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Abstract
In this paper we examine the issues involved in adding concurrency to the Robin Hood hash table
algorithm. We present a non-blocking obstruction-free K-CAS Robin Hood algorithm which
requires only a single word compare-and-swap primitive, thus making it highly portable. The
implementation maintains the attractive properties of the original Robin Hood structure, such as
a low expected probe length, capability to operate effectively under a high load factor and good
cache locality, all of which are essential for high performance on modern computer architectures.
We compare our data-structures to various other lock-free and concurrent algorithms, as well
as a simple hardware transactional variant, and show that our implementation performs better
across a number of contexts.
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1 Introduction

Concurrent data-structures allow multiple threads to operate on them without risk of data
corruption, as well as providing guarantees of correctness for concurrent operations. Lock-free
data-structures are a class of concurrent data-structures that have specific properties relating
to system or thread progress guarantees. The programming of portable and practical lock-free
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data-structures is becoming ever more practical, with the addition of mainstream language
support for atomic variables, and a well defined thread memory model (see [5], [28]).

Concurrent algorithms can be separated into two major classes, namely blocking and
non-blocking, with both featuring further partitions based on the specific progress guarantees
within those classes [20]. Blocking algorithms have well documented issues when it comes
to their use. They are susceptible to deadlock, priority inversion, convoying, and a lack
of composability with respect to multiple operations on data-structures. A lock-free, or
non-blocking, algorithm has none of these problems. Such algorithms suffer, however, from
their own set of challenges relating to memory management ([1], [2], [26], [14], [9]), correctness
([22], [24], [3]) and potentially lackluster performance as the system is flooded with contention
under heavy write load. As hardware manufacturers resort to expanding processor core
counts for enhanced performance [34], non-blocking data-structures are coming to the fore,
providing more robust progress guarantees and tolerance to the suspension of threads. For
end consumers to realise the full performance of their system, algorithms must efficiently
exploit as many cores as possible.

Hash tables are one of the major building blocks in software applications, providing
efficient implementations for the abstract data types of maps and sets. These data-structures
are highly versatile, making them an active area of research in concurrency (e.g. [25], [20],
[21], [8], [27], [30], [32]). Hash tables are associative data-structures that contain a pool of
keys and associated values [10], lending themselves to efficient implementations. In general,
they feature the methods Add, Remove, and Contains, each of which is bound by O(1)
computational complexity while requiring O(n) space [10]. Hash table algorithms achieve
this performance by calculating an index, called a hash, from each key, and use this to
efficiently find the relevant entry in the pool of keys, normally an array. Unlike comparative
structures, which store keys in a sorted order and binary search through the space, hash
tables rely on the hash function to distribute the keys across the space. Ideally, the hash
function generates a unique index for each key. In reality, however, the keys often have the
same hash, creating what is known as a collision. A primary focus of research in hash tables
is how to efficiently deal with these collisions.

Hash tables can be divided into two major design variants, namely open-addressing and
closed-addressing (i.e. separate-chaining). Open addressing stores the key and value pairings
in different buckets in the table, either through a pointer or directly in the internal array
itself, with a single item allowed per bucket. When a hash collision takes place (when another
entry has taken the desired bucket), a new bucket is selected via some collision resolution
algorithm. Separate chaining, on the other hand, stores a pointer to a list of values at that
bucket, containing all the key and value pairings that collided on that bucket.

Robin Hood Hashing [7] is an open-addressing hash table method in which entries in
the table are moved around so that the variance of the distances to their original bucket is
minimised. Insertion is a multi-stage process, potentially moving multiple items throughout
the table. The general goal is to find an empty bucket, or another entry that is less ‘deserving’
of its bucket than the current item being inserted or moved. If an empty bucket is found, it is
taken. If another less deserving entry has been identified, then it’s swapped with the current
entry and ‘kicked’ further down the line, with this process repeating until an empty bucket
is found. The serial version of Robin Hood is well suited to modern computer architecture.
As CPU utilisation effectively becomes a function of the memory bottleneck [11], algorithms
that use the CPU cache more efficiently can enhance performance for memory bounded tasks.
For instance, Robin Hood Hashing has a very low expected probe count, allowing reads to
be culled early even though the algorithm uses linear probing. Low probe counts mean fewer
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cache misses, performing very well on modern architectures. As it stands, these attractive
properties have been maintained in our concurrent versions. Our concurrent solution manages
to achieve non-blocking progress with physical deletion and all of the aforementioned benefits
of the serial algorithm. We use an algorithmically optimised K-CAS [4] implementation
along with a timestamp mechanism to handle bulk relocations while maintaining correctness.

In Section 2 we review the current landscape of concurrent and lock-free hash tables,
and the original Robin Hood algorithm. Section 3 outlines the structure of our algorithms
and the various challenges encountered in adding concurrency, while Section 4 discusses the
performance of these algorithms relative to competitors.

2 Background

2.1 Prior Work
A number of concurrent open-addressing hash table algorithms have been proposed. Purcell
and Harris [30] presented a lock-free open-addressing hash table where per-bucket upper
bounds are stored in conjunction with the keys, thus allowing searches to be culled early.
Nielson and Karlsson [27] built upon the work of Purcell and Harris with a Lock-Free Linear
Probing hash table, simplifying the earlier algorithm, reducing the number of bucket states
required, and removing the word normally required. Herlihy, Shavit, and Tzafrir [21] presented
Hopscotch Hashing, a concurrent hash table algorithm with outstanding performance. This
algorithm allows searches, insertions, and removals to skip over irrelevant items, and is also
cache aware in its reordering of entries present in the table. While Hopscotch’s insertions
and deletions are blocking, the mutating operations are sharded over multiple locks.

Like open-addressing, separate-chaining can be implemented in many different forms.
Michael [25] presented a lock-free hash table, with each bucket containing a slightly modified
Harris linked list [16]. Shalev and Shavit [32] presented a particularly succinct implementation
of using a linked list as a hash table, indexing into it from an array of node pointers. In this
case, the list can grow forever, so long as pointers to new entry points are added to prevent
the probe length from growing out of control. The table can be automatically resized, as
only the entry point array of pointers need be extended. Laborder, Feldman, and Dechev
[13] presented their Wait-Free Hash Table, whereby a key collision at a bucket leads the
bucket to be expanded into another sub-table until a point is reached such that all collisions
are resolved.

2.2 Original Robin Hood
Robin Hood Hashing was first proposed by Celis [7] in 1986. Though remaining relatively
obscure, it has recently gained recognition via the new programming language Rust [35],
which has adopted Robin Hood as its standard hash table algorithm. Robin Hood is an
open-addressing hash table algorithm that employs linear probing for finding items and for
finding spaces for new entries. Robin Hood does exactly what it says on the tin: it steals
from the rich and gives to the poor. Here, “rich” refers to items that got lucky during the
hashing process, by finding a free bucket close to their original bucket. In other words, these
“rich” items have a low Distance From their expected Bucket (this distance is referred to
as DFB for short) and a low expected probe count before being found. In contrast, being
“poor” means hashing to a bucket that has been heavily saturated beforehand, and thus has
a high number of items to step over before finding a free bucket. “Poor” items thus have a
higher DFB, and a high expected probe count before being found.

OPODIS 2018
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Figure 1 An example Robin Hood insertion where V is inserted into X’s bucket. Each step of the
insertion is numbered.

Figure 2 Comparison of Robin Hood to Linear Probing for insertion of V.

Robin Hood solves this inequality during insertion by moving existing entries around
the table. In other words, when the item being relocated has a larger DFB than the item
currently being examined, these items are swapped, and the search continues for an empty
bucket. Once an empty bucket is found, the relocated item is inserted, and the process
terminates. Figure 1 shows an example Robin Hood insertion. In all examples the subscripts
represent the DFB of each entry. Step 1 shows the table initially containing X, Y, Z, and W,
each with a DFB of 0, 1, 1, and 1 respectively. Step 2 shows that V is to be inserted where X
currently resides. Step 3 shows how V doesn’t kick out X, as they’re equal in DFB; the same
is true for Y in step 4. Step 5 shows the swap between V and Z, as V is now further away than
Z (DFB of 2, compared to 1). Z linear probes further down the table in step 6, and in step 7
swaps with W. Finally, in step 8 W lands in the empty bucket at the end, and the insertion
process finishes. In summary, V is swapped with Z, Z is swapped with W, and, finally, W is
placed in the empty bucket at the end. Figure 2 shows a comparison of the Robin Hood
insertion and the same insertion using the Linear Probing collision resolution. As can be
seen, the entry V ends up far further away using Linear Probing than using Robin Hood.

The outcome of this shuffling is a reduced average variance in DFB (i.e. reduced probe
lengths). Not only does reduced variance make for more predictable and uniform performance,
it also allows searches to be culled early, without having to find an empty bucket, which is
typically the requirement for calling off a linear probing search. As soon as the item being
examined during the search has a lower DFB than the current probing DFB the search can
be called off, with the knowledge that it will be unsuccessful: the item being searched for
cannot possibly be present in the table, as it would already have kicked out any items with a
lower DFB than itself. Figure 3 shows an example Robin Hood search operation. The key U
is being queried, probing the table as far as the bucket containing Z before terminating. The
linear probing is shown in steps 1 to 3, while termination happens at step 4. Termination is
possible as U is 3 buckets away from its original bucket, whereas Z is only 2, meaning U can’t
possibly be in the table. The reasoning is that if U was being inserted it would have displaced
Z for having a higher DFB than itself; therefore, it cannot possibly be in the table. A similar
search taking place using linear probing would have to keep searching until an empty bucket
is found, resulting in far more probes at higher load factors, and higher amounts of cache
misses too. We refer to this search mechanism as the Robin Hood invariant. Violating this
invariant leads to a corrupted table, potentially losing items in the table. These factors
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Figure 3 Example Robin Hood search, querying the table for the entry U.

Figure 4 Example Robin Hood deletion. Entry in question is Y.

enable Robin Hood to support a higher load factor, given that the expected search is only 2.6
probe counts on average for successful searches, and O(ln(n)) for unsuccessful searches [7].

Deletion in Robin Hood is more complicated than in linear probing. In linear probing one
can simply tombstone a bucket, as it does not matter what entry was there before. However,
in Robin Hood the DFB of the entry matters, as subsequent searches employ this metric
to determine if the entry being queried is contained in the table. The solution to this is to
either logically mark the entry as deleted, or shift back every entry in front of it until some
criterion is met. Logical deletion is unacceptable, as it causes the table to fill up and lose its
efficiency, resulting in unnecessary resizes. Backward shifting effectively undoes the insertion
of the entry we wish to delete from the table. An example of this is given in Figure 4. Since
the removing thread cannot tell which entries the item to be deleted originally displaced to
get there (assuming they aren’t at their ideal bucket), we must shift back all items. The
shifting is continued until we find an empty bucket or an item in its ideal bucket. Step 1
shows the initial table, step 2 shows the “nulling” of Y. Steps 3, 4, and 5 show a backward
shifting of entries within the table. Step 6 shows the termination of the shifting, as an empty
bucket is ahead of W.

2.3 K-CAS

K-CAS or, multi-word-compare-and-swap, is an extended version of CAS, supporting multiple
compare-and-swap operations on many distinct memory locations, all of which either succeed
or else fail together. Our algorithm employs a modified version of the K-CAS originally
proposed by Harris, Kaiser and Pratt [17]. The K-CAS algorithm does come at a small cost,
reserving an additional 0-2 bits for each word being manipulated by the algorithm. These
reserved bits are needed to store run-time type information that allows descriptors to be
distinguished from normal values. The standard K-CAS interface provides two functions
for basic reading and writing, K_CAS_READ(loc: T*) -> T and K_CAS_WRITE(loc: T*, T
val) -> void, and a mechanism for adding addresses and their values to a descriptor. The
rationale for needing dedicated read and write functions is that the values being operated on
have specific bits reserved to indicate an ongoing K-CAS operation. Both the read and write
functions help any pending K-CAS operation installed at that particular memory location.

Traditional K-CAS implementations need a memory reclaimer system, as each descriptor
must be fresh to avoid the ABA problem [29] . However, the specific K-CAS implementation
we use, developed by Arbel-Raviv and Brown [4], employs descriptor reuse, thereby eliminating
the need for a freshly allocated descriptor for each operation. Given that this implementation
does not require a memory allocation per K-CAS operation, or a reclaimer, its performance
is substantially improved. This enhancement makes K-CAS a feasible concurrency primitive
and, as we show, allows it to outperform the best lock-based hash table algorithms.
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Figure 5 The problem of concurrent searches and removals. The searcher is trying to find V while
entry Y is being removed.

3 Algorithm

3.1 Challenges For Concurrent Robin Hood
The primary challenge in making Robin Hood concurrent is, unsurprisingly, the modifying
operations on the table. Both Add and Remove can modify large parts of the table, with Add
potentially performing a global table reorganisation, and Remove potentially shifting back
many entries. These problems defeat naive solutions such as sharded locks, as Add could
potentially grab all of them, leading to no concurrency. Another issue is that of deadlock;
insertions at two different points in the table might grab the locks in a cyclic manner, leading
to deadlock. For example, the table could have 8 locks with 8 ongoing insertions in 8 different
locations. Initially, each insertion will grab one lock corresponding to the original location.
If all insertions relocate an entry to another lock section, deadlock occurs. To achieve a truly
concurrent implementation of Robin Hood we need an efficient mechanism to update large
disparate parts of the underlying table. For this there are two options. The first is K-CAS,
which became feasible from a performance standpoint thanks to the work of Arbel-Raviv and
Brown [4]. The second choice is hardware transactional memory, which we use to provide
efficient speculative lock-elision [31].

3.2 Overview
K-CAS is a natural choice for relocation-based hash table algorithms. It prohibits a number of
issues that typical concurrent algorithms run into, for example, examining whether invariants
hold during some intermediate operation or state. K-CAS behaves like an expressively weaker
transactional memory [19], but unlike hardware transactional memory [37], it has well defined
progress guarantees. Another reason for using K-CAS is that keys can be stored directly in
the table, thus improving cache locality. The entry relocations initiated by modifications are
summarised into a K-CAS descriptor instead of relying on in-place modifications of the table
featuring entry relocation information. Threads cannot see a K-CAS operation partially
completed. Nevertheless, special considerations need to be made for operations when reading
the table, as they can experience inconsistent views if applied naively.

Since entries can be moved around during concurrent reads, they could inadvertently
miss a key due to some ongoing relocation operation. For example, when Contains uses the
Robin Hood invariant to terminate a search early, there is a race with a concurrent Remove
which could have shifted that particular entry in question back through the table, behind the
reader, leading to an incorrect result. This happens when Remove is called on an unrelated
entry located in the vicinity of the entry being queried. An example of this phenomenon is
illustrated in Figure 5. Here the entry V is being queried while at the same time entry Y is
being removed. When the reader gets to the bucket containing V, the remover executes its
K-CAS operation, shifting a number of entries, including V, backwards. The searcher then
checks the bucket after the shift and sees Z, terminates the search, and falsely declares V as
not present in the table.
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Figure 6 An illustration of how the timestamps are sharded across multiple entries.

Our solution to avoiding this race is to associate each part of the table with a timestamp,
updated upon every relocation. Figure 6 shows the correspondence of timestamps to physical
buckets in the table. A timestamp can be mapped onto several buckets in the table. The
mapping of the timestamps is identical to how locks are sharded in blocking hash tables like
Hopscotch Hashing [21]. When a reader is checking for the presence of a particular key, the
reader remembers the timestamps encountered during its search. If the key is found and
read atomically, then the search can finish. However, if they key isn’t found the reader must
check the values of those timestamps after the search has completed. If a discrepancy is
found, the search is restarted, otherwise we know for certain the key isn’t in the table. When
Remove is executing, it increments the timestamp every time it shifts an entry, and similarly
for the Add method.

3.3 Algorithm Methods
We now outline our algorithm with annotations of code presented in Figures 7, 8, and 9,
which highlight and explain important parts and what they do. The algorithmic code has
been simplified in two areas. The first simplification involves timestamps: the code provided
doesn’t check if a timestamp has already been added to the list, nor does it check the number
of entries per timestamp. The second simplification involves Remove when shuffling elements
back. In both cases the code is long but simple, so we have excluded it for the sake of clarity.

A - Contains

All line numbers refer to Figure 7. At the beginning of the Contains method, a timestamp
list is created. Line 8 adds the timestamp for that bucket to the list of timestamps. Line
9 loads a candidate key from the table; if it’s a Nil key, then the search is culled and the
timestamps are checked. Line 11 handles a matching key, returning true. Lines 12 – 13
handle the case where the distance of the key is too far away from its original bucket to be
present in the table. Lines 17 – 19 check if the timestamp for the particular key has changed
since the beginning of the operation, requiring the entire Contains method to be retried, as
a key could have been missed.

B - Add

All line numbers refer to Figure 8. Add is quite similar to the serial version. Lines 4 – 5 keep
track of the entry currently being relocated via the active key, initially setting the variable to
the key being inserted. Add also keeps track of the last timestamp bucket it has incremented.
This is hidden behind a helper function called add_timestamp_increment. Timestamps
are incremented to prevent a concurrently running Add or Remove from interfering with the
correctness of the method. Lines 10 – 14 attempt to insert the key currently being relocated

OPODIS 2018
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1 fn Contains(key: K) -> bool {
2 start_bucket: u64 = hash(key) % size;
3 retry:
4 timestamps: List<u64> = [];
5 for(i = start_bucket, cur_dist = 0;; cur_dist++, i++) {
6 i %= size;
7 // Add the timestamp for that specific index.
8 timestamps.append(read_timestamp(i));
9 cur_key: K = K_CAS_load(&table[i]);
10 if(cur_key == Nil) { goto timestamp_check; }
11 if(cur_key == key) { return true; }
12 distance: u64 = calc_dist(cur_key, i); // Robin Hood Invariant
13 if (distance < cur_dist) { goto timestamp_check; }
14 }
15 timestamp_check:
16 // Compare every timestamp.
17 for(i = start_bucket, idx = 0; idx < timestamps.size(); i++, idx++) {
18 i %= size;
19 if(list[idx] != read_timestamp(i)) { goto retry; }
20 }
21 return false; // No key
22 }

Figure 7 Pseudo-code for Contains.

into a Nil bucket, retrying the whole Add operation on failure. Line 16 returns false upon
a key match, as the entry is already in the set. Lines 17 – 24 check if an entry needs to
be relocated, replacing it with the entry currently being relocated in the thread’s K-CAS
descriptor.

C - Remove

All line numbers refer to Figure 9. Remove is a combination of Contains and Add. First,
Remove tries to find the key. If the key isn’t found then, as per Contains, timestamps are
checked in case a concurrent Remove or Add has relocated the key during its search. If a key
is found, then the process of deletion begins. Lines 12 – 17 constitute the deletion process.
The function shuffle_items linearly shuffles items back until a Nil key is found, or else
an entry with a DFB of 0 is found. As mentioned earlier, the function is simple, though
expansive, so we exclude it. Each linear shuffle is put into the K-CAS descriptor, with line
15 performing the K-CAS operation. The ultimate outcome of this operation is the physical
deletion of the entry. Lines 19 – 20 check for the Robin Hood invariant, terminating the
search and checking timestamps if the criterion is met. Like Contains, Remove will restart if
there is a discrepancy in the timestamps. Lines 24 – 26 check the timestamps of each bucket
read.
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1 fn Add(key: K) -> bool {
2 start_bucket: u64 = hash(key) % size;
3 retry:
4 active_key: K = key;
5 descriptor: K_CAS_Desc = create_descriptor();
6 for(i = start_bucket, active_dist = 0;; i++, active_dist++) {
7 i %= size;
8 cur_timestamp = read_timestamp(i);
9 cur_key: K = K_CAS_load(&table[i]);

10 if(cur_key == Nil) {
11 descriptor.add(&table[i], Nil, active_key);
12 res: bool = K_CAS(descriptor); // Attempt to K-CAS operations
13 if(!res) { goto retry; }
14 return true;
15 }
16 if(cur_key == key) { return false; }
17 distance: u64 = calc_dist(cur_key, i); // Robin Hood Invariant
18 if (distance < active_dist) {
19 descriptor.add(&table[i], cur_key, active_key); // Swap keys
20 // Increment the timestamp within the descriptor.
21 add_timestamp_increment(i, cur_timestamp);
22 // Swap active key and kick this key down the table
23 active_key = cur_key;
24 active_dist = distance;
25 }
26 }
27 }

Figure 8 Pseudo-code for Add.

3.4 Proof Of Correctness
The proof of correctness is relatively simple and informal. K-CAS [17] is itself linearisable
[22], and K-CAS encodes all relocations and timestamp increments to the data structure in
its descriptors. An invocation of K-CAS essentially turns each modification operation on
the table into a transaction. Every Add or Remove call that results in relocations increments
a timestamp via the K-CAS operation; if any reading thread was to examine the table’s
contents during a relocation, the reader could compare before and after timestamps so as
to ensure that no entry was moved during the search. Furthermore, because each reader
also helps the K-CAS operation, reading the timestamp will result in one of three outcomes.
Either the reader will read a new timestamp value, the same timestamp, or else help the
operation complete an ongoing K-CAS operation by reading the new timestamp if the
operation succeeds or the old one if it fails. Readers need only ensure that the timestamps
haven’t changed since their initial reading. Since Remove can exit in two ways, it has two
different linearisation points. The linearisation point of Add, and the first code path of
Remove are at line 12 in Figure 8 and line 15 in Figure 9, where the K-CAS is successfully
called. Contains and the second exit point of Remove linearise at the point of reading their
last timestamp from their search on lines 8 and 9 respectively.

OPODIS 2018
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1 fn Remove(key: K) -> bool {
2 start_bucket: u64 = hash(key) % size;
3 retry:
4 timestamps: List<u64> = [];
5 descriptor: K_CAS_Desc = create_descriptor();
6 for(i = start_bucket, cur_dist = 0;; cur_dist++, i++) {
7 i %= size;
8 // Add the timestamp for that specific index.
9 timestamps.append(read_timestamp(i));
10 cur_key: K = K_CAS_load(&table[i]);
11 if(cur_key == Nil) { goto timestamp_check; }
12 if(cur_key == key) {
13 // Shuffle items down until a Nil key or dist(key) == 0
14 shuffle_items(i, cur_key);
15 res: bool = K_CAS(descriptor);
16 if(!res) { goto retry; }
17 return true;
18 }
19 distance: u64 = calc_dist(cur_key, i); // Robin Hood Invariant
20 if (distance < cur_dist) { goto timestamp_check; }
21 }
22 timestamp_check:
23 // Compare every timestamp.
24 for(i = start_bucket, idx = 0; idx < timestamps.size(); i++, idx++) {
25 i %= size;
26 if(list[idx] != read_timestamp(i)) { goto retry; }
27 }
28 return false;
29 }

Figure 9 Pseudo-code for Remove.

3.5 Progress
The progress of each operation is parameterised by the progress of the K-CAS operation. If the
K-CAS operation is blocking, then all method calls on the hash table are blocking. However
if we have a lock-free implementation of K-CAS, then the following classifications for each
method occur. Calls to Contains are obstruction-free [18], as other concurrent operations
can cause a relevant timestamp to change, thus forcing the method to restart. Threads
calling Contains can starve but they are not blocked if another thread dies. Add has the
same progress guarantees as Contains and for the same reasons, other modifying operations
can modify relevant timestamps forcing the method to fail and restart. Timestamps are
not guaranteed to correspond to the entries the method wants to examine, they are coarse
and each timestamp corresponds to a number of entries. Remove must first find the entry it
wishes to remove, effectively running the same code as Contains and thus having the same
classification. Afterwards, once found, the deletion and subsequent shuffling of that entry is
also obstruction-free since other irrelevant operations with the same timestamp can interfere
with its progress. In summary, lock-free K-CAS calls to Contains, Add, and Remove are
obstruction-free.
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4 Performance, Results, and Discussion

In this section we detail the performance and implementation of our algorithms. All of our
code is made freely available online [23]. This includes K-CAS Robin Hood, the hardware
transactional [19] variant of Robin Hood Hashing with lock-elision [31], the implementation
of alternative competing algorithms (either coded by us or obtained via online sources), and
benchmarking code which allows readers to replicate our results.

4.1 Experimental Setup

For our experiments we opted to use a set of microbenchmarks which stressed the hash table
under various capacities and workloads. Our benchmarks were run on a 4 CPU machine, with
each CPU (Intel® Xeon® CPU E7-8890 v3) featuring 18 cores with 36 hardware threads and
512 GiB RAM. The machine was running Ubuntu 14.04 with kernel version 3.13.0-141. Each
thread was pinned to a specific core during testing. When scaling the number of threads,
care was taken to pin the thread to a new core, avoiding HyperThreading™ until necessary.
Once all non HyperThreading™ cores on each CPU were exhausted, HyperThreading™ was
employed thereafter. The rational for this scheduling choice is that algorithms which employ
hardware transactional memory are disproportionately penalised by HyperThreading™ and
some mainstream operating systems, such as OpenBSD, disable HyperThreading™. As a
result we shed light on how our algorithms would scale on those systems. NUMA memory
effects were controlled by specifying where each thread could allocate using the numactl
command, allocating on the RAM banks closest to the running CPUs as they came into use.

The algorithms used in the experiments are as follows: K-CAS Robin Hood, Transactional
Lock-Elision Robin Hood Hashing, Hopscotch Hashing [21], a Lock-Free Linear Probing hash
table described by Nielsen and Karlsson [27], and Michael’s lock-free hash table [25].

A number of workload configurations were used in graphing the results. Four load factors
of 20%, 40%, 60%, and 80% were chosen, along with two update workload configurations,
namely 10% and 20%, referred to herein as “light” and “heavy”. Both of the workload
configurations were tried at the specified load factors, and both were used for comparing
the different Robin Hood Hashing algorithms against each other, and against competitors.
We sized the tables at 223 to ensure that they wouldn’t fit into the cache, thereby exposing
each algorithm’s effective cache use. The key space was equal to the size of the table, and
was filled to the specified load factors. The scalable JeMalloc [12] allocator was used in the
experiments and no memory reclamation system was used in algorithms that traditionally
require one.

The testing process was carried out as follows: Each thread calls a random method with
a random argument from some predefined method and key distribution. All threads are
synchronised before execution on the data structure, and for a specified amount of time
rather than a specific number of iterations. Each thread counts the number of operations
it performed on the structure during the benchmark. The total amount of operations per
microsecond for all threads is then graphed. Each experiment was run five times for 10
seconds each, and the average of each result was computed and plotted. All of our algorithms
were written in C++11, and compiled with g++ 4.8.4 with O3 level of optimisation. Cache
misses were collected via PAPI [36].
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Figure 10 Single-core performance of the hash tables relative to K-CAS Robin Hood.

Table 1 Cache misses relative to K-CAS Robin Hood single-core.

Configurations (Load factor w/ Updates)

Hash
Tables

20%
w/
10%

20%
w/
20%

40%
w/
10%

40%
w/
20%

60%
w/
10%

60%
w/
20%

80%
w/
10%

80%
w/
20%

Hopscotch Hashing 88% 82% 70% 71% 64% 68% 59% 65%
Lock-Free LP 185% 207% 227% 240% 294% 305% 430% 453%
Maged Michael 109% 105% 95% 95% 89% 93% 85% 91%
Transactional RH 86% 85% 82% 78% 89% 86% 93% 90%

4.2 Discussion and results
In order to gain an understanding of general operation overhead, we measured single-core
performance. The performance is measured against K-CAS Robin Hood. In Figure 10 we see
that Hopscotch Hashing, Maged Michael’s Separate Chaining, and Lock-Free Linear Probing
are significantly slower than the other algorithms. The reason for this is two-fold. First, the
issue of cache efficiency arises: Lock-Free Linear Probing and separate chaining use dynamic
memory allocation, meaning that a pointer dereference is needed for every bucket access.
While Hopscotch Hashing does not use dynamically allocated memory, it does put more
pressure on the cache by storing the original hash of a key inside the table. However it should
be noted that it doesn’t put as much pressure on the cache as K-CAS Robin Hood, as per
Table 1. The second issue is the amount of work carried out for every operation: Hopscotch
Hashing is the most complicated, executing more code and performing more operations.
Transactional Robin Hood has higher performance than K-CAS Robin Hood as it does not
require to consult the K-CAS descriptor and timestamps.
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Figure 11 Cumulative operations per microsecond for the hash tables at 20% and 40% load
factors at two update rates. (Higher is better)

The cache results can be seen in Table 1 as a percentage relative to K-CAS Robin Hood
for a single-core. These cache statistics were measured over the course of the entire execution
of the benchmark for each table and for each configuration. Hopscotch Hashing fares very
well as it is able to skip over irrelevant entries. Lock-Free Linear Probing uses dynamic
memory and thus puts enormous pressure on the cache. Another downside is that as the table
fills up over time with tombstones, it forces operations to take roughly the same amount of
time regardless of load factor. This phenomenon is called contamination [15]. Maged Michael
[25] fares reasonably well even though it uses dynamic memory. Very few buckets have more
than a single node, meaning few extra nodes are needed. Transactional Lock-Elision Robin
Hood performs better as it does not need to consult an extra timestamp array or any extra
K-CAS descriptor, which would require an extra level of indirection.

As is clear from the multi-core results in Figure 11, 12 the K-CAS Robin Hood Hashing
algorithm either scales better than, or is competitive with, its opposition. Across all graphs
there are two significant dips in performance. The first is at 18 threads, where threads
are pinned to a different CPU socket. The use of another socket requires inter-socket
communication and NUMA effects, reducing overall performance. The second is when
increasing from 72 to 81 threads, which is the point where HyperThreading™ kicks in.
This kink is particularly pronounced for the transactional Robin Hood variant, which never
recovers after that point. Both of these effects become most pronounced when a significant
write load is placed on the tables.

Each of the workloads highlights the particular performance characteristics of each hash
table. The update-light (10% writes) workload shows K-CAS Robin Hood dominating
the competition across all thread counts and load factors. The update-heavy (20% writes)
workload has two distinct outcomes predicated on the table load factor. The lower load
factor shows K-CAS Robin Hood is slightly beaten out by the Transactional Robin Hood
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Figure 12 Cumulative operations per microsecond the hash tables at 60% and 80% load factors
at two update rates. (Higher is better)

variant until the 72 thread mark, wherein it drops off entirely. K-CAS Robin Hood also
edges out Hopscotch Hashing throughout most of the update-heavy workload until the very
upper end of the thread count, where it is slightly outclassed. However, at higher load
factors K-CAS Robin Hood demonstrates similar relative performance to the lower load
factor benchmarks but maintains its lead over Hopscotch Hashing. All workloads show the
gap between K-CAS Robin Hood and Hopscotch begins to narrow once HyperThreading™
kicks in. As mentioned earlier, in every configuration the transactional variant of Robin
Hood scales very well until 72 threads, after which HyperThreading™ causes a huge kink
in performance, and the algorithm never recovers. Maged Michael scales well in the tested
workloads, though the gradient of the line isn’t steep enough to challenge K-CAS Robin
Hood or Hopscotch Hashing. Lock-Free Linear Probing does the worst of all, ending up at
the same end point as Transactional Robin Hood.

4.3 Future Work

An issue we don’t deal with is resize, specifically, when to resize the table and how to do
it. Lock-free resize methods have been discussed in the literature ([8], [32]). To the best of
our knowledge there has not yet been a formally published generic hash table resize method.
Another item for future work is a combination of lock-free K-CAS and transactional [19]
memory, such as the algorithm presented by Trevor Brown [6] for lock-free trees. A similar
exploration for Robin Hood and other the hash tables benchmarked would be of interest.
Work done by Siakavaras et el. [33] shows that a naive application of hardware transactional
systems to data-structures typically perform poorly and require algorithm modifications to
operate efficiently. Future work aimed at determining the optimal modifications for Robin
Hood might elevate its performance for hardware transactional memory.
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5 Conclusion

We have presented an obstruction-free Robin Hood Hashing algorithm which achieves superior
performance relative to other concurrent algorithms with similar capabilities, and a hardware
transaction variant which demonstrates best in class performance. These results establish
that the Robin Hood algorithm is algorithmically suited to concurrency. Our experiments
have shown that it scales strongly at all thread counts. Unlike linear probing, the algorithm
can scale effectively to significantly higher load factors. It is very simple in nature, relying
primarily on an efficient K-CAS, as well as being highly portable, using only single word
compare-and-swap instructions, with no memory reclaimer required. These results represent
the first development in more than 10 years on the state of the art in the field.
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