
Large-Scale Distributed Algorithms for Facility
Location with Outliers

Tanmay Inamdar
Department of Computer Science, The University of Iowa, Iowa, USA
tanmay-inamdar@uiowa.edu

Shreyas Pai
Department of Computer Science, The University of Iowa, Iowa, USA
shreyas-pai@uiowa.edu

Sriram V. Pemmaraju
Department of Computer Science, The University of Iowa, Iowa, USA
sriram-pemmaraju@uiowa.edu

Abstract
This paper presents fast, distributed, O(1)-approximation algorithms for metric facility location
problems with outliers in the Congested Clique model, Massively Parallel Computation (MPC)
model, and in the k-machine model. The paper considers Robust Facility Location and Facility
Location with Penalties, two versions of the facility location problem with outliers proposed by
Charikar et al. (SODA 2001). The paper also considers two alternatives for specifying the input:
the input metric can be provided explicitly (as an n×n matrix distributed among the machines)
or implicitly as the shortest path metric of a given edge-weighted graph. The results in the paper
are:

Implicit metric: For both problems, O(1)-approximation algorithms running in
O(poly(logn)) rounds in the Congested Clique and the MPC model and O(1)-approximation
algorithms running in Õ(n/k) rounds in the k-machine model.

Explicit metric: For both problems, O(1)-approximation algorithms running in
O(log log logn) rounds in the Congested Clique and the MPC model and O(1)-approximation
algorithms running in Õ(n/k) rounds in the k-machine model.

Our main contribution is to show the existence of Mettu-Plaxton-style O(1)-approximation
algorithms for both Facility Location with outlier problems. As shown in our previous work
(Berns et al., ICALP 2012, Bandyapadhyay et al., ICDCN 2018) Mettu-Plaxton style algorithms
are more easily amenable to being implemented efficiently in distributed and large-scale models
of computation.

2012 ACM Subject Classification Theory of computation → Facility location and clustering,
Theory of computation → Distributed algorithms, Theory of computation → MapReduce algo-
rithms, Theory of computation → Graph algorithms analysis

Keywords and phrases Distributed Algorithms, Clustering with Outliers, Metric Facility Loca-
tion, Massively Parallel Computation, k-machine model, Congested Clique

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2018.5

Related Version [24], http://arxiv.org/abs/1811.06494

© Tanmay Inamdar, Shreyas Pai, and Sriram V. Pemmaraju;
licensed under Creative Commons License CC-BY

22nd International Conference on Principles of Distributed Systems (OPODIS 2018).
Editors: Jiannong Cao, Faith Ellen, Luis Rodrigues, and Bernardo Ferreira; Article No. 5; pp. 5:1–5:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:tanmay-inamdar@uiowa.edu
mailto:shreyas-pai@uiowa.edu
mailto:sriram-pemmaraju@uiowa.edu
https://doi.org/10.4230/LIPIcs.OPODIS.2018.5
http://arxiv.org/abs/1811.06494
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

5:2 Large-Scale Distributed Algorithms for Facility Location with Outliers

1 Introduction

Metric Facility Location (in short, FacLoc) is a well-known combinatorial optimization
problem used to model clustering problems. The input to the problem is a set F of facilities,
an opening cost fi ≥ 0 for each facility i ∈ F , a set C of clients, and a metric space
(F ∪ C, d) of connection costs, where d(i, j) denotes the cost of client j connecting to facility
i. The objective is to find a subset F ′ ⊆ F of facilities to open so that the total cost of
opening the facilities plus the cost of connecting all clients to open facilities is minimized.
In other words, the quantity cost(F ′) :=

∑
i∈F ′ fi +

∑
j∈C d(j, F ′) is minimized, where

d(j, F ′) denotes mini∈F ′ d(i, j). FacLoc is NP-complete, but researchers have devised a
number of approximation algorithms for the problem. For any α ≥ 1, an α-approximation
algorithm for FacLoc finds in polynomial time, a subset F ′ ⊆ F of facilities such that
cost(F ′) ≤ α · cost(F ∗), where F ∗ is an optimal solution to the given instance of FacLoc.
There are several well-known O(1)-factor approximation algorithms for FacLoc including
the primal-dual algorithm of Jain and Vazirani [25] and the greedy algorithm of Mettu
and Plaxton [33]. The best approximation factor currently achieved by an algorithm for
FacLoc is 1.488 [30]. More recently, motivated by the need to solve FacLoc and other
clustering problems on extremely large inputs, researchers have proposed distributed and
parallel approximation algorithms for these problems. See for example [14, 15] for clustering
algorithms in systems such as MapReduce [11] and Pregel [32] and [4] for clustering algorithms
in the k-machine model. Clustering algorithms [38] have also been designed for streaming
models of computation [1].

Outliers can pose a problem for many statistical methods. For clustering problems, a few
outliers can have an outsized influence on the optimal solution, forcing the opening of costly
extra facilities or leading to poorer service to many clients. Versions of FacLoc that are
robust to outliers have been proposed by Charikar et al. [10], where the authors also present
O(1)-approximation algorithms for these problems. Specifically, Charikar et al. [10] propose
two versions of FacLoc that are robust to outliers:
Robust FacLoc: In addition to F , C, opening costs {fi|i ∈ F}, and metric d, we are also

given an integer 0 ≤ p ≤ |C|, that denotes the coverage requirement. The objective is to
find a solution (C ′, F ′), where F ′ ⊆ F , C ′ ⊆ C, with |C ′| ≥ p, and

cost(C ′, F ′) :=
∑
i∈F ′

fi +
∑
j∈C′

d(j, F ′)

is minimized over all (F ′, C ′), where |C ′| ≥ p.
FacLoc with Penalties: In addition to F , C, opening costs {fi|i ∈ F}, and metric d, we

are also given penalties pj ≥ 0 for each client j ∈ C. The objective is to find a solution
(C ′, F ′), where F ′ ⊆ F , and C ′ ⊆ C, such that,

cost(C ′, F ′) :=
∑
i∈F ′

fi +
∑
j∈C′

d(j, F ′) +
∑

j∈C\C′
pj

is minimized over all (C ′, F ′).

In this paper we present distributed O(1)-approximation algorithms for Robust FacLoc
and FacLoc with Penalties in several models of large-scale distributed computation. As far
as we know, these are the first distributed algorithms for versions of FacLoc that are robust
to outliers. In distributed settings, the complexity of the problem can be quite sensitive to
the manner in which input is specified. We consider two alternate ways of specifying the
input to the problem.

T. Inamdar, S. Pai, and S. V. Pemmaraju 5:3

Explicit metric: The metric d is specified explicitly as a |F | × |C| matrix distributed among
the machines of the underlying communication network. This explicit description of
the metric assumes that the |F | × |C| matrix fits in the total memory of all machines
combined.

Implicit metric: In this version, the metric is specified implicitly – as the shortest path
metric of a given edge-weighted graph whose vertex set is C ∪ F ; we call this the metric
graph. The reason for considering this alternate specification of the metric is that it
can be quite compact; the graph specifying the metric can be quite sparse (e.g., having
O(|F |+ |C|) edges). Thus, in settings where |F | · |C| is excessively large, but |F |+ |C| is
not, this is a viable option.

For the facility location problems considered in this paper, when the input metric is explicitly
specified, the biggest challenge is solving the maximal independent set (MIS) problem
efficiently. When the input metric is implicitly specified, the biggest challenge is to efficiently
learn just enough of the metric space. Thus, changing the input specification changes the
main challenge in a fundamental way and consequently we obtain very different results for
the two alternate input specifications.

Our algorithms run in 3 models of distributed computation, which we now describe
specifically in the context of facility location problems. All three models are synchronous
message passing model.

Congested Clique model: The Congested Clique model was introduced by Lotker et al. [31]
and then extensively studied in recent years [17, 18, 16, 9, 23, 26, 34, 13, 12, 37, 29]. In
this model, the underlying communication network is a clique and the number of nodes in
this clique equals |F |+ |C|. In each round, each node performs local computation based on
the information it holds and then sends a (possibly distinct) O(logn)-size message to each
of the remaining nodes. Initially, each node hosts a facility or a client and the node hosting
facility i knows the opening cost fi and the node hosting client j knows the penalty pj

for the FacLoc with penalties problem. In the explicit metric setting, the node hosting
facility i knows all the connection costs d(i, j) to all clients j ∈ C. Similarly, the node
hosting client j knows all connection costs d(i, j) to all facilities i ∈ F . In the implicit
metric setting, the node hosting a facility or client knows the edges of the metric graph
incident on that facility or client. We call this input distribution vertex-centric because
each node is responsible for the local input of a facility or client. The vertex-centric
assumption can be made without loss of generality because an adversarially (but evenly)
distributed input can be redistributed in a vertex-centric manner among the nodes in
constant rounds using Lenzen’s routing protocol [29].

Massively Parallel Computation (MPC) model: The MPC model was introduced in [27]
and variants of this model were considered in [19, 5, 2]. It can be viewed as a clean
abstraction of the MapReduce model. We are given k machines, each with S words of
space and the input is distributed in a vertex-centric fashion among the machines, the
only difference being that machines can host multiple facilities and clients (provided
they fit in memory). Let I be the total input size. Typically, we require k and S to
each be sublinear in I, that is O(I1−ε) for some ε > 0. We also require that the total
memory not be too much larger than needed for the input, i.e., k × S = O(I). In each
round, each machine sends and receives a total of O(S) words of information because
it is the volume of information that will fit into its memory. In our work we consider

OPODIS 2018

5:4 Large-Scale Distributed Algorithms for Facility Location with Outliers

MPC algorithms with memory S = Õ(n) 1 where n = |F | = |C|. In the explicit metric
setting, since I = O(n2), even if we assume S = Õ(n), k and S are still strictly sublinear
in I. But in the implicit metric setting, if we assume S = Õ(n) then the memory may
not be strictly sublinear in the input size when the input graph is sparse, having O(n)
edges for example. Therefore, our algorithms are not strictly MPC algorithms when the
input is sparse. Similar to the Congested Clique model, we can assume that the input is
distributed in a vertex-centric manner without loss of generality, due to the nature of
communication in each round and the fact that S = Ω(n).

k-machine model: The k-machine model was introduced in [28] and further studied in [36].
This model abstracts essential features of systems such as Pregel [32] and Giraph (see
http://giraph.apache.org/) that have been designed for large-scale graph processing.
We are given k machines and the input is distributed among the machines. In [28], the
k-machine model is used to solve graph problems and they assume a random vertex
partition distribution of the input graph among the k machines. In other words, each
vertex along with its incident edges is provided to one of the k machines chosen uniformly
at random. The corresponding assumption for facility location problems would be that
each facility and each client is assigned uniformly at random to one of the k machines.
Facility i ∈ F comes with its opening cost fi and client j ∈ C comes with its penalty pj

for the FacLoc with penalties problem. In the explicit metric setting, each facility i ∈ F
comes with connections costs d(i, j) for all j ∈ C whereas in the implicit metric setting
facility i comes along with the edges of the metric graph incident on it. Similarly for each
client j ∈ C. In each round, each machine can send a (possibly distinct) size-B message
to each of the remaining k − 1 machines. Typically, B is assumed to be poly(logn) bits
[28].

The Congested Clique model does not directly model settings of large-scale computation
because in this model the number of nodes in the underlying communication network equals
the number of vertices in the input graph. However, fast Congested Clique algorithms can
usually be translated (sometimes automatically) to fast MPC and k-machine algorithms. So
the Congested Clique algorithms in this paper are important stepping stones towards more
complex MPC and k-machine algorithms [20, 28]. The MPC model and the k-machine model
are quite similar. Even though the k-machine model is specified with a per-edge bandwidth
constraint of B bits, it can be equivalently described with a per-machine bandwidth constraint
of k · B bits that can be sent and received in each round. Thus setting k · B = S makes
the k-machine model and MPC model equivalent in their bandwidth constraint. Despite
their similarities, it is useful to think about both models due to differences in how they are
parameterized and how these parameters affect the running times of algorithms in these
models. For example, in the MPC model, usually one starts by picking S as a sublinear
function of the input size n. This leads to the number of machines being fixed and the
running time of the algorithm is expressed as a function of n. In the k-machine model B is
usually fixed at poly(logn) and the running time of the algorithm is expressed as a function
of n and k. This helps us understand how the running time changes as we increase k. For
example, algorithms with running times of the form O(n/k) exhibit a linear speedup as k
increases, whereas algorithms with running time of the form O(n/k2) indicating a quadratic
speedup [35].

1 Throughout the paper, we use Õ(f(n)) as a shorthand for O(f(n) · poly(log n)) and Ω̃(f(n)) as a
shorthand for Ω(f(n)/poly(log n)).

T. Inamdar, S. Pai, and S. V. Pemmaraju 5:5

1.1 Main Results

In order to obtain O(1)-approximation algorithms for Robust FacLoc and FacLoc with
Penalties, Charikar et al. [10] propose modifications to the primal-dual approximation
algorithm for FacLoc due to Jain and Vazirani [25]. The problem with using this approach
for our purposes is that it seems difficult obtain fast distributed algorithms using the Jain-
Vazirani approach. For example, obtaining a sublogarithmic round O(1)-approximation for
FacLoc in the Congested Clique model using this approach seems difficult. However, as
established in our previous work [21, 4, 8] and in [15] the greedy algorithm of Mettu and
Plaxton [33] for FacLoc seems naturally suited for fast distributed implementation.

The first contribution of this paper is to show that O(1)-approximation algorithms to
Robust FacLoc and FacLoc with Penalties can also be obtained by using variants of the
Mettu-Plaxton greedy algorithm. Our second contribution is to show that by combining
ideas from earlier work [21, 4] with some new ideas, we can efficiently implement distributed
versions of the variants of the Mettu-Plaxton algorithm for Robust FacLoc and FacLoc
with Penalties. The specific results we obtain for the two versions of input specification are
as follows. For simplicity of exposition, we assume |C| = |F | = n.

Implicit metric: For both problems, we present O(1)-approximation algorithms running
in O(poly(logn)) rounds in the Congested Clique and the MPC model. Assuming the
metric graph has m edges, the input size is Θ(m+ n) and we use Õ(m/n) machines each
with memory Õ(n). In the k-machine model, we present O(1)-approximation algorithms
running in Õ(n/k) rounds.
Explicit metric: For both problems, we present extremely fast O(1)-approximation
algorithms, running in O(log log logn) rounds, in the Congested Clique and the MPC
model. The input size is Θ(n2) and we use n machines each with memory Õ(n) in the
MPC model. In the k-machine model, we present O(1)-approximation algorithms running
in Õ(n/k) rounds.

Due to space constraints we only describe our distributed implementations for the Robust
FacLoc algorithm and omit most of the technical proofs. The full version with all the
technical details appears in [24].

2 Sequential Algorithms for Facility Location with Outliers

We first describe the greedy sequential algorithm of Mettu and Plaxton [33] (Algorithm 1)
for the Metric FacLoc problem which will serve as a building block for our algorithms for
Robust FacLoc and the FacLoc with Penalties discussed in this section. The algorithm
first computes a “radius” ri for each facility i ∈ F and it then greedily picks facilities to
open in non-decreasing order of radii provided no previously opened facility is too close. The
“radius” of a facility i is the amount that each client is charged for the opening of facility
i. Clients pay towards this charge after paying towards the cost of connecting to facility
i; clients that have a large connection cost to i pay nothing towards this charge. It is
shown in [33] using a charging argument that Algorithm 1 is 3-approximation for the Metric
FacLoc problem. Later on, [3] gave a primal-dual analysis, showing the same approximation
guarantee, by comparing the cost of the solution to a dual feasible solution. We use the
latter analysis approach as it can be easily modified to work for the algorithms with outliers.

OPODIS 2018

5:6 Large-Scale Distributed Algorithms for Facility Location with Outliers

Algorithm 1: FacilityLocationMP(F,C).
/* Radius Computation Phase: */

1 For each i ∈ F , compute ri ≥ 0, satisfying fi =
∑

j∈C max{0, ri − cij}.
/* Greedy Phase: */

2 Sort and renumber facilities in the non-decreasing order of ri.
3 F ′ ← ∅ . Solution set
4 for i = 1, 2, . . . do
5 if there is no facility in F ′ within distance 2ri from i then
6 F ′ ← F ′ ∪ {i}
7 end
8 end
9 Connect each client j to its closest facility in F ′.

2.1 Robust Facility Location
Since we use the primal dual analysis of [3] to get a bounded approximation factor, we need
to address the fact that the standard linear programming relaxation for Robust FacLoc
has unbounded integrality gap. To fix this we modify the instance in a similar manner to
[10]. Let (C∗, F ∗) be a fixed optimal solution, and let i∗ ∈ F be a facility in that solution
with the maximum opening cost fi∗ . We begin by assuming that we are given a facility, say
ie with opening cost fie

, such that, fi∗ ≤ fie
≤ αfi∗ , where α ≥ 1 is a constant. Now, we

modify the original instance by changing the opening costs of the facilities as follows.

f ′i =


+∞ if fi > fie

0 if i = ie

fi otherwise

Note that we can remove the facilities with opening cost +∞ without affecting the cost
of an optimal solution, and hence we assume that w.l.o.g. all the modified opening costs f ′i
are finite.

Let (C∗e , F ∗e) be an optimal solution for this modified instance, and let coste(C∗e , F ∗e) be
its cost using the modified opening costs. Observe that without loss of generality, we can
assume that ie ∈ F ∗e , since its opening cost f ′ie

equals 0. We obtain the following lemma and
its simple corollary.

I Lemma 1. coste(C∗e , F ∗e) ≤ cost(C∗, F ∗).

I Corollary 2. Let (C ′e, F ′e) be a feasible solution for the instance with modified facility
opening costs, such that, coste(C ′e, F ′e) ≤ β · coste(C∗e , F ∗e) + γ · fie

(where β ≥ 1, γ ≥ 0).
Then, (C ′e, F ′e) is a β + α · (γ + 1) approximation for the original instance.

To efficiently find a facility ie satisfying fi∗ ≤ fie ≤ αfi∗ , we partition the facilities into
sets where each set contains facilities with opening costs from the range

[
(1 + ε)i, (1 + ε)i+1).

Iterating over all such ranges, and choosing a facility with highest opening cost from that
range, we are guaranteed to find a facility ie such that, fi∗ ≤ fie

≤ (1 + ε)fi∗
2. The total

2 An alternative approach would be to consider each facility one-by-one as a candidate, but for an efficient
distributed implementation we can only afford O(log n) distinct guesses.

T. Inamdar, S. Pai, and S. V. Pemmaraju 5:7

number of such iterations will be O(log1+ε
fmax
fmin

), where fmax is the largest opening cost, and
fmin is the smallest non-zero opening cost. Assuming that every individual item in the input
(e.g., facility opening costs, connection costs, etc.) can each be represented in O(logn) bits
and that ε is a constant, this amounts to O(logn) iterations.

Our facility location algorithm is described in Algorithm 2. This algorithm can be
thought of as running O(logn) separate instances of a modified version of the original Mettu-
Plaxton algorithm (Algorithm 1), where in each instance of the Mettu-Plaxton algorithm,
the algorithm is terminated as soon as the number of outlier clients drops below the required
number, following which there is some post-processing.

We abuse the notation slightly, and denote by (C ′, F ′) the solution returned by the
algorithm, i.e., the solution (C ′t, F ′t) corresponding to the iteration t of the outer loop that
results in a minimum cost solution. Similarly, we denote by ie a facility chosen in line 2 in
the iteration corresponding to this iteration t.

I Theorem 3. coste(C ′, F ′) ≤ 3 · coste(C∗e , F ∗e) + fie

Applying Corollary 2 with α = 1 + ε, β = 3, γ = 1 yields the following approximation
guarantee.

I Theorem 4. The solution returned by Algorithm 2 is a 5 + ε approximation to the Robust
FacLoc problem.

2.2 Facility Location with Penalties
For the penalty version, each client j comes with a penalty pj which is the cost we pay if
we make j an outlier. Therefore, the radius computation for a facility changes because if
a facility i is asking client j to contribute more than pj − cij then it is cheaper for j to
mark itself as an outlier and pay its penalty. Therefore, for each facility i ∈ F , let ri ≥ 0
be a value such that fi =

∑
j∈C max {min {ri − cij , pj − cij} , 0}, if it exists. Notice that if

for a facility i ∈ F , such an ri does not exist, then it must be the case that for all j ∈ C,
pj ≤ cij . That is, it is for any client, it is cheaper to pay the penalty than to connect it
to this facility. Therefore, removing such a facility from consideration does not affect the
cost of any solution, and hence we assume that for all i ∈ F , an ri ≥ 0 exists such that
fi =

∑
j∈C max {min {ri − cij , pj − cij} , 0}. The algorithm for FacLoc with Penalties is

shown in Algorithm 3.
A primal-dual analysis of Algorithm 3 leads to the following upper bound.

I Theorem 5. cost(C ′, F ′) ≤ 3 · cost(C∗, F ∗).

3 Distributed Robust Facility Location: Implicit Metric

We first present our k-machine algorithm for Distributed Robust FacLoc in the implicit
metric setting and derive the Congested Clique as a special case for k = n. We then describe
how to implement the algorithm in the MPC model.

3.1 The k-Machine Algorithm
In this section we show how to implement the sequential algorithms for the Robust FacLoc
in the k-machine model. To do this we first need to establish some primitives and techniques.
These have largely appeared in [4]. Then we will provide details for implementing the Robust
FacLoc algorithm in the k-machine model.

OPODIS 2018

5:8 Large-Scale Distributed Algorithms for Facility Location with Outliers

Algorithm 2: RobustFacLoc(F,C, p).
/* Recall: ` := |C| − p */

1 for t = 0, . . . , O(logn) do
2 Let ie ∈ F be the most expensive facility from the facilities with opening costs in

the range [(1 + ε)t, (1 + ε)t+1) for some small constant ε > 0
3 Modify the facility opening costs to be

f ′i =


+∞ if fi > fie

0 if i = ie

fi otherwise

/* Radius Computation Phase: */
4 For each i ∈ F , compute ri ≥ 0, satisfying f ′i =

∑
j∈C max {0, ri − cij}.

/* Greedy Phase: */
5 Sort and renumber facilities in the non-decreasing order of ri.
6 Let C ′ ← ∅, F ′ ← ∅, O′ ← C

7 Let F0 ← ∅
8 for i = 1, 2, . . . do
9 if there is no facility in F ′ within distance 2ri from i then

10 F ′ ← F ′ ∪ {i}
11 end
12 Fi ← Fi−1 ∪ {i}
13 Let Ci denote the set of clients that are within distance ri

14 C ′ ← C ′ ∪ Ci, O′ ← O′ \ Ci.
15 if |O′| ≤ ` then break
16 end

/* Outlier Determination Phase: */
17 if |O′| > ` then
18 Let O1 ⊆ O′ be a set of |O′| − ` clients that are closest to facilities in F ′.
19 C ′ ← C ′ ∪O1, O′ ← O′ \O1.
20 end
21 else if |O′| < ` then
22 Let O2 ⊆ C ′ be the set of `− |O′| clients with largest distance to open

facilities F ′.
23 C ′ ← C ′ \O2, O′ ← O′ ∪O2.
24 end
25 Let (C ′t, F ′t)← (C ′, F ′)
26 end
27 return Return (C ′t, F ′t) with the minimum cost.

Since the input metric is only implicitly provided, as an edge-weighted graph, a key
primitive that we require is computing shortest path distances to learn parts of the metric
space. To this end, the following lemma shows that we can solve the Single Source Shortest
Paths (SSSP) problem efficiently in the k-machine model.

I Lemma 6 (Corollary 1 in [4]). For any 0 < ε ≤ 1, there is a deterministic (1 + ε)-
approximation algorithm in the k-machine model for solving the SSSP problem in undirected
graphs with non-negative edge-weights in O((n/k) · poly(logn)/poly(ε)) rounds.

T. Inamdar, S. Pai, and S. V. Pemmaraju 5:9

Algorithm 3: PenaltyFacLoc(F,C, p).
/* Radius Computation Phase: */

1 Compute ri for each i ∈ F satisfying fi =
∑

j∈C max {min {ri − cij , pj − cij} , 0} .
/* Greedy Phase: */

2 Sort and renumber facilities in the non-decreasing order of ri.
3 C ′ ← ∅, F ′ ← ∅, O′ ← ∅.
4 for i = 1, 2, . . . do
5 if there is no facility in F ′ within distance 2ri from i then
6 F ′ ← F ′ ∪ {i}
7 end
8 end

/* Outlier Determination Phase: */
9 for each client j do

10 Let i be the closest facility to j in F ′
11 if cij ≤ pj then C ′ ← C ′ ∪ {j}
12 else O′ ← O′ ∪ {j}
13 end
14 return (C ′, F ′) as the solution.

Algorithm 4: RadiusComputation Algorithm.
1 Neighborhood-Size Computation. Each machine mj computes qi(v), for all

integers i ≥ 0 and for all vertices v ∈ H(mj).
2 Local Computation. Each machine mj computes r̃v locally, for all vertices

v ∈ H(mj). (Recall that r̃v := (1 + ε)t−1 where t ≥ 1 is the smallest integer for
which

∑t
i=0 qi(v) · ((1 + ε)i+1 − (1 + ε)i) > fv.)

In addition to SSSP, our algorithms require an efficient solution to a more general problem
that we call Multi-Source Shortest Paths (in short, MSSP). The input is an edge-weighted
graph G = (V,E), with non-negative edge-weights, and a set T ⊆ V of sources.

For MSSP, the output is required to be, for each vertex v, the distance d(v, T) (i.e.,
min{d(v, u) | u ∈ T}) and the vertex v∗ ∈ T that realizes this distance. The following lemma
shows that we can solve this problem efficiently in the k-machine model.

I Lemma 7 (Lemma 4 in [4]). Given a set T ⊆ V of sources known to the machines (i.e.,
each machine mj knows T ∩H(mj)), we can, for any value 0 ≤ ε ≤ 1, compute a (1 + ε)-
approximation to MSSP in Õ(1/poly(ε) · n/k) rounds, w.h.p. Specifically, after the algorithm
has ended, for each v ∈ V \ T , the machine mj that hosts v knows a pair (u, d̃) ∈ T × R+,
such that d(v, u) ≤ d̃ ≤ (1 + ε) · d(v, T).

Using the primitives described above, [4] show that it is possible to compute approximate
radius values efficiently in the k-machine model. The algorithm is described here, see the full
version [24] for details on the implementation of this algorithm.

For any facility or client v and for any integer i ≥ 1, let qi(v) denote |B(v, (1 + ε)i)|, the
size of the neighborhood of v within distance (1 + ε)i.

Therefore, we get the following lemma the proof of which can be found in Section 4 of [4].

OPODIS 2018

5:10 Large-Scale Distributed Algorithms for Facility Location with Outliers

I Lemma 8. For each facility v ∈ F it is possible to compute an approximate radius r̃v in
Õ(n/k) rounds of the k-machine model such that rv

(1+ε)2 ≤ r̃v ≤ (1 + ε)2rv where rv is the
actual radius of v satisfying fv =

∑
u∈B(v,rv)(rv − d(v, u)).

The greedy phase is implemented by discretizing the radius values computed in the first
phase which results in O(log1+ε n) distinct categories. Note that in each category, the order
in which we process the facilities does not matter as it will only add an extra (1 + ε) factor to
the approximation ratio. This reduces the greedy phase to computing a maximal independent
set (MIS) on a suitable intersection graph for each category i where the vertices are the
facilities in the ith category and there is an edge between two vertices if they are within
distance 2(1 + ε)i of each other.

Finding such an MIS requires O(logn) calls to a subroutine that solves MSSP [39] and
since our implementation of MSSP only returns approximate distances, what we really
compute is a relaxed version of an MIS called an (ε, d)-MIS in [4].

I Definition 9 ((ε, d)-approximate MIS). For an edge-weighted graph G = (V,E), and
parameters d, ε > 0, an (ε, d)-approximate MIS is a subset I ⊆ V such that
1. For all distinct vertices u, v ∈ I, d(u, v) ≥ d

1+ε .
2. For any u ∈ V \ I, there exists a v ∈ I such that d(u, v) ≤ d · (1 + ε).

The work in [4] gives an algorithm that efficiently computes an approximate MIS of an
induced subgraph G[W] of G for any vertex set W in the k-machine model.

I Lemma 10. We can find an (O(ε), d)-approximate MIS I of G[W] whp in Õ(n/k) rounds.

We are now ready to describe the k-machine model implementation of Algorithm 2.
Our k-machine model implementation of the Robust FacLoc algorithm is summarized in

Algorithm 5. The correctness proof is similar to that of Algorithm 2 but is complicated by
the fact that we compute (1 + ε)-approximate distances instead of exact distances. Again, as
in the analysis of the sequential algorithm, we abuse the notation so that (i) (C ′, F ′) refers
to a minimum-cost solution returned by the algorithm, (ii) ie refers to the facility chosen in
the line 2 of the algorithm, and (iii) the modified instance with original facility costs. This
analysis appears in the full version [24], and as a result we get the following theorem.

I Theorem 11. In Õ(poly(1/ε) · n/k) rounds, whp, Algorithm 5 finds a factor 5 + O(ε)
approximate solution (C ′, F ′) to the Robust FacLoc problem for any constant ε > 0.

3.2 The Congested Clique and MPC Algorithms
The algorithm for Congested Clique is essentially the same as the k-machine model algorithm
with k = n. The only technical difference is that in the k-machine model, the input graph
vertices are randomly partitioned across the machines. This means that even though there
are n vertices and n machines, a single machine may be hosting multiple vertices. It is easy
to see that the Congested Clique model, in which each machine holds exactly one vertex can
simulate the k-machine algorithm with no overhead in rounds. Therefore, by substituting
k = n in the running time of Theorem 11, we get the following result.

I Theorem 12. In O(poly logn) rounds of Congested Clique, whp, we can find a factor
5 +O(ε) approximate solution to the Robust FacLoc problem for any constant ε > 0.

Now we focus on the implementing the MPC algorithm. The first crucial observation is
that Algorithm 5 reduces the task of finding an approximate solution to the Robust FacLoc

T. Inamdar, S. Pai, and S. V. Pemmaraju 5:11

Algorithm 5: RobustFacLocDist(F,C, p).
/* Recall ` := |C| − p */

1 for t = 1, . . . , O(logn) do
2 Let ie ∈ F be a most expensive facility from the facilities with opening costs in

the range
[
(1 + ε)t, (1 + ε)t+1)

3 Modify the facility opening costs to be

f ′i =


+∞ if fi > fie

0 if i = ie

fi otherwise

/* Radius Computation Phase: */
4 Call the RadiusComputation algorithm (Algorithm 4) to compute approximate

radii.
/* Greedy Phase: */

5 Let F ′ = ∅, C ′ = ∅, O′ = C

6 for i = 0, 1, 2, . . . do
7 Let W be the set of vertices w ∈ F across all machines with r̃w = r̃ = (1 + ε)i

8 Using Lemma 7, remove all vertices from W within approximate distance
2(1 + ε)3 · r̃ from F ′

9 I ← ApproximateMIS(G,W, 2(1 + ε)3 · r̃, ε)
10 F ′ ← F ′ ∪ I
11 Using Lemma 7, move from O′ to C ′ all vertices that are within distance

(1 + ε) · r̃ from Fi, the set of facilities processed up to iteration i
12 if |O′| ≤ ` then break
13 end

/* Outlier Determination Phase: */
14 if |O′| > ` then
15 Using Lemma 7 find O1 ⊆ O′, a set of |O′| − ` clients that are closest to

facilities in F ′.
16 C ′ ← C ′ ∪O1, O′ ← O′ \O1.
17 end
18 else if |O′| < ` then
19 Using Lemma 7 find O2 ⊆ C \O′, a set of (`− |O′|) clients that are farthest

away from facilities in F ′
20 C ′ ← C ′ \O2, O′ ← O′ ∪O2.
21 end
22 Let (C ′t, F ′t)← (C ′, F ′)
23 end
24 return (C ′t, F ′t) with a minimum cost

problem in the implicit metric setting to poly logn calls to a (1 + ε)-approximate SSSP
subroutine along with some local bookkeeping. Therefore, all we need to do is efficiently
implement an approximate SSSP algorithm in the MPC model.

The second fact that helps us is that Becker et al. [6] provide a distributed implementation
of their approximate SSSP algorithm in the Broadcast Congested Clique (BCC) model. The

OPODIS 2018

5:12 Large-Scale Distributed Algorithms for Facility Location with Outliers

BCC model is the same as the Congested Clique model but with the added restriction that
nodes can only broadcast messages in each round. Therefore we get the following simulation
theorem, which follows almost immediately from Theorem 3.1 of [7].

I Theorem 13. Let A be a T round BCC algorithm that uses Õ(n) local memory at each
node. One can simulate A in the MPC model in O(T) rounds using Õ(n) memory per
machine.

In any T round BCC algorithm, each vertex will receive O(n · T) distinct messages. The
approximate SSSP algorithm of Becker et al. [6] runs in O(poly logn/poly(ε)) rounds and
therefore, uses Õ(n) memory per node to store all the received messages (and for local
computation). Therefore, we get the following theorem.

I Theorem 14. In O(poly logn) rounds of MPC, whp, we can find a factor 5 + O(ε)
approximate solution to the Robust FacLoc problem for any constant ε > 0.

4 Distributed Robust Facility Location: Explicit Metric

For the k-machine model implementation, the implicit metric algorithm from the previous
section also provides a similar guarantee for the explicit metric setting and hence we do not
discuss it separately in this section.

4.1 The Congested Clique Algorithm
The work in [21] presents a Congested Clique algorithm that runs in expected O(log logn)
rounds and computes an O(1)-approximation to FacLoc. This is improved exponentially in
[22] which presents an O(1)-approximation algorithm to FacLoc running in O(log log logn)
rounds whp. The algorithms in [21] and in [22] are essentially the same with one key
difference. They both reduce the problem of solving FacLoc in the Congested Clique model
to the ruling set problem. Specifically, showing that if a t-ruling set can be computed in T
rounds, then an O(t)-approximation to FacLoc can be computed in O(T) rounds. In [21] a
2-ruling set is computed in expected O(log logn) rounds, whereas in [22] it is computed in
O(log log logn) rounds whp.

The algorithm for computing an O(1)-approximation to Robust FacLoc (see Section
2.1) is essentially the FacLoc algorithm in [21, 22], but with an outer loop that runs
O(logn) times. In each iteration of this outer loop, we modify the facility opening costs in a
certain way and solve FacLoc on the resulting instance. Thus we have O(logn) instances of
FacLoc to solve and via the reduction in [21, 22], we have O(logn) independent instances
of the ruling set problem to solve. Here we show that O(logn) independent instances of
the O(log log logn)-round 2-ruling set algorithm in [22] can be executed in parallel in the
Congested Clique model, still in O(log log logn) rounds whp. To be precise, suppose that
the input consists of c = O(logn) graphs G1 = (V,E1), G2 = (V,E2), . . . , Gc = (V,Ec).

I Theorem 15. 2-ruling sets for all graphs Gi, 1 ≤ i ≤ c, can be computed in O(log log logn)
rounds whp.

The theorem above and the discussion preceding it leads to the following theorem.

I Theorem 16. There is an O(1)-approximation algorithm in the Congested Clique model
for Robust FacLoc, running in O(log log logn) rounds whp.

T. Inamdar, S. Pai, and S. V. Pemmaraju 5:13

4.2 The MPC Algorithm
We now utilize the Congested Clique algorithm for Robust FacLoc to design an MPC model
algorithm for Robust FacLoc, also running in O(log log logn) rounds whp. Since each vertex
has explicit knowledge of n distances, the overall memory is O(n2) words. Since the memory
of each machine is Õ(n), the number of machines will be Õ(n) as well. Therefore, we can
simulate the algorithm from the preceding section using Theorem 3.1 of [7] in the MPC
model. We summarize our result in the following theorem.

I Theorem 17. There is an O(1)-approximation algorithm for Robust FacLoc that can be
implemented in the MPC model with Õ(n) words per machine in O(log log logn) rounds whp.

5 Conclusion and Open Questions

This paper presents fast O(1)-factor distributed algorithms for Facility Location problems
that are robust to outliers. These algorithms run in the Congested Clique model and two
models of large-scale computation, namely, the MPC model and the k-machine model. As far
as we know these are the the first such algorithms for these important clustering problems.

Fundamental questions regarding the optimality of our results remain open. In the explicit
metric setting, we present algorithms in the Congested Clique model and the MPC model
that run in O(log log logn) rounds. While these may seem extremely fast, it is not clear that
they are optimal. Via the results of Drucker et al. [13], it seems like showing a non-trivial
lower bound in the Congested Clique model is out of the question for now. So a tangible
question one can ask is whether we can further improve the running time of the 2-ruling
set algorithm in the Congested Clique model, possibly solving it in O(log∗ n) or even O(1)
rounds. This would immediately imply a corresponding improvement in the running time of
our Congested Clique and MPC model algorithms in the explicit metric setting.

All the k-machine algorithms we present in the paper run in Õ(n/k) rounds. It is unclear
if this is optimal. In previous work [4], we showed a lower bound of Ω̃(n/k) in the implicit
metric setting, assuming that in the output to facility location problems every open facility
needed to know all clients that connect to it. The lower bound heavily relies on the implicit
metric and the output requirement assumptions. However, even if we relax both of these
assumptions, i.e., we work in the explicit metric setting and only ask that every client know
the facility that will serve it, we still seem to be unable to get over the Õ(n/k) barrier.

References
1 Noga Alon, Yossi Matias, and Mario Szegedy. The Space Complexity of Approximating

the Frequency Moments. In Proceedings of the Twenty-eighth Annual ACM Symposium on
Theory of Computing, STOC ’96, pages 20–29, New York, NY, USA, 1996. ACM. doi:
10.1145/237814.237823.

2 Alexandr Andoni, Aleksandar Nikolov, Krzysztof Onak, and Grigory Yaroslavtsev. Parallel
Algorithms for Geometric Graph Problems. In Proceedings of the Forty-sixth Annual ACM
Symposium on Theory of Computing, STOC ’14, pages 574–583, New York, NY, USA, 2014.
ACM. doi:10.1145/2591796.2591805.

3 Aaron Archer, Ranjithkumar Rajagopalan, and David B. Shmoys. Lagrangian Relaxation
for the k-Median Problem: New Insights and Continuity Properties. In Giuseppe Di Bat-
tista and Uri Zwick, editors, Algorithms - ESA 2003: 11th Annual European Symposium,
Budapest, Hungary, September 16-19, 2003. Proceedings, pages 31–42, Berlin, Heidelberg,
2003. Springer Berlin Heidelberg. doi:10.1007/978-3-540-39658-1_6.

OPODIS 2018

http://dx.doi.org/10.1145/237814.237823
http://dx.doi.org/10.1145/237814.237823
http://dx.doi.org/10.1145/2591796.2591805
http://dx.doi.org/10.1007/978-3-540-39658-1_6

5:14 Large-Scale Distributed Algorithms for Facility Location with Outliers

4 Sayan Bandyapadhyay, Tanmay Inamdar, Shreyas Pai, and Sriram V. Pemmaraju. Near-
Optimal Clustering in the k-machine model. In Proceedings of the 19th International Con-
ference on Distributed Computing and Networking, ICDCN 2018, Varanasi, India, January
4-7, 2018, pages 15:1–15:10, 2018. doi:10.1145/3154273.3154317.

5 Paul Beame, Paraschos Koutris, and Dan Suciu. Communication Steps for Parallel Query
Processing. In Proceedings of the 32nd ACM SIGMOD-SIGACT-SIGAI Symposium on
Principles of Database Systems, PODS ’13, pages 273–284, New York, NY, USA, 2013.
ACM. doi:10.1145/2463664.2465224.

6 Ruben Becker, Andreas Karrenbauer, Sebastian Krinninger, and Christoph Lenzen. Near-
Optimal Approximate Shortest Paths and Transshipment in Distributed and Streaming
Models. In Andréa W. Richa, editor, 31st International Symposium on Distributed Comput-
ing (DISC 2017), volume 91 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 7:1–7:16, Dagstuhl, Germany, 2017. Schloss Dagstuhl–Leibniz-Zentrum fuer Infor-
matik. doi:10.4230/LIPIcs.DISC.2017.7.

7 Soheil Behnezhad, Mahsa Derakhshan, and MohammadTaghi Hajiaghayi. Brief An-
nouncement: Semi-MapReduce Meets Congested Clique. CoRR, abs/1802.10297, 2018.
arXiv:1802.10297.

8 Andrew Berns, James Hegeman, and Sriram V. Pemmaraju. Super-Fast Distributed Al-
gorithms for Metric Facility Location. In Automata, Languages, and Programming - 39th
International Colloquium, ICALP 2012, Warwick, UK, July 9-13, 2012, Proceedings, Part
II, pages 428–439, 2012. doi:10.1007/978-3-642-31585-5_39.

9 Keren Censor-Hillel, Petteri Kaski, Janne H. Korhonen, Christoph Lenzen, Ami Paz, and
Jukka Suomela. Algebraic Methods in the Congested Clique. In Proceedings of the 2015
ACM Symposium on Principles of Distributed Computing, PODC ’15, pages 143–152, New
York, NY, USA, 2015. ACM. doi:10.1145/2767386.2767414.

10 Moses Charikar, Samir Khuller, David M. Mount, and Giri Narasimhan. Algorithms for
Facility Location Problems with Outliers. In Proceedings of the Twelfth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA ’01, pages 642–651, Philadelphia, PA,
USA, 2001. Society for Industrial and Applied Mathematics.

11 Jeffrey Dean and Sanjay Ghemawat. MapReduce: A Flexible Data Processing Tool. Com-
mun. ACM, 53(1):72–77, January 2010. doi:10.1145/1629175.1629198.

12 Danny Dolev, Christoph Lenzen, and Shir Peled. “Tri, Tri Again”: Finding Triangles
and Small Subgraphs in a Distributed Setting. In Proceedings of the 26th International
Symposium on Distributed Computing (DISC), pages 195–209, 2012.

13 Andrew Drucker, Fabian Kuhn, and Rotem Oshman. The communication complexity of
distributed task allocation. In Proceedings of the 30st ACM Symposium on Principles of
Distributed Computing (PODC), pages 67–76, 2012.

14 Alina Ene, Sungjin Im, and Benjamin Moseley. Fast Clustering Using MapReduce. In
Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD ’11, pages 681–689, New York, NY, USA, 2011. ACM. doi:10.
1145/2020408.2020515.

15 Kiran Garimella, Gianmarco De Francisci Morales, Aristides Gionis, and Mauro Sozio.
Scalable Facility Location for Massive Graphs on Pregel-like Systems. In Proceedings of the
24th ACM International on Conference on Information and Knowledge Management, CIKM
’15, pages 273–282, New York, NY, USA, 2015. ACM. doi:10.1145/2806416.2806508.

16 Joachim Gehweiler, Christiane Lammersen, and Christian Sohler. A Distributed O(1)-
approximation Algorithm for the Uniform Facility Location Problem. In Proceedings of
the 18th Annual ACM Symposium on Parallelism in Algorithms and Architectures (SPAA),
pages 237–243, 2006. doi:10.1145/1148109.1148152.

http://dx.doi.org/10.1145/3154273.3154317
http://dx.doi.org/10.1145/2463664.2465224
http://dx.doi.org/10.4230/LIPIcs.DISC.2017.7
http://arxiv.org/abs/1802.10297
http://dx.doi.org/10.1007/978-3-642-31585-5_39
http://dx.doi.org/10.1145/2767386.2767414
http://dx.doi.org/10.1145/1629175.1629198
http://dx.doi.org/10.1145/2020408.2020515
http://dx.doi.org/10.1145/2020408.2020515
http://dx.doi.org/10.1145/2806416.2806508
http://dx.doi.org/10.1145/1148109.1148152

T. Inamdar, S. Pai, and S. V. Pemmaraju 5:15

17 Mohsen Ghaffari. Distributed MIS via All-to-All Communication. In Proceedings of the
ACM Symposium on Principles of Distributed Computing, PODC 2017, Washington, DC,
USA, July 25-27, 2017, pages 141–149, 2017. doi:10.1145/3087801.3087830.

18 Mohsen Ghaffari, Themis Gouleakis, Christian Konrad, Slobodan Mitrovic, and Ronitt
Rubinfeld. Improved Massively Parallel Computation Algorithms for MIS, Matching, and
Vertex Cover. In Proceedings of the 2018 ACM Symposium on Principles of Distributed
Computing, PODC 2018, Egham, United Kingdom, July 23-27, 2018, pages 129–138, 2018.
doi:10.1145/3212734.3212743.

19 Michael T. Goodrich, Nodari Sitchinava, and Qin Zhang. Sorting, Searching, and Simula-
tion in the Mapreduce Framework. In Proceedings of the 22nd International Conference on
Algorithms and Computation, ISAAC’11, pages 374–383, Berlin, Heidelberg, 2011. Springer-
Verlag. doi:10.1007/978-3-642-25591-5_39.

20 James W. Hegeman and Sriram V. Pemmaraju. Lessons from the Congested Clique applied
to MapReduce. Theor. Comput. Sci., 608:268–281, 2015. doi:10.1016/j.tcs.2015.09.
029.

21 James W. Hegeman and Sriram V. Pemmaraju. Sub-logarithmic distributed algorithms
for metric facility location. Distributed Computing, 28(5):351–374, 2015. doi:10.1007/
s00446-015-0243-x.

22 James W. Hegeman, Sriram V. Pemmaraju, and Vivek Sardeshmukh. Near-Constant-
Time Distributed Algorithms on a Congested Clique. CoRR, abs/1408.2071, 2014. arXiv:
1408.2071.

23 Stephan Holzer and Nathan Pinsker. Approximation of Distances and Shortest Paths in
the Broadcast Congest Clique. arXiv preprint, arXiv:1412.3445, 2014.

24 Tanmay Inamdar, Shreyas Pai, and Sriram V. Pemmaraju. Large-Scale Distributed Al-
gorithms for Facility Location with Outliers. CoRR, abs/1811.06494, November 2018.
arXiv:1811.06494.

25 Kamal Jain and Vijay V. Vazirani. Approximation Algorithms for Metric Facility Location
and k-Median Problems Using the Primal-dual Schema and Lagrangian Relaxation. J.
ACM, 48(2):274–296, March 2001. doi:10.1145/375827.375845.

26 Tomasz Jurdziński and Krzysztof Nowicki. MST in O(1) Rounds of Congested Clique. In
Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA ’18, pages 2620–2632, Philadelphia, PA, USA, 2018. Society for Industrial and Ap-
plied Mathematics.

27 Howard Karloff, Siddharth Suri, and Sergei Vassilvitskii. A Model of Computation for
MapReduce. In Proceedings of the Twenty-first Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’10, pages 938–948, Philadelphia, PA, USA, 2010. Society for Industrial
and Applied Mathematics.

28 Hartmut Klauck, Danupon Nanongkai, Gopal Pandurangan, and Peter Robinson. Dis-
tributed Computation of Large-scale Graph Problems. In Proceedings of the Twenty-
sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’15, pages 391–410,
Philadelphia, PA, USA, 2015. Society for Industrial and Applied Mathematics.

29 Christoph Lenzen. Optimal Deterministic Routing and Sorting on the Congested Clique. In
Proceedings of the 31st ACM Symposium on Principles of Distributed Computing (PODC),
pages 42–50, 2013. doi:10.1145/2484239.2501983.

30 Shi Li. A 1.488 Approximation Algorithm for the Uncapacitated Facility Location Problem.
In Proceedings of the 38th International Conference on Automata, Languages and Program-
ming - Volume Part II, ICALP’11, pages 77–88, Berlin, Heidelberg, 2011. Springer-Verlag.

31 Zvi Lotker, Boaz Patt-Shamir, Elan Pavlov, and David Peleg. Minimum-Weight Spanning
Tree Construction in O(log logn) Communication Rounds. SIAM Journal on Computing,
35(1):120–131, 2005.

OPODIS 2018

http://dx.doi.org/10.1145/3087801.3087830
http://dx.doi.org/10.1145/3212734.3212743
http://dx.doi.org/10.1007/978-3-642-25591-5_39
http://dx.doi.org/10.1016/j.tcs.2015.09.029
http://dx.doi.org/10.1016/j.tcs.2015.09.029
http://dx.doi.org/10.1007/s00446-015-0243-x
http://dx.doi.org/10.1007/s00446-015-0243-x
http://arxiv.org/abs/1408.2071
http://arxiv.org/abs/1408.2071
http://arxiv.org/abs/1811.06494
http://dx.doi.org/10.1145/375827.375845
http://dx.doi.org/10.1145/2484239.2501983

5:16 Large-Scale Distributed Algorithms for Facility Location with Outliers

32 Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C. Dehnert, Ilan Horn, Naty
Leiser, and Grzegorz Czajkowski. Pregel: A System for Large-scale Graph Processing. In
Proceedings of the 2010 ACM SIGMOD International Conference on Management of Data,
SIGMOD ’10, pages 135–146, New York, NY, USA, 2010. ACM. doi:10.1145/1807167.
1807184.

33 Ramgopal R. Mettu and C. Greg Plaxton. The Online Median Problem. SIAM J. Comput.,
32(3):816–832, March 2003. doi:10.1137/S0097539701383443.

34 Danupon Nanongkai. Distributed approximation algorithms for weighted shortest paths. In
Proceedings of the 46th ACM Symposium on Theory of Computing (STOC), pages 565–573,
2014.

35 Gopal Pandurangan, Peter Robinson, and Michele Scquizzato. Fast Distributed Algorithms
for Connectivity and MST in Large Graphs. In Proceedings of the 28th ACM Symposium
on Parallelism in Algorithms and Architectures, SPAA ’16, pages 429–438, New York, NY,
USA, 2016. ACM. doi:10.1145/2935764.2935785.

36 Gopal Pandurangan, Peter Robinson, and Michele Scquizzato. On the Distributed Com-
plexity of Large-Scale Graph Computations. In Proceedings of the 30th on Symposium
on Parallelism in Algorithms and Architectures, SPAA 2018, Vienna, Austria, July 16-18,
2018, pages 405–414, 2018. doi:10.1145/3210377.3210409.

37 Boaz Patt-Shamir and Marat Teplitsky. The Round Complexity of Distributed Sorting. In
Proceedings of the 30th Annual ACM Symposium on Principles of Distributed Computing
(PODC), pages 249–256, 2011. doi:10.1145/1993806.1993851.

38 Jonathan A. Silva, Elaine R. Faria, Rodrigo C. Barros, Eduardo R. Hruschka, André C. P.
L. F. de Carvalho, and João Gama. Data Stream Clustering: A Survey. ACM Comput.
Surv., 46(1):13:1–13:31, July 2013. doi:10.1145/2522968.2522981.

39 Mikkel Thorup. Quick k-Median, k-Center, and Facility Location for Sparse Graphs. SIAM
Journal on Computing, 34(2):405–432, 2005. doi:10.1137/S0097539701388884.

http://dx.doi.org/10.1145/1807167.1807184
http://dx.doi.org/10.1145/1807167.1807184
http://dx.doi.org/10.1137/S0097539701383443
http://dx.doi.org/10.1145/2935764.2935785
http://dx.doi.org/10.1145/3210377.3210409
http://dx.doi.org/10.1145/1993806.1993851
http://dx.doi.org/10.1145/2522968.2522981
http://dx.doi.org/10.1137/S0097539701388884

	Introduction
	Main Results

	Sequential Algorithms for Facility Location with Outliers
	Robust Facility Location
	Facility Location with Penalties

	Distributed Robust Facility Location: Implicit Metric
	The k-Machine Algorithm
	The Congested Clique and MPC Algorithms

	Distributed Robust Facility Location: Explicit Metric
	The Congested Clique Algorithm
	The MPC Algorithm

	Conclusion and Open Questions

