A Tight Extremal Bound on the Lovasz Cactus
Number in Planar Graphs

Parinya Chalermsook
Aalto University, Espoo, Finland
parinya.chalermsook@aalto.fi

Andreas Schmid
Max Planck Institute for Informatics, Saarbriicken, Germany
aschmid@mpi-inf.mpg.de

Sumedha Uniyal
Aalto University, Espoo, Finland
sumedha.uniyal@aalto.fi

—— Abstract

A cactus graph is a graph in which any two cycles are edge-disjoint. We present a constructive

proof of the fact that any plane graph G contains a cactus subgraph C where C' contains at least
a é fraction of the triangular faces of G. We also show that this ratio cannot be improved by
showing a tight lower bound. Together with an algorithm for linear matroid parity, our bound
implies two approximation algorithms for computing “dense planar structures” inside any graph: (i)
A % approximation algorithm for, given any graph G, finding a planar subgraph with a maximum
number of triangular faces; this improves upon the previous %-approximation; (ii) An alternate (and
arguably more illustrative) proof of the % approximation algorithm for finding a planar subgraph
with a maximum number of edges.

Our bound is obtained by analyzing a natural local search strategy and heavily exploiting the
exchange arguments. Therefore, this suggests the power of local search in handling problems of this
kind.

2012 ACM Subject Classification Mathematics of computing — Graph theory

Keywords and phrases Graph Drawing, Matroid Matching, Maximum Planar Subgraph, Local
Search Algorithms

Digital Object Identifier 10.4230/LIPIcs.STACS.2019.19
Related Version Full Version: https://arxiv.org/abs/1804.03485.

Funding Parinya Chalermsook: Part of this work was done while PC and AS were visiting the
Simons Institute for the Theory of Computing. It was partially supported by the DIMACS/Simons
Collaboration on Bridging Continuous and Discrete Optimization through NSF grant #CCF-1740425.
Parinya has been supported by the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (grant agreement No 759557) and by Academy of
Finland Research Fellows, under grant number 310415 and 314284.

Sumedha Uniyal: Partially supported by Academy of Finland under the grant agreement number
314284.

1 Introduction

Linear matroid parity (introduced in various equivalent forms [21, 18, 15]) is a key concept in
combinatorial optimization that includes many important optimization problems as special
cases; probably the most well-known example is the maximum matching problem. The
polynomial-time computability of linear matroid parity made it a popular choice as an
algorithmic tool for handling both theoretical and practical optimization problems. An

© Parinya Chalermsook, Andreas Schmid, and Sumedha Uniyal; L)

37 licensed under Creative Commons License CC-BY V"
36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019). m I_
Editors: Rolf Niedermeier and Christophe Paul; Article No. 19; pp. 19:1-19:14 4 S1

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


mailto:parinya.chalermsook@aalto.fi
mailto:aschmid@mpi-inf.mpg.de
mailto:sumedha.uniyal@aalto.fi
https://doi.org/10.4230/LIPIcs.STACS.2019.19
https://arxiv.org/abs/1804.03485
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

19:2

A Tight Extremal Bound on the Lovasz Cactus Number in Planar Graphs

important special case of linear matroid parity, the graphic matroid parity problem, is often
explained in the language of cacti (see e.g. [9]), a graph in which any two cycles must be
edge-disjoint. In 1980, Lovasz [21] initiated the study of 3(G) (sometimes referred to as the
cactus number of (), the maximum value of the number of triangles in a cactus subgraph of
G, and showed that it generalizes maximum matching and can be reduced to linear matroid
parity, therefore implying that 3(G) is polynomial-time computable!?.

Cactus graphs arise naturally in many applications®; perhaps the most relevant example
in the context of approximation algorithms is the Maximum Planar Subgraph (MPS) problem:
Given an input graph, find a planar subgraph with a maximum number of edges. Notice that,
since any planar graph with n vertices has at most 3n — 6 edges, outputting a spanning tree
with n — 1 edges immediately gives a %—approximation algorithm. Generalizing the idea of
finding spanning trees, one would like to look for a planar graph H, denser than a spanning
tree, and at the same time efficiently computable. Calinescu et al. [3] showed that a cactus
subgraph with a maximum number of triangles (which is efficiently computable via matroid
parity algorithms) could be used to construct a %—approximation for MPS.

The g—approximation for MPS was achieved through an extremal bound of S(G) when G
is a plane graph. In particular, it was proven that 3(G) > &(n—2—t(G)), where n = |V(G)|
and t(G) = (3n — 6) — |[E(G)| (i.e. the number of edges missing for G to be a triangulated
plane graph).

1.1 Our Results

In this work, we are interested in further studying the extremal properties of §(G) and
exhibit stronger algorithmic implications. Our main result is summarized in the following
theorem.

» Theorem 1. Let G be a plane graph. Then B(G) > & f3(G) where f3(G) denotes the
number of triangular faces in G. Moreover, a natural local search 2-swap algorithm achieves
this bound.

It is not hard to see that f35(G) > 2n — 4 — 2t(G) where t(G) denotes the number of edges
missing for G to be a triangulated plane graph. Therefore, we obtain the main result of [3]
immediately.

» Corollary 2. 3(G) > %(n — 2 —t(G)). Hence, the matroid parity algorithm gives a
%-approm'matz’on for MPS.

Besides implying the MPS result, we exhibit further implications of our bound. Recently
in [7], the authors introduced Maximum Planar Triangles (MPT), where the goal is to
find a plane subgraph with a maximum number of triangular faces. It was shown that
an approximation algorithm for MPT naturally translates into one for MPS, where a %
approximate MPT solution could be turned into a % approximate MPS solution. However,
the authors only managed to show a ﬁ approximation for MPT.

Although the only change from MPS to MPT lies in the objective of maximizing the
number of triangular faces instead of edges, the MPT objective seems much harder to handle,
for instance, the extremal bound provided in [3] is not sufficient to derive any approximation
algorithm for MPT.

! There are many efficient algorithms for matroid parity (both randomized and deterministic), e.g. [9, 22,
24, 12].

2 When we study B(G), notice that a cactus subgraph that achieves the maximum value of §(G) would
only need to have cycles of length three (triangles). Such cacti are called triangular cacti.

3 See for instance the wikipedia page https://en.wikipedia.org/wiki/Cactus_graph.


https://en.wikipedia.org/wiki/Cactus_graph

P. Chalermsook, A. Schmid, and S. Uniyal

Theorem 1 therefore implies the following result for MPT.
» Corollary 3. A matroid parity algorithm gives a % approzimation algorithm for MPT.

Our conceptual contributions are the following:

1. Our result further highlights the extremal role of the cactus number in finding a dense
planar structure, as illustrated by the fact that our bound on 8(G) is more “robust” to the
change of objectives from MPS to MPT. It allows us to reach the limit of approximation
algorithms that matroid parity provides for both MPS and MPT.

2. Our work implies that local search arguments alone are sufficient to “almost” reach the
best known approximation results for both MPS and MPT in the following sense: Matroid
parity admits a PTAS via local search [19, 2]. Therefore, combining this with our bound
implies that local search arguments are sufficient to get us to a % + € approximation for
MPS and % + € approximation for MPT. Therefore, this suggests that local search might
be a promising candidate for such problems.

3. Finally, in some ways, our work can be seen as an effort to open up all the black boxes
used in MPS algorithms with the hope of learning algorithmic insights that are crucial
for making progress on this kind of problems. In more detail, there are two main “black
boxes” hidden in the MPS result: (i) The use of Lovdsz min-max cactus formula in
deriving the bound 3(G) > %(n—2—(G)), and (ii) the use of a matroid parity algorithm
as a blackbox in computing S(G). Our bound for 8(G) is now purely combinatorial (and
even constructive) and manages to by-pass (i).

Related work. On the hardness of approximation side, MPS is known to be APX-hard [3],
while MPT is only known to be NP-hard [7]. In combinatorial optimization, there are a
number of problems closely related to MPS and MPT. For instance, finding a maximum
series-parallel subgraph [5] or a maximum outer-planar graph [3], as well as the weighted
variant of these problems [4]; these are the problems whose objectives are to maximize the
number of edges.

Perhaps the most famous extremal bound in the context of cactus is the min-max formula

of Lovasz [21] and a follow-up formula that is more illustrative in the context of cactus [25].

All these formulas generalize the Tutte-Berge formula [1, 26] that has been used extensively
both in research and curriculum.

Another related set of problems has the objectives of maximizing the number of vertices,
instead of edges. In particular, in the maximum induced planar subgraph (i.e. given graph G,
one aims at finding a set of nodes S C V(G) such that G[S] is planar, while maximizing |S|.)
This variant has been studied under a more generic name, called maximum subgraph with
hereditary property [23, 20, 13]. This variant is unfortunately much harder to approximate:
Q(|V(G)|)* hard to approximate [14, 17]; in fact, the problems in this family do not even
admit any FPT approximation algorithm [6], assuming the gap exponential time hypothesis
(Gap-ETH).

1.2 Overview of Techniques

We give a high-level overview of our techniques. The description in this section assumes
certain familiarity with how standard local search analysis is often done.

4 The term  hides asymptotically smaller factors.

19:3

STACS 2019



19:4

A Tight Extremal Bound on the Lovasz Cactus Number in Planar Graphs

Our algorithm works as follows. Let G be an input plane graph, and let C be a cactus
subgraph of G whose triangles correspond to triangular faces of G. The local search operation,
t-swap, is done as follows: As long as there is a collection X C C of £ : ¢ < t edge-disjoint
triangles and Y such that (C\ X) UY contains more triangular faces of G than C and it
remains a cactus, we perform such an improvement step. A cactus subgraph is called locally
t-swap optimal, if it can not be improved by a t-swap operation. Remark that the triangles
chosen by our local search are only those which are triangular faces in the input graph G
(we assume that the drawing of G is fixed.)

Our analysis is highly technical, although the basic idea is very simple and intuitive. We
give a high-level overview of the analysis. We remark that this description is overly simplified,
but it sufficiently captures the crux of our arguments. Let C be the solution obtained by
the local search 2-swap algorithm. We argue that the number of triangles in C is at least
f3(G)/6. We remark that the 2-swap is required, as we are aware of a bad example H for
which the 1-swap local search only achieves a bound of (% + o(1)) f3(H). For simplicity, let
us assume that C has only one non-singleton component. Let S C V(G) be the vertices in
such a connected component.

Let ¢ be a triangle in C. Notice that removing the three edges of ¢ from C breaks the
cactus into at most three components, say C; U Co U C3 that are pairwise vertex-disjoint, i.e.
sets S; = V/(C;) are pairwise vertex-disjoint. Recall at this point that we would like to upper
bound the number of triangles in G by six times A, where A is the number of triangles in the
cactus C. Notice that f3(G) is comprised of f3(G[S1]) + f3(G[S2]) + f3(G[Ss]) + ¢/, where
¢’ is the number of triangles in G “across” the components S; (i.e. those triangles whose
vertices intersect with at least two sets S;, S;, where ¢ # j. Therefore, if we could somehow
give a nice upper bound on ¢’, e.g. if ¢" < 6, then we could inductively use f3(G[S;]) < 6A;
where A; is the number of triangles in C;, and that therefore

[3(G) <6(A1+ A2+ A3) +6 <6(A—1)+6=6A

and we would be done. However, it is not possible to give a nice upper bound on ¢’ that
holds in general for all situations. We observe that such a bound can be proven for some
suitable choice of t: Roughly speaking, removing such a triangle ¢ from C would create a
small “interaction” between components C; (i.e. small ¢’). We say that such a triangle ¢
is a light triangle; otherwise, we say that it is heavy. Let C’' be the current cactus we are
considering. As long as there is a light triangle left in C’, we would remove it (thus breaking
C’ into C1,Cy,Cs) and inductively use the bound for each C}. Therefore, we have reduced
the problem to that of analyzing the base case of a cactus in which all triangles are heavy.
Handling the base case of the inductive proof is the main challenge of our result.

We sketch here the two key ideas. Let S = V(C). The first key idea is the way we exploit
the locally optimal solution in certain parts of the graph G[S]. We want to point out; the fact
that all triangles in C are heavy is exploited crucially in this step. Recall that, each heavy
triangle is such that its removal creates three components Cq,Cs,Cs with many “interactions”
(i.e. many triangles across components) between them. This large amount of interaction is
the main reason why we could not use induction before. However, intuitively, these triangles
across components could serve as candidates for making local improvements. So the fact
that there are many interactions would become our advantage in the local search analysis.

We briefly illustrate how we take advantage of heavy triangles. Let 7 be the set of
triangular faces in G that are not contained in | J; G[S;], so each triangle in 7 has vertices in
at least two subsets S}, S; where j # 4. The local search argument would allow us to say
that all triangles in 7 have one vertex in S;, one in S; and one outside of S; U Sy U S3. This
idea is illustrated in Figure la.



P. Chalermsook, A. Schmid, and S. Uniyal 19:5

V /\
‘

A
VAT
KA 4 bA

(a) A 1l-swap operation. If there were two tri- (b) A 2-swap operation. Let ¢1 and t2 be two adjacent
angles t1, th in T between two different pairs triangles in our cactus. If there was an edge between
of components Sj,S; (where j # i), we could t1 and t2, then there would exists a local improvement
remove t from C and add t}, t5 to get a better by removing t1 and t2 from C and adding ¢}, t5 and
cactus. ts.

Figure 1 Two examples for the swap operations.

Moreover, we will argue that there are not too many triangular faces in G[S], and we
give a rough idea of how the exchange argument can be used in Figure 1b.

Finally, the ideas illustrated in both figures are only applied locally in a certain “region
inside the input planar graph G, so globally it is still unclear what would happen. Our final
ingredient is a way to decompose the regions inside a plane graph into various “atomic” types.

R

For each such atomic type, the local exchange argument is sufficient to argue optimally about
the number of triangles in G in that region compared to that in the cactus. Combining
the bounds on these atomic types gives us the desired result. This is the most technically
involved part of the paper, and we present it gradually by first showing the analysis that
gives B(G) > %f?,(G). For this, we need to classify the regions into five atomic types. To
prove the main theorem, that S(G) > % f3(G), we need a more complicated classification into
thirteen atomic types.

Organization of the paper. In Section 2, we give a detailed overview for the proof of our
main result. As the proof in full detail would be to long to fit in this extended abstract, we
refer the interested reader to a full version on arXiv [8]. In Section 3, we present how to
construct a planar graph for which the bound proven in Theorem 1 is tight. In addition we
show how it implies the extremal bound provided in [3]. In Section 4, we point out possible
directions for future research and extensions of our work.

2 Overview of the Proof

In this section, we give a formal overview of the structure of the proof of Theorem 1. Let our
input G be a plane graph (a planar graph with a fixed drawing). Let C be a locally optimal
triangular cactus solution for the natural local search algorithm that uses 2-swap operations,
as described in the previous section. Let A(C) denote the number of triangular faces of C
which correspond to the triangular faces of G. We will show A(C) > f3(G)/6. In general, we
will use the function A : G — N to denote the number of triangular faces in any plane graph
G.

We partition the vertices in G into subsets based on the connected components of C, i.e.
V(G) = U, Si where C[S,] is a connected cactus subgraph of C. For each 4, where |S;| > 1,
let ¢(S;) denote the number of triangular faces in G with at least two nodes in S;. The
following proposition holds by the 2-swap optimality of C which implies f3(G) =, q(S;).

STACS 2019



19:6

A Tight Extremal Bound on the Lovasz Cactus Number in Planar Graphs

» Proposition 4. If A(C;) > +q(S;) for all i, then A(C) > ¢ f3(G).

Therefore, it is sufficient to analyze any arbitrary component S; where C[S;] contains
at least one triangle of C (if the component does not contain such a triangle it is just a
singleton vertex) and show that A(C;) > £¢(S;). Thus, from now on, we fix such an arbitrary
component S; and denote S; simply by S, ¢(S;) by ¢(5), and A(C[S;]) by p. We will show
that g < 6p through several steps.

Step 1: Reduction to Heavy Cactus

In the first step, we will show that the general case can be reduced to the case where all
triangles in C are heavy (to be defined below). We refer to different types of vertices, edges
and triangles in the graph G as follows:

Cactus. All edges/vertices/triangles in the cactus C[S] are called cactus edges/ver-
tices/triangles respectively.

Cross. Edges with exactly one end-point in S are called cross edges. Triangles that use
one vertex outside of S are cross triangles. Notice that each cross triangle has exactly
one edge in G[S], that edge is called a supporting edge of the cross triangle. Similarly, we
say that an edge e € E(G[S]) supports a cross triangle; such a cross triangle ¢ contains
exactly one vertex v in some component S; # .S. The component S; is called the landing
component of t. Similarly the vertex v is called the landing vertex of t.

type-[i] edges. An edge in G[S] that is not a cactus edge and does not support a cross
triangle is called a type-[0] edge. An edge in G[S] that is not a cactus edge and supports
i cross triangle(s) is called a type-[i] edge.
Therefore, each edge in G[S] is a cactus, type-0, type-1 or type-2 edge. The introduced
naming convention makes it easier to make important observations like the following (see
Figure 2 for an illustration of our naming convention).

Landing vertices
@ Cactus vertices
e—e Cactus edges
\4 e Cross edges
Type-[0] edges
s TYPe-[1] Or
t Type-[2] edges

Figure 2 Various types of edges, vertices and triangles. Here the cross triangles ¢ and ¢; have
the same landing component.

» Observation 5. Triangles that contribute to the value of q are of the following types: (i)
the cactus triangles; (ii) the cross triangles; and (i) the “remaining” triangles that connect
three cactus vertices using at least one type-0, type-1 or type-2 edge, and do not have a cross
triangle drawn inside.



P. Chalermsook, A. Schmid, and S. Uniyal

Types of cactus triangles and Split cacti. Consider a (cactus) triangle ¢t in C. For i €
{0,1,2,3}, we say that ¢ is of type-i if exactly ¢ of its edges support a cross triangle. Let p;
denote the number of type-i cactus triangles, so we have that py + p1 + p2 + p3s = p.

We denote the operation of deleting the edges of ¢ from a connected cactus C[S] by
splitting C[S] at t. The resulting three smaller triangular cacti (denoted by {C!},cv (1)) are
referred to as the split cacti of t. For each v € V(t), let S! := V(C!) be the split component
containing v. Let u,v € V(¢) : u # v. Denote by B!, the set of type-1 or type-2 edges having
one endpoint in S, and the other in S!. Now we are ready to define the concept of heavy
and light cactus triangles, which will be crucially used in our analysis.

Heavy and light cactus triangles. We say that a cactus triangle ¢ is heavy if either there
are at least four cross triangles supported by E(t) UJ,,c E() B!, or there are at least three
cross triangles supported by the edges in one set B, Uuv for some uv € E(t) and no cross
triangle supported by the rest of the sets B! , Uww'for each ww’ € E(t). Otherwise, the
triangle is light. Intuitively, the notion of a light cactus triangle ¢ captures the fact that,

after removing ¢, there is only a small amount of “interaction” between the split components.

We will abuse the notations a bit by using S instead of V[S]. Recall, that we denote by
q(S) the total number of triangular faces in G with exactly two vertices in S. We denote by
p(S) the total number of triangles in the cactus C[S].

Function ¢. Consider a set S C V(G) and a drawing of G[S] (since we are talking about a
fixed drawing of the plane graph G, this is well-defined). Denote by £(S) the length of the
outer-face fg of the graph G[S]. We define ¢(S) as the number of edges on the outer-face

that do not support any cross triangle drawn on the outer-face, so we have 0 < ¢(S) < £(S5).

The main ingredients of Step 1 are encapsulated in the following theorem.

» Theorem 6 (Reduction to heavy triangles). Let v > 6 be a real number, and ¢ be as
described above. If q(S) < yp(S) — @(S) for all S for which C[S] is a connected cactus that
contains no light triangle, then q(S) < vyp(S) — ¢(S) for all S.

Therefore, if we manage to show the bound ¢(S) < yp(S) — ¢(S) for the heavy cactus, it
will follow that ¢ < p in general (due to non-negativity of function ). In other words, this
gives a reduction from the general case to the case when all cactus triangles are heavy. We
end the description of Step 1 by presenting the description of ¢.

Step 2: Skeleton and Surviving Triangles

Now, we focus on the case when there are only heavy triangles in the given cactus, and we
will give a formal overview of the key idea we use to derive the bound ¢(S) < 6p(S) — ¢(5),
which in combination with Theorem 6, gives our main Theorem 1. For convenience, we refer
to the terms p(S) and ¢(S) as simply p and ¢ respectively.

Structures of heavy triangles. Using local search’s swap operations, the light and heavy
triangles behave in a very well structured manner. The following proposition summarizes
these structures for heavy triangles.

» Proposition 7. Let ¢ be a cactus triangle in cactus C[S].
If t is heavy, then t is either type-0 or type-1.

19:7

STACS 2019



19:8

A Tight Extremal Bound on the Lovasz Cactus Number in Planar Graphs

Ift is a heavy type-1 triangle and the edge uv € E(t) supports the cross triangle supported
by t, then B!, =0 for all ww' € E(t) \ {uv} and the total number of cross triangles
supported by edges in B, is greater than or equal to two.

If t is a heavy type-0 triangle, then there is an edge uv € E(t) such that Bt , =0 for all
ww’ € E(t) \ {uv} and the total number of cross triangles supported by edges in B, is
greater than or equal to three.

By Proposition 7 we can only have type-0 and type-1 cactus triangles in C. Moreover, for
each such heavy triangle ¢, the type-1 or type-2 edges in G[S] only connect vertices of two
split components of t.

Let a; be the number of edges of type-i. Notice that the number of non-cactus edges in

G[S]is >, a; = |E(G[S])| — 3p.

Skeleton graph H. Let A be the set of all type-0 edges in G[S] and H := H|[S] := G[S]\ A.
Thus H[S] contains only cactus or type-1 or type-2 edges.

Each face f of H possibly contains several faces of G, so we will refer to such a face as
a super-face. At high-level, our plan is to analyze each super-face f, providing an upper
bound on the number of triangular faces of G drawn inside f, and then sum over all such
f to retrieve the final result. We call H a skeleton graph of G, whose goal is to provide
a decomposition of the faces of G into structured super-faces. Denote by F the set of all
super-faces (except for the p faces corresponding to cactus triangles).

Let f be a super-face. Denote by survive(f) the number of triangular faces of G drawn
inside f that do not contain any cross triangles. Now we do a simple counting argument
for ¢ using the skeleton H as follows: (i) There are p cactus triangles in H, (ii) There are
p1+ai1+2as cross triangles supported by edges in G[S], and (iii) There are 3 ;. » survive(f)
triangular faces in G that were not counted in (i) or (ii). Combining this, we obtain:

g <p+(p1+ai+2a2)+ Z survive(f) (1)
fer

The first and second terms are expressed nicely as functions of p’s and a’s, so the key is to
achieve the best upper bound on the third term in terms of the same parameters. Roughly
speaking, the intuition is the following: When ag or a; is high (there are many edges in G[S]
supporting cross triangles), the second term becomes higher. However, each cross triangle
would need to be drawn inside some face in G[S], therefore decreasing the value of the term
Zfef survive(f). Similar arguments can be made for p;. Therefore, the key to a tight
analysis is to understand this trade-off.

The structure of super-faces. Let f € F be a super-face. Recall that an edge in the
boundary of f is either a type-1 or type-2 edge, or a cactus edge. We aim for a better
understanding of the value of survive(f). In general, this value can be as high as |E(f)| — 2,
e.g. if G[V(f)] is a triangulation of the region bounded by the super-face f using type-0
edges. However, if some edge in the boundary of f supports a cross triangle whose landing
component is drawn inside of f in G, this would decrease the value of survive(f), by killing
the triangular face adjacent to it, hence the term survive.
The following observation is crucial in our analysis:

» Observation 8. Consider each edge e € E(f). There are two possible cases:
Edge e is a type-1 or type-2 or cactus edge and supports a cross triangle drawn in f.
Edge e is a type-1 or type-2 or cactus edge and does not support any cross triangle drawn



P. Chalermsook, A. Schmid, and S. Uniyal

Edges lying in the first case are called occupied edges (the set of such edges in E(f) is
denoted by Occ(f)), while the others are called free edges in f (the set of free edges in E(f)
is denoted by Free(f)). The length of f can be written as |E(f)| = |Occ(f)| + |Free(f)].

A very important quantity for our analysis is u(f) = % - [Occ(f)| + |Free(f)|, roughly
bounding the value of survive(f) (within some small constant additives terms.)

We will assume without loss of generality that survive(f) is the maximum possible value
of surviving triangles that can be obtained by drawing type-0 edges in f, so u(f) is a function
that depends only on the bounding edges in f. We define gain(f) = u(f) — survive(f),
which is again a function that only depends on bounding edges of f. Intuitively, the higher
the term gain(f), the better for us (since this would lower the value of survive(f)), and in
fact, it will later become clear that gain(f) roughly captures the “effectiveness” of a local
exchange argument on the super-face f. Hence, it suffices to show that ) feF gain(f) is
sufficiently large. The following proposition makes this precise:

» Proposition 9. >° . > survive(f) = (3p — 0.5p1 + 1.5a1 + a2) — 3 o 7 gain(f)

Proof. Notice that ;. > p(f) can be analyzed as follows:
Each cactus triangle is counted three times (once for each of its edges), and for a type-1
triangle, one of the three edges contribute only one half. Therefore, this accounts for the
term 3p — 0.5p;.
Each type-1 or type-2 edge is counted two times (once per super-face containing it in its
boundary). For a type-2 edge, the contribution is always half (since it always is accounted
in Occ(f)). For a type-1 edge, the contribution is half on the occupied case, and full on
the free case. Therefore, this accounts for the term 1.5a1 + as.

Overall we get, Zfe]-‘ w(f) =3p—0.5p1 + 1.5a; + ag, which finishes the proof. <

Combining this proposition with Equation 1, we get:

q <4p+0.5p1 + 2.5a; + 3az — Z gain(f) (2)
feFr

A warm-up: Using the gains to prove a weaker bound. To recap, after Step 1 and Step
2, we have reduced the analysis to the question of lower bounding > feF gain(f). We first
illustrate that we could get a weaker (but non-trivial) result compared to our main result
by using a generic upper bound on the gains. In Step 3, we will show how to substantially
improve this bound, achieving the ratio of our main Theorem 1 which is tight.

» Lemma 10. For any super-face (except for the outer-face) in F, we have gain(f) > 1.5.

As the outer (super-)face fo of H[S] is special, we can achieve a lower bound on the
quantity gain(fo) that depends on ¢(S). This is captured by the following lemma.

» Lemma 11. For the outer-face fo, we have that gain(f) > ¢(S) — 1.

> gain(f) = @(S) = 1+ L5(|F| = 1) = @(S) + 1.5|F| - 0.5 (3)
feF

The following lemma upper bounds the number of skeleton faces (i.e. super-faces of the
skeleton.)

» Lemma 12. |F|=a; +ay+1<2p—2.

19:9

STACS 2019



19:10

A Tight Extremal Bound on the Lovasz Cactus Number in Planar Graphs

Figure 3 An example of the contraction transformation.

Proof. Proposition 7 allows us to modify the graph H into another simple planar graph H
such that the claimed upper bound on |F| will follow simply from Euler’s formula.

Let ¢ be a cactus triangle where V(t) = {u,v,w} and uvw € E(t) be such that the edge
set B!, is empty, as guaranteed in Proposition 7. For every cactus triangle ¢ we contract the
edge uw into one new vertex W. Note that this operation creates two parallel edges with
endpoints W and v in the resulting graph. To avoid multi-edges in the resulting graph H we
remove one of them (see Figure 3 for an illustration of this operation). Since B!,

w 1S empty
this operation cannot create any other multi-edges in H. In addition the contraction of an
edge maintains planarity, hence after each such transformation the graph remains simple and
planar. As a result of applying the above operation to all cactus triangles, the graph H has
p+ 1 vertices and p edges corresponding to the contracted triangles. By Euler’s formula the
number of edges in H is at most 3(p+ 1) — 6 = 3p — 3, which implies that a; + as < 2p — 3,

and as |F| = a1 + a2 + 1 we get that |F| <2p — 2. <
Combining the trivial gains (i.e. Inequality 3) with Inequality 2, we get

q < (4p40.5p1 +2.5a1 +3az) — (¢ (S)+1.5(a1 +az+1)—2.5) = 4p+0.5p1 +a1+1.5a2—p(S)+1

Now, using Lemma 12 and the trivial bound that p; < p, we get ¢(S) < 4.5p+ 1.5(a; +az) —

©(S) +1 < 7.5p(S) — ¢(S), therefore implying a factor 7.5 upper bound.

Step 3: Upper Bounding Gains via Super-Face Classification

In this final step, we show another crucial idea that allows us to reach a factor 6. Intuitively,
the most difficult part of lower bounding the total gain is the fact that the value of gain(f) is
different for each type of super-face, and one cannot expect a strong “universal” upper bound
that holds for all of them. For instance, Figure 4 shows a super-face with gain(f) = 1.5, so
strictly speaking, we cannot improve the generic bound of 1.5.

Figure 4 A super-face f € F having gain(f) = 1.5; u(f) = 1.5 and survive(f) = 0.



P. Chalermsook, A. Schmid, and S. Uniyal

This is where we introduce our final ingredient, that we call classification scheme. Roughly,
we would like to “classify” the super-faces in F into several types, each of which has the same
gain. Analyzing super-faces with similar gains together allows us to achieve a better result.

Super-face classification scheme. We are interested in coming up with a set of rules ®
that classifies F into several types. We say that the rule ® is a d-type classification if the
rules classifies F into d sets F = U?:l Flj]- Let ¥ be a vector such that x[i] = |F[i]]. We
would like to prove a good lower bound on the gain for each such set. We define the gain
vector by gain where gain[i] = min e 7 gain(f). The total gain can be rewritten as:

S gain(f) = gain - X

fer

Notice that, the total gain value ML - X would be written in terms of the x[;j] variables,
so we would need another ingredient to lower bound this in terms of variables p’s and a’s.
Therefore, another component of the classification scheme is a set of valid linear inequalities
U of the form 2?21 CixXli] < Xjeqony 4iPi + 2 jeq1,2) dja;- This set of inequalities will
allow us to map the formula in terms of ¥[j] into one in terms of only p’s and a’s.

A classification scheme is defined as a pair (®, U). We say that such a scheme certifies the
proof of factor v if it can be used to derive ¢(5) < vp(S) — ¢(S). Given a fixed classification
scheme and a gain vector, we can check whether it certifies a factor v by using an LP solver
(although in our proof, we would show this derivation.)

Our main result is a scheme that certifies a factor 6. Since the proof is complicated, we
also provide a simpler, more intuitive proof that certifies a factor 7 first.

» Theorem 13. There is a 5-type classification scheme that gives a factor 7.

We remark that the analysis of factor 7 only requires a cactus that is locally optimal for
1-swap.

» Theorem 14. There is a 13-type classification scheme that gives a factor 6.

Intuition. The classification scheme would intuitively set the rules to separate the super-
faces that would benefit from local search’s exchange argument from those that would not.
Therefore, for the good cases, we would obtain a much better gain, e.g., in one of our
classification type, gain(f) is as high as 4.5. In the bad cases that there is no such benefit,
we would still use the lower bound of 1.5 that holds in general for any super-face.

3  On the Strength of Our Result

3.1 Our Bound is Almost Tight

In this section, we show that there exists a graph G for which 3(G) < (3 4 o(1)) f3(G). We
show this indirectly using a family of graphs presented in [7], as stated in the following
lemma.

» Lemma 15 ([7]). There is a family of n-vertex planar graphs {H,}nez for which there

exist a mazimal cactus subgraph C,, of H, such that ]{:((EIZ)) < le + on(1).

In [7], this family of graphs is used to show that a maximal cactus (not maximum) is not

sufficient to improve over the best known greedy strategies when approximating MPT. In
the context of this paper we use C,, to compare it to a maximum cactus for H,, to prove the
following.

19:11

STACS 2019



19:12

A Tight Extremal Bound on the Lovasz Cactus Number in Planar Graphs

» Theorem 16. Let H,, be the graph family as in Lemma 15. Then, Ji(g[”) < % + on(1).

N

Proof. By Lemma 15, it suffices to argue that f3(C,,) > ﬁ(%") Let C7 be an optimal cactus
with S(H,) triangles. Notice that for any triangle ¢ in C,, E(t) intersects at most two other
triangles in C;. If all three edges of ¢ were to be used by three different triangles in C}, this
would contradict the cactus property. Moreover, if ¢t does not intersect any triangle in C;
this would imply that one of its edges would complete a cycle if added to C};. By these two
observations we can use a simple counting scheme to upper-bound the number of triangles in
C} depending on the number of triangles in C,,. We iteratively add triangles of C), to C}
and count in every step how many triangles in C7 need to be removed to maintain the cactus
property. For every triangle in C,, that intersects C}; in one or two edges, we have to remove
at most two triangles from C};. For every triangle in C),, that does not intersect C7; in any
edge, we have to break a cycle in the resulting C by deleting one other triangle from it. In
each iteration we therefore destroy at most two triangles from the original C}: and therefore
get f3(Cr) < 2f3(Cy). This concludes the proof as f5(Cy) > f3(Ck)/2 = B(Hy)/2. <

3.2 Comparison to the Previous Bound

One integral part to derive the improved approximation ration for MPS in [3] was to show
that for any given planar graph G = (V, E) with n = |V vertices and |E| = 3n — 6 — ¢(G)
edges, we have:

» Theorem 17 ([3]). Let G be as above, then B(G) > L(n — t(G) — 2).

As removing one edge from a triangulated planar graph merges exactly two faces, we can
easily derive a lower bound that depends on #(G), for the number of triangular faces in G:

f3(G) = 2n — 2¢(G) — 4
By Theorem 1, we have that 5(G) > §f3(G). Combining these two facts implies
Theorem 17.

The remaining n/2 vertices

A triangulation on

n/2 vertices.

Figure 5 Bad example which shows that a extremal bound like the one in in [3] for MPS does
not necessarily imply a similarly strong result to MPT.

We end this section by showing that the bound in [3] alone is not sufficient for ap-
proximating MPT. To this end we construct a graph in which (n — t(G) —2) < 0, even
though f3(G) = ©(n), Let G be a planar graph with n vertices, where % vertices form
a triangulated planar subgraph. Let v be a vertex on the outer-face of this triangulated
structure. The remaining 5 vertices are embedded in the outer-face and are incident to
exactly one edge each, with the other endpoint being v (see Figure 5 for an illustration



P. Chalermsook, A. Schmid, and S. Uniyal

of this construction). Therefore by Euler’s formula, the number of edges in this graph is
equal to 3(%) — 6 4+ § = 2n — 6 and thus ¢(G) = n, while the number of triangular faces is
f[3(G)=2(3)—4—-1=n—5.

4 Conclusions and Open Problems

Our work implies that a natural local search algorithm gives a (g + ¢)-approximation for
MPS and a % + € approximation for MPT. To be more precise, when given any graph G, we
follow the t-swap local search strategy for t = O(1/e): Start from any cactus subgraph H.
Try to improve it by removing ¢ triangles and adding (¢ + 1) triangles in a way that ensures
that the graph remains a cactus subgraph. A local optimal solution will always be a (% +¢)
approximation for MPS and a (§ + €) approximation for MPT.

Knowing this fact, there is an obvious candidate algorithm for improving over the long-
standing best approximation factor for MPS. We call a graph H a diamond-cactus if every
block in H is either a diamond® or a triangle. Start from any diamond-cactus subgraph
H of G and then try to improve it by removing ¢ triangles from H and adding (¢ + 1)
triangles, maintaining the fact that H is a diamond-cactus subgraph. We conjectured that
this algorithm gives a better than %—approximation for MPS, but we suspect that the analysis
will require substantially new ideas.

Another interesting direction is to see whether there is a general principle that captures a
denser planar structure than cactus subgraphs by going above matroid parity in the hierarchy
of efficiently computable problems. For instance, are diamond-cactus subgraphs captured by
matroid parity? Or can it be formulated as an even more abstract structure than matroids
(e.g. commutative rank [2]) that can still be computed efficiently? We believe that studying
this direction will lead to a better understanding of algebraic techniques for finding dense
planar structures.

Finally, the absence of LP-based techniques in this problem domain seems rather unfortu-
nate. There have been some experimental studies recently, but the theoretical understanding
of what can be proven formally in the context of power of relaxation is certainly lacking
[16, 10, 11]. Is there a convex relaxation that allows us to find a relatively dense planar
subgraph (e.g. (3 — ¢€)-approximation for MPS using LP-based techniques)?

—— References

1 Claude Berge. La theorie des graphes. Paris, France, 1958.

2 Markus Blaser, Gorav Jindal, and Anurag Pandey. Greedy Strikes Again: A Deterministic
PTAS for Commutative Rank of Matrix Spaces. In 32nd Computational Complezity Conference,
CCC 2017, July 6-9, 2017, Riga, Latvia, pages 33:1-33:16, 2017.

3 Gruia Calinescu, Cristina G Fernandes, Ulrich Finkler, and Howard Karloff. A better ap-
proximation algorithm for finding planar subgraphs. Journal of Algorithms, 27(2):269-302,
1998.

4  Gruia Calinescu, Cristina G Fernandes, Howard Karloff, and Alexander Zelikovsky. A new
approximation algorithm for finding heavy planar subgraphs. Algorithmica, 36(2):179-205,
2003.

5  Gruia Calinescu, Cristina G Fernandes, Hemanshu Kaul, and Alexander Zelikovsky. Maximum
series-parallel subgraph. Algorithmica, 63(1-2):137-157, 2012.

5 A diamond subgraph is a graph that is isomorphic to the graph resulting from deleting any single edge
from a Kjy.

19:13

STACS 2019



19:14

A Tight Extremal Bound on the Lovasz Cactus Number in Planar Graphs

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

Parinya Chalermsook, Marek Cygan, Guy Kortsarz, Bundit Laekhanukit, Pasin Manurangsi,
Danupon Nanongkai, and Luca Trevisan. From gap-ETH to FPT-inapproximability: Clique,
dominating set, and more. In Foundations of Computer Science (FOCS), 2017 IEEE 58th
Annual Symposium on, pages 743-754. IEEE, 2017.

Parinya Chalermsook and Andreas Schmid. Finding Triangles for Maximum Planar Subgraphs.
In WALCOM: Algorithms and Computation, 11th International Conference and Workshops,
(WALCOM’17), Proceedings., pages 373-384, 2017.

Parinya Chalermsook, Andreas Schmid, and Sumedha Uniyal. A Tight Extremal Bound on the
Lovész Cactus Number in Planar Graphs. CoRR, abs/1804.03485, 2018. arXiv:1804.03485.
Ho Yee Cheung, Lap Chi Lau, and Kai Man Leung. Algebraic algorithms for linear matroid
parity problems. ACM Transactions on Algorithms (TALG), 10(3):10, 2014.

Markus Chimani, Ivo Hedtke, and Tilo Wiedera. Exact Algorithms for the Maximum Planar
Subgraph Problem: New Models and Experiments. In 17th International Symposium on
Experimental Algorithms, SEA 2018, June 27-29, 2018, L’Aquila, Ttaly, pages 22:1-22:15, 2018.
doi:10.4230/LIPIcs.SEA.2018.22.

Markus Chimani and Tilo Wiedera. Cycles to the Rescue! Novel Constraints to Compute
Maximum Planar Subgraphs Fast. In Yossi Azar, Hannah Bast, and Grzegorz Herman,
editors, 26th Annual European Symposium on Algorithms (ESA 2018), volume 112 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 19:1-19:14, Dagstuhl, Germany, 2018.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.ESA.2018.19.
Harold N Gabow and Matthias Stallmann. An augmenting path algorithm for linear matroid
parity. Combinatorica, 6(2):123-150, 1986.

Magntis M Halldérsson. Approximations of weighted independent set and hereditary subset
problems. In Graph Algorithms And Applications 2, pages 3—18. World Scientific, 2004.
Johan Hastad. Clique is hard to approximate withinn 1- . Acta Mathematica, 182(1):105-142,
1999.

T.A. Jenkyns. Matchoids : a Generalization of Matchings and Matroids. Thesis (Ph.D.)—
University of Waterloo, 1974.

M. Jiinger and P. Mutzel. Maximum planar subgraphs and nice embeddings: Practical layout
tools. Algorithmica, 16(1):33-59, July 1996. doi:10.1007/BF02086607.

Subhash Khot and Ashok Kumar Ponnuswami. Better inapproximability results for maxclique,
chromatic number and min-3lin-deletion. In International Colloquium on Automata, Languages,
and Programming, pages 226—237. Springer, 2006.

Eugene L Lawler. Combinatorial optimization: networks and matroids. Courier Corporation,
1976.

Jon Lee, Maxim Sviridenko, and Jan Vondrak. Matroid matching: the power of local search.
SIAM Journal on Computing, 42(1):357-379, 2013.

John M Lewis and Mihalis Yannakakis. The node-deletion problem for hereditary properties
is NP-complete. Journal of Computer and System Sciences, 20(2):219-230, 1980.

Lészlé Lovéasz. Matroid matching and some applications. Journal of Combinatorial Theory,
Series B, 28(2):208-236, 1980.

Lészl6 Lovasz and Michael D Plummer. Matching theory, volume 367. American Mathematical
Soc., 2009.

Carsten Lund and Mihalis Yannakakis. The approximation of maximum subgraph problems. In
International Colloguium on Automata, Languages, and Programming, pages 40-51. Springer,
1993.

James B Orlin. A fast, simpler algorithm for the matroid parity problem. In International
Conference on Integer Programming and Combinatorial Optimization, pages 240-258. Springer,
2008.

Zoltan Szigeti. On a min-max theorem of cacti. In International Conference on Integer
Programming and Combinatorial Optimization, pages 84-95. Springer, 1998.

William T Tutte. The factorization of linear graphs. Journal of the London Mathematical
Society, 1(2):107-111, 1947.


http://arxiv.org/abs/1804.03485
http://dx.doi.org/10.4230/LIPIcs.SEA.2018.22
http://dx.doi.org/10.4230/LIPIcs.ESA.2018.19
http://dx.doi.org/10.1007/BF02086607

	Introduction
	Our Results
	Overview of Techniques

	Overview of the Proof
	On the Strength of Our Result
	Our Bound is Almost Tight
	Comparison to the Previous Bound

	Conclusions and Open Problems

