Tractable QBF by Knowledge Compilation

Florent Capelli

Université de Lille, Inria, UMR 9189 — CRIStAL — Centre de Recherche en Informatique Signal et
Automatique de Lille, F-59000 Lille, France

florent.capelli@univ-lille.fr

Stefan Mengel
CNRS, CRIL UMR 8188, Lens, France
mengel@cril.fr

—— Abstract

We generalize several tractability results concerning the tractability of Quantified Boolean Formulas

(QBF) with restricted underlying structure. To this end, we introduce a notion of width for structured
DNNF which are a class of Boolean circuits heavily studied in knowledge compilation, a subarea
of artificial intelligence. We then show that structured DNNF allow quantifier elimination with a
size blow-up depending only on the width of the DNNF and not its size. Using known algorithms
transforming restricted CNF-formulas into deterministic DNNF, we apply this result to generalize
several results for counting and decision on QBF. We also complement these results with lower
bounds that show that our definitions and results are essentially optimal in several senses.

2012 ACM Subject Classification Theory of computation — Design and analysis of algorithms
Keywords and phrases QBF, knowledge compilation, parameterized algorithms

Digital Object Identifier 10.4230/LIPIcs.STACS.2019.18

Related Version A full version of the paper is available at [7], https://arxiv.org/abs/1807.04263.

Funding This work was partially supported by the French Agence Nationale de la Recherche,
AGGREG project reference ANR-14-CE25-0017-01.

Acknowledgements The authors would like to thank Mikaél Monet for helpful comments on an

early version of this paper.

1 Introduction

It is well known that restricting the interaction between variables and clauses in CNF-formulas
makes several hard problems on them tractable. For example, the propositional satisfiability
problem SAT and its counting version #SAT can be solved in time 2°®*)|F| when F is a CNF
formula whose primal graph is of treewidth k [27, 24]. Many extensions of this result have
been shown these last ten years for more general graph measures such as modular treewidth
or cliquewidth [15, 19, 26, 23]. We here generalize in a different direction by considering
decision and counting for quantified Boolean formulas (QBF) with a bounded number of
quantifier alternations, i.e., we consider problems higher up in the polynomial hierarchy than
SAT, resp. higher in the counting hierarchy than #SAT. It is already known that QBF as
well as projected model counting, i.e., model counting for QBF with free variables and one
block of existentially quantified variables, are both fixed-parameter tractable parameterized
by treewidth [8, 14]. Here we generalize both these results by showing that counting the
models of QBF with free variables is fixed-parameter tractable parameterized by treewidth
for any bounded number of quantifier alternations. Moreover, the same is true for the strictly
more general parameter of signed cliquewidth [15].

Our approach to showing these results is completely different from those used so far in
the literature for treewidth restrictions of problems harder than the NP, resp. #P: we do
not perform dynamic programming as e.g. in [8, 14, 12, 1]. Instead, we encode all models

© Florent Capelli and Stefan Mengel; L

37 licensed under Creative Commons License CC-BY V"
36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019). m I_
Editors: Rolf Niedermeier and Christophe Paul; Article No. 18; pp. 18:1-18:16 4 S1

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:florent.capelli@univ-lille.fr
mailto:mengel@cril.fr
https://doi.org/10.4230/LIPIcs.STACS.2019.18
https://arxiv.org/abs/1807.04263
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

18:2

Tractable QBF by Knowledge Compilation

d-DNNF Dy:
Structured CNF F with Compilation [3, 9] |— Do = I
parameter k — width wo = f(k)
— size wy - |F|

Quantification by QX1 (Theorem 5)

d-DNNF D;:
D= QX:...Q1 X1 F
Solve #SAT on Dy E— = V.‘;i%th wy = 2%t = Iterate quantification
9
— size wy - |F|

Figure 1 The overall scheme for proving tractability results on structured quantified CNF.

of the underlying CNF-formula of the given QBF into a data structure called complete
structured d-DNNF' [21], a class of circuits originating from knowledge compilation, a subarea
of artificial intelligence [11]. Afterwards, we perform quantifier elimination on this data
structure. When all quantifiers are eliminated, we can answer the query on the input QBF
by standard algorithms for d-DNNF'. Figure 1 illustrates the overall strategy.

One crucial advantage of our approach is that the first step, the transformation into
d-DNNF also called compilation, is essentially already solved in the literature: in [3], Bova et
al. recently showed that the traces of most known algorithms for structural restrictions of
#SAT are essentially d-DNNF. Thus we can take these algorithms as building blocks and get
the compiled representations for free without doing any additional dynamic programming.

It thus only remains to eliminate quantifiers on d-DNNF. Unfortunately, there are
unconditional, exponential lower bounds showing that in general quantifier elimination on
d-DNNF is impossible without blowing up the size of the representation [22]. We avoid this
problem by identifying a notion of width for complete structured d-DNNF that is modeled
after the classical width of complete OBDD. We go on to show that the size explosion during
the quantifier elimination is in fact not in the size of the input but only in its width by giving
a relatively simple algorithm inspired by determinization of finite automata. Since several of
the compilation algorithms mentioned above yield d-DNNF whose width is independent of
the input size, we get an algorithm for several restricted classes of QBF.

The resulting algorithm can be used to show that the number of models of a partially
quantified CNF-formula F' of treewidth k with ¢ blocks of quantifiers can be computed

20(k)

in time 2 |F| with ¢t + 1 exponentiations. This generalizes the result of [8] where
the fixed-parameter tractability of QBF on such formulas was shown with a comparable
complexity. Moreover, it generalizes the very recent result of [14] on model counting in the
presence of a single existential variable block. Finally, our algorithm also applies to the more
general notions of incidence treewidth and signed cliquewidth.

We complement our algorithm with lower bounds that show that our construction is
essentially optimal in several respects.

The paper is organized as follows: Section 2 introduces the necessary preliminaries.
Section 3 showcases our approach in a simple setting by proving that quantifier elimination
can be efficiently done on small width complete OBDD. Section 4 first introduces our
width notion on complete structured d-DNNF, shows some of its basic properties and then
generalizes the result of Section 3 in this setting, giving our main result. The rest of the
paper is dedicated to corollaries of this result proven in Section 4 and explores the limits

F. Capelli and S. Mengel

and optimality of our approach. Section 5 is dedicated to proving parameterized tractability
results for QBF. Section 6 contains several results showing that our definition of bounded
width d-DNNF' cannot be weakened in several directions while still supporting efficient
quantifier elimination. Finally, we close with a conclusion.

2 Preliminaries

By exp’(p) we denote the iterated exponentiation function that is defined by exp®(p) := p
and exp?(p) = 2e%P"(®),

CNF and QBF. We assume that the reader is familiar with the basics of Boolean logic and
fix some notation. For a Boolean function F' and a partial assignment 7 to the variables of
F', denote by F[r] the function we get from F' by fixing the variables of 7 according to 7.
For two assignments 7, o on disjoint sets of variables we write 7 U o for the assignment on all
variables of 7 and o that extends both of the assignments. A literal is a Boolean variable or
its negation. A clause is a disjunction of literals and finally a formula in conjunctive normal
form (short CNF formula) is a conjunction of clauses. We define the size |C| of a clause
C' as the number of literals appearing in it. The size |F| of a formula F' is then defined as
> ¢ |C] where the sum is over the clauses in F.

A Quantified Boolean Formula (short QBF) F = Q1 X1Q2Xs...QX, F' is a CNF
formula F together with a quantified prefiz Q1 X1Q2X5 ...3X, where X1, ..., X, are disjoint
subsets of variables of F’, Q; is either 3 or V and Q;+1 # @;. The number of blocks ¢ is
called the quantifier alternation. W.l.o.g, we assume that @, the most nested quantifier,
is always an 3-quantifier. The quantified variables of F are defined as Ule X; and the free
variables of F' are the variables of I’ that are not quantified. A quantified CNF naturally
induces a Boolean function on its free variables.

Representations of Boolean functions. We present several representations studied in the
area of knowledge compilation in a rather succinct fashion. For more details and discussion,
the interested reader is referred to [11, 21].

A Boolean circuit C' is defined to be in negation normal form (short an NNF) if —-gates
appear in it only directly above the inputs. We assume that in all circuits we consider all

A-gates have exactly two inputs while all V-gates have an arbitrary positive number of inputs.

An A-gate in an NNF is called decomposable if, for its inputs g1, g2 the subcircuits rooted
in g1 and g9 are on disjoint variable sets. A circuit in decomposable negation normal form
(short a DNNF) is an NNF in which all gates are decomposable [9]. An V-gate g in an NNF
is called deterministic if there is no assignment to the variables of the circuit that makes two
children of g true. A DNNF is said to be deterministic (short a d-DNNF) if all its V-gates
are deterministic.

A binary decision diagram (short BDD) is a directed acyclic graph with the following
properties: there is one source and two sinks, one of each labeled with 0 and 1. The non-sink
nodes are labeled with Boolean variables and have two outgoing edges each, one labeled with
0 the other with 1. A BDD B computes a function as follows: for every assignment a to the
variables of B, one constructs a source-sink path by starting in the source and in every node
labeled with a Boolean variable X following the edge labeled with a(X). The label of the
sink reached this way is then the value computed by B on a.

A BDD is called a free BDD (short FBDD) if on every source-sink path every variable
appears at most once. If on every path the variables are seen in a fixed order 7, then the
FBDD is called an ordered BDD (short OBDD).

18:3

STACS 2019

18:4

Tractable QBF by Knowledge Compilation

An FBDD is called complete if on every source-sink path every variable appears exactly
once. This notion also applies to OBDD in the obvious way. A layer of a variable X in a
complete OBDD B is the set of all nodes labeled with X. The width of B is the maximum
size of its layers. Note that for every OBDD one can construct a complete OBDD computing
the same function in polynomial time, but it is known that it is in general unavoidable
to increase the number of nodes labeled by a variable by a factor linear in the number of
variables [2].

For any representation D of a Boolean function in one of the above forms, we denote by
var(D) the set of variables appearing in D.

Graphs of CNF formulas. There are two graphs commonly assigned to CNF formulas: the
primal graph of a CNF formula F is the graph that has as its vertices the variables of F'
and there is an edge between two vertices z,y if and only if there is clause in F' where both
variables x and y appear. The incidence graph of F has as vertices the variables and the
clauses of F' and there is an edge between two nodes x and C' if and only if z is a variable, C
is a clause, and = appears in C.

We will consider several width measures on graphs like treewidth and pathwidth. Since
we do not actually need the definitions of these measures but only depend on known results
on them, we spare the readers these rather technical definitions and give pointers to the
literature in the respective places.

3 Warm-up: Quantification on OBDD

In this section, we will illustrate the main ideas of our approach on the simpler case of OBDD.
To this end, fix an OBDD G in variables x1,...,z, in that order. Now let Z be a set of
variables. We want to compute an OBDD that encodes 37 G, i.e., we want to forget the
variables in Z.

Note that it is well-known that OBDD do not allow arbitrary forgetting of variables
without an exponential blow-up, see [11]. Here we make the observation that this exponential
blow-up is in fact not in the size of the considered OBDD but in the width which for many
interesting cases is far lower.

» Lemma 1. Let G be a complete OBDD of width w and Z be a subset of its variables. Then
there is an OBDD of width at most 2% that computes the function of 372 G.

Proof. The technique is essentially the power set construction used in the determinization
of finite automata. Let V,, for a variable x denotes the set of nodes labeled by x. For every
z not in Z, our new OBDD G’ will have a node Ng labeled by x for every subset S C V.
The invariant during the construction will be that a partial assignment a to the variables
in var(G) \ Z that come before = in G leads to Ng if and only if S is the set of nodes in
V, which can be reached from the source by an extension of ¢ on the variables of Z. We
make the same construction for the 0- and 1-sink of G: G’ gets three sinks 0, 1 and 01 which
encode which sinks of G can be reached with extensions of an assignment a. Note that if we
can construct such a G', we are done by merging the sinks 1 and 01.

The construction of G’ is fairly straightforward: consider a variable x not in Z and let
z' be the next variable not in Z. For every node N € V,, we compute the set of nodes NT
labeled with z’ that we can reach by following the 1-edge of N and the set of N~ nodes
labeled with z’ that we can reach by following the 0-edge of N. Then, for every S C V,
we define the 1-successor of Ng as Ng» where S” = |Jyecg NT. The O-successors are defined
analogously. <

F. Capelli and S. Mengel

We remark that in [13] a related result is shown: for a CNF-formula F of pathwidth
k and every subset Z of variables, one can construct an OBDD of size 22k|F| computing
37 F. This result follows easily from Lemma 1 by noting that for a CNF F of pathwidth
k one can construct a complete OBDD of width 2¥. We note that our approach is more
flexible than the result in [13] because we can iteratively add more quantifier blocks since
VZ D = —(3Z-D) and negation in OBDD can be easily performed without size increase.
For example, one directly gets the following corollary.

» Corollary 2. There is an algorithm that, given a QBF restricted to £ quantifier alternations
and of pathwidth k, decides if F is true in time O(exp®(p)|F]).

Note that Corollary 2 is already known as it is a special case of the corresponding result
for treewidth in [8]. However, we will show that a similar approach to that of Lemma 1
can be used to derive several generalizations of the result of [8]: we show that we can
add quantification to bounded width structured d-DNNF, a generalization of OBDD (see
Section 4). Since several classes of CNF formulas are known to yield bounded width structured
d-DNNF [3], this directly yields QBF algorithms for these classes, see Section 5 for details.

4 Bounded width complete structured DNNF

Before formulating and proving our main result, we first introduce our central data structure
called complete structured DNNF' as a generalization of OBDD and a restriction of the
structured DNNF from [21]. We introduce a width notion for it and show how to deal
with constants in the setting. After these preparations, we then show our main result on
eliminating quantifiers in Section 4.4.

4.1 Complete structured DNNF

A wtree T for a set of variables X is a rooted tree where every non-leaf node has exactly two
children and the leaves of T are in one-to-one correspondence with X. A complete structured
DNNF (D, T,)) is a DNNF D together with a vtree T for var(D) and a labeling A of the
nodes of T' with sets of gates of D such that:

If t is a leaf of T labeled with variable € X then A(t) contains only input gates of D

labeled with either x, —x.

For every gate u of D, there exists a unique node t,, of T such that u € A(t,,).

There is no non-leaf node ¢ of 7" such that A(¢) contains an input gate of D.

For every A-gate u with inputs v, va, we have t,, # t,,.

For every edge (u,v) of D:

Either v is an A-gate, u is an V-gate or an input gate and ¢, is the child of ¢,.

Or v is an V-gate, u is an A-gate and t, = t,.
Intuitively, T' can be seen as a coarse structure of D, as depicted on Figure 2: We structure
the gates of D into blocks A(t) that are associated to nodes ¢ of T. Every such A(t) computes
a 2DNF where every term has one input from A(¢1) and A(2), respectively, where ¢, t5 are
the children of ¢. In the following, when we do not directly deal with vtree and its labeling,
we may refer to a complete structured DNNF (D, T, \) by only mentioning the circuit D. Tt
is then always understood that T and A with the desired properties exist.

We note that there is a syntactic transformation of complete OBDD into complete
structured d-DNNF'. It proceeds iteratively from the sinks to the source introducing a gate
gy for every node v: for every sink, g, is an input gate with the same label as the sink. For
every other node v with label z, a 0-edge to v and a 1-edge to u’, we introduce a subcircuit

18:5

STACS 2019

18:6

Tractable QBF by Knowledge Compilation

Figure 2 A vtree T and a complete structured DNNF (D, T, \), where A for the nodes v, u, w is
represented with colors and dashed arrows.

computing (g, A =) V (gu A x). It is easy to check that the resulting circuit is a structured
complete d-DNNF computing the right function and whose vtree consists of a tree in which
for every internal node one of the children is a leaf!.

4.2 Width

We define the width of a complete structured DNNF (D, T, \) as max;cv (1) {v € A(t) |
v is an V-gate}|. For example, the DNNF pictured on Figure 2 has width 2 since A(u)
contains 2 V-gates and A\(u') and A(v) contain less V-gates.

Note that for the width we do not take into account A-gates. This is for several reasons:
first, only considering V-gates simplifies some of the arguments later on and gives cleaner
results and proofs. Moreover, it is not hard to see that when rewriting OBDD as DNNF
as sketched above, the width of the original OBDD is exactly the width of the resulting
circuit. The same is also true for the width of SDD [5], another important representation
of Boolean functions [10]. Thus, width defined only on V-gates allows a tighter connection
to the literature. Finally, the following observation shows that the number of A-gates in a
complete structured DNNF as we define it is highly connected to the width.

» Observation 3. Let (D, T,) be a complete structured DNNF of width w > 2. We can in
linear time in |D| compute a complete structured DNNF (D', T, X') of width w and equivalent
to D such for every node t of T, we have |N'(t)| < (w? +w). Moreover, D' is of size at most
2(w + w?)|var(D)].

Proof. For the first statement, note that by definition there are at most w V-gates in A(¢).
Now, the inputs of every A-gate of A\(¢) are either V-gates or input gates in A(¢1) and A(¢2)
where t1,t are the children of ¢ in T'. Thus, there are at most w? possible ways of connecting
these A-gates to their inputs. So if we eliminate A-gates that have identical inputs and keep
for every combination at most one of them, we get D’ with the desired size bound on X (t).
However, we can neither naively compare the children of all A-gates nor order the A-gates by
their children to eliminate A-gates with identical inputs since both approaches would violate
the linear time requirement.

1 Note that strictly speaking the constructed circuit is not a complete structured d-DNNF' as defined
above because it contains constants as input gates. This slight complication will be taken care of in
Lemma 4 below.

F. Capelli and S. Mengel

To avoid this slight complication, we proceed as follows: in a first step, we count the
A-gates in A(t). If there are at most w? of them, we satisfy the required upper bound, so we
do nothing. Otherwise, we create an array of size w? indexed by the pairs of potential inputs
of A-gates in A(t). We initialize all cells to some null-value. Now we iterate over the A-gates
in A(t) and do the following for every such gate u: if the cell indexed by the children of u
is empty, we store u in that cell and continue. If there is already a gate u’ in the cell, we
connect all gates that u feeds into to u’ and delete u afterwards. It is easy to see that the
resulting algorithm runs in linear time, computes a D’ equivalent to D and satisfies the size
bounds on A(%).

Since T' is a tree where every node but the leaves has exactly 2 children, the number
of nodes in T is at most 2|var(D)|. Now, because of |\ (t)| < w? + w for every t in T, the
bound on |D’| follows directly. <

We remark that complete structured DNNF as defined above are more restrictive than
structured DNNF as defined in [21]. The definition of [21] only gives a condition on the way
decomposable A-gates can partition variables, following the vtree. However, it is possible to
to extend the classical construction to turn any OBBD into a complete one to transform any
structured DNNF in the sense of [21] into the form we define above with only a polynomial
increase in size. However, even for OBDD this rewriting may increase the width arbitrarily
at least when not changing the order [2]. Moreover, the construction for structured DNNF is
rather tedious and complicated, so we will not follow this direction here.

4.3 Eliminating Constants

Our definition of complete structured DNNF does not allow constant inputs. This is in general
not a problem as constants can be propagated in the circuits and thus eliminated. However,
it is not directly clear how this propagation affects the width in our setting. Moreover, most
of our algorithms are easier to describe by allowing constants. So let us spend some time
to deal with constants in our setting. To this end, we introduce the notion of extended
vtrees. An extended vtree T' on a variable set X is defined as a vtree in which we allow some
leaves to be unlabeled. Every variable of X must be the label of exactly one leaf still. A
complete structured DNNF (D, T, \) is defined as for an extended vtree with the additional
requirement that for every unlabeled leaf ¢ of T', A(¢) is a set of constant inputs of D.
We now show that we can remove the unlabeled leaves without increasing the width.

» Lemma 4. There is a linear time algorithm that, given a complete structured DNNF
(resp. d-DNNF) (D,T,)\) of width w where T is an extended vtree, computes a complete
structured DNNF' (resp. d-DNNF) (D', T',X') of width w that is equivalent to D where T” is
non-extended.

Proof. Given an extended vtree T and a leaf ¢, let T'\ £ be the vtree obtained by removing
the leaf ¢ of T' and by merging the father and the sibling of ¢ in T'. We first show that there
is an algorithm that, given a complete structured DNNF (resp. d-DNNF) (D, T, \) of width
w and a non-labeled leaf ¢ of T, computes in linear time in |A(¢)| an equivalent complete
structured DNNF (D', T'\ ¢, \') of width at most w. Iterating the construction and observing
that every A(t) is treated only once, we get the claim of the lemma.

Let ¢ be the father and ts the sibling of £ in T. We let ¢’ be the vertex of T\ £ obtained

by merging ¢ and ts (see Figure 3). The idea of the transformation is depicted on Figures 4.

By definition, all gates of A\(¢) that are connected to gates in A\(¢) are A-gates. We remove
every A-gate of A(t) connected to constant 0 as they are equivalent to 0 and are connected

18:7

STACS 2019

18:8

Tractable QBF by Knowledge Compilation

! !
NN
AN

Figure 3 The trees T' and T'\ ¢ with notations.

to V-gates of A(t). We next deal with the A-gates of A\(¢) connected to the constant 1. For
every such gate v, we connect its other input to all outputs of v which by definition are all
V-gates in A(¢). This does not change the functions computed by the outputs of v and does
not affect the determinism of the DNNF.

If t, is not a leaf of T, then V-gates of A\(t) are connected to V-gates of A(ts). Without
changing the function computed nor determinism, we can connect the V-gates of A(t) directly
to the input of its inputs and thus remove every V-gate of A(ts). Now the circuit has the
following form: V-gates of A(t) are connected to A-gates of A\(ts). We thus define N (t') as
the remaining V-gates of A(t) and A-gates of A(¢s) and get a complete structured DNNF for
T\ {. The number of V-gates in A(t’) is less than in A(t) so the width has not increased.

If t, is a leaf labeled by a variable x, then every V-gate g in A(t) is connected to input
gates in z and thus they compute either z, or -z or —z V z. In the former two cases, we
simply substitute g by x or —x respectively. If g computes -z V z, then do for every A-gate
g’ that has g as an input the following: create a clone g” of ¢’, i.e., a new A-gate that has
the same inputs and outputs as g’. Then substitute the input g of ¢’ by -z and by z for
g”. Since all gates that have ¢’ as an input are V-gates, this does not change the function
computed in these values. Finally, delete g. Doing this for all g, we delete all A-gates in A(¢).
Now setting X' (t) to contain the newly introduced input gates completes the construction.
Obviously, the number of V-gates in X' (t*) is never bigger than that in A(¢*).

Finally, if ¢, is an unlabeled leaf, then all V-gates in A(t) compute constants. Substituting
them by those constants and defining A'(7”) in the obvious way, completes the the proof. <

4.4 Existential quantification on bounded width d-DNNF

In this section, we give an algorithm that allows us to quantify variables in d-DNNF. The
main result is the following.

» Theorem 5. There is an algorithm that, given a complete structured DNNF (D, T, \)
of width w and Z C var(D), computes in time 2°()|D| a complete structured d-DNNF
(D', T, N) of width at most 2 having a designated gate computing 3Z D and another
designated gate computing 37 D.

In the rest of this section, we will prove Theorem 5. Let (D, T, A) be a complete structured
DNNF. Let X = var(D), the variables Z C X those that we will quantify and w the width
of D.

Given a node t of T, let var(t) be the set of variables which are at the leaves of the subtree
of T rooted in ¢t. We define forgot(t) := Z Nvar(t) and kept(t) := var(t) \ forgot(¢). Intuitively,
forgot(t) contains the set of variables that are quantified away below ¢ while kept(t) contains
the remaining variables under ¢. Let D, for a gate v denote the sub-DNNF of D rooted in v.

F. Capelli and S. Mengel

t
t
t/
\Y
s

(a) Original circuit. (b) Propagating constants. The | (c) Merging ¢s and ¢
rightmost part evaluates to O |and cleaning discon-

and disappears. nected gates.

Figure 4 Illustration of the transformation of Lemma 4. The constants are propagated in the
first step to remove gates in bag /. Then the bags of ¢; and t are merged without changing the
computed function.

Shapes. A key notion for our algorithm will be what we call shapes. Let t be a node of
T and let O; be the set of V-gates of D labeling t. An assignment 7 : kept(t) — {0, 1} is of
shape S C O if and only if

S ={s€0,]|3o:forgot(t) = {0,1},7Uc = Ds}.

We denote by Shape, C 29t the set of shapes of a node . Observe that [Shape,| < 2!9¢l <
2% since |0 < w by definition.

The key observation is that Shape, can be inductively computed. Indeed, let ¢ be a node
of T with children t1,t, and let Sy € Shape, , So € Shape,,. We define S; >1 53 C Oy to be
the set of gates s € O, that evaluate to 1 once we replace every gate in S; and Ss by 1 and
every gate in Oy, \ S1 and Oy, \ Sz by 0.

» Lemma 6. Let t be node of T with children t1,ty. Let 11 : kept(t1) — {0,1} be of shape
Sy and T : kept(te) — {0,1} be of shape So. Then T =11 U Ty is of shape Sy 1 Ss.

Proof. Let S be the shape of 7. We first prove S C 57 153, So let s € S. Since 7 is of
shape S, there exists o : forgot(t) — {0, 1} such that 7 U o satisfies D,. Since s is an V-gate,
there must be an input gate s’ of s such that 7 U o satisfies s’. By definition, s’ is an A-gate

with two children s; € Oy, and sy € Oy,. Thus Dy, is satisfied by (U0) var(t,) = T1 U0 var(ty)-

Consequently, s; € S since S is the shape of 7. Similarly so € So. Thus, in the construction
of S1 > S5, both s; and s are replaced by 1, so s evaluates to 1, that is, s € S7 <1 55.

We now show that S; 1 So € 5. So let s € S; <1 S3. Then, in the construction of
S1 <1 Ss, there must be an input s’ of s that is satisfied. Then s’ is an A-gate with children
51 € Oy, s2 € Oy, evaluating to 1. It follows that s; and sy have been replaced by 1 in
the construction of Sy 1 S3. Now by definition of S;, there exists oy : forgot(t;) — {0,1}

such that 7 U oy satisfies D;, and o5: forgot(tz) — {0,1} such that 7 U o9 satisfies Dy,.

Thus, (11 Uo1) U (12 Uos) = 7U (01 Uog) is well-defined because o1 and o2 do not share
any variables because s’ is decomposable. Moreover, 7 U (o1 U 02) satisfies Dy and thus we
have s € S. <

18:9

STACS 2019

18:10

Tractable QBF by Knowledge Compilation

Constructing the projected d-DNNF. We now inductively construct a d-DNNF D’ com-
puting 37 D and of width at most 2¥. The extended vtree T” for D’ is obtained from T'
by removing the labels of the leaves corresponding to variables in Z. One can then apply
Lemma 4 to obtain a vtree. We inductively construct for every node t of 7" and S € Shape,,
an V-gate v;(S) in D’ such that D;t(s) accepts exactly the assignments of shape S and we
will define X'(t) = Ugeshape, vt(9)-

If t is a leaf of T, then kept(¢) has at most one variable, thus we have at most two
assignments of the form kept(t) — {0,1}. We can thus try all possible assignments to
compute Shape, explicitly and v;(S) will either be a literal or a constant for each S € Shape,.
We put v:(S) in N (¢') where t’ is the leaf of T” corresponding to ¢. It is clear that if ¢’ is
labeled with variable x then v4(S) is a literal labeled by x or by —z. If ¢’ is unlabeled, then
it corresponds to a leaf t of T labeled with a variable of Z. Thus v:(.5) is a constant input so
the conditions of structuredness are respected.

Now let ¢ be a node of T' with children ¢, t5 and assume that we have constructed vy, (S7)
for every S1 € Shape;, and vy, (S2) for every Sy € Shape,,. We define v;(S) as:

Uty (Sl) AN Uty (Sg)

S1,82:5=51b45
where S7, 52 run over Shape, and Shape,, respectively.

First of all, observe that the A-gates above are decomposable since D! 0 (S1) is on variables
kept(¢1) which is disjoint from kept(¢2), the variables of D;{Q(5

Moreover, observe that the disjunction is deterministic. Indeed, by induction, 7 satisfies
the term vy, (S1) A v, (S2) if and only if T|yar(s,) is of shape Sy and Tlyar(,) is of shape Ss.
Since an assignment has exactly one shape, we know that 7 cannot satisfy another term of
the disjunction.

Finally, we have to show that v;(S) indeed computes the assignments of shape S. This is
a consequence of Lemma 6. Indeed, if 7 is of shape S then let Sy, Sy be the shapes of 7|y (s;)
and T|yar(t,) Tespectively. By Lemma 6, S = S1 >4 S5 and then 7 = vy, (S1) A vg,(S2), and
then, 7 = v(5).

Now, if 7 |= vy, (S1) A v, (S2) for some S and Sy in the disjunction, then we have by
induction that 7|yar(¢,) and 7|var(s,) are of shape S1 and Sy respectively. By Lemma 6, 7 is of
shape Sy 15y = S.

Let ' be the node of T” corresponding to t. We put all gates needed to compute v;(S)
in X (t') for every S. This has the desired form: a level of V-gate, followed by a level of
A-gate connected to V-gates in X' (¢]) and X (t}). By construction, the width of the d-DNNF
constructed so far is max; |[Shape,| < 2%.

Now assume that we have a d-DNNF Dy with a gate v¢(S) for every ¢ and every S € Shape,
computing the assignments of shape 7. Let r be the root of T. We assume w.l.o.g. that the
root of D is a single V-gate r, connected to every A-gate labeled by r. Then v, ({r,}) accepts
exactly 32D and v,() accepts =37 D.

5 Algorithms for graph width measures

In this section, we will show how we can use the result of Section 4 in combination with
known compilation algorithms to show tractability results for QBF with restricted underlying
graph structure and bounded quantifier alternation. This generalizes the results of [8, 13, 14].

We use the following result which can be verified by careful analysis of the construction
in [9, Section 3]; for the convenience of the reader we give an independent proof in the long
version of this paper [7].

F. Capelli and S. Mengel

» Theorem 7. There is an algorithm that, given a CNF F of primal treewidth k, computes
in time 2O(k)|F| a complete structured d-DNNF D of width 2°%) equivalent to F.

We lift Theorem 7 to incidence treewidth by using the following result from [17].

» Proposition 8. There is an algorithm that, given a CNF-formula F' of incidence treewidth k,
computes in time O(28|F|) a 3CNF-formula F' of primal treewidth O(k) and a subset Z of
variables such that F = 3ZF"'.

» Corollary 9. There is an algorithm that, given a CNF F formula of incidence treewidth k,
computes in time QO(k)|F| a complete structured d-DNNF D of width 2°%) and a subset Z
of variables such that F = 3ZD.

Note that in [3] there is another algorithm that compiles bounded incidence treewidth
into d-DNNF without introducing new variables that have to be projected away to get the
original function. The disadvantage of this algorithm though is that the time to compile is
quadratic in the size of F. Since we are mostly interested in QBF in which the last quantifier
block is existential, adding some more existential variables does not hurt our approach, so
we opted for the linear time algorithm we get from Corollary 9.

Now using Theorem 5 iteratively, we directly get the following result.

» Theorem 10. There is an algorithm that, given a QBF F with free variables, { quantifier
blocks and of incidence treewidth k, computes in time exp*(O(k))|F| a complete structured
d-DNNF of width exp’™(O(k)) accepting exactly the models of F.

Proof. Let F' = Q1 X ...3X,G. We use Corollary 9 to construct a structured DNNF D of

width 20(%) such that G = 3ZD, that is F = Q1 X; ... 3(X,UZ)D. Assume first that Q; = V.

Then using the fact that for every formula F’ we have VX F' = —-3-F’, we can rewrite this
into F = -3X;(—-3X3(—...(-3(X, U Z)G)...)). We now use Theorem 5 to iteratively from
the right eliminate all blocks —=3X;. The result is a complete structured d-DNNF accepting
exactly the models of F. If Q; = 3, we apply essentially the same construction with the
only difference that there is no negation in front of the formula which can be also dealt with
using Theorem 5. Each application of Theorem 5 blows the width of the circuit by a single
exponential, resulting in the stated complexity. |

As an application of Theorem 10, we give a result on model counting.

» Corollary 11. There is an algorithm that, given a QBF F with free variables, £ quantifier
blocks and of incidence treewidth k, computes in time exp*1(O(k))|F| the number of models
of F.

We remark that Corollary 11 generalizes several results from the literature. On the one
hand, it generalizes the main result of [8] from decision to counting, from primal treewidth
to incidence treewidth and gives more concrete runtime bounds?. On the other hand, it
generalizes the counting result of [14] from projected model counting, i.e., QBF formulas with
free variables and just one existential quantifier block, to any constant number of quantifier
alternations. Moreover, our runtime is linear in |F| in contrast to the runtime of [14] which
is quadratic.

As a generalization of Theorem 10, let us remark that there are compilation algorithms for
graph measures beyond treewidth. For example, it is known that CNF formulas of bounded
signed cliquewidth [15] can be compiled efficiently [3]. More exactly, there is an algorithm

2 We remark that the latter two points have already been made recently in [17].

18:11

STACS 2019

18:12

Tractable QBF by Knowledge Compilation

that compiles a CNF formula F of signed incidence cliquewidth k in time 2°()|F|? into
a structured d-DNNF of size 20()|F|. We will not formally introduce signed incidence
cliquewidth here but refer the reader to [15, 6]. Inspecting the proof of [3], one can observe
that the algorithm construct a complete structured d-DNNF of width at most 2°*) which
as above yields the following result.

» Theorem 12. There is an algorithm that, given a QBF F with free variables, with ¢
quantifier blocks and of signed incidence cliquewidth k, computes in time exp**(O(k))|F| +
20| F |2 a complete structured d-DNNF of width exp®™(O(k)) accepting exactly the models
of F.

With Theorem 12 it is now an easy exercise to derive generalizations of [8, 14, 15].

In the light of the above positive results one may wonder if our approach can be pushed
to more general graph width measures that have been studied for propositional satisfiability
like for example modular treewidth [20] or (unsigned) cliquewidth [26]. Using the results
of [18], we can answer this question negatively in two different ways: on the one hand, QBF
of bounded modular cliquewidth and bounded incidence cliquewidth with one quantifier
alternation is NP-hard, so under standard assumptions there is no version of Theorem 10
and thus also not of Corollary 9 for cliquewidth. On the other hand, analyzing the proofs
of [18], one sees that in fact there it is shown that for every CNF formula F there is a
bounded modular treewidth and bounded incidence cliquewidth formula F’ and a set Z of
variables such that F' = 3ZF’. Since it is known that there are CNF formulas that do not
have subexponential size DNNF [4], it follows that there are such formulas F” such that
every DNNF representation of 3ZF’ has exponential width. This unconditionally rules out a
version of Corollary 9 and Theorem 12 for modular treewidth or cliquewidth.

6 Lower Bounds

In this section, we will show that all restrictions we put onto the DNNF in Theorem 5 are
necessary.

6.1 The definition of width

Width of an OBDD is usually defined on complete OBDD. There is however another way of
defining width for OBDD by just counting the number of nodes that are labeled with the
same variable which for a non-complete OBDD might be far smaller. Let us call this notion
weak width. We will show that width in Theorem 5 cannot be substituted by weak width.

» Lemma 13. For every n there is an OBDD D,, in O(n) variables of weak width 3 and a
set Z C var(D,,) such that =3Z D,, does not have an DNNF of size 2°(™).

Proof. Let S; for i € N denote the term —z; A (/\je[i—l] zj). Fora CNF F=Ci A...NCy,
we then define the function

m

F'=\/S;rCi.
i=1

It is easy to see that by testing z1, ..., 2z, successively and branching a small OBDD for C;
at each 0-output of the decision node testing z; as depicted on Figure 5, one can construct
an OBDD of size O(|F|) computing F’. If every variable appears in at most three clauses of
F', then this OBDD has weak width 3 since a variable z is only tested for clauses where it
appears.

F. Capelli and S. Mengel

Cl 02 Cm
0 0 0
2‘1 25‘2 Z‘m
1 1 1

Figure 5 Structure of an OBDD for F”.

Note that VZ F’ = F. Since there are CNF formulas in which every variable appears in
at most three clauses which do not have subexponential size DNNF [4]. It follows that for
such F' the function VZ F’ has exponential size. Now remarking that VZ F’' = -3Z (—F’)
and that —=F’ has an OBDD of weak width 3 as well, completes the proof. |

6.2 Structuredness

One of the properties required for Theorem 5 is that we need the input to be structured.
Since structuredness is quite restrictive, see e.g. [22], it would be preferable to get rid of it to
show similar results. Unfortunately, there is no such result as the following lemma shows.

To formulate our results, we need a definition of width for FBDD. This is because width
as we have defined it before depends on the vtree of the DNNF which we do not have in
the case without structuredness. To define width for the unstructured case, we consider
layered FBDD: an FBDD F' is called layered if the nodes of F' can be partitioned into sets
Ly,..., Ls such that for every edge uv in F' there is an i € [s] such that u € L; and v € L; ;1.
The width of F is then defined as max{|L;| | ¢ € [s]}.

» Lemma 14. For every n there is a function f, in O(n?) variables with an FBDD repres-
entation of size O(n?) and width O(1) such that there is a variable x of f, such that every
deterministic DNNF for 3z f,, has size 22",

Proof. We use a function introduced by Sauerhoff [25]: let g : {0,1}" — {0,1} be the
function that evaluates to 1 if and only if the sum of its inputs is divisible by 3. For a
n x n-matrix X with inputs z;; € {0,1}, we define

Rn(X) = @g(xih Li2y - ,.’Ein)
i=1

where @ denotes addition modulo 2 and define C,,(X) := R, (X7T) where X7 is the transpose
of X. Then S, (X) := R,(X) vV Cp(X).

Note that, ordering the variables of X by rows, resp. columns, R, and C,, both have
OBDD of width O(1) and size O(n?). Now let S/, = (x A R,) V (—z A C,,). Then S/, clearly
has an FBDD of size O(n?) and width O(1): decide on z first and then depending on its
value follow the OBDD for R,, or C,,.

But 325/, (X) = S,(X) which completes the proof since S, is known to require size 2™
for deterministic DNNF [4]. <

7 Conclusion

We have introduced a new notion of width of complete structured d-DNNF and shown
that using it, in combination with a rather simple quantifier elimination result and known
compilation results, one can show several new tractability results around QBF. In contrast

18:13

STACS 2019

18:14

Tractable QBF by Knowledge Compilation

to earlier results that solved similar problems in one pass of dynamic programming [8, 14],
our approach is iterative and only considers one quantifier block at the same time which in
our opinion greatly simplifies the argument. Moreover, factoring out the initial compilation
phase allowed us to generalize known results for treewidth to signed cliquewidth essentially
for free.

We feel that the notion of width we introduced for complete structured d-DNNF is an
interesting notion, independent of the results on quantifier elimination here, and deserves
closer examination. In the long version of this paper [7] we initiate this by giving results on
standard transformation that are generally considered in knowledge compilation. We are
certain that beyond this our width notion will have more uses in the future.

It might be interesting to apply our approach to non-monotone reasoning problems from
artificial intelligence. There is a wealth of such problems that have been considered under
treewidth reductions, see e.g. the problems in [16], but for more general width measures far
less is known, some exceptions being [12, 1]. Proving more such results might be possible by
reductions to QBF as in [17] but it would be necessary to understand if those reductions
maintain the considered width measure. Alternatively, one could try to mimic our approach
of compiling and then refining the solution space iteratively for the individual problems
which might be easier than performing direct dynamic programming.

—— References

1 Bernhard Bliem, Sebastian Ordyniak, and Stefan Woltran. Clique-Width and Directed Width
Measures for Answer-Set Programming. In Gal A. Kaminka, Maria Fox, Paolo Bouquet, Eyke
Hiullermeier, Virginia Dignum, Frank Dignum, and Frank van Harmelen, editors, ECAI 2016 -
22nd European Conference on Artificial Intelligence, 29 August-2 September 2016, The Hague,
The Netherlands - Including Prestigious Applications of Artificial Intelligence (PAILS 2016),
volume 285 of Frontiers in Artificial Intelligence and Applications, pages 1105-1113. IOS Press,
2016. doi:10.3233/978-1-61499-672-9-1105.

2 Beate Bollig and Ingo Wegener. Asymptotically Optimal Bounds for OBDDs and the Solution
of Some Basic OBDD Problems. J. Comput. Syst. Sci., 61(3):558-579, 2000. doi:10.1006/
jcss.2000.1733.

3 Simone Bova, Florent Capelli, Stefan Mengel, and Friedrich Slivovsky. On Compiling CNFs
into Structured Deterministic DNNFs. In Theory and Applications of Satisfiability Testing -
SAT 2015 - 18th International Conference, volume 9340 of Lecture Notes in Computer Science,
pages 199-214. Springer, 2015.

4 Simone Bova, Florent Capelli, Stefan Mengel, and Friedrich Slivovsky. Knowledge Compilation
Meets Communication Complexity. In Subbarao Kambhampati, editor, Proceedings of the
Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI 2016, New
York, NY, USA, 9-15 July 2016, pages 1008-1014. IJCAI/AAAI Press, 2016. URL: http:
//www.ijcai.org/Abstract/16/147.

5 Simone Bova and Stefan Szeider. Circuit Treewidth, Sentential Decision, and Query Com-
pilation. In Emanuel Sallinger, Jan Van den Bussche, and Floris Geerts, editors, Pro-
ceedings of the 86th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database
Systems, PODS 2017, Chicago, IL, USA, May 14-19, 2017, pages 233-246. ACM, 2017.
doi:10.1145/3034786.3034787.

6 Johann Brault-Baron, Florent Capelli, and Stefan Mengel. Understanding Model Counting
for beta-acyclic CNF-formulas. In 32nd International Symposium on Theoretical Aspects of
Computer Science, pages 143-156, 2015.

7 Florent Capelli and Stefan Mengel. Knowledge Compilation, Width and Quantification. CoRR,
abs/1807.04263, 2018. arXiv:1807.04263.

http://dx.doi.org/10.3233/978-1-61499-672-9-1105
http://dx.doi.org/10.1006/jcss.2000.1733
http://dx.doi.org/10.1006/jcss.2000.1733
http://www.ijcai.org/Abstract/16/147
http://www.ijcai.org/Abstract/16/147
http://dx.doi.org/10.1145/3034786.3034787
http://arxiv.org/abs/1807.04263

F. Capelli and S. Mengel

10

11

12

13

14

15

16

17

18

19

20

21

Hubie Chen. Quantified Constraint Satisfaction and Bounded Treewidth. In Ramon Lépez
de Méntaras and Lorenza Saitta, editors, Proceedings of the 16th Eureopean Conference on
Artificial Intelligence, ECAI’2004, pages 161-165, 2004.

Adnan Darwiche. Decomposable negation normal form. J. ACM, 48(4):608-647, 2001.
do0i:10.1145/502090.502091.

Adnan Darwiche. SDD: A new canonical representation of propositional knowledge bases.
In Toby Walsh, editor, IJCAI 2011, Proceedings of the 22nd International Joint Conference
on Artificial Intelligence, Barcelona, Catalonia, Spain, July 16-22, 2011, pages 819-826.
IJCAI/AAAI, 2011. doi:10.5591/978-1-57735-516-8/IJCAI11-143.

Adnan Darwiche and Pierre Marquis. A Knowledge Compilation Map. J. Artif. Intell. Res.,
17:229-264, 2002. doi:10.1613/jair.989.

Wolfgang Dvordk, Stefan Szeider, and Stefan Woltran. Reasoning in Argumentation Frame-
works of Bounded Clique-Width. In Pietro Baroni, Federico Cerutti, Massimiliano Giac-
omin, and Guillermo Ricardo Simari, editors, Computational Models of Argument: Pro-
ceedings of COMMA 2010, Desenzano del Garda, Italy, September 8-10, 2010., volume
216 of Frontiers in Artificial Intelligence and Applications, pages 219-230. IOS Press, 2010.
doi:10.3233/978-1-60750-619-5-219.

Andrea Ferrara, Guoqgiang Pan, and Moshe Y. Vardi. Treewidth in Verification: Local vs.
Global. In Geoff Sutcliffe and Andrei Voronkov, editors, Logic for Programming, Artificial In-
telligence, and Reasoning, 12th International Conference, LPAR 2005, Montego Bay, Jamaica,
December 2-6, 2005, Proceedings, volume 3835 of Lecture Notes in Computer Science, pages
489-503. Springer, 2005. doi:10.1007/11591191_34.

Johannes Klaus Fichte, Markus Hecher, Michael Morak, and Stefan Woltran. Exploiting
Treewidth for Projected Model Counting and Its Limits. In Olaf Beyersdorff and Christoph M.
Wintersteiger, editors, Theory and Applications of Satisfiability Testing - SAT 2018 - 21st
International Conference, SAT 2018, Held as Part of the Federated Logic Conference, FloC
2018, Ozford, UK, July 9-12, 2018, Proceedings, volume 10929 of Lecture Notes in Computer
Science, pages 165—184. Springer, 2018. doi:10.1007/978-3-319-94144-8_11.

Eldar Fischer, Johann A. Makowsky, and Elena V. Ravve. Counting truth assignments of
formulas of bounded tree-width or clique-width. Discrete Applied Mathematics, 156(4):511-529,
2008. doi:10.1016/j.dam.2006.06.020.

Georg Gottlob, Reinhard Pichler, and Fang Wei. Bounded treewidth as a key to tractability
of knowledge representation and reasoning. Artif. Intell., 174(1):105-132, 2010. doi:10.1016/
j.artint.2009.10.003.

Michael Lampis, Stefan Mengel, and Valia Mitsou. QBF as an alternative to courcelle’s
theorem. CoRR, abs/1805.08456, 2018. accepted for SAT’18. arXiv:1805.08456.

Michael Lampis and Valia Mitsou. Treewidth with a Quantifier Alternation Revisited. In Daniel
Lokshtanov and Naomi Nishimura, editors, 12th International Symposium on Parameterized
and Eract Computation, IPEC 2017, September 6-8, 2017, Vienna, Austria, volume 89 of
LIPIcs, pages 26:1-26:12. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017. doi:
10.4230/LIPIcs.IPEC.2017.26.

Daniél Paulusma, Friedrich Slivovsky, and Stefan Szeider. Model Counting for CNF Formulas
of Bounded Modular Treewidth. Algorithmica, 76(1):168-194, 2016.

Daniél Paulusma, Friedrich Slivovsky, and Stefan Szeider. Model Counting for CNF For-
mulas of Bounded Modular Treewidth. Algorithmica, 76(1):168-194, 2016. doi:10.1007/
s00453-015-0030-x.

Knot Pipatsrisawat and Adnan Darwiche. New Compilation Languages Based on Structured
Decomposability. In Dieter Fox and Carla P. Gomes, editors, Proceedings of the Twenty-Third
AAAI Conference on Artificial Intelligence, AAAI 2008, Chicago, Illinois, USA, July 13-17,
2008, pages 517-522. AAAT Press, 2008. URL: http://www.aaai.org/Library/AAAI/2008/
aaai08-082.php.

18:15

STACS 2019

http://dx.doi.org/10.1145/502090.502091
http://dx.doi.org/10.5591/978-1-57735-516-8/IJCAI11-143
http://dx.doi.org/10.1613/jair.989
http://dx.doi.org/10.3233/978-1-60750-619-5-219
http://dx.doi.org/10.1007/11591191_34
http://dx.doi.org/10.1007/978-3-319-94144-8_11
http://dx.doi.org/10.1016/j.dam.2006.06.020
http://dx.doi.org/10.1016/j.artint.2009.10.003
http://dx.doi.org/10.1016/j.artint.2009.10.003
http://arxiv.org/abs/1805.08456
http://dx.doi.org/10.4230/LIPIcs.IPEC.2017.26
http://dx.doi.org/10.4230/LIPIcs.IPEC.2017.26
http://dx.doi.org/10.1007/s00453-015-0030-x
http://dx.doi.org/10.1007/s00453-015-0030-x
http://www.aaai.org/Library/AAAI/2008/aaai08-082.php
http://www.aaai.org/Library/AAAI/2008/aaai08-082.php

18:16

Tractable QBF by Knowledge Compilation

22

23

24

25

26

27

Thammanit Pipatsrisawat and Adnan Darwiche. A Lower Bound on the Size of Decomposable
Negation Normal Form. In Maria Fox and David Poole, editors, Proceedings of the Twenty-
Fourth AAAI Conference on Artificial Intelligence, AAAI 2010, Atlanta, Georgia, USA, July
11-15, 2010. AAAT Press, 2010. URL: http://www.aaai.org/ocs/index.php/AAAI/AAAT10/
paper/view/1856.

S. Hortemo Seether, J.A. Telle, and M. Vatshelle. Solving MaxSAT and #SAT on Structured
CNF Formulas. In Theory and Applications of Satisfiability Testing, pages 16-31, 2014.

M. Samer and S. Szeider. Algorithms for propositional model counting. Journal of Discrete
Algorithms, 8(1):50-64, 2010.

Martin Sauerhoff. Approximation of boolean functions by combinatorial rectangles. Theor.
Comput. Sci., 1-3(301):45-78, 2003. doi:10.1016/50304-3975(02)00568-6.

Friedrich Slivovsky and Stefan Szeider. Model Counting for Formulas of Bounded Clique-Width.
In Leizhen Cai, Siu-Wing Cheng, and Tak Wah Lam, editors, Algorithms and Computation
- 24th International Symposium, ISAAC 2013, Hong Kong, China, December 16-18, 2013,
Proceedings, volume 8283 of Lecture Notes in Computer Science, pages 677-687. Springer,
2013. doi:10.1007/978-3-642-45030-3_63.

Stefan Szeider. On fixed-parameter tractable parameterizations of SAT. In Enrico Giunchiglia
and Armando Tacchella, editors, Theory and Applications of Satisfiability, 6th International
Conference, volume 2919 of LNCS, pages 188—202. Springer, 2004.

http://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/view/1856
http://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/view/1856
http://dx.doi.org/10.1016/S0304-3975(02)00568-6
http://dx.doi.org/10.1007/978-3-642-45030-3_63

	Introduction
	Preliminaries
	Warm-up: Quantification on OBDD
	Bounded width complete structured DNNF
	Complete structured DNNF
	Width
	Eliminating Constants
	Existential quantification on bounded width d-DNNF

	Algorithms for graph width measures
	Lower Bounds
	The definition of width
	Structuredness

	Conclusion

