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—— Abstract

Fast rerouting is an essential mechanism in any dependable communication network, allowing to
quickly, i.e., locally, recover from network failures, without invoking the control plane. However,
while locality ensures a fast reaction, the absence of global information also renders the design
of highly resilient fast rerouting algorithms more challenging. In this paper, we study algorithms
for fast rerouting in emerging Segment Routing (SR) networks, where intermediate destinations

can be added to packets by nodes along the path. Our main contribution is a maximally resilient
polynomial-time fast rerouting algorithm for SR networks based on a hypercube topology. Our
algorithm is attractive as it preserves the original paths (and hence waypoints traversed along
the way), and does not require packets to carry failure information. We complement our results
with an integer linear program formulation for general graphs and exploratory simulation results.
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1 Introduction

1.1 Motivation and Challenges

The need for a more reliable network performance and quickly growing traffic volumes led,
starting from the late 1990s [19], to the development of more advanced approaches to control
the routes along which traffic is delivered. Multipath-Label Switching (MPLS) was one of
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the first and most widely deployed alternatives to traditional weight and destination based
routing (such as OSPF), enabling a per-flow traffic engineering. Recently, Segment Routing
(SR) [38, 20] has emerged as a scalable alternative to MPLS networks: SR networks do
not require any resource reservations nor states on all the routers part of the route (the
virtual circuit). SR networks are also attractive for their simple deployment; in contrast to,
e.g., Software-Defined Network (SDN) and OpenFlow-based solutions, they rely on existing
protocols such as IPv6 [62].

We in this paper investigate how to enhance SR networks with (local) fast rerouting algo-
rithms, to react to failures without the need to invoke the control plane. The re-computation
(and distribution) of routes after failures via the control plane is notoriously slow [26] and
known to harm performance [44]. Also link-reversal algorithms [27] tolerating multiple
failures have a quadratic convergence time [7], besides requiring dynamic routing tables.
This is problematic as certain applications, e.g., in datacenters, are known to require a
latency of less than 100 ms [67]; voice traffic [33] and interactive services [35] already degrade
after 60 ms of delay. Not surprisingly, reliability is also one of the foremost challenges for
network carriers nowadays [66], and in the context of power systems (e.g., smart grids), an
almost entirely lossless network is expected [58]. Accordingly, most modern communication
networks (including IP, MPLS, OpenFlow networks) feature fast rerouting primitives to
support networks to recover quickly from failures.

Designing a fast rerouting algorithm however is non-trivial, as reactions need to be
(statically) pre-defined and can only depend on the local failures, but not on “future” failures,
downstream. As link failures, also multiple ones, are common in networks [46], e.g., due
to shared link risk groups or virtualization, it is crucial to pre-define the conditional local
failover rules such that connectivity is preserved (i.e., forwarding loops and blackholes
avoided) under any possible additional failures. In fact, in many networks, including SR
networks, algorithms cannot even depend on already encountered failures upstream, as it
requires mechanisms to carry and process such information in the packet header; such
“failure-carrying packets” [22, 37] require additional and complex forwarding rules. Further
challenges are introduced by policy-related constraints on the paths along which packets are
rerouted in case of failures. In particular, failover paths may not be allowed to “skip” nodes,
but rather should reroute around failed links individually: communication networks include
an increasing number of middleboxes and network functions, so-called waypoints [2], which
must be traversed for security and performance reasons. Without precautions, in case of a
link failure, the backup path could omit these waypoints.

Ideally, a local fast rerouting algorithm preserves connectivity “whenever this is still
possible”; i.e., as long as the underlying network is still physically connected. In other words,
in a k-(link-)connected network, we would like the rerouting algorithm to tolerate k — 1
link failures. We will refer to this strong notion of robustness as mazimal robustness in the
following.

1.2 Example

Figure 1 illustrates an example for the problem considered in this paper: how to efficiently
circumvent multiple link failures using SR local fast failover mechanisms, such that the
original route will be preserved as part of the packets’ new route, hence also ensuring waypoint
traversal. In this example, while the backup path in dotted reaches the destination, the
middlebox w is not visited. Ideally, we want to circumvent the failed link and then continue
on the original route (as depicted in the red dashed walk).
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Figure 1 Illustration of two different fast failover mechanisms, upon hitting a link failure. The
default path is depicted in dash-dotted blue. In the dotted path, the destination t is reached,
but the waypoint w is not traversed. The red dashed walk circumvents the link failure, traverses w,
and then reaches t.

In case of only a single link e = (v, w) failing, one can exploit that both nodes v, w have
a globally correct view of the network link states. For example, if a packet hits the failed
link e at v, the node v can provide an alternative path to w, after which the packet resumes
its original path, as shown in dashed red in Figure 1. To this end, each node only needs to
be provisioned with one alternative path for each of its incident links.

In Segment Routing, similar to MPLS, each packet contains a label stack, consisting of
nodes or links. However, these labels just represent the next waypoint to be reached, the

route (“segment”) which depends on the underlying routing functions (e.g., shortest path).

Once the top item is reached, the corresponding label is popped and the next item on the
stack is parsed. As such, the next label does not need to be in the vicinity of the current
node, it can be anywhere in the network. For the case of a single link ¢ = (v, w) failure, it
has been shown that pushing two items on the label stack always suffices [25], if the network
is still connected and a shortest alternative path is chosen.

While SR enables waypoint traversal even after a single link failure [25], dealing with
multiple link failures in SR is still not well understood. As observed in [22], the option of
choosing the shortest alternative path already fails under two link failures, see Figure 2;

when e; fails (and the dash-dotted blue path as well), the packet will be sent along e.g.

e2, but upon the failure of e, the packet is sent along e;—a forwarding loop (shown in
dotted red). In this example, we can easily fix the reachability issues: a failure of es causes
rerouting along es (in dashed , not along eq), and failure of ez causes rerouting along

e1. In other words, e; depends on es, which depends on ez, which in turn depends on e;.

As this circular dependency chain has a length of three, two failures of {e1, 2, e3} cannot
induce a forwarding loop when routing to w. We will later formalize and extend these ideas,
generating dependency chains of length > k for k-dimensional hypercubes.

1.3 Contributions

We initiate the study of fast reroute algorithms for emerging Segment Routing networks
which are 1) resilient to a maximum number of failures (i.e., are mazimally robust), 2) respect
the path traversal of the original route, and 3) are compatible to current technologies in
that they do not require packets to carry failure information: routing tables are static and
forwarding just depends on the packet’s top-of-the-stack destination label and the incident
link failures.
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Figure 2 Example illustrating how local fast failover methods for a single link failure can loop
under two link failures, as shown in [22]. When the dash-dotted blue default route between v; and
w fails, v2 can be pushed as a segment, to in turn reroute along e2. However, when v2 uses e via v
as a failover for eg, then failing both e; and ez leads to a permanent forwarding loop, as depicted in
dotted red. In order to route successfully under both eq, es failing, v2 has to push segments v1, vs to
route along es, as depicted in dashed

Our main result is an efficient algorithm which provably provides all these properties on
hypercube networks, as they are commonly used in datacenters (see e.g., [48]). Furthermore,
we formulate the underlying optimization problem as an integer linear program for general
graphs, and provide first exploratory insights on the practical performance of segment routing
under multiple link failures.

1.4 Organization

The remainder of this paper is organized as follows. We first introduce necessary model
preliminaries in Section 2, followed by our main result in Section 3, where we provide a
maximally robust SR failover scheme for k-dimensional hypercubes. We cover related work in
Section 4 and conclude our study in Section 5, where we also provide further insights which
we believe to be useful for future work, in the form of an integer linear program formulation
for general graphs and a brief investigation regarding testbed experiments.

2 Model

In this section, we start by providing model and notation preliminaries. We will consider
undirected graphs G = (V, E), where the links may be indexed according to some (possibly
arbitrary) ordering, with ¢; € E denoting the ith link. All routing rules have to be pre-
computed and may not be changed during the runtime (e.g., after failures). We will only
allow routing rules that match on 1) the packet’s next destination (i.e., the top of the label
stack)?, and the 2) incident link failures.> When a packet hits a failed link ¢ = (u,v) at some
node u, the current node u may push a set of pre-computed labels on top of the current label
stack, in order to create a so-called backup path to v (which can also be traversed in reverse
from v to u).

» Definition 1. A backup path for a link £ is a simple path (not containing ¢) that connects
the endpoint of the link £. Let P be the set of all backup paths in a graph. An injective
function BP : E — P that maps one backup path to each link is a backup path scheme.

2 In practice, one could also imagine matching on other header fields, such as the packet’s source, and
also the incoming port. However, our algorithms do not require these additional inputs.
3 In other words, only the endpoints u,v of the failed link (u,v) = £ € E are aware of the failure.
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When the packet reaches the current top label, the respective label is popped and the
underlying label is set as top label. As such, via backup paths, the incoming packets
that normally travel through ¢ are rerouted around the link to the respective endpoint,
circumventing the failure. Hence, our model preserves the intermediate visits (i.e., all possible
waypoints) and their order in a subset of the traversed route, possibly introducing repeated
visits [1]. In the following, we will investigate backup path schemes that guarantee packet
delivery even under multiple failures. To this end, we need to ensure that the backup paths
do not contain infinite forwarding loops, for their specified maximum number of failures.
More formally:

» Definition 2. A backup path scheme BP(.) is called f-resilient if and only if there does
not exist a subset of links L C E, |L| < f such that for some ordering o : {0,...,|L| — 1} —
{0,.. ., |E| =1}, V) < |L| : £o(j4+1 (mod |L])) € BP({s(;)). We refer to the inclusion relation
(€) as dependency from L5 ;) 0 Lo(j11 (mod |L]))- Equivalently, BP(.) is f-resilient if and
only if any cycle of dependencies is longer than f.

In the next section, we will show how to efficiently generate a (k — 1)-resilient backup path
scheme for k-dimensional hypercubes. As k-dimensional hypercubes are k-link-connected,
our scheme has ideal robustness.

3 Efficient Resilient Segment Routing on k-Dimensional Hypercubes

This section presents a fast and maximally robust rerouting algorithm on hypercubes, one
of the most important and well-studied network topologies [53, 64]. The regular structure
of hypercubes makes them an ideal fit for e.g., parallel interconnection architectures [52] or
datacenter [30].

Our study on k-dimensional hypercubes is structured as follows: We first provide an intu-
ition and overview of the (k — 1)-resilient scheme in Section 3.1, providing a formal definition
of all backup paths in Term 1. Next, in Section 3.2, we introduce some useful technical
preliminaries for the correctness proof of our scheme, which is presented in Section 3.3.

3.1 Overview of the Fast Local Failover Scheme

We label the nodes in a k-dimensional hypercube (k-cube) with tuples (by,bk_1,...,b1),
Vi € [k] : b; € {0,1}, such that the origin node has the label {0}*. A hypercube link is
denoted by an ordered pair of binary node labels (a,b) s.t. a,b € {0, 1}’“7 a < b, where the
two labels differ in one bit. Additionally, a link is said to be in dimension d,d € [k], if and
only if a and b differ only at their dth bit. We refer to them as d-dim links. For convenience,
we treat a hypercube as a set of links grouped by their dimension, within each dimension
sorted according to the following bitwise comparison. For z € {0, 1}*, let 2>>% := 2 >> s,
where >> is right circular shift. Let ¢¢ denote the ith link in dimension d, see Figure 3a.
For Zg = (a,b) and fg = (¢,d), we have p < ¢ if and only if a>>¢ < ¢>><. Lastly, we denote
a k-cube by Cy 1= Ug #%,d € [k],0 <i < 2F-1.

The idea is to allocate backup paths in k iterations, one for each subset of links in the
same dimension, such that the induced dependencies over same-dimension links form cycles of
length at least k. However, since there are additional dependency cycles induced by links in
different dimensions, we devise a scheme that does not induce any dependency cycle shorter
than & (hence (k — 1)-resiliency follows).

Due to gray coding, starting from any link ¢¢ = (a,b), by traversing the (unique) pair
of incident d’-dim links, we reach the link Ng (%) = (a/,¥') such that o’ = (29 1)y @ a
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(a) Il-resilient scheme for the 2-cube, (b) Link and node labels for the 3-cube and sample
backup paths shown with dashed lines. backup paths shown with dashed lines.
BP(6y) = {63, 63, ¢ } BP(£3) = {€, f 47} BP(3) = {¢5, 41, ¢ }
BP((}) = {4076 6,053 BP({F) = {634 4075 3} BP(6]) = {6, 01,43, 63, 63}
BP(@) = { fs} BP(@) = {f } BP(63) = {527&,5 }

(c) List of all backup paths for the 2-resilient scheme on the 3-cube.

Figure 3 Illustration of BP(.) on 2 and 3 dimensional cubes.

and b = (2971), @ b. Let (Lg/ [ed], LY [(f]) denote the (unique) pair of incident d’-dim
links, i.e. Lg [¢9] = (a,a’) and LY [¢9] = (b,1). The subscripts 0 and 1 indicate the value
at the dth bit position of the links in the pair. Due to symmetry, Ny (Ng (¢4)) = ¢¢ and
L (6] = L [N (¢0)),b € {0, 1}.

We formulate the backup path of a d-dim link as a set consisting of one d-dim link and
pairs of links. These pairs constitute a joint path, i.e., two paths over the endpoints of
detoured d-dim links. We refer to this joint path as a backup path and we always traverse
it towards the included d-dim link. However in reality, a packet traverses the two paths in
opposite directions, towards and away from the respective d-dim link.

For instance, the backup path of the first 1-dim link (i.e. £}) includes the 1-dim link
reached via the incident pair of 2-dim links, and the pair itself (see Figure 3b): BP(£}) =
{L[0L], L3[e5]), No (L)} = {3, 02,01} (see Figure 3c). For the second 1-dim link we use the
same pair, but we have to detour £} in order to avoid conflict:

BP(0}) = {Li[6:], L[e1], Lo[eo), Lieo), Na(€)} = {€5, €3, €6, 43, 5}

In general, the backup path of /¢ begins with the pair (Lg“[ﬁf}, Lf“[é?]). If the first d-dim
link, i.e. Ngy1(¢9), is conflicting, then one continues by detouring this link via the pair of
(d 4+ 2)-dim links and detours further d-dim links, until one reaches a d-dim link that is
not conflicting, then traverses this link. Moreover, the jth detour is performed via the pair
of (d + j)-dim links. Hence the pairs are traversed in the ascending order of consecutive
dimensions. We denote the closure form of Ng(.) w.r.t. this ordering as

N D) := Nt j(Nagj1(. .. Nay1 (69) ..), 1 < 5 < k.

We can now describe our backup path scheme formally, we refer to Figure 3c for an
example listing all generated backup paths on the 3-dimensional hypercube. For each



K.-T. Foerster, M. Parham, S. Schmid, and T. Wen

dimension d € [k] and every 0 <4 < 271 the backup path of ¢¢ is

BP(tf) ={ L6, e,
L2 [Naa (6], L2 [Nawa (),
LEFTINTD @), LTI (6],
NO(e) = 6. (1)

The path detours r — 1 links, where 7 is the number of link pairs necessary to have, in
order to reach the non-conflicting link ¢¢ with smallest index. Therefore the path length is
2r + 1. We will later argue that r» < R := [logk].

Alternatively to the explicit formulation in (1), £4 can be obtained directly using bitwise
operations. Assume (¢ = (a,b) and ¢¢ = (a’,b’). By comparing a’ to a (' to b), we can see

that only the r bits to the left of dth bit are affected, i.e., the bits d + 1 to d + R (mod k).

For z € {0,1}* and s := R — (k — d), we define the increment function that determines the
successor link as incs q(z) := (2>>% + (24)77%)>> 5. Here the + ignores the carry flag out
of the leftmost position. Therefore, a’ = incs 4(a) and b’ = incs q(b). It is clear that the
overall computation takes polynomial time.

In the next section, we will state some necessary observations regarding our hypercube
construction, which we will employ for the correctness proof of our scheme in Section 3.3.

3.2 Proof Preliminaries

According to our backup path formulation (1), the backup path of a d-dim link passes
through a d-dim link reached via links in higher dimensions, which are presented in pairs in
(1). The backup path possibly detours some other d-dim links along its way. The pairs and
the involved d-dim links together resemble a chain-like structure which facilitates describing
some properties in this section. We now describe these structures formally.

» Definition 3. Given a sequence of dimensions Sq := (d;)i=0,d; € [k] \ {d}, a chain
of d-dim links, starting from Zfo, denoted by C(Zfo), consists of a subset of d-dim links
and pairs of d;-dim links, d; € S;. The pairs form two walks over the endpoints of the
contained d-dim links. The two parallel walks jointly traverse the chain. We denote the
chain by Cs, (¢4) o= {... .04 (L[], LY 104 )), 68 .15 > 0,08 = Ny, (¢2). Moreover,

DTt A

. d . d _ . . .
if 3¢; , € c(e) gi]‘/+1 = {;,, then it is a closed chain denoted by Cg,.
We can directly obtain the following property.

» Property 4. Starting from any link (¢, by traversing a chain Cs,(¢4), assume we arrive
back at the same link. Then it must be the case that Sy contains every dimension an even
number of times.

» Definition 5. A link (a,b),a < b is traversed in uphill direction when it is from a. The
opposite is a downhill direction.

Based off this definition, we can categorize the traversal directions.

» Property 6. Consider a closed chain containing the pair (L& [¢9]), LY [¢9)) traversed between,
the links €& and é? = Ng(¢4). If j > i then the direction from (2 to K;l is uphill, otherwise
downhill.

13:7
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» Property 7. By Properties 4 and 6, in a closed chain, the number of traversals in every
dimension is even, half of which is in downhill (uphill) direction.

Intuitively, uphill and downhill traversals cancel each other which consequently turns the
joint walks into joint closed walks over the endpoints.

We next study the interaction between chains. Let Sy, Sg,d # d be two sequences of
dimensions. We say the chain Cg/ crosses the chain Cg, if 3P := (LY,LY) € Cs, : PNCg, #
(). That is, C’Sé traverses a pair of d-dim links, at least one of which belongs to Cg, .

» Definition 8. A mized chain is the concatenation of multiple chains (over several di-
mensions) that cross each other consecutively. In other words, a mixed chain consists of
chains of links in at least two dimensions. Formally, for given dimensions d,d’,d"” € [k] and
sequences Sd and Sq, assume the chain Cg,, = {... (L[4 = e, LL[4), ...} crosses

={...,0, 4 (LY, [ﬁd] Ly [€4]),...}. We concatenate these chains into a mixed chain as
{... 02 ed (LY, [0d], LY, [ed]), ... }.

sty Ty

The observations in the Properties (4), (6), and (7) hold for mixed chains as well. This is
because the mentioned properties do not depend on the dimension of the links being chained,
but only on dimensions that are actually traversed. However, traversing a chain of d-dim links
does not always imply that dimension d is traversed. Consider three chains of d, d', and d’-

dim links that cross each other consecutively. E.g., the chain Cg, ={..., JL, .. ,ﬁfR, (Lg,, =
631;+17Ld,,) ...} that is crossed by the chain Cg, = {.. .,E?/L 1 (LY = E‘jL,Ll), ...} at the
link Ed Also, Cg, crosses the chain Cg,, = {... 04 ..} at the link Ed . We examine

whether dimension d is traversed by comparing theRdth bit of the last hnk before the first
cross to Cg,, i.e. EijL = (ao, bp), to the dth bit of the first link after the second cross (by
Csg,), i.e. éd - = (a1,b1). Dimension d is traversed if and only if the two bits hold different
values. That is, (ag Aay) A (2¢71)y = 0.

A backup path BP(¢%) = {(LSH,L}HI),...,N*(E?)} can be represented as a chain
C(dy .= {ed, {LY,, Léﬂ},N(l)(&i), ..., N®)(¢9)}. By Definition 2, there is a dependency
from ¢¢ to every other link ¢4 € BP((?). Let MC(¢,0%) C C(¢4) U {¢%} denote the

R

—1

mixed chain up to and including Zf}l. Consider the set of backup paths of some subset
of links {éfl",éfll e ::11} that induce a cycle of dependencies. Each dependency corre-
sponds to a mixed chain concatenating them bequentially, yields the closed mixed chain
MC == MOt o8y u Mc(zf;,ef;) SUMC(£{=~ ¢%). Recall that in BP(.), pairs con-
necting consecutive same-dimension links are traversed in the ascending order of dimensions.
Therefore, the sequence of dimensions traversed by MC is specified by (d;)i—o, where dy = 0,
and either d;;, = d; or dj4; = d; + 1 (mod k). From now on, we assume only the closed

chains restricted to the sequence of dimensions d;.

3.3 Correctness

In the following, we address the correctness of our backup path scheme, i.e., resilience to up
to k — 1 link failures in k-dimensional hypercubes. To this end, we need one additional result:

» Claim 9. In any backup path p := BP(¢%) at most one pair of links is traversed in uphill
direction.

Proof. If p does not detour any link then the only pair of links, i.e. (L, (¢9)), Ly, (£9))),
is traversed either in uphill or downhill direction, which trivially satisfies the claim. If p
detours some link Z;-l, then j < 4 (by construction). By Property 6, the pair of links preceding
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K? is traversed in downhill direction. Since p does not detour the last d-dim link, only the
last pair (preceding the last link) is possibly traversed in uphill direction. |

We can now prove our main result:
» Theorem 10. The scheme BP(.) listed in Term (1) is (k — 1)-resilient.

Proof. In order to show that the scheme is (k — 1)-resilient, we argue that any cycle of
dependencies consists of at least k links. We first show that for every d € [k], any cycle of
dependencies over d-dim links is of length at least k. The backup path of every link Zf uses
only one d-dim link ¢¢,7 =i+ 1 (mod R). Hence, the set of d-dim links are dependent
sequentially. Therefore, having R = [log k] is sufficient to ensure any cycle of dependencies
induced by d-dim links is of length 2t > k.

It remains to analyze the dependency cycles that consist of links in multiple dimensions.
By Definition 8 and the construction of the MC, such cycles correspond to mixed chains in
the k-cube, each having the following properties:

1. Due to the non-descending sequence d; and by Property 4, MC traverses the sequence of
dimensions 1, ... k& an even number of times, therefore there are at least 2k traversals.

2. By Property 7, at least k of the traversals are in uphill direction.

3. By Property 9, a backup path takes at most one uphill. Meaning, each dependency
contributes at most one uphill traversal to the mixed chain.

Combining (1), (2), and (3), implies that there must be at least k& dependencies in the
assumed cycle of dependencies, which concludes our claim. <

4 Related Work

Most modern communication networks support some form of resilient routing, and the
topic has already received much interest in the literature. There exists much literature
on single [16, 47, 65, 68], double [12, 49], and more [15] failure scenarios, the latter being
motivated by, e.g., shared risk link groups [57], attacks [61], or simply node failures which
affect all incident links [3, 15, 28, 56]. The spectrum of solutions is broad as well, with some
solutions providing only heuristic guarantees [12, 49], some schemes exploiting packet-header
rewriting [8, 15] (which however is not always supported in existing networks) or packet-
duplication [32] (which however comes with overheads). Furthermore, there is also work that
aims at quickly optimizing network behavior after link failures have propagated, e.g., by
pre-computing how to rescale traffic at ingress routers once these nodes are fault-aware [43].
However, such mechanisms do not provide protection for packets during convergence.

An interesting line of research studies mechanisms which do not require any additional
information in the packet header, such as the works by Feigenbaum et al. [17], by Chiesa
et al. [10, 11] (establishing an interesting connection to arc-disjoint graph covers), by
Elhourani et al. [15], by Stephens et al. [59, 60], by Borokhovich et al. [6], by Pignolet et
al. [51] (establishing an interesting connection to distributed computing problems without
communication [45]), and by Foerster et al. [23]. However, these solutions do not require
failover paths to traverse the nodes of the original path and do not account for the specific
properties of the networks considered in this paper. The former is particularly motivated by
the advent of (virtualized [18]) middleboxes [9], and is also known as local protection scheme
in MPLS terminology [55].

Our work is situated in the context of MPLS and Segment Routing (SR) networks where
routing is based on stacks and more specifically, the top of the stack label [50]. While the
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design of resilient routing algorithms has received much attention already in the context of
MPLS, see e.g., [31] and [55, 36] and references therein, existing research on SR networks
mainly revolves around flow control, traffic engineering and network utilization [5, 63, 13, 42],
or network monitoring [4], see the works by Filsfils et al. [21] and Lebrun et al. [14, 38, 41, 40]
for a good overview. Optimization problems typically include the minimization of the number
of segments required to compute segmented paths [29]. Salsano et al. [54] propose methods
to leverage SR in a network without requiring extensions to routing protocols, and Hartert
et al. [34] propose a framework to express and implement network requirements in SR. Only
little is known today about fast rerouting in SR networks. In [22], it has been shown that
existing solutions for SR fast failover, based on TI-LFA [25], do not work in the presence of
two or more failures. However, [22] relies on failure-carrying packets, which is undesirable as
discussed above and we overcome in the current paper. Finaly, we in this paper considered
hypercubes, which have recently been studied for local fast failover algorithms in [11, 24] as
well. While for a single link failure, the general approach of Francois et al. [25] can be used,
we are not aware of any approaches that (conceptually) employ Segment Routing for local
fast failover in hypercubes for multiple failures.

5 Conclusion and Future Work

This paper studied the design of algorithms for local fast failover in Segment Routing networks,
subject to multiple link failures. Our main result is a maximally robust, (k — 1)-resilient
algorithm for k-dimensional hypercubes, which can be computed efficiently.

We see our work as a first step and believe that it opens several promising directions
for future research. On the algorithmic side, it would be interesting to extend the study to
algorithms for other graph classes, also providing a minimal number of segments or requiring
a minimal number of forwarding rules. On the practical side, given that segment routing is
ready to be deployed in IPv6 environments, it would be interesting to study experimental
evaluations, which can in turn also refine our model. In the following, we provide some first
directions.

5.1 Future Work I: Resilient Segment Routing on General Graphs

It will be interesting to study the complexity of fast rerouting on general graphs, and develop
(approximation) algorithms accordingly. We conjecture that computing backup path schemes
with maximal resiliency is NP-hard on general graphs. In non-polynomial time, a Mixed
Integer Program (MIP) formulation can provide an optimal solution for general graphs. The
following MIP considers the problem of generating a small number of required segments for
the backup paths, and if the desired resiliency cannot be met, at least maximizes the number
of protected links. We hope that our MIP formulation can aid the community in developing
further backup path schemes, e.g., by using it as a baseline comparison to evaluate the quality
of polynomial runtime algorithms for different graph classes beyond the hypercube.

More specifically, the MIP presented next will compute an f-resilient backup path
allocation that is optimal in the number of protected links. For completeness purposes, we
consider directed graphs G = (V, E). As our MIP is also concerned with the number of
labels for each backup path, we provide some additional preliminaries relevant to practical
implementations. A backup path in general can be subdivided into path segments, each
being a shortest path between its endpoints: such a path segment will only need one label on
the stack, when the nodes employ shortest path routing. However, when the network utilizes
link weights, some backup paths cannot be represented by node labels [25]: e.g., if a link on
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the backup path has infinite weight, while all other links have unit weight. For these corner
cases, we need to allow single links as items on the label stack, which we denote as tunnel
links: In the worst case, the whole backup path contains only tunnel links. Should a tunnel
link physically fail, the corresponding label will be popped to prevent stuck packets (a failed
link cannot be traversed), and the respective backup path will be traversed.

Maximize Z Ze (2)
t€E
1 ¢e SP(u,
SPi = (u,2) Ve = (u,v) € E,z€V (3)
0 else
Do, Xgpr, Teer . Wi s Lo, € {0, 1} Vil e EVveEV (4)
Dy =0 VieE (5)
Ty, V=35

S Do Y Dun={-T, v=t Ve = (s,t) € B,u €V (6)
be=(v%) ba=(xv) 0 else
Xp o, <SPY,, Z N Vi, b e E,veV (7)

NEY,
Diyey <SP, + Toes + Y X, Vil = (s,t),l2 € E (8)
veV

dye, 2 0,dge, =0 Vi, 0y € E (9)
oo, < dpo, +1+ (1 - D2223) X 00 Vb, 0,03 € E (10)
délég + d@gél > f +1 Wl,ﬁg ek (11)
Wi > Xp, Vlily e E,veV (12)
S Wi+ Y T < LABELS VieE (13)
VeV VEE

Armed with the above preliminaries, we can now provide a general overview of the MIP. Let
SP(u, z) be the shortest path between u and z.* For every link £ = (s,t), we pre-compute

constants SP7, each indicating whether the shortest path from s to z includes ¢ or not.

With respect to the logical flow of the formulation, the MIP first computes a backup path
Py ={l' € E| Dy = 1} for every link ¢ € E. Then, for every link ¢’ € P, whose shortest
path to ¢ does not take the link itself (i.e. SP}, = 0), the MIP either finds an intermediate
node v such that SPy = 1, or flags the link as a tunnel link (with 77,¢,). As a result, every
link of Py either is a tunnel link or is on the shortest path to a next intermediate node, if not
t (i.e. on a segment). This is imposed by the set of constraints (7) and (8). With constraints
(9) to (11), we ensure an f-resilient backup path selection. Constraint (11) forbids any cyclic
dependency of length < f. At the end, the MIP restricts the number of segments to the
constant LABELS.

Next, we explain each set of constraints and variables more technically.

(2): maximizing the number of protected links. The failure of any subset of up to f

protected links can be tolerated.

(3): are the pre-computed shortest path trees for all nodes.

4 Should there be multiple options for shortest paths, we pick them in such a way that each subpath of a
shortest path is again a shortest path.
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(4): each variable Dy is set to 1 if £’ is designated to the backup path of £ (Py), otherwise
remains 0. Each variable X}, indicates whether 1) the node v is a waypoint on P, and 2)
¢’ is on the shortest path from the tail of ¢’ to v, hence on the backup path. Similarly,
Tee indicates whether ¢ is a tunnel link on P,. Variables Wy is set to 1 when some node
v is used as a waypoint for P,;. Each variable Z, indicated whether ¢ is protected.

(6): these constraints enforce the links specified by Dy, . to form a simple path connecting
the endpoints of ¢1, not using ¢; (due to (5)).

(7), (8): alink ¢y = (x,y) is allowed to be on the the backup path Py, ¢; = (s,t) only if

1. the link /5 is on the shortest path SP(z,t) i.e. SP}, = 1;

2. else, a node v € Py, exists s.t. SP(x,v) begins with ¢y (when X}, =11n (7)),

3. else, the variable 7,0, is set to 1, which enforces the link ¢ on P, as a tunnel link.
Therefore at least one of the cases must apply to the pair ¢, ¢ in order to have Dy, o, =1
feasible. Cases 2 and 3 correspond to adding new segments. Note that the case 3 can
trivially hold for any link which would result in unrestricted number of segments. But
latter constraints avoid this in favour of having fewer segments.

(9),(10),(11): here we formulate the all-pairs shortest path sub-problem on the dependency
graph induced by D,.. Given a feasible assignment, the value of each d,, is at most the
length of the shortest path from x to y. The length of the shortest cycle of dependencies
through each dependency arc (¢1,¢3) is constrained by (11).

(12),(13): the flag W} is set to 1 whenever the node v € P, is used as a waypoint for
some ¢’ on Py. We restrict the total number of labels (thus, the number of segments)
using the constant LABELS.

5.2 Future Work |l: Testbeds for Fast Failover in Segment Routing

The most popular testing environment for Segment Routing is Nanonet [39], which provides an
IPv6 data plane and is conceptually based off Mininet®. Nanonet allows to easily benchmark
Segment Routing in different topologies, all contained in a virtualized enviroment.

To conduct a first feasibility study and evaluate the performance of Segment Routing
under different failure scenarios, we deploy the example from Figure 2 as a topology, with an
additional source node s connected to vy, using w as the destination node. Each link has 1
ms delay and bidirectional 10 Mbit/s bandwidth. Without failures, the standard route is
s—uv1—(e1)—w.

If e; is unavailable, then v; will push vy as a segment label (and w will switch to es
for the return path), i.e., the packet path is s—wv;—uvo—(es)—w. When additionally es is
unavailable, then v; will push v1, v3 as segment labels (with w switching to eg for the return
path), with the total packet path being s—uv1—vo—v1—uv3—(e3)—w.

We use iperf3 to generate IPv6 traffic to evaluate the TCP throughput between source
and destination nodes, stopping the experiment after 20 seconds, providing ample time
for TCP to stabilize. As Nanonet does not support failing links during runtime, we run
the experiment three times, first without link failures, then deactivating e;, and lastly
deactivating e; and es. The results of all three experiments are plotted in Figure 4.

As can be seen, the throughput slightly deteriorates after one link failure, with an
additional very small performance hit after the second link failure. We believe that the extent
of the slowdown may be related to simulation constraints, as implementing Segment Routing
takes additional computational overhead in the virtualized environment, but it would be

5 http://mininet.org/
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Figure 4 TCP throughput of iperf3 under 0, 1, and 2 link failures in Nanonet, using an adapted

version of the topology and Segment Routing rules from Figure 2.

interesting to investigate the performance impact in a real hardware testbed. Additionally,
we believe it would be worthwhile to implement link failures during the simulation runtime
in Nanonet, to efficiently estimate the possible performance changes that occur directly after

the links went down. We plan to extend our current simulations in these directions.
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