
Tensor Network Complexity of Multilinear Maps
Per Austrin
School of Computer Science and Communication, KTH Royal Institute of Technology,
Stockholm, Sweden
austrin@kth.se

Petteri Kaski
Department of Computer Science, Aalto University, Helsinki, Finland
petteri.kaski@aalto.fi

Kaie Kubjas
Department of Mathematics and Systems Analysis, Aalto University, Helsinki, Finland, and
Laboratoire d’Informatique de Paris 6, Sorbonne Université, Paris, France
kaie.kubjas@aalto.fi

Abstract
We study tensor networks as a model of arithmetic computation for evaluating multilinear maps.
These capture any algorithm based on low border rank tensor decompositions, such as O(nω+ε)
time matrix multiplication, and in addition many other algorithms such as O(n logn) time dis-
crete Fourier transform and O∗(2n) time for computing the permanent of a matrix. However
tensor networks sometimes yield faster algorithms than those that follow from low-rank decom-
positions. For instance the fastest known O(n(ω+ε)t) time algorithms for counting 3t-cliques can
be implemented with tensor networks, even though the underlying tensor has border rank n3t

for all t ≥ 2. For counting homomorphisms of a general pattern graph P into a host graph on
n vertices we obtain an upper bound of O(n(ω+ε) bw(P )/2) where bw(P ) is the branchwidth of
P . This essentially matches the bound for counting cliques, and yields small improvements over
previous algorithms for many choices of P .

While powerful, the model still has limitations, and we are able to show a number of uncon-
ditional lower bounds for various multilinear maps, including:
(a) an Ω(nbw(P )) time lower bound for counting homomorphisms from P to an n-vertex graph,

matching the upper bound if ω = 2. In particular for P a v-clique this yields an Ω(nd2v/3e)
time lower bound for counting v-cliques, and for P a k-uniform v-hyperclique we obtain an
Ω(nv) time lower bound for k ≥ 3, ruling out tensor networks as an approach to obtaining
non-trivial algorithms for hyperclique counting and the Max-3-CSP problem.

(b) an Ω(20.918n) time lower bound for the permanent of an n× n matrix.
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7:2 Tensor Network Complexity of Multilinear Maps

1 Introduction

One of the cornerstones of the theory of computation is the study of efficient algorithms:

For a function f , how much time is required to evaluate f on given inputs?

Answering this question for almost any specific f is well beyond reach of contemporary tools.
For example, it is theoretically possible that canonical NP-complete problems, such as the
Circuit Satisfiability problem, can be solved in linear time whereas they are widely believed to
require super-polynomial (or somewhat less widely, exponential) time [34, 35, 36]. The main
reason for this barrier to quantitative understanding is that it is very hard to prove lower
bounds for explicit functions in general models of computation such as circuits or Turing
machines. This situation withstanding, a more modest program to advance our understanding
of computation is to study restricted models that for many f are simultaneously
(i) general enough to capture the fastest-known algorithms for f , and
(ii) restricted enough to admit proofs of strong unconditional time lower bounds for f .

There is a substantial body of work that fits under this program, ranging from the study of
low-depth or otherwise restricted circuits (see e.g. [7], Ch. 14) to models of algorithm-design
principles such as greedy algorithms, backtracking, or dynamic programming [3, 27], to linear
or semidefinite programming relaxations for hard optimization problems [51].

Multilinear maps. One class of functions f that are of substantial importance is the family
of `-linear maps (multilinear maps) from ` input vector spaces to an output vector space.1
Examples range from maps of known near-linear-time complexity in the input size, such as
the discrete Fourier transform [24, 72], to maps without known polynomial-time-complexity
algorithms, such as the permanent of a matrix [64, 70]. Beyond motivation in numerical
multilinear algebra and its applications, recent advances in the study of fine-grained algorithm
design and complexity have highlighted the fundamental role of algebraic methods in the
fastest-known algorithm designs across a broad range of tasks from graph problems, such as
all-pairs shortest paths and k-clique, to parsing and constraint satisfaction problems, such as
maximum satisfiability and graph coloring [2, 11, 13, 30, 37, 54, 75, 76].

In this paper, we study the arithmetic complexity of evaluating a multilinear map, that
is, the number of operations (scalar additions, subtractions, and multiplications) needed
to evaluate the map. To set up a baseline, a generic `-linear map from ` vector spaces of
dimension n to a scalar requires Ω(n`) scalars to represent the map directly using combinations
of basis vectors. Given this complexity of a direct explicit representation, it is a fundamental
problem to seek less costly representations, along with associated efficient algorithms that
work on the chosen representation.

We propose the systematic study of tensor networks on hypergraphs as a framework for
fast evaluation of multilinear maps, and show a number of upper and lower bounds on the
computational power of tensor networks in the spirit of (i) and (ii) above.

Tensor networks. Tensor networks have a long and rich history which can be traced as
far back as 19th-century studies in invariant theory due to Cayley [20, 21], Clebsch [22],
Clifford [23], Sylvester [69], and Kempe [40, 41]. Tensor networks are extensively deployed in
applications from pure mathematics and theoretical physics [39, 47, 48, 49, 57, 58, 61, 65] to
computational physics and chemistry [56, 59, 67]. In theoretical computer science, they appear
in various guises including, for example, in the Holant framework [71, 18, 17], in the study of

1 Multilinear maps with ` = 1 are called linear, ` = 2 bilinear, ` = 3 trilinear, and so forth.
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probabilistic graphical models [45, 62], in the study of parallel programming [66], in the study
of quantum computing [6], and in the study of arithmetic complexity [8, 19, 26]. Tensor
contraction is also emerging as a basic computational primitive in computer hardware [31, 53].
(We refer to the full version of this paper a more detailed discussion.) As the precise definitions
are somewhat technical, let us start with a few simple motivating examples and then state
our results, with the understanding that precise definitions appear in Section 3.

In our setting, a tensor network is a hypergraph in which the vertices are tensors and the
hyperedges are called modes. Each mode that is incident to a tensor defines a “dimension”
for indexing the entries of the tensor – for example, a matrix is a tensor that is incident to
two modes, one mode for the rows of the matrix, and the other mode for the columns of the
matrix. A network may be simplified by a sequence of contractions, where each contraction
takes a subset of tensors and replaces it with a single tensor whose entries are obtained as
generalized inner products of the entries of the tensors being contracted.

As a first example of these concepts, let us consider the task of multiplying two matrices,
A and B. More specifically, let A be a matrix with rows indexed by mode i and columns
indexed by mode k, and let B be a matrix with rows indexed by mode k and columns indexed
by mode j. We may represent the multiplication task as the tensor network depicted on
the left in (1). The result of contracting A and B is a new matrix with rows indexed by i
and columns indexed by j, where the entry at each position (i, j) is

∑
k AikBkj . If the three

index sets all have size n, then computing A ·B by contracting them in such a direct manner
uses Θ(n3) operations. To obtain faster matrix multiplication, we can rewrite the bare-bones
network on the left in (1) using a low-rank decomposition of the matrix multiplication tensor.
For example, Strassen’s decomposition [68] of 2× 2 matrix multiplication can be represented
using the second network in (1). Note that the index i used by A and the result has been
separated into two distinct indices i and i′, and similarly for j and k.

A

B

i

k

j

α β

γ

A B

i′ k k′ j′

i j

ℓ

α =
k

1 0 1 0 1 -1 0
0 0 0 0 1 0 1

k
0 1 0 0 0 1 0
1 1 0 1 0 0 -1

i′

ℓ

γ =
j1 0 0 1 -1 0 1

0 0 1 0 1 0 0

j0 1 0 1 0 0 0
1 -1 1 0 0 1 0

i

ℓ

β =
j′1 1 0 -1 0 1 0

0 0 1 0 0 1 0

j′0 0 0 1 0 0 1
1 0 -1 0 1 0 1

k′

ℓ

(1)

We can execute the network by succesively contracting groups of vertices. In (2) we see
the process of successively contracting pairs of tensors in a carefully chosen order, until only
a single tensor – the result of the computation – remains. Such an execution can be naturally
represented by a rooted binary tree, as shown on the right in (2), where the tensors of the
network form the leaves, and each internal node represents the result of contracting its two
children. To summarize, a tensor-network algorithm is specified by providing (a) a tensor
network that when contracted yields the desired result, and (b) an execution tree indicating
the order in which to contract tensors in the network.
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(2)
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The cost of performing one of the contractions in an execution is the product of the
lengths of the modes used by any tensor involved in the contraction. This simply measures
(up to a constant factor) the number of arithmetic operations (additions/multiplications)
used to compute the result by a direct, naïve computation that does not depend on the
values of the tensors. For example, the contraction of α and A in the first step of (2) has
cost 28 because it involves the three modes i′ (length 2), k (length 2) and ` (length 7).

We observe that cost is data-oblivious – the tensor α is fixed with many zero-entries but
these entries still contribute to the cost. Indeed, in many cases there may be faster ways
of evaluating a contraction than to evaluate it naively, and just like we saw above, this can
often be dealt with by rewriting the network appropriately. For instance, consider now the
multiplication of two 2k × 2k matrices. Because the family of matrix multiplication tensors
is closed under Kronecker products, this operation may be computed by a tensor network
like the one shown in (3) (depicting the case k = 5), where α, β and γ are as in (2). The
rows/columns of the matrices are now indexed by k-tuples of bits. The execution of this
network contracts one α/β/γ tensor at a time, which lets us keep the cost low. For example,
the first contraction of A with the first α block has a cost of 2k · 2k · 7, and results in a tensor
of size 2k−1 × 2k−1 × 7, then the next contraction has a cost of 2k−1 · 2k−1 · 72 and produces
a result of size 2k−2 × 2k−2 × 7× 7, and so on, until the contraction with the last α block
which has a cost of 2 · 2 · 7k = O(7k), and all the contractions in the execution have cost
bounded by this, meaning that we get a total running time of O(k7k) = O(N log2 7 logN) for
N ×N matrices.2

α β

γ

α β

γ

α β

γ

α β

γ

α β

γ

A B

i′1 k1 k′
1 j′1

i1 j1

ℓ1

i′2 k2 k′
2 j′2

i2 j2

ℓ2

i′3 k3 k′
3 j′3

i3 j3

ℓ3

i′4 k4 k′
4 j′4

i4 j4

ℓ4

i′5 k5 k′
5 j′5

i5 j5

ℓ5

(3)

This type of argument can capture any algorithm based on a low-rank decomposition of
the underlying tensor of the multilinear map, and indeed, this enables O(nω)-time3 matrix
multiplication using tensor networks. Beyond simple low-rank decompositions, which always
give rise to “star-like” networks as in (3), there are many interesting algorithms that can
be captured using networks with a more complicated topology. For instance, many maps
of substantial importance have a layered structure that decomposes the map to a sequence
of elementary maps. A canonical example is the discrete Fourier transform (DFT), which
for a smooth composite order such as 2k, can be decomposed into a fast Fourier transform
(FFT) that consists of a sequence of k transforms of order 2 interleaved with diagonal-matrix
multiplications of twiddle factors [24, 72].

2 In fact, a more careful analysis gives running time O(N log2 7).
3 Throughout the paper, ω = ω(F) denotes the infimum over all e such that the arithmetic complexity

of multiplying two n× n matrices is O(ne). While the value of ω may depend on the underlying field
F, we tacitly ignore this, since the field is fixed throughout the paper. For all fields it is known that
2 ≤ ω < 2.3728639 [50, 73].
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1.1 Our results
Starting with motivation (i) and seeking to express existing fastest-known algorithms as
executions of tensor networks by a sequence of contractions, we show upper bounds for a
number of natural problems. Beyond standard linear settings such as the FFT, not only do
tensor networks realize classical bilinear settings such as Abelian group algebra products and
fast matrix multiplication algorithms based on low tensor rank, they are powerful enough to
capture a substantial number of higher-linearity applications, including Ryser’s algorithm
for matrix permanent [64], and the Kruskal operator [43, 46], which underlies realization of
rank-decompositions for tensor rank [44] and current fastest algorithms for detecting outlier
correlations [38].

One problem for which tensor networks turn out to be particularly useful is counting
homomorphisms from a fixed pattern graph P to a large host graph G on n vertices. The
most well-studied such problem is when P is a k-clique. For this problem, the currently fastest
algorithm runs in time roughly O(nωk/3) (with variations in the exponent depending on
k mod 3) [54, 30]. For general P , it is known that the problem can be solved in O(ntw(P )+1)
time [28], where tw(P ) is the treewidth of P . We show that tensor networks can solve the
problem in O(n(ω+ε) bw(P )/2) time, where bw(P ) is the branchwidth of P . For P a k-clique
we have bw(P ) = d2k/3e so this almost recovers the O(nωk/3) running time, and in this
case we can slightly improve the running time to recover the O(nωbk/3c+(k mod 3)) time of
Nešetřil and Poljak [54]. In the case of general P , this improves on the treewidth-based
bound for graphs with bw(P ) ≤ 2(tw(P ) + 1)/ω (and in particular if ω = 2 it is always
as fast as the treewidth-based bound, ignoring the ε). By recent results of Curticapean,
Dell, and Marx [25], fast algorithms for homomorphism-counting can be used to obtain
fast algorithms for counting subgraphs of G isomorphic to P , and in some cases our new
branchwidth-based bound leads to an improvement; for example, for counting paths of lengths
of length 7, 8 or 9, we get a running time of O(n3ω/2+ε) < O(n3.56) compared to O(n4) using
the treewidth-based bound, whereas for very long paths it is not clear whether we would
need ω = 2 in order for these bound to improve on the treewidth-based bound. Previous
work that combines branch decompositions and fast matrix multiplication includes Dorn [29]
and Bodlaender et al. [15].

Further applications captured by tensor networks are the set covering and set partitioning
frameworks via fast zeta and Möbius transforms that underlie the current fastest algorithms
for graph coloring [13] and its generalizations such as computing the Tutte polynomial [10, 11].
To summarize, we have the following compendium theorem of upper bound results.

I Theorem 1.1. We have the following upper bounds on arithmetic complexity via tensor
networks:
1. O(nω+ε) for the matrix multiplication map of two n× n matrices.
2. O(n(ω+ε)bv/3c+(v mod 3)) for counting v-cliques in an n-vertex graph.
3. O(n(ω+ε) bw(P )/2) for counting homomorphisms of a fixed pattern (hyper)graph P into a

(hyper)graph on n vertices.
4. O(max(nd`/2e(ω+ε−1)r, n2d`/2erω+ε−2)) for the Kruskal operator of ` matrices of shape

n× r.
5. O(2kk) for the discrete Fourier transforms for the Abelian groups Z2k and Zk2 .
6. O(2kk) for group algebra products on F[Z2k ] and F[Zk2 ] when 2 is unit in F.
7. O(2kk) for the semigroup algebra product on F[({0, 1}k,⊆,∩,∪)].
8. O(2nn) for the permanent of an n× n matrix.
Above ε > 0 is an arbitrary constant.

ITCS 2019



7:6 Tensor Network Complexity of Multilinear Maps

Perhaps the most interesting application above is the v-clique problem, which suggests
that one should seek to pursue generalizations to v-vertex hypercliques of

(
v
k

)
hyperedges

with v > k ≥ 3. Indeed, subgraph counting is a problem that has received substantial
interest over the years (e.g. [37, 54, 5, 4, 30, 12, 14, 77, 74, 33, 32, 55, 42, 25]), but progress
in the particular case of v-clique has been stuck to the extent that the problem has attracted
notoriety as a hardness assumption in fine-grained complexity [1, 2]. Beyond the study of
cliques, hypercliques, and subgraph counting, nontrivial algorithms for such forms would
have immediate applicability, for example, in the study of maximum constraint satisfaction
problems (Max-CSP) for constraints of width k ≥ 3; cf. Williams [75] for the case k = 2.
One of the main goals of our subsequent lower bounds is to rule out tensor networks as a
candidate to yield improved algorithms in this setting.

Turning from upper bounds to lower bounds and motivation (ii), tensor networks are
restricted enough to enable nontrivial lower bounds for many multilinear maps. To begin with,
an immediate limitation of tensor networks is that all the intermediate results during the
execution of a network are multilinear, and the execution of a network can be simulated by a
multilinear circuit. Raz [60] shows that multilinear formulas cannot compute the determinant
of an n× n matrix in a polynomial number of operations in n, even though polynomial-size
general circuits are known for the determinant (cf. [9, 16, 63]).

It turns out that considerably stronger lower bounds can be shown for tensor networks.
In particular, we establish essentially tight lower bounds (subject to the assumption ω = 2)
for arithmetic complexity via tensor networks of P -homomorphism counting and the Kruskal
operator. Furthermore, we rule out the possibility of any nontrivial algorithm designs via
tensor networks for counting cliques in hypergraphs. The following theorem collects our main
lower-bound results, and should be contrasted with the upper bounds in Theorem 1.1.

I Theorem 1.2. We have the following lower bounds on arithmetic complexity via tensor
networks:
1. Ω(nbw(P )) for the multilinear form corresponding to P -homomorphism counting. In

particular, this yields a lower bound of Ω(nd2v/3e) for counting cliques of size v, and a
lower bound of Ω(nv) for counting hypercliques of size v.

2. Ω(max(n`, ndl/2er)) for the Kruskal operator of ` matrices of shape n× r.
3. Ω(

(
n
n/3
)
) for the determinant or permanent of an n× n matrix.

We remark that [52] independently showed that the border rank of the v-hyperclique
tensor is Ω(nv); our Ω(nv) lower bound for tensor networks strengthens that. One may
wonder about the gap between the bounds of Ω(

(
n
n/3
)
) and O(2nn) for the permanent. As

we explain below, our lower bound methods are inherently rank-based and cannot go beyond(
n
n/3
)
. A curious point is that it is not immediately clear whether tensor networks can even

achieve O∗(2n) time for the determinant, and we do not know whether or not this is possible.

1.2 Overview of proof ideas
As a running example in this overview, we consider the 6-linear forms A : F[n]×[n]×F[n]×[n]×
. . .× F[n]×[n] → F taking as input 6 matrices of size n× n, defined by

A(X(1), X(2), X(3), X(4), X(5), X(6)) =
∑

i,j,k,`∈[n]

X
(1)
ij X

(2)
ik X

(3)
i` X

(4)
jk X

(5)
j` X

(6)
k` . (4)

If χ is the adjacency matrix of a loopless graph G, then A(χ, χ, χ, χ, χ, χ) counts the number
of 4-cliques in the graph. Associated with A is the 6-tensor T (A) of size n2 × n2 × · · · × n2,
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where each of the 6 modes is indexed by a pair (i, j) ∈ [n] × [n], and the value at a given
position is the coefficient of the corresponding term in A. Concretely,

T (A)i1j1,i2k2,i3`3,j4k4,j5`5,k6`6 =

{
1 if i1 = i2 = i3, j1 = j4 = j5, k2 = k4 = k6 ∧ `3 = `5 = `6,

0 otherwise.

Upper bounds. Most, but not all, of the families of multilinear maps we consider are closed
under taking Kronecker products. For instance, consider the 4-clique counting form (4) for
an n-vertex graph and its associated tensor T (A). Then for any k ≥ 1, the tensor associated
with the 4-clique counting form in nk-vertex graphs is T (A)⊗k, the k-fold Kronecker product
of T (A) with itself. We write A⊗k for the associated map. With this in mind, it is natural
to seek general constructions that, given an efficient evaluation of some map A, yields an
efficient evaluation of A⊗k.

We give such a construction, and show that the cost of the best tensor network execution
for A⊗k is essentially submultiplicative in a quantity that we call the amortized cost of an
execution. For tensors of order at most 3, the notion of amortized cost essentially captures
the rank of T (A), but for higher-order tensors, the amortized cost may be significantly smaller
than the rank. Roughly speaking, the amortized cost of a step in an execution of a map A
is: (i) equal to the normal cost if the operation involves the contraction of two tensors that
both depend on some input variables of A, but (ii) equal to the size of the result if only one
of the tensors involved in the contraction depends on the input variables of A. A precise
definition appears in Section 4. Our general upper bound for the cost of A⊗k can, somewhat
informally, be stated as follows.

I Theorem 1.3 (Submultiplicativity of cost, informal statement). If a multilinear map A has
a tensor network execution consisting of s steps, each with cost at most c and amortized cost
at most a, then A⊗k has a tensor network execution consisting of at most k · s steps, each
with cost at most ak−1 · c.

An immediate corollary of this is that we can capture any algorithm for A⊗k based on
a low-rank decomposition of T (A) (Corollary 4.2). For example, this implies that tensor
networks can multiply n× n matrices in O(nω+ε) time.

However, returning to our running example form (4), as we explain below the tensor
T (A) has rank n4, meaning that Corollary 4.2 only yields a trivial upper bound. This is
where the full generality of Theorem 1.3 comes in. Consider the form (4) for graphs on some
constant number n0 of vertices. As it turns out, we can design a network and an associated
execution for this form, depicted in (5) and explained in more detail in the full version of
this paper, with an execution of cost n2e+3

0 and amortized cost ne+1
0 , where ne0 is the rank of

the tensor associated with n0 × n0 matrix multiplication. Picking n0 to be a large enough
constant so that e is approximately ω, and letting k be such that n is approximately nk0 , we
obtain via Theorem 1.3 an O(nω+ε+1) time upper bound for (4).

X(1) X(3) X(2) X(6) X(4) X(5)

i1 j1 i3 ℓ3 i2 k2 k6 ℓ6 j4 k4 j5 ℓ5

(5)

ITCS 2019



7:8 Tensor Network Complexity of Multilinear Maps

Lower bounds. Just like many other arithmetic complexity lower bounds, our lower bounds
boil down to establishing lower bounds on the rank of certain matrices.

To establish a lower bound on the rank of T (A), we flatten it to a matrix and analyze
the rank of that matrix. There are 25 possible bipartitions of the set of 6 modes of T (A),
and the lower bound on the rank of T (A) that we obtain is the maximum of the ranks of the
resulting matrices. Using this method it is easy to establish that for our example form (4),
the rank of T (A) = n4. That this is an upper bound follows from (4), and that it is a lower
bound follows by considering the bipartition taking variables X(1) and X(6) as row indices,
and the other 4 variables as column indices. The resulting n4 × n8 matrix has full rank.

Tensor networks are more versatile and can be more efficient than low-rank decompositions
of T (A). Nevertheless, we show limitations on this versatility. In particular we show that
every tensor network execution for A induces a tree in which the leaves are the inputs of
A and all internal vertices have degree 3. We call this a socket tree. Each edge in a socket
tree induces a bipartition of the variables and our key technical lemma is to show that for
each such bipartition, the rank of the corresponding flattening of T (A) is a lower bound on
the cost of the execution that gave rise to the tree. Thus, to obtain a lower bound for the
cost of a specific execution, we consider the maximum rank obtained over all edges of the
corresponding socket tree, and to lower bound the cost of every tensor network execution,
we minimize this quantity over all possible socket trees. We refer to the resulting quantity as
the socket width of A, denoted w(A) (formal definition appears in Section 5). Our general
lower bound can thus be phrased as follows, where c(A) denotes the minimum cost of a
tensor network for evaluating A (formal definition appears in Section 3).

I Theorem 1.4. For every multilinear map A, it holds that c(A) ≥ w(A).

Indeed, for our running example (4), there are low-width socket trees establishing that
w(A) ≤ n3, see (6). However, that bound is tight: our Ω(nd2·4/3e) = Ω(n3) lower bound for
the

(4
2
)
-linear form (Theorem 1.2) is obtained by proving that w(A) ≥ n3 and appealing to

Theorem 1.4.
i1, j1 i3, ℓ3 i2, k2 k6, ℓ6 j4, k4 j5, ℓ5

(6)

1.3 Organization of this paper

The present conference abstract contains only the key definitions and technical results
underlying our main theorems. All the upper and lower bounds for the arithmetic complexity
of specific multilinear maps together with their proofs can be found in the full version of this
paper. Section 2 recalls preliminaries on tensors and multilinear maps. In Section 3, tensor
networks, execution and cost of a tensor network, and cost of a multilinear map are defined.
Section 4 presents our main upper-bound result on submultiplicativity of cost. In Section 5,
a general lower bound on the cost of evaluating a multilinear map using tensor network is
obtained; this lower bound is expressed in terms of the socket-width of a multilinear map.
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2 Preliminaries on tensors and multilinear maps

This section sets up our notation for tensors and multilinear maps. Throughout the paper
[n] denotes {1, 2, . . . , n} and F denotes an arbitrary fixed field. We work with tensors and
multilinear maps relative to fixed bases for the respective vector spaces over F.

Modes, indexing, and positions. We will work with the following convention of positioning
individual entries inside a tensor. Let E be a finite set of modes. Associate with each mode
e ∈ E a finite nonempty index set J(e). In this case we say that E is a set of indexed
modes. The length of e is |J(e)|. A position is an element j ∈

∏
e∈E J(e). Let us write

J(E) =
∏
e∈E J(e) for the set of all positions with respect to the indexed modes E. In the

special case that the set of modes E is empty we define the set of positions J(E) to consist
of a single element.

Tensors, matrices, vectors, and scalars. Let E be a set of indexed modes. A tensor with
respect to E is a mapping T : J(E)→ F. Equivalently, we write T ∈ FJ(E) to indicate that
T is a tensor with respect to the indexed modes E. We view the set FJ(E) of all tensors
over E as a vector space over F with addition and scalar multiplication of tensors defined
entrywise. We say that |E| is the order of the tensor. A tensor of order zero is called a
scalar, a tensor of order one is called a vector, and a tensor of order two is called a matrix.
The volume of the tensor is |J(E)|. The tuple (|J(e)| : e ∈ E) is the shape of the tensor. It
is convenient to use the “×”-symbol to punctuate the shape of a tensor; that is, instead of
writing, say (2, 3, 4) for the shape, we write 2× 3× 4. For a position j ∈ J(E) and a tensor
T ∈ FJ(E), we say that Tj ∈ F is the entry of T at j.

A flattening of T induced by a bipartition E1 ∪E2 = E of the modes of T is a |J(E1)| ×
|J(E2)| matrix M where, for j1 ∈ J(E1) and j2 ∈ J(E2) we have Mj1,j2 = Tj1j2 . Given two
order ` tensors S ∈ F[n1]×[n2]×···×[n`] and T ∈ F[m1]×[m2]×···×[m`], their Kronecker product
S ⊗ T is a tensor in F[n1m1]×[n2m2]×···×[n`m`] defined by

(S ⊗ T )m1(i1−1)+j1,m2(i2−1)+j2,...,m`(i`−1)+j`
= Si1,i2,...,i`Tj1,j2,...,j`

.

Multilinear maps. Let E1, E2, . . . , E`, E
′ be pairwise disjoint sets of indexed modes such

that E1, E2, . . . , E` are nonempty. A map A : FJ(E1) × FJ(E2) × · · · × FJ(E`) → FJ(E′) is an
`-linear map if A is linear with respect to each of its ` inputs individually. In particular, a
1-linear map is a linear map. A multilinear map that gives a scalar output is a multilinear
form. In particular, A is a form if and only if E′ is empty.

The tensors of a multilinear map. For an `-linear map A : FJ(E1)×FJ(E2)×· · ·×FJ(E`) →
FJ(E′) , we define two slightly different tensors T (A) and T̂ (A). Both are indexed by
J(E1 ∪ E2 ∪ . . . ∪ E` ∪ E′) and at position j1j2 . . . j`j

′ take the value

T (A)j1j2...j`j′ = T̂ (A)j1j2...j`j′ = A
(
e(j1), e(j2), . . . , e(j`))

j′
,

where e(ji) ∈ FJ(Ei) denotes the tensor with a 1 in position ji and 0s in all other position. The
difference between T (A) and T̂ (A) is their shape. The shape of T (A) is |J(E1)| × |J(E2)| ×
· · · × |J(E`)| × |J(E′)|, except if A is a form in which case the |J(E′)| part is omitted. Thus
T (A) is of order `+ 1 (or ` if A is a form). The shape of T̂ (A) is (|J(e)| : e ∈ Ei, i ∈ [`+ 1]),
thus its order is |E1|+ |E2|+ · · ·+ |E`|+ |E′|.

ITCS 2019



7:10 Tensor Network Complexity of Multilinear Maps

In other words, each mode of T (A) corresponds to one of the inputs of A, or the output.
These inputs are in turn sets of indexed modes so may contain more “fine-grained” structure,
but this information is lost at the level of granularity of T (A). When working with tensor
networks for evaluating A, we need to keep track of the fine-grained mode structure because
this is in many cases what allows us to construct efficient algorithms, hence in most parts of
the paper we are more interested in the tensor T̂ (A) which contains this structure.

On the other hand, T̂ (A) does not contain information about which modes are grouped
together to form the inputs and output of A, and this information is also important. This
leads us to the notion of sockets, defined next.

Sockets. Let us study the tensor T̂ (A) with respect to the map A. We say that the modes
in E1 ∪E2 ∪ · · · ∪E` are the input modes of T̂ (A), and the modes in E′ are the output modes
of T̂ (A) with respect to A. Let us say that E1, . . . , E` are the input sockets of T̂ (A) with
respect to A. Similarly, E′ is the output socket in T̂ (A) with respect to A. In particular, the
output socket is empty if and only if A is a form. To describe a socketing of the modes of a
tensor, it is convenient to use parentheses to group a “×”-punctuated shape of a tensor into
sockets, see also Section 2.

Let T̂ be a tensor over a set of indexed modes E. Any tuple E = (E1, E2, . . . , E`, E
′)

of subsets of E that partitions E with E1, E2, . . . , E` nonempty defines an `-linear map
AE(T̂ ) : FJ(E1) × FJ(E2) × · · · × FJ(E`) → FJ(E′) with T̂ (AE(T̂ )) = T̂ . In this case the tuple
(E1, E2, . . . , E`) gives the input sockets of T and E′ is the output socket of T̂ with respect to
AE(T̂ ). We thus conclude that two multilinear maps A1, A2 may have the same base tensor
T̂ (A1) = T̂ (A2), and from a tensor T̂ one may obtain different multilinear maps by varying
how the modes of T̂ are assigned to input and output sockets.

The form of a multilinear map. Let A be a multilinear map with a nonempty output
socket. We can turn A into a multilinear form F (A) by turning its output socket into an
input socket. Let us say that F (A) is the multilinear form of A. We also set F (A) = A when
A is a multilinear form.

3 Tensor networks

This section defines tensor networks and the cost of a multilinear map.

Networks. A network (or diagram) consists of a finite set V of vertices, a finite set E
of hyperedges, an incidence relation I ⊆ V × E, and a boundary B ⊆ E. A network is
nondegenerate if every hyperedge is incident to at least one vertex. In what follows we assume
that all networks are nondegenerate. A hyperedge e ∈ E is a loop if e /∈ B and e is incident
to exactly one vertex.

For a vertex v ∈ V , let us write I(v) = {e ∈ E : (v, e) ∈ I} for the set of hyperedges
incident to v. Dually, for an hyperedge e ∈ E, let us write I(e) = {v ∈ V : (v, e) ∈ I} for the
set of vertices incident to e. For a network D, we write V (D), E(D), I(D), and B(D) to
refer to the vertices of D, the hyperedges of D, the incidence relation of D, and the boundary
of D, respectively.

Induced networks. For a network D and a nonempty subset W ⊆ V (D), the induced
network D[W ] consists of the vertices in W together with the hyperedges of D that are
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incident to at least one vertex in W ; the boundary of D[W ] consists of all hyperedges that
are at the boundary of D or incident to a vertex outside W . Formally,

V (D[W ]) = W ,

E(D[W ]) = {e ∈ E(D) : ∃w ∈W s.t. (w, e) ∈ I(D)} ,
I(D[W ]) = I(D) ∩ (V (D[W ])× E(D[W ])) ,
B(D[W ]) = (B(D) ∩ E(D[W ])) ∪ {e ∈ E(D[W ]) : ∃v ∈ V (D)\W s.t. (v, e) ∈ I(D)}.

(7)

For a vertex v ∈ V , we abbreviate D[v] = D[{v}]. Note that the boundary of D[v] consists
of all non-loop hyperedges incident to v in D.

Tensor networks. Let D be a network. We index D by associating with each hyperedge
e ∈ E an index set J(e) of size `(e). Induced networks inherit indexing by restriction. Next
we associate with each vertex v ∈ V a tensor T (v) ∈ FJ(I(v)). We say that D equipped with
the tensors (T (v))v∈V is a tensor network.

The value of a tensor network D, or the tensor represented by D, is a tensor T (D) ∈ FJ(B),
defined for all i ∈ J(B) by

T (D)i =
∑

j∈J(E(D)\B)

∏
v∈V

T (v)ij . (8)

Observe that in (8) the positions i and j together identify a unique entry of T (v) by projection
to J(I(v)). The value of a tensor network with an empty boundary is a scalar.

Contracting tensors. Let D be a tensor network and let W ⊆ V (D) be a nonempty set of
vertices. Let w be a new element not in V . We may contract W in D to obtain a tensor
network D/W by replacing the sub-network D[W ] in D with the single vertex w whose
associated tensor T (w) is the tensor represented by D[W ]. Formally,

V (D/W ) = (V (D) \W ) ∪ {w} ,
E(D/W ) = E(D) \ (E(D[W ]) \B(D[W ])) ,
I(D/W ) = (I(D) \ I(D[W ])) ∪ {(w, e) : e ∈ B(D[W ])} ,
B(D/W ) = B(D) ,

T (w) = T (D[W ]) .

(9)

The cost of contracting W in D is c(D,W ) =
∏
e∈E(D[W ]) |J(e)|. The value of a tensor

network is invariant under contraction, i.e., for all nonempty W ⊆ V (D) it holds that
T (D) = T (D/W ).

Execution and cost of a tensor network. To compute the tensor T (D) from a given tensor
network D, we may proceed by a sequence of contractions on D. Such a process is called
executing D, and the cost of D is the cost of a minimum-cost execution of D.

More precisely, letD = D0 be a tensor network with at least one tensor. For k = 1, 2, . . . , t,
select a nonempty subset Wk−1 ⊆ V (Dk−1) such that Wk−1 has at least two tensors or
consists of a single tensor with a loop. Set Dk = Dk−1/Wk−1 and observe that the number
of tensors and/or modes decreases by at least one in the contraction. Suppose that Dt is
loopless and consists of a single tensor. We say that such a sequence of contractions is an
execution of D in t steps. The cost of the execution is maxk=1,2,...,t c(Dk−1,Wk−1). The cost
of an execution in zero steps is defined to be 0.
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It is immediate that D has at least one execution and every execution consists of at most
2|V (D)| − 1 steps. By invariance under contractions, we have T (Dt) = T (D). The cost c(D)
of D is the cost of a minimum-cost execution of D.

An execution of D of cost c(D) immediately translates into an algorithm that computes
T (D) using O(c(D)|V (D)|) arithmetic operations in F, since the contraction step Dk =
Dk−1/Wk−1 takes O(c(Dk−1,Wk−1)) ≤ c(D) time to evaluate, and there are O(V (D)) steps.

I Lemma 3.1. Let D be a tensor network. There exists a minimum-cost execution of D
such that each contracted set has size at most two. Furthermore, if D is loopless, we can
assume that each contracted set has size exactly two.

In what follows we restrict to consider loopless D only. Thus while a general execution may
contract arbitrary vertex sets in D in each step, without loss of generality the minimum-cost
execution has the structure of a rooted binary tree, whose leaves are the vertices of the tensor
network, and each internal vertex is the tensor obtained by contracting its two children.

Cost of a multilinear map. We now define the cost of a multilinear map via the minimum-
cost tensor networks (and socketing) for evaluating the map. That is, the cost of a map is
defined in terms of the best tensor network that implements the map. More precisely, let

A : FJ(E1) × FJ(E2) × · · · × FJ(E`) → FJ(E′)

be an `-linear map. Consider the tensor T̂ (A) of A and the associated input sockets
E1, E2, . . . , E` and the output socket E′. Let D∗ be an arbitrary tensor network such that
T (D∗) = T̂ (A) and the boundary satisfies B(D∗) = E1 ∪ E2 ∪ · · · ∪ E` ∪ E′. Modify the
network D∗ as follows. For each k = 1, 2, . . . , `, introduce a new vertex to D∗, make the
new vertex incident to each of the modes in the input socket Ek, and associate the new
vertex with a tensor X(k) ∈ FJ(Ek). Remove the modes E1 ∪E2 ∪ · · · ∪E` from the boundary
of D∗. Let us denote the resulting network by D and call the introduced ` new vertices
the socket vertices of D. We observe that B(D) = E′ and A(X(1), X(2), . . . , X(`)) = T (D).
Furthermore, the cost c(D) is independent of the value of X(k) ∈ FJ(Ek) for k = 1, 2, . . . , `.
We say that D is a realization of A if it can be obtained from A by this process, and write
D(A) for the set of all tensor network realizations D of A.

The cost of the map A is c(A) = minD∈D(A) c(D). This minimum exists since the cost of
a tensor network is a nonnegative integer and the family D(A) is nonempty.

4 An upper bound via submultiplicativity

This section presents our main tool for proving upper bounds on the cost of a multilinear
map that admits representation as a Kronecker power, namely submultiplicativity of an
amortized notion of cost under Kroneckering.

Kronecker power of a multilinear map. Let E1, E2, . . . , E`, E
′ be pairwise disjoint sets of

indexed modes such that E1, E2, . . . , E` are nonempty. Let

A : FJ(E1) × FJ(E2) × · · · × FJ(E`) → FJ(E′)

be an `-linear map. For a positive integer k, we define the `-linear map A⊗k such that its
tensor satisfies T (A⊗k) = T (A)⊗k. Then

A⊗k : FJ(E1)k

× FJ(E2)k

× · · · × FJ(E`)k

→ FJ(E′)k

.
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Note that T (A⊗k) = T (A)⊗k is the k-fold Kronecker product of T (A) with itself – that is,
it has the same order, but the index sets are larger – whereas T̂ (A⊗k) is the k-fold outer
product of T̂ (A) with itself – that is, its index sets have the same sizes, but its order is k
times larger.

Amortized cost and submultiplicativity. Let D be a diagram that realizes A and let TD
be an execution tree for D. For each internal vertex x in TD (that is, a vertex obtained by
contraction), define the amortized cost of x by splitting into the following three cases:
(i) if neither of the two subtrees of x contains a socket vertex, the amortized cost of x is 1;
(ii) if exactly one of the subtrees of x, say, the subtree rooted at y (where x and y are

adjacent in TD), contains at least one socket vertex, the amortized cost of x is the
maximum of the volume of the tensor at x and the volume of the tensor at y;4

(iii) if both of the subtrees of x contain at least one socket vertex, the amortized cost of x
is the cost of the contraction to obtain x.

The amortized cost a(TD) of TD is the maximum of the amortized costs of the internal
vertices of TD. Since the amortized cost of each internal vertex of TD is at most its cost, we
have a(TD) ≤ c(TD). Furthermore, we observe that the amortized cost of x in case (ii) above
may be strictly less than the cost of the contraction to obtain x. In particular, in (ii) the
amortized cost is defined not by the cost of the contraction but rather by volume. This is
because in a kth Kronecker power we can amortize the cost of the aggregate transformation in
case (ii) not with a single contraction but with a sequence of k contractions. This observation
will form the heart of the proof of Theorem 1.3.

Before proceeding with the proof, let us illustrate the key ideas in visual terms. Let us
start with the three illustrations in (10).

(10)

Suppose the leftmost network in (10) is socketed so that the two modes at the top form the
output socket, and the four modes at the bottom form two input sockets so that modes in
the same socket are incident to the same vertex. In the middle in (10), we have adjoined
two socket vertices to the input sockets to obtain a realization D. On the right in (10), we
display an execution tree TD for D. Observe that the bottom-most internal vertices of TD,
and the top-most internal vertex of TD, have type (ii). The internal vertex in the center has
type (iii). (There are no internal vertices of type (i).) Supposing that all the modes have
length at least 2, we also observe that the vertices of type (ii) have amortized cost strictly
less than their contraction cost.

Let us now consider the kth power of (10) visually, for k = 4:

(11)

4 Here, it is crucial to note that the volume of the other subtree rooted at x, only containing non-socket
vertices, does not contribute directly to the amortized cost of x.
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The leftmost network in (11) depicts the k-fold outer product of the network on the left
in (10) with itself. Observe that we simply take k copies of the network, but that for the
purposes of the visualization we have taken care to draw the k copies of each mode together
for the socketing. In the middle in (11), we have adjoined two socket vertices to the input
sockets to obtain a realization D⊗k of A⊗k. On the right in (11), we display an execution
tree TD⊗k for D⊗k. Observe how each of the internal vertices of type (ii) in TD gets expanded
to a sequence of k internal vertices in TD⊗k . This transformation from TD to TD⊗k is the
gist of the following theorem.

I Theorem 4.1 (Formal statement of Theorem 1.3). Let D be an arbitrary realization of A
and let TD be an arbitrary execution tree for D. For all positive integers k, we have

c(A⊗k) ≤ a(TD)k−1c(TD) . (12)

Furthermore, this realization of A⊗k consists of at most k · |V (D)| vertices.

Proof. Let D∗ be the subnetwork of D with T (D∗) = T̂ (A). That is, D∗ is the network
induced by all the non-socket vertices of D. Taking k disjoint copies of D∗, we obtain a
network whose tensor is T̂ (A⊗k). Attaching the resulting network to tensors at sockets gives
a realization of A⊗k. Let us write D⊗k for this realization.

To establish (12), it suffices to construct an execution tree TD⊗k for D⊗k whose cost
satisfies c(TD⊗k ) ≤ a(TD)k−1c(TD). We construct TD⊗k by rewriting TD from leaves towards
the root to consider the k copies of each vertex in D∗. We start with leaf vertices which are
the vertices of D⊗k. We split the process into cases (i), (ii), and (iii) as in the definition of
amortized cost. Let x be the internal vertex of TD that we are currently considering.

In case (i), we perform the contraction indicated by x in each of the k copies of D∗ in
D⊗k individually. This creates k new internal vertices in TD⊗k that are all copies of x. We
set these k vertices as the vertices that correspond to x in the subsequent steps. Each of
these contractions in TD⊗k has the same cost as the contraction indicated by x in TD. This
cost is less or equal than c(TD).

In case (ii), let y be the child of x in TD such that the subtree rooted at y contains a
socket vertex, and let z be the other child of x in TD. There is a single vertex in TD⊗k

corresponding to y and k identical vertices in TD⊗k corresponding to z. We contract these k
vertices individually each with the vertex that corresponds to y. This creates k new internal
vertices in TD⊗k , where we set the topmost vertex as the vertex that corresponds to x in
the subsequent steps. After the ith step, the corresponding tensor has i copies of modes
of x and k − i copies of modes of y. The cost of the contraction in the ith step is the cost
of contracting y and z in TD multiplied by the the volume of y to the power k − i and the
volume of x to the power i− 1. Since the volumes of x and y are less than or equal to a(TD),
this cost is less than or equal to a(TD)k−1c(TD).

In case (iii), let y and z be the two child vertices of x in TD. By the structure of the
earlier steps, we have that a single vertex in D⊗k corresponds to y, and similarly for z. We
contract these two vertices. This creates one new internal vertex in TD⊗k , which we set as
the vertex that corresponds to x in the subsequent steps. This tensor has k copies of modes
of x. The cost of this contraction in TD⊗k is the cost of the corresponding contraction in
TD to the kth power, because both tensors have k copies of all modes compared to y and
z. By definition, in case (iii) the amortized cost of contracting y and z is the same as the
cost of contracting y and z. Hence the cost of this contraction in TD⊗k is less or equal than
a(TD)k ≤ a(TD)k−1c(TD). This rewriting process produces an execution tree TD⊗k for D⊗k
with c(TD⊗k ) ≤ a(TD)k−1c(TD). J
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An immediate corollary is that tensor networks can use low rank decompositions of T (A)
to efficiently evaluate A⊗k.

I Corollary 4.2 (Submultiplicativity of low-rank executions). Let A : FJ(E1) × FJ(E2) × · · · ×
FJ(E`) → FJ(E′) be a multilinear map. Definem=max{|J(E1)|, |J(E2)|, . . . , |J(E`)|, |J(E′)|}
and r = rk T (A). Then c(A⊗k) ≤ max(r,m)k min(r,m)

Proof. By taking a star-like network topology (as in (10)) we get an execution with a(TD) =
max(r,m) and cost c(TD) = m · r. J

5 A lower bound for the cost of a multilinear map

In this section, we prove a general lower bound on the cost of evaluating a multilinear map
using tensor networks, as defined in Section 3. The lower bound is expressed in terms of the
socket-width of a multilinear map, which we now proceed to define.

Let A : FJ(E1) × FJ(E2) × · · · × FJ(E`) → FJ(E′) be an `-linear map. A socket-tree of A is
a tree TS whose `+ 1 leaf vertices are the sockets E1, E2, . . . , E`, E

′ of A and whose internal
vertices all have degree exactly 3. Associate with each edge e = {xR, xC} of TS the two
subtrees TS(xR, e) and TS(xC , e) obtained by removing e, where TS(xR, e) is the subtree
containing xR and TS(xC , e) is the subtree containing xC . Let L(xR, e) be the set of leaves
in TS(xR, e) and let L(xC , e) be the set of leaves in TS(xC , e).

The sets L(xR, e) and L(xC , e) are both nonempty and together partition the set of
sockets. Consider the flattening M(TS , e) of the tensor T (A) such that the modes in L(xR, e)
index the rows and the modes in L(xC , e) index the columns of M(TS , e). The width of TS
at e is the rank of M(TS , e), and the width of TS is w(TS) = maxe∈E(TS) rk(M(TS , e)).

Let us write S (A) for the set of all socket-trees of the multilinear form A. We define the
socket-width of A to be w(A) = minTS∈S (A) w(TS).

The rest of this section is devoted to proving Theorem 1.4:

I Theorem 1.4. For every multilinear map A, it holds that c(A) ≥ w(A).

First, we prove that without loss of generality, we may restrict our attention to forms.

I Claim 5.1. For any multilinear map A, it holds that c(A) ≥ c(F (A)).

Proof. We observe that A and F (A) satisfy T̂ (A) = T̂ (F (A)). Any network D ∈ D(A) can
be modified to a network D′ ∈ D(F (A)) by attaching a tensor X ′ ∈ FJ(E′) to the boundary of
D. Let D ∈ D(A) be such that c(D) = c(A). The minimum-cost execution of D, followed by
contracting T (D) and X ′, is an execution of D′. Its cost is c(A), since the cost of contracting
of T (D) and X ′ is

∏
e∈B(D) |J(e)| and

∏
e∈B(D) |J(e)| ≤ c(A), because the last step of the

minimum-cost execution of D contracted a set W with all modes e ∈ B(D) incident to W .
Thus, c(A) ≥ c(F (A)). J

Furthermore, w(A) = w(F (A)) for every multilinear map A, since w(A) only depends on
the tensor T (A), but not on which of its coordinates (if any) is the output. Thus it suffices
to prove Theorem 1.4 for multilinear forms, which we now proceed to do.

I Lemma 5.2. For any multilinear form F , it holds that c(F ) ≥ w(F ).

Proof. Let D ∈ D(F ) be such that c(D) = c(F ). It is a tensor network with empty boundary
and a socket vertex Si ∈ V (D) for each input socket Ei, where i = 1, 2, . . . , `. Its tensor is
T (D) = F (X(1), X(2), . . . , X(`)) where X(i) = T (Si) for i = 1, 2, . . . , `.

ITCS 2019



7:16 Tensor Network Complexity of Multilinear Maps
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X(1) X(2)SR X(3) X(4)

SC

WC

A(2)

(a) Example of a possible execution tree TD. Given the
choice of e in the corresponding socket tree TS shown
on the right there are four possible choices of ẽ.

e

X(1)

X(2)

xR xC

X(3)

X(4)

SR SC

(b) The corresponding socket tree TS . The
exact choice of ẽ in TD determines which
part of the cut is the xR part, and which
is the xC part.

Figure 1 Illustration of the notation used for the execution and socket trees.

By Lemma 3.1, a minimum-cost execution of D can be represented by a rooted binary
tree TD, where the set of leaves of TD are V (D) and each inner vertex represents the vertex
obtained by contracting its two children. Let TS be the unique socket-tree of F that is
obtained as a topological minor of TD. Slightly abusing the notation, we assume that the
leaves of TS are the socket vertices S1, S2, . . . , S` instead of the sockets E1, E2, . . . , E`. To
establish the lemma, it suffices to show that TD has cost at least w(TS), since w(TS) ≥ w(F ).

Let e = {xR, xC} ∈ E(TS) be an edge of the socket tree TS with rk(M(TS , e)) = w(TS),
and let ẽ be an edge of the execution tree TD in the subdivision of e appearing in TD. Without
loss of generality we may assume that ẽ is directed from the part of TD corresponding to xR
towards the part corresponding to xC (if not, simply switch names of xR and xC). Define
SR = L(xR, e) and SC = L(xC , e). Let WR ⊆ V (D) be the set of non-socket vertices of D
that appear on the same side of ẽ in TD with socket vertices SR and let WC be the set of
remaining non-socket vertices of D. See Figure 1 for an illustration of all these definitions.
Finally, let D′ = D/SR/SC/WR/WC be the result of contracting each of these four sets of
vertices of D. For notational convenience, we identify the four vertices of the new network
with the four subsets SR, SC ,WR,WC .

Now, the tensor P = T (D′[WR ∪ SR]) appears as an intermediate result in the execution
TD,5 hence the volume of P is a lower bound on the cost of TD.

We group the modes of D′ incident on SR or WR as shown in Figure 2: ESW are all
modes in D′ incident exactly upon SR and WR, EWC are all modes incident on WR but
not on SR, ESC are all modes incident on SR but not WR, and finally ESWC are all modes
incident upon SR, WR, and at least one of SC or WC . Write ES = ESW ∪ ESC ∪ ESWC for
the modes incident on SR, and similarly EC = EWC ∪ ESC ∪ ESWC for all modes incident
upon at least one of SR/WR and at least one of SC/WC . Note that |J(EC)| is precisely the
volume of P which we aim to lower bound.

Define a matrix A ∈ FJ(ES) × FJ(EC) as follows. We identify its row indices i ∈ J(ES) as
being triples i = (iSW , iSC , iSWC) ∈ J(ESW )×J(ESC)×J(ESWC) and similarly its column
indices j ∈ J(EC) are triples j = (jSC , jWC , jSWC) ∈ J(ESC)× J(EWC)× J(ESWC). Then

5 Note that the same is not true for the tensor T (D′[WC ∪ SC ]).
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SR

SC

WR
WC

ESC

ESW

EWC

ESWC

Figure 2 Illustration of D′. We group the modes of D′ based on how they connect SR, SC , and
the “C part” of D′.

the entries of A are

A(iSW ,iSC ,iSW C ),(jSC ,jW C ,jSW C ) =
{
T (D′[WR])iSW ,jW C ,jSW C

if iSC = jSC ∧ iSWC = jSWC ,

0 otherwise,

In the case when ES = ESW (i.e., all modes incident on SR connect only to WR), A is
simply a flattening of T (D′[WR]). Recall that T (D′[SR]) ∈

∏
e∈ES

FJ(e). Then for every
j = (jSC , jWC , jSWC) ∈ J(EC), we have∑

i∈J(ES)

Ai,jT (D′[SR])i =
∑

iSW∈J(ESW )

A(iSW ,jSC ,jSW C ),jT (D′[SR])iSW ,jSC ,jSW C

=
∑
iSW

T (D′[WR])iSW ,jW C ,jSW C
T (D′[SR])iSW ,jSC ,jSW C

= PjSC ,jW C ,jSW C
= Pj

(recall that P is the contraction of T (D′[WR]) and T (D′[SR])). Viewing T (D′[SR]) as a row
vector in FJ(ES) we see that P is the vector-matrix product P = T (D′[SR]) ·A ∈ FJ(EC ).

Symmetrically, for the other half of D′, we can write Q = T (D′[WC ∪ SC ]) as a matrix-
vector product Q = B ·T (D′[SC ]) ∈ FJ(EC ) where B is a matrix corresponding to T (D′[WS ])
analogously to how A corresponds to T (D′[WR]).

Thus we have T (D) = T (D′[SR]) ·A ·B · T (D′[SC ]). Recall that for each socket vertex
Si in the original network D, we have T (Si) = X(i). Denoting XR = T (D′[SR]) and
XC = T (D′[SC ]), we get XR =

⊗
Si∈SR

X(i) and XC =
⊗

Si∈SC
X(i).6 Hence

F (X(1), X(2), . . . , X(`)) = XR ·A ·B ·XC .

It follows that A ·B is the flattening of T (F ) to a matrix with rows indexed by the sockets
in SR and columns indexed by the sockets in SC . But this flattening is precisely the matrix
M(TS , e), implying that |J(EC)| ≥ rk(M(TS , e)) = w(TS), as desired. J
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