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Abstract
Color coding is an algorithmic technique used in parameterized complexity theory to detect “small”
structures inside graphs. The idea is to derandomize algorithms that first randomly color a graph
and then search for an easily-detectable, small color pattern. We transfer color coding to the world
of descriptive complexity theory by characterizing – purely in terms of the syntactic structure of
describing formulas – when the powerful second-order quantifiers representing a random coloring can
be replaced by equivalent, simple first-order formulas. Building on this result, we identify syntactic
properties of first-order quantifiers that can be eliminated from formulas describing parameterized
problems. The result applies to many packing and embedding problems, but also to the long path
problem. Together with a new result on the parameterized complexity of formula families involving
only a fixed number of variables, we get that many problems lie in fpt just because of the way they
are commonly described using logical formulas.
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1 Introduction

Descriptive complexity provides a powerful link between logic and complexity theory: We use
a logical formula to describe a problem and can then infer the computational complexity of
the problem just from the syntactic structure of the formula. As a striking example, Fagin’s
Theorem [9] tells us that 3-colorability lies in NP just because its describing formula (“there
exist three colors such that all adjacent vertex pairs have different colors”) is an existential
second-order formula. In the context of fixed-parameter tractability theory, methods from
descriptive complexity are also used a lot – but commonly to show that problems are difficult.
For instance, the A- and W-hierarchies are defined in logical terms [11], but their hard
problems are presumably “beyond” the class FPT of fixed-parameter tractable problems.

The methods of descriptive complexity are only rarely used to show that problems are in
FPT. More precisely, the syntactic structure of the natural logical descriptions of standard
parameterized problems found in textbooks are not known to imply that the problems lie
in FPT – even though this is known to be the case for many of them. To appreciate the
underlying difficulties, consider the following three parameterized problems: p-matching,
p-triangle-packing, and p-clique. In each case, we are given an undirected graph as
input and a number k and we are then asked whether the graph contains k vertex-disjoint
edges (a size-k matching), k vertex-disjoint triangles, or a clique of size k, respectively. The
problems are known to have widely different complexities (maximal matchings can actually
be found in polynomial time, triangle packing lies at least in FPT, while finding cliques is
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11:2 On the Descriptive Complexity of Color Coding

W[1]-complete) but very similar logical descriptions:

αk = ∃x1 · · · ∃x2k
(∧

i 6=j xi 6= xj ∧
∧k
i=1 Ex2i−1x2i

)
, (1)

βk = ∃x1 · · · ∃x3k
(∧

i 6=j xi 6= xj ∧
∧k
i=1(Ex3i−2x3i−1 ∧ Ex3i−2x3i ∧ Ex3i−1x3i)

)
, (2)

γk = ∃x1 · · · ∃xk
(∧

i 6=j xi 6= xj ∧
∧
i 6=j Exixj

)
. (3)

The family (αk)k∈N of formulas is clearly a natural “slicewise” description of the matching
problem: A graph G has a size-k matching if, and only if, G |= αk. The families (βk)k∈N and
(γk)k∈N are natural parameterized descriptions of the triangle packing and the clique problems,
respectively. Well-known results on the descriptive complexity of parameterized problems
allow us to infer [11] from the above descriptions that all three problems lie in W[1], but offer
no hint why the first two problems actually lie in the class FPT – syntactically the clique
problem arguably “looks like the easiest one” when in fact it is semantically the most difficult
one. The results of this paper will remedy this: We will show that the syntactic structures
of the formulas αk and βk imply membership of p-matching and p-triangle-packing
in FPT.

The road to deriving the computational complexity of parameterized problems just from
the syntactic properties of slicewise first-order descriptions involves three major steps: First,
a characterization of when the color coding technique is applicable in terms of syntactic
properties of second-order quantifiers. Second, an exploration of how these results on
second-order formulas apply to first-order formulas, leading to the notion of strong and
weak quantifiers and to an elimination theorem for weak quantifiers. Third, we add a new
characterization to the body of known characterizations of how classes like FPT can be
characterized in a slicewise fashion by logical formulas.

Our Contributions I: A Syntactic Characterization of Color Coding. The hard triangle
packing problem from above becomes almost trivial when we just wish to check whether a
vertex-colored graph contains a red triangle, a green triangle, a blue triangle, a yellow triangle,
and so on for k different colors. The ingenious idea behind the color coding technique of Alon,
Yuster, and Zwick [1] is to reduce the original problem to the much simpler colored version
by simply randomly coloring the graph. Of course, even if there are k disjoint triangles, we
will most likely not color them monochromatically and differently, but the probability of
“getting lucky” is nonzero and depends only on the parameter k. Even better, Alon et al.
point out that one can derandomize the coloring easily by using universal hash functions to
color each vertex with its hash value.

Applying this idea in the setting of descriptive complexity was recently pioneered by
Chen et al. [6]. Transferred to the triangle packing problem, their argument would roughly
be: “Testing for each color i whether there is a monochromatic triangle of color i can be done
in first-order logic using something like

∧k
i=1 ∃x∃y∃z(Exy ∧ Eyz ∧ Exz ∧ Cix ∧ Ciy ∧ Ciz).

Next, instead of testing whether x has color i using the formula Cix, we can test whether
x gets hashed to i by a hash function. Finally, since computing appropriate universal
hash functions only involves addition and multiplication, we can express the derandomized
algorithm using an arithmetic first-order formula of low quantifier rank.” Phrased differently,
Chen et al. would argue that

∧k
i=1 ∃x∃y∃z(Exy ∧ Eyz ∧ Exz ∧ Cix ∧ Ciy ∧ Ciz) together

with the requirement that the Ci are pairwise disjoint is (ignoring some details) equivalent
to δk = ∃p∃q

∧k
i=1 ∃x∃y∃z(Exy ∧ Eyz ∧ Exz ∧ hashk(x, p, q) = i ∧ hashk(y, p, q) = i ∧

hashk(z, p, q) = i), where hashk(x, p, q) = i is a formula that is true when “x is hashed to i
by a member of a universal family of hash functions indexed by q and p.”
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The family (δk)k∈N may seem rather technical and, indeed, its importance becomes visible
only in conjunction with another result by Chen et al. [6]: They show that a parameterized
problem lies in para-AC0, one of the smallest “sensible” subclasses of FPT, if it can be
described by a family (φk)k∈N of FO[+,×] formulas of bounded quantifier rank such that
the finite models of φk are exactly the elements of the kth slice of the problem. Since the
triangle packing problem can be described in this way via the family (δk)k∈N of formulas, all
of which have a quantifier rank 5 plus the constant number of quantifiers used to express the
arithmetics in the formulas hashk(x, p, q) = i, we get p-triangle-packing ∈ FPT.

Clearly, this beautiful idea cannot work in all situations: If it also worked for the formula
mentioned earlier expressing 3-colorability, 3-colorability would be first-order expressible,
which is known to be impossible. Our first main contribution is a syntactic characterization
of when the color coding technique is applicable, that is, of why color coding works for triangle
packing but not for 3-colorability: For triangle packing, the colors Ci are applied to variables
only inside existential scopes (“∃x∃y∃z”) while for 3-colorability the colors R, G, and B are
also applied to variables inside universal scopes (“for all adjacent vertices”). In general, see
Theorem 3.1 for the details, we show that a second-order quantification over an arbitrary
number of disjoint colors Ci can be replaced by a fixed number of first-order quantifiers
whenever none of the Ci is used in a universal scope.

Our Contributions II: New First-Order Quantifier Elimination Rules. The “purpose” of
the colors Ci in the formulas

∧k
i=1 ∃x∃y∃z(Exy ∧ Eyz ∧ Exz ∧ Cix ∧ Ciy ∧ Ciz) is not that

the three vertices of a triangle get a particular color, but just that they get a color different
from the color of all other triangles. Indeed, our “real” objective in these formulas is to
ensure that the vertices of a triangle are distinct from the vertices in the other triangles –
and giving vertices different colors is “just a means” of ensuring this.

In our second main contribution we explore this idea further: If the main (indeed, the
only) use of colors in the context of color coding is to ensure that certain vertices are different,
let us do away with colors and instead focus on the notion of distinctness. To better explain
this idea, consider the following family, also describing triangle packing, where the only
change is that we now require (a bit superfluously) that even the vertices inside a triangle get
different colors:

∧k
j=1 ∃x∃y∃z(Exy ∧ Eyz ∧ Exz ∧ C3j−2x ∧ C3j−1y ∧ C3jz). Observe that

each Ci is now applied to exactly one variable (x, y, or z in one of the many literals) and
the only “effect” that all these applications have is to ensure that the variables are different.
In particular, the formula is equivalent to

∃x1 · · · ∃x3k
∧
i6=j xi 6= xj ∧

∧k
j=1 ∃x∃y∃z(Exy ∧ Eyz ∧ Exz ∧

x3j−2 = x ∧ x3j−1 = y ∧ x3j = z) (4)

and these formulas are clearly equivalent to the almost identical formulas from (2).
In a sense, in (4) the many existential quantifiers ∃xi and the many xi 6= xj literals

come “for free” from the color coding technique, while ∃x, ∃y, and ∃z have nothing to
do with color coding. Our key observation is a syntactic property that tells us whether a
quantifier comes “for free” in this way (we will call it weak) or not (we will call it strong):
Definition 3.4 states (essentially) that weak quantifiers have the form ∃x(φ) such that x is
not free in any universal scope of φ and x is used in at most one literal that is not of the
form x 6= y. To make weak quantifiers easier to spot, we mark their bound variables with
a dot (note that this is a “syntactic hint” without semantic meaning). Formulas (4) now
read ∃ẋ1 · · · ∃ẋ3k

∧
i 6=j ẋi 6= ẋj ∧

∧k
j=1 ∃x∃y∃z(Exy ∧ Exz ∧ Eyz ∧ ẋ3j−2 = x ∧ ẋ3j−1 = y ∧

ẋ3j = z). Observe that x, y, and z are not weak since each is used in three literals that are
not inequalities.
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11:4 On the Descriptive Complexity of Color Coding

We show in Theorem 3.5 that each φ is equivalent to a φ′ whose quantifier rank depends
only on the strong quantifier rank of φ (meaning that we ignore the weak quantifiers) and
whose number of variables depends only on the number of strong variables in φ′. For instance,
the formulas from (4) all have strong quantifier rank 3 and, thus, the triangle packing problem
can be described by a family of constant (normal) quantifier rank. Applying Chen et al.’s
characterization yields membership in para-AC0.

As a more complex example, let us sketch a “purely syntactic” proof of the result [3, 5]
that the embedding problem for graphs H of tree depth at most d lies in para-AC0 for
each d. Once more, we construct a family (φH) of formulas of constant strong quantifier
rank that describes the problem. For a graph H and a rooted tree T of depth d such that H
is contained in T ’s transitive closure (this is the definition of “H has tree depth d”), let c1
be the root of T and let children(c) be the children of c in T . Then the following formula of
strong quantifier rank d describes that H can be embedded into a structure:

∃ẋ1 · · · ∃ẋ|H|
(∧

i 6=j ẋi 6= ẋj ∧ ∃n1(n1 = ẋc1 ∧
∧
c2∈children(c1) ∃n2(n2 = ẋc2 ∧∧

c3∈children(c2)∃n3(n3 = ẋc3 ∧
∧
c4∈children(c3) ∃n4(n4 = ẋc4 ∧ . . .∧

cd∈children(cd−1)∃nd(nd = ẋcd
∧
∧
i,j∈{1,...,d}:(ci,cj)∈E(H) Eninj) . . . )))

)
.

Our Contributions III: Slicewise Descriptions and Variable Set Sizes. Our third contri-
bution is a new result in the same vein as the already repeatedly mentioned result of Chen
et al. [6]: Theorem 2.3 states that a parameterized problem can be described slicewise by
a family (φk)k∈N of arithmetic first-order formulas that all use only a bounded number of
variables if, and only if, the problem lies in para-AC0↑ – a class that has been encountered
repeatedly in the literature [2, 3, 8, 14], but for which no characterization was known. It
contains all parameterized problems that can be decided by AC-circuits whose depth depends
only on the parameter and whose size is of the form f(k) · nc.

As an example, consider the problem of deciding whether a graph contains a path of
length k (no vertex may be visited twice). It can be described (for odd k) by: ∃s∃t∃x(Esx∧
∃ẋ1(ẋ1 = x ∧ ∃y(Exy ∧ ∃ẋ2(ẋ2 = y ∧ ∃x(Eyx ∧ ∃ẋ3(ẋ3 = x ∧ ∃y(Exy ∧ ∃ẋ4(ẋ4 = y ∧ · · · ∧
∃x(Eyx ∧ x = t ∧ ∃ẋk(ẋk = x ∧

∧
i 6=j ẋi 6= ẋj) . . . )))). Note that, now, the strong quantifier

rank depends on k and, thus, is not constant. However, there are now only four strong
variables, namely s, t, x, and y. By Theorem 3.5 we see that the above formulas are equivalent
to a family of formulas with a bounded number of variables and by Theorem 2.3 we see
that p-long-path ∈ para-AC0↑ ⊆ FPT. These ideas also generalize easily and we give a
purely syntactic proof of the seminal result from the original color coding paper [1] that the
embedding problem for graphs of bounded tree width lies in FPT. The core observation –
which unifies the results for tree width and depth – is that for each graph with a given tree
decomposition, the embedding problem can be described by a formula whose strong nesting
structure mirrors the tree structure and whose strong variables mirror the bag contents.

Related Work. Flum and Grohe [10] were the first to give characterizations of FPT and of
many subclasses in terms of the syntactic properties of formulas describing their members.
Unfortunately, these syntactic properties do not hold for the descriptions of parameterized
problems found in the literature. For instance, they show that FPT contains exactly the
problems that can be described by families of FO[lfp]-formulas of bounded quantifier rank –
but actually describing problems like p-vertex-cover in this way is more or less hopeless
and yields little insights into the structure or complexity of the problem. We believe that
it is no coincidence that no applications of these beautiful characterizations to concrete
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problems could be found in the literature – at least prior to very recent work by Chen and
Flum [7], who study slicewise descriptions of problems on structures of bounded tree depth,
and the already cited article of Chen et al. [6], who do present a family of formulas that
describe the vertex cover problem. This family internally uses the color coding technique
and is thus closely related to our results. The crucial difference is, however, that we identify
syntactic properties of logical formulas that imply that the color coding technique can be
applied. It then suffices to find a family describing a given problem that meets the syntactic
properties to establish the complexity of the problem: there is no need to actually construct
the color-coding-based formulas – indeed, there is not even a need to understand how color
coding works in order to decide whether a quantifier is weak or strong.

Organization of this Paper. In Section 2 we first review some of the existing work on the
descriptive complexity of parameterized problems. We add to this work in the form of the
mentioned characterization of the class para-AC0↑ in terms of a bounded number of variables.
Our main technical results are then proved in Section 3, where we establish and prove the
syntactic properties that formulas must have in order for the color coding method to be
applicable. In Section 4 we then apply the findings and show how membership of different
natural problems in para-AC0 and para-AC0↑ (and, thus, in FPT) can be derived entirely
from the syntactic structure of the formulas describing them. Full proofs can be found in the
full version, but we include proof sketches in the text.

2 Describing Parameterized Problems

A happy marriage of parameterized complexity and descriptive complexity was first presented
in [10]. We first review the most important definitions from [10] and then prove a new
characterization, namely of the class para-AC0↑ that contains all problems decidable by
AC-circuits of parameter-dependent depth and “FPT-like” size. Since the results and notions
will be useful later, but do not lie at the paper’s heart, we keep this section brief.

Logical Terminology. We only consider first-order logic and use standard notations, with
the perhaps only deviations being that we write relational atoms briefly as Exy instead of
E(x, y) and that the literal x 6= y is an abbreviation for ¬x = y (recall that a literal is an
atom or a negated atom). Signatures, typically denoted τ , are always finite and may only
contain relation symbols and constant symbols – with one exception: The special unary
function symbol succ may also be present in a signature. Let us write succk for the k-fold
application of succ, so succ3(x) is short for succ(succ(succ(x))). It allows us to specify
any fixed non-negative integer without having to use additional variables. An alternative is
to dynamically add constant symbols for numbers to signatures as done in [6], but we believe
that following [10] and adding the successor function gives a leaner formal framework. Let
arity(τ) be the maximum arity of relation symbols in τ .

We denote by struc[τ ] the class of all τ -structures and by |A| the universe of A. As is
often the case in descriptive complexity theory, we only consider ordered structures in which
the ternary predicates add and mult are available and have their natural meaning. Formally,
we say τ is arithmetic if it contains all of the predicates <, add, mult, the function symbol
succ, and the constant symbol 0 (it is included for convenience only). In this case, struc[τ ]
contains only those A for which <A is a linear ordering of |A| and the other operations
have their natural meaning relative to <A (with the successor of the maximum element of
the universe being itself and with 0 being the minimum with respect to <A). We write
φ ∈ FO[+,×] when φ is a τ -formula for an arithmetic τ .

STACS 2019



11:6 On the Descriptive Complexity of Color Coding

A τ -problem is a set Q ⊆ struc[τ ] closed under isomorphisms. A τ -formula φ describes
a τ -problem Q if Q = {A ∈ struc[τ ] | A |= φ} and it describes Q eventually if φ describes a
set Q′ that differs from Q only on structures of a certain maximum size.

I Lemma 2.1. For each φ ∈ FO[+,×] that describes a τ -problem Q eventually, there are
quantifier-free formulas α and β such that (α ∧ φ) ∨ β describes Q.

Proof Sketch. Setup α to test structure size. “Hardwire” into β which “small” structures
lie in Q. Use succ to address the elements of small structures without using quantifiers. J

We write qr(φ) for the quantifier rank of a formula and bound(φ) for the set of its
bound variables. For instance, for φ =

(
∃x∃y(Exz)

)
∨ ∀y(Px) we have qr(φ) = 2, since the

maximum nesting is caused by the two nested existential quantifiers, and bound(φ) = {x, y}.
Let us say that φ is in negation normal form if negations are applied only to atomic

formulas.

Describing Parameterized Problems. When switching from classical complexity theory
to descriptive complexity theory, the basic change is that “words” get replaced by “finite
structures.” The same idea works for parameterized complexity theory and, following Flum
and Grohe [10], let us define parameterized problems as subsets Q ⊆ struc[τ ]×N where Q is
closed under isomorphisms. In a pair (A, k) ∈ struc[τ ]× N the number k is, of course, the
parameter value of the pair. Flum and Grohe now propose to describe such problems slicewise
using formulas. Since this will be the only way in which we describe problems, we will drop
the “slicewise” in the phrasings and just say that a computable family (φk)k∈N of formulas
describes a problem Q ⊆ struc[τ ]×N if for all (A, k) ∈ struc[τ ]×N we have (A, k) ∈ Q if,
and only if, A |= φk. One can also define a purely logical notion of reductions between two
problems Q and Q′, but we will need this notion only inside the proof of Theorem 4.2 and
postpone the definition till then.

For a class Φ of computable families (φk)k∈N, let us write XΦ for the class of all parameter-
ized problems that are described by the members of Φ (we chose “X” to represent a “slicewise”
description, which seems to be in good keeping with the usual use of X in other classes such
as XP or XL). For instance, the mentioned characterization of FPT in logical terms by Flum
and Grohe can be written as FPT = X{(φk)k∈N | φk ∈ FO[lfp],maxk qr(φk) <∞}.

We remark that instead of describing parameterized problems using families, a more
standard and at the same time more flexible way is to use reductions to model checking
problems. Clearly, if a family (φk)k∈N of L-formulas describes Q ⊆ struc[τ ]×N, then there
is a very simple parameterized reduction from Q to the model checking problem pφ-mc(L),
where the input is a pair (A,num(φ)) and the question is whether both A |= φ and φ ∈ L
hold. (The function num encodes mathematical objects like φ or later tuples like (φ, δ) as
unique natural numbers.) The reduction simply maps a pair (A, k) to (A,num(φk)). Even
more interestingly, without going into any of the technical details, it is also not hard to see
that as long as a reduction is sufficiently simple, the reverse implication holds, that is, we
can replace a reduction to the model checking problem by a family of formulas that describe
the problem. We can, thus, use whatever formalism seems more appropriate for the task at
hand and – as we hope that this paper shows – it is sometimes quite natural to write down a
family that describes a problem.

Parameterized Circuits. For our descriptive setting, we need to slightly adapt the definition
of the circuit classes para-AC0 and para-AC0↑ from [2, 3]: Let us say that a problem
Q ⊆ struc[τ ]× N is in para-AC0, if there is a family (Cn,k)n,k∈N of AC-circuits (Boolean
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circuits with unbounded fan-in) such that for all (A, k) ∈ struc[τ ] × N we have, first,
(A, k) ∈ Q if, and only if, C|x|,k(x) = 1 where x is a binary encoding of A; second, the size of
Cn,k is at most f(k) ·nc for some computable function f ; third, the depth of Cn,k is bounded
by a constant; and, fourth, the circuit family satisfies a dlogtime-uniformity condition. The
class para-AC0↑ is defined the same way, but the depth may be g(k) for some computable g
instead of only O(1). The following fact and theorem show how these two circuit classes are
closely related to descriptions of parameterized problems using formulas:

I Fact 2.2 ([6]). para-AC0 = X
{

(φk)k∈N
∣∣ φk ∈ FO[+,×],maxk qr(φk) <∞

}
.

I Theorem 2.3. para-AC0↑ = X
{

(φk)k∈N
∣∣ φk ∈ FO[+,×],maxk |bound(φk)| <∞

}
.

Proof Sketch. Basically, this follows from the well-known link between circuit depth and
size and the number of variables used in a formula, see for instance [15]: The quantifier rank
of a first-order formula naturally corresponds to the depth of a circuit that solves the model
checking problem for the formula. The number of variables corresponds to the exponent
of the polynomial that bounds the size of the circuit (the paper [13] is actually entitled
“DSPACE[nk] = VAR[k+1]”). A simple new observation (but needed for the theorem – usually
only one formula is considered) is that the length of the formula is linked multiplicatively to
the size of the circuit. J

3 Syntactic Properties Allowing Color Coding

The color coding technique [1] is a powerful method from parameterized complexity theory
for “discovering small objects” in larger structures. Recall the example from the introduction:
While finding k disjoint triangles in a graph is difficult in general, it is easy when the graph
is colored with k colors and the objective is to find for each color one triangle having this
color. The idea behind color coding is to reduce the (hard) uncolored version to the (easy)
colored version by randomly coloring the graph and then “hoping” that the coloring assigns
a different color to each triangle. Since the triangles are “small objects,” the probability that
they do, indeed, get different colors depends only on k. Even more importantly, Alon et al.
noticed that we can derandomize the coloring procedure simply by coloring each vertex by its
hash value with respect to a simple family of universal hash functions that only use addition
and multiplication [1]. This idea is beautiful and works surprisingly well in practice [12], but
using the method inside proofs can be tricky: On the one hand, we need to “keep the set
sizes under control” (they must stay roughly logarithmic in size) and we “need to actually
identify the small set based just on its random coloring.” Especially for more complex proofs
this can lead to rather subtle arguments.

In the present section, we identify syntactic properties of formulas that guarantee that
the color coding technique can be applied. The property is that the colors (the predicates Ci
in the formulas) are not in the scope of a universal quantifier (this restriction is necessary, as
the example of the formula describing 3-colorability shows).

As mentioned already in the introduction, the main “job” of the colors in proofs based
on color coding is to ensure that vertices of a graph are different from other vertices. This
leads us to the idea of focusing entirely on the notion of distinctness in the second half of
this section. This time, there will be syntactic properties of existentially bounded first-order
variables that will allow us to apply color coding to them.

STACS 2019



11:8 On the Descriptive Complexity of Color Coding

3.1 Formulas With Color Predicates

In graph theory, a coloring of a graph can either refer to an arbitrary assignment that maps
each vertex to a color or to such an assignment in which vertices connected by an edge must
get different colors (sometimes called proper colorings). For our purposes, colorings need
not be proper and are thus partitions of the vertex set into color classes. From the logical
point of view, each color class can be represented by a unary predicate. A k-coloring of a
τ -structure A is a structure B over the signature τk-colors = τ ∪ {C1

1 , . . . , C
1
k}, where the Ci

are fresh unary relation symbols, such that A is the τ -restriction of B and such that the sets
CB1 to CBk form a partition of the universe |A| of A.

Let us now formulate and prove the first syntactic version of color coding. An example of
a possible formula φ in the theorem is

∧k
i=1 ∃x∃y∃z(Exy ∧ Eyz ∧ Exz ∧ Cix ∧ Ciy ∧ Ciz),

for which the theorem tells us that there is a formula φ′ of constant quantifier rank that is
true exactly when there are pairwise disjoint sets Ci that make φ true.

I Theorem 3.1. Let τ be an arithmetic signature and let k be a number. For each first-order
τk-colors-sentence φ in negation normal form in which no Ci is inside a universal scope, there
is a τ -sentence φ′ such that:
1. For all A ∈ struc[τ ] we have A |= φ′ if, and only if, there is a k-coloring B of A with
B |= φ.

2. qr(φ′) = qr(φ) +O(1).
3. |bound(φ′)| = |bound(φ)|+O(1).
(Let us clarify that O(1) represents a global constant that is independent of τ and k.)

Proof. Let τ , k, and φ be given as stated in the theorem. If necessary, we modify φ to
ensure that there is no literal of the form ¬Cixj , by replacing each such literal by the
equivalent

∨
l 6=i Clxj . After this transformation, the Ci in φ are neither in the scope of

universal quantifiers nor of negations – and this is also true for all subformulas α of φ. We
will now show by structural induction that all these subformulas (and, hence, also φ) have
two semantic properties, which we call the monotonicity property and the small witness
property (with respect to the Ci). Afterwards, we will show that these two properties allow
us to apply the color coding technique.

Establishing the Monotonicity and Small Witness Properties. Some notations will be
useful: Given a τ -structure A with universe A and given sets Ai ⊆ A for i ∈ {1, . . . , k}, let us
write A |= φ(A1, . . . , Ak) to indicate that B is a model of φ where B is the τk-colors-structure
with universe A in which all symbols from τ are interpreted as in A and in which the
symbol Ci is interpreted as Ai, that is, CBi = Ai. Subformulas γ of φ may have free variables
and suppose that x1 to xm are the free variables in γ and let ai ∈ A for i ∈ {1, . . . ,m}. We
write A |= γ(A1, . . . , Ak, a1, . . . , am) to indicate that γ holds in the just-described structure B
when each xi is interpreted as ai.

I Definition 3.2. Let γ be a τk-colors-formula with free variables x1 to xm. We say that
γ has the monotonicity and the small witness properties with respect to the Ci if for all
τ -structures A with universe A and all values a1, . . . , am ∈ A the following holds:
1. Monotonicity property: Let A1, . . . , Ak ⊆ A and B1, . . . , Bk ⊆ A be sets with Ai ⊆ Bi

for all i ∈ {1, . . . , k}. Then A |= γ(A1, . . . , Ak, a1, . . . , am) implies A |= γ(B1, . . . , Bk,

a1, . . . , am).
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2. Small witness property: If there are any pairwise disjoint sets B1, . . . , Bk ⊆ A with
A |= γ(B1, . . . , Bk, a1, . . . , am), then there are sets Ai ⊆ Bi whose sizes |Ai| depend only
on γ for i ∈ {1, . . . , k}, such that A |= γ(A1, . . . , Ak, a1, . . . , am).

We now show that φ has these two properties (for m = 0). For monotonicity, just note
that the Ci are not in the scope of any negation and, thus, if some Ai make φ true, so will
all supersets Bi of the Ai.

To see that the small witness property holds, we argue by structural induction: If φ is
any formula that does not involve any Ci, then φ is true or false independently of the Bi
and, in particular, if it is true at all, it is also true for Ai = ∅ for i ∈ {1, . . . , k}. If φ is the
atomic formula Cixj , then setting Ai = {aj} and Ai′ = ∅ for i′ 6= i makes the formula true.

If φ = α ∧ β, then α and β have the small witness property by the induction hypothesis.
Let B1, . . . , Bk ⊆ A make φ hold in A. Then they also make both α and β hold in A.
Let Aα1 , . . . , Aαk ⊆ A with Aαi ⊆ Bi be the witnesses for α and let Aβ1 , . . . , A

β
k ⊆ A be the

witnesses for β. Then by the monotonicity property, Aα1 ∪ A
β
1 , . . . , A

α
k ∪ A

β
k makes both α

and β true, that is

A |= α(Aα1 ∪A
β
1 , . . . , A

α
k ∪A

β
k , a1, . . . , am)

and the same holds for β. Note that Aαi ∪ A
β
i ⊆ Bi still holds and that they have sizes

depending only on α and β and thereby on φ.
For φ = α ∨ β we can argue in exactly the same way as for the logical and.
The last case for the structural induction is φ = ∃xm(α). Consider pairwise dis-

joint B1, . . . , Bk ⊆ A that make φ true. Then there is a value am ∈ A such that
A |= α(B1, . . . , Bk, a1, . . . , am). Now, since α has the small witness property by the
induction hypothesis, we get Ai ⊆ Bi of size depending on α for which we also have
A |= α(A1, . . . , Ak, a1, . . . , am). But then, by the definition of existential quantifiers, these
Ai also witness A |= ∃xmφ(A1, . . . , Ak, a1, . . . , am−1). (Observe that this is the point where
the argument would not work for a universal quantifier: Here, for each possible value of am
we might have a different set of Ai’s as witnesses and their union would then no longer have
small size.)

Applying Color Coding. Our next step in the proof is to use color coding to produce the
partition. First, let us recall the basic lemma on universal hash functions formulated below
in a way equivalent to [11, page 347]:

I Lemma 3.3. There is an n0 ∈ N such that for all n ≥ n0 and all subsets X ⊆ {0, . . . , n−1}
there exist a prime p < |X|2 log2 n and a number q < p such that the function hp,q(m) =
(q ·mmod p) mod |X|2 is injective on X.

As has already been observed by Chen et al. [6], if we set k = |X| we can easily express the
computation underlying hp,q : {0, . . . , n−1} → {0, . . . , k2−1} using a fixed FO[+,×]-formula
ρ(k, p, q, x, y). That is, if we encode the numbers k, p, q, x, y ∈ {0, . . . , n−1} as corresponding
elements of the universe with respect to the ordering of the universe, then ρ(k, p, q, x, y)
holds if, and only if, hp,q(x) = y. Note that the p and q from the lemma could exceed n for
very large X (they can reach up to n2 log2 n ≤ n3), but, first, this situation will not arise
in the following and, second, this could be fixed by using three variables to encode p and
three variables to encode q. Trivially, ρ(k, p, q, x, y) has some constant quantifier rank (the
formula explicitly constructed by Chen et al. has qr(ρ) = 9, assuming k2 < n).

Next, we will need the basic idea or “trick” of Alon et al.’s [1] color coding technique:
While for appropriate p and q the function hp,q will “just” be injective on {0, . . . , k2 − 1},
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we actually want a function that maps each element x ∈ X to a specific element (“the
color of x”) of {1, . . . , k}. Fortunately, this is easy to achieve by concatenating hp,q with an
appropriate function g : {0, . . . , k2 − 1} → {1, . . . , k}.

In detail, to construct φ′ from the claim of the theorem, we construct a family of formulas
φg(p, q) where p and q are new free variables and the formulas are indexed by all possible
functions g : {0, . . . , k2 − 1} → {1, . . . , k}: In φ, replace every occurrence of Cixj by the
following formula πgi (p, q, xj):∨

y∈{0,...,k2−1},g(y)=i ∃k̂∃ŷ
(
succk(0) = k̂ ∧ succy(0) = ŷ ∧ ρ(k̂, p, q, xj , ŷ)

)
where k̂ and ŷ are fresh variables that we bind to the numbers k and y (if the universe is large
enough). Note that the formula Cixj has xj as a free variable, while πgi (p, q, xj) additionally
has p and q as free variables. As an example, for the formula φ = ∃x(C2x ∨ ∃yC5y)
we would have φg = ∃x(πg2(p, q, x) ∨ ∃yπg5(p, q, y)). Clearly, each φg has the property
qr(φg) = qr(φ) +O(1).

The desired formula φ′ is (almost) simply
∨
g:{0,...,k2−1}→{1,...,k} ∃p∃q(φg(p, q)). The

“almost” is due to the fact that this formula works only for structures with a sufficiently
large universe – but by Lemma 2.1 it suffices to consider only this case. Let us prove that
for every σ-structure A with universe A = {0, . . . , n− 1} and n ≥ c for some to-be-specified
constant c, the following two statements are equivalent:
1. There is a k-coloring B of A with B |= φ.
2. A |=

∨
g:{0,...,k2−1}→{1,...,k} ∃p∃q(φg(p, q)).

Let us start with the implication of item 2 to 1. Suppose there is a function g : {0, . . . ,
k2 − 1} → {1, . . . , k} and elements p, q ∈ {0, . . . , n− 1} such that A |= φg(p, q). We define a
partition A1 ∪̇ · · · ∪̇ Ak = A by Ai = {x ∈ A | g(hp,q(x)) = i}. In other words, Ai contains
all elements of A that are first hashed to an element of {0, . . . , k2 − 1} that is then mapped
to i by the function g. Trivially, the Ai form a partition of the universe A.

Assuming that the universe size is sufficiently large, namely for k2 log2 n < n, inside
φg all uses of ρ(k̂, p, q, x, ŷ) will have the property that A |= ρ(k̂, p, q, x, ŷ) if, and only if,
hp,q(x) = ŷ. Clearly, there is a constant c depending only on k such that for all n > c we
have k2 log2 n < n.

With the property established, we now see that πgi (p, g, xj) holds inside the formula φg
if, and only if, the interpretation of xj is an element of Ai. This means that if we interpret
each Ci by Ai, then we get A |= φ(A1, . . . , Ak) and the Ai form a partition of the universe.
In other words, we get item 1.

Now assume that item 1 holds, that is, there is a partition B1 ∪̇ · · · ∪̇ Bk = A with
A |= φ(B1, . . . , Bk). We must show that there are a g : {0, . . . , k2 − 1} → {1, . . . , k} and
p, q ∈ A such that A |= φg(p, q).

At this point, we use the small witness property that we established earlier for the
partition. By this property there are pairwise disjoint sets Ai ⊆ A such that, first, |Ai|
depends only on φ and, second, A |= φ(A1, . . . , Ak). Let X =

⋃k
i=1 Ai. Then |X| depends

only on φ and let sφ be a φ-dependent upper bound on this size. By the universal hashing
lemma, there are now p and q such that hp,q : {0, . . . , n− 1} → {0, . . . , s2

φ − 1} is injective
on X. But, then, we can set g : {0, . . . , s2

φ − 1} → {1, . . . , k} to g(v) = i if there is an x ∈ Ai
with hp,q(x) = v and setting g(v) arbitrarily otherwise. Note that this is, indeed, a valid
definition of g since hp,q is injective on X.

With these definition, we now define the following sets D1 to Dk: Let Di = {x ∈
A | g(hp,q(x̂)) = i} where x̂ is the index of x in A with respect to the ordering (that is,
x̂ = |{y ∈ A | y <A x}| and for the special case that A = {0, . . . , n − 1} and that <A is
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the natural ordering, x̂ = x). Observe that Di ⊇ Ai holds for all Di and that the Di form
a partition of the universe A. By the monotonicity property, A |= φ(A1, . . . , Ak) implies
A |= φ(D1, . . . , Dk). However, by definition of the Di and of the formulas πgi , for a sufficiently
large universe size n (namely s2

φ log2 n < n), we now also have A |= φg(p, q), which in turn
implies A |=

∨
g ∃p∃qφg. J

In the theorem we assumed that φ is a sentence to keep the notation simple, both the
theorem and later theorems still hold when φ(x1, . . . , xn) has free variables x1 to xn. Then
there is a corresponding φ′(x1, . . . , xn) such that first item becomes that for all A ∈ struc[τ ]
and all a1, . . . , an ∈ |A| we have A |= φ′(a1, . . . , an) if, and only if, there is a k-coloring B
of A with B |= φ(a1, . . . , an). Note that the syntactic transformations in the theorem do not
add dependencies of universal quantifiers on the free variables.

3.2 Formulas With Weak Quantifiers
If one has a closer look at proofs based on color coding, one cannot help but notice that
the colors are almost exclusively used to ensure that certain vertices in a structure are
distinct from certain other vertices: recall the introductory example

∧k
j=1 ∃x∃y∃z(Exy ∧

Eyz ∧ Exz ∧ C3j−2x ∧ C3j−1y ∧ C3jz), which describes the triangle packing problem when
we require that the Ci form a partition of the universe. Since the Ci are only used to ensure
that the many different x, y, and z are different, we already rewrote the formula in (4) as
∃x1 · · · ∃x3k

∧
i6=j xi 6= xj∧

∧k
j=1 ∃x∃y∃z(Exy∧Eyz∧Exz∧x3j−2 = x∧x3j−1 = y∧x3j = z).

While this rewriting gets rid of the colors and moves us back into the familiar territory of
simple first-order formulas, the quantifier rank and the number of variables in the formula
have now “exploded” (from the constant 3 to the parameter-dependent value 3k+ 3) – which
is exactly what we need to avoid in order to apply Fact 2.2 or Theorem 2.3.

We now define a syntactic property that the xi have that allows us to remove them from
the formula and, thereby, to arrive at a family of formulas of constant quantifier rank. For a
(sub)formula α of the form ∀d(φ) or ∃d(φ), we say that d depends on all free variables in φ (at
the position of α in a larger formula). For instance, in Exy ∧ ∀b(Exb ∧ ∃z(Eyz)) ∧ ∃b(Exx),
the variable b depends on x and y at its first binding (∀b) and on x at the second binding (∃b).

I Definition 3.4. We call the leading quantifier in a formula ∃x(φ) in negation normal form
strong if
1. some universal binding inside φ depends on x or
2. there is a subformula α ∧ β of φ such that both α and β contain x in literals that are not

of the form x 6= y for some variable y.
If neither of the above hold, we call the quantifier weak. The strong quantifier rank
strong-qr(φ) is the quantifier rank of φ, where weak quantifiers are ignored; strong-bound(φ)
contains all variables of φ that are bound by non-weak quantifiers.

(Later on we extend the definition to the dual notion of weak universal quantifiers, but for
the moment let us only call existential quantifiers weak.)

We place a dot on the variables bound by weak quantifiers to make them easier to spot.
For example, in φ = ∃x∃y∃ż(Rxxżż ∧ x 6= y ∧ y 6= ż ∧ Px ∧ ∀wEwyy) the quantifier ∃ż is
weak, but neither are ∃x (since x is used in two literals joined by a conjunction, namely
in Rxxżż and Px) nor ∃y (since w depends on y in ∀wEwyy). We have qr(φ) = 4, but
strong-qr(φ) = 3, and bound(φ) = {x, y, ż}, but strong-bound(φ) = {x, y}.

Admittedly, the definition of weakness is a bit technical, but note that there is a rather
simple sufficient condition for a variable x to be weak: If it not used in universal binding
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and used in only one literal that is not an inequality, then x is weak. This condition almost
always suffices for identifying the weak variables, although there are of course exceptions like
∃ẋ(Pẋ ∨Qẋ).

I Theorem 3.5. Let τ be an arithmetic signature. Then for every τ -formula φ in negation
normal form there is a τ -formula φ′ such that
1. φ′ is equivalent to φ on finite structures,
2. qr(φ′) = 3 · strong-qr(φ) +O(arity(τ)), and
3. |bound(φ′)| = |strong-bound(φ)|+O(arity(τ)).

Proof Sketch. Using simple transformations, we can ensure that all weak quantifiers follow
in blocks after universal quantifiers. We can also ensure that inequality literals directly
follow the blocks of weak quantifiers and are joined by conjunctions. If the inequality literals
following a block happen to require that all weak variables from the block are different (that
is, if for all pairs ẋi and ẋj of different weak variables there is an inequality ẋi 6= ẋj), then
we can remove the weak quantifiers ∃ẋi and at the (single) place where ẋi is used, we use a
color Ci instead. For instance, if ẋi is used in the literal ẋi = y, we replace the literal by
Ciy. If ẋi is used for instance in ¬Eẋiy, we replace this by ∃x(Cix ∧ ¬Exy). In this way,
for each block we get an equivalent formula to which we can apply Theorem 3.1. A more
complicated situation arises when the inequality literals in a block “do not require complete
distinctness,” but this case can also be handled by considering all possible ways in which the
inequalities can be satisfied in parallel. In result, all weak quantifiers get removed and for
each block a constant number of new quantifiers are introduced. Since each block follows a
different universal quantifier, the new total quantifier rank is at most the strong quantifier
rank times a constant factor; and the new number of variables is only a constant above the
number of original strong variables. J

We already mentioned that the notion of weak existential quantifiers begs a dual: By
Theorem 3.5, for φ = ∃ẋ1 · · · ∃ẋk(ψ) there is an equivalent formula φ′ with qr(φ′) =
O(strong-qr(φ)). Since, trivially, qr(¬φ′) = qr(φ′), the formula ¬φ is also equivalent to
a formula of quantifier rank O(strong-qr(φ)). The normal form of ¬φ starts with ∀x1 · · · ∀xk
to which Theorem 3.5 does not apply “at all” – but the dual of the theorem applies, where
we call the leading quantifier in a (sub)formula ∀x(φ) weak if no existential binding inside φ
depends on x and in all subformulas of φ of the form α ∨ β at most one of α and β may
contain a literal that contains x and is not of the form x = y (note that this is now an
equality). More interestingly, we can even show that both kinds of weak quantifiers may be
present:

I Theorem 3.6. Theorem 3.5 still holds when φ may contain both existential and universal
weak variables, none of which count towards the strong quantifier rank nor count as strong
bound variables.

Proof Sketch. As in the proof of Theorem 3.5, we syntactically transform φ so that the
weak existential quantifiers follow strong universal quantifiers in block and – this is new –
that the weak universal quantifiers follow strong existential quantifiers. The key observation
that makes these transformations possible in the mixed case is that weak existential and
weak universal quantifiers commute: For instance, ∃ẋ(α ∧ ∀ẏ(β)) ≡ ∀ẏ(β ∧ ∃ẋ(α)) since ẋ
and ẏ cannot depend on one another by the core property of weak quantifiers (α cannot
contain ẏ and β cannot contain ẋ). J
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4 Syntactic Proofs and Natural Problems

The special allure of descriptive complexity theory lies in the possibility of proving that a
problem has a certain complexity just by describing the problem in the right way. The “right
way” is, of course, a logical description that has a certain syntax (such as having a bounded
strong quantifier rank). In the following we present such descriptions for several natural
problems and thereby bound their complexity “in a purely syntactic way.” First, however,
we present “syntactic tools” for describing problems more easily. These tools are built on
top of the notion of strong and weak quantifiers.

4.1 Syntactic Tools: New Operators
It is common in mathematical logic to distinguish between the core syntax and additional
“shorthands” built on top of the core syntax. For instance, while ¬ and ∨ are typically
considered to be part of the core syntax of propositional logic, the notation a→ b is often
seen as a shorthand for ¬a ∨ b. In a similar way, we now consider the notions of weak
variables and quantifiers introduced in the previous section as our “core syntax” and build
a number of useful shorthands on top of them. Of course, just as a → b has an intended
semantic meaning that the expansion ¬a ∨ b of the shorthand must reflect, the shorthands
we introduce also have an intended semantic meaning, which we specify.

As a first example, consider the common notation ∃≥kx(φ(x)), whose intended semantics
is “there are at least k different elements in the universe that make φ(x) true.” While
this notation is often considered as a shorthand for ∃x1 · · · ∃xk

∧
i6=j xi 6= xj ∧

∧k
i=1 φ(xi)

we will consider it a shorthand for the equivalent, but slightly more complicated formula
∃ẋ1 · · · ∃ẋk

∧
i 6=j ẋi 6= ẋj ∧

∧k
i=1∃x(x = ẋi∧φ(x)). The difference is, of course, that the strong

quantifier rank is now much lower and, hence, by Theorem 3.5 we can replace any occurrence
of ∃≥kx(φ(x)) by a formula of quantifier rank qr(φ) +O(1). In all of the following notations,
k and s are arbitrary values. The indicated strong quantifier rank for the notation is that of
its expansion. The semantics describe which structures A are models of the formula.

I Notation (∃≥kx(φ(x))). Strong-qr: 1 + strong-qr(φ)
Semantics There are k distinct a1, . . . , ak ∈ |A| with A |= φ(ai) for all i.
Expansion ∃ẋ1 · · · ∃ẋk

∧
i 6=j ẋi 6= ẋj ∧

∧k
i=1 ∃x(x = ẋi ∧ φ(x))

I Notation (∃≤kx(φ(x))). Strong-qr: 1 + strong-qr(φ)
Semantics There are at most k distinct a1, . . . , ak ∈ |A| with A |= φ(ai) for all i.
Expansion ∀ẋ1 · · · ∀ẋk+1

∨
i 6=j ẋi = ẋj ∨

∨k+1
i=1 ∀x(x 6= ẋi ∨ ¬φ(x)) (≡ ¬∃≥k+1x(φ(x)))

I Notation (∃=kx(φ(x))). Strong-qr: 1 + strong-qr(φ)
Semantics There are exactly k distinct a1, . . . , ak ∈ |A| with A |= φ(ai) for all i.
Expansion ∃≥kx(φ(x)) ∧ ∃≤kx(φ(x))

The next notation is useful for “binding” a set of vertices to weak or strong variables. The
binding contains the allowed “single use” of the weak variables in the sense of Definition 3.4,
but they can still be used in inequality literals. Let x̊ indicate that x may be weak or strong.

I Notation ({x̊1, . . . , x̊k} = {x | φ(x)}). Strong-qr: 1 + strong-qr(φ)
Semantics Let a1, . . . , ak ∈ |A| be the assignments to the x̊i (note that they need not be

distinct). Then {a1, . . . , ak} =
{
a ∈ |A|

∣∣ A |= φ(a)
}
must hold.

Expansion
∧k
i=1 ∃x

(
x = x̊i ∧ φ(x)

)
∧ // ensure {x̊1, . . . , x̊k} ⊆ {x | φ(x)}∨k

s=1
(
∃=sx(φ(x)) ∧ // bind s to |{x | φ(x)}|∨

I⊆{1,...,k},|I|=s
∧
i,j∈I,i6=j x̊i 6= x̊j

)
. // ensure |{x̊1, . . . , x̊k}| ≥ s
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The final notation can be thought of as a “generalization of ∃=k” where we not only ask
whether there are exactly k distinct ai with a property φ, but whether these ai then also
have an arbitrary special additional property. Formally, let Q ⊆ struc[τ ] be an arbitrary
τ -problem. We write A[I] for the substructure of A induced on a subset I ⊆ |A|.

I Notation (inducedsize=k{x | φ(x)} ∈ Q). Strong-qr: 1 + strong-qr(φ) + arity(τ)
Semantics The set I = {a ∈ |A| | A |= φ(a)} has size exactly k and A[I] ∈ Q.
Expansion Assuming for simplicity that τ contains only E2 as non-arithmetic predicate:

∃=kx(φ(x)) ∧
∨
A∈Q,|A|={1,...,k}

∧
(i,j)∈EA ∃x∃y(πi(x) ∧ πj(y) ∧ Exy) ∧∧
(i,j)/∈EA ∃x∃y(πi(x) ∧ πj(y) ∧ ¬Exy),

where πi(x) is a shorthand for φ(x)∧∃=i−1z(z < x∧ φ(z)), which binds x to the
ith element of the universe with property φ.

I Notation (inducedsize≤k{x | φ(x)} ∈ Q). Strong-qr: 1 + strong-qr(φ) + arity(τ)
Semantics The set I = {a ∈ |A| | A |= φ(a)} has size at most k and A[I] ∈ Q.
Expansion

∨k
s=0 inducedsize=s{x | φ(x)} ∈ Q

4.2 Describing Classical Problems
A vertex cover of a graph G = (V,E) is a subset X ⊆ V with e ∩X 6= ∅ for all e ∈ E. The
problem pk-vertex-set asks whether a graph has a cover X with |X| ≤ k.

I Theorem 4.1 ([2, 6]). p-vertex-cover ∈ para-AC0.

Proof. We describe the problem using a family (φk)k∈N of constant strong quantifier rank
that expresses the well-known Buss kernelization “using logic”: Let high(x) = ∃≥k+1y(Exy)
expresses that x is a high-degree vertex. Buss observed that all high-degree vertices must
be part of a vertex cover of size at most k. Thus, h ≤ k must hold for the unique h with
∃=hx(high(x)). A remaining vertex is interesting if it is connected to at least one non-high-
degree vertex: interesting(x) = ¬high(x) ∧ ∃y(Exy ∧ ¬high(y)). If there are more than
(k − h)(k + 1) ≤ k2 + k interesting vertices, there cannot be a vertex cover – and if there are
less, the graph induced on the interesting vertices must have a vertex cover of size k − h. In
symbols: φk =

∨k
h=0
(
∃=hx(high(x)) ∧ inducedsize≤k2+k{x | interesting(x)} ∈ Qk−h

)
for

Qs = {G | G has a vertex cover of size s}. J

Hitting sets generalize the notion of vertex covers to hypergraphs (V,E). They are still sets
X ⊆ V with e ∩X 6= ∅ for all e ∈ E. The problem pk,d-hitting-set asks whether a hyper-
graph with maxe∈E |e| ≤ d has a hitting set X with |X| ≤ k. Note that p-vertex-cover is
exactly this problem restricted to d = 2.

I Theorem 4.2 ([4]). pk,d-hitting-set ∈ para-AC0.

Proof Sketch. Instead of the Buss kernelization, “using logic” we describe the kernelization
presented by us in [4] for the hitting set problem. While this kernelization is considerably
more complex, it turns out that it can be expressed quite naturally using weak variables. J

Next, we show that the result by Flum and Grohe [10] that the model checking problem
for first-order logic lies in FPT on structures whose Gaifman graph has bounded degree can
be obtained “syntactically.” For simplicity, we only consider graphs and let pψ,δ-mc(FO) ={

(G,num(ψ, δ))
∣∣ G ∈ struc[(E2)], ψ ∈ FO,G |= ψ,max-degree(G) ≤ δ

}
.
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I Theorem 4.3 ([2, 10]). pψ,δ-mc(FO) ∈ para-AC0↑.

Proof Sketch. There is a family (φψ,δ)ψ∈FO,δ∈N with a bound on the number of strong
variables that describes pψ,δ-mc(FO): For fixed ψ and δ, using Gaifman’s Theorem, rewrite
ψ as ∃x1 · · · ∃xk

(∧
i 6=j γdist(xi,xj)>2r ∧

∧
i ρ(xi)

)
where ρ is r-local. Because of the bounded

degree, a ball of radius r can have maximum size δr. We can now verify the disjointness of
the balls surrounding the xi by using one weak variable for each element in such a ball. The
second part can then be verified by inducedsize≤δr{x | γdist(x,xi)≤r} ∈ {G | G |= ρ(xi)}. J

In our final example, td(H) is the tree depth of H and tw(H) is the tree width (see
the appendix for detailed definitions). A graph H = (V (H), E(H)) embeds into a graph
G = (V (G), E(G)) if there is an injective mapping ι : V (H) → V (G) such that for all
(u, v) ∈ E(H) we have (ι(u), ι(v)) ∈ E(G). Let p-embtd≤c be {(G,num(H)) | td(H) ≤ c and
H embeds into G} and define p-embtw≤c similarly.

I Theorem 4.4 ([2, 5]). p-embtd≤c ∈ para-AC0 and p-embtw≤c ∈ para-AC0↑ for each c.

Proof Sketch. For each graph H together with a tree decomposition (T,B) of H, we present
a formula φH,T,B with
1. strong-qr(φH,T,B) = O(depth(T )) and
2. |strong-bound(φH,T,B)| = O(width(B)),
such that for all graphs G we have G |= φH,T,B if, and only if, H embeds into G. The
idea is to use |H| distinct weak variables to bind the embedding and width(B) + 1 strong
variables to keep track of the vertices in the bags. Each time a vertex enters the bags for the
first time, bind the corresponding weak variable to one of the strong ones. Recycle strong
variables when a vertex leaves a bag. Build a nested formula whose structure mirrors the
tree decomposition and check for each bag whether the necessary edges are present. J

5 Conclusion

In the present paper, we showed how the color coding technique can be turned into a powerful
tool for parameterized descriptive complexity theory. This tool allows us to show that
important results from parameterized complexity theory – like the fact that the embedding
problem for graphs of bounded tree width lies in FPT – follow just from the syntactic
structure of the formulas that describe the problem.

In all our syntactic characterizations it was important that variables or color predicates
were not allowed to be within a universal scope. The reason was that literals, disjunctions,
conjunctions, and existential quantifiers all have what we called the small witness property,
which universal quantifiers do not have. However, there are other quantifiers, from more
powerful logics that we did not explore, that also have the small witness property. An
example are operators that test whether there is a path of length at most k from one vertex
to another for some fixed k: if such a path exists, its vertices form a “small witness.” Weak
variables may be used inside these operators, leading to broader classes of problems that can
be described by families of bounded strong quantifier rank. On the other hand, we cannot
add the full transitive closure operator tc (for which it is well-known that FO[tc] = NL)
and hope that Theorems 3.1 and 3.5 still hold: If this were the case, we should be able to
turn a formula that uses two colors C1 and C2 to express that there are two vertex-disjoint
paths between two vertices into a FO[tc] formula – thus proving the unlikely result that the
NP-hard disjoint path problem is in NL.

Another line of inquiry into the descriptive complexity of parameterized problems was
already started in the repeatedly cited paper by Chen et al. [6]: They give first syntactic
properties for families of formulas describing weighted model checking problems that imply
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membership in para-AC0. We believe that it might be possible to base an alternative notion
of weak quantifiers on these syntactic properties. Ideally, we would like to prove a theorem
similar to Theorem 3.5 in which there are just more quantifiers that count as weak and,
hence, even more families have bounded strong quantifier rank. This would allow us to prove
for even more problems that they lie in FPT just because of the syntactic structure of the
natural formula families that describe them.
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