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—— Abstract

We define a model of size-S R-way branching programs with oracles that can make up to S dis-
tinct oracle queries over all of their possible inputs, and generalize a lower bound proof strategy
of Beame [SICOMP 1991] to apply in the case of random oracles. Through a series of succinct
reductions, we prove that the following problems require randomized algorithms where the prod-
uct of running time and space usage must be Q(n?/poly(logn)) to obtain correct answers with
constant nonzero probability, even for algorithms with constant-time access to a uniform random
oracle (i.e., a uniform random hash function):
Given an unordered list L of n elements from [n] (possibly with repeated elements), output
[n] — L.
Counting satisfying assignments to a given 2CNF, and printing any satisfying assignment to
a given 3CNF. Note it is a major open problem to prove a time-space product lower bound
of n?=°M for the decision version of SAT, or even for the decision problem Majority-SAT.
Printing the truth table of a given CNF formula F with k& inputs and n = O(2%) clauses,
with values printed in lexicographical order (i.e., F(0%), F(0*~11),..., F(1¥)). Thus we have
a 4% /poly(k) lower bound in this case.
Evaluating a circuit with n inputs and O(n) outputs.
As our lower bounds are based on R-way branching programs, they hold for any reasonable model
of computation (e.g. log-word RAMs and multitape Turing machines).
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1 Introduction

Infamously little progress has been made towards the resolution of P vs NP. It is still
open whether there are linear time algorithms for solving generic NP-hard problems such as
CIrculT SAT although for certain NP-hard problems, non-linear lower bounds on multitape
Turing machines are known [23, 18]. In fact it remains open whether CIRCUIT SAT has a
generic algorithm in a random-access machine model running in O(n!-999%) time and O(logn)
additional space beyond the input.? Currently the best known time lower bound for solving
SAT in O(logn) space is n2cos(m/T)=o(1) > 1801 ([97 14] building on [17]).

Other prominent work has used combinatorial methods to prove time-space lower bounds
for decision problems in P [10, 3, 12, 11, 25, 4, 22]. For general random-access models of
computation, modest super-linear (e.g. nlogn-type) time lower bounds for explicit problems

9 or less (for randomized models as

in P are known when the space is restricted to n°
well [11, 22]). Thus for such problems, the time-space product can be lower-bounded to
nearly Q(n?) when the space is close to n; however, when the space is O(logn), the best
time lower bound against RAMs appears to be the aforementioned n'8%! bound for SAT.
All the above cited lower bounds are for decision problems. For example, the SAT
lower bound applies to algorithms which are only required to determine if a given formula
is satisfiable or not. There are several well-studied extensions of SAT which are function

problems, outputting multiple bits:

1. How difficult is it to print a satisfying assignment, when one exists? For 3CNF
formulas, call this problem PRINT-3SAT. Of course, PRINT-3SAT has a polynomial-time
algorithm if and only if P = NP, but perhaps it is easier to prove concrete lower bounds
for it, compared to the decision version.

2. How difficult is #2SAT, in which we count the number of satisfying assign-
ments to a 2CNF7? Since #2SAT is # P-complete, the problem should intuitively be
harder to solve than 3SAT.

3. How difficult is it to print the truth table of a CNF? Given a CNF formula F' of
n variables and up to 2" size, F' can be evaluated on all possible 2" inputs in 4™ - poly(n)
time and poly(n) space (using a linear-time, log-space algorithm for evaluating a CNF on
a given input). Call this problem TTPRINT (for truth-table printing).

Is this quadratic running time optimal? This question is considerable interest
for SAT algorithms; for some circuit classes, the only known SAT algorithms beating
exhaustive search (e.g., [28]) proceed by reducing SAT to a quick truth table evaluation.

In this paper, we prove that for essentially any generic randomized computation model
using n°) space but having O(1)-access to a random oracle (i.e., a random string of gn”
bits), the above three problems all require nearly quadratic time to compute with nonzero
constant probability. We revisit a quadratic time-space lower bound of Beame [8] for the
UNIQUE ELEMENTS problem, show that his technique can be used to prove an analogous
lower bound for an even “simpler” problem that we call NON-OCCURRING ELEMENTS,
extend the lower bound’s reach to include random oracles, and give succinct reductions from
NON-OCCURRING ELEMENTS to the above problems, proving hardness for them.

2 Note that for multitape Turing machines, such lower bounds are not hard to show [24]. However, these
lower bounds rely on the sequential access of Turing machines on tapes; once random access is allowed,
these lower bounds break.
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Lower Bound for Non-Occurring Elements

We define the NON-OCCURRING ELEMENTS problem to be: given an unordered list L of
n elements from [n], output [n] — L in any order.®> That is, we simply wish to output the
elements that do not occur in the given list.

Observe it is easy to get a space-O(s(n)) algorithm on the log(n)-word RAM for computing
NOE with running time O(n?/s(n)). Start by partitioning [n] into n/s(n) blocks of s(n)
elements each. Do n/s(n) passes over L, where in the ith pass, check which numbers in the
1th block do not occur in L: this can be done in s(n) bits of space by simply keeping a bit
vector. Hence we would say NOE has time-space product O(n?) for all n < t(n) < n?.

Our first main theorem builds on the aforementioned work of Beame to show that this
time-space product is optimal, even when programs have access to a random oracle and can
err with high probability.

» Theorem 1. For allp € (0,1], every random oracle n-way branching program family of
size 2°") and height t(n) computing NOE with success probability p has t(n) - s(n) > Q(n?)
for all sufficiently large n.

(Note, we need to formally define what a “random oracle branching program” even
means. For now, think of it as a non-uniform version of space-bounded computation with
constant-time access to a uniform random 2°(")-bit string. The preliminaries in Section 2
give full detailed definitions.) Using a standard translation of word-RAMs into branching
programs, it follows that every probabilistic word-RAM with a random oracle and wordsize
log(n) computing NOE in time ¢(n) and space s(n) must have t(n) - s(n) > Q(n?) in order
to have any non-zero constant success probability.

Lower Bound for Sorting and Circuit Evaluation

Informally, we say that a reduction from a problem A to a problem B is succinct if any
particular output bit of the reduction can be computed in poly(logn) time with random
access to the input. (Definitions can be found in the Preliminaries.) As a warm-up, in
Theorem 24 of the paper, we use a simple succinct reduction to obtain an analogous random
oracle lower bound for the problem of sorting n unordered elements from [n], which we call
SORT. (A tight lower bound without random oracles was proved by Beame [8].) The sorting
lower bound is combined with another simple reduction to obtain an analogous lower bound
for evaluating a circuits. Let FCIRCEVAL be the problem: Given a circuit of size n with
at most n inputs (all fized to 0-1 values) and at most n outputs, determine its output. The
decision version of FCIRCEVAL is well-known to be P-complete.

» Theorem 2. For all finite 32, there is a k > 0 such that the random oracle 3-way branching
program time-space product of FCIRCEVAL is at least Q(nz/logk n).

As in the case of NOE, Theorem 2 implies analogous time-space lower bounds on
probabilistic random access machines computing FCIRCEVAL. We note that without the
“random oracle” modifier, Theorem 2 is almost certainly folklore; it follows from our simple

reduction and the €(n?) time-space product lower bound on sorting of Borodin and Cook [13].

3 As usual, we define [n] := {1,...,n}.
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Lower Bound for Printing SAT Assignments

Any practical algorithm for Satisfiability would need to print satisfying assignments when
they exist. We give a succinct reduction from Circuit Evaluation to the printing problem for
3SAT, proving a nearly-quadratic time lower bound in the n°") space setting.

» Theorem 3. For all finite X2, there is a k > 0 such that the random oracle ¥-way branching
program time-space product of PRINT-3SAT is at least Q(n?/log" n).

Lower Bound for Computing Truth Tables of CNFs

We show that the trivial algorithm for computing the truth table of a large CNF has optimal
time-space product, even for randomized algorithms.

» Theorem 4. For all finite %, there is a k > 0 such that the random oracle X-way
branching program time-space product of TTPRINT for CNF formulas with n clauses and
log(n) + loglog(n) many variables is at least Q(n?/log" n).

The proof of Theorem 4 works by giving a succinct reduction from NOE to TTPRINT,
constructing a CNF whose truth table encodes (at the bit level) the non-occurring elements
of a given list.

Lower Bound for #2SAT

Finally, we give a succinct reduction from the truth table problem TTPRINT for CNF
formulas to counting SAT assignments to a given 2CNF, implying an analogous lower bound
for #2SAT. In particular, we encode the output 2CNF in such a way that the bits of its
number of satisfying assignments encode the value of the original CNF on various inputs.

» Theorem 5. For all finite 32, there is some k > 0 such that the random oracle X-way
branching program time-space product of #2SAT is at least Q(n?/ log" (n)).

Lower Bounds Beyond?

Finally, we note that the random oracle model we consider may not be the most general
possible one. We could also consider oracles where the queries are on write-only storage
that does not count towards the space bound. Although such oracles are sometimes used in
space-bounded complexity ([20]), it is hard for us to see how such queries could help in the
random oracle setting. In the paper’s conclusion (Section 5) we outline how to coherently
define this sort of oracle access in branching programs, and conjecture that our lower bounds
also hold in this “extended oracle” model.

1.1 Intuition for the NOE Lower Bound

Our proof of the NOE lower bound (Theorem 1) starts from Beame’s lower bound for UNIQUE
ELEMENTS [8]. We generalize his proof, and use our generalization to show that any function
problem satisfying two basic properties has a non-trivial branching program lower bound,
even when the branching program has access to a huge number of random bits.

» Theorem 6. Let {f, : 7' — X} be a family of functions, {Dy,} be a family of distributions,

n

and let g : N — N satisfy the following properties.
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1. [f typically has “long” outputs]. For all € > 0, there is an ng > 0 such that for all
n > ng, there is a § > 0 such that

P y 1—e.

Lo [[fa(@)] > 0g(n)] > 1 —¢

2. [Short random-oracle branching programs have low probability of printing
long substrings of f]. Let U, be the uniform distribution over ¥, and let N < 2s(n)
be an integer. There is an € > 0 such that for all ¥, -way branching programs P of height
at most n/4,

Pr [(P(xr) is a substring of fn(z)) A (|P(zr)] > m)] < e ™.
(z,r)~Dyp xUN
Then, for all n > ng and p € (0,1], and for every random oracle ¥, -way branching program

of size 2°) and height t(n) computing f, with success probability at least p on inputs drawn
from D,,, it must be that t(n) - s(n) > Q(ng(n)).

The intuition behind Theorem 6 is that, if a function f on input z requires a long output
(Property 1), then some (possibly many) subprograms of an efficient branching program P
computing f will need to produce somewhat-long output. But by Property 2, this is “hard”
for all short subprograms even with a random oracle: they have low probability of correctly
answering a large fraction of f.

Beame’s original lower bound for UNIQUE ELEMENTS [8] follows a similar high-level
pattern (as we review in Theorem 21). One of our insights is that the NON-OCCURRING
ELEMENTS problem satisfies stronger versions of the properties used in his proof for UNIQUE
ELEMENTS; these stronger properties give us extra room to play with the computational
model in our lower bound against NON-OCCURRING ELEMENTS. Another insight is that the
conditioning on uniform random input in his argument can be modified to accommodate
very long auxiliary random inputs. Together, this allows us to extend the lower bounds to
models equipped with random oracles.

Why Random Oracles?

Let us give one comment on the model itself. One may wonder why it is even necessary
to add random oracles to branching programs (BPs), which are a non-uniform model of
computation. Can’t we use Adleman’s argument [5] to show that the randomness can be
hard-coded in the non-uniform model, similarly to how BPP C P/poly?

Indeed, a random-oracle BP can always be simulated by a deterministic BP; however,
the running time of the deterministic BP increases by a multiplicative factor of (n) (hence,
a time lower bound of ©(n?) on a deterministic BP says nothing a priori about randomized
BPs). Given a randomized BP for a decision problem with constant success probability
1/2 < p < 1, it is derandomized by taking 2(n) copies of the BP (with independent random
bits filled in each copy), and computing the majority value of the BP outputs. The Q(n)
copies are needed because one needs to guarantee correctness over all 2" possible inputs:
this increases the running time by an 2(n) multiplicative factor. In our case, the situation
is even more complicated because we are concerned with function problems. The upshot is
that n? lower bounds on random-oracle BPs give strictly more information than a typical
randomized model with one-way access to random bits, or a deterministic model.

Another randomized branching program model considered in prior work (e.g., [9]) is to
define a randomized time-T space-S branching program to be a distribution D of deterministic
time-T" and space-S BPs. Such a model is said to compute a function f with error ¢ if, on
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every input x, a randomly drawn BP from D outputs f(z) with probability at least 1 — e.
This model looks even more general than our random oracle model, since no resources are
spent accessing randomness (the randomness is “drawn” prior to any computation, then
fixed for free). An anonymous reviewer for ITCS observed that our time-space lower bound
for NON-OCCURRING ELEMENTS also holds in this BP model. The idea is to apply Yao’s
principle [29] which reduces worst-case lower bounds for distributions of BPs to finding a
hard distribution of inputs for deterministic BPs, and to verify that our proofs essentially
show that the uniform distribution is hard for deterministic BPs.

2 Preliminaries

We assume basic familiarity with computational complexity [5]. Here we recall (and introduce)
various computational models and notations needed in the paper.

All of our lower bounds are on the product of time and space for various problems. For
clarity, we define the time-space product as follows.

» Definition 7. Let f be a function. We say that the time-space product of f is at least b(n)
if for every algorithm running in ¢(n) time and s(n) space for f, it must be the case that
t(n) - s(n) > Q(b(n)).

Random Access Machines With Oracles

For this work, we consider random access machines (RAMs) with access to an oracle and a
write-only output tape. More precisely, our RAMs can only append new characters to the
end of their output tape.

» Definition 8. Let O be a language over a finite alphabet. An oracle RAM M is a
random access machine with an additional oracle tape. During a time step, in addition to
any normal RAM operations, an oracle RAM can read or write a character to the oracle
tape, can move the oracle tape head left or right, or can query the oracle with the contents
of the tape to obtain a uniform random bit. Additionally, M© has a write-only output tape
to which it can append a character in any step.

R-Way Branching Programs With Oracles and Output

Our lower bounds for NON-OCCURRING ELEMENTS (Theorem 1) will be against a generaliza-
tion of branching programs with a (large) alphabet of size R, often called R-way branching
programs [13]. We recall the definition here.

» Definition 9. Let R > 2 be an integer. An R-way branching program with n inputs
r1,...,%, as a directed acyclic graph with one source node in which every non-sink node
has out-degree R. Every non-sink node is labeled with an index i € [n] corresponding to an
input variable, and each edge is labeled with an element of [R] such that no edge (u,v) and
(u, w) where v # w share a label. Additionally, each vertex v is labeled with an instruction
to print a value p(v) (which may be empty). The height of an R-way branching program P
is the length of the longest path in its graph, and the size is the number of vertices. The
computation path of P on input z is the unique path © = (vo,v1), (v1,v2), - . -, (Vk—1, V%)
such that vg is the source node, vy is a sink node, and for all i € {0,...,k — 1}, if vertex
v; is labeled j, then the label on (v;,v;+1) is the value of ;. The output of P on input
x, denoted as P(x), is the concatenation of the values printed by the vertices along the
computation path of P on input z, i.e., p(vo)p(v1) - - p(vg).
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Let X be a finite alphabet. For notational convenience, we call a P a Y-way branching
program if P is a |X|-way branching program with edges labeled with elements of ¥ instead
of [|Z]].

» Definition 10. A function f: ¥* — ¥* has a YX-way branching programs of height
t(n) and size S(n) if for all n > 0, there is a ¥-way branching program P, of height ¢(n)
and size S(n) such that for all x € ¥", P,(z) = f(x).

We study a natural generalization of R-way branching programs with oracles whose
queries count towards the space bound. This is a natural set-up for the random oracle
setting, where random oracles model truly random hash functions. Let O : ¥* — {0,1} in
the following.

» Definition 11. An O-oracle R-way branching program with n inputs is an R-way
branching program with the following additional properties. Each vertex is labeled with
either a variable index ¢ € [n] or with a string ¢; € {0,1}* (where j is an integer ranging

from 1 to the number of vertices in the program); we call the latter Q-vertices (for “Query”).

All Q-vertices have two outgoing arcs, labeled with the two possible query answers yes or no
(i.e., 1 or 0). Computation on an O-oracle branching program is defined analogously to usual
branching programs, with the following extra rule for @-vertices. Each time a Q-vertex v is
reached during a computation, the outgoing yes (i.e., 1) edge of v is taken in the computation
path if and only if the label ¢; of v satisfies O(g;) = 1.

» Remark. Note that in the above definition, the oracle queries could be strings of arbitrary
length, but in a size-S branching program we are only allowed S possible distinct oracle
queries over all possible inputs. So the above definition is more general than the condition
that “oracle queries count towards the space bound”. In the random oracle setting, this
distinction will make little difference; we might as well think of the query strings as being of
length about log,(S).

It is natural to augment branching programs with oracles. Barrington and McKenzie [6],
motivated by an approach to proving NC' # P, defined an oracle branching program model
in terms of finite automata, where instead of branching on individual input bits, the program
can branch on (in principle) all possible n-bit inputs, corresponding to oracle queries on
the input. The usual branching program model is captured in their model by a branching
program with an oracle for the predicate BIT(x,¢) which returns the ith bit of the input
x. They proved exponential size lower bounds for branching programs with certain weak
oracles. Our oracle model is designed to give a natural correspondence between O-oracle
R-way branching programs and word RAMs with wordsize log(R) and oracle access to O.

It is helpful to think of oracle branching programs as simply branching programs which
recetve the oracle as part of their input. The following proposition formalizes this:

» Proposition 2.1. Let P° be an O-oracle S-way branching program with n inputs, height T,
and size S, and let q1, ..., qm be the set of all possible oracle queries appearing at Q-vertices
of P°. There is a X-way branching program P’ of height T and size S such that for all
r € X", PO(z) = P'(zy), where y = O(q1), .., O(qm)-

Proof. The branching program P’ is simply a relabeling of P in which every Q-vertex with
label g; is instead labeled by the variable index n + j. |
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Random Oracles

We will ultimately study R-way branching programs with random oracles. All of our random
oracles will have the form O : ¥* — X for a finite alphabet 3. Thus we define random oracles
as a random elements of the set (X* — X).

» Definition 12. Dy is the uniform distribution over functions in (X* — X). That is,
drawing some f ~ Dy is equivalent to, for each x € ¥*, choosing an element of ¥ uniformly
at random as f(x).

We define computation with a random oracle branching program as follows.

» Definition 13. A function f has a random oracle branching program family of
height t(n) and size 2°(™ with success probability p € (0,1] if there is a family of
oracle branching programs { P2} such that the height of each P is at most #(n), the size of
each P,? is at most 2°(")| and for all inputs x,

0552 [PI% () = f(x)| > p.

Borodin and Cook show that R-way branching programs of height O(t(n)) and size
20(s(") can simulate time-t(n) space-s(n) RAMs of wordsize |log, R] [13]. We observe that
their proof relativizes to allow oracle R-way branching programs to simulate oracle RAMs
with wordsize |log, R].

» Lemma 14. For every language O and oracle RAM MO running in time t(n) < 20((")
and space s(n) > log(n) with wordsize log(X), there is an oracle ¥-way branching program of
height O(t(n)) and size 200 such that M (z) = PO(z) for all inputs x.

Proof. Without loss of generality, assume that at any step, M© either accesses its input of
length n by writing an index j € [n] to an “access register”, or M queries O by writing
the character @) to the access register. Let the configuration of machine M contain the
description of the random access memory of M, the state of M, and the character currently
being output, if any. For integer n > 1, define a graph G,, = (V,,, E,,) as follows. Let

V., ={(C,i,7) | C is a space-s(n) configuration of M, i € {0,1,...,t(n)},j € [n]U{Q}}.

Our corresponding branching program, has each vertex (C, 1, ) with j € [n] labeled by j,
and those (C, 1, j) with j = Q are Q-vertices, which we label with a string ¢; representing
the content of the oracle tape of M© in configuration C.

For j € [n], we put the edge ((C1,4,7), (C2,i+ 1,5")) € E,, and label it with a string p
if and only if M© in configuration C; would transition to configuration Cy given that in
configuration C1, j is put in the access register, ; = p, and j’ is put in the access register in
C5. For configurations making an oracle query, put ((C1,4,Q), (Cz2,i+ 1,5")) € E,, and label
it with b € {0,1} if and only if M© in configuration C; would transition to configuration Cs
given that in configuration C7, @ is written on the access register in C1, the oracle query O
returns b, and ;' is written on access register in Cs.

Observe that |V;,| < 2060)) . ¢(n) . n < 2006 assuming the size of the tape alphabet
and the number of states in the state machine of M© are constants. Further observe that
all paths in G,, have length at most t(n), since every step in the path must be from some
(Cyi,4,k) to some (C",i+ 1,5, k") and i, +1 € [t(n)]. Finally, the oracle branching program
P9 is defined to be the Y-way branching program which is the induced subgraph of G,
containing all vertices reachable from vy = (Cp, 0, jo) (with the labels prescribed above),
where Cj is the initial configuration of M, and jo is the index of the input read in the
initial configuration. We see that by construction, for all x € ", P9(x) = M©(x). <
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Lemma 14 immediately implies that R-way branching program lower bounds provide
analogous RAM lower bounds:

» Proposition 2.2. Let f: X% — X*. Suppose there is no R-way branching program family
of height O(t(n)) and size 2°™) computing f. Then there is no RAM of wordsize log(R)
running in time t(n) with space s(n) computing f.

Furthermore, if there is no random oracle R-way branching program family of height O(t(n))
and size 2°0M) computing f with success probability p, then there is no oracle RAM M©
with wordsize log(R) such that for all x € ¥*, Proup, [M©(z) = f(z)] > p.

Succinct Reductions

After our lower bound for NOE has been proved, we can apply very efficient reductions from

NOE to extend the lower bound to other problems. For this purpose, we need some notation.

In what follows, let f, g, and 7 be functions from ¥* to X*.

» Definition 15. We say A has a t(n)-time reduction with blowup b(n) to B if there is
a many-one reduction f reducing A to B such that |f(z)| < b(]z|), and any character in
the string f(x) can be computed by an algorithm running in time ¢(|z|), given the index
i=1,...,|f(z)] of the character and random access to x.

Polylog-time reductions with quasi-linear blowup essentially preserve lower bounds for our
branching program model, up to polylog factors. As the proof is relatively straightforward
and our space is limited, the proof is omitted (but appears in the full version).

» Lemma 16. Let w be an O(log"(n))-time reduction with blowup b(n) from f to g, and
suppose g has an oracle branching program family {PS} of height t(n) and size 25 with
success probability p > 0. Then f has an oracle branching program family {QP} of height
t(b(n))log®(n) and size 20(s(b(m)+108" (M) yyith, success probability at least p.

» Definition 17. The random oracle ¥-way branching program time-space product
of f is at least b(n) if for every constant p € (0, 1] and every random oracle branching
program family of height ¢(n) time and size 25(") computing f with success probability p, it
must be that t(n) - s(n) > Q(b(n)).

We also note (proof omitted in this version) that lower bounds on time-space products
are roughly preserved by polylog-time reductions of quasi-linear blowup.

» Lemma 18. Let 7 be an O(log? (n))-time reduction with blowup O(nlog? (n)) from f to g.
Suppose there are k and d such that the random oracle Y-way branching program time-space
product of f is at least Q(n®)/log"(n). Then there is some k' such that the random oracle
Y-way branching program time-space product of g is at least Q(n?)/ logk/(n),

For our #2SAT lower bound, we inspect a reduction of Hoffmeister, and note that it is
succinct.

» Theorem 19 ([19]). There is a log(n)-time reduction from #3-SAT to #2-SAT with
blowup O(n).

Finally, our lower bound for FCIRCEVAL exploits the fact that there are highly efficient
circuits for sorting n items from [n].

» Theorem 20 ([7, 26, 15]). There is a k such that SORT has O(log"(n)) time uniform
circuits of size O(nlog®(n)).
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Other Related Work

Besides the work cited earlier, there is an extensive literature on proving Q(;@Q) time-
space product lower bounds for computing functions in generic word-RAM-like models
(usually by proving a R-way branching program lower bound). The functions include matrix
multiplication and the discrete Fourier transform [30], generalized string matching [1], bit-
vector convolution and integer multiplication [2], universal hashing from n bits to O(n)
bits [21], and computing various functions over sliding windows [9].

3 Lower Bound for NOE and Sorting

In this section, we abstract out key properties of the UNIQUE ELEMENTS problem that were
used in Beame’s proof of an Q(n?) time-space product lower bound for UNIQUE ELEMENTS
against R-way branching programs [8]. This abstraction is useful in two ways. First, it
allows us to easily prove lower bounds for other problems, by simply verifying that the key
properties hold. Second, this level of abstraction helps us identify stronger generalizations of
the lower bounds: average-case lower bounds against R-way branching programs and RAMs
with random oracles.

3.1 Beame’s Method (Without Random Oracles)

To give intuition for our lower bound theorem for branching programs with random oracles
(Theorem 6), we begin with a similar but weaker theorem, which is an abstraction of the
technique used by Beame [8].

» Theorem 21. Let {f, : X' — X%} be a family of functions, {D,} be a family of
distributions, and g : N — N with the following properties.
1. [f typically has “long” outputs]. There is an e > 0 and § > 0 such that

Prllf(a)] > dg(n)] > =

2. [Short branching programs have low probability of printing long substrings of
f]. There is an € > 0 such that, for all ¥,,-way branching programs P of height at most
n/4, and for allm > 1,

PrD[P(x) is a substring of f(x) N |P(x)] > m] < e ™.

Then for n > ng, every S,-way branching program of size 2°™) and height t(n) for f, has
s(n)t(n) = Q(ng(n)).

Theorem 21 is motivated by the observation that if a function f on input = requires a
long output (Property 1), then some (possibly many) subprograms of a branching program
P computing f need to output a large fraction of f. But by Property 2, this is “hard” for all
short subprograms: they have low probability of correctly answering a large fraction of f.

Proof of Theorem 21. Let f, D, g(n),e,d be given as above. We prove the lower bound by
demonstrating that any space-S branching program P of sufficiently low height 7" has a
nonzero probability of error on an input z drawn from D. To do this, we lower bound the
probability of error by

P (17(2)] > 0g(m)] — P [(1f()] > Sg(n) A (P(x) = NOE(z))].
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By Property 1 of the hypothesis, the first term is lower bounded by some constant € > 0.

The second term is at most Pr,.p[|P(z)| > dg(n)], giving us an error probability of at least
e~ Pr[[P@)] > dg(n)].

We now upper-bound Pr,.p[|P(x)| > dg(n)].

Without loss of generality, let P be layered, having size 2° in each layer, and height 7.

Partition P into 47 /n layers of height n/4. By the pigeonhole principle, some layer must
output at least ng(n)/4T elements of the output. There are at most 2% such subprograms
in that layer, and the probability that P outputs at least dg(n) elements correctly is upper
bounded by the probability that some layer outputs m := dng(n)/4T elements correctly. As
there are at most 2° such subprograms, by a union bound over property 2 of the hypothesis,
the probability that P outputs all elements correctly is upper bounded by

256—6'5ng(n)/4T

for some &’ > 0. This implies that the error probability of P on an input x drawn from D is
at least & — 25¢ =< 9ng(n)/AT

Finally, we observe that if ST < « - ng(n) for sufficiently small a > 0, the term
25¢=¢'0n9(n)/AT hecomes less than €. Thus there is some input length n such that the
probability of error for P on an input z drawn from D is nonzero. This implies that
ST > Q(ng(n)). |

Beame’s lower bound against UNIQUE ELEMENTS follows from showing that UNIQUE
ELEMENTS has the properties required by Theorem 21. In particular, on random inputs
UNIQUE ELEMENTS has long outputs with high probability, and it is difficult to guess even a

small number of elements in the output of a random input, without seeing most of the input.

Instead of reproving the UNIQUE ELEMENTSlower bound, we give a lower bound against the
problem NON-OCCURRING ELEMENTS (NOE) defined in the introduction, as it admits a
slightly easier analysis.

First let us verify Property 1 of Theorem 21, for the uniform distribution U} and g(n) = n.

» Proposition 3.1 (Property 1 holds for NOE). For all € > 0, there is a § > 0 such that for
sufficiently large n, Procyn [[NOE(z)| > o0n] > 1 —¢.

Proof. The desired bound reduces to a weak version of a well-known Balls-and-Bins bound
(see [16, p.75] for a reference). In particular, when selecting m integers from [n] uniformly at
random, the number Z of integers in [n] not selected (the non-occurring elements) is tightly
concentrated around its mean:

Pr[|Z — E[Z]] > t] < 2exp(—2t*/m).

For our problem, we have n = m and E[Z] = n/e. Let ¢ > 0 be a parameter, and let ¢ = cn.

Therefore we have
Pr[|Z —n/e| > cn] < 2exp(—2¢%n).

Complementing and rearranging variables, the inequality becomes Pr[Z > n/e — cn] >
1 —2exp(—2¢2n). Finally, for any € > 0, we can pick ¢ € (0,1/e) such that £ > 2 exp(—2¢2n)
for sufficiently large n. Letting § € (0,1/e — ¢), we have Pr[Z > dn] > 1 —e. <
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Note that the bound of Proposition 3.1 is stronger than that required by Theorem 21.
This will be useful for the extension to random oracles later (Theorem 6).

Next, we verify that for NON-OCCURRING ELEMENTS, Property 2 of Theorem 21 holds
as well. In fact, we prove a stronger statement that allows for extra side randomness in the
input (and therefore random oracle branching programs). This randomness can be ignored
in the application of Theorem 21.

» Proposition 3.2 (Property 2 holds for NOE). For all integers n,k, N > 0 and all branching
programs P of height at most n/4 computing a function with m outputs,

Pr [P(xr) outputs m non-occurring elements of x] < e=>™/4,
~U r~U

Proof. The desired probability equals
Z Pr[P(zr) follows 7] - Pr[P(ar) has m NOEs of « | P(xr) follows =].

x,r
paths 7 in P
We show that for all such m,

Pr[P(zr) has m non-occurring elements of x | P(xr) follows 7] < e™3™/4,

From this, it will follow that our desired probability is less than e=3™/4.

For a path =, let ¢ be the number of distinct variable queries to z and let ¢’ be the
number of distinct queries made to r. Notice that ¢ + ¢’ < n/4. To bound the probability
that P(xr) has at least m non-occurring elements of x, given that P(zr) follows m, we simply
count the relevant numerator and denominator.

The total number of zr that follow 7 is n"~ - kN~9": there are n — ¢ unqueried inputs of
z, and N — ¢’ unqueried inputs of . The total number of zr that follow 7, and for which
the m outputs of 7w are non-occurring elements of x, is at most (n —m)" 7 kN=4": since the
m outputs are supposed to be non-occurring in x, none of the remaining n — ¢ unqueried
variables can take on any of the m outputs. By simple manipulation, we have

(n —m)"—apN—d

nn—ajN—a

=(1—m/n)" 1< (1- m/n)nfn/4 <(1- m/n)Bn/AL < e—3m/4.

This completes the proof. |

3.2 Lower Bounds With Random Oracles

We are now ready to present our main lower bound theorem against branching programs
with random oracles.

» Reminder of Theorem 6. Let {f, : X7 — X%} be a family of functions, {D,} be a family
of distributions, and let g : N — N satisfy the following properties.
1. [f typically has “long” outputs]. For all € > 0, there is an ng > 0 such that for all
n > ng, there is a § > 0 such that
P n ) 1—e.
Pr [fal)] > Sg(n)] > 1 - ¢
2. [Short random-oracle branching programs have low probability of printing
long substrings of f]. Let U, be the uniform distribution over ¥, and let N < 2s(n)
be an integer. There is an € > 0 such that for all ¥, -way branching programs P of height
at most n/4,

- br [(P(zr) is a substring of fn(x)) A (|P(xr)| > m)] < e ™.
z,r)~Dy, xUN
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Then, for all n > ng and p € (0,1], and for every random oracle ¥, -way branching program
of size 25(") and height t(n) computing f, with success probability at least p on inputs drawn
from Dy, it must be that t(n) - s(n) > Q(ng(n)).

Theorem 6 prescribes a general scheme for proving time-space product lower bounds
against random oracle R-way branching programs, and thus against word RAMs with random
oracles as well.

Proof of Theorem 6. The proof is similar to Theorem 21; we focus on highlighting what is
different. First, we note that by Proposition 2.1, it is sufficient to demonstrate that for all
n > ng and p € (0,1], and for every X,-way branching program of size 2°(™ and height ¢(n)
where Pryp, r~un[P(zr) = fo(x)] > p, it must be that t(n) - s(n) > Q(ng(n)).

As in Theorem 21, we establish the lower bound by demonstrating that every n/4-
height branching program P has a large probability of error on an input x ~ D,,. In what
follows, assume P successfully computes f,(z) on inputs (x,r) drawn from D,, x UY with
probability at least p. By property 1 of the hypothesis, letting e := p/2, there is a § such
that Procp ooy [1f(2)] > dg(n)] > 1 - p/2.

Analogously as in the proof of Theorem 21, we lower bound the probability of error of P
on D, by

Prllf@)] > dgm)] = Pr - (1f(@)] > dg(n) A Plar) = f(@))
note that this probability is at least (1 —p/2) — Pryp run[|P(27)| > d9(n)].

Applying a union bound over all 2°(™) subprograms of P as before, but substituting
property 2 from the hypothesis, we determine by an analogous argument as Theorem 21 that
Pr, p v [[P(zr)| > dg(n)] is at most 28(") e==ona(m)/4tn) Therefore the error probability
of P on D, is at least

—edng(n)

1—p/2—25¢ atm

Finally, if we assume s(n)t(n) < an - g(n) for all a > 0, we can tune 25()e==0m9(n)/(44(n)) 4
be arbitrarily small: it is at most 25()e—295(n)/(42)  Thys we can make the error probability
for P on an input x drawn from D,, to be at least 1 — 2p/3, implying that the success
probability is at most 2p/3 < p. This is a contradiction, so there is some o > 0 (depending
on 0, €, and p) such that s(n)t(n) < an - g(n). <

» Remark. If a function does not satisfy Property 2 of Theorem 6 but satisfies a slightly
weaker property, namely that there is an € > 0 such that for all |, |-way branching programs
P of height at most n/4,

Pr [P(x) is a substring of f(z) A P(x) > m] < e™*™,

x~D.,

we can still obtain an average case lower bound against f for inputs drawn from D,,, but not
necessarily a lower bound against random-oracle branching programs. We omit an exposition
of this result, because we have not yet found applications of it.

We conclude this subsection with the lower bound for NOE with a random oracle.
» Reminder of Theorem 1. For every p € (0,1], every random oracle n-way branching
program family of size 2°(™ and height t(n) computing NOE with success probability p must
have t(n) - s(n) > Q(n?) for all sufficiently large n.
Proof. Applying Proposition 3.1 and 3.2 and set D,, := U and ¢ := 3/4. Then both
properties 1 and 2 of Theorem 6 hold for NON-OCCURRING ELEMENTS. <
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3.3 Sort and Random Oracles

By reducing from NON-OCCURRING ELEMENTS to SORT, it follows that random oracle n-way
branching programs still require a time-space product of Q(n?) to sort a list L € [n]™. (The
proof is omitted due to space restrictions.)

» Theorem 22. For any constant c¢ € (0,1], let {PP} be an oracle n-way branching pro-
gram family of size 2°™) and height t(n) such that for all n,x € [n]", Pro~p,, [P (x) =
SorT(z)] > ¢. Then, ST = Q(n?).

To prove our lower bounds for other problems in the following section, we require a
somewhat stronger result: a nearly-quadratic time-space product lower bound for computing
the non-occurring elements of a list of n items from [n], as well as sorting n items from [n] for
lists encoded over a finite alphabet ¥. By a reduction, we can prove this using the general
lower bounds of Theorem 1 and Theorem 22.

» Lemma 23. Let {f, : X" — X} be a family of functions, and let fs : ¥* — X* be such
that f((z)y) = <f|m|(x)>2, where (s)y, is s encoded by a string over ¥. Suppose {f,} requires
a random oracle ¥, - way branching program time-space product of Q(n?). Then there is some
k > 0 such that fx, requires a random oracle ¥-way branching program time-space product of

Q(n/log" (n)).

Proof. By contradiction. Suppose for all £ > 0, fyx has random oracle ¥-way branching
program family {PP} of height #(n) and size 2°(") with success probability p > 0 where
t(n)s(n) < O(n?/log"(n)). We show that {f,} has a random oracle n-way branching
program family {Q2} of height ¢'(n) and size 28 (") with success probability p > 0 where
t'(n)s'(n) < O(n?/log*(n)). To do this, we simply simulate PO with Q2. We first consider
the input [ € [n]" a length n[log s, (n)] string where each number is represented by some
string of characters from ¥. We then modify Pnofl oz (n)] follows. For each vertex v which
queries an input i, instead query input |i/log s (n)]. Then, for all edges (u,v) with label
a € Xin Pr?(log‘g‘]’ add an edge from u to v with label 8 € [n] for all 8 whose representation
in base X contains a at position i mod [logy(n)]. Finally, we need only modify the output

: o
behavior of P'nflogm ()]

from 3. We need only O(log(n)) extra bits of storage to remember the last [logy, | characters
o) would have printed, and upon reaching enough characters, we simply print the

It prints the representation of characters o € ¥, using characters

fe)
Py [log|s
corresponding element of ¥,, and remember that we have started a new character. As in

the proof of Theorem 22, we can do this by creating O(n) copies of our modified branching
program and transitioning accordingly and letting this be Q9.

Finally, we see that by construction, {@Q,} computes {f,} with success probability p.
Further, we see that the height of Q,, is O(t(nlog(n))) and the size is 20(s(")+lee(m) By our
assumption, we see that t(nlog(n))(s(n) + log(n)) > Q(n?) and t(nlog(n))(s(n) + log(n)) <
O((nlog(n))*/log?*(n)). This is a contradiction. <

From this we can conclude lower bounds for NON-OCCURRING ELEMENTS and SORT for
strings over finite alphabets.

» Lemma 24. Let NON-OCCURRING ELEMENTSy, : ¥* — X* be a function which maps the
encoding in ¥ of a list (L) (where L € [n]™ for some n) to (NON-OCCURRING ELEMENTS(L)),
and let SORTy : X* — X* be the function which maps the encoding of a list (L) where
In € N(L € [n]") to (SORT(L)). For all ¥, there is some k > 0 such that, the random oracle
Y -way branching program time-space product for both NON-OCCURRING ELEMENTSy, and
SORTs; are both at least Q(n?/log" n).
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Proof. This follows directly from Theorems 1 and 22 and Lemma 23. <

» Remark. It will be important later that the branching program lower bounds we have
established hold even if we allow the branching program to make small perturbations on
the output. For example, all above lower bound proofs still go through, if we permit
branching programs to output 0 at any node that does not already output some other
number. Thus our lower bounds hold for any BP computing NON-OCCURRING ELEMENTS or
NON-OCCURRING ELEMENTSy; which prints the binary representation of a list L, such that
L contains all non-occurring elements of =, along with any number of elements which are 0.

4 Reductions

We now give a series of reductions from NOE and SORT, showing nearly-quadratic time-space
product lower bounds for several natural circuit-analysis problems. Each reduction is very
efficient, requiring only poly(logn)) time to look up any bit of the output of the reduction,
and only creating problem instances of size O(n) from inputs of size n.

As a warm-up, we observe a very simple reduction from SORT{ 1} (sorting n log(n)-bit
strings) to FCIRCEVAL. Recall in FCIRCEVAL we are given a circuit of size n with at most
n inputs (all fixed to 0-1 values) and at most n outputs, and want to determine its output.

» Reminder of Theorem 2. For all finite X, there is some k > 0 such that the random
oracle X-way branching program time-space product of FCIRCEVAL is at least Q(n?/ logk n).

Proof. The idea is simple: on an unsorted input, we can succinctly produce a circuit for
sorting and ask FCIRCEVAL for its output. We observe there is an O(logn)-time reduction
with blowup O(log" n) from SORT to FCIRCEVAL (for some k). Given a input list z to be
sorted, we produce a circuit C' for SORT with x hard-coded as the input. Any bit of the circuit
description can be computed in O(logn) time, as SORT has O(logn)-time uniform circuits of
size O(n), and any bit of z can trivially be produced in O(logn) time. By Lemmas 24 and
18, we conclude a time-space lower bound of the form Q(n?/log* n) for FCIRCEVAL. <

A straightforward corollary of Theorem 2 is a similar lower bound against a seemingly
weaker version of 3SAT.

» Definition 25. Let PROMISE-PRINTING-UNIQUE-SAT be the problem: given a circuit C'
promised to have exactly one satisfying assignment, print the satisfying assignment of C'.

» Lemma 26. For all finite 3, there is a k > 0 such that the random oracle -way branching
program time-space product of PROMISE-PRINTING-UNIQUE-SAT is at least Q(n?/ log" n).

Proof. We give a reduction from FCIRCEVAL to PROMISE-PRINTING-UNIQUE-SAT. Given
an instance C' of FCIRCEVAL with only constant inputs and m output bits y1, ..., Ym, consider
the circuit C’(x) with m free input bits z1, ..., 2, and one output bit. C’ can be made such
that C'(x1,...,2m) = 1 if and only if 2; = y; by using only as many gates as an needed to
construct C' and O(m) additional gates to check equality of the output bits of C' with the
free input bits and then to take the conjunction of these equalities. In total, we see then that
|C’] = O(|C|). Finally we see this gives us an O(log(n))-time reduction with blowup O(n)
from FCIRCEVAL to PROMISE-PRINTING-UNIQUE-SAT, since FCIRCEVAL(C') = PROMISE-
PRINTING-UNIQUE-SAT(C”), and each bit of C’ can be computed by simply looking up bits
of C directly or deciding if they are part of the equality check or conjunction of the equality
checks added to C. By Lemma 18, we can conclude that PROMISE-PRINTING-UNIQUE-SAT
has a time-space lower bound of Q(n2/log® n). <
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To establish a connection with printing satisfying assignments for 3CNFs, we consider the
problem PROMISE-PRINTING-UNIQUE-3SAT, which is just PROMISE-PRINTING-UNIQUE-
SATrestricted to 3CNF formulas. By another straightforward reduction, it follows that
PROMISE-PRINTING-UNIQUE-3SAT cannot be computed more efficiently than FCIRCEVAL.

» Lemma 27. For all finite 3, there is a k > 0 such that the random oracle Y-way branching
program time-space product of PROMISE-PRINTING-UNIQUE-3SAT is at least Q(nz/logk n).

Proof. We present a reduction from the PROMISE-PRINTING-UNIQUE-SAT function to
PROMISE-PRINTING-UNIQUE-3SAT. Consider the standard reduction from CIRCUIT SAT to
3SAT in which a circuit C' with n variables x4, ..., x, and m gates is mapped to a CNF ¢ with
O(m) clauses, variables x1,...,x, and m extra variables. Assume without loss of generality
(blowing up only an additional constant factor in size otherwise) that C' is comprised only of
NAND gates. The typical reduction from CIRCUIT SAT to 3SAT uses an additional variable
Yi,-..,Ym for each gate g1,...,gm, and for each gate g; = —(g; A gx), 9i = —(g9; N &),
or g; = ~(z; A xy), we add to ¢ the constraints (y; = =(y; A k), (vi = ~(y; A zk)), or
(ys = =(z; A xy)) respectively, where each requires only O(1) clauses of width 3.

Notice that printing the first n bits of a satisfying assignment to ¢ is sufficient for
computing a satisfying assignment to C, and observe that this reduction can be done in
O(log®(n)) time with blowup O(log"(n)) for some k. Analogously to Lemma 18, we can
conclude that PROMISE-PRINTING-UNIQUE-3SAT requires a random oracle ¥-way branching
program time-space product of Q(nz/logk/(n)) for some k' > 0. <

As a corollary, we can immediately conclude that the harder problem of PRINT-3SAT
also has a time-space lower bound of Q(n?/log" n) for some k.

» Reminder of Theorem 3. For all finite 3, there is a k > 0 such that the random oracle
S-way branching program time-space product of PRINT-3SAT is at least Q(nz/logk n).

Proof. Follows from the trivial reduction from PROMISE-PRINTING-UNIQUE-3SAT to PRINT-
3SAT and Lemma 18. <

Next, we show by a reduction directly from NON-OCCURRING ELEMENTS (1} that print-
ing the truth tables of CNF formulas with a small number of variables admits a time-space
lower bound similar to those above.

» Reminder of Theorem 4. For all finite X2, there is some k > 0 such that the random
oracle ¥-way branching program time-space product of TTPRINT for CNF formulas with n
clauses and log(n) + loglog(n) many variables is at least Q(n?/log" n).

Proof. We consider that the output of a machine computing NOE(q 1y can be a list L
which contains the non-occurring elements of its input as well as any number of elements
which are 0, as in Remark 3.3. We give a poly(log(n))-time reduction with blowup O(n)
from NON-OCCURRING ELEMENTS(( 1} to TTPRINT. That is, we will show that given
a list L of n elements from [n], we can produce a CNF formula whose truth table is a
representation of a list L' of n strings each of log(n) bits, where the i-th string in L’ equals
i if i € [n] — L, otherwise the i-th string equals all-zeroes. Then, the lower bound for
NON-OCCURRING ELEMENTS(( 1} will carry over to T'TPRINT.

Given a list L € {1,...,n}", we show how to efficiently construct a CNF formula F' with
log(n) + loglog(n) variables and O(n) clauses such that the truth table of F is the binary
representation of the list of non-occurring elements of [ separated by strings of 0’s.
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Denote the first log(n) variables of F' by & = 21 -+ - Z1g(n). Letting b € {0, 1}os(™) | we
make a clause Cp(z) expressing that « # b. In detail, suppose b is represented by the bit
string by, ..., biog(n). Then

Co(z) = (21 @ b1) V ... V (Tiog(n) D biog(n)))-

Note for all 7, we can think of C} as containing the literal T; if b; = 1, otherwise it contains
the literal z;.

Given a list L = /1, ..., £, of elements of {0,1}'°¢(") we first construct a CNF formula
F'(z) which says that z is a non-occurring element of £:

F'(z):=Cp(x) N+ ANCy, ().

Suppose we can construct a CNF formula D(z, i) which is true exactly when the i-th bit
of z is 1, and define our output formula to be

F(z,i) := F'(x) A D(x,1)

where i = i1 - - - ilog10g(n)- This F would have log(n) + loglog(n) variables, and its the truth
table in lexicographical order could be viewed as a list of n different log(n)-bit strings, each of
which are either a non-occurring element of ¢, or the all-zeroes string. (This would complete
our reduction.)

We show how to construct such a D(z,4) with |z| clauses. For each variable of z, and

j=1,...,|z|, we construct a clause E; which is true if and only if either i # j or z; = 1.

That is, we define E; = ((i1 © j1) V ... V (flog(|z|) @ Jiog(z)) V Tj)- Then we can define

||

D(z,i) == /\ E;.

The final formula F'(21, ..., Tiog(n) i1 -+ flog log(n)) 18 @ Width-(log(n)+1) CNF of O(n) clauses,
and all of the clauses of F' can be efficiently constructed in a local way. |

Using the lower bound on truth table printing, we can now show the lower bound for
counting SAT assingnments (Theorem 5). Again we do this by providing a poly(log(n))-time
reduction with blowup O(n) from one problem to another. We show how to modify a circuit
C to efficiently produce another circuit C’, such that the bit representation of the number of
SAT assigments of C equals the truth table of C.

» Lemma 28. Let C be a circuit of size s with n input variables z1,...,x,. Then, there
exists a circuit C' of size O(s + 2™) with input variables x1,...,Tpn, Y1, ..., Yy2n such that
#(C") =TT(C). Moreover, there is an algorithm that given such a circuit and indez i can
produce the i-th bit of C' in time O(log(s 4+ n + 1)).

Proof. Let C be a circuit of size s with inputs x1,...,z,. First, we construct a new
circuit D(zy,...,%n,Y1,...,Y2n) which outputs 1 if and only if y < 2°™(®) where bin(z)
is the number in {1,...,2"} represented by the binary string z; - - - z,. Note that D can
be constructed with O(2") gates (by standard arguments), and any particular gate of
D can constructed in poly(log(n)) time. Finally, we define the circuit C’ on variables

LlyeeosyTnyY1y---,Y2n by
C'(x,y) :== C(x) A D(z,y).
Observe that the number of assignments satisfying C’ is X,¢10,13»C () - 2bin(z) a5 for each

x € {0,1}" there are 2"(®) assignments to y € {0,1}?" such that C’(x,y) = 1. This is
exactly the number represented in binary by TT(C). <
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From Lemma 28 and Theorem 4, we can conclude Lemma 29.

» Lemma 29. For all finite X, there is some k > 0 such that the random oracle X-way
branching program time-space product of #CIRCUIT SAT is at least Q(n?/ log" n).

From Lemma 29, we can conclude Lemma 30.

» Lemma 30. For all finite X2, there is some k > 0 such that the random oracle %-way
branching program time-space product of #3SAT is at least Q(n?/ log" n).

Proof. The standard reduction from #CIRCUIT SAT to #3SAT can be implemented as an
O(log(n))-time reduction with blowup O(n). <

From Lemmas 30 and 19, we can conclude Theorem 5.

» Reminder of Theorem 5. For all finite 33, there is some k > 0 such that the random
oracle Y-way branching program time-space product of #2SAT is at least Q(nQ/logk n).

Proof. Lemma 19 gives an O(log"(n)) time reduction with blowup O(nlog®(n)) from #3SAT
to #2SAT. Hence, by Lemmas 30 and 18, we can conclude that the random oracle X-way
branching program time-space product of #2SAT is at least Q(n?/log"(n)). <

5 Conclusion

We extended a lower bound framework for branching programs, lifting it to random oracles.
We demonstrated its utility for lower bound results by giving several unorthodox reductions
which show sharp relationships between counting satisfying assignments, printing truth tables
of CNFs, printing satisfying assignments, and evaluating circuits on given inputs. It would
be interesting to find more applications of the encoding techniques used in our reductions.
Perhaps they can be used to show lower bounds for other models, or better algorithms.

Another interesting direction would be to explore other lower bound methods, such as
those for decision problems, and determine to what extent they can be “lifted” to lower
bounds with random oracles. To give one tantalizing example, although it is known that
deciding SAT requires n'*® time on deterministic O(logn)-space machines, and this paper
shows that printing SAT assignments requires n2~°(1) time on randomized O(logn)-space
machines with constant error probability, it is still open whether deciding SAT is in O(n)
time and O(logn) space on randomized machines with two-sided error(!). Perhaps it is easier
to find bridges between function problems and decision problems when we consider efficient
programs for NP problems (rather than decision problems in P).

Finally, our oracle model for branching programs is not the most general that one could
imagine (although for the random oracle case, we believe it does not matter). One can define
a sensible “extended oracle” model, where oracle queries can be as long as the height of the
branching program. (This model is not very practical in a truly space-bounded setting, e.g.,
when we view a random oracle as a random hash function, but it would be interesting for
lower bounds.)

At a high level, here is how such an “extended oracle” model can be defined. In each step,
we allow the BP to output an “oracle character” ¢ from the input alphabet of the oracle
(along with its usual outputs). Instead of labeling the query vertices of the BP with specific
query strings (as in Definition 11), we instead label them with a special symbol . The
Q-vertices still have two outgoing arcs for their yes/no query answers. However, each time a
Q@-vertex v is reached during a computation, the outgoing yes edge of v is now taken in the
computation path if and only if the string of oracle characters y = o1 - - - 0y output since the
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previous Q-vertex (or source node, if there is no previous Q-vertex) satisfies Q(y) = 1. One
can think of this as allowing the BP “append-only” access to an arbitrarily long oracle tape,
for which it can ask queries, and for which the oracle tape is reset to blank after each query
(as in the oracle model of Ladner and Lynch [20]).

With the above model, we can ask queries whose length is only bounded by the height
of the branching program (rather than the logarithm of its size). We strongly believe that
our lower bounds also hold for random oracles in this more powerful model. The main
conceptual bottleneck is that, unlike normal branching programs, we cannot easily partition
these extended-oracle branching programs into short independent branching programs: the
oracle queries have “memory” that can stretch all the way back to the source node. It seems
likely that lower bounds based on Yao’s principle [29] can be extended to this model, but we
have not yet confirmed this.
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