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Abstract
Suppose the fastest algorithm that we can design for some problem runs in time O(n2). However,
we want to solve the problem on big data inputs, for which quadratic time is impractically slow.
We can keep searching for a faster algorithm, but maybe none exists. Is there any reasoning that
provides evidence against significantly faster algorithms, and thus allows us to stop searching? In
other words, is there an analogue of NP-hardness for polynomial-time problems?

In this tutorial, we will give an introduction to fine-grained complexity theory, which allows
to rule out faster algorithms by proving conditional lower bounds via fine-grained reductions from
certain key conjectures. We will define these terms and show exemplary lower bounds.
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1 Introduction

The traditional way of establishing a problem as intractable is to prove it to be NP-hard.
This makes a polynomial-time algorithm unlikely, so even for medium-size instances we
cannot expect to solve the problem in reasonable time, at least on worst-case instances.

However, in a modern big data world with inputs such as DNA sequences, social network
graphs, or sensor network measurings, even a quadratic-time algorithm can be too slow and
essentially only near-linear-time algorithms are feasible. This shift necessitates changes in
intractability theory. In order to avoid searching until eternity for a faster algorithm that does
not exist, we need intractability tools that establish far-from-linear lower bounds. In other
words, we need an analogue of NP-hardness for polynomial-time problems. Unfortunately,
P vs. NP is too coarse to even differentiate between running time O(n) and O(n100), and no
techniques for proving unconditional lower bounds higher than Θ(n logn) are known.

Therefore, the modern approach is to prove conditional lower bounds. To this end, we
start from a widely believed conjecture1 about the time complexity of a key problem, and
transfer the conjectured intractability to another problem via a fine-grained reduction, yielding
a conditional lower bound on how fast the other problem can be solved. An exemplary
conjecture is the Strong Exponential Time Hypothesis, which essentially states that any
algorithm for Satisfiability requires time 2(1−o(1))n in the worst case [31], see Section 2 for
details. The resulting area of fine-grained complexity theory, also sometimes called hardness
in P, had initial results in the early 90s [29], was heavily influenced by developments in
the fixed-parameter tractability community [23,27,33], and started to mature in the last 5
years, with a wealth of publications appearing every year at the topmost theory conferences,
see [1–4,6–15,17,18,20,21,25,30,34,35,39].

1 Some authors prefer the terminology hypothesis.
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The development of fine-grained complexity theory in particular enabled the design of
conditionally best-possible algorithms: On the one hand, we design an efficient algorithm
running in some time bound T (n), on the other hand, we prove a conditional lower bound
ruling out time T (n)1−δ for any δ > 0 using fine-grained complexity theory. Together, we
determined T (n) as the best-possible time complexity of our problem (up to lower order
factors and conditional on a plausible complexity-theoretic assumption). This provides strong
indication to stop searching for a faster algorithm.

Despite fine-grained complexity theory being a young field of research, conditionally best-
possible algorithms have already been found for various problems. The fine-grained approach
has been particularly successful for dynamic programming problems. For instance, assuming
the Strong Exponential Time Hypothesis, quadratic running time is essentially optimal for
similarity measures such as Edit distance [13], Longest Common Subsequence [3, 21], and
Fréchet distance [18]. These developments have also fueled algorithmic improvements, e.g.,
the classic O(nt)-time algorithm for Subset Sum2 from 1957 [16] has been improved to time
O(tpolylog(t)) [19], which matches a SETH-based lower bound [5].

In this tutorial, we give an introduction to fine-grained complexity theory. An overview
of the key conjectures is presented in Section 2. We introduce the notions of fine-grained
reduction and conditional lower bound in Section 3. Then, in Sections 4 and 5 we show basic
examples of fine-grained reductions. Finally, we conclude in Section 6.

2 Key Conjectures

The four most central conjectures of fine-grained complexity theory are as follows.

Satisfiability

Recall the standard k-SAT problem: We are given a formula on n Boolean variables in
k-CNF (i.e., the formula is a conjunction of clauses, where each clause is a disjunction of at
most k literals, and each literal is a negated or unnegated variable). The task is to decide
whether there is a satisfying assignment (i.e., an assignment of each variable to true or
false for which the formula evaluates to true). This problem can be solved naively in time
O(2nnk), by enumerating all 2n assignments and checking each of at most O(nk) clauses.
The Strong Exponential Time Hypothesis (SETH) states that the naive running time is
essentially optimal when k tends to infinity. More formally, for any δ > 0 there is a k ≥ 3
such that k-SAT has no O(2(1−δ)n)-time algorithm [31].

Orthogonal Vectors

Given setsA,B consisting of n vectors in {0, 1}d, decide whether there are vectors a ∈ A, b ∈ B
that are orthogonal (i.e., for any 1 ≤ i ≤ d we have a[i] · b[i] = 0). This problem can be
solved naively in time O(n2d), by enumerating all pairs of vectors and checking orthogonality
in time O(d). It is conjectured that Orthogonal Vectors has no O(n2−δdc)-time algorithm
for any δ, c > 0. It is well-known that SETH implies the Orthogonal Vectors conjecture [41].

2 Given a set X of n positive integers and a target t, does any subset of X sum to exactly t?
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All Pairs Shortest Path

Given a graph G with n nodes and positive edge weights, compute for all pairs of nodes their
shortest path distance. The classic Floyd-Warshall algorithm solves this problem in time
O(n3) [28, 40]. It is conjectured that All Pairs Shortest Path has no O(n3−δ)-time algorithm
for any δ > 0.

3SUM

Given a set X of n integers, decide whether there are a, b, c ∈ X with a+b+c = 0. A folklore
algorithm solves this problem in time O(n2). It is conjectured that there is no O(n2−δ)-time
algorithm for any δ > 0.

We remark that for all of these problems, lower order improvements beyond the stated
running times are known. For instance, All Pairs Shortest Path can be solved in time
n3/2Ω(

√
logn) [42]. However, these improvements are not enough to falsify the conjectures.

3 Fine-Grained Reductions and Conditional Lower Bounds

For simplicity and since they form the majority of reductions in the literature, here we only
consider many-one reductions, also known as Karp reductions. For a fine-grained variant of
Turing reductions, see e.g. [37].

I Definition 1. For problems P,Q and time bounds tP , tQ, a fine-grained reduction from
(P, tP ) to (Q, tQ) is an algorithm that, given an instance I of P , computes an instance J
of Q such that:
1. I is a YES-instance of P if and only if J is a YES-instance of Q,
2. for any ε > 0 there is a δ > 0 such that tQ(|J |)1−ε = O(tP (|I|)1−δ), and
3. the running time of the reduction is O(tP (|I|)1−γ) for some γ > 0.

In particular, if there is a fine-grained reduction from (P, tP ) to (Q, tQ) and there is an
algorithm for Q running in time O(tQ(n)1−ε) for some ε > 0, then by combining the two we
can solve any instance I of P in time

O(tP (|I|)1−γ + tQ(|J |)1−ε) = O(tP (|I|)1−γ + tP (|I|)1−δ) = O(tP (|I|)1−δ′
),

for some δ′ > 0. In other words, any significant improvement over time tQ(n) for Q yields
a significant improvement over time tP (n) for P . Or, equivalently, if P cannot be solved
significantly faster than in time tP (n), then Q cannot be solved significantly faster than in
time tQ(n).

Suppose we have a fine-grained reduction from (All Pairs Shortest Path, n3) to (Q, tQ).
Then problem Q cannot be solved in time O(tQ(n)1−ε) for any ε > 0 unless All Pairs Shortest
Path can be solved in time O(n3−δ) for some δ > 0, meaning that the All Pairs Shortest
Path conjecture fails. In this situation, we say that we have proven a conditional lower bound
of tQ(n)1−o(1) for problem Q, assuming the All Pairs Shortest Path conjecture.

4 Example I: SETH-Hardness of Orthogonal Vectors

As a first example for a fine-grained reduction, we present the following by-now classic result.

I Theorem 2 ([41]). The Strong Exponential Time Hypothesis implies the Orthogonal Vectors
conjecture.

STACS 2019
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Proof. We show a fine-grained reduction from Satisfiability to Orthogonal Vectors. Specific-
ally, given a k-CNF formula φ on n variables and m clauses, we will construct sets A,B of
N = 2n/2 vectors in dimension D = m.

Denote the clauses of φ by C1, . . . , Cm. We split the n variables into sets X,Y of size
n/2. For any assigment α of X, we construct a corresponding vector a(α) ∈ A, by setting its
i-th coordinate to 0 if α satisfies clause Ci (i.e., if there is a literal in Ci that is set to true
by applying assignment α to X), and setting it to 1 otherwise. Similarly, for any assigment
β of Y , we construct a corresponding vector b(β) ∈ B, by setting its i-th coordinate to 0 if β
satisfies clause Ci, and setting it to 1 otherwise. Observe that a(α) and b(β) are orthogonal
if and only if (α, β) forms a satisfying assignment of φ, since orthogonality means that each
clause is satisfied by at least one of the two half-assignments α, β. Thus, we constructed an
equivalent Orthogonal Vectors instance.

Note that we indeed constructed sets A,B consisting of N = 2n/2 vectors in {0, 1}D
for D = m. Also note that we can construct A,B in time O(ND). Now suppose that
the Orthogonal Vectors conjecture fails, i.e., Orthogonal Vectors has an O(N2−εDc)-time
algorithm for some ε, c > 0. Then by combining this algorithm with our reduction, we can
solve k-SAT on n variables and m clauses in time O(2n/2m+ 2(2−ε)n/2mc) = O(2(1−δ)nmc′)
for some δ > 0, c′ ≥ 1. Since in k-CNF there are O(nk) different clauses, and we can
bound the polynomial O(nk) by the exponential function O(2δn/(2c′)), we may estimate the
factor mc′ by O(2δn/2). This yields a final time bound of O(2(1−δ/2)n) for k-SAT, which
contradicts SETH. As contraposition, we obtain that SETH implies the Orthogonal Vectors
conjecture. J

5 Example II: Regular Expression Pattern Matching

Let us recall the basics of regular expressions. A regular expression R is a search pattern that
matches any string in the corresponding language L(R). Here we only consider the following
operations over a fixed alphabet Σ. For any symbol c ∈ Σ, the regular expression R = c

matches the length-1 string c, i.e., L(R) = {c}. For any regular expressions R1, R2, the regular
expression R = R1|R2 matches any string matched by R1 or R2, i.e., L(R) = L(R1)∪L(R2).
For any regular expressions R1, R2, the regular expression R = R1 ◦R2 matches any string
that is a concatenation of a string matched by R1 with a string matched by R2, i.e.,
L(R) = {ab | a ∈ L(R1), b ∈ L(R2)}.

In the Regular Expression Pattern Matching problem, given a regular expression R and
a text string T , the task is to decide whether any substring of T matches R. Denoting
the length of T by n and the number of operations that define R by m, there is a classic
O(nm)-time algorithm for this problem [36]. Here we show the following tight lower bound.

I Theorem 3 ([14]). Regular Expression Pattern Matching has no O((n + m)2−ε)-time
algorithm for any ε > 0, unless the Orthogonal Vectors conjecture fails.

Proof. For a fine-grained reduction from Orthogonal Vectors to Regular Expression Pattern
Matching, consider an Orthogonal Vectors instance A,B ⊆ {0, 1}D of size N . We construct
a regular expression R and a text string T as follows.

On the coordinate level, we define two regular expressions

CR(1) := 0 and CR(0) := (0|1).

Note that for coordinates x, y ∈ {0, 1}, regular expression CR(x) matches string y if and
only if x · y = 0.
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On the vector level, for any vector b ∈ B we construct the regular expression

V R(b) := CR(b[1]) ◦ CR(b[2]) ◦ . . . ◦ CR(b[D]).

Note that for vectors a, b ∈ {0, 1}D, the regular expression V R(b) matches the string
a[1]a[2] . . . a[D] if and only if a and b are orthogonal.

On the level of sets of vectors, for the set B = {b1, . . . , bN} we construct the regular
expression

R := V R(b1)|V R(b2)| . . . |V R(bN ).

Note that for a vector a ∈ {0, 1}D, the regular expression R matches the string a[1]a[2] . . . a[D]
if and only if a is orthogonal to some b ∈ B.

Finally, we define the text string T to be the concatenation of all vectors in A, padded
by a dummy symbol ‘#’, i.e., for A = {a1, . . . , aN} we set

T := a1[1] . . . a1[D]#a2[1] . . . a2[D]# . . .#aN [1] . . . aN [D].

Since the dummy symbol does not appear in R, the regular expression R matches text T if
and only if there is a vector a ∈ A such that R matches a[1]a[2] . . . a[D]. Hence, (R, T ) is a
YES-instance of Regular Expression Pattern Matching if and only if (A,B) is a YES-instance
of Orthogonal Vectors.

Note that R and T have size O(ND) and can be constructed in time O(ND). Thus, any
O((n+m)2−ε)-time algorithm for Regular Expression Pattern Matching for some ε > 0 would
yield an algorithm for Orthogonal Vectors in time O((ND)2−ε+ND) = O(N2−δDc) for some
δ, c > 0, which contradicts the Orthogonal Vectors conjecture. Hence, Regular Expression
Pattern Matching is not in time O((n+m)2−ε) for any ε > 0 unless the Orthogonal Vectors
conjecture fails. J

6 Conclusion

In this short introduction to fine-grained complexity theory we focused on the main conjectures
and two basic examples. Over the last years, fine-grained complexity theory developed into
a widely applicable tool with many interesting directions including extensions to dynamic
graph algorithms [9], hardness of approximation [8], compressed data [1], external memory
algorithms [26], and many more. Besides the four main conjectures presented here, several
other conjectures have been used and relations among conjectures have been explored [4, 22,
24,32].

For further reading, we refer to the surveys [37, 38]. Lecture material including slides can
can be found at https://www.mpi-inf.mpg.de/departments/algorithms-complexity/
teaching/summer16/poly-complexity/ (or linked on the author’s homepage).
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