the previous columns Z<j = z<j , is a close to a
product distribution, for all but the last few (say εm) columns. 8

It turns out that the analysis of the polar transform Pm only needs independent inputs,
which however need not be identically distributed. We are then able to apply the recent
analysis from [2], essentially as black box, to argue that Pm will compress each of the
conditioned sources Zj |Z<j = z<j to its respective entropy, and also establish fast convergence
via quantitatively strong polynomial (in the gap to capacity) upper bounds on the m needed
to achieve this. Further, we automatically benefit from the generality of the analysis in [2],
which applies not only to the 2 × 2 transform P2 at the base case, but in fact any k × k
transform (satisfying some minimal necessary conditions) over an arbitrary prime field Fq.
Previous works on polar coding for Markovian sources [4, 9, 12] only applied for Boolean
sources.

We remark that the use of the identity transform for the rows in P̃n is quite counterintuitive.
It implies that the compression matrix is a block diagonal matrix (after some permutation
of the rows and columns) – and in turn this seems to suggest that we are compressing
different parts of the input sequence “independently”. However this is not quite true. The
relationship between the blocks ends up influencing the final set S of the bits of P̃n(Z) that
are output by the compression algorithm. Furthermore the decompression relies on the
information obtained from the decompression of the blocks corresponding to Z<j to compute
the block Zj .

Decompression algorithm. Our alteration to apply the identity transform for the rows also
helps us with the task of decompression. Toward this, we build on a decompression algorithm
for memoryless sources from [2] that is somewhat different looking from the usual ones in the
polar coding literature. This algorithm aims to compute U = P row

m (Z) one column at a time,
given Pn(Z)|S . Given the first j − 1 columns U<j = u<j , the algorithm first computes the
conditional distribution of U j conditioned on U<j = u<j and then uses a recursive decoding
algorithm for Pm to determine U j . The key to the recursive use is again that the decoding
algorithm works as long as the input variables are independent (and in particular, does not
need them to be identically distributed).

In our Markovian setting, we now have to compute the conditional distribution of Zj
conditioned on Z<j = z<j . But as mentioned above, this conditional distribution is close to a
product distribution, say Dj(z<j) (except for the last few columns j where decompression is
trivial as we output the entire column). Further, the marginals of this product distribution are
easily computed using dynamic programming (via what is called the “Forward Algorithm” for
hidden Markov models, described for completeness in Appendix A). We can then determine
the j’th column Zj (having already recovered the first j − 1 columns as z<j) by running (in
a black box fashion) the polar decompressor from [2] for the memoryless case, feeding this
product distribution Dj(z<j) as the source distribution.

Computing the output indices. Finally we need one more piece to make the result fully
constructive. This is the preprocessing needed to compute the subset S of the coordinates of
P̃n(Z) that have noticeable conditional entropy. For the memoryless case these computations

8 We handle the non-independence in the last few columns, by simply outputting those columns Pm(Zj)
in entirety, rather than only a set Sj of entropy-carrying positions. This only adds an ε fraction to the
output length, which we can afford.

V. Guruswami, P. Nakkiran, and M. Sudan 39:9

Algorithm 4.1 Polar-Compress.
Constants: M ∈ Fk×kq , m = kt, n = m2

Input: Z = (Z11, Z12, . . . , Zmm) ∈ Fnq , and sets Sj ⊆ [m] for j ∈ [m]
Output: U jSj

∈ Fsj
q for all j ∈ [m] . sj := |Sj | for j ≤ (1− ε)m, and sj := m otherwise.

1: procedure Polar-Compress(Z; {Sj}j∈[m])
2: for all j ∈ [m] do
3: Compute U j := Pm(Zj).
4: If j ≤ (1− ε)m then
5: Output U jSj

6: else
7: Output U j

were shown to be polynomial time computable in the works of [8, 5, 11]. We manage to
extend the ideas from Guruswami and Xia [5] to the case of Markovian channels as well. It
turns out the only ingredients needed to make this computation work are, again, the ability
to compute the distributions of Zj conditioned on Z<j = z<j for typical values of z<j . We
note that unlike in the setting of memoryless channels (or i.i.d. sources) our preprocessing
step is randomized. We believe this is related to the issue that there is no “closed” form
solutions to basic questions related to Markovian sources and channels (such as the capacity
of the channel in Figure 1) and this forces us to use some random sampling and estimation
to compute some of the conditional entropies needed by our algorithms.

Organization of rest of the paper. In the next section (Section 4) we describe our com-
pression and decompression algorithms. In Section 5 we describe a notion of “nice”-ness
for the preprocessing stage and show that if the preprocessing algorithm returns a nice
output, then the compression and decompression algorithm work correctly with moderately
high probability (over the message produced by the source). In Section 6 we describe our
preprocessing algorithm that returns a nice set with all but exponentially small failure
probability (over its internal coin tosses). Finally in Section 7 we give the formal proofs of
Theorems 9 and 10.

4 Construction

4.1 Compression Algorithm
Our compression, decompression and preprocessing algorithms are defined with respect
to arbitrary mixing matrices M ∈ Fk×kq . (Recall that mixing matrices were defined in

Definition 8.) Though a reader seeking simplicity may set k = 2 and M =
[

1 1
0 1

]
. Given

integer t, let m = kt and let Pm = Pm,M : Fmq → Fmq be the polarization transform given by
Pm = M⊗t.

4.2 Fast Decompressor
The decompressor below makes black-box use of the Fast-Decoder from [2, Algorithm 4].

The Fast-Decoder takes as input the description of a product distribution DZ on inputs
in Fmq , as well as the specified coordinates of the compression U . It is intended to decode
from the encoding U ′ ∈ {Fq ∪ {⊥}}m, where U := M⊗tZ, coordinates of Z are independent,

ITCS 2019

39:10 Algorithmic Polarization for Hidden Markov Models

Algorithm 4.2 Polar-Decompress.
Constants: M ∈ Fk×kq , m = kt, n = m2

Input: Markov Source H and U1
S1
, U2

S2
, . . . , UmSm

∈ Fmq
Output: Ẑ ∈ Fm×mq

1: procedure Polar-Decompress(H;U1
S1
, U2

S2
, . . . , UmSm

)
2: for all j ∈ [m] do
3: If j ≤ (1− ε)m then
4: Compute the distribution Dzj |ẑ<j ≡ Z

j |{Z<j = Ẑ<j}, using the Forward
Algorithm on Markov Source H.

5: Define U j ∈ {Fq ∪ {⊥}}m by extending U jSj
using ⊥ in the unspecified co-

ordinates.
6: Set Ẑj ← Fast-Decoder(Dzj |ẑ<j ;U j)
7: else
8: Set Ẑj ← (M−1)⊗tÛ jSj

. Note here Sj = [m]

9: Return Ẑ

and U ′ is defined by U on the high-entropy coordinates of U (and ⊥ otherwise). It outputs
an estimate Ẑ of the input Z.

Note that, for a Markov source H on ` states, Line 4 takes time Oq(m2`2) (time Oq(m`2)
per coordinate of Zj , using the Forward Algorithm). The Fast-Decoder call in Line 6 takes
time Oq(m logm). Thus, the total runtime is Oq(m3`2 +m2 logm) = Oq(n3/2`2 + n logn).

5 Analysis

The goal of this section is to prove that the decompressor works correctly, with high probablity,
provided the preprocessing stage returns the appropriate sets {Sj}. Specifically, we prove
Theorem 12 as stated below. But first we need a definition of “nice” sets {Sj}: We will
later show that pre-processing produces such sets and compression and decompression work
correctly (w.h.p.) given nice sets.

I Definition 11 ((ε, ζ)-niceness). Let H be a Markov source. For every m ∈ N and n = m2,
let Z ∼ H⊗mm be the corresponding “independent” distribution. Let U := P column

m (Z).
We call sets S1, S2, . . . Sm ⊆ [m] “(ε, ζ)-nice” if they satisfy the following:

1.
∑
j |Sj | ≤ H(Z) + εn

2. ∀j ∈ [m], i 6∈ Sj : H(U (i,j)|U≺(i,j)) < ζ

Now, the rest of this section will show the following.

I Theorem 12. There exists a polynomial p(·) such that for every ε > 0, τ > 0, and
n = m2 > p(τ/ε) the following holds:

Let H be an aperiodic irreducible Markov source with alphabet Fq, mixing time τ and
underlying state space [`]. Define random variables Z = (Z11, Z12 . . . Zmm) ∼ Hm2 as
generated by H. Then, for all sets S1, S2, . . . Sm ⊆ [m] that are (ε, ζ)-nice as per Definition 11,
we have:

Pr
Z

[Polar-Decompress(Polar-Compress(Z; {Sj}j∈[m])) 6= Z] ≤ nζ +m exp(−εm/τ)

V. Guruswami, P. Nakkiran, and M. Sudan 39:11

5.1 Proof Overview
Throughout this section, let H be a stationary Markov source with alphabet Fq and mixing-
time τ . The key part of the analysis is showing that compression and decompression succeed
when applied to the “independent” distribution Z ∼ H⊗mm . To do this, we first show that
the compression transform “polarizes” entropies, which follows directly from the results of
[2, 3]. Then we show that, provided “nice” sets can be computed (low-entropy sets, a la
Definition 11), the compression and decompression succeed with high probability. This also
follows essentially in a black-box fashion from the results of [2]. Finally, we argue that the
compression and decompression also work for the actual distribution Z ∼ Hm2 , simply by
observing that the involved variables are close in distribution.

We later describe how such “nice” sets can be computed in polynomial time, given the
description of the Markov source H.

5.2 Polarization
In this section, we show that the compression transform P column

m polarizes entropies.

I Lemma 13. Let H be a Markov source, and let Z ∼ H⊗mm . Let U = P column
m (Z).

Then, there exists a polynomial p(·) such that for every ε > 0, there exists β > 0 such
that if m > p(1/ε), the following holds: For all but ε-fraction of indices i, j ∈ [m]× [m], the
normalized entropy

H(U i,j |U≺(i,j)) 6∈ (exp(−mβ), 1− ε)

Proof. We will show that for each column U
j , all but ε-fraction of indices i ∈ [m] have

entropies

H(U ji |U
j

<i, U
<j) 6∈ (exp(−mβ), 1− ε)

Indeed, this follows directly from the analysis in [3]. For each j, the set of variables
(Zj1, Z

<j

1), (Zj2, Z
<j

2), . . . , (Zjm, Z
<j

m) are independent and identically distributed. Thus, The-
orem 14 from [3] (reproduced below) implies that the conditional entropies are polarized. Spe-
cifically, let p(·) and β be as guaranteed by Theorem 14, for the distribution D) ≡ (Zj1, Z

<j

1).
Then, since Pm = M⊗t, we have

H(U ji |U
j

<i, U
<j) = H(U ji |U

j

<i, Pm(Z<j)) (by definition)

= H(U ji |U
j

<i, Z
<j) (Pm is invertible)

6∈ (exp(−mβ), 1− ε) (Theorem 14)

J

The following theorem is direct from the works [3].

I Theorem 14. For every k ∈ N, prime q, mixing-matrix M ∈ Fk×kq , discrete set Y,
and any distribution D ∈ ∆(Fq × Y), the following holds. Define the random vectors
A := (A1, A2, . . . An) and B := (B1, B2, . . . Bn) where n = kt and each component (Ai, Bi)
is independent and identically distributed (Ai, Bi) ∼ D.

Let X := M⊗tA. Then, the conditional entropies of X are polarized: There exists a
polynomial p(·) and β > 0 such that for every ε > 0, if n = kt > p(1/ε), then all but
ε-fraction of indices i ∈ [n] have normalized entropy

H(Xi|X<i, B) 6∈ (exp(−nβ), 1− ε) .

ITCS 2019

39:12 Algorithmic Polarization for Hidden Markov Models

5.3 Independent Analysis
Now we bound the failure probability of the Polar Compressor and Decompresser, when
applied to the “independent” input distribution Z.

I Claim 15. Let Z ∼ H⊗mm and U := P column
m (Z). Then, for all sets S1, S2, . . . Sm ⊆ [m],

Pr
U←P column

m (Z)
[Polar-Decompress(U1

S1
, U2

S2
, . . . , UmSm

) 6= U] ≤
∑

j∈[m],i6∈Sj

H(U ji |U
j

<i, U
<j)

Proof. Appears in the full version of this paper. J

5.4 Proof of Main Theorem
At this point, we can show the entire process of compression and decompression succeeds
with high probability, proving Theorem 12.

First, we argue Hm2 and H⊗mm are close in the appropriate sense.

I Lemma 16. Let Z ∼ Hm2 and Z ∼ H⊗mm . Then, for every ` ∈ [m], the distribution of
Z<m−` and Z<m−` are m · exp(−`/τ)-close in L1.

Proof. We proceed by a sequence of m hybrids, changing one row at a time to being
independent. Let the i-th hybrid be Hi := Z<m−`≤i ◦ Z<m−`>i , that is, the first i rows of Z,
with the remaining rows replaced by iid copies of Z1.

Consider moving from Hi+1 to Hi. Conditioned on the first i rows of Z<m−`, the
distribution of the hidden state of the Markov source, at the beginning of the (i+ 1)th row,
is exp(−`/τ)-close to its stationary distribution π (since ` steps pass between Zi,m−` and
Zi+1,1). Recall that the distribution of Z1 is generated by the Markov source starting from
π. Thus, the distribution of the (i+ 1)th row of Z, conditioned on the first i rows of Z<m−`,
is exp(−`/τ)-close to the distribution of Z1. So, |Hi+1 −Hi|1 ≤ exp(−`/τ). Since we pass
through m hybrids, the total L1 distance is at most m · exp(−`/τ). J

Proof of Theorem 12. First, we show the corresponding claim about the “independent”
distribution Z ∼ H⊗mm :

I Claim 17. For Z ∼ H⊗mm , we have:

Pr
U←P column

m (Z)
[Polar-Decompress(U1

S1
, U

1
S2
, . . . U

m

Sm
) 6= Z] ≤ nζ

or equivalently,

Pr
Z∼H⊗m

m

[Polar-Decompress(Polar-Compress(Z; {Sj}j∈[m])) 6= Z] ≤ nζ

Proof. By Claim 15, we have

Pr
U←P column

m (Z)
[Polar-Decompress(U1

S1 , U
1
S2 , . . . U

m
Sm

) 6= Z] ≤
∑

j∈[m],i 6∈Sj

H(U ji |U
j
<i, U

<j)

≤ nζ (by (ε, ζ)-niceness) J

Continuing the proof of Theorem 12, notice that the composition of Polar-Compress
and Polar-Decompress always operate as the identity transform on the inputs Zj for
j > (1−ε)m. Thus, it suffices to consider the behavior of this composition on inputs Z≤(1−ε)m.
In this case, Lemma 16 guarantees that the distributions of Z≤(1−ε)m and Z≤(1−ε)m are
close in L1, and thus we may conclude by Claim 17:

V. Guruswami, P. Nakkiran, and M. Sudan 39:13

Pr
Z∼H

m2
[Polar-Decompress(Polar-Compress(Z; {Sj}j∈[m])) 6= Z]

≤ Pr
Z∼H⊗m

m

[Polar-Decompress(Polar-Compress(Z; {Sj}j∈[m])) 6= Z] +m exp(−εm/τ)

(Lemma 16)
≤ nζ +m exp(−εm/τ) (Claim 17) J

6 Preprocessing

In this section, we describe a pre-processing algorithm to find the (ε, ζ)-nice sets, as defined
in Definition 11, that are required by the compression and decompression algorithms. Recall
the notion of a mixing matrix (Definition 8). The following theorem shows that for every
prime alphabet Fq and mixing matrix M ∈ Fk×kq , there is an efficient algorithm that can
find nice sets in polynomial time. Specifically, we prove the following theorem.

I Theorem 18. For every prime q and mixing-matrix M ∈ Fk×kq , there exists a polynomial
p(·) and a polynomial time preprocessing algorithm Polar-Preprocess (Algorithm 6.3),
such that for every ε > 0 and m > p(1/ε), the following holds:

Let H be a Markov source with mixing-time τ , alphabet Fq, and underlying state space
[`]. Let Z ∼ H⊗mm for m = kt, and U := P column

m (Z).
Let

S1, S2, . . . Sm ← Polar-Preprocess(q, k, t,M,H)

Then, except with probability exp(−Ω(m)) over the randomness of the algorithm, the
output sets S1, S2, . . . Sm ⊆ [m] are (ε, ζ = O(1

n3))-nice for H. Further, the algorithm runs
in time polyq(m, `, 1/ε).

Our main goal will be to estimate the conditional entropies

H(U (i,j)|U≺(i,j)) = H(U i,j |U<i,j , U
<j) = H(U i,j |U<i,j , Z

<j)

for Z ∼ H⊗mm and U := P column
m (Z). Then, we will construct the “nice” sets by defining, for

each j, Sj as the set of indices with high entropy: Sj := {i ∈ [m] : H(U i,j |U<i,j , Z
<j) > 1

n3 }.
By Polarization (Lemma 13), these sets have size at most

∑
j |Sj | ≤ H(Z) + εn, since they

must have conditional entropies close to 1 (except possibly for some ε fraction of indices
(i, j) ∈ [m]× [m]).

We will estimate conditional entropies H(U i,j |U<i,j , Z
<j) by approximately tracking

the distribution of variables as we apply successive tensor-powers of M . Since we are only
interested in conditional entropies, it is sufficient to “quantize” the true distribution of,
for example Ui|U<i, into an approximation Ui|A, such that H(Ui|U<i) ≈ H(Ui|A). This
algorithm follows the same high-level strategy of [5], of approximating the conditional
distributions via quantized bins. It turns out that this strategy can be implemented for
Markov sources, using the fact that Markov sources are constructive. We define our notions
of approximation, and formalize this strategy below.

6.1 Notation and Preliminaries
I Definition 19 (Associated Conditional Distribution). Let X be a random variable taking
values in universe U , and letW be an arbitrary random variable. Let DX|w ∈ ∆(U) denote the
conditional distribution of X|{W = w}. Let DX|W ∈ ∆(∆(U)) be the distribution over DX|w
defined by sampling w ∼W . We call DX|W the associated conditional distribution to X|W .

ITCS 2019

39:14 Algorithmic Polarization for Hidden Markov Models

As above, we use boldface D to denote objects of type ∆(∆(U)). Note that we can operate
on conditional distributions as we would on their underlying random variables. For example,
for random variables (A1,W) and (A2, Y) such that A1, A2 ∈ Fq and (A1,W) is independent
from (A2, Y), the associated conditional distribution of A1 +A2|Y,W can be computed from
the associated conditional distributions of A1|Y and A2|W . To more easily describe such
operations on conditional distributions (which may not always arise from underlying random
variables), we define the implicit random variables associated to a conditional distribution:

I Definition 20 (Implicit Random Variables Associated to Conditional Distribution). For every
DX|W ∈ ∆(∆(U)), define implicit random variables X,W associated to DX|W as random
variables (X,W) such that the associated conditional distribution to X|W is exactly DX|W .
Note that there is not a unique choice of such random variables.

Using this, we can naturally define (for example) DA1+A2|W,Y and DA2|W,Y,A1+A2 from any
DA1,W ,DA2,Y ∈ ∆(∆(Fq)). Note that we will always be performing such operations assuming
independence of the involved implicit random variables, ie (A1,W) and (A2, Y).

I Definition 21 (Conditional Distance). Let (X,W) and (Y, Z) be two joint distributions,
such that X and Y take values in the same universe U . Let DX|W and DY |Z be the associated
distributions in ∆(∆(U)). Then, define the conditional distance

dC(DX|W ,DY |Z) := min
(A,B):a distribution in ∆(∆(U)×∆(U))
s.t. marginals of A match DX|W , and

marginals of B match DY |Z

E
(DA,DB)∼(A,B)

[||DA −DB ||1]

Note that dC can be equivalently defined as an optimal transportation cost between
two distributions in ∆(∆(U)), where the cost of moving a unit of mass between points
Di, Dj ∈ ∆(U) is ||Di −Dj ||1.

This metric behaves naturally under post-processing:

I Claim 22. For all DX|W ,DX′|W ′ ∈ ∆(∆(U)), and any f : U → V ,

dC(Df(X)|W ,Df(X′)|W ′) ≤ dC(DX|W ,DX′|W ′)

For computational purposes, we represent the space of distributions using ε-nets:

I Definition 23 (ε-nets). For every set U and any ε > 0, let Tε(U) ⊆ ∆(U) be an ε-net of
∆(U) with respect to L1. That is, for every D ∈ ∆(U), there exists D̂ ∈ Tε(U) such that
||D − D̂||1 ≤ ε.

Note that for |U | = |Fq| = q, Tε(U) can be chosen such that |Tε(U)| ≤
(q

ε +q
q

)
≤ (2q

ε)q =
polyq(1/ε).

Moreover, ∆(Tε(U)) is an ε-net of ∆(∆(U)) under the dC-metric.

6.2 Conditional Distribution Approximation
The below procedure takes as input a conditional distribution DZ|W ∈ ∆(∆(Fq)), and
computes an approximation to the conditional distribution of UI |(U≺I ,W1, . . .Wkt), for an
index I ∈ [k]t, where U := M⊗tZ and {(Zi,Wi)}i∈[kt] are independently defined by DZ|W .

Note that if the input DZ|W is specified in an ε-net ∆(Tε(Fq)), then the above procedure
runs in time polyq(m, 1/ε) for m = kt.

V. Guruswami, P. Nakkiran, and M. Sudan 39:15

Algorithm 6.1 Conditional Distribution Approximation.
Input: Conditional distribution on inputs DZ|W ∈ ∆(∆(Fq)), ε > 0, t ∈ N, index I ∈ [k]t,

and M ∈ Fk×kq

Output: Conditional distribution D̃U |W ∈ ∆(∆(Fq)), an approximation to
UI |(U≺I ,W1, . . .Wkt) for U := M⊗tZ and {(Zi,Wi)}i∈[kt] independently defined
by DZ|W .

1: procedure ApproxDist(DZ|W , ε, t, I = (I1, . . . , It),M)
2: If t = 0 then
3: Return DZ|W
4: else
5: D̂Z|Y ← ApproxDist(DZ|W , ε/(2k), t− 1, I<t = (I1, . . . , It−1),M)
6: j ← It.
7: Explicitly compute the following conditional distribution D̂Uj |U<j ,Y1,...Yk

∈
∆(∆(Fq)):

8: Let (Z, Y) be the implicit random variables associated to D̂Z|Y .
9: Let {(Zi, Yi)}i∈[k] be independent random variables distributed identically to

(Z, Y).
10: Define random vector U := M · Z ′, Where Z ′ = (Z1, . . . Zk).
11: Let D̂Uj |U<j ,Y1,...Yk

be the associated conditional distribution to
Uj |U<j , Y1, . . . Yk.

12: Round D̂Uj |U<j ,Y1,...Yk
to D̃U |Y ∈ ∆(Tε/2(Fq)), a point in the ε/2-net of ∆(∆(Fq))

under dC .
13: Return D̃U |Y .

I Lemma 24. For all DZ|W ∈ ∆(∆(U)), ε > 0, t ∈ N,M ∈ Fk×kq , and I ∈ [k]t, we have

dC(ApproxDist(DZ|W , ε, t, I,M) , DUI |U≺I ,W1,...Wkt) ≤ ε

where DUI |U≺I ,W1,...Wkt is the associated conditional distribution to the random variables
defined as follows. Let (Z,W) be the implicit random variables associated to DZ|W . Let
{(Zi,Wi)}i∈[kt] be independent random variables distributed identically to (Z,W). Finally,
define random vector U := M⊗t · Z ′, where Z ′ = (Z1, . . . Zkt).

Proof. Appears in the full version of this paper. J

6.3 Approximating Conditional Entropies
Here we use Algorithm 6.1 directly to approximate conditional entropies:

I Theorem 25. For every field Fq, conditional distribution DZ|W ∈ ∆(∆(Fq)), matrix
M ∈ Fk×k, t ∈ N,m = kt, and γ > 0, consider the random variable U := M⊗tZ where each
{(Zi,Wi)}i∈[m] is sampled independently from DZ,W .

Then, Algorithm 6.2 outputs ĥ1, . . . ĥm ← ApproxEntropy(DZ|W , γ, t,M) such that

∀i ∈ [m] : ĥi = H(Ui|U<i,W1, . . . ,Wm)± γ

Further, if the input DZ|W is specified in an ε-net ∆(Tε(Fq)), then the above procedure
runs in time polyq(m, 1/ε, 1/γ).

ITCS 2019

39:16 Algorithmic Polarization for Hidden Markov Models

Algorithm 6.2 Entropy Approximation.
Input: γ > 0, t ∈ N, Conditional distribution DZ|W ∈ ∆(∆(Fq)), and M ∈ Fk×kq

Output: {ĥi ∈ R}i∈[kt]
1: procedure ApproxEntropy(DZ|W , γ, t,M)
2: m← kt

3: ε← γ2

16 log(q)
4: for all I ∈ [k]t do
5: DU |Y ← ApproxDist(DZ|W , ε, t, I,M)
6: ĥI ← H(U |Y), the conditional entropy of the implicit random variables (U, Y)

associated to DU |Y .
7: Return {ĥi}i∈[kt] . Abusing notation by identifying [k]t with [kt].

Algorithm 6.3 Polar-Preprocess.
Input: q, k, t ∈ N with q prime, M ∈ Fk×kq , and Markov source H . m = kt, n = m2

Output: Sets S1, S2, . . . Sm ⊆ [m]
1: procedure Polar-Preprocess(q, k, t,M,H)
2: m← kt; γ ← 1

n10 ; N ← |Tγ(Fq)|; R← n(N/γ)2 . N ≤ polyq(1/γ)
3: for all j ∈ [m] do
4: for all i = 1, 2, . . . , R do
5: Sample a sequence wi := (y1, y2, . . . yj−1) from H.
6: Compute Dwi

∈ ∆(Fq), the distribution of Yj |Y<j = wi, using the Forward
Algorithm A.1 for H.

7: Let D̃Y |W ∈ ∆(∆(Fq)) be the empirical distribution of Dw, from the samples Dwi

above.
8: {ĥ1, . . . ĥm} ← ApproxEntropy(D̃Y |W , γ = 1

n4 , t,M)
9: Sj ← {i ∈ [m] : ĥi > 1

n3 }
10: Return S1, S2, . . . Sj .

Proof of Theorem 25. Correctness of Algorithm 6.2 follows from the fact that O(γ2

log(q))-
closeness in the dC-metric implies γ-closeness of conditional entropies. Thus, using Al-
gorithm 6.1 to approximate the conditional distributions within O(γ2

log(q)) is sufficient. See
the full version of this paper for details. J

6.4 Nice Subset Selection

Now we can describe how to find “nice” sets. We first approximate the conditional distribution
DZt|Z<t

∈ ∆(∆(Fq)) for Z1, . . . Zt ∼ Ht, by sampling. This crucially relies on the fact that
H is a constructive source (ie, using the Forward Algorithm). Then we use Algorithm 6.2 to
estimate conditional entropies, and select high-entropy indices.

The correctness of this algorithm (proof of Theorem 18) appears in the full version of
this paper.

V. Guruswami, P. Nakkiran, and M. Sudan 39:17

7 Proofs of Theorems 9 and 10

Combining Theorem 18 (to compute nice sets) with Theorem 12 (compressing and decom-
pressing assuming nice sets), Theorem 9 follows immediately.

Proof of Theorem 9. The algorithms claimed are Algorithm 6.3 for preprocessing, Al-
gorithm 4.1 for compressing and Algorithm 4.2 for decompression. Theorem 18 asserts that
Algorithm 6.3 returns a nice sequence of sets S1, . . . , Sm with all but exponentially small prob-
ability in n. And Theorem 12 asserts that if S1, . . . , Sm are nice then Algorithm 4.1 and 4.2
compress and decompress correctly with high probability over the output of the Markovian
source. This yields the theorem. J

Finally we show how Theorem 10 follows from Theorem 9.

Proof of Thereom 10. Let H ∈ Fs×nq be the matrix specifying the (linear) compression
scheme given by the Preprocessing Algorithm in Theorem 9, when applied to Markov source
H. The code C for the additive Markov Channel CH is simply specified by the nullspace of
H, ie encoding is given by C(x) := Nx where N ∈ Fn×n−sq spans Null(A).

Note that due to the structure of H, a nullspace matrix N can be applied in Oq(n logn)
time. In particular, H is a subset of rows of the block-diagonal matrix P ∈ Fn×nq , where
each

√
n×
√
n block is the tensor-power M⊗t. Thus, P−1 is also block-diagonal with blocks

(M−1)⊗t, and so can be applied in time Oq(n logn). The matrix N can be chosen as just a
subset of columns of P−1, and hence can also be applied in time Oq(n logn).

Let y1, y2, . . . yn ∈ Fq be distributed according to H, and y := (y1, . . . yn) ∈ Fnq . To decode
from z = Nx + y, the decoder first applies H (by running the compression algorithm of
Theorem 9), to compute Hz = HNx+Hy = Hy. Then, the decoder runs the decompression
algorithm of Theorem 9 on Hy to determine y. Finally, the decoder can compute y − z to
find the codeword sent (Nx), and thus determine x. (Again using the structure of P , as
above, to determine x from Nx in Oq(n logn) time). J

References
1 Erdal Arıkan. Channel Polarization: A method for constructing capacity-achieving codes

for symmetric binary-input memoryless channels. IEEE Transactions on Information The-
ory, pages 3051–3073, July 2009.

2 Jarosław Błasiok, Venkatesan Guruswami, Preetum Nakkiran, Atri Rudra, and Madhu
Sudan. General strong polarization. In Proceedings of the 50th Annual ACM SIGACT
Symposium on Theory of Computing, pages 485–492. ACM, 2018. arXiv:1802.02718.

3 Jaroslaw Blasiok, Venkatesan Guruswami, and Madhu Sudan. Polar Codes with Exponen-
tially Small Error at Finite Block Length. In LIPIcs-Leibniz International Proceedings in
Informatics, volume 116. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

4 Eren Şaşoğlu. Polar coding theorems for discrete systems. PhD thesis, Ecole Polytechnique
Fédérale de Lausanne, 2011.

5 Venkatesan Guruswami and Patrick Xia. Polar Codes: Speed of Polarization and Polyno-
mial Gap to Capacity. IEEE Trans. Information Theory, 61(1):3–16, 2015. Preliminary
version in Proc. of FOCS 2013.

6 Seyed Hamed Hassani, Kasra Alishahi, and Rüdiger L. Urbanke. Finite-Length Scaling for
Polar Codes. IEEE Trans. Information Theory, 60(10):5875–5898, 2014. doi:10.1109/
TIT.2014.2341919.

ITCS 2019

http://arxiv.org/abs/1802.02718
http://dx.doi.org/10.1109/TIT.2014.2341919
http://dx.doi.org/10.1109/TIT.2014.2341919

39:18 Algorithmic Polarization for Hidden Markov Models

7 Satish Babu Korada, Eren Sasoglu, and Rüdiger L. Urbanke. Polar Codes: Characteriza-
tion of Exponent, Bounds, and Constructions. IEEE Transactions on Information Theory,
56(12):6253–6264, 2010. doi:10.1109/TIT.2010.2080990.

8 Ramtin Pedarsani, Seyed Hamed Hassani, Ido Tal, and Emre Telatar. On the construction
of polar codes. In Proceedings of 2011 IEEE International Symposium on Information
Theory, pages 11–15, 2011. doi:10.1109/ISIT.2011.6033724.

9 Eren Sasoglu and Ido Tal. Polar coding for processes with memory. In Proceedings of the
IEEE International Symposium on Information Theory, pages 225–229, 2016.

10 Boaz Shuval and Ido Tal. Fast Polarization for Processes with Memory. In Proceedings of
the IEEE International Symposium on Information Theory, pages 851–855, 2018.

11 Ido Tal and Alexander Vardy. How to Construct Polar Codes. IEEE Transactions on
Information Theory, 59(10):6562–6582, October 2013.

12 Runxin Wang, Junya Honda, Hirosuke Yamamoto, Rongke Liu, and Yi Hou. Construction
of polar codes for channels with memory. In Proceedings of the 2015 IEEE Information
Theory Workshop - Fall (ITW), pages 187–191, 2015.

13 Runxin Wang, Rongke Liu, and Yi Hou. Joint Successive Cancellation Decoding of Polar
Codes over Intersymbol Interference Channels. CoRR, 2014. arXiv:1404.3001.

A Forward Algorithm

Algorithm A.1 Forward Algorithm.
Input: n ∈ N. Markov source H with state-space [`], alphabet Σ, stationary distribution

π ∈ ∆([`]), transition matrix Π ∈ R`×`, and output distributions {Si ∈ ∆(Σ)}i∈[`]. And
y = (y1, y2, . . . yn−1) for yi ∈ Σ.

Output: Distribution Yn ∈ ∆(Σ)
1: procedure ForwardInfer(H = (`,Σ, π,Π, {Si}), n, y)
2: s0 ← π.
3: for all t = 1, 2, . . . n− 1 do
4: Define st ∈ ∆([`]) by st(i)← (Πst−1)i·Si(yt)∑

j∈[`]
(Πst−1)j ·Sj(yt)

. Treating st−1 as a vector in

the probability simplex embedded in R`

5: sn ← Πsn−1.
6: Return The distribution Yn := Ei∼sn

[Si].

I Claim 26. For every Markov source H = (`,Σ, π,Π, {Si}), let random variables Y1, . . . Yn ∼
Hn. For every setting y = (y1, y2, . . . yn−1) for yi ∈ Σ, let DYn|Y<n=y denote the distribution
of Yn conditioned on Y<n = y. Then,

ForwardInfer(H, n, y) ≡ DYn|Y<n=y

This follows inductively, from the fact that st as maintained by the algorithm is exactly
the distribution of St|{Y≤t = y≤t}, where St is the hidden state of H after t steps.

B Connection to Learning Parity with Noise

The problem of learning parity with noise (LPN) is the following. Fix an (unknown) string
a ∈ F`2 and η > 0 and let Da,η be the distribution on F`+1

2 whose samples (x, y) are generated
as follows: Draw x ∈ F`2 uniformly and let z ∈ Bern(η) be drawn independent of x and let
y = 〈a, x〉 + z where 〈a, x〉 =

∑`
i=1 aixi. Given samples (x1, y1), . . . , (xm, ym) drawn i.i.d.

from such a distribution, the LPN problem is the task of “learning” a.

http://dx.doi.org/10.1109/TIT.2010.2080990
http://dx.doi.org/10.1109/ISIT.2011.6033724
http://arxiv.org/abs/1404.3001

V. Guruswami, P. Nakkiran, and M. Sudan 39:19

It is well known that a is uniquely determined by O(`) samples (i.e., m = O(`)) where
the constant in the O(·) depends on η < 1/2. However no polynomial time algorithms are
known that work with m = poly(`) and determine a for any η > 0 and indeed this is believed
to be a hard task in learning. We refer to this hardness assumption as the LPN hypothesis.

The connection to learning Markovian sources comes from the fact that samples from
the distribution Da,η can be generated by an O(`)-state Markov chain. (Briefly the states
are indexed (i, b, c) indicating

∑i−1
j=1 ajxj = b and xi = c. For i < ` the state (i, b, c) outputs

c and transtions to (i+ 1, b+ c, 0) w.p. 1/2 and to (i+ 1, b+ c, 1) w.p. 1/2. When i = `,
the state (i, b, c) outputs (c, b + c) w.p. 1 − η and (c, b + c + 1) w.p. η and transitions to
(1, 0, 0) w.p. 1/2 and to (1, 0, 1) w.p. 1/2.) The entropy of this source is (`+H(η))/(`+ 1).
A compression with ε = (1−H(η))/(2(`+ 1)) with poly(`/ε) samples from the source would
distinguish this source from purely random strings which in turn enables recovery of a,
contradicting the LPN hypothesis.

We thus conclude that compressing an unknown Markov source with number of samples
that is a polynomial in the mixing time and the inverse of the gap to capacity contradicts
the LPN hypothesis.

ITCS 2019

	Introduction
	Definitions and Main Results
	Notation and Definitions
	Main Theorems

	Overview of our construction
	Construction
	Compression Algorithm
	Fast Decompressor

	Analysis
	Proof Overview
	Polarization
	Independent Analysis
	Proof of Main Theorem

	Preprocessing
	Notation and Preliminaries
	Conditional Distribution Approximation
	Approximating Conditional Entropies
	Nice Subset Selection

	Proofs of Theorems 9 and 10
	Forward Algorithm
	Connection to Learning Parity with Noise

