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Abstract
To prove average-case NP-completeness for a problem, we must choose a known average-case complete
problem and reduce it to that problem. Unfortunately, the set of options to choose from is far
smaller than for standard (worst-case) NP-completeness. In an effort to help remedy this we focus on
tag systems, which due to their extreme simplicity have been a target for other types of reductions
for many problems including the matrix mortality problem, the Post correspondence problem, the
universality of cellular automaton Rule 110, and all of the smallest universal single-tape Turing
machines. Here we show that a tag system can efficiently simulate a Turing machine even when
the input is provided in an extremely simple encoding which adds just logn carefully set bits to
encode an arbitrary Turing machine input of length n. As a result we show that the bounded halting
problem for nondeterministic tag systems is average-case NP-complete. This result is unexpected
when one considers that in the current state of the art for simple universal systems it had appeared
that there was a trade-off whereby simpler systems required more complicated input encodings. In
other words, although simple systems can compute interesting things, they had appeared to require
very carefully encoded inputs in order to do so. Our result surprisingly goes in the opposite direction
by giving the first average-case completeness result for such a simple model of computation. In
ongoing work we have already found applications of our result having used it to give average-case
NP-completeness results for a 2D generalization of the Collatz function, a nondeterministic version of
the 2D elementary functions studied by Koiran and Moore, 3D piecewise affine maps, and bounded
Post correspondence problem instances that use simpler word pairs than previous results.
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1 Introduction

Given the massive interest in worst-case NP-completeness, the literature devoted to proving
the stronger result of average-case NP-completeness can be considered quite limited. This is
surprising when one considers the practical importance of determining whether or not we are
likely to encounter intractable instances in problems we wish to solve. One reason for the
smaller number of results is that it is more difficult to prove the stricter form of reduction
required to show average-case NP-completeness [11, 25]. A first step towards overcoming
this difficulty is to give new average-case completeness results for problems whose simplicity
allows for easier average-case reductions to other systems.
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Of all the simple models in the literature where a new average-case completeness result
would have applications to a wide range of problems, perhaps the most compelling case can
be made for tag systems, a very simple form of rewriting system introduced by Post [18].
The simplicity of the context free rewrite rule employed by tag systems has made them
a favored target of simulation by many other systems. For this reason, tag systems have
been used either through individual reductions or via chains of reductions to prove many
undecidability and hardness results (e.g. [4, 9, 12, 21, 22, 23, 24, 26]). Reductions to tag
systems have also yielded significant improvements in lower bounds for a number of well
studied problems [14, 16, 19, 20]. So proving that the bounded halting problem for tag
systems is average-case NP-complete could lead to other new average-case NP-completeness
results and even improved lower bounds for existing results. In fact we [5] have already
used 2-tag systems to give an average-case NP-completeness result for Post correspondence
problem instances that use shorter word pairs than those found in [8, 25]. In ongoing work [6]
we have already begun using 2-tag systems as the starting point for chains of simulations that
prove average-case NP-completeness. We have used 2-tag systems to prove the average-case
NP-completeness of a bounded reachability problem for a generalized 2D1 version of the
Collatz function that is nondeterministic [6]. As a corollary of our result we find that a
nondeterministic version of the 2D elementary functions of Koiran and Moore [10] also have
a bounded reachability problem that is average-case NP-complete. In addition we simulate
tag systems to prove an average-case NP-completeness result for bounded reachability in 3D
piecewise affine maps that are nondeterministic [6].

It is worth noting that the applications of tag systems given in the references above
are not where the applications end; they propagate to other results through further chains
of reductions. The results in [16] are an example where binary tag systems were used to
significantly improve the undecidability bounds for both the Post correspondence problem
and the matrix mortality problem. The new bounds for the matrix mortality problem
also give improved undecidability bounds for the problem in [2] of reaching the origin with
piecewise linear systems and for the quantum measurements problem in [7]. The results
in the present paper are a first step towards proving average case completeness results for
bounded versions of these problems.

There are some obvious reasons to think an attempt to prove an average-case completeness
result for a system as simple as a tag systems is doomed to fail. It seems natural to expect that
the simplest systems require unwieldy encodings to compute, or suffer from an exponential
trade-off when it comes to time efficiency, and for a long time the literature seemed to bear
this out. However, in [17, 26] Neary and Woods showed that many of the simplest known
models of computation [4, 12, 14, 19, 20, 22] actually simulate Turing machines in polynomial
time, an exponential improvement over the previous simulations. It follows that many simple
systems now have a P-complete prediction problem, which means that there is no known
way to predict the long term behavior of these systems significantly faster than by explicit
step by step simulation.

Despite these improvements in efficiency it remained the case that the simplest universal
systems utilized complicated input encodings [4, 12, 13, 14, 16, 19, 20]. So it seemed
reasonable to expect that as programs get shorter or the form of rules get simpler, extra
complexity gets forced into the input encoding. This observation was expressed nicely by
Yedidia and Aaronson in [27]:

1 It is an open problem as to whether or not generalized 1D Collatz functions can simulate Turing
machines in polynomial time [10] and so proving an NP-completeness result for a nondeterministic
generalization of 1D Collatz functions would most likely require some radically new encoding technique.
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“the known small universal Turing machines achieve their small size only at the
cost of an extremely complicated description format for the input machine. That is,
most of the complexity gets “shunted” from the Turing machine itself to the input
encoding format.”

The complexity of the input encodings used by the simplest known universal systems means
that their input encodings have a very low chance of occurring when sampled from a uniform
distribution over the input alphabet. So while many of the simplest systems are now known to
have P -complete prediction problems based on carefully encoded inputs, it could nonetheless
be the case that the behavior of the simplest universal systems is easy to predict on average.

Here we give a first result indicating that this is not the case. Specifically, we show
that tag systems can efficiently simulate the computation of binary Turing machines when
provided with an extremely simple encoding which adds just logn carefully set bits to encode
an arbitrary input of length n. As a result we find that the bounded halting problem for
nondeterministic tag systems is average-case NP-complete.

2 Preliminaries

The length of a word w is denoted by |w|. We let ε denote the empty word. Given a natural
number i we let 〈i〉 be its binary digit representation.

2.1 2-Tag Systems
I Definition 1. A 2-tag system consists of a finite alphabet of symbols Σ and a finite set of
rules R : Σ→ Σ∗.

The computation of a 2-tag system acts on a word w = σ0σ1 . . . σl which we call the dataword.
The entire configuration is given by w. In a computation step, the two symbols σ0σ1 are
deleted and we apply a rule for the first symbol σ0, i.e., a rule of the form σ0 → σl+1 . . . σl+c,
by appending the word σl+1 . . . σl+c. A dataword (configuration) w2 is obtained from w1 via
a single computation step as follows:

σ0σ1σ2 . . . σl ` σ2 . . . σlσl+1 . . . σl+c

where σ0 → σl+1 . . . σl+c ∈ R. A 2-tag system halts if |w| < 2 or if there is no rule defined
for the leftmost symbol σ0 . A round is the b |w|2 c or d

|w|
2 e computation steps that traverse

the word w exactly once. We say a symbol σi of w is read if and only if at the start of some
computation step it is the leftmost symbol (i.e. i is even, so the rule σi → σk+1 . . . σk+c will
be applied). In this work we consider tag systems that are nondeterministic, that is they are
permitted to have more than one rule for each σi ∈ Σ.

In [26] it was shown that 2-tag systems efficiently simulate deterministic binary Turing
machines in time O(t4(log t)2) where t is the running time of the Turing machine. This time
overhead was later improved in Chapter 5 of [15] to give Theorem 2.

I Theorem 2 (Woods and Neary [26, 15]). Given a single tape deterministic Turing machine
M that computes in time t then there is a 2-tag system TM that simulates the computation
of M and computes in time O(t2 log t).

In [15] given a binary input word w = x1x2 . . . xn for Turing machine M it is encoded as
the TM input dataword

x̄1 ˙̄x1 x2ẋ2 x3ẋ3 . . . xnẋn (aa)2dlog2 ne+c

(1)

STACS 2019
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While the results in [26, 15] offer a polynomial time simulation of Turing machines using this
input encoding, this does not allow us to prove an average-case NP-completeness result, as
the probability of choosing a word that encodes some w (via Equation (1)) is exponentially
smaller than the probability of choosing w. In Lemma 11 we will show how 2-tag systems
can compute the encoding in Equation (1) when provided with a more compact encoding
of M ’s input word. Our compact binary encoding requires only n+ logn encoding bits to
encode M ’s input word (the remaining n+ logn bits in our length 2(n+ logn) encoding are
arbitrary padding bits). This gives an input encoding that is only polynomially less likely to
occur than the input to M and so using Lemma 11 and the results in [26] we can prove that
the bounded halting problem for tag systems is average-case NP-complete.

2.2 Average-Case Complexity
When we speak of the average-case complexity of a decision problem we are considering the
expected time to solve that problem with respect to some distribution over instances of the
problem. This leads to the notion of a distributional problem [1, 8, 11, 25]. A distributional
problem is a pair (D,µ) where D is a decision problem and µ is a distribution over instances
of D. In this work instances of D are given as binary words and we let LD be the set of
instances for which the answer to the problem D is positive.

The definitions in this section are adapted from [1, 8, 11, 25]. For the distributional
problems in this work we take the uniform probability distribution [8, 11] for binary words
w ∈ {0, 1}∗ which is proportional to µ(w) = |w|−22−|w|. The probability of choosing a word
of length n is proportional to 1/n2. We denote the distribution over all words of length n
with µn and so we have µn(w) = 2−n. We let Pf(w1, w2, . . . , wm) ∈ {0, 1}∗ be the prefix free

code for the binary words w1, w2, . . . , wm where |Pf(u1, . . . , um)| = 2m+
m∑
i=1
|wi|+2 log2 |wi|

(see [3]).

I Definition 3 (Average polynomial function). A function f that maps words to natural
numbers is polynomial on average with respect to a distribution µ if there exists an ε > 0
such that for all n∑
|w|=n

µn(w)(f(w))ε = O(n)

where w ∈ {0, 1}n.

I Definition 4 (Average polynomial time). An algorithm runs in average polynomial time with
respect to a distribution µ if its running time is bounded by an average polynomial function
with respect to µ.

Average-case reductions insist that when reducing a distributional problem (D,µ) to
another distributional problem (D′, µ′), instances x ∈ D should be at most polynomially
more likely than the instances they reduce to. This property is enforced by condition 2 of
Definition 5. Previous 2-tag system simulations of Turing machine used input encodings that
do not satisfy this condition. In Lemma 11 and Corollary 12 we show that 2-tag system with
a concise input encoding can simulate Turing machines efficiently, and then in Theorem 13
we show that this new input encoding satisfies condition 2 of Definition 5.

I Definition 5 (Ptime reduction between distributional problems). A distributional problem
(D,µ) Ptime reduces to a distributional problem (D′, µ′) if there exists a polynomial time
computable function g(w) = y, where w ∈ D and y ∈ D′, and a polynomial p(|w|) such that
the following two conditions hold:
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1. g(w) ∈ LD′ if and only if w ∈ LD
2.

∑
g(w)=y

µ(w) 6 p(|w|)µ′(y)

I Definition 6 (Dilation of a distributional problem). A dilation ∆ of a distributional problem
(D,µ) is a distributional problem (D∆, µ∆) where instances of D∆ include extra padding.
The dilation ∆ maps each instance w of D to a set given by {Pf(w, sw)|sw ∈ Sw} where
Sw is a finite set of binary words. The set D∆ is given by the union of all sets produced by
applying ∆ to the instances of D (i.e. D∆ =

⋃
w∈D
{Pf(w, sw)|sw ∈ Sw}). For each instance

Pf(w, sw) of D∆, Pf(w, sw) ∈ LD∆ if and only if w ∈ LD. The probability distribution is

given by µ∆(Pf(w, sw)) = µ(w)2−|sw|∑
r′∈Sw

2−|r
′| .

We say a dilation is a Ptime dilation if it is computed by a randomized algorithm A that
runs in polynomial time, that is on input w A outputs an element from {Pf(w, sw)|sw ∈ Sw}
in time polynomial in |w|. We think of sw as the sequence of coin flips made by A.

I Definition 7 (Nonrare dilation). A dilation ∆ (as defined in Definition 3) is nonrare if R∆
(given in Equation (2)) is polynomial on average with respect to the distribution µ′.

R∆(w) = 1∑
s∈Sw

2−|s|
(2)

I Definition 8 (Ptime randomized reduction between distributional problems). A distributional
problem (D,µ) randomly reduces to a distributional problem (D′, µ′) if (D,µ) has a nonrare
Ptime dilation (D∆, µ∆) such that (D∆, µ∆) Ptime reduces to (D′, µ′) (see Definition 5).

Let M1,M2,M3, . . . be an enumeration of nondeterministic binary Turing machines and
let T1, T2, T3, . . . be an enumeration of nondeterministic 2-tag systems.

The problem in Definition 9 is known to be average-case NP-complete and it will be used
in our reduction at the end of the next section to prove that the problem for tag systems
given in Definition 10 is average-case NP-complete.

I Definition 9 (Distributional bounded halting problem for nondeterministic Turing machines).
Problem: Given a nondeterministic Turing machine Mi, a binary word w, and a natural
number t, determine whether or not M halts in t steps when given w as input.

Instance: A binary word Pf(〈i〉, w, 1t)
Distribution: Proportional to µ(〈i〉, w, t) = 2−(|〈i〉|+|w|)|〈i〉|−2|w|−2t−2.

I Definition 10 (Distributional bounded halting problem for nondeterministic 2-tag systems).
Problem: Given a nondeterministic 2-tag system Ti, a binary word w, and a natural number
t, determine whether or not T halts in t steps when given w as input.

Instance: A binary word Pf(〈i〉, w, 1t)
Distribution: Proportional to µ(〈i〉, w, t) = 2−(|〈i〉|+|w|)|〈i〉|−2|w|−2t−2.

3 New Concise Input Encoding for 2-Tag Systems

In Equation (3), we define an encoding function f : Σn×Σn+dlog2 ne+c → {0, 1}∗ where c = 1
if 2dlog2 ne < n+ dlog2 ne otherwise c = 0. The encoding function takes w = x1x2 . . . xn an
arbitrary binary Turing machine input and s = z1z2 . . . zn+dlog2 ne+c an arbitrary padding

STACS 2019



20:6 Average-Case Completeness in Tag Systems

1z1 000z2 111z3 0z4 111z5 1z6 1z7 0z8 111z9 1z10 0z11

aȧ 11̇ 0/0̇/ aȧ 11̇ 0/0̇/ aȧ 11̇ 1/1̇/ aȧ 11̇ 0/0̇/ aȧ 11̇ 1/1̇/ aȧ 00̇

(aȧ)3 11̇ 0/0̇/ 1/1̇/ 0/\0̇/\ (aȧ)3 11̇ 1/1̇/ 1/1̇/ 0/\0̇/\ (aȧ)3 11̇ 1/1̇/ 0/0̇/

(aȧ)7 11̇ 0/0̇/ 1/1̇/ 0/\0̇/\ 1/1̇/ 1/\1̇/\ 1/\1̇/\ 0/\0̇/\ (aȧ)7 11̇ 1/1̇/ 0/0̇/

(aȧ)15 11̇ 0/0̇/ 1/1̇/ 0/\0̇/\ 1/1̇/ 1/\1̇/\ 1/\1̇/\ 0/\0̇/\ 1/1̇/ 1/\1̇/\ 0/\0̇/\

1̄ ˙̄1 00̇ 11̇ 11̇ 00̇ 11̇ 00̇ (aȧ)16

Figure 1 Six datawords giving an overview of the tag system algorithm in Lemma 11. The
dataword at the top is the input to the tag system and is the encoding of the word 1011010 via
Function (3). The extra parity bits inserted are highlighted in the top row in bold. The extra
white space between pairs of symbols and the vertical alignment of symbols are for readability. The
zi ∈ {0, 1} are arbitrary padding symbols that are not read by the tag system so the first round
eliminates them. The second line from top gives the dataword after one iteration (three rounds)
of our algorithm on the input dataword, the third line from the top gives the dataword after two
iterations of our algorithm on the input dataword and so on until the fifth dataword where one
further round produces the output of the algorithm on the last line. Each iteration of our algorithm
involves three rounds of the dataword. A detailed view of the 2 other rounds not shown here is given
in Datawords (7) and (8).

word (where xi, zj ∈ {0, 1}) and maps the pair to a 2-tag system input word. The value of
f(w, s) is obtained by taking x1x2 . . . xn and inserting either dlog2 ne or dlog2 ne+ 1 extra
parity bits and then adding a padding bit (zj) after each bit in the resulting word. An
example of the application of f appears in Figure 1.

f(w, s) = u
1 1z1 u1 2z2 . . . u

1 n+dlog2 ne+c zn+dlog2 ne+c


zi ∈ {0, 1} (unread bits)
u
1 i

= xi−dlog2 ie if ∀k i 6= 2k + 1

u
1 2k+1 = h(w, k) (parity bits)

(3)

where h(w, k) is given by Equation (4), w2k+1 = u
1 3·2k+1 u1 5·2k+1 u1 7·2k+1 . . . u1m·2

k+1 is a
binary word of certain input bits with m = 2y + 1, y, k ∈ N, 0 6 k < dlog2 ne + c, and
m(2k) + 1 6 n+ dlog2 ne+ c < (m+ 2)2k + 1. Note that each w2k+1 word (there is one for
each k) is formed from a set of bits, and these sets are disjoint from each other and from the
set of parity bits, but the union of these sets and the set of parity bits is the entire input
word (apart from the throw-away zi bits). The function h indicates how word w2k+1 is used
to set parity bit u

1 2k+1.

h(w, k) =


0 if |w2k+1| > 0 and number of 1 symbols in w2k+1 is even
1 if |w2k+1| > 0 and number of 1 symbols in w2k+1 is odd
1 if |w2k+1| = 0

(4)

I Lemma 11. Let w = x1x2 . . . xn and s = z1z2 . . . zn+dlog2 ne+c be binary words where
xi, zj ∈ {0, 1}. There is a 2-tag system T that takes a binary word of the form

f(w, s) = u
1 1z1 u1 2z2 . . . u

1 n+dlog2 ne+c zn+dlog2 ne+c (5)
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as input and produces a word of the form

x̄
4 1 ˙̄x

4 1 x4 2ẋ4 2 . . . x
4 n
ẋ
4 n

(a
4
ȧ
4
)2dlog2 ne+c

(6)

in time O(n log2 n).

Proof. We prove the existence of such a tag system T by exhibiting one and showing why it
works, which will take the next few pages.

To produce Dataword (5) from Dataword (6) there are three tasks to be carried out:
(a) append (a

2
ȧ
2
)2dlog2 ne+c to the right end of the word, (b) change the first pair of symbols

be uniquely in the form x̄
4

˙̄x
4
and (c) delete the parity symbols (i.e. u2k+1u̇2k+1 pairs in

Equation (3)). We give an overview of how the algorithm achieves these tasks concurrently
and then we give the rules for the tag system and explain how they implement this algorithm.

Tasks (a) and (b)

To append a subword of the form (aȧ)2dlog2 ne+c one could append a single aȧ pair at the
end of the dataword and then iterate a process where on each iteration each aȧ pair is
mapped to aȧ aȧ so that after dlog2 ne+ c iterations the initial aȧ pair has grown to become

(aȧ)2dlog2 ne+c . Unfortunately there is no unique pair in the initial dataword that can be used
to append a single aȧ pair and so we must append aȧ pairs throughout the dataword which
gives aȧ subwords that grow in multiple locations throughout the dataword. Half of these
growing aȧ subwords are deleted on each of the dlog2 ne+ c iterations so that after the last

iteration only one subword of the form (aȧ)2dlog2 ne+c remains.
We now explain how our algorithm knows when it has carried out the dlog2 ne+c iterations

needed to grow the (aȧ)2dlog2 ne+c word.
Each iteration involves 3 rounds of the dataword and marks every second unmarked

uu̇ pair by mapping it to u/u̇/. See for example Figure 1 where on the first iteration pairs
2, 4, 6, 8 and 10 are marked, on the second iteration pairs 3, 7 and 11 are marked,
and so on. Using the dlog2 ne + c parity pairs we can determine when we have com-
pleted dlog2 ne + c iterations of this marking process. On iteration k we mark the pairs
u2k+1u̇2k+1, u3(2k)+1u̇3(2k)+1, u5(2k)+1u̇5(2k)+1 . . . um(2k)+1u̇m(2k)+1 and so on each iteration
exactly one parity pair (u2k+1u̇2k+1) is marked. To see that this is the case it is sufficient to
note that if at the start of iteration i the unmarked pairs are

u1u̇1, u2i+1u̇2i+1, u2(2i)+1u̇2(2i)+1, u3(2i)+1u̇3(2i)+1, . . . us1(2i)+1u̇s1(2i)+1

then at the start of iteration i+ 1 the unmarked pairs are

u1u̇1, u2i+1+1u̇2i+1+1, u2(2i+1)+1u̇2(2i+1)+1, u3(2i+1)+1u̇3(2i+1)+1, . . . us2(2k+1)+1u̇s2(2k+1)+1

and so pairs of the form u2k+1u̇2k+1, u3(2k)+1u̇3(2k)+1, u5(2k)+1u̇5(2k)+1 . . . um(2k)+1u̇m(2k)+1

are marked on iteration k for k = i and k = i + 1. The value of each u2k+1u̇2k+1 pair is

set via Equation (4) so that an even number of 11̇ pairs are marked during each of the

STACS 2019



20:8 Average-Case Completeness in Tag Systems

first dlog2 ne+ c− 1 iterations, and on iteration number dlog2 ne+ c an odd number of 11̇

pairs are marked. So by checking whether the number of uu̇ = 11̇ pairs marked during each

iteration is odd or even our algorithm can determine when exactly dlog2 ne+ c iterations
have been completed.

Now we can explain how we append (aȧ)2dlog2 ne+c during the dlog2 ne + c iterations
described above. On the first iteration a single aȧ pair is appended to the left of each uu̇
pair that remains unmarked by applying a rule of the form u → aȧ uu̇. On each subsequent
iteration each aȧ pair is replaced with two aȧ pairs if the uu̇ pair immediately to the right
remains unmarked and each aȧ pair is deleted by mapping it to the empty word if the uu̇
pair immediately to the right is marked on that iteration. In addition on each iteration each
unmarked uu̇ pair adds another aȧ pair. So immediately to the left of each unmarked uu̇
pair we have a single aȧ pair after the first iteration, 3 aȧ pairs after the second iteration, 7

aȧ pairs after the third iteration, and 2k − 1 aȧ pairs after the kth iteration (see Figure 1).

Thus after dlog2 ne+ c iterations we have (aȧ)2dlog2 ne+c−1 to the left of the only unmarked

pair (u1u1). Then in one final round each aȧ in (aȧ)2dlog2 ne+c−1 is mapped to aȧ, and this

lone remaining u1u1 pair appends one further aȧ to give (aȧ)2dlog2 ne+c at the right end of

the dataword, while also producing the ū ˙̄u to simultaneously achieve Tasks (a) and (b).

Task (c)

From Equation (3) the parity pairs that appear in the dataword have the form u2k+1u̇2k+1

and before we can delete these pairs we must first distinguish them from all other uiu̇i pairs
in the dataword. Recall from Task (a) that on iteration k we mark the pairs u2k+1u̇2k+1,
u3(2k)+1u̇3(2k)+1, u5(2k)+1u̇5(2k)+1, . . . um(2k)+1u̇m(2k)+1. Note that u2k+1u̇2k+1 is the left-
most pair marked during iteration k, and since every second unmarked uu̇ pair is marked
during iteration k there must be a single unmarked pair to the left of u2k+1u̇2k+1, and this
unmarked pair must be u1u̇1 since u1u̇1 is never marked which also means that in all iterations

following iteration k there is exactly one unmarked pair to the left of u/2k+1u̇/2k+1. It is also
the case that immediately following iteration k there must be at least l > 2 unmarked pairs
to left of each pair of the form u/j(2k)+1u̇/j(2k)+1 where j > 3. It follows that after a further r

iterations (iteration k + r) when we have continued marking every second unmarked pair
there will be dle2r unmarked pairs to the left of u/j(2k)+1u̇/j(2k)+1. Since l > 2 and our algorithm

iterates until there is only one unmarked pair there is an iteration k + r where dle2r = 1 and
dle

2r−1 = 2. It follows that for all pairs of the form u/j(2k)+1u̇/j(2k)+1 where j > 3 there is at

least one iteration where the number of unmarked pairs to the left of u/j(2k)+1u̇/j(2k)+1 is
even at the beginning of the iteration. If at the beginning of an iteration the number of
unmarked pairs to the left of a u/u̇/ pair is even then we apply the rule u/ → u/\u̇/\ (see for example

Figure 1). It follows that pairs of the form u/j(2k)+1u̇/j(2k)+1 where j > 3 will be changed
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Table 1 Tag system rules where u ∈ {0, 1}. The left column specifies when the rules are used
during the algorithm: during round 1, 2 or 3 of each iteration, or during the final round on the
dataword.

round 1 u
1

→ u
2
u̇
2
ü
2
, a

1
→ a

2
ȧ
2
, u/

1
→ u/

2
u̇/
2
, u/\

1
→ u/\

2
u̇/\
2
,

round 2 u
2

→ a
3
ȧ
3
u
3
u̇
3
ü
3
, 1̇

2
→ 1/

3
1̇/
3
, 0̇

2
→ 0/

3
0̇/
3
0̈/
3
, ü

2
→ ε, a

2
→ a

3
ȧ
3
a
3
ȧ
3
, ȧ

2
→ ε,

u/
2

→ u/\
3
u̇/\
3
, u̇/

2
→ u/

3
u̇/
3
, u/\

2
→ u/\

3
u̇/\
3
, u̇/\

2
→ u/\

3
u̇/\
3
,

round 3 u
3

→ u
1
u̇
1
, u̇

3
→ u

1
u̇
1
, ü

3
→ ε, a

3
→ a

1
ȧ
1
, ȧ

3
→ a

1
ȧ
1
,

u/
3

→ u/
1
u̇/
1
, u̇/

3
→ u/

1
u̇/
1
, u/\

3
→ u/\

1
u̇/\
1
, u̇/\

3
→ u/\

1
u̇/\
1

Final round u̇
1

→ a
∗
ȧ
∗
d ū

4
˙̄u
4
, ȧ

1
→ a
∗
ȧ
∗
, u̇/

1
→ ε, u̇/\

1
→ u

4
u̇
4
, d → ε, ȧ

∗
→ a

4
ȧ
4

to u/\j(2k)+1u̇/\j(2k)+1 and pairs of the form u/2k+1u̇/2k+1 (parity pairs) will not be changed. So

applying a rule to delete u/u̇/ pairs after iteration dlog2 ne+ c deletes all parity pairs from the

dataword without deleting the uiu̇i = xiẋi pairs that appear in Equation (6).

Algorithm Details

From the lemma statement we begin with a word of the form

u
1 1z1 u1 2z2 u1 3z3 u1 4z4 . . . u

1 n+dlog2 ne+c zn+dlog2 ne+c (7)

Rules of the form u
1
→ u

2
u̇
2
ü
2
are applied to Dataword (7) which after one round gives

u
2 1u̇2 1ü2 1 u

2 2u̇2 2ü2 2 u
2 3u̇2 3ü2 3 u

2 4u̇2 4ü2 4 . . . u
2 n+dlog2 ne+c u̇2 n+dlog2 ne+c ü2 n+dlog2 ne+c (8)

The next round on the dataword uses the rules {u
2
→ a

3
ȧ
3
u
3
u̇
3
ü
3
, 0̇

2
→ 0/

3
0̇/
3
0̈/
3
, 1̇

2
→ 1/

3
1̇/
3
, ü

2
→ ε} to

mark every second u
2
u̇
2
ü
2
triple in Dataword (8). Because 2-tag systems only read every second

symbol, when i = 1 mod 2, symbols u
2 i

and ü
2 i

are read applying the rules u
2
→ a

3
ȧ
3
u
3
u̇
3
ü
3
and

ü
2
→ ε to append a

3
ȧ
3
u
3 i
u̇
3 i
ü
3 i

(ε is the empty word), and when i = 0 mod 2, symbol u̇
2 i

is read

applying either the rule 0̇
2
→ 0/

3
0̇/
3
0̈/
3
or the rule 1̇

2
→ 1/

3
1̇/
3
to append u/

3
iu̇/
3
i(ü/

3
i) (the ü/

3
i symbol in

brackets is present only if ui = 0). So the above rules mark every second uu̇ü triple to give
a dataword of one of the following two forms

a
3
ȧ
3
u
3 1u̇3 1ü3 1 u/

3
2u̇/

3
2(ü/

3
2) a

3
ȧ
3
u
3 3u̇3 3ü3 3 u/

3
4u̇/

3
4(ü/

3
4) . . . u/

3
n+dlog2 ne+c u̇/

3
n+dlog2 ne+c (ü/

3
n+dlog2 ne+c )

(9)

ȧ
3
u
3 1u̇3 1ü3 1 u/

3
2u̇/

3
2(ü/

3
2) a

3
ȧ
3
u
3 3u̇3 3ü3 3 u/

3
4u̇/

3
4(ü/

3
4) . . . a

3
ȧ
3
u
3 n+dlog2 ne+c u̇3 n+dlog2 ne+c ü3 n+dlog2 ne+c

(10)

We get a dataword of the form given in (9) if n+ dlog2 ne+ c is even and we get a dataword
of the form given in (10) if n + dlog2 ne + c is odd. To see this recall from the previous
paragraph that if n + dlog2 ne + c is odd we read ü

0 n+dlog2 ne+c, and when it is read it is
deleted along with a

3 1 which is why a
3 1 does not appear at the left end of Dataword (10).
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For the next round the rules {u
3
→ u

1
u̇
1
, u̇

3
→ u

1
u̇
1
, ü

3
→ ε, u/

3
→ u/

1
u̇/
1
, u̇/

3
→ u

1
u̇
1
, ü/

3
→ ε, a

3
→

a
1
ȧ
1
, ȧ

3
→ a

1
ȧ
1
, } are applied to Datawords (9) and (10) to give Datawords (11) and (12),

respectively. Note that to produce datawords of the form given in (11) and (12), where the
leftmost symbol is a

1
instead of ȧ

1
, Datawords (9) and (10) must have even length. The parity

of Datawords (9) and (10) depends on the number of 11̇1̈ triples that are marked when

reading Dataword (8), as a 11̇1̈ triple is marked by replacing with a 1/
3
1̇/
3
pair. So if we mark

an even number of 11̇1̈ triples, Dataword (9) will have the same parity as Dataword (8),

and Dataword (10) will have a different parity from Dataword (8) (since Dataword (10) is
missing the leftmost a

3 1). So because Dataword (9) is only produced if Dataword (8) is even
and Dataword (10) is only produced if Dataword (8) is odd, Dataword (9) and (10) are both
even. From the description of Task (a) we know that the number of 1

2
1̇
2
1̈
2
triples marked is

even for the first dlog2 ne+ c iterations of our algorithm and so it follows that the length
of Datawords (9) and (10) are even. For this reason the leftmost symbol in Datawords (11)
and (12) is a

1
and so undotted symbols are read during the next round.

a
1
ȧ
1
u
1 1u̇1 1 u/

1
2u̇/

1
2 a

1
ȧ
1
u
1 3u̇1 3 u/

1
4u̇/

1
4 . . . u/

1
n+dlog2 ne+c u̇/

1
n+dlog2 ne+c if n+ dlog2 ne+ c is even

(11)

a
1
ȧ
1
u
1 1u̇1 1 u/

1
2u̇/

1
2 a

1
ȧ
1
u
1 3u̇1 3 u/

1
4u̇/

1
4 . . . a

1
ȧ
1
u
1 n+dlog2 ne+c u̇1 n+dlog2 ne+c if n+ dlog2 ne+ c is odd

(12)

In Datawords (11) and (12) the 2-tag system is ready to repeat the process of marking every
second unmarked symbol. The cases for Datawords (11) and (12) proceed in a similar manner
so we will continue only with the case for Dataword (11). Applying the rules u

1
→ u

2
u̇
2
ü
2
,

u/
1
→ u/

2
u̇/
2
and a

1
→ a

2
ȧ
2
to Dataword (11) gives

a
2
ȧ
2
u
2 1u̇2 1ü2 1 u/

2
2u̇/

2
2 a

2
ȧ
2
u
2 3u̇2 3ü2 3 u/

2
4u̇/

2
4 a

2
ȧ
2
u
2 5u̇2 5ü2 5 . . . u/

2
n+dlog2 ne+c u̇/

2
n+dlog2 ne+c (13)

Continuing the computation, the rules used in the first iteration are used again here to mark
every second u

2
u̇
2
ü
2
triple but on this iteration we also apply the rules {u/

2
→ u/\

3
u̇/\
3
, u̇/

2
→ u/

3
u̇/
3
, a

2
→

a
3
ȧ
3
a
3
ȧ
3
, ȧ

2
→ ε} to Dataword (13) to produce Dataword (14). When reading Dataword (13)

each triple u
2
u̇
2
ü
2
causes a shift in the reading frame where if we read the symbols with a single

dot before a triple we will read the symbols with no dots after that triple. This means that
if there is a even number of u

2
u̇
2
ü
2
triples to the left of a u/

2
u̇/
2
pair we read u/

2
and apply the rule

u/
2
→ u/\

3
u̇/\
3
, and if there is an odd number we read u̇/

2
and apply the rule u̇/

2
→ u/

3
u̇/
3
. This allows us

to distinguish the parity pairs from all other pairs by changing as described in the paragraph
on Task (c), since only the marked parity pairs have the form u/u̇/ after the final iteration with

all other marked pairs having the from u/\u̇/\. Next we consider the change in the number of aȧ

pairs when Dataword (13) is read to produce Dataword (14). If we read u̇
2
in a u

2 i
u̇
2 i
ü
2 i

triple
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it follows that we read ȧ
2
symbols in the run of a

2
ȧ
2
pairs immediately to the left of that triple,

and so when we mark a triple by applying the rule u̇
2
→ u/

3
2u̇/

3
2(ü/

3
2) the a

2
ȧ
2
pairs are deleted

because we apply the rule ȧ
2
→ ε giving the behavior described in the third paragraph of Task

(a). Alternatively, when we read u
2
the u

3
u̇
3
ü
3
triple remains unmarked and we read a

2
symbols

in the run of a
2
ȧ
2
pairs immediately to the left which applies the rule a

2
→ a

3
ȧ
3
a
3
ȧ
3
giving the

described in the third paragraph of Task (a). Since we have covered the difference between
reading even and odd numbers of unmarked symbols during the previous iteration, here we
cover only the case where there is an even number of unmarked symbols in Dataword (13).
So following a round on Dataword (13) we get a Dataword of the form given in (14).

(a
3
ȧ
3
)3 u

3 1u̇3 1ü3 1 u/
3

2u̇/
3

2 u/
3

3u̇/
3

3(ü/
3

3) u/\
3

4u̇/\
3

4 (a
3
ȧ
3
)3 u

3 5u̇3 5ü3 5 . . . u/
3
n+dlog2 ne+c u̇/

3
n+dlog2 ne+c (14)

From our explanation at the end of the previous iteration we know that a single round on
Dataword (14) gives a dataword of the form

(a
1
ȧ
1
)3 u

1 1u̇1 1 u/
1

2u̇/
1

2 u/
1

3u̇/
1

3 u/\
1

4u̇/\
1

4 (a
1
ȧ
1
)3 u

1 5u̇1 5 . . . u/
1
n+dlog2 ne+c u̇/

1
n+dlog2 ne+c (15)

Each subsequent iteration carries on as described above until we come to iteration dlog2 ne+c.
From Task (a) we know that during iteration dlog2 ne+ c we mark an odd number of 1

2
1̇
2
1̈
2

triples and so from the paragraph preceding Dataword (9) this means that the leftmost a
1
gets

deleted at the end of iteration dlog2 ne+ c to give a Dataword of the form (16). From the
description of Task (a) we know that after dlog2 ne+ c iterations u

1 1u̇1 1 is the only unmarked
pair in the dataword and that the only aȧ pairs to be found are immediately to the left of

u
1 1u̇1 1 in a word of the form (a

1
ȧ
1
)2n+dlog2 ne+c−1 as shown in Dataword (16).

ȧ
1
(a

1
ȧ
1
)2n+dlog2 ne+c−2 u

1 1u̇1 1 u/
1

2u̇/
1

2 u/
1

3u̇/
1

3 u/\
1

4u̇/\
1

4 u/
1

5u̇/
1

5 . . . u/\
1
n+dlog2 ne+c u̇/\

1
n+dlog2 ne+c (16)

In Dataword (16) following dlog2 ne+ c iterations we read the dotted symbol for pairs with
underscript 1 for the first time and we apply the rules {u̇

1
→ a
∗
ȧ
∗
d ū

4
˙̄u
4
, ȧ

1
→ a
∗
ȧ
∗
, u̇/

3
→ ε, u̇/\

3
→

u
4
u̇
4
, d→ ε} to give Dataword (17). From the description of Task (c) we know that rule u̇/

3
→ ε

deletes all pairs of the form u/
4

2k+1u̇/
4

2k+1 and so from Equation (3) Datawords (17) and (6)
are identical.

ū
4 1 ˙̄u

4 1 u
4 4u̇4 4 u

4 6u̇4 6 u
4 7u̇4 7 u

4 8u̇4 8 u
4 10u̇4 10 . . . u

4 n+dlog2 ne+c u̇4 n+dlog2 ne+c (a
4
ȧ
4
)2n+dlog2 ne+c

(17)

J

We can now use Lemma 11 to prove Corollary 12 which will be used in the reduction in
our main theorem. In this reduction our tag systems simulate a particular type of Turing
machine where the halting time is bounded by what is known as a longevity guard. A
longevity guard [8] for a Turing machine M is a function l : Σ∗ → N where on input w either
M halts in 6 l(w) steps or it runs forever.

I Corollary 12. Let M be an arbitrary nondeterministic Turing machine with a single binary
tape and a longevity guard l, let f be the function given by Equation (3), and let s be an
arbitrary binary word of length |w|+ dlog2 |w|e+ c where c = 1 if 2dlog2 |w|e < n+ dlog2 |w|e
otherwise c = 0. There is a nondeterministic 2-tag system that takes words of the form
f(w, s), and halts in time O(l(w)2 log l(w)) if and only if M halts on input w in time l(w).
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Proof. The deterministic tag system algorithm in [15] simulates a Turing machine transition
rule qy, x1, x2, d, qz (with current state qy, read symbol x1, write symbol x2, move direction
d ∈ {L,R} , and next state qz) using a rule of the form x

y
1ẋ

y
1 → x/

0
2ẋ/

0
2s

2z if d = R, and a rule

of the form x
y

1ẋ
y

1 → s2z

x
0 2ẋ0 2 if d = L. In our nondeterministic 2-tag system there is a rule

of one of the two forms given above for each transition rule in the nondeterministic Turing
machine M . Such a nondeterministic 2-tag system uses the same algorithm as the tag system
in [15] and so simulates t steps of M in time O(l(w)2 log l(w)) (see Theorem 2) halting if
and only if M halts. Adding the 2-tag system from Lemma 11 as a subroutine to such a
nondeterministic 2-tag system allows it to simulate M in time O(l(w)2 log l(w)) when given
f(w, s) as input. J

To see that the longevity guard is necessary in Corollary 12 consider what happens if we
replace l(w) with an arbitrary running time t: Our 2-tag system still halts in time O(t2 log t)
if M halts in time t, however it is also possible that our tag system halts in time O(t2 log t)
when M does not halt in time t but does halt at some later time > t. This is because
the asymptotic bound O(t2 log t) does not bound precisely the number of simulated Turing
machine steps at t. So without the longevity guard we get the “if” but not the “only if”.

I Theorem 13. The distributional bounded halting problem for nondeterministic 2-tag
systems is complete for average-case NP under Ptime randomized reductions.

Proof. We show that for every distributional problem (D,µ) in NP, there is a Ptime random-
ized reduction from (D,µ) to the distributional bounded halting problem for nondeterministic
2-tag systems that satisfies Definition 8.

In [8] Gurevich shows that for each NP distributional problem (D,µ) there exists a
nondeterministic binary Turing machine Mi that has a polynomial longevity guard l such
that (D,µ) Ptime reduces to the halting problem for Mi. Given a binary input word w that
encodes an instance v of D, Mi halts in 6 l(w) steps if and only if v ∈ LD. From Definition 9
a Ptime function g that reduces instances of D to instances of the bounded halting problem
for Mi is given by

g(v) = Pf(〈i〉, w, 1l(w)) (18)

Let ∆ be a dilation of (D,µ) to (D∆, µ∆) where each instance v ∈ D is mapped to a set
of the form {Pf(v, sv)|sv ∈ {0, 1}|w|+dlog2 |w|e+c}, with c = 1 if 2dlog2 |w|e < |w|+ dlog2 |w|e
otherwise c = 0. Since g is Ptime computable we know from Equation (18) that given v the
value |w|+ dlog2 |w|e+ c can be computed in polynomial time and so there is a randomized
algorithm that computes ∆ giving a Ptime dilation. In addition ∆ is also nonrare as R∆ = 1
(see Definition 7). So from Definition 8 we can show that (D,µ) Ptime randomly reduces to
the bounded halting problem for 2-tag systems by showing that its nonrare Ptime dilation
(D∆, µ∆) Ptime reduces to the bounded halting problem for 2-tag systems.

From Definition 6 and the paragraph before Equation (18) we see that for all Pf(v, sw) ∈
D∆ we have Pf(v, sw) ∈ LD∆ if and only if Mi halts in time l(w) on input w. It follows
from Corollary 12 that there is a tag system Tj such that for all Pf(v, sw) ∈ D∆, Tj halts
in time O(l(w)2 log l(w)) on input f(v, sw) if and only if Pf(v, sw) ∈ D∆. So there is a
reduction g′ that reduces instance of D∆ to instances of the bounded halting problem for
Tj (Definition 10). The reduction g′ which is given in Equation (19) satisfies condition 1 of
Definition 5.

g′(Pf(v, sw)) = Pf(〈j〉, f(w, sw), 1O(l(w)2 log l(w))) (19)
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Since g(v) in Equation (18) is Ptime computable so too is g′(Pf(v, sw)). Now to complete
our proof it only remains to show that the reduction g′ given in Equation (19) satisfies
condition 2 of Definition 5.

We already know that the reduction g given in Equation (18) Ptime reduces the dis-
tributional problem (D,µ) to the bounded halting problem for Mi, and so it follows from
condition 2 of Definition 5 and the probability distribution in Definition 9 that there is a
polynomial p1, such that

µ(v) < p1(|v|)2−(|〈i〉|+|w|)|〈i〉|−2|w|−2l(w)−2 (20)

For simplicity we rewrite Equation (21) as

µ(v) < p1(v)2−|w| (21)

From Equation (3) we get |f(w, sw)| = 2|w| + 2 log2 |w| and so from Definition 10 the
probability of getting an instance Pf(〈j〉, f(w, sw), 1O(l(w)2 log l(w))) is proportional to

µ(〈j〉, f(w, sw), O(l(w)2 log l(w))) =

2−(|〈j〉|+2|w|+2 log2 |w|)|〈j〉|−2(2|w|+ 2 log2 |w|)−2(l(w)2 log l(w))−2 (22)

The value |〈j〉| is a constant independent of |v| and the values |w| and l(w) are polynomial
in |v| and so there is a polynomial p2 such that p2(|v|)−1 < 2(−(|〈j〉|+2 log2 |w|)|〈j〉|−2(2|w|+
2 log2 |w|)−2(l(w)2 log l(w))−2 which substitutes into Equation (22) to give

µ(〈j〉, f(w, sw), O(l(w)2 log l(w))) > p2(v)−12−2|w| (23)

Recall that |ws| = |w|+log2 |w| and so from Definition 6 an instance of D∆ given by Pf(v, ws)
has a probability proportional to

µ∆(Pf(v, ws)) = µ(v)2−(|w|+log2 |w|) (24)

From Equations (21), (23) and (24) we get Equation (25) which shows that the polynomial
p1(|v|)p2(|v|) satisfies condition 2 of Definition 5 for the reduction g′ in Equation (19).

µ∆(Pf(v, ws)) < p1(|v|)p2(v)µ(〈j〉, f(w, sw), O(l(w)2 log l(w))) (25)

J

4 An example of the decoding process, with paired notation

In this section we show a diagram of an example of the decoding process, using paired
notation.

Each letter X in paired notation represents a pair of letters X0X1 in the tag system, of
which only one will be read on the next round. Which one? That depends on the parity of
the reading frame when it gets read. Often this parity is not known when the pair X0X1 is
written.

Sometimes a third symbol λ is written to the tape, just for the purpose of changing the
parity. If read, its rule appends an empty appendant. So it doesn’t matter if it gets read or
not.

In our paired notation, such a parity-changer is written as as in Figure 2.
The parity with which a pair is read is indicated by a thick line either over or under the

symbol, as in Figure 2. So the vertical parts of the thick line are written by the previous
line, while the horizontal parts simply alternate between the top and the bottom whenever
there is a vertical part. They continue at the top (or bottom) from one line to the next.
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A1 A1 A0 A1 A1 A1 A1 A0 A1 A1 A0 A0 A1 A0 A1

B1 B1 B0 B1 B1 B1 B1 B0 B1 B1 B0 B0 B1 B0 B1

.C1 c′
1 .C0 c′

1 .C1 c′
1 .C1 c′

0 .C1 c′
1 .C0 c′

0 .C1 c′
0 .C1

;A1 a′
1 ;A0 a′

1 ;A1 a′
1 ;A1 a′

0 ;A1 a′
1 ;A0 a′

0 ;A1 a′
0 ;A1

, B1 b′
1 , B0 b′

1 , B1 b′
1 , B1 b′

0 , B1 b′
1 , B0 b′

0 , B1 b′
0 , B1

...C1 c′
1 c′

0 c1 ...C1 c′
1 c′

1 c0 ...C1 c′
1 c′

0 c0 ...C1 c′
0 c′

1

; ; ;A1 a′
1 a′

0 a1 ; ; ;A1 a′
1 a′

1 a0 ; ; ;A1 a′
1 a′

0 a0 ; ; ;A1 a′
0 a′

1

, , , B1 b′
1 b′

0 b1 , , , B1 b′
1 b′

1 b0 , , , B1 b′
1 b′

0 b0 , , , B1 b′
0 b′

1

.......C1 c′
1 c′

0 c1 c′
1 c1 c1 c0 .......C1 c′

1 c′
0 c0 c′

1 c0 c1

; ; ; ; ; ; ;A1 a′
1 a′

0 a1 a′
1 a1 a1 a0 ; ; ; ; ; ; ;A1 a′

1 a′
0 a0 a′

1 a0 a1

, , , , , , , B1 b′
1 b′

0 b1 b′
1 b1 b1 b0 , , , , , , , B1 b′

1 b′
0 b0 b′

1 b0 b1

...............C1 c′
1 c′

0 c1 c′
1 c1 c1 c0 c′

1 c1 c0 c0 c1 c0 c1

; ; ; ; ; ; ; ; ; ; ; ; ; ; ;A1 a′
1 a′

0 a1 a′
1 a1 a1 a0 a′

1 a1 a0 a0 a1 a0 a1

iiiiiiiiiiiiiiii D1 d1 d1 d1 d0 d1 d0 d0 d1 d0 d1

Figure 2 Diagram of an example of the decoding process. Each symbol here represents two
symbols on the tag system tape, and the line passing over or under the symbols indicates the reading
frame parity. The colored lines indicate how the symbols are transformed on each round. The bits
marked with primes and eliminated in the final round are (if you trace them back to the initial row)
exactly the extra bits used for the encoding. An additional partial round (not shown) over just the i
symbols will yield the form guaranteed by Lemma 11: A row of bits, the first of which is uniquely
marked, followed by a “counter” whose length is a power of two and which is at least as large as the
row of bits, all being read in “plain” parity.
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Table 2 The complete rules for the tag system. Paired notation is shown on the left; traditional
notation is shown on the right. The initial tape would use either 0

1
or 1

1
as the second symbol in

each Ai pair (not necessarily even matching the first symbol of the pair), but ever after the first
round the second symbols of the Ai pairs will be as shown here. Since these input symbols will not
be read, they make no difference. At the end, after a final partial round over just the a

∗
ȧ
∗
symbols,

the correspondence of symbols in the final tape is D0 = 0̄
4

˙̄0
4
, D1 = 1̄

4
˙̄1
4
, d0 = 0

4
0̇
4
, d1 = 1

4
1̇
4
, and e = a

4
ȧ
4
,

and the tape is exactly the target dataword specified by Lemma 11.

symbol in
diagram

rule for
plain parity

rule for
flipped parity

corresponding original
symbols and rules

A0 A0 −→ B0 A0 −→ i D0 0
1
0̇
1

0
1
→ 0

2
0̇
2
0̈
2

0̇
1
→ a
∗
ȧ
∗
d 0̄

4

˙̄0
4

A1 A1 −→ B1 A1 −→ i D1 1
1
1̇
1

1
1
→ 1

2
1̇
2
1̈
2

1̇
1
→ a
∗
ȧ
∗
d 1̄

4

˙̄1
4

a′0 a′0 −→ b′0 a′0 −→ 0/
1
0̇/
1

0/
1
→ 0/

2
0̇/
2

0̇/
1
→

a′1 a′1 −→ b′1 a′1 −→ 1/
1
1̇/
1

1/
1
→ 1/

2
1̇/
2

1̇/
1
→

a0 a0 −→ b0 a0 −→ d0 0/\
1
0̇/\
1

0/\
1
→ 0/\

2
0̇/\
2

0̇/\
1
→ 0

4
0̇
4

a1 a1 −→ b1 a1 −→ d1 1/\
1
1̇/\
1

1/\
1
→ 1/\

2
1̇/\
2

1̇/\
1
→ 1

4
1̇
4

; ; −→ , ; −→ i a
1
ȧ
1

a
1
→ a
∗
ȧ
∗

ȧ
1
→ a
∗
ȧ
∗

B0 B0 −→ .C0 B0 −→ c′
0 0

2
0̇
2

0
2
→ a

3
ȧ
3
0
3
0̇
3
0̈
3

0̇
2
→ 0/

3
0̇/
3
0̈/
3

B1 B1 −→ .C1 B1 −→ c′1 1
2
1̇
2

1
2
→ a

3
ȧ
3
1
3
1̇
3
1̈
3

1̇
2
→ 1/

3
1̇/
3

b′0 b′0 −→ c0 b′0 −→ c′0 0/
2
0̇/
2

0/
2
→ 0/\

3
0̇/\
3

0̇/
2
→ 0/

3
0̇/
3

b′1 b′1 −→ c1 b′1 −→ c′1 1/
2
1̇/
2

1/
2
→ 1/\

3
1̇/\
3

1̇/
2
→ 1/

3
1̇/
3

b0 b0 −→ c0 b0 −→ c0 0/\
2
0̇/\
2

0/\
2
→ 0/\

3
0̇/\
3

0̇/\
2
→ 0/\

3
0̇/\
3

b1 b1 −→ c1 b1 −→ c1 1/\
2
1̇/\
2

1/\
2
→ 1/\

3
1̇/\
3

1̇/\
2
→ 1/\

3
1̇/\
3

, , −→ .. , −→ a
2
ȧ
2

a
2
→ a

3
ȧ
3
a
3
ȧ
3

ȧ
2
→

C0 C0 −→ A0 C0 −→ A0 0
3
0̇
3

0
3
→ 0

1
0̇
1

0̇
3
→ 0

1
0̇
1

C1 C1 −→ A1 C1 −→ A1 1
3
1̇
3

1
3
→ 1

1
1̇
1

1̇
3
→ 1

1
1̇
1

c′0 c′0 −→ a′0 c′0 −→ a′0 0/
3
0̇/
3

0/
3
→ 0/

1
0̇/
1

0̇/
3
→ 0/

1
0̇/
1

c′1 c′1 −→ a′1 c′1 −→ a′1 1/
3
1̇/
3

1/
3
→ 1/

1
1̇/
1

1̇/
3
→ 1/

1
1̇/
1

c0 c0 −→ a0 c0 −→ a0 0/\
3
0̇/\
3

0/\
3
→ 0/\

1
0̇/\
1

0̇/\
3
→ 0/\

1
0̇/\
1

c1 c1 −→ a1 c1 −→ a1 1/\
3
1̇/\
3

1/\
3
→ 1/\

1
1̇/\
1

1̇/\
3
→ 1/\

1
1̇/\
1

. . −→ ; . −→ ; a
3
ȧ
3

a
3
→ a

1
ȧ
1

ȧ
3
→ a

1
ȧ
1

i i −→ e i −→ e a
∗
ȧ
∗

a
∗
→ a

4
ȧ
4

ȧ
∗
→ a

4
ȧ
4
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The production rules in this notation therefore need to include the thick line either over
or under the symbol on the left hand side, but on the right hand side only vertical thick lines
can appear, no horizontal ones.

The correspondence between the symbols used in Figure 2 (which are compressed due to
space constraints in the figure) and the symbols used in the paper is given in Table 2.
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