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Abstract
Depth first search (DFS) tree is a fundamental data structure for solving various graph problems.
The classical algorithm for building a DFS tree requires O(m+ n) time for a given undirected graph
G having n vertices and m edges. In the streaming model, an algorithm is allowed several passes
(preferably single) over the input graph having a restriction on the size of local space used.

Now, a DFS tree of a graph can be trivially computed using a single pass if O(m) space is
allowed. In the semi-streaming model allowing O(n) space, it can be computed in O(n) passes over
the input stream, where each pass adds one vertex to the DFS tree. However, it remains an open
problem to compute a DFS tree using o(n) passes using o(m) space even in any relaxed streaming
environment.

We present the first semi-streaming algorithms that compute a DFS tree of an undirected graph
in o(n) passes using o(m) space. We first describe an extremely simple algorithm that requires at
most dn/ke passes to compute a DFS tree using O(nk) space, where k is any positive integer. For
example using k =

√
n, we can compute a DFS tree in

√
n passes using O(n

√
n) space. We then

improve this algorithm by using more involved techniques to reduce the number of passes to dh/ke
under similar space constraints, where h is the height of the computed DFS tree. In particular, this
algorithm improves the bounds for the case where the computed DFS tree is shallow (having o(n)
height). Moreover, this algorithm is presented in form of a framework that allows the flexibility
of using any algorithm to maintain a DFS tree of a stored sparser subgraph as a black box, which
may be of an independent interest. Both these algorithms essentially demonstrate the existence of a
trade-off between the space and number of passes required for computing a DFS tree. Furthermore,
we evaluate these algorithms experimentally which reveals their exceptional performance in practice.
For both random and real graphs, they require merely a few passes even when allowed just O(n)
space.
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1 Introduction

Depth first search (DFS) is a well known graph traversal technique. Right from the seminal
work of Tarjan [35], DFS traversal has played an important role in the design of efficient
algorithms for many fundamental graph problems, namely, bi-connected components, strongly
connected components, topological sorting [38], dominators in directed graph [36], etc. Even
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42:2 DFS in Semi-streaming Model

in undirected graphs, DFS traversal have various applications including computing connected
components, cycle detection, edge and vertex connectivity [13] (via articulation points and
bridges), bipartite matching [23], planarity testing [24] etc. In this paper, we address the
problem of computing a DFS tree in the semi-streaming environment.

The streaming model [2, 17, 19] is a popular model for computation on large data sets
wherein a lot of algorithms have been developed [18, 22, 19, 25] to address significant problems
in this model. The model requires the entire input data to be accessed as a stream, typically
in a single pass over the input, allowing very small amount of storage (poly log in input size).
A streaming algorithm must judiciously choose the data to be saved in the small space, so
that the computation can be completed successfully. In the context of graph problems, this
model is adopted in the following fashion. For a given graph G = (V,E) having n vertices,
an input stream sends the graph edges in E using an arbitrary order only once, and the
allowed size of local storage is O(poly logn). The algorithm iteratively asks for the next
edge and performs some computation. After the stream is over, the final computation is
performed and the result is reported. At no time during the entire process should the total
size of stored data exceed O(poly logn).

In general only statistical properties of the graph are computable under this model,
making it impractical for use in more complicated graph problems [15, 20]. A prominent
exception for the above claim is the problem of counting triangles (3-cycles) in a graph [5].
Consequently, several relaxed models have been proposed with a goal to solve more complex
graph problems. One such model is called semi-streaming model [32, 16] which relaxes the
storage size to O(n poly logn). Several significant problems have been studied under this
model (surveys in [33, 41, 31]). Moreover, even though it is preferred to allow only a single
pass over the input stream, several hardness results [22, 10, 16, 9, 21] have reported the
limitations of using a single pass (or even O(1) passes). This has led to the development of
various multi-pass algorithms [16, 15, 30, 1, 27, 26] in this model. Further, several streaming
algorithms maintaining approximate distances [15, 6, 11] are also known to require O(n1+ε)
space (for some constant ε > 0) relaxing the requirement of O(n poly logn) space.

Now, a DFS tree of a graph can be computed in a single pass if O(m) space is allowed.
If the space is restricted to O(n), it can be trivially computed using O(n) passes over
the input stream, where each pass adds one vertex to the tree. This can also be easily
improved to O(h) passes, where h is the height of the computed DFS tree. Despite most
applications of DFS trees in undirected graphs being efficiently solved in the semi-streaming
environment [40, 16, 15, 3, 4, 14, 29], due to its fundamental nature DFS is considered a
long standing open problem [14, 33, 34] even for undirected graphs. Moreover, computing
a DFS tree in O(poly logn) passes is considered hard [14]. To the best of our knowledge,
it remains an open problem to compute a DFS tree using o(n) passes even in any relaxed
streaming environment.

In our results, we borrow some key ideas from recent sequential algorithms [8, 7] for
maintaining dynamic DFS of undirected graphs. Recently, similar ideas were also used
by Khan [28] who presented a semi-streaming algorithm that uses using O(n) space for
maintaining dynamic DFS of an undirected graph, requiring O(log2 n) passes per update.

1.1 Our Results

We present the first semi-streaming algorithms to compute a DFS tree on an undirected
graph in o(n) passes. Our first result can be described using the following theorem.
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I Theorem 1. Given an undirected graph G = (V,E), the DFS tree of the graph can be
computed by a semi-streaming algorithm in at most n/k passes using O(nk) space, requiring
O(mα(m,n)) time per pass.

As described earlier, a simple algorithm can compute the DFS tree in O(h) passes, where
h is the height of the DFS tree. Thus, for the graphs having a DFS tree with height h = o(n)
(see full paper for details), we improve our result for such graphs in the following theorem.

I Theorem 2. Given an undirected graph G, a DFS tree of G can be computed by a semi-
streaming algorithm using dh/ke passes using O(nk) space requiring amortized O(m+ nk)
time per pass for any integer k ≤ h, where h is the height of the computed DFS tree.1

Since typically the space allowed in the semi-streaming model is O(n poly logn), the
improvement in upper bounds of the problem by our results is considerably small (upto
poly logn factors). Recently, Elkin [12] presented the first o(n) pass algorithm for computing
Shortest Paths Trees. Using O(nk) local space, it computes the shortest path tree from a
given source in O(n/k) passes for unweighted graphs, and in O(n logn/k) passes for weighted
graphs. The significance of such results, despite improving the upper bounds by only small
factors, is substantial because they address fundamental problems. The lack of any progress
for such fundamental problems despite several decades of research on streaming algorithms
further highlights the significance of such results. Moreover, allowing O(n1+ε) space (as in
[15, 6, 11]) such results improves the upper bound significantly by O(nε) factors. Furthermore,
they demonstrate the existence of a trade-off between the space and number of passes required
for computing such fundamental structures.

Our final algorithm is presented in form of a framework, which can use any algorithm for
maintaining a DFS tree of a stored sparser subgraph, provided that it satisfies the property
of monotonic fall. Such a framework allows more flexibility and is hopefully much easier
to extend to better algorithms for computing a DFS tree or other problems requiring a
computation of DFS tree. Hence we believe our framework would be of independent interest.

We also augment our theoretical analysis with the experimental evaluation of our proposed
algorithms. For both random and real graphs, the algorithms require merely a few passes
even when the allowed space is just O(n). The exceptional performance and surprising
observations of our experiments on random graphs might also be of independent interest.

1.2 Overview
We now briefly describe the outline of our paper. In Section 2 we establish the terminology
and notations used in the remainder of the paper. In order to present the main ideas behind
our approach in a simple and comprehensible manner, we present the algorithm in four
stages. Firstly in Section 3, we describe the basic algorithm to build a DFS tree in n passes,
which adds a new vertex to the DFS tree in every pass over the input stream. Secondly in
Section 3.1, we improve this algorithm to compute a DFS tree in h passes, where h is the
height of the final DFS tree. This algorithm essentially computes all the vertices in the next
level of the currently built DFS tree simultaneously, building the DFS tree by one level in
each pass over the input stream. Thus, in the ith pass every vertex on the ith level of the
DFS tree is computed. Thirdly in Section 4, we describe an advanced algorithm which uses

1 Note that there can be many DFS trees of a graph having varying heights, say hmin to hmax. Our
algorithm does not guarantee the computation of DFS tree having minimum height hmin, rather it
simply computes a valid DFS tree with height h, where hmin ≤ h ≤ hmax.
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42:4 DFS in Semi-streaming Model

O(nk) space to add a path of length at least k to the DFS tree in every pass over the input
stream. Thus, the complete DFS tree can be computed in dn/ke passes. Finally, in Section 5,
we improve the algorithm to simultaneously add all the subtrees constituting the next k
levels of the final DFS tree starting from the leaves of the current tree T . Thus, k levels are
added to the DFS tree in each pass over the input stream, computing the DFS tree in dh/ke
passes. As described earlier, our final algorithm is presented in form of a framework which
uses as a black box, any algorithm to maintain a DFS tree of a stored sparser subgraph,
satisfying certain properties. In the interest of completeness, one such algorithm is described
in the full paper. Lastly in Section 6, we present the results of the experimental evaluation of
these algorithms. The details of this evaluation are deferred to the full version of the paper.

In our advanced algorithms, we employ two interesting properties of a DFS tree, namely,
the components property [7] and the min-height property. These simple properties of any
DFS tree prove crucial in building the DFS efficiently in the streaming environment.

2 Preliminaries

Let G = (V,E) be an undirected connected graph having n vertices and m edges. The DFS
traversal of G starting from any vertex r ∈ V produces a spanning tree rooted at r called
a DFS tree, in O(m+ n) time. For any rooted spanning tree of G, a non-tree edge of the
graph is called a back edge if one of its endpoints is an ancestor of the other in the tree, else
it is called a cross edge. A necessary and sufficient condition for any rooted spanning tree to
be a DFS tree is that every non-tree edge is a back edge.

In order to handle disconnected graphs, we add a dummy vertex r to the graph and
connect it to all vertices. Our algorithm computes a DFS tree rooted at r in this augmented
graph, where each child subtree of r is a DFS tree of a connected component in the DFS
forest of the original graph. The following notations will be used throughout the paper.

T : The DFS tree of G incrementally computed by our algorithm.
par(w) : Parent of w in T .
T (x) : The subtree of T rooted at vertex x.
root(T ′) : Root of a subtree T ′ of T , i.e., root

(
T (x)

)
= x.

level(v) : Level of vertex v in T , where level(root(T )) = 0 and level(v) = level(par(v))+1.

In this paper we will discuss algorithms to compute a DFS tree T for the input graph
G in the semi-streaming model. In all the cases T will be built iteratively starting from an
empty tree. At any time during the algorithm, we shall refer to the vertices that are not
a part of the DFS tree T as unvisited and denote them by V ′, i.e., V ′ = V \ T . Similarly,
we refer to the subgraph induced by the unvisited vertices, G′ = G(V ′), as the unvisited
graph. Unless stated otherwise, we shall refer to a connected component of the unvisited
graph G′ as simply a component. For any component C, the set of edges and vertices in the
component will be denoted by EC and VC . Further, each component C maintains a spanning
tree of the component that shall be referred as TC . We refer to a path p in a DFS tree T as
an ancestor-descendant path if one of its endpoints is an ancestor of the other in T . Since
the DFS tree grows downwards from the root, a vertex u is said to be higher than vertex v if
level(u) < level(v). Similarly, among two edges incident on an ancestor-descendant path p,
an edge (x, y) is higher than edge (u, v) if y, v ∈ p and level(y) < level(v).

We shall now describe two invariants such that any algorithm computing DFS tree
incrementally satisfying these invariants at every stage of the algorithm, ensures the absence
of cross edges in T and hence the correctness of the final DFS tree T .
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Invariants:
I1 : All non-tree edges among vertices in T are back edges, and
I2 : For any component C of the unvisited graph, all the edges from C to the

partially built DFS tree T are incident on a single ancestor-descendant
path of T .

We shall also use the components property by Baswana et al. [7], described as follows.

r

w

x1

x2

C1

C2

e1

e′1

e2

e′2

Figure 1 Edges e′
1 and e′

2 can be ignored during the DFS traversal (reproduced from [7]).

I Lemma 3 (Components Property [7]). Consider a partially completed DFS traversal where
T is the partially built DFS tree. Let the connected components of G′ be C1, .., Ck. Consider
any two edges ei and e′

i from Ci that are incident respectively on a vertex xi and some
ancestor (not necessarily proper) w of xi in T . Then it is sufficient to consider only ei during
the DFS traversal, i.e., the edge e′

i can be safely ignored.

Ignoring e′
i during the DFS traversal, as stated in the components property, is justified

because e′
i will appear as a back edge in the resulting DFS tree (refer to Figure 1). For each

component Ci, the edge ei can be found using a single pass over all the graph edges.

3 Simple Algorithms

We shall first briefly describe the trivial algorithm to compute a DFS tree of a (directed)
graph using n passes. Since we are limited to have only O(n poly logn) space, we cannot store
the adjacency list of the vertices in the graph. Recall that in the standard DFS algorithm [35],
after visiting a vertex v, we choose any unvisited neighbour of v and visit it. If no neighbour
of v is unvisited, the traversal retreats back to the parent of v and look for its unvisited
neighbour, and so on.

In the streaming model, we can use the same algorithm. However, we do not store the
adjacency list of a vertex. To find the unvisited neighbour of each vertex, we perform a
complete pass over the edges in E. The algorithm only stores the partially built DFS tree
and the status of each vertex (whether it is visited/added to T ). Thus, for each vertex v
(except r) one pass is performed to add v to T and another is performed before retreating
to the parent of v. Hence, it takes 2(n − 1) passes to complete the algorithm since T is
initialized with the root r. Since, this procedure essentially simulates the standard DFS
algorithm [35], it clearly satisfies the invariants I1 and I2.

This procedure can be easily transformed to require only n−1 passes by avoiding an extra
pass for retreating from each vertex v. In each pass we find an edge e (from the stream) from
the unvisited vertices, V ′, to the lowest vertex on the ancestor-descendant path connecting r
and v, i.e., closest to v. Hence e would be an edge from the lowest (maximum level) ancestor
of v (not necessarily proper) having at least one unvisited neighbour. Recall that if v does
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not have an unvisited neighbour we move to processing its parent, and so on until we find an
ancestor having an unvisited neighbour. We can thus directly add the edge e to T . Hence,
retreating from a vertex would not require an additional pass and the overall procedure
can be completed in n− 1 passes, each pass adding a new vertex to T . Moreover, this also
requires O(1) processing time per edge and extra O(n) time at the end of the pass, to find
the relevant ancestor. Refer to the full paper for the pseudocode of the procedure. Thus, we
get the following result.

I Theorem 4. Given a directed/undirected graph G, a DFS tree of G can be computed by a
semi-streaming algorithm in n passes using O(n) space, using O(m) time per pass.

3.1 Improved algorithm

We shall now describe how this simple algorithm can be improved to compute a DFS tree of
an undirected graph in h passes, where h is the height of the computed DFS tree. The main
idea behind this approach is that each component of the unvisited graph G′ will constitute a
separate subtree of the final DFS tree. Hence each such subtree can be computed independent
of each other in parallel (this idea was also used by [28]).

Using one pass over edges in E, the components of the unvisited graph G′ can be found
by using Union-Find algorithm [37, 39] on the edges E′ of G′. Now, using the components
property we know that it is sufficient to add the lowest edge from each component to the DFS
tree T . At the end of the pass, for each component C we find the edge (xC , yC) incident from
the lowest vertex xC ∈ T to some vertex yC ∈ VC and add it to T . Note that in the next
pass, for each component of C \ {yC} the lowest edge connecting it to T would necessarily
be incident on yC as C was connected. Hence, instead of lowest edge incident on T , we
store ey from y ∈ V ′ only if ey is incident on some leaf of T . Refer to the full paper for the
pseudocode of the algorithm.

To prove the correctness of the algorithm, we shall prove using induction that the
invariants I1 and I2 hold over the passes performed on E. Since T is initialized as an isolated
vertex r, both invariants trivially hold. Now, let the invariants hold at the beginning of a
pass. Using I2, each component C can have edges to a single ancestor-descendant path from
r to xC . Thus, adding the edge (xC , yC) for each component C, would not violate I1 at the
end of the pass, given that I1 holds at the beginning of the pass. Additionally, from each
component C we add a single vertex yC as a child of xC to T . Hence for any component of
C \ {yC}, the edges to T can only be to ancestors of yC (using I2 of previous pass), and an
edge necessarily to yC , satisfying I2 at the end of the pass. Hence, using induction both I1
and I2 are satisfied proving the correctness of our algorithm.

Further, since each component C in any ith pass necessarily has an edge to a leaf xC of
T , the new vertex yC is added to the ith level of T . This also implies that every vertex at
ith level of the final DFS tree is added during the ith pass. Hence, after h passes we get a
DFS tree of the whole graph as h is the height of the computed DFS tree.

Now, the total time2 required to compute the connected components is O(mα(m,n)).
And computing an edge from each unvisited vertex to a leaf in T requires O(1) time using
O(n) space. Thus, we have the following theorem.

2 The Union-Find algorithm [37, 39] requires O(mα(m,n)) time, where α(m,n) is the inverse Ackermann
function.
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I Theorem 5. Given an undirected graph G, a DFS tree of G can be computed by a semi-
streaming algorithm in h passes using O(n) space, where h is the height of the computed DFS
tree, using O(mα(m,n)) time per pass.

4 Computing DFS in sublinear number of passes

Since a DFS tree may have O(n) height, we cannot hope to compute a DFS tree in sublinear
number of passes using the previously described simple algorithms. The main difference
between the advanced approaches and the simple algorithms is that, in each pass instead of
adding a single vertex (say y) to the DFS tree, we shall be adding an entire path (starting
from y) to the DFS tree. The DFS traversal gives the flexibility to chose the next vertex to
be visited as long as the DFS property is satisfied, i.e., invariants I1 and I2 are maintained.

Hence in each pass we do the following for every component C in G′. Instead of finding a
single edge (xC , yC) (see Section 3.1), we find a path P starting from yC in C and attach
this entire path P to T (instead of only yC). Suppose this splits the component C into
components C1, C2, . . . of C \ P . Now, each Ci would have an edge to at least one vertex
on P (instead of necessarily the leaf xC in Section 3.1) since C was a connected component.
Hence in this algorithm for each Ci, we find the vertex yi which is the lowest vertex of T (or
P ) to which an edge from Ci is incident. Observe that yi is unique since all the neighbours
of Ci in T are along one path from the root to a leaf. Using the components property, the
selection of yi as the parent of the root of the subtree to be computed for Ci ensures that
invariant I2 continues to hold. Thus, in each pass from every component of the unvisited
graph, we shall extract a path and add it to the DFS tree T .

This approach thus allows T to grow by more than one vertex in each pass which is
essential for completing the tree in o(n) passes. If in each pass we add a path of length at
least k from each component of G′, then the tree will grow by at least k vertices in each pass,
requiring overall dn/ke passes to completely build the DFS tree. We shall now present an
important property of any DFS tree of an undirected graph, which ensures that in each pass
we can find a path of length at least k ≥ m/n.

I Lemma 6 (Min-Height Property). Given a connected undirected graph G having m edges,
any DFS tree of G from any root vertex necessarily has a height h ≥ m/n.

Proof. We know that each non-tree edge in a DFS tree of an undirected graph is a back edge.
We shall associate each edge to its lower endpoint. Thus, in a DFS tree each vertex will be
associated to a tree edge to its parent and back edges only to its ancestors. Now, each vertex
can have only h ancestors as the height of the DFS tree is h, Hence each vertex has only h
edges associated to it resulting in less than nh edges, i.e. m ≤ nh or h ≥ m/n. Note that
it is important for the graph to be connected otherwise from some root the corresponding
component and hence its DFS tree can be much smaller. J

4.1 Algorithm
We shall now describe our algorithm to compute a DFS tree of the input graph in o(n) passes.
Let the maximum space allowed for computation in the semi-streaming model be O(nk).
The algorithm is a recursive procedure that computes a DFS tree of a component C from
a root rC . For each component C we maintain a spanning tree TC of C. Initially we can
perform a single pass over E to compute a spanning tree of the connected graph G (recall the
assumption in Section 2) using the Union-Find algorithm. For the remaining components, its
spanning tree would already have been computed and passed as an input to the algorithm.
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42:8 DFS in Semi-streaming Model

We initiate a pass over the edge in E and store the first |VC | · k edges (if possible) from
the component C in the memory as the subgraph E′

C . Before proceeding with the remaining
stream, we use any algorithm for computing a DFS tree T ′

C rooted at rC in the subgraph
containing edges from TC and E′

C . Note that adding TC to E′
C is important to ensure that

subgraph induced by TC ∪ E′
C is connected. In case the pass was completed before E′

C

exceeded storing |VC | · k edges, T ′
C is indeed a DFS tree of C and we directly add it to T .

Otherwise, we find the longest path P from T ′
C starting from rC , i.e., path from rC to the

farthest leaf. The path P is then added to T .
Now, we need to compute the connected components of C \P and the new corresponding

root for each such component. We use the Union-Find algorithm to compute these components,
say C1, ..., Cf , and compute the lowest edge ei from each Ci on the path P . Clearly, there
exist such an edge as C was connected. In order to find these components and edges, we
need to consider all the edges in EC , which can be done by first considering E′

C and then
each edge from C in the remainder of input stream of the pass. Refer to the full paper for
the pseudocode of the algorithm.

Using the components property, choosing the new root yi corresponding to the lowest
edge ei ensures that the invariant I2 and hence I1 is satisfied. Now, in case |EC | < |VC | · k,
the entire DFS tree of C is constructed and added to T in a single pass. Otherwise, in each
pass we add the longest path P from T ′

C to the final DFS tree T . Since |E′
C | = |VC | · k and

E′
C ∪ TC is a single connected component, the min-height property ensures that the height of

any such T ′
C (and hence P ) is at least k. Since in each pass, except the last, we add at least

k new vertices to T , this algorithm terminates in at most dn/ke passes. Now, the total time
required to find the components of the unvisited graph is again O(mα(m,n)). The remaining
operations clearly require O(|EC |) time for a component C, requiring overall O(m) time.
Thus, we get the following theorem.

I Theorem 1. Given an undirected graph G, a DFS tree of G can be computed by a semi-
streaming algorithm in at most dn/ke passes using O(nk) space, requiring O(mα(m,n)) time
per pass.

I Remark 7. Since, the algorithm adds an ancestor-descendant path for each component of
G′, it might seem that the analysis of the algorithm is not tight for computing DFS trees
with o(n) height. However, there exist a sequence of input edges where the algorithm indeed
takes Θ(n/k) passes for computing a DFS tree with height o(n). The details of the sequence
are described in the full version of the paper.

5 Final algorithm

We shall now further improve the algorithm so that the required number of passes reduces
to dh/ke while it continues to use O(nk) space, where h is the height of the computed DFS
tree and k is any positive integer. To understand the main intuition behind our approach,
let us recall the previously described algorithms. We first described a simple algorithm (in
Section 3) in which every pass over the input stream adds one new vertex as the child of some
leaf of T , which was improved (in Section 3.1) to simultaneously adding all vertices which
are children of the leaves of T in the final DFS tree. We then presented another algorithm
(in Section 4) in which every pass over the input stream adds one ancestor-descendant path
of length k or more, from each component of G′ to T . We shall now improve it by adding all
the subtrees constituting the next k levels of the final DFS tree starting from the leaves of
the current tree T (or fewer than k levels if the corresponding component of G′ is exhausted).
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Now, consider any component C of G′. Let rC ∈ C be a vertex having an edge e to a leaf
of the partially built DFS tree T . The computation of T can be completed by computing
a DFS tree of C from the root rC , which can be directly attached to T using e. However,
computing the entire DFS tree of C may not be possible in a single pass over the input
stream, due to the limited storage space available. Thus, using O(n · k) space we compute a
special spanning tree TC for each component C of G′ in parallel, such that the top k levels of
TC is same as the top k levels of some DFS tree of C. As a result, in the ith pass all vertices
on the levels (i − 1) · k + 1 to i · k of the final DFS tree are added to T . This essentially
adds a tree T ′

C representing the top k levels of TC for each component C of G′. This ensures
that our algorithm will terminate in dh/ke passes, where h is the height of the final DFS
tree. Further, this special tree TC also ensures an additional property, i.e., there is a one to
one correspondence between the set of trees of TC \ T ′

C and the components of C \ T ′
C . In

fact, each tree of TC \ T ′
C is a spanning tree of the corresponding component. This property

directly provides the spanning trees of the components of G′ in the next pass.

Special spanning tree TC

We shall now describe the properties of this special tree TC (and hence T ′
C) which is computed

in a single pass over the input stream. For T ′
C to be added to the DFS tree T of the graph,

a necessary and sufficient condition is that T ′
C satisfies the invariants I1 and I2 at the end

of the pass. To achieve this we maintain TC to be a spanning tree of C, such that these
invariants are maintained by the corresponding T ′

C throughout the pass as the edges are
processed. Let SC be the set of edges already visited during the current pass, which have
both endpoints in C. In order to satisfy I1, no edge in SC should be a cross edge in T ′

C , i.e.,
no edge having both endpoints in the top k levels of TC is a cross edge. In order to satisfy
I2, no edge in SC from any component C ′ ∈ C \ T ′

C to C \ C ′ should be a cross edge in TC .
Hence, using the additional property of TC , each edge from a tree τ in TC \ T ′

C to TC \ τ is
necessarily a back edge. This is captured by the two conditions of invariant IT given below.
Hence IT should hold after processing each edge in the pass. Observe that any spanning
tree, TC , trivially satisfies IT at the beginning of the pass as SC = ∅.

Invariant IT :
TC is a spanning tree of C with the top k levels being T ′

C such that:
IT1 : All non-tree edges of SC having both endpoints in T ′

C , are back edges.
IT2 : For each tree τ in TC \ T ′

C , all the edges of SC from τ to TC \ τ are back
edges.

Thus, IT is the local invariant maintained by TC during the pass, so that the global
invariants I1 and I2 are maintained throughout the algorithm. Now, in order to compute TC
(and hence T ′

C) satisfying the above invariant, we store a subset of SC along with TC . Let
HC denote the (spanning) subgraph of G formed by TC along with these additional edges.
Note that all the edges of SC cannot be stored in HC due to space limitation of O(nk). Since
each pass starts with the spanning tree TC of C and SC = ∅, initially HC = TC . As the
successive edges of the stream are processed, HC is updated if the input edge belongs to the
component C. We now formally describe HC and its properties.

Spanning subgraph HC

As described earlier, at the beginning of a pass for every component C of G′, HC = TC .
Now, the role of HC is to facilitate the maintenance of the invariant IT . In order to satisfy
IT1 and IT2 , we store in HC all the edges in SC that are incident on at least one vertex of
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T ′
C . Therefore, HC is the spanning tree TC along with every edge in SC which has at least

one endpoint in T ′
C . Thus, HC satisfies the following invariant throughout the algorithm.

Invariant IH :
HC comprises of TC and all edges from SC that are incident on at least one vertex of T ′

C .

We shall now describe a few properties of HC and then in the following section show
that maintaining IH for HC is indeed sufficient to maintain the invariant IT as the stream
is processed. The following properties of HC are crucial to establish the correctness of our
procedure to maintain TC and HC and establish a bound on total space required by HC .

I Lemma 8. TC is a valid DFS tree of HC .

Proof. In order to prove this claim it is sufficient to prove that all the non-tree edges stored in
HC are back edges in TC , i.e., the endpoints of every such edge share an ancestor-descendant
relationship. Now, invariant IT1 ensures that any edge in SC having both endpoints in T ′

C is
a back edge. And invariant IT2 ensures that any edge between a vertex in T ′

C and TC \ T ′
C is

a back edge. Hence, all the non-tree edges incident on T ′
C (and hence all non-tree edges in

HC) are back edges, proving our lemma. J

I Lemma 9. The total number of edges in HC , for all the components C of G′, is O(nk).

Proof. The size of HC can be analysed using invariant IH as follows. The number of tree
edges in TC (and hence in HC) is O(|VC |). The non-tree edges stored by HC have at least
one endpoint in T ′

C . Using Lemma 8 we know that all these edges are back edges. To bound
the number of such edges let us associate each non-tree edge to its lower endpoint. Hence
each vertex will be associated to at most k non-tree edges to its k ancestors in T ′

C (recall that
T ′
C is the top k levels of TC). Thus, HC stores O(|VC |) tree edges and O(|VC | · k) non-tree

edges, i.e., total O(|VC | · k) edges. Since
∑
C∈G′ |VC | ≤ n, the total number of edges in HC

is O(nk). J

5.1 Processing of Edges
We now describe how TC and HC are maintained while processing the edges of the input
stream such that IT and IH are satisfied. Since our algorithm maintains the invariants
I1 and I2 (because of IT ), we know that any edge whose both endpoints are not in some
component C of G′, is either a back edge or already a tree edge in T . Thus, we shall only
discuss the processing of an edge (x, y) having both endpoints in C (now added to SC),
where level(x) ≤ level(y).

1. If x ∈ T ′
C then the edge is added to HC to ensure IH . In addition, if (x, y) is a cross

edge in TC it violates either IT1 (if y ∈ T ′
C) or IT2 (if y /∈ T ′

C). Thus, TC is required to
be restructured to ensure that IT is satisfied.

2. If x /∈ T ′
C and if x and y belong to different trees in TC \ T ′

C , then it violates IT2 . Again
in such a case, TC is required to be restructured to ensure that IT is satisfied.

Note that after restructuring TC we need to update HC such that IH is satisfied. Con-
sequently any non-tree edge in HC that was incident on a vertex in original T ′

C , has to be
removed from HC if none of its endpoints are in T ′

C after restructuring TC , i.e., one or both
of its endpoints have moved out of T ′

C . But the problem arises if a vertex moves into T ′
C

during restructuring. There might have been edges incident on such a vertex in SC and
which were not stored in HC . In this case we need these edges in HC to satisfy IH , which is
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not possible without visiting SC again. This problem can be avoided if our restructuring
procedure ensures that no new vertex enters T ′

C . This can be ensured if the restructuring
procedure follows the property of monotonic fall, i.e., the level of a vertex is never decreased
by the procedure. Let e be the new edge of component C in the input stream. We shall
show that in order to preserve the invariants IT and IH it is sufficient that the restructuring
procedure maintains the property of monotonic fall and ensures that the restructured TC is
a DFS tree of HC + e.

I Lemma 10. On insertion of an edge e, any restructuring procedure which updates TC to
be a valid DFS tree of HC + e ensuring monotonic fall, satisfies the invariants IT and IH .

Proof. The property of monotonic fall ensures that the vertex set of new T ′
C is a subset

of the vertex set of the previous T ′
C . Using IH we know that any edge of SC which is not

present in HC must have both its endpoints outside T ′
C . Hence, monotonic fall guarantees

that IH continues to hold with respect to the new T ′
C for the edges in SC \ {e}. Additionally,

we save e in the new HC if at least one of its endpoints belong to the new T ′
C , ensuring that

IH holds for the entire SC .
Since the restructuring procedure ensures that the updated TC is a DFS tree of HC , the

invariant IT1 trivially holds as a result of IH . In order to prove the invariant IT2 , consider
any edge e′ ∈ SC from a tree τ ∈ TC \ T ′

C to TC \ τ . Clearly, it will satisfy IT2 if e′ ∈ HC ,
as TC is a DFS tree of HC + e. In case e′ /∈ HC , it must be internal to some tree τ ′ in
the original TC \ T ′

C (using IT2 in the original TC). We shall now show that such an edge
will remain internal to some tree in the updated TC \ T ′

C as well, thereby not violating IT2 .
Clearly the endpoints of e′ cannot be in the updated T ′

C due to the property of monotonic
fall.

Assume that the endpoints of e′ belong to different trees of updated TC \ T ′
C . Now,

consider the edges e1, ..., et on the tree path in τ ′ connecting the endpoints of e′. Since the
entire tree path is in τ ′, the endpoints of each ei are not in original T ′

C , ensuring that they
are also not in the updated T ′

C (by monotonic fall). Since the endpoints of e′ (and hence
the endpoints of the path e1, ..., et) are in different trees in updated TC \ T ′

C , there must
exist some ei which also has endpoints belonging to different trees of updated TC \ T ′

C . This
makes ei a cross edge of the updated TC . Since ei is a tree edge of original TC , it belongs
to HC and hence ei being a cross edge implies that the updated TC is not a DFS tree of
HC + e, which is a contradiction. Hence e′ has both its endpoints in the same tree of the
updated Tc \ T ′

C , ensuring that IT2 holds after the restructuring procedure. J

Hence, any procedure to restructure a DFS tree TC of the subgraph HC on insertion of a
cross edge e, that upholds the property of monotonic fall and returns a new TC which is a
DFS tree of HC + e, can be used as a black box in our algorithm. One such algorithm is the
incremental DFS algorithm by Baswana and Khan [8], which precisely fulfils our requirement.
They proved the total update time of the algorithm to be O(n2). They also showed that any
algorithm maintaining incremental DFS abiding monotonic fall would require Ω(n2) time
even for sparse graphs, if it explicitly maintains the DFS tree. If the height of the DFS tree
is known to be h, these bounds reduces to O(nh+ ne) and Ω(nh+ ne) respectively, where
ne is the number of edges processed by the algorithm. Refer to the full paper for a brief
description of the algorithm.
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5.2 Algorithm
We now describe the details of our final algorithm which uses an incremental DFS algorithm [8]
for restructuring the DFS tree when a cross edge is inserted. Similar to the algorithm in
Section 4, for each component C of G′, a rooted spanning tree TC of the component is
required as an input to the procedure having the root rC .

Initially T = ∅ and G′ = G has a single component C, as G is connected (recall the
assumption in Section 2). Hence for the first pass, we compute a spanning tree TC of G
using the Union-Find algorithm. Subsequently in each pass we directly get a spanning tree
TC′ for each component C ′ of the new G′, which is the corresponding tree in TC \ T ′

C , where
C is the component containing C ′ in the previous pass. Also, observe that the use of these
trees as the new TC ensures that the level of no vertex ever rises in the context of the entire
tree T . This implies that the level of any vertex starting with the initial spanning tree TG
never rises, i.e., the entire algorithm satisfies the property of monotonic fall. We will use this
fact crucially in the analysis of the time complexity.

As described earlier, we process the edges of the stream by updating the TC and HC

maintaining IT and IH respectively. In case the edge is internal to some tree in TC \ T ′
C

(i.e., have both endpoint in the same tree in TC \ T ′
C), we simply ignore the edge. Otherwise,

we add it to HC to satisfy IH . Further, the incremental DFS algorithm [8] maintains TC to
be a DFS tree of HC , which restructures TC if the processed edge is added to HC and is a
cross edge in TC . Now, in case TC is updated we also update the subgraph HC , by removing
the extra non-tree edges having both endpoints in TC \ T ′

C . After the pass is completed, we
attach T ′

C (the top k levels of TC) to T . Now, IT2 ensures that each tree of TC \ T ′
C forms

the (rooted) spanning tree of the components of the new G′, and hence can be used for the
next pass. Refer to the full paper for the pseudocode of the algorithm.

5.3 Correctness and Analysis
The correctness of our algorithm follows from Lemma 10, which ensures that invariants IH
and IT (and hence I1 and I2) are maintained as a result of using the incremental DFS
algorithm which ensures monotonic fall of vertices. The total space used by our algorithm
and the restructuring procedure is dominated by the cumulative size of HC for all components
C of G′, which is O(nk) using Lemma 9. Now, in every pass of the algorithm, a DFS tree for
each component C of height k is attached to T . These trees collectively constitute the next
k levels of the final DFS tree T . Therefore, the entire tree T is computed in dh/ke passes.

Let us now analyse the time complexity of our algorithm. In the first pass O(mα(m,n))
time is required to compute the spanning tree TC using the Union-Find algorithm. Also, in
each pass O(m) time is required to process the input stream. Further, in order to update HC

we are required to delete edges having both endpoints out of T ′
C . Hence, whenever a vertex

falls below the kth level, the edges incident on it are checked for deletion from HC (if the
other endpoint is also not in T ′

C). Total time required for this is O(
∑
v∈V deg(v)) = O(m)

per pass. In the full paper we describe the details of an incremental DFS algorithm which
maintains the DFS tree in total O(nh+ ne) time, where ne = O(mh/k), for processing the
entire input stream in each pass.

Finally, we need to efficiently answer the query whether an edge is internal to some tree
in TC \T ′

C . For this we maintain for each vertex x its ancestor at level k as rep[x], i.e., rep[x]
is the root of the tree in TC \ T ′

C that contains x. If level(x) < k, then rep[x] = x. For an
edge (x, y) comparing the rep[x] and rep[y] efficiently answers the required query in O(1)
time. However, whenever TC is updated we need to update rep[v] for each vertex v in the
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modified part of TC , requiring O(1) time per vertex in the modified part of TC . We shall
bound the total work done to update rep[x] of such a vertex x throughout the algorithm to
O(nh) as follows.

Consider the potential function Φ =
∑
v∈V level(v). Whenever some part of TC is

updated, each vertex x in the modified TC necessarily incurs a fall in its level (due to
monotonic fall). Thus, the cost of updating rep[x] throughout the algorithm is proportional
to the number of times x descends in the tree, hence increases the value of Φ by at least one
unit. Hence, updating rep[x] for all x in the modified part of TC can be accounted by the
corresponding increase in the value of Φ. Clearly, the maximum value of Φ is O(nh), since
the level of each vertex is always less than h, where h is the height of the computed DFS
tree. Thus, the total work done to update rep[x] for all x ∈ V is O(nh). This proves our
main theorem described in Section 1.1 which is stated as follows.

I Theorem 2. Given an undirected graph G, a DFS tree of G can be computed by a semi-
streaming algorithm using dh/ke passes using O(nk) space requiring amortized O(m+ nk)
time per pass for any integer k ≤ h, where h is the height of the computed DFS tree.

I Remark 11. Note that the time complexity of our algorithm is indeed tight for our
framework. Since our algorithm requires dh/ke passes and any restructuring procedure
following monotonic fall requires Ω(nh+ ne) time, each pass would require Ω(m+ nk) time.

6 Experimental Evaluation

Most streaming algorithms deal with only O(n) space, for which our advanced algorithms
improve over the simple algorithms theoretically by just constant factors. However, their
empirical performance demonstrates their significance in the real world applications. The
evaluation of our algorithms on random and real graphs shows that in practice these algorithms
require merely a few passes even when allowed to store just 5n edges. The results of our
analysis can be summarized as follows (for details refer to the full paper).

The two advanced algorithms kPath (algorithmin Section 4) and kLev (algorithm in
Section 5 with an additional heuristic) perform much better than the rest even when O(n)
space is allowed. For both random and real graphs, kPath performs slightly worse as the
density of the graph increases. On the other hand kLev performs slightly better only in
random graphs with the increasing density. The effect of the space parameter is very large
on kPath from k = 1 to small constants, requiring very few passes even for k = 5 and k = 10.
However, kLev seems to work very well even for k = 1 and has a negligible effect of increasing
the value of k. Overall, the results suggest using kPath if nk space is allowed for k being a
small constant such as 5 or 10. However, if the space restrictions are extremely tight it is
better to use kLev.

7 Conclusion

We presented the first o(n) pass semi-streaming algorithm for computing a DFS tree for an
undirected graph, breaking the long standing presumed barrier of n passes. In our streaming
model we assume that O(nk) local space is available for computation, where k is any natural
number. Our algorithm computes a DFS tree in dn/ke passes. We improve our algorithm to
require only dh/ke passes without any additional space requirement, where h is the height of
the final tree. This improvement becomes significant for graphs having shallow DFS trees.
Moreover, our algorithm is described as a framework using a restructuring algorithm as a
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black box. This allows more flexibility to extend our algorithm for solving other problems
requiring a computation of DFS tree in the streaming environment.

Recently, in a major breakthrough Elkin [12] presented the first o(n) pass algorithm for
computing Shortest Paths Tree from a single source. Using O(nk) local space, it computes
the shortest path tree from a given source in O(n/k) passes for unweighted graphs and in
O(n logn/k) passes for weighted graphs.

Despite the fact that these breakthroughs provide only minor improvements (typically
poly logn factors), they are significant steps to pave a path in better understanding of such
fundamental problems in the streaming environment. These simple improvements come after
decades of the emergence of streaming algorithms for graph problems, where such problems
were considered implicitly hard in the semi-streaming environment. We thus believe that
our result is a significant improvement over the known algorithm for computing a DFS tree
in the streaming environment, and it can be a useful step in more involved algorithms that
require the computation of a DFS tree.

Moreover, the experimental evaluation of our algorithms revealed exceptional performance
of the advanced algorithms kPath and kLev (greatly affected by the additional heuristic).
Thus, it would be interesting to further study these algorithms theoretically which seem to
work extremely well in practice.
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