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Abstract
A loosely-stabilizing leader election protocol with polylogarithmic convergence time in the pop-
ulation protocol model is presented in this paper. In the population protocol model, which is
a common abstract model of mobile sensor networks, it is known to be impossible to design
a self-stabilizing leader election protocol. Thus, in our prior work, we introduced the concept
of loose-stabilization, which is weaker than self-stabilization but has similar advantage as self-
stabilization in practice. Following this work, several loosely-stabilizing leader election protocols
are presented. The loosely-stabilizing leader election guarantees that, starting from an arbitrary
configuration, the system reaches a safe configuration with a single leader within a relatively
short time, and keeps the unique leader for an sufficiently long time thereafter. The convergence
times of all the existing loosely-stabilizing protocols, i.e., the expected time to reach a safe con-
figuration, are polynomial in n where n is the number of nodes (while the holding times to keep
the unique leader are exponential in n). In this paper, a loosely-stabilizing protocol with poly-
logarithmic convergence time is presented. Its holding time is not exponential, but arbitrarily
large polynomial in n.
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1 Introduction

We consider the population protocol (PP) model [3] in this paper. A network called population
consists of a large number of finite-state automata, called agents. Agents often make
interactions (i.e., pairwise communication) each between a pair of agents by which they
update their states. The interactions are opportunistic, that is, they are unknown and
unpredictable (or predictable only with probability). Agents are strongly anonymous: they
do not have identifiers and they cannot distinguish their neighbors with the same states. As
with the majority of studies on population protocols, we assume that the network of agents
is a complete graph, and that the scheduler selects an interacting pair of agents at each step
uniformly at random.

In this paper, we focus on the problem of self-stabilizing leader election (SS-LE), which
is one of the most important and well-studied problems in the PP model. Self-stabilizing
leader election requires that starting from any configuration, a population reaches a safe
configuration in which exactly one leader exists; and after that, the population keeps that
leader forever. These requirements guarantee excellent tolerance against any finite number
of transient faults. Since many protocols (whether self-stabilizing or non-stabilizing) in the
literature work with the assumption that a unique leader exists [3, 4, 5], SS-LE is a key to
improving the fault-tolerance of the PP model itself. However, SS-LE is strictly impossible in
the PP model: no protocol can solve SS-LE unless every agent in the population knows the
exact size of the population (i.e., the number of agents) [4]. This impossibility comes from
a simple partitioning argument1. Thus, most of the studies extend (i.e., strengthen) the
PP model to circumvent the impossibility. One approach of studies [7, 13, 18] assumes that
every agent knows the exact value of n and focuses on the space complexity to solve SS-LE.
Another approach [9, 6, 8] solves SS-LE by using oracles, which tell every agent whether or
not there exists an agent in a leader-state.

To solve SS-LE in a more practical way, our previous work [14] introduces the concept of
loose-stabilization, which relaxes the closure requirement of self-stabilization but keeps its
advantage in practice. Specifically, starting from any initial configuration, the population
must reach a safe configuration within a relatively short time; after that, the specification of
the problem (the unique leader for leader election) must be sustained for a sufficiently long
time, though not necessarily forever. In [14], we gave a loosely-stabilizing leader election
(LS-LE) protocol assuming that every agent knows a common upper bound N of n. This
protocol is practically equivalent to an SS-LE protocol since it maintains the unique leader
for exponential time in n (that is, practically forever) after reaching a safe configuration
within O(N logN) parallel time, which we will define later. The assumption that we can use
an upper bound N of n is practical because the protocol works correctly even if we make
a large overestimation of n, such as N = 10n. Recently, Izumi [11] give a method which
improves the convergence time of this protocol to linear time, i.e., O(N). In [15, 16, 17],
LS-LE protocols are presented for a population where some pairs of agents may not have
interactions, i.e., the interaction graph is not complete.

1 Assume that a SS-LE protocol P works without knowledge of exact size n of the population. Then,
there must exist n1, n2, (n1 < n2) such that P works correctly both when n = n1 and when n = n2.
Consider an execution of P on the population with size n2 which starts from a safe configuration where
exactly one leader exists. If some n2 − n1 agents including the unique leader do not interact for a
sufficiently long time, the rest of the population consisting of the other n1 agents must create a new
leader to satisfy the convergence requirement of self-stabilization. However, this creation results in two
leaders in the population, violating the closure requirement of self-stabilization.
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Leader election is easily solved in linear parallel time in the PP model if one does not
stick to self- or loose- stabilization. When we design non-stabilizing protocols, we can assume
that all agents are in a specific state in the initial configuration. A non-stabilizing leader
election protocol was first presented in [3], which elects a unique leader within O(n) parallel
time. Recently, Alistarh and Gelashvili [1] give a non-stabilizing leader election protocol with
polylogarithmic parallel time. Starting from a specific initial configuration, their protocol
elects a unique leader within O(log3 n) parallel time, with the assumption that all agents
share a common integer m = Θ(log3 n). More recently, Gąsieniec and Staehowiak [10] give an
algorithm which converges in O(log2 n) parallel time. (The space complexity of the algorithm
[10] is also surprisingly small, i.e., O(log log logn) bits.) The key strategies used in these
papers to achieve polylogarithmic time are interesting, but we can not utilize them for our
purpose because both of them critically depend on the assumption that all agents have the
same initial state.

A number of results in the PP model assume the uniformly random scheduler, that is, a
pair of agents is chosen uniformly at random to interact at each step [3, 5, 11, 14, 2, 10, 1].
This assumption has been used mainly for evaluating the time complexity of protocols. We
also adopt this assumption because the measure of time is crucial in the concept of loose-
stabilization. In the PP model, time complexities, such as convergence time and holding time,
are often evaluated in parallel time, which is defined as the expected number of interactions
or steps, divided by n (i.e., the number of agents). This is a natural measure of time because,
in practice interactions typically occur in parallel in the population.

1.1 Our Contribution
We now present an LS-LE protocol with polylogarithmic convergence time and polynomial
holding time. Here, and for the remainder of this section, when we discuss time complexity,
we shall always presume parallel computation. To the best of our knowledge, all previously
published LS-LE protocols have at least linear convergence time, and exponential holding
time, as shown in Table 1. Our protocol PPL breaks through the barrier of linear convergence
time. There is a convergence time/holding time trade-off. Given a parameter c ≥ 1 and
an upper bound N of n, our protocol converges within O(c log3N) time, and has Ω(cn10c)
holding time. Although our expected holding time is not exponential in N , it grows as an
exponential function of c. Also, the convergence time of PPL does not suffer much from large
overestimation of n; it is always O(c log3 n) as long as N is polynomial in n. It is worth
mentioning that PPL has small space complexity. Each agent needs only O(log logN) bits of
memory to store all variables of PPL. We can say that this is small space when we consider
that any self-stabilizing leader election protocol, which requires knowledge of n, needs the
space of at least dlogne bits [7]. These performances of our protocol cannot be obtained
if we require exponential holding time: it is proven by Izumi [11] that any LS-LE protocol
whose holding time is exponential requires Ω(N) convergence time and Ω(logN)-bit space at
each agent.

We obtain a useful tool when analyzing the convergence and holding time of PPL. Let
var be a variable of some algorithm. Consider that two agents interact and the values of
var in the two agents change from x and y to x′ and y′. We call var a propagating variable
if both x′ ≥ max(x − 1, y − 1, 0) and y′ ≥ max(x − 1, y − 1, 0) are always guaranteed. To
the best of our knowledge, all loosely-stabilizing protocol (and possibly some non-stabilizing
protocols) use propagating variables. Let z and ∆ be any integers. If some agent has value
z + ∆ for a propagating variable var and ∆ is sufficiently large, the propagating property
of var guarantees that all the agents obtain values larger than z in var in a short time;

OPODIS 2018



30:4 Loosely-Stabilizing Leader Election with Polylogarithmic Convergence Time

Table 1 Self/Loosely-stabilizing leader election in the PP model (shown in parallel time).

Protocol Type Knowledge Convergence Time Holding Time Agent Space (bits)
[14] loose-stab. N O(N log N) Ω(eN ) O(log N)
[11] loose-stab. N O(N) Ω(eN ) O(log N)
PPL loose-stab. N O(c log3 N) Ω(cn10c) O(log log N)
[7] self-stab. (exact) n polynomial ∞ O(log n)

specifically, in O(logn) time with high probability. The interesting question is how large this
∆ should be. In the analysis of [14], a trivially sufficient value ∆ = Θ(n) is used. However,
this linear value is useless for designing a protocol with polylogarithmic convergence time.
In this paper, we prove that ∆ = Θ(logn) is sufficient to propagate of values larger than z
to the whole population (Lemma 6). This result may seem trivial for experts at the first
glance, however, it is not trivial. This is because, whereas every agent participates in each
interaction of an execution with probability 2/n, the probability that a virtual agent (defined
later) participates in each interaction may not be equal to 2/n. We prove ∆ = Θ(logn) by
using three different kinds of random variables and bounding ∆ by the sum of them. As we
will see later, this result is very helpful in the analysis of the behavior of a protocol with
propagating variables.

2 Preliminaries

In this section, we describe our model of computation. We denote the set of integers
{z ∈ N | x ≤ z ≤ y} by [x, y], and denote the nth harmonic number by Hn =

∑n
k=1

1
k . We

write the natural logarithm of x as ln x; we indicate the base of other logarithms of x, such
as log2 x.

A population is a network consisting of agents. We denote the set of all the agents by
V and let n = |V |. We assume that a population is complete graph, thus every pair of
agents (u, v) can interact, where u serves as the initiator and v serves as the responder of
the interaction.

A protocol P (Q,Y, T, πout) consists of a finite set Q of states, a finite set Y of output
symbols, a transition function T : Q×Q→ Q×Q, and an output function πout : Q→ Y .
When two agents interact, T determines their next states according to their current states.
The output of an agent is determined by πout : the output of an agent in state q is πout(q).

A configuration is a mapping C : V → Q that specifies the states of all the agents. We
denote the set of all configurations of protocol P by Call(P ). We say that a configuration
C changes to C ′ by the interaction e = (u, v), denoted by C

e→ C ′, if (C ′(u), C ′(v)) =
T (C(u), C(v)) and C ′(w) = C(w) for all w ∈ V \ {u, v}.

A schedule γ = γ0, γ1, · · · = (u0, v0), (u1, v1), . . . is a sequence of interactions. A schedule
determines which interaction occurs at each time, i.e., interaction γt happens at time t under
schedule γ. In particular, we consider a uniformly random scheduler Γ = Γ0,Γ1, . . . in this
paper: each Γt is a random variable such that Pr(Γt = (u, v)) = 1

n(n−1) for any t ≥ 0 and any
distinct u, v ∈ V . Note that we use capital letter Γ for this uniform random scheduler while
we refer a deterministic schedule with a lower case such as γ. Given an initial configuration
C0 and a schedule γ, the execution of protocol P is defined as ΞP (C0, γ) = C0, C1, . . . such
that Ct

γt→ Ct+1 for all t ≥ 0. Note that the execution ΞP (C0,Γ) = C0, C1, . . . under the
uniformly random scheduler is a sequence of configurations where each Ci is a random
variable. For a schedule γ = γ0, γ1, . . . and any t ≥ 0, we say that agent v ∈ V participates
in γt if v is either the initiator or the responder of γt.
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The leader election problem requires that every agent should output L or F which means
“leader” or “follower” respectively. The specification of leader election, denoted by LE ,
requires that there exists one agent v such that v is always a leader and all other agents are
always followers throughout an execution. We define EIHP (C,LE) as the expected number
of interactions during which an execution ΞP (C,Γ) starting from a configuration C ∈ Call(P )
keeps LE (i.e., the expected number of interactions until ΞP (C,Γ) deviates from LE). For
any set S ⊆ Call(P ) of configurations, we also define EICP (C,S) as the expected number
of interactions required for the population to enter a configuration in S in an execution
ΞP (C,Γ) starting from a configuration C ∈ Call(P ). The notation EIH (resp. EIC) stands
for the Expected number of Interactions to Hold (resp. Converge).

I Definition 1 (Loose-stabilizing leader election [14]). Protocol P (Q,Y, T, πout) is an (α, β)-
loosely-stabilizing leader election protocol if there exists a set S of configurations satisfying
the following two inequalities:

max
C∈Call(P )

EICP (C,S) ≤ α and min
C∈S

EIHP (C,LE) ≥ β.

We call a configuration in S in the above definition a safe configuration of P . In terms
of parallel time, (α, β)-loosely-stabilizing protocol leader election protocol P reaches a safe
configuration within α/n parallel time in expectation and keeps the unique leader for β/n
parallel time in expectation thereafter. We call α/n and β/n the expected holding time and
the expected convergence time of P .

Throughout the paper, we will use the following three variants of Chernoff bounds.

I Lemma 2 ([12], Theorems 4.4, 4.5). Let X1, . . . , Xs be independent Poisson trials, and let
X =

∑s
i=1Xi. Then

∀δ, 0 ≤ δ ≤ 1 : Pr(X ≥ (1 + δ)E[X]) ≤ e−δ
2E[X]/3, (1)

∀R ≥ 6E[X] : Pr(X ≥ R) ≤ 2−R, (2)

∀δ, 0 < δ < 1 : Pr(X ≤ (1− δ)E[X]) ≤ e−δ
2E[X]/2. (3)

3 Protocol PPL

We give a loosely-stabilizing leader election protocol PPL. This protocol uses a given upper
bound N on n and has a parameter c ≥ 1 by which we can adjust the expected convergence
time and the expected holding time. As mentioned above, time complexity is measured as
parallel time, which is defined as the number of interactions divided by n. The expected
convergence time of PPL is O(c logn · log2N) ⊆ O(c log3N) and the expected holding time
is Ω(cn10c+1). Thus, we achieve loosely-stabilizing leader election with polylogarithmic
convergence time and polynomial holding time by setting c = Θ(1). For example, assigning
c = 10 gives O(log3N) convergence time and Ω(n100) holding time.

The pseudo code of PPL is given as Algorithm 1. Each agent has five variables: leader ∈
{>,⊥}, shield ∈ {>,⊥}, virus ∈ [0, tvirus], timerL ∈ [0, tmax], and timerI ∈ [0, temit].
The first two variables leader and shield are Boolean variables: v.leader = > means
that v is a leader, v.shield = > means that v is shielded, which will be explained later.
The next three variables virus, timerL, and timerI are count-down timers where their
maximum values are tvirus = 60dlnNe, tmax = 12c · tvirusdlnNe, and temit = 12c · tvirusdlnNe,
respectively (Note that tmax = temit). The output function πout is defined as follows: an
agent with leader = > (resp. leader = ⊥) outputs L (resp. F ).

OPODIS 2018
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Algorithm 1 PPL.
Constants:
c,N // given parameters. N ≥ n is guaranteed.
tvirus = 60dlnNe
tmax = 12c · tvirusdlnNe
temit = 12c · tvirusdlnNe

Variables of each agent:
leader ∈ {>,⊥}, shield ∈ {>,⊥},
timerL ∈ [0, tmax], virus ∈ [0, tvirus], timerI ∈ [0, temit],

Output function πout :
if v.leader = > holds, then the output of agent v is L, otherwise F .

Interaction between initiator a0 and responder a1:
1: a0.timerL ← a1.timerL ← max(a0.timerL − 1, a1.timerL − 1, 0)
2: for i ∈ {0, 1} such that ai.timerL = 0 do ai.leader← > endfor
3: if ∃i ∈ {0, 1} : ai.leader = > then a0.timerL ← a1.timerL ← tmax endif

4: a0.virus← a1.virus← max(a0.virus− 1, a1.virus− 1, 0)
5: for i ∈ {0, 1} such that ¬ai.shield ∧ (ai.virus > 0) do ai.leader← ⊥ endfor

6: for i ∈ {0, 1} do ai.timerI ← max(ai.timerI − 1, 0) endfor
7: if a0.timerI = 0 ∧ a0.leader = > then (a0.virus, a0.shield)← (tvirus,>) endif
8: if a1.timerI = 0 ∧ a1.leader = > then a1.shield← ⊥ endif
9: for i ∈ {0, 1} such that ai.timerI = 0 do ai.timerI ← temit endfor

Protocol PPL consists of a timeout mechanism (Lines 1-3) and a virus-war mechanism
(Lines 4-9). By using variable timerL, the timeout mechanism creates a leader when no
leader exists in the population. By using variables timerI , virus, and shield, the virus-war
mechanism reduces the number of leaders if there are two or more leaders.

The timeout mechanism of PPL (Lines 1-3) is almost the same as that of the protocol
given in [14]. This mechanism uses a leader-timer timerL, which indicates the possibility of
existence of a leader. A leader agent always keeps timerL = tmax, and resets the leader-timer
of the other agent to tmax every time it interacts with a non-leader agent (Line 3). We call
this operation timer reset. When two non-leaders interact, we take the larger timer value of
the two agents, decrease it by one, and substitute the decreased value into the leader-timers of
both agents (Line 1). We call this operation larger value propagation. When the leader-timer
of a non-leader decreases to zero, it suspects that no leader exists in the population, and
it becomes a new leader (Line 2). We call this event timeout. This mechanism works well
for the following reasons: (i) the timeout rarely happens when the population has a leader
because the leader-timers of all agents have large values thanks to the timer reset and the
larger value propagation, (ii) when no leader exists in the population, a timeout happens and
a new leader is created within a short time because there is no possibility of a timer reset.
It is proven in [14] that, if tmax = Ω(n), the timeout rarely happens in the population with
at least one leader. In the next section, we show that, with a high probability, the timeout
does not happen for a long time when a leader exists, even if the maximum value tmax is
polylogarithmic in N , specifically, tmax = Θ(log2N).

The basic idea of the virus-war mechanism is first presented in [15]. PPL uses this idea,
but implements it in a considerably different way in order to reduce the number of leaders to
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one within a polylogarithmic parallel time. In the virus-war mechanism (Lines 4-9), every
leader tries to kill other leaders by using viruses and become the unique leader. We say that
agent v has a virus if v.virus > 0, and that v is shielded if v.shield = >. As we will see
later, a virus is propagated to the whole population by interactions and kills leaders that are
not shielded. Every agent has an individual timer timerI to create a new virus periodically.
This timer is decreased by one every time that agent participates in an interaction (Line 6).
When the individual timer of a leader reaches zero at an interaction, its fate differs according
to its role in the interaction, initiator or responder. If the agent is an initiator, it succeeds
in creating a new virus and becomes shielded, that is, virus ← tvirus and shield ← >
(Line 7). If it is a responder, it becomes unshielded i.e., shield← ⊥ (Line 8). Thereafter,
the individual timer is reset to the maximum value temit in both cases (Line 9). A virus
spreads by interactions (Line 4). A leader is killed and becomes a non-leader if it catches a
virus when it is not shielded (Line 5). The value of virus in an agent corresponds to the
TTL (time to live) of the virus that the agent carries. Since it decreases in the larger value
propagation fashion, viruses eventually disappear from the population and no virus exists in
the following execution until a new virus is created by some leader.

When there are multiple leaders, the virus-war mechanism elects exactly one leader within
a short time. Since every agent participates in any interaction Γt with probability 2/n, the
individual timer of an agent reaches zero within O(ntemit) interactions with high probability.
Therefore, some leader creates a new virus (and becomes shielded) by executing Line 7 within
O(ntemit) interactions in expectation and approximately half of leaders are killed by the
virus. Therefore, the number of shielded leaders is approximately halved for every O(ntemit)
interactions. This rough and intuitive analysis explains why O(ntemit logn) ⊆ O(cn log3N)
interactions are sufficient to elect a unique leader. On the other hand, we must consider the
risk of suicide, i.e., the event where a single leader creates a new virus and then becomes
unshielded before the virus disappears from the population. This event causes the unique
leader to be killed by the virus. A long holding time cannot be achieved if suicides are
frequent. Suicide of a single leader v occurs only when a leader v first executes Line 7,
starting a new virus while shielding itself, and then later executes Line 8 while the virus is
still present, causing itself to be killed shortly thereafter. We can ensure that the frequency
of that sequence of events is extremely small by assigning a sufficiently large value to temit
compared to tvirus, as we discuss carefully in the next section.

4 Analysis of Convergence and Holding Time

In this section, we prove that PPL is a (O(cn logn · log2N),Ω(cn10c+1))-loosely-stabilizing
leader election protocol. Define the set S of safe configurations as follows:

Li = {C ∈ Call(PPL) | 1 ≤ |{v ∈ V | C(v).leader}| ≤ i} , for i = 1, 2, . . . , n

Ghalf = {C ∈ Call(PPL) | ∀v ∈ V : C(v).timerL ≥ tmax/2} ,

Lsafe = {C ∈ Call(PPL) | ∃v ∈ V : C(v).leader ∧ C(v).shield ∧ C(v).timerI ≥ temit/2} ,

Vclean = {C ∈ Call(PPL) | ∀v ∈ V : C(v).virus = 0}.
S = L1 ∩ Ghalf ∩ (Lsafe ∪ Vclean),

We need to prove the following two equalities:

max
C∈Call(PPL)

EICPPL(C,S) = O(cn logn · log2N), (4)

min
C∈S

EIHPPL(C,LE) = Ω
(
cn10c+1) . (5)

OPODIS 2018
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Note that C ∈ Li requires that the population in configuration C has at least one leader but
does not have more than i leaders. For example, L1 is the set of configuration where exactly
one leader exists in the population and Ln is the set of configurations where at least one
leader exists in the population. Clearly, L1 ⊂ L2 ⊂ · · · ⊂ Ln holds.

In the remainder of this section, we first introduce analytic tools (the notions of epidemic
and virtual agents) in Section 4.1. Expected holding time and expected convergence time are
analyzed in Sections 4.2 and 4.3, respectively. Since we evaluate the expected convergence
time and the expected holding time only asymptotically, it suffices to assume that n is
sufficiently large. Specifically, we assume n ≥ 55; we then have dlnNe ≥ 5.

4.1 Tools
The goal of this Section is, intuitively, to prove ∆ = Θ(logn) where ∆ is the integer introduced
at the end of Section 1.1. First, we review the notions of epidemic and virtual agents presented
in [5] and [14] respectively. Most of the definitions in Section 4.1 are borrowed from [14].

By an abuse of notation, we will identify an interaction (u, v) with the set {u, v} whenever
convenient. Let γ = γ0, γ1, . . . be an infinite sequence of interactions and let r be an agent
in V . The epidemic function Ir,γ : [0,∞)→ 2V is defined as follows: Ir,γ(0) = {r}, and for
t = 1, 2, . . . , Ir,γ(t) = Ir,γ(t−1)∪γt−1 if Ir,γ(t−1)∩γt−1 6= ∅; otherwise, Ir,γ(t) = Ir,γ(t−1).
We say that v is infected at time t if v ∈ Ir,γ(t) in the epidemic starting from agent r under
γ. At time 0, only r is infected; at later steps, an agent becomes infected if it interacts with
an infected agent. Once an agent becomes infected, it remains infected thereafter. We define
the infection time tr,γ(v) of agent v ∈ V to be min{t ≥ 0 | v ∈ Ir,γ(t+ 1)} if v 6= r, and we
let tr,γ(r) = −1. Note that every agent v 6= r is infected by the interaction γtr,γ(v).

We now define the virtual agent VAr,γ(v) of each agent v ∈ V . We assume that all
agents eventually become infected, that is, Ir,γ(t′) = V holds for some t′. The virtual agent
VAr,γ(v) is not defined if no such t′ exists.2 Let v be any agent other than r. We define
the parent of v as the agent that infects v at time tr,γ(v). This parent-child relation defines
a spanning tree of G rooted at r. In this tree, we call the unique path from r to v i.e.,
v0(= r), v1, v2, . . . , vk(= v), the infection path of v. The virtual agent VAr,γ(v) is a virtual
entity that migrates from r to v through this infection path. At the beginning, VAr,γ(v)
stays at r. For every i ∈ [0, k − 1], it migrates from vi to vi+1 at time tr,γ(vi+1) After
reaching vk = v, the virtual agent remains at v. For t ≥ 0, we say that virtual agent VAr,γ(v)
participates in γt if, at time t, VAr,γ(v) is at one of the two agents participating in γt. For
any t ≥ 1, we define VI r,γ(v, t) as the number of interactions in γ0, γ1, . . . , γt−1 that VAr,γ(v)
participates in. Formally, we define VI r,γ(v, t) = |{j ∈ [0, t−1] | (v ∈ γj ∧ j ≥ tr,γ(v))∨ (∃i ∈
[0, k − 1] : vi ∈ γj ∧ tr,γ(vi) ≤ j < tr,γ(vi+1))}|.

Consider an execution ΞP (C0, γ) = C0, C1, . . . of some protocol P that has a propagating
variable var. Larger value propagation guarantees that the virtual agent VAr,γ(v) brings
a large value of var from r to v when it reaches v through the infection path if r has a
sufficiently large value of var in C0 and virtual agent VAr,γ(v) participates in sufficiently few
interactions in γ0, γ1, . . . , γtr,γ(v). This property is formalized as the following trivial lemma.

I Lemma 3. Let γ = γ0, γ1, . . . be a schedule, P be a protocol, and var be a propagating vari-
able of P . Let C0 ∈ Call(P ) and ΞP (C0, γ) = C0, C1, . . . . Then v ∈ Ir,γ(t) ⇒ Ct(v).var ≥
C0(r).var−VI r,γ(v, t) for any agents r, v ∈ V and any integer t ≥ 1.

2 Such t′ exits with probability 1 when the uniformly random scheduler Γ is given.
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Angluin et al. [5] prove that the epidemic from any agent r ∈ V finishes (i.e., all agents
are infected) within Θ(n logn) interactions with high probability. Furthermore, our previous
work [14] gives a concrete lower bound on the probability that the epidemic finishes within a
given number of interactions as follows:

I Lemma 4 ([14]). Let r ∈ V . For any integer t ≥ 1, Pr(Ir,Γ(2t) 6= V ) ≤ ne−t/n.

From Lemmas 3 and 4, we can achieve the goal of this section by giving a sufficiently
tight lower bound of VI r,γ(v, t) with high probability. It would be easy if the probabilities
of VAr,γ(v) ∈ Γt for distinct t were independent of each other, and equal to 2/n, like the
probability of v ∈ Γt. Then, the simple Chernoff bound would give a tight lower bound with
high probability. However, Pr(VAr,γ(v) ∈ Γt) = 2/n does not hold in general. This is because
VAr,γ(v) at time t is determined not only by the preceding interactions Γ0,Γ1, . . . ,Γt−1 but
also by the subsequent interactions. Γt,Γt+1, . . . . Therefore, we need a careful analysis.
The following lemma is one of the main contributions in this paper; it enables us to bound
VI r,Γ(v, t) probabilistically to a logarithmic order when t is logarithmic in n.

I Lemma 5. The following two inequalities hold for any r, v ∈ V , t ≥ 1, d ≥ 3, d′ ≥ 3, and
d′′ ≥ 6:

Pr
(

VI r,Γ(v, t) ≥ 4ddlog2 ne+ 2d′Hn + 4d′′t
n

∣∣∣∣ Ir,Γ(t) = V

)
≤ n−d + n−d

′
+ e−

2d′′t
n ,

Pr
(

VI r,Γ(v, t) ≥ 4ddlog2 ne+ 2d′Hn + 8t
n

∣∣∣∣ Ir,Γ(t) = V

)
≤ n−d + n−d

′
+ e−

4t
3n .

Proof. Assume that Ir,Γ(t) = V . Let t1, t2, . . . , tn−1 be the integers such that Ir,Γ(ti) 6=
Ir,Γ(ti + 1) for each i ∈ [1, n − 1] and 0 ≤ t1 < t2 < · · · < tn−1 < t. Let u1, u2, . . . , un−1
be the agents where ti = tr,Γ(ui). Intuitively, ui is the (i + 1)st agent to be infected and
ti is its infection time in the epidemic starting from r under Γ. We let u0 = r. Note
that both ui and ti are random variables. Let Z1 be the number of interactions that
virtual agent VAr,γ(v) participates in among the n− 1 interactions Γt1 ,Γt2 , . . . ,Γtn−1 . Let
Z2 = VI r,Γ(v, t)− Z1. As mentioned above, the parent-child relation based on the epidemic
starting from r gives the infection path from r to v, denoted by v0(= r), v1, v2, . . . , vk = v.
(Note that k and each vi are random variables.) For any j (0 ≤ j < t), let Xj be the
indicator variable such that Xj = 1 holds if VAr,Γ(v) participates in Γt, otherwise Xj = 0.
In other words, we define Xj = 1⇔ (j ≥ tr,Γ(v) ∧ v ∈ Γj) ∨ (∃i : tr,Γ(vi) ≤ j < tr,Γ(vi+1) ∧
vi ∈ Γj). Let X =

∑
j∈{t1,t2,...,tn−1}\{tr,Γ(v1),tr,Γ(v2),...,tr,Γ(vk)}Xj . It trivially holds that

Z1 =
∑
j∈{t1,t2,...,tn−1}Xj = k + X. Hence, VI r,Γ(v, t) = Z1 + Z2 = k + X + Z2. In the

following, we give probabilistic upper bounds on k, X, and Z2.

First, we focus on k, the length of the infection path from r to v. The index of
vi (0 ≤ i ≤ k), denoted by xi, is defined to be the integer such that vi = uxi−1, i.e., vi
is the xth

i agent to be infected among the population. For example, v0 = r is the first
infected agent and thus x0 = 1. The parent of each uj is chosen uniformly at random among
u0, u1, . . . , uj−1. Therefore, Pr(xi ≥ 2xi−1) ≥ 1/2 for i = 1, 2, . . . , k. If k ≥ 4ddlog2 ne, then
the event xi ≥ 2xi−1 must not happen more than dlog2 ne times for i = 1, 2, . . . , 4ddlog2 ne.
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Hence, letting Y be a binomial random variable such that Y ∼ B(4ddlog2 ne, 1/2), we have

Pr(k ≥ 4ddlog2 ne | Ir,Γ(t) = V ) ≤ Pr(Y ≤ dlog2 ne)

= Pr
(
Y ≤ E[Y ]

2d

)
≤ exp

(
−1

2 ·
(

2d− 1
2d

)2
· 2ddlog2 ne

)

≤ exp
(
−d lnn · log2 e ·

(
2d− 1

2d

)2
)

≤ n−d,

where we use (3) in Lemma 2 for the second inequality and ∀d ≥ 3 : log2 e · ((2d−1)/2d)2 ≥ 1
for the last inequality (log2 e · (5/6)2 = 1.00187 . . . ).

Next, we focus on the random number X =
∑
j∈{t1,t2,...,tn−1}\{tr,Γ(v1),tr,Γ(v2),...,tr,Γ(vk)}Xj .

For any j ∈ {t1, t2, . . . , tn−1} \ {tr,Γ(v1), tr,Γ(v2), . . . , tr,Γ(vk)}, we have Pr(Xj = 1) = 1/i,
where j = ti. Therefore, letting W1,W2, . . . ,Wn−1 be a sequence of independent Poisson
trials with probability Pr(Wi = 1) = 1/i, we have

Pr(X ≥ 2d′Hn | Ir,Γ(t) = V ) ≤ Pr
(
n−1∑
i=1

Wi ≥ 2d′Hn−1

)
≤ 2−2d′Hn−1 ≤ e−d

′Hn−1 ≤ n−d
′
,

where we use d′ ≥ 3, Hn−1 = E[
∑n−1
i=1 Wi], (2) in Lemma 2 for the second inequality, and

Hn−1 > lnn for the last inequality.
Finally, we focus on Z2, the number of non-infection interactions that virtual agent

VAr,Γ(v) participates in among Γ0,Γ1, . . . ,Γt−1. Under the condition that no agent is newly
infected by an interaction Γj , the probability that VAr,Γ(v) participates in Γj is at most 4/n
[14]. This is because, letting m = |Ir,Γ(j)| and 0C2 = 1C2 = 0, the probability is exactly

m−1
mC2+n−mC2

, which is at most 4/n regardless of j (See Appendix in [14]). Therefore, letting
W ′ be a binomial random variable such that W ′ ∼ B(t, 4/n), we have

Pr
(
Z2 ≥

4d′′t
n

∣∣∣∣ Ir,Γ(t) = V

)
≤ Pr

(
W ′ ≥ 4d′′t

n

)
≤ 2−4d′′t/n ≤ e−2d′′t/n,

where we use d′′ ≥ 6 and (2) in Lemma 2 for the second inequality. Similarly, we have

Pr
(
Z2 ≥

8t
n

∣∣∣∣ Ir,Γ(t) = V

)
≤ Pr

(
W ′ ≥ 8t

n

)
≤ e−4t/3n,

where we use (1) in Lemma 2 for the second inequality.
The two inequalities of the lemma follow from the above probabilistic upper bounds on k,

X, and Z2. J

From Lemma 3, Lemma 4, and Lemma 5, we obtain Lemma 6 below.

I Lemma 6. Let P be any protocol and var be a propagating variable of P . Let C0 ∈ Call(P )
and ΞP (C0,Γ) = C0, C1, . . . . Then the following inequalities hold for any r ∈ V , t ≥ 1,
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d ≥ 3, d′ ≥ 3, and d′′ ≥ 6:

Pr
(
∀v ∈ V : C2t(v).var > C0(r).var− 4ddlog2 ne − 2d′Hn −

8d′′t
n

)
≥ 1− n

(
n−d + n−d

′
+ e−

4d′′t
n + e−

t
n

)
Pr
(
∀v ∈ V : C2t(v).var > C0(r).var− 4ddlog2 ne − 2d′Hn −

16t
n

)
≥ 1− n

(
n−d + n−d

′
+ e−

8t
3n + e−

t
n

)
.

Lemma 6 is formalized for general applications: the lemma can be used for any protocol and
any of its propagating variables. In this paper, we use the following two corollaries.

I Corollary 7. Let C0 ∈ Ln and ΞPPL(C0,Γ) = C0, C1, . . . . Then:

Pr
(
C6cndlnNe2 ∈ Ghalf

)
≥ 1− 3n−10c.

Proof. There exists an agent r ∈ V such that C0(r).leader holds since C0 ∈ Ln. The value
of the leader-timer in r may not be tmax in the initial configuration C0. However, in the
first interaction that r participates in, r resets the timers of both of the interacting agents
to tmax. Therefore, we can assume that C0(r).timerL = tmax. Assigning t = 3cndlnNe2,
d = d′ = 11c, and d′′ = 6 to the first inequality of Lemma 6 yields the result, because we
have:

4ddlog2 ne+ 2d′Hn + 8d′′t
n
≤ 44cdlog2 ne+ 22c(1 + lnn) + 144cdlnNe2

≤ 44c(1 + log2 edlnNe) + 22c(1 + dlnNe) + 144cdlnNe2

≤ 144cdlnNe2 + 86cdlnNe+ 66c

≤ tmax

2 ,

where we use tmax = 720cdlnNe2 in the last inequality, and we have:

n
(
n−d + n−d

′
+ e−

4d′′t
n + e−

t
n

)
≤ n(2n−11c + n−72cdlnNe +N−15c) ≤ 3n−10c. J

I Corollary 8. Let C0 ∈ Call(PPL) and ΞPPL(C0,Γ) = C0, C1, . . . . Assume C0(r).virus =
tvirus for some r ∈ V . Then:

Pr
(
∀v ∈ V : C4ndlnNe(v).virus > 0

)
≥ 1− 2/n.

Proof. Assigning t = 2ndlnNe and d = d′ = 3 to the second inequality of Lemma 6 we have

4ddlog2 ne+ 2d′Hn + 16t
n
≤ 12dlog2 ne+ 6(1 + dlnNe) + 32dlnNe

≤ 12(1 + log2 edlnNe) + 6(1 + dlnNe) + 32dlnNe
≤ 56dlnNe+ 18
< tvirus,

where we use the assumption dlnNe ≥ 5 in the last inequality, and we have

n
(
n−d + n−d

′
+ e−

8t
3n + e−

t
n

)
≤ n(2n−3 +N−5 +N−2) ≤ 2/n,

where we use the assumption n ≥ 55 in the last inequality. J
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4.2 Expected Holding Time
We prove (5) in this section, that is, minC∈S EIHPPL(C,LE) = Ω

(
cn10c+1). Let t be a positive

integer and γ = γ0, γ1, . . . be a schedule. Let C0 ∈ Call(PPL) and ΞPPL(C0, γ) = C0, C1, . . . .
We define the indicator variable: L+

C0,γ
(t) = > if a timeout occurs and a new leader is

created in the prefix C0, C1, . . . , Ct of length t+1 of the execution that is, at least one
of the interactions γ(0), γ(1), . . . , γ(t − 1) causes a timeout in ΞPPL(C0, γ); Otherwise we
let L+

C0,γ
(t) = ⊥. For convenience, we define L+

C0,γ
(0) = ⊥. Similarly, we define the

indicator variable L0
C0,γ

(t) as follows: L0
C0,γ

(t) = > if and only if the prefix of length
t + 1 of the execution includes a configuration where no leader exists. We also define
τ = 144cndlnNe2 = ntemit/5. In the rest of this section, we prove that for any configuration
C0 ∈ S:

Pr
(
¬L+

C0,Γ(τ) ∧ ¬L0
C0,Γ(τ) ∧ Cτ ∈ S

)
≥ 1−O(n−10c), (6)

where ΞPPL(C0,Γ) = C0, C1, . . . . From this inequality, we have minC∈S EIHPPL(C,LE) ≥
(1−O(n−10c)) ·(τ+minC∈S EIHPPL(C,LE)), which yields (5), i.e., minC∈S EIHPPL(C,LE) =
Ω(cn10c+1).

Let v be an agent, t ≥ 1 an integer, and γ = γ0, γ1, . . . a schedule. We denote by RI γ(v, t)
the number of interactions in which v participates among the first t interactions of γ (i.e.,
γ0, γ1, . . . , γt−1). We also define (asynchronous) round time. The first round time RTγ(1) is
the minimum t satisfying ∀v ∈ V,∃j ∈ [0, t − 1] : v ∈ γj . For any i ≥ 2, we define the ith
round time RTγ(i) as the minimum t satisfying ∀v ∈ V,∃j ∈ [RTγ(i− 1), t− 1] : v ∈ γj . For
completeness, we define RTγ(0) = 0. Note that, for any i ≥ 1, every agent v ∈ V participates
in at least one interaction in γRTγ(i−1), . . . , γRTγ(i)−1.

I Lemma 9. Pr(maxv∈V RI Γ(v, τ) ≥ temit/2) < N−30c+1.

Proof. Since each agent v participates in Γt with probability 2/n for any t ≥ 0, we have
E[RI Γ(v, τ)] = 2τ/n = 2

5 temit. Therefore, Pr(RI Γ(v, τ) ≥ 1
2 temit) = Pr(RI Γ(v, τ) ≥

5
4E[RI Γ(v, τ)]) ≤ exp(−E[RI Γ(v, τ)]/48) = exp(−6cdlnNe2) ≤ N−30c by the Chernoff
bound (1) in Lemma 2 with δ = 1/4, and by the assumption dlnNe ≥ 5. Hence, the lemma
holds by the union bounds. J

To prove (6), we first give lower bounds on the probabilities of ¬L+
C0,Γ(τ) and ¬L0

C0,Γ(τ)
in Lemmas 10 and 11, respectively. Then, we give lower bounds on the probability of Cτ ∈ S
by Lemmas 14 and 15.

I Lemma 10. Let C0 ∈ Ghalf . Then, Pr(L+
C0,Γ(τ)) ≤ N−30c+1.

Proof. Since tmax = temit, and the leader-timer of every agent is no less than tmax/2 in
C0 ∈ Ghalf , a timeout happens within the first τ interactions with probability at most
N−30c+1, by Lemma 9. J

I Lemma 11. Let C0 ∈ Ln ∩ (Lsafe ∪ Vclean). Then, Pr(L0
C0,Γ(τ)) ≤ N−30c+1.

Proof. First, consider the case C0 ∈ Lsafe. The population has a shielded leader vl whose
individual timer is at least temit/2 at C0. Therefore, L0

C0,Γ(τ) holds only if vl participates in
temit/2 or more interactions and becomes unshielded within the first τ interactions. Next,
consider the case C0 ∈ Ln ∩ Vclean. One or more leaders exist, but no virus exists in the
population in C0. The leaders are never killed (become non-leaders) until viruses appear in
the population. Therefore, L0

C0,Γ(τ) holds only if some leader, say vl, creates a new virus.
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However, vl resets its individual timer to temit and becomes shielded when it creates a new
virus. Therefore, L0

C0,Γ(τ) holds only if vl participates in temit or more interactions among
the first τ interactions. Thus, in both cases, L0

C0,Γ(τ) holds only if some agent participates
in temit/2 or more interactions among the first τ interactions. By Lemma 9, this necessary
condition holds with probability at most N−30c+1, which yields the lemma. J

I Lemma 12. Pr(RTΓ(i) ≥ 2in(1 + dlnne)) ≤ ne−i/4 for any i ≥ 1.

Proof. Each round finishes when every agent v ∈ V has interacted during that round.
Consider the case that s (s ≥ 1) agents have not yet interacted in round j. One of
these s agents participates in the next interaction with probability sC2+s(n−s)

nC2
≥ s

n . Let
X1,s, X2,s, . . . , Xi,s be independent random variables each of which corresponds to the number
of trials needed to reach the first success where the success probability of each trial is s/n.
We have

Pr(RTΓ(i) ≥ 2in(1 + dlnne) ≤ Pr

 i∑
j=1

n∑
s=1

Xj,s ≥ 2in(1 + dlnne)


≤ Pr

 n∑
s=1

i∑
j=1

Xj,s ≥ 2inHn


≤ Pr

 n∑
s=1

i∑
j=1

Xj,s ≥
n∑
s=1

2in
s

 ≤ n∑
s=1

Pr

 i∑
j=1

Xj,s ≥
2in
s

 .

For a binomial random variable Ys ∼ B(d 2in
s e,

s
n ), we have Pr(

∑i
j=1Xj,s ≥ 2in

s ) =
Pr(
∑i
j=1Xj,s ≥ d 2in

s e) ≤ Pr(Ys ≤ i). Hence

Pr

 i∑
j=1

Xj,s ≥
2in
s

 ≤ Pr(Ys ≤ i) ≤ Pr
(
Ys ≤

1
2 ·E[Ys]

)
≤ e−E[Ys]/8 ≤ e−i/4,

where we use Chernoff bound given as (3) in Lemma 2 for the third inequality. J

I Corollary 13. Pr(RTΓ(tvirus) ≥ τ) ≤ N−15c+1.

Proof. Since we assume dlnNe ≥ 5, Lemma 12 yields Pr(RTΓ(tvirus) ≥ τ) = Pr(RTΓ(tvirus) ≥
144cndlnNe2) ≤ Pr(RTΓ(tvirus) ≥ 120cndlnNe(1 + dlnne)) ≤ Pr(RTΓ(c · tvirus) ≥ 2(c ·
tvirus)n(1 + dlnne)) ≤ ne−c·tvirus/4 ≤ N−15c+1. J

I Lemma 14. Let C0 ∈ Call(PPL) and ΞPPL(C0,Γ) = C0, C1, . . . . Then, Pr(Cτ /∈ Lsafe ∪
Vclean) ≤ 2N−15c+1.

Proof. Consider the case that every agent has fewer than temit/2 interactions during the first
τ interactions, and the tthvirus round finishes during the first τ interactions. Thanks to the latter
condition, viruses disappear from the population and no virus exists in Cτ , i.e., Cτ ∈ Vclean,
if no leader creates a new virus within the first τ interactions. If some leader vl ∈ V creates a
new virus during that period, then vl.leader∧vl.shield∧vl.timerI ≥ temit/2 in Cτ , thanks
to the former condition, which implies Cτ ∈ Lsafe. This is because vl resets its individual
timer to temit and becomes shielded at the time it creates a new virus. The probability that
both conditions hold is at least 1−N−30c+1 +N−15c+1 > 1− 2N−15c+1 by Lemma 9 and
Corollary 13. J
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I Lemma 15. Let C0 ∈ Call(PPL) and ΞPPL(C0, γ) = C0, C1, . . . . Then Pr(Cτ /∈ Ghalf |
Cτ−6cndlnNe2 ∈ Ln) ≤ 3n−10c.

Proof. Immediate from Corollary 7. J

The inequality (6) follows from Lemma 10, Lemma 11, Lemma 14, and Lemma 15. Thus,
we obtain the following lemma from the discussion in the beginning of this sub-section.

I Lemma 16. minC∈S EIHPPL(C,LE) = Ω
(
cn10c+1).

4.3 Expected Convergence Time
We prove (4) in this section, that is, maxC∈Call(PPL) EICPPL(C,S) = O(cn logn · log2N).
Recall that S = L1 ∩ Ghalf ∩ (Lsafe ∪ Vclean). We make use of the fact that τ = 144cndlnNe2.

I Lemma 17. Let C0 ∈ Lsafe ∪ Vclean and ΞPPL(C0,Γ) = C0, C1, . . . . Then Pr(∃j ∈
[0, 12τdlnNe] : Cj ∈ Ln ∩ (Lsafe ∪ Vclean)) ≥ 1−O(N−1).

Proof. Since C0 ∈ Lsafe ∪ Vclean, we have C0 ∈ Ln ∩ (Lsafe ∪ Vclean) if C0 ∈ Ln. Hence, it
suffices to consider only the case that C0 /∈ Ln. In this case, C0 ∈ Vclean also holds because
C0 ∈ Lsafe ∪ Vclean and Lsafe ⊂ Ln. To conclude, we need only consider the case that there
exists no virus and no leader in the population at C0. Staring from such a configuration,
the population reaches a configuration in Ln ∩ (Lsafe ∪ Vclean) immediately after a new
leader is created by the timeout. While no leader exists in the population, maxv∈V v.timerL
is monotonically non-increasing and decreases at least by one during each asynchronous
round. Therefore, the timeout occurs within tmax rounds. Lemma 12 guarantees that
Pr(RTΓ(tmax) ≥ 2ntmax(1 + dlnne) ≤ ne−tmax/4 = O(N−1). Since dlnNe ≥ 5, we have
2ntmax(1 + dlnne) = 10τ(1 + dlnne) ≤ 12τdlnNe, which yields the lemma. J

I Lemma 18. Let C0 ∈ Ln ∩ (Lsafe ∪ Vclean) and ΞPPL(C0,Γ) = C0, C1, . . . . Then Pr(Cτ ∈
Ln ∩ Ghalf ∩ (Lsafe ∪ Vclean)) ≥ 1−O(N−1).

Proof. Immediate from Lemma 11, Lemma 14, and Lemma 15. J

I Lemma 19. Pr(minv∈V RI Γ(v, 5τ) ≤ temit) < N−900c+1.

Proof. Each agent participates in Γt with probability 2
n , for any t ≥ 0. Therefore, the

Chernoff bound given as (3) in Lemma 2 with δ = 1/2 yields Pr(RI Γ(v, 5τ) ≤ temit) ≤
etemit/4 < N−900c. The lemma holds by the union bounds. J

Intuitively, the following lemma guarantees that the number of leaders decreases at least
by half during every 15τ interactions with probability close to 1/4, and never increases with
probability 1 − O(N−1) after the population enters a configuration in C0 ∈ Ln ∩ Ghalf ∩
(Lsafe ∪ Vclean).

I Lemma 20. Let i ∈ [0, n− 1]. Let C0 ∈ L1+i ∩ Ghalf ∩ (Lsafe ∪ Vclean) and ΞPPL(C0,Γ) =
C0, C1, . . . . The following inequalities hold:

Pr(C15τ ∈ L1+bi/2c) ≥ 1/4−O(n−1) (7)
Pr(C15τ ∈ L1+i ∩ Ghalf ∩ (Lsafe ∪ Vclean)) ≥ 1−O(N−1). (8)
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Proof. In this proof, we use notation “with high probability” to represent “with probability
1−O(n−1)”. By repeated application of Lemma 10, Lemma 11, Lemma 14, and Lemma 15, it
holds with high probability that no new leader is created and at least one leader always exists
in the population in C0, C1, . . . , C15τ . Moreover, Lemma 19 guarantees that the individual
timer of every agent reaches zero in every 5τ interactions with high probability. In particular,
for all v ∈ V , v.timerI reaches zero at least once in the middle period C5τ , C5τ+1, . . . , C10τ
with high probability. Let VL be the set of all leaders in C0 and i′ = |VL| − 1. Note that
0 ≤ i′ ≤ i since C0 ∈ L1+i. Since ¬L0

C0,Γ(15τ) with high probability, some vl ∈ VL creates a
new virus with probability at least 1/2−O(n−1). This is because, when the individual timer
of a leader reaches zero in an interaction, that leader creates a new virus with probability
1/2 (i.e., if it is the initiator of the current interaction). The virus propagates to the whole
population within 4n logn (< 5τ) interactions thereafter with high probability by Corollary
8. At this time, with probability at least 1/2, independently of configuration C0, no less
than di′/2e agents in VL \ {vl} are unshielded. This is because the individual timer of every
v ∈ VL \ {vl} reaches zero before the time, and then becomes unshielded with probability
1/2. We make the margin period C0, C1, . . . , C5τ for this reason. To conclude, no fewer
than di′/2e leaders in VL \ {vl} are killed and at most 1 + bi′/2c ≤ 1 + bi/2c leaders survive
(i.e., remain leaders) in C15τ , with probability 1/4−O(n−1). Therefore, we obtain (7) since
¬L+

C0,Γ(15τ) ∧ ¬L0
C0,Γ(15τ) holds with high probability. Inequality (8) is guaranteed simply

by applying Lemma 10, Lemma 11, Lemma 14, and Lemma 15 repeatedly (fifteen times). J

The following corollary follows from Lemma 20.

I Corollary 21. Let C0 ∈ Ln ∩ Ghalf ∩ (Lsafe ∪ Vclean) and ΞPPL(C0,Γ) = C0, C1, . . . . Then,
there exists some integer w = O(τ logn) such that Pr(Cw ∈ S) ≥ 1−O

(
logn
N

)
.

I Lemma 22. maxC∈Call(PPL) EICPPL(C,S) = O
(
cn logn · log2N

)
holds.

Proof. By Lemma 14, Lemma 17, Lemma 18, and Corollary 21, we have the following
inequality:

max
C∈Call(PPL)

EICPPL(C,S) ≤ O(τ logn) +O

(
logn
N

)
· max
C∈Call(PPL)

EICPPL(C,S).

Solving this inequality yields maxC∈CallPPL EICPPL(C,S) = O(τ logn) = O(cn logn · log2N).
J

I Theorem 23. Protocol PPL is an (O(cn logn · log2N),Ω(cn10c+1))- loosely-stabilizing
leader election protocol.

Thus, in terms of parallel time, PPL is a loosely-stabilizing leader election algorithm with
polylogarithmic convergence time (O(c logn · log2N) ⊆ O(c log3N)) and arbitrarily large
polynomial holding time (Ω(cn10c)).

5 Conclusion

We have presented a loosely-stabilizing leader election protocol with polylogarithmic conver-
gence time. Given an upper bound N of n and a parameter c, our protocol elects a unique
leader in the population within O(c log3N) parallel time starting from any configuration,
and keeps the unique leader for Ω(cn10c) parallel time.

OPODIS 2018



30:16 Loosely-Stabilizing Leader Election with Polylogarithmic Convergence Time

References
1 Dan Alistarh and Rati Gelashvili. Polylogarithmic-time leader election in population pro-

tocols. In Proceedings of the 42nd International Colloquium on Automata, Languages, and
Programming, pages 479–491. Springer, 2015.

2 Dan Alistarh, Rati Gelashvili, and Milan Vojnović. Fast and exact majority in population
protocols. In the 34th ACM Symposium on Principles of Distributed Computing, pages
47–56, 2015.

3 D. Angluin, J Aspnes, Z. Diamadi, M.J. Fischer, and R. Peralta. Computation in networks
of passively mobile finite-state sensors. Distributed Computing, 18(4):235–253, 2006.

4 D. Angluin, J. Aspnes, M. J Fischer, and H. Jiang. Self-stabilizing population protocols.
ACM Transactions on Autonomous and Adaptive Systems, 3(4):13, 2008.

5 Dana Angluin, James Aspnes, and David Eisenstat. Fast computation by population pro-
tocols with a leader. Distributed Computing, 21(3):183–199, 2008.

6 J. Beauquier, P. Blanchard, and J. Burman. Self-stabilizing leader election in population
protocols over arbitrary communication graphs. In International Conference on Principles
of Distributed Systems, pages 38–52, 2013.

7 S. Cai, T. Izumi, and K. Wada. How to prove impossibility under global fairness: On space
complexity of self-stabilizing leader election on a population protocol model. Theory of
Computing Systems, 50(3):433–445, 2012.

8 D. Canepa and M. G. Potop-Butucaru. Stabilizing leader election in population protocols,
2007. http://hal.inria.fr/inria-00166632.

9 M. J. Fischer and H. Jiang. Self-stabilizing Leader Election in Networks of Finite-State
Anonymous Agents. In International Conference on Principles of Distributed Systems,
pages 395–409, 2006. doi:10.1007/11945529_28.

10 Leszek Gąsieniec and Grzegorz Staehowiak. Fast space optimal leader election in population
protocols. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 2653–2667. SIAM, 2018.

11 T. Izumi. On Space and Time Complexity of Loosely-Stabilizing Leader Election. In
International Colloquium on Structural Information and Communication Complexity, pages
299–312, 2015.

12 M. Mitzenmacher and E. Upfal. Probability and Computing: Randomized Algorithms and
Probabilistic Analysis. Cambridge University Press, 2005.

13 R. Mizoguchi, H. Ono, S. Kijima, and M. Yamashita. On space complexity of self-stabilizing
leader election in mediated population protocol. Distributed Computing, 25(6):451–460,
2012.

14 Y. Sudo, J. Nakamura, Y. Yamauchi, F. Ooshita, H. Kakugawa, and T. Masuzawa. Loosely-
stabilizing leader election in a population protocol model. Theoretical Computer Science,
444:100–112, 2012.

15 Y. Sudo, F. Ooshita, H. Kakugawa, and T. Masuzawa. Loosely-Stabilizing Leader Election
on Arbitrary Graphs in Population Protocols. In International Conference on Principles
of Distributed Systems, pages 339–354, 2014.

16 Y. Sudo, F. Ooshita, H. Kakugawa, and T. Masuzawa. Loosely-stabilizing Leader Election
on Arbitrary Graphs in Population Protocols without Identifiers nor Random Numbers. In
International Conference on Principles of Distributed Systems, 2015.

17 Yuichi Sudo, Toshimitsu Masuzawa, Ajoy K Datta, and Lawrence L Larmore. The Same
Speed Timer in Population Protocols. In the 36th IEEE International Conference on Dis-
tributed Computing Systems, pages 252–261, 2016.

18 X. Xu, Y. Yamauchi, S. Kijima, and M. Yamashita. Space Complexity of Self-Stabilizing
Leader Election in Population Protocol Based on k-Interaction. In Symposium on Self-
Stabilizing Systems, pages 86–97, 2013.

http://dx.doi.org/10.1007/11945529_28

	Introduction
	Our Contribution

	Preliminaries
	Protocol P_PL
	Analysis of Convergence and Holding Time
	Tools
	Expected Holding Time
	Expected Convergence Time

	Conclusion

