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Abstract
We show that Odd Cycle Transversal and Vertex Multiway Cut admit deterministic polyno-
mial kernels when restricted to planar graphs and parameterized by the solution size. This answers
a question of Saurabh. On the way to these results, we provide an efficient sparsification routine in
the flavor of the sparsification routine used for the Steiner Tree problem in planar graphs (FOCS
2014). It differs from the previous work because it preserves the existence of low-cost subgraphs
that are not necessarily Steiner trees in the original plane graph, but structures that turn into
(supergraphs of) Steiner trees after adding all edges between pairs of vertices that lie on a common
face. We also show connections between Vertex Multiway Cut and the Vertex Planarization
problem, where the existence of a polynomial kernel remains an important open problem.
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1 Introduction

Kernelization provides a rigorous framework within the paradigm of parameterized complexity
to analyze preprocessing routines for various combinatorial problems. A kernel of size g for
a parameterized problem Π and a computable function g is a polynomial-time algorithm
that reduces an input instance x with parameter k of problem Π to an equivalent one with
size and parameter value bounded by g(k). Of particular importance are polynomial kernels,
where the function g is required to be a polynomial, that are interpreted as theoretical
tractability of preprocessing for the considered problem Π. Since a kernel (of any size) for
a decidable problem implies fixed-parameter tractability (FPT) of the problem at hand,
the question whether a polynomial kernel exists became a “standard” tractability question
one asks about a problem already known to be FPT, and serves as a further finer-grained
distinction criterion between FPT problems.
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In the recent years, a number of kernelization techniques emerged, including the bidimen-
sionality framework for sparse graph classes [10] and the use of representative sets for graph
separation problems [20]. On the hardness side, a lower bound framework against polynomial
kernels has been developed and successfully applied to a multitude of problems [1, 5, 7, 11].
For more on kernelization, we refer to the survey [22] for background and to the appropriate
chapters of the textbook [3] for basic definitions and examples.

For this work, of particular importance are polynomial kernels for graph separation
problems. The framework for such kernels developed by Kratsch and Wahlström in [20, 21],
relies on the notion of representative sets in linear matroids, especially in gammoids. Among
other results, the framework provided a polynomial kernel for Odd Cycle Transversal
and for Multiway Cut with a constant number of terminals. However, all kernels for graph
separation problems based on representative sets are randomized, due to the randomized
nature of all known polynomial-time algorithms that obtain a linear representation of a
gammoid. As a corollary, all such kernels have exponentially small probability of turning an
input yes-instance into a no-instance.

The question of deterministic polynomial kernels for the cut problems that have random-
ized kernels due to the representative sets framework remains widely open. Saket Saurabh, at
the open problem session during the Recent Advances in Parameterized Complexity school
(Dec 2017, Tel Aviv) [27], asked whether a deterministic polynomial kernel for Odd Cycle
Transversal exists when the input graph is planar. In this paper, we answer this question
affirmatively, and prove an analogous result for the Multiway Cut problem.

I Theorem 1.1. Odd Cycle Transversal and Vertex Multiway Cut, when restricted
to planar graphs and parameterized by the solution size, admit deterministic polynomial
kernels.

Recall that the Odd Cycle Transversal problem, given a graph G and an integer k, asks
for a set X ⊆ V (G) of size at most k such that G \X is bipartite. For the Multiway Cut
problem, we consider the Vertex Multiway Cut variant where, given a graph G, a set of
terminals T ⊆ V (G), and an integer k, we ask for a set X ⊆ V (G) \ T of size at most k such
that every connected component of G \X contains at most one terminal. In other words, we
focus on the vertex-deletion variant of Multiway Cut with undeletable terminals. In both
cases, the allowed deletion budget, k, is our parameter. (A deterministic polynomial kernel
for Edge Multiway Cut in planar graphs is known [25, Theorem 1.4].)

Note that in general graphs, Vertex Multiway Cut admits a randomized polynomial
kernel with O(k|T |+1) terminals [20], and whether one can remove the dependency on |T |
from the exponent is a major open question in the area. Theorem 1.1 answers this question
affirmatively in the special case of planar graphs.

Our motivation stems not only from the aforementioned question of Saurabh [27], but
also from a second, more challenging question of a polynomial kernel for the Vertex
Planarization problem. Here, given a graph G and an integer k, one asks for a set
X ⊆ V (G) of size at most k such that G \ X is planar. For this problem, an involved
2O(k log k) · n-time fixed-parameter algorithm is known [17], culminating a longer line of
research [17, 19, 23]. The question of a polynomial kernel for the problem has not only been
posed by Saurabh during the same open problem session [27], but also comes out naturally
in another line of research concerning vertex-deletion problems to minor-closed graph classes.

Consider a minor-closed graph class G. By the celebrated Robertson-Seymour theorem,
the list of minimal forbidden minors F of G is finite, i.e., there is a finite set F of graphs
such that a graph G belongs to G if and only if G does not contain any graph from F as
a minor. The F-Deletion problem, given a graph G and an integer k, asks to find a set
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Figure 1 When all terminals (blue squares) lie on the infinite face, a solution to Vertex
Multiway Cut (black circles) is a Steiner forest (red dashed connections) in the overlay graph.

X ⊆ V (G) of size at most k such that G \X has no minor belonging to F , i.e., G \X ∈ G. If
F contains a planar graph or, equivalently, G has bounded treewidth, then the parameterized
and kernelization complexity of the F-Deletion problem is well understood [9]. However,
our knowledge is very partial in the other case, when G contains all planar graphs. The
understanding of this general problem has been laid out as one of the future research
directions in a monograph of Downey and Fellows [6]. The simplest not fully understood case
is when G is exactly the set of planar graphs, that is, F = {K3,3,K5}, and the F-Deletion
becomes the Vertex Planarization problem. The question of a polynomial kernel or a
2O(k) · nO(1)-time FPT algorithm for Vertex Planarization remains open [13, 27].

In Section 6, we observe that there is a simple polynomial-time reduction from Planar
Vertex Multiway Cut to Vertex Planarization that keeps the parameter k unchanged.
If Vertex Planarization would admit a polynomial kernel, then our reduction would
transfer the polynomial kernel back to Planar Vertex Multiway Cut. In the presence
of Theorem 1.1, such an implication is trivial, but the reduction itself serves as a motivation:
a polynomial kernel for Planar Vertex Multiway Cut should be easier than for Ver-
tex Planarization, and one should begin with the first before proceeding to the latter.
Furthermore, we believe the techniques developed in this work can be of use for the more
general Vertex Planarization case.

Techniques On the technical side, our starting point is the toolbox of [25] that provides
a polynomial kernel for Steiner Tree in planar graphs, parameterized by the number of
edges of the solution. The main technical result of [25] is a sparsification routine that, given
a connected plane graph G with infinite face surrounded by a simple cycle ∂G, provides a
subgraph of G of size polynomial in the length of ∂G that, for every A ⊆ V (∂G), preserves
an optimal Steiner tree connecting A.

Both Odd Cycle Transversal and Vertex Multiway Cut in a plane graph G

translate into Steiner forest-like questions in the overlay graph L(G) of G: a supergraph of G
that has a vertex vf for every face of G, adjacent to every vertex of G incident with f . To see
this, consider a special case of Planar Vertex Multiway Cut where all terminals lie on
the infinite face of the input embedded graph. Then, an optimal solution is a Steiner forest
between some tuples of vertices on the outer face lying between the terminals, cf. Figure 1.
Following [25], this suggest the following approach to kernelization of vertex-deletion cut
problems in planar graphs:
1. By problem-specific reductions, reduce to the case of a graph of bounded radial diameter.
2. Using the diameter assumption, find a tree in the overlay graph that has size bounded

polynomially in the solution size, and that spans all “important” objects in the graph
(e.g., neighbors of the terminals in the case of Multiway Cut or odd faces in the case
of Odd Cycle Transversal).
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3. Cut the graph open along the tree. Using the Steiner forest-like structure of the problem
at hand, argue that an optimal solution becomes an optimal Steiner forest for some choice
of tuples of terminals on the outer face of the cut-open graph.

4. Sparsify the cut-open graph with a generic sparsification routine that preserves optimal
Steiner forests, glue the resulting graph back, and return it as a kernel.

However, contrary to the Steiner tree problem [25], these Steiner forest-like questions
optimize a different cost function than merely number of edges, namely the number of vertices
of G, with the “face” vertices vf ∈ V (L(G)) \ V (G) being for free. This cost function is
closely related to (half of) the number of edges in case of paths and trees with constant
number of leaves, but may diverge significantly in case of trees with high-degree vertices.

For this reason, we need an analog of the main technical sparsification routine of [25]
suited for our cost function. To this end, we re-use most of the intermediate results of [25],
changing significantly only the final divide&conquer argument. We provide a statement and
an overview of the proof of such routine in Section 3. A full proof can be found on arXiv [18].

The application of the obtained sparsification routine to the case of Odd Cycle
Transversal, presented in Section 4, follows the phrasing of the problem as a T -join-
like problem in the overlay graph due to Fiorini et al [8]. For the sake of reducing the number
of odd faces, we adapt the arguments of Suchý [28] for Steiner tree.

The arguments for Vertex Multiway Cut are somewhat more involved and sketched
in Section 5. A full version can be found on arXiv [18]. Here, we first use known LP-based
rules [4, 12, 14, 26] to reduce the number of terminals and neighbors of terminals to O(k)
and then use an argument based on outerplanarity layers to reduce the diameter.

2 Preliminaries

A finite undirected graph G consists of a vertex set V (G) and edge set E(G) ⊆
(

V (G)
2
)
. We

denote the open neighborhood of a vertex v in G by NG(v). For a vertex set S ⊆ V (G) we
define its open neighborhood as NG(S) :=

⋃
v∈S NG(v) \ S. For all standard but undefined

here terms related to planar graph we refer to [25].
For vertex subsets X,Y of a graph G, we define an (X,Y )-cut as a vertex set Z ⊆

V (G) \ (X ∪ Y ) such that no connected component of G \ Z contains both a vertex of X
and a vertex of Y . An (X,Y ) cut Z is minimal if no proper subset of Z is an (X,Y )-cut,
and minimum if it has minimum possible size.

2.1 Planar graphs
In a connected embedded planar (i.e. plane) graph G, the boundary walk of a face f is the
unique closed walk in G obtained by going along the face in counter-clockwise direction.
Note that a single vertex can appear multiple times on the boundary walk of f and an edge
can appear twice if it is a bridge. We denote the number of edges of this walk by |f |; note
that bridges are counted twice in this definition. The parity of a face f is the parity of |f |.
Then a face is odd (even) if its parity is odd (even). The boundary walk of the outer face of
G is called the outer face walk and denoted ∂G.

We define the radial distance in plane graphs, based on a measure that allows to hop
between vertices incident on a common face in a single step. Formally speaking, a radial path
between vertices p and q in a plane graph G is a sequence of vertices (p = v0, v1, . . . , v` = q)
such that for each i ∈ [`], the vertices vi−1 and vi are incident on a common face. The
length of the radial path equals `, so that a trivial radial path from v to itself has length 0.
The radial distance in plane graph G between p and q, denoted dRG(u, v), is defined as the
minimum length of a radial pq-path.



B.M.P. Jansen, Ma. Pilipczuk, and E. J. van Leeuwen 39:5

For a plane graph G, let F (G) denote the set of faces of G. For a plane (multi)graph G,
an overlay graph G′ of G is a graph with vertex set V (G)∪F (G) obtained from G as follows.
For each face f ∈ F (G), draw a vertex with identity f in the interior of f . For each connected
component C of edges incident on the face f , traverse the boundary walk of C starting at an
arbitrary vertex. Every time a vertex v is visited by the boundary walk, draw a new edge
between v and the vertex representing f , without crossing previously drawn edges. Doing
this independently for all faces of G yields an overlay graph G′. Observe that an overlay
graph may have multiple edges between some f ∈ F (G) and v ∈ V (G), which occurs for
example when v is incident on a bridge that lies on f . The resulting plane multigraph G′
is in general not unique, due to different homotopies for how edge bundles may be routed
around different connected components inside a face. For our purposes, these distinctions
are never important. We therefore write L(G) to denote an arbitrary fixed overlay graph
of G. Observe that F (G) forms an independent set in L(G).

Apart from the overlay graph, we will also use the related notion of radial graph (also
known as face-vertex incidence graph). A radial graph of a connected plane graph G is
a plane multigraph R(G) obtained from L(G) by removing all edges with both endpoints
in V (G). Hence a radial graph of G is bipartite with vertex set V (G) ∪ F (G), where vertices
are connected to the representations of their incident faces. From these definitions it follows
that L(G) is the union of G and R(G), which explains the terminology.

We need also the following simple but useful lemma.

I Lemma 2.1. Let G be a connected graph, let T ⊆ V (G) and assume that for each vertex
v ∈ V (G), there is a terminal t ∈ T that can reach v by a path of at most K edges. Then G
contains a Steiner tree of at most (2K + 1)(|T | − 1) edges on terminal set T , which can be
computed in linear time.

Proof. Observe that there exists a spanning forest in G where each tree is rooted at a vertex
of T , and each tree has depth at most K. Such a spanning forest can be computed in linear
time by a breadth-first search in G, initializing the BFS-queue to contain all vertices of T
with a distance label of 0. Consider the graph H obtained from G by contracting each tree
into the terminal forming its root. Since G is connected, H is connected as well. An edge t1t2
between two terminals in H implies that in G there is a vertex in the tree of t1 adjacent to a
vertex of the tree of t2. So for each edge in H, there is a path between the corresponding
terminals in G consisting of at most 2K + 1 edges.

Compute an arbitrary spanning tree of the graph H, which has |T | − 1 edges since H
has |T | vertices. As each edge of the tree expands to a path in G between the corresponding
terminals of length at most 2K + 1, it follows that G has a connected subgraph F of at
most (2K + 1)(|T | − 1) edges that spans all terminals T . To eliminate potential cycles in F ,
take a spanning subtree of F as the desired Steiner tree. J

I Lemma 2.2 ([16, Lemma 1]). Let G be a planar bipartite graph with bipartition V (G) =
X ] Y for X 6= ∅. If all distinct u, v ∈ Y satisfy NG(u) 6⊆ NG(v), then |Y | ≤ 5|X|.

3 Sparsification

A plane partitioned graph is an undirected multigraph G, together with a fixed embedding
in the plane and a fixed partition V (G) = A(G) ] B(G) where A(G) is an independent
set. Consider a subgraph H of a plane partitioned graph G. The cost of H is defined as
cost(H) := |V (H) ∩B(G)|, that is, we pay for each vertex of H in the part B(G). We say
that H connects a subset A ⊆ V (G) if A ⊆ V (H) and A is contained in a single connected
component of H.
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Our main sparsification routine is the following.

I Theorem 3.1. Given a connected plane partitioned graph G, one can in time |∂G|O(1) ·
O(|G|) find a subgraph Ĝ in G, with the following properties:
1. Ĝ contains all edges and vertices of ∂G,
2. Ĝ contains O(|∂G|212) edges,
3. for every set A ⊆ V (∂G) there exists a subgraph H of Ĝ that connects A and has minimum

possible cost among all subgraphs of G that connect A.

In the subsequent sections, given a connected plane graph G, we will apply Theorem 3.1
to a graph G′ that is either the overlay graph of G without the vertex corresponding to the
outer face, or the radial graph of G. In either case, A(G′) = V (G′) \ V (G) is the set of face
vertices and B(G′) = V (G), i.e., we pay for each “real” vertex, not a face one. If the studied
vertex-deletion graph separation problem in G turns into some Steiner problem in G′, then
we may hope to apply the sparsification routine of Theorem 3.1.

After this brief explanation of the motivation of the statement of Theorem 3.1, we
proceed with an overview of its proof. We closely follow the divide&conquer approach of the
polynomial kernel for Steiner Tree in planar graphs [25].

We adopt the notation of (strictly) enclosing from [25]. For a closed curve γ on a plane,
a point p /∈ γ is strictly enclosed by γ if γ is not continuously retractable to a single point
in the plane punctured at p. A point p is enclosed by γ if it is strictly enclosed or lies on
γ. The notion of (strict) enclosure naturally extends to vertices, edges, and faces of a plane
graph G being (strictly) enclosed by γ; here a face (an edge) is strictly enclosed by γ if every
interior point of a face (every point on an edge except for the endpoints, respectively) is
strictly enclosed. We also extend this notion to (strict) enclosure by a closed walk W in a
plane graph G in a natural manner. Note that this corresponds to the natural notion of
(strict) enclosure if W is a cycle or, more generally, a closed walk without self-intersections.

We start with restricting the setting to G being bipartite and ∂G being a simple cycle.
Theorem 3.1 follows from Lemma 3.2 by simple manipulations, and its proof can be found
on arXiv [18].

I Lemma 3.2. The statement of Theorem 3.1 is true in the restricted setting with G being
a connected bipartite simple graph with ∂G being a simple cycle and A(G) being one of the
bipartite color classes (so that B(G) is an independent set as well).

We now sketch the proof of Lemma 3.2. The full proof can be found on arXiv [18].
First observe that the statement of Lemma 3.2 is well suited for a recursive divide&conquer

algorithm. As long as |∂G| is large enough, we can identify a subgraph S of G such that:
1. The number of edges of S is O(|∂G|);
2. For every set A ⊆ V (∂G) there exists a subgraph H of G that connects A, has minimum

possible cost among all subgraphs of G that connect A, and for every finite face f of
S ∪ ∂G, if Gf is the subgraph of G consisting of the edges and vertices embedded within
the closure of f , then one of the following holds:
a. |∂Gf | ≤ (1− δ)|∂G| for some universal constant δ > 0;
b. H does not contain any vertex of degree more than 2 that is strictly inside f .

Similarly as in the case of [25], we show that such a subgraph S is good for recursion.
First, we insert S into the constructed sparsifier Ĝ. Second, we recurse on Gf for every
finite face f of S ∪ ∂G that satisfies Point 2a. Third, for every other finite face f (i.e.,
one satisfying Point 2b), we insert into Ĝ a naive shortest-paths sparsifier: for every two
vertices u1, u2 ∈ V (∂Gf ), we insert into Ĝ a minimum-cost path between u1 and u2 in Gf .
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Property 1 together with the multiplicative progress on |∂G| in Point 2a ensure that the
final size of Ĝ is polynomial in |∂G|, with the exponent of the polynomial bound depending
on δ and the constant hidden in the big-O notation in Property 1.

The main steps of constructing S are the same as in [25]. First, we try minimum-size (i.e.,
with minimum number of edges, as opposed to minimum-cost) Steiner trees for a constant
number of terminals on ∂G. If no such trees are found, the main technical result of [25]
shows that one can identify a cycle C in G of length O(|∂G|) with the guarantee that for any
choice of A ⊆ V (∂G), there exists a minimum-size Steiner tree connecting A that does not
contain any Steiner point strictly inside C. In [25] such a cycle is used to construct a desired
subgraph S with the inside of C being a face satisfying the Steiner tree analog of Point 2b.
In the case of Lemma 3.2, we need to perform some extra work here to show that – by some
shortcutting tricks and adding some slack to the constants – one can construct such a cycle
C ′ with the guarantee that the face f inside C ′ satisfies exactly the statement of Point 2b:
that is, no “Steiner points” with regards to minimum-cost trees, not minimum-size ones.

In other words, the extra work is needed to at some point switch from “minimum-size”
subgraphs (treated by [25]) to “minimum-cost” ones (being the main focus of Lemma 3.2).
In our proof, we do it as late as possible, trying to re-use as much of the technical details
of [25] as possible. Observe that for a path H in G, the cost of H equals |E(H)|/2 up to an
additive ± 1

2 error. Similarly, for a tree H with a constant number of leaves, the cost of H
is |E(H)|/2 up to an additive error bounded by a constant. Hence, as long as we focus on
paths and trees with bounded number of leaves, the “size” and “cost” measures are roughly
equivalent. However, if a tree H in G contains a high-degree vertex v ∈ B(G), the cost of H
may be much smaller than half of the number of edges of H: a star with a center in B(G)
has cost one and arbitrary number of edges. For this reason, the final argument of the proof
of Lemma 3.2 that constructs the aforementioned cycle C ′ using the toolbox of [25] needs to
be performed with extra care (and some sacrifice on the constants, as compared to [25]).

4 Odd Cycle Transversal

To understand the Odd Cycle Transversal problem, we rely on the correspondence
between odd cycle transversals and T -joins. This correspondence was originally developed by
Hadlock [15] for the edge version of Odd Cycle Transversal on planar graphs; for the
vertex version discussed here, we build on the work of Fiorini et al. [8]. Given a graph H and
set T ⊆ V (H), a T -join in H is a set J ⊆ E(H) such that T equals the set of odd-degree
vertices in the subgraph of H induced by J . It is known that a connected graph contains a
T -join if and only if |T | is even.

I Lemma 4.1 ([8, Lemma 1.1]). Let T be the set of odd faces of a connected plane graph G.
Then C ⊆ V (G) is an odd cycle transversal of G if and only if R(G)[C ∪ F (G)] contains a
T -join, that is, each connected component of R(G)[C ∪ F (G)] contains an even number of
vertices of T .

This leads to the following problem :

Bipartite Steiner T -join Parameter: k
Input: A connected bipartite graph G, a fixed partition V (G) = A(G)]B(G), T ⊆ A(G),
and an integer k.
Question: Does there exist a set C ⊆ B(G) of size at most k such that G[C ∪A(G)]
contains a T -join, that is, each connected component of G[C ∪A(G)] contains an even
number of vertices of T?
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In particular, we are interested in the problem when G is a plane graph, which we call
Plane Bipartite Steiner T -join. We call T the set of terminals of the instance; A(G)\T
is the set of non-terminals. We call C ⊆ B(G) a solution to an instance of Bipartite
Steiner T -join if |C| ≤ k and G[C ∪A(G)] contains a T -join.

I Lemma 4.2. If Plane Bipartite Steiner T -join has a polynomial kernel, then Plane
Odd Cycle Transversal has a polynomial kernel.

Proof. By Lemma 4.1, the answer to a plane instance (G,T, k) of Odd Cycle Transversal
is equivalent to the answer of the Plane Bipartite Steiner T -join instance on the
graph R(G), with the face vertices F (G) taking the role of A, V (G) taking the role of B,
and T ⊆ F (G) being the odd faces. So if Plane Bipartite Steiner T -join has a polynomial
kernel, then an instance of Plane Odd Cycle Transversal can be compressed to size
polynomial in k by transforming it into an instance of Plane Bipartite Steiner T -join
and applying the kernel to it. Since Plane Bipartite Steiner T -join is in NP and Plane
Odd Cycle Transversal is NP-hard, by standard arguments (cf. [2]) the T -join instance
can be reduced back to an instance of the original problem of size polynomial in k, which
forms the kernel. J

Below, we will give a polynomial kernel for Plane Bipartite Steiner T -join. Combined
with Lemma 4.2, this implies a polynomial kernel for Plane Odd Cycle Transversal.

4.1 Reducing the number of terminals
Let (G,A(G),B(G), T, k) be an instance of Plane Bipartite Steiner T -join. As a first
step, we show that the graph can be reduced so that there remain at most 6k2 terminals.
To this end, we adapt the rules that Suchý [28] developed for Plane Steiner Tree
parameterized by the number of Steiner vertices of the solution tree. Each of the rules is
applied exhaustively before a next rule will be applied.

I Observation 4.3. Let C be a solution for the instance. Then each vertex of T has a
neighbor in C.

This is the analogue of [28, Lemma 2] and is immediate from the bipartiteness of G.

I Observation 4.4. If k < 0 or there is a connected component containing exactly one
terminal t ∈ T , then we can safely answer NO.

I Lemma 4.5. Let X ⊆ T be a maximal set such that NG(x) = NG(y) for all x, y ∈ X.
Remove all but 2− (|X| mod 2) vertices of X from the graph and T . The resulting instance
(G′,A(G′),B(G′), T ′, k) has a solution if and only if (G,A(G),B(G), T, k) has a solution.

Proof. Let Y ⊆ X be the set of remaining vertices of X. Observe that |X| ≡ |Y | (mod 2)
and that |Y | ≥ 1. The equivalence is now immediate. J

I Lemma 4.6. Let u, v ∈ B(G) and let L = NG(u) ∩NG(v) ∩ T with L 6= ∅. If a connected
component X of G \ (L ∪ {u, v}) exists that contains no terminals, then remove X from
the graph. The resulting instance (G′,A(G′),B(G′), T, k) has a solution if and only if
(G,A(G),B(G), T, k) has a solution.

Proof. If (G′,A(G′),B(G′), T, k) has a solution C, then C is a solution for the instance
(G,A(G),B(G), T, k), as G′ is an induced subgraph of G with the same terminal set.



B.M.P. Jansen, Ma. Pilipczuk, and E. J. van Leeuwen 39:9

Suppose that C is a minimal solution for (G,A(G),B(G), T, k). We construct a solution
for (G′,A(G′),B(G′), T, k) such that C ′ ∩X = ∅. Suppose that C ∩X 6= ∅; otherwise, let
C ′ = C. Let C ′ = (C \ X) ∪ {v}. In either case, |C ′| ≤ |C| ≤ k. We claim that C ′ is
still a solution for (G,A(G),B(G), T, k). To this end, first consider C ∪ {v}. All connected
components of G[C ∪A(G)] that neighbor v will then be unified into a single connected
component Z of G[C ∪{v}∪A(G)]. The parity of |Z ∩T | is equal to the sum (mod 2) of the
parities of |Z ′∩T | of the connected components Z ′ of G[C∪A(G)] neighboring v. Since these
parities are 0, their sum is 0, and |Z ∩ T | is even. Now consider the connected component
ZZ of G[C ′ ∪A(G)] that contains v. Clearly, ZZ ∩ T = Z ∩ T , because X ∩ T = ∅ and any
path in G[C ∪ {v} ∪A(G)] that intersects X can be re-routed through v and the vertices of
L ⊆ A(G). The claim follows, and thus the lemma as well. J

We now present the final two reduction rules. Each relies on the following operation.

I Lemma 4.7. Let v ∈ B(G). Let G′ be obtained from G by contracting all edges between
v and its neighbors in G. Let v′ be the resulting vertex, and let A(G′) and B(G′) be the
resulting color classes, where v′ ∈ A(G′). Let T ′ be obtained from T by removing NG(v) ∩ T ,
and adding v′ to T ′ if and only if |NG(v) ∩ T | ≡ 1 (mod 2).

If (G,A(G),B(G), T, k) has a solution C with v ∈ C, then (G′,A(G′),B(G′), T ′, k − 1)
has a solution;
if (G′,A(G′),B(G′), T ′, k − 1) has a solution, then (G,A(G),B(G), T, k) has a solution.

Proof. Suppose there is a solution C to (G,A(G),B(G), T, k) such that v ∈ C. Then
the vertices of T ∩ NG(v) are in the same connected component Z of G[C ∪A(G)]. Let
C ′ = C \ {v} and let Z ′ be obtained from Z by contracting all edges between v and NG(v).
Then Z ′ is a connected component of G′[C ′ ∪A(G′)]. By the construction of T ′, Z ′ contains
an even number of vertices of T ′. Moreover, |C ′| = |C| − 1 ≤ k − 1. Hence, C ′ is a solution
to (G′,A(G′),B(G′), T ′, k − 1).

Suppose there is a solution C ′ to (G′,A(G′),B(G′), T ′, k− 1). Let C = C ′ ∪ {v}. Let Z ′
be the connected component of G′[C ′ ∪A(G′)] that contains v′, and let Z be obtained from
Z ′ by adding NG[v] and removing v′. Then Z is a connected component of G[C ∪A(G)].
Moreover, by the construction of T ′, Z contains an even number of vertices of T . Finally,
|C| = |C ′|+ 1 ≤ k. Hence, C is a solution to (G,A(G),B(G), T, k). J

I Lemma 4.8. Let u, v ∈ B(G) and let L = NG(u) ∩NG(v) ∩ T with L 6= ∅. If a connected
component X of G \ (L∪ {u, v}) exists for which all terminals in X ∩ T neighbor v and there
is a solution C to the instance (G,A(G),B(G), T, k), then there is a solution that contains v.

Proof. Assume that v 6∈ C, or the lemma would already follow. Since the rule of Lemma 4.6
is inapplicable, there is a terminal in X. Moreover, no terminal in X ∩ T neighbors u,
because any such terminal would be in L and thus not in X. Since every terminal has to
have a neighbor in C, it follows that C ∩ X 6= ∅. Therefore, C ′ = (C \ X) ∪ {v} is not
larger than C. We claim that C ′ is still a solution. To this end, first consider C ∪ {v}. All
connected components of G[C ∪A(G)] that neighbor v will then be unified into a single
connected component Z of G[C ∪ {v} ∪A(G)]. In particular, Z contains X ∩ T . The parity
of |Z ∩T | is equal to the sum (mod 2) of the parities of |Z ′ ∩T | of the connected components
Z ′ of G[C ∪A(G)] that neighbor v. Since these parities are 0, their sum is 0, and |Z ∩ T | is
even. Now consider the connected component ZZ of G[C ′ ∪A(G)] that contains v. Clearly,
ZZ ∩ T = Z ∩ T , because any path in G[C ∪ {v} ∪A(G)] that intersects X can be re-routed
through v and the vertices of L. The claim follows, and thus the lemma as well. J
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I Lemma 4.9. If there is a vertex v ∈ B(G) adjacent to more than 6k terminals and there is
a solution C to the instance (G,A(G),B(G), T, k), then there is a solution that contains v.

Proof. The proof is completely analogous to the proof of [28, Lemma 11]. If v ∈ C, then we
are done. So assume that v 6∈ C. Let B ⊆ C be the set of vertices in C adjacent to at least
two terminals in NG(v). Given b ∈ B, let x, y be any two terminals in NG(b) ∩NG(v) and
consider the region R that is enclosed by the cycle x, b, y, v and that does not contain the
outer face. If R does not contain any other terminal of NG(b) ∩NG(v), then R is called the
(internal) eye of x, b, y, v. The support of b ∈ B, denoted supp(b), is the set of vertices a ∈ B
such that a is contained inside an eye R of b, but not inside an eye of any b′ ∈ B \ {b} for
which b′ is inside R. The bound of 6k (instead of 5k) ensures that the proof of [28, Lemma
16] can be modified (straightforwardly) to yield a vertex b ∈ B(G) adjacent to more than
2 |supp(b)|+ 4 vertices of T . The further arguments then imply the existence of a twin set in
T of size at least 3, thus contradicting the exhaustive execution of the rule of Lemma 4.5. J

Lemma 4.8 and 4.9, when combined with Lemma 4.7, naturally lead to two reduction
rules. After exhaustively applying all the reduction rules in this section, each vertex of B(G)
neighbors at most 6k terminals.

I Observation 4.10. If |T | > 6k2, then we can safely answer NO.

This rule is immediate from Observation 4.3 and the fact that any solution contains at most
k vertices that are each adjacent to at most 6k terminals by Lemma 4.9.

4.2 Reducing the diameter and obtaining the kernel
We now reduce the diameter of the graph. Our arguments here are a generalization of the
arguments of Fiorini et al. [8] in their FPT-algorithm for Plane Odd Cycle Transversal.

I Lemma 4.11. Suppose there is a solution for (G,A(G),B(G), T, k). Let C be a minimal
solution. Then each vertex v ∈ C has distance at most k+ 1 in G[C ∪A(G)] to a vertex of T .

Proof. Suppose for sake of contradiction that v ∈ C has distance at least k + 1 to each
vertex of T in G[C ∪A(G)]. Since C is minimal, there are two connected components X and
Y of G[(C \ {v}) ∪A(G)] with an odd number of terminals. Let x ∈ X ∩ T and y ∈ Y ∩ T .
Consider a shortest path in G[C ∪A(G)] from x to v. This path P is fully contained in
G[V (X)∪ {v}] and has length at least k+ 1. As P connects vertices on opposite sides of the
bipartite graph, |V (P )∩C| ≥ 1+k/2. Hence, |V (X)∩C| ≥ k/2. Similarly, |V (Y )∩C| ≥ k/2.
Since X and Y are vertex disjoint, it follows that |C| ≥ 2k/2 + 1 > k, a contradiction. J

I Corollary 4.12. Suppose there is a solution for (G,A(G),B(G), T, k). Let C be a minimal
solution. Then every vertex of C ∪ T has distance at most k + 2 to T in G[C ∪A(G)].

I Lemma 4.13. We can safely answer NO, or we can compute, in polynomial time, disjoint
subgraphs G1, . . . , G` of G for some ` ≤ k such that:
1. the graphs Gi jointly contain all terminals;
2. for each i and for each vertex v ∈ V (Gi), there is a terminal t ∈ T ∩ V (Gi) that can

reach v by a path of at most k + 2 edges;
3. for any solution C for (G,A(G),B(G), T, k), C ∩ V (Gi) is a solution for (Gi,A(Gi),

B(Gi), T ∩ V (Gi), ki) for each i, where ki = |C ∩ V (Gi)|;
4. if (Gi,A(Gi),B(Gi), T ∩ V (Gi), ki) has a solution for each i for some k1, . . . , k` ≥ 0 that

sum up to at most k, then (G,A(G),B(G), T, k) has a solution.
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Proof. For each terminal t ∈ T , let B(t) be the set of all vertices within distance k + 2 of t.
Let G1, . . . , G` be the connected components of G[

⋃
t∈T B(t)]. If ` > k, then G has more

than k terminals with disjoint neighborhoods in B(G), and we can safely answer NO. We
now consider the properties set forth in the lemma statement:
1. True by construction and the definition of the function B.
2. True by construction and the definition of the function B.
3. True by construction, the definition of the function B, and Corollary 4.12.
4. We take the union C of the solutions Ci of the sub-instances. Note that the subgraphs Gi

are disjoint and thus contain disjoint sets of terminals. Hence, any connected component
of G[C ∪A(G)] that contains connected components of G[Ci ∪A(G)] for multiple i, still
contains an even number of terminals.

This finishes the proof. J

Property 2 of Lemma 4.13 implies that each constructed subgraph Gi has diameter O(k ·
|T ∩ V (Gi)|), which is O(k3) using Observation 4.10. The proof of Theorem 4.14 employs an
additional argument to obtain a quadratic-size Steiner tree to cut open.

I Theorem 4.14. Plane Bipartite Steiner T -join has a kernel of size O(k425).

Proof. We first exhaustively apply the reduction rules of Subsection 4.1 until each vertex
of B(G) neighbors at most 6k terminals. The rules can clearly be executed exhaustively in
polynomial time. As per Observation 4.10, we may assume that |T | ≤ 6k2. Then we apply
Lemma 4.13 and consider each of the ` subgraphs Gi separately. Let Ti = T ∩ V (Gi); note
that |Ti| ≤ 6k2. Moreover, we can assume that |Ti| is even, or we can safely answer NO.

We construct a small set Ai ⊆ V (Gi) such that G[Ai] is connected and contains Ti. Start
by adding Ti to Ai. Then, we find a subset T ′i of Ti such that the sets NGi(t) are pairwise
disjoint for t ∈ T ′i by the following iterative marking procedure: add any unmarked t ∈ Ti

to T ′i and then mark all terminals in NGi(NGi(t)). It follows from Observation 4.3 that
|T ′i | ≤ k, or we can safely answer NO. Now apply Lemma 2.1 to find a Steiner tree of at most
(2(k + 2) + 1) (|T ′i | − 1) edges (and vertices) on T ′i . Add these vertices to Ai. Finally, for
each t ∈ Ti, let t′ ∈ T ′i be a terminal such that t ∈ NGi

(NGi
(t′)) ∪ {t′} and add an arbitrary

vertex of N(t) ∩N(t′) to Ai. Then |Ai| ≤ 6k2 + 6k2 + (2k + 5) |T ′i | = O(k2). Moreover, by
construction, Gi[Ai] is connected and contains Ti.

Let Si be a spanning tree of Gi[Ai]. Note that Si has size O(k2) by the construction of
Ai and contains Ti. We cut the plane open along Si and make the resulting face the outer
face. Let Ĝi denote the resulting plane graph. That is, we create a walk Wi on the edges of
Si that visits each edge of Si exactly twice. This walk has O(k2) edges. Then we duplicate
the edges of Si and duplicate each vertex v of Si exactly dSi

(v)− 1 times, where dSi
(v) is

the degree of v in Si. We can then create a face in the embedding that has Wi as boundary.
Then we obtain Ĝi by creating an embedding in which this new face is the outer face. See
Figure 2. This also yields a natural mapping π from E(Ĝi) to E(Gi) and from V (Ĝi) to
V (Gi). Finally, we observe that the terminals Ti are all on the outer face of Ĝi and that Ĝi

is a connected plane partitioned graph.
Now apply Theorem 3.1 to Ĝi and let G̃i be the resulting graph. Let Fi = π(G̃i). Note

that G̃i has O(|∂Ĝi|212) = O(|Wi|212) = O(k424) edges, and thus so has Fi. Finally, let
F =

⋃`
i=1 Fi. Clearly, |F | = O(k425), as ` < k. Also note that each of the reduction rules,

the above marking procedures, and F itself can be computed in polynomial time.
We claim that (F,A(F ),B(F ), T, k) is a kernel. Since F is a subgraph of G, it follows

that if (F,A(F ),B(F ), T, k) has a solution, then so does (G,A(G),B(G), T, k). Now let C
be a minimum solution for (G,A(G),B(G), T, k). Then Ci = C ∩ V (Gi) is a solution for
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Si

Gi Ĝi

Figure 2 The process of cutting open the graph Gi along the tree Si. Adapted from [24] with
permission.

(Gi,A(Gi),B(Gi), T ∩ V (Gi), ki) for each i, where ki = |C ∩ V (Gi)|. Consider some i and
let Ji be a T -join of Gi[Ci ∪A(Gi)].

Let Z be a connected component of Gi[Ji]. We show how to find a connected subgraph Z ′
of Fi (and thus of Gi) such that V (Z ′)∩Ti ⊇ V (Z)∩Ti and |V (Z ′)∩B(Gi)| ≤ |V (Z)∩B(Gi)|.
Consider the subgraph Ẑ of Ĝi formed by π−1(V (Z) ∪ E(Z)). Note that any connected
component Y of Ẑ connects A = V (Y ) ∩ ∂Ĝi. Then by Theorem 3.1, there is a subgraph
H(Y ) of G̃i that connects A and has minimum possible cost among all subgraphs of Gi

that connect A. Hence, |V (H(Y )) ∩ B(Gi)| ≤ |V (Y ) ∩ B(Gi)|. Now let H be the union
of H(Y ) over all connected components Y of Ẑ. Observe that H is a subgraph of G̃i. Let
Z ′ = (π(V (H)), π(E(H))). Observe that, by construction, Z ′ is a subgraph of Fi with the
claimed properties. In particular, observe that although Ẑ can be much larger than Z due to
the duplication of vertices of Z ∩ Si when Gi was cut open along Si, we de-duplicate these
vertices when using π(V (H)).

Consider the union J ′i of all these connected subgraphs Z ′ over all connected components Z
of Gi[Ji]. Then |V (Gi[J ′i ])∩B(Gi)| ≤ |V (Gi[Ji])∩B(Gi)| = |Ci|. Moreover, by construction,
for each connected component ZZ of Gi[J ′i ] there exists a set Z(ZZ) of connected components
Z of Gi[Ji] such that ZZ ∩ T is the union of Z ∩ T over all these connected components
Z. We note that the sets Z(ZZ) induce a partition of the connected components of Gi[Ji].
Observe that the parity of |ZZ ∩ T | is equal to the sum (mod 2) of the parities of the
corresponding connected components of Gi[Ji], and thus, equal to 0. It follows that Gi[J ′i ]
contains a Ti-join. Hence, V (Gi[J ′i ]) ∩B(Gi) is a solution for (Gi,A(Gi),B(Gi), Ti, ki). By
repeating this procedure for all i, it follows from the proof of Lemma 4.13 that the union of
these solutions is a solution for (G,A(G),B(G), T, k). Moreover, any T -join that is contained
in this solution is fully contained in F . Hence, (F,A(F ),B(F ), T, k) has a solution. J

I Corollary 4.15. Plane Odd Cycle Transversal has a polynomial kernel.

5 Vertex Multiway Cut

In this section we sketch our polynomial kernel for Planar Vertex Multiway Cut. Many
important details are omitted in this presentation, but the full version can be found on
arXiv [18]. Now, let (G,T, k) be an input of Planar Vertex Multiway Cut.

The first step towards the kernel is a preprocessing routine that ostensibly aims to reduce
the diameter of G. Recall that for Odd Cycle Transversal, we could reduce the diameter
of the radial graph to O(k3) by Lemma 4.13, which enabled us to find a small tree connecting
the terminals in Theorem 4.14 along which we could cut open the graph. For Planar
Vertex Multiway Cut, we use a much more involved argument to find this small tree.

To be more precise, we partition the vertices of the input plane graph G using its
outerplanarity layers. A vertex belongs to outerplanarity layer k ≥ 1 if it is on the outer face
after k − 1 times simultaneously removing all vertices on the outer face. We then obtain a
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tree, denoted T(G), by simultaneously contracting all edges whose endpoints belong to the
same layer; note that this operation shrinks each connected component induced by each layer
to a node of the tree, and each node u of the tree corresponds to a set κ(u) of vertices of G.
We call a node u in T(G) important if κ(u) contains a terminal or if two distinct children of
u have a descendant v in T(G) for which κ(v) contains a terminal. We then argue that if the
unique path of P in T(G) between two important nodes has length more than 2(k + 1), then
any optimal T -multiway cut will only use vertices corresponding to the first k+ 1 nodes (call
this set Q), to the last k + 1 nodes (call this set R), or to a (κ(x), κ(y))-cut of size at most k
for some x ∈ Q, y ∈ R. This means that only O(k3) nodes along P are relevant, which
combined with the definition of important nodes leads to O(k3|T |) relevant nodes in T(G).

The intuition behind relevant nodes is that we are only interested in the part of the
graph induced by relevant nodes, and thus we simultaneously contract all edges of G whose
endpoints both belong to a non-relevant node of T(G). We denote by Z the set of vertices
that arise due to this contraction. We must forbid that Z belongs to the solution of the
kernel, a detail later dealt with by replacing each vertex of Z by a suitably chosen grid. We
now use the LP-based reduction rules of Cygan et al. [4] to reduce the number of terminals
to 2k, so that there are only O(k4) relevant nodes. The definition of T(G) combined with
the contraction we described earlier implies that the radial distance of each terminal to the
outer face is O(k4). This enables us to find a tree H of size O(k5) in the overlay graph of G
along which we cut it open (cf. Figure 2). Call the resulting graph Ĝ.

The second step of the kernel is to establish a correspondence between vertex cuts X in
G and Steiner trees in Ĝ that connect vertices along ∂Ĝ. To this end, observe that each
connected component of G\X can be bounded by a closed curve γ that intersects the drawing
of G only in vertices of X. This curve corresponds to a closed curve γ∗ in the overlay graph
of G that intersects its drawing only in vertices of X or F (G). This set of intersected vertices
X ′ will contain vertices of H such that in Ĝ, X ′ can be decomposed to induce several Steiner
trees that connect vertices along ∂Ĝ. Then it suffices to note that the cost of each Steiner
tree only depends on the number of vertices of V (G) it contains and that vertices of F (G)
are free. By picking A(Ĝ) = V (G) and B(Ĝ) = F (G), we can then apply Theorem 3.1.

Note that the kernel contains, for each cut X ⊆ V (G), a set X ′ ⊆ V (G) that mimics
the set X in the following way: for each Y ⊆ X ∩ V (∂Ĝ) which is contained in a single
connected component of Ĝ[X ∪ F ], the set Y is contained in a single connected component
of Ĝ[X ′ ∪ F ]. Then for every pair of vertices u, v ∈ T , if X is a (u, v)-cut in G then X ′ is
also a (u, v)-cut in G. Hence by preserving minimum connectors for subsets of V (∂Ĝ), we
preserve minimum solutions to Planar Vertex Multiway Cut.

6 Reductions to Vertex Planarization

In this section we show two reductions from Planar Vertex Multiway Cut: one to the
disjoint version of Vertex Planarization, and one to the regular one. We start with
recalling formal problem definitions.

Vertex Planarization Parameter: k

Input: A graph G and an integer k.
Question: Does there exist a set X ⊆ V (G) such that G \X is planar?
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Figure 3 The graph H0 of Observation 6.1 with the K5 minor model on the right.

u v

w

u v w

Figure 4 Embedding neighbors of a terminal (blue square) into a hole cut out in a large grid.
Every neighbor of a terminal is connected to k + 1 vertices of the grid (k + 1 = 4 in the figure).

Disjoint Vertex Planarization Parameter: k + |S|
Input: A graph G, a set S ⊆ V (G) such that G \ S is planar, and an integer k.
Question: Does there exist a set X ⊆ V (G) \ S of size at most k such that G \X is
planar?

Lemma 6.2 and 6.3 below give polynomial-parameter transformations from Planar Ver-
tex Multiway Cut to Disjoint Vertex Planarization and Vertex Planarization.

Both reductions rely on the same idea: if a Vertex Planarization instance contains a
large grid, the budget of k deletions is not able to effectively break it, and there is essentially
only one way to embed it in the plane. If some parts of the graph are attached to vertices of
the grid incident to faces far away from each other, a solution to Vertex Planarization
needs to separate such parts from each other. This allows to embed a Planar Vertex
Multiway Cut instance. Formally, we rely on the following observation (see Figure 3).

I Observation 6.1. Consider the following graph H0: we start with H0 being a 4× 4 grid
with vertices xa,b, 1 ≤ a, b ≤ 4 (i.e., the vertex xa,b lies in a-th row and b-th column of the
grid) and then add an edge x2,2x2,4 but delete edges x1,2x2,2 and x1,4x2,4. Then H0 contains
a K5 minor and is therefore not planar.

I Lemma 6.2. Given a Planar Vertex Multiway Cut instance (G,T, k), one can in
linear time compute an equivalent Disjoint Vertex Planarization instance (G′, S, k)
with |S| ≤ 8|T |.

Proof. If |T | ≤ 1, then the input instance is trivial, and we can output G′ = S = ∅.
Otherwise, let T = {t1, t2, . . . , t|T |}. We start by constructing a 4 × 2|T | grid H. Denote
S = V (H); note that |S| = 8|T | as promised. For 1 ≤ i ≤ |T |, let xi be the (2i)-th vertex in
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the second row of H. We construct the graph G′ from G ]H by identifying ti with xi for
every 1 ≤ i ≤ |T |. We claim that the resulting Disjoint Vertex Planarization instance
(G′, S, k) is equivalent to the input Planar Vertex Multiway Cut instance (G,T, k).
Note that V (G) \ T = V (G′) \ S.

In one direction, let X ⊆ V (G) \ T be a solution to Planar Vertex Multiway Cut
on (G,T, k). We show that X is also a solution to Disjoint Vertex Planarization on
(G′, S, k) by showing a planar embedding of G′ \ X. First, embed H in the natural way.
Second, for every connected component C of G \ X, proceed as follows. If C contains a
terminal ti, then fix a planar embedding of C that keeps ti incident to the infinite face, and
embed C in one of the faces of H incident with xi. Otherwise, if C does not contain any
terminal, embed C in the infinite face of H. Since every connected component C contains at
most one terminal, this is a valid planar embedding of G′ \X.

In the other direction, let X ⊆ V (G′) \S be a solution to Disjoint Vertex Planariza-
tion on (G′, S, k). We claim that X is also a solution to Planar Vertex Multiway
Cut on (G,T, k). Assume the contrary; since |X| ≤ k and X ⊆ V (G′) \ S = V (G) \ T by
assumption, we have two terminals ti, tj ∈ T and a ti − tj path P in G \X. Consider the
subgraph H ∪ P of G′ \X and contract P to a single edge titj . Then, this minor of G′ \X
contains H0 from Observation 6.1 as a minor. By Observation 6.1, G′ \X contains K5 as a
minor, contradicting its planarity. J

I Lemma 6.3. Given a Planar Vertex Multiway Cut instance (G,T, k), one can
in polynomial time compute an equivalent Vertex Planarization instance (G′, k) with
|E(G′)|+ |V (G′)| ≤ O(k(|E(G)|+ |V (G)|)).

Proof. We proceed as in the proof of Lemma 6.2, but we need to make H thicker in order
not to allow any tampering.

If |T | ≤ 1, then the input instance is trivial, and we can output G′ = ∅. Similarly, we
output a trivial no-instance if two terminals of T are adjacent. Otherwise, fix a planar
embedding φ of G and let T = {t1, t2, . . . , t|T |}. For every 1 ≤ i ≤ |T |, let di be the degree
of ti in G and let v1

i , . . . , v
di
i be the neighbors of ti in G in clockwise order around ti in φ.

Let D =
∑|T |

i=1 di.
We define a graph H as follows. We start with H being a 4(k+ 1)× (D+ |T |)(k+ 1)-grid

with vertices xa,b, 1 ≤ a ≤ 4(k + 1), 1 ≤ b ≤ (D + |T |)(k + 1) (i.e., the vertex xa,b lies
in a-th row and b-th column). For every 1 ≤ i ≤ |T |, let b←i = (i +

∑
j<i dj)(k + 1) and

b→i = b←i + di(k+ 1); additionally, let b→0 = 0. For every 1 ≤ i ≤ |T | and every b←i < b ≤ b→i ,
we delete from H the edge xk+1,bxk+2,b; see Figure 4.

We now define the graph G′ as follows. We start with G′ = H ] (G \ T ). Then,
for every 1 ≤ i ≤ |T | and every 1 ≤ j ≤ di, we make vj

i adjacent to xk+2,b for every
b←i + (j − 1)(k + 1) < b ≤ b←i + j(k + 1). This finishes the construction of the Vertex
Planarization instance (G′, k). We now show that it is equivalent to Planar Vertex
Multiway Cut on (G,T, k).

In one direction, let X be a solution to Planar Vertex Multiway Cut on (G,T, k).
We show that X is also a solution to Vertex Planarization on (G′, k) by constructing a
planar embedding of G′ \X. First, we embed H naturally and for every 1 ≤ i ≤ |T | let fi

be the face of the embedding that is incident with vertices xk+2,b for every b←i < b ≤ b→i .
Then, for every connected component C of G \ X we proceed as follows. If C does not
contain a terminal, then since X ∩ T = ∅, component C contains no neighbors of terminals
either; hence the vertices of C are not adjacent to H in G′. We embed C in the infinite
face of H. Otherwise, assume that the only terminal of C is ti. We take the embedding of
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C induced by φ, change the infinite face so that ti is incident with the infinite face, and
embed C \ ti with the induced embedding into fi. The fact that v1

i , . . . , v
di
i are embedded

around ti in φ in this order allows us now to draw all edges between vertices of NG(ti) and
{xk+2,b|b←i < b ≤ b→i } in a planar fashion.

In the other direction, let X ′ be a solution to Vertex Planarization on (G′, k). We
claim that X := X ′ ∩ (V (G) \ T ) is a solution to Planar Vertex Multiway Cut on
(G,T, k). If this is not the case, then there exist two terminals ti1 , ti2 , 1 ≤ i1 < i2 ≤ |T |
and a path P from ti1 to ti2 in G \X. Let vj1

i1
be the neighbor of ti1 on P and vj2

i2
be the

neighbor of ti2 on P . Since |X ′| ≤ k, there exist:
indices 1 ≤ a1 ≤ k + 1, k + 2 ≤ a2 ≤ 2k + 2, 2k + 3 ≤ a3 ≤ 3k + 3, 3k + 4 ≤ a4 ≤ 4k + 4
such that no vertex of X ′ is in rows numbered a1, a2, a3, nor a4 of H;
for every 1 ≤ i ≤ |T |, an index b→i−1 < bi ≤ b←i with no vertex of X ′ in the bi-th column
of H; and
for every 1 ≤ i ≤ |T | and every 1 ≤ j ≤ di an index b←i +(j−1)(k+1) < bj

i ≤ b←i +j(k+1)
with no vertex of X ′ in the bj

i -th column of H.
We conclude by observing that the graph H0 from Observation 6.1 is a minor of a subgraph
of G′ \X induced by P , the a1-th, a2-th, a3-th, and a4-th rows of H, and columns of H with
numbers bi1 , b

j1
i1
, bi2 , b

j2
i2
. J

7 Conclusions

We conclude with several open problems. First, the exponents in the polynomial bounds of our
kernel sizes are enormous, similarly as for planar Steiner tree [25]. Thus, we reiterate the
question of reducing the bound of the main sparsification routine of [25] to quadratic. Second,
we hope that our tools can pave the way to a polynomial kernel for Vertex Planarization,
which remains an important open problem. Third, nothing is known about the kernelization
of Multiway Cut parameterized above the LP lower bound [4], even in the case of planar
graphs and edge deletions.
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