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Abstract
In discrepancy minimization problems, we are given a family of sets S = {S1, . . . , Sm}, with each
Si ∈ S a subset of some universe U = {u1, . . . , un} of n elements. The goal is to find a coloring
χ : U → {−1,+1} of the elements of U such that each set S ∈ S is colored as evenly as possible. Two
classic measures of discrepancy are `∞-discrepancy defined as disc∞(S, χ) := maxS∈S |

∑
ui∈S

χ(ui)|

and `2-discrepancy defined as disc2(S, χ) :=
√

(1/|S|)
∑

S∈S

(∑
ui∈S

χ(ui)
)2

. Breakthrough work

by Bansal [FOCS’10] gave a polynomial time algorithm, based on rounding an SDP, for finding
a coloring χ such that disc∞(S, χ) = O(lgn · herdisc∞(S)) where herdisc∞(S) is the hereditary
`∞-discrepancy of S. We complement his work by giving a clean and simple O((m + n)n2) time
algorithm for finding a coloring χ such disc2(S, χ) = O(

√
lgn · herdisc2(S)) where herdisc2(S) is the

hereditary `2-discrepancy of S. Interestingly, our algorithm avoids solving an SDP and instead relies
simply on computing eigendecompositions of matrices. To prove that our algorithm has the claimed
guarantees, we also prove new inequalities relating both herdisc∞ and herdisc2 to the eigenvalues of
the incidence matrix corresponding to S. Our inequalities improve over previous work by Chazelle
and Lvov [SCG’00] and by Matousek, Nikolov and Talwar [SODA’15+SCG’15]. We believe these
inequalities are of independent interest as powerful tools for proving hereditary discrepancy lower
bounds. Finally, we also implement our algorithm and show that it far outperforms random sampling
of colorings in practice. Moreover, the algorithm finishes in a reasonable amount of time on matrices
of sizes up to 10000× 10000.
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1 Introduction

Combinatorial discrepancy minimization is an important field with numerous applications in
theoretical computer science, see e.g. the excellent books by Chazelle [9] and Matousek [16]. In
discrepancy minimization problems, we are typically given a family of sets S = {S1, . . . , Sm},
with each Si ∈ S a subset of some universe U = {u1, . . . , un} of n elements. The goal is
to find a red-blue coloring of the elements of U such that each set S ∈ S is colored as
evenly as possible. More formally, if we define the m× n incidence matrix A with ai,j = 1 if
uj ∈ Si and ai,j = 0 otherwise, then we seek a coloring x ∈ {−1,+1}n minimizing either the
`∞-discrepancy disc∞(A, x) := ‖Ax‖∞ or the `2-discrepancy disc2(A, x) = (1/

√
m)‖Ax‖2.

We say that the `∞-discrepancy of A is disc∞(A) := minx∈{−1,+1}n disc∞(A, x) and the
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48:2 Constructive Discrepancy Minimization with Hereditary L2 Guarantees

`2-discrepancy of A is disc2(A) := minx∈{−1,+1}n disc2(A, x). With this matrix view, it is
clear that discrepancy minimization makes sense also for general matrices and not just ones
arising from set systems.

Much research has been devoted to understanding both the `∞- and `2-discrepancy of
various families of set systems and matrices. In particular set systems corresponding to
incidences between geometric objects such as axis-aligned rectangles and points have been
studied extensively, see e.g. [17, 15, 1, 11]. Another fruitful line of research has focused
on general matrices, including the celebrated “Six Standard Devitations Suffice” result by
Spencer [21], showing that any n× n matrix with |ai,j | ≤ 1 admits a coloring x ∈ {−1,+1}n

such that disc∞(A, x) = O(
√
n). Finding low discrepancy colorings for set systems where

each element appears in at most t sets (the matrix A has at most t non-zeroes per column,
all bounded by 1 in absolute value) has also received much attention. Beck and Fiala [7] gave
a deterministic algorithm that finds a coloring x with disc∞(A, x) = O(t). Banaszczyk [2]
improved this to O(

√
t lgn) when t ≥ lgn. Determining whether a discrepancy of O(

√
t) can

be achieved remains one of the biggest open problems in discrepancy minimization.

Constructive Discrepancy Minimization. Many of the original results, like Spencer’s [21]
and Banaszczyk’s [2] were purely existential and it was not clear whether polynomial time
algorithms finding such colorings were possible. In fact, Charikar et al. [8] presented very
strong negative results in this direction. More concretely, they proved that it is NP-hard to
even distinguish whether the `∞- or `2-discrepancy of an n×n set system is 0 or Ω(

√
n). The

first major breakthrough on the upper bound side was due to Bansal [3], who amongst others
gave a polynomial time algorithm for finding a coloring matching the bounds by Spencer.
Brilliant follow-up work by Lovett and Meka [14] gave simpler randomized algorithms
achieving the same. A deterministic algorithm for Spencer’s result was later given by Levy
et al. [12]. A number of constructive algorithms were also given for the “sparse” set system
case, finally resulting in polynomial time algorithms [4, 6, 5] matching the existential results
by Banaszczyk.

Another very surprising result in Bansal’s seminal paper [3] shows that, given a matrix A,
one can find in polynomial time a coloring x achieving an `∞-discrepancy roughly bounded
by the hereditary discrepancy of A. Hereditary discrepancy is a notion introduced by Lovász
et al. [13] in order to prove discrepancy lower bounds. The hereditary `∞-discrepancy of
a matrix A is defined herdisc∞(A) := maxB disc∞(B), where B ranges over all matrices
obtained by removing a subset of the columns in A. In the terminology of set systems,
the hereditary discrepancy is the maximum discrepancy over all set systems obtained by
removing a subset of the elements in the universe. We also have an analogous definition
for hereditary `2-discrepancy: herdisc2(A) := maxB disc2(B). Based on rounding an SDP,
Bansal gave a polynomial time algorithm for finding a coloring x achieving disc∞(A, x) =
O(lgnherdisc∞(A)). This is quite surprising in light of the strong negative results by
Charikar et al. [8], since it shows that is is in fact possible to find a low discrepancy coloring
of an arbitrary matrix as long as all its submatrices have low discrepancy.

Our Results Overview. Our main algorithmic result is an `2 equivalent of Bansal’s algorithm
with hereditary guarantees. More concretely, we give a polynomial time algorithm for finding
a coloring x such that disc2(A, x) = O(

√
lgn · herdisc2(A)). We note that neither our result

nor Bansal’s approximately imply the other: In one direction, the coloring x we find might
have very low `2 discrepancy, but a very large value of ‖Ax‖∞. In the other direction,
herdisc∞(A) may be much larger than herdisc2(A), thus Bansal’s algorithm does not give
any guarantees wrt. herdisc2(A).
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Our algorithm takes a very different approach than Bansal’s in the sense that we com-
pletely avoid solving an SDP. Instead, we first prove a number of new inequalities relating
herdisc2(A) and herdisc∞(A) to the eigenvalues of ATA. Relating hereditary discrepancy to
the eigenvalues of ATA was also done by Chazelle and Lvov [10] and by Matoušek et al. [18].
However the result by Chazelle and Lvov is too weak for our applications as it degenerates
exponentially fast in the ratio between m and n. The result of Matoušek et al. could be used,
but can only show that we find a coloring such that disc2(A, x) = O(lg3/2 n ·herdisc2(A)). We
believe our new inequalities are of independent interest as strong tools for proving discrepancy
lower bounds.

With these inequalities established, we design a simple and efficient deterministic al-
gorithm, inspired by Beck and Fiala’s [7] algorithm for sparse set systems. Our key idea is
to find a coloring x that is almost orthogonal to all the eigenvectors of ATA corresponding
to large eigenvalues. This in turn means that ‖Ax‖2 becomes bounded by herdisc2(A).

We now proceed to present the previous results for proving lower bounds on the hereditary
discrepancy of matrices in order to set the stage for presenting our new results.

Previous Hereditary Discrepancy Bounds. One of the most useful tools in proving lower
bounds for hereditary discrepancy is the determinant lower bound proved in the original
paper introducing hereditary discrepancy:

I Theorem 1 (Determinant Lower Bound (Lovász et al. [13])). For an m× n real matrix A it
holds that

herdisc∞(A) ≥ max
k

max
B

1
2 |det(B)|1/k,

where k ranges over all positive integers up to min{n,m} and B ranges over all k × k

submatrices of A.

While it is easier to bound the max determinant of a submatrix B than it is to bound the
discrepancy of a matrix directly, it still requires one to argue that we can find some B where
all eigenvalues are non-zero. Chazelle and Lvov demonstrated how it suffices to bound the
k’th largest eigenvalue of a matrix in order to derive hereditary discrepancy lower bounds:

I Theorem 2 (Chazelle and Lvov [10]). For an m × n real matrix A with m ≤ n, let
λ1 ≥ · · · ≥ λn ≥ 0 denote the eigenvalues of ATA. For any integer k ≤ m, it holds that

herdisc∞(A) ≥ 1
218−n/k

√
λk.

The result of Chazelle and Lvov has two substantial caveats. First, it requires m ≤ n. Since
we will be using the partial coloring framework, we will end up with matrices having very
few columns but many rows. This completely rules out using the above result for analysing
our new algorithm. Since k ≤ m, the lower bound also goes down exponentially fast in the
gap between m and n (we note that Chazelle and Lvov didn’t explicitly state that one needs
k ≤ m, but since rank(A) ≤ m, we have λk = 0 whenever k > m).

Chazelle and Lvov used their eigenvalue bound to prove the following trace bound which
has been very useful in the study of set systems corresponding to incidences between geometric
objects:

I Theorem 3 (Trace Bound (Chazelle and Lvov [10])). For an m × n real matrix A with
m ≤ n, let M = ATA. Then:

herdisc∞(A) ≥ 1
4324−n tr M2/ tr2 M

√
trM/n.

STACS 2019
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Matoušek et al. [18] presented an alternative to the result of Chazelle and Lvov, relating
herdisc∞(A) and herdisc2(A) to the sum of singular values of A, i.e. they proved:

I Theorem 4 (Matoušek et al. [18]). For an m × n real matrix A, let λ1 ≥ · · · ≥ λn ≥ 0
denote the eigenvalues of ATA. Then

herdisc∞(A) ≥ herdisc2(A) = Ω
(

1
lgn

n∑
k=1

√
λk

mn

)
.

which for all positive integers k ≤ min{m,n} implies:

herdisc∞(A) ≥ herdisc2(A) = Ω
(

k

lgn

√
λk

mn

)
.

Comparing the bound to the result of Chazelle and Lvov, we see that the loss in terms of the
ratio between k and n is much better. However for k,m and n all within a constant factor of
each other, Chazelle and Lvov’s bound implies herdisc∞(A) = Ω(

√
λk) whereas the bound

of Matoušek et al. loses a lgn factor and gives herdisc∞(A) ≥ herdisc2(A) = Ω(
√
λk/ lgn)

(strictly speaking, the bound in terms of the sum of
√
λk’s is incomparable, but the bound

only in terms of the k’th largest eigenvalue does lose this factor).

Our Results. We first give a new inequality relating herdisc∞(A) to the eigenvalues of ATA,
simultaneously improving over the previous bounds by Chazelle and Lvov, and by Matoušek
et al.:

I Theorem 5. For an m×n real matrix A, let λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 denote the eigenvalues
of ATA. For all positive integers k ≤ min{n,m}, we have

herdisc∞(A) ≥ k

2e

√
λk

mn
.

Notice that our lower bound goes down as k/
√
mn whereas Chazelle and Lvov’s goes down

as 18−n/k and requires m ≤ n. Thus our loss is exponentially better than theirs. Compared
to the bound by Matoušek et al., we avoid the lgn loss (at least compared to the bound
of Matoušek et al. that is only in terms of the k’th largest eigenvalue and not the sum of
eigenvalues).

Re-executing Chazelle and Lvov’s proof of the trace bound with the above lemma in
place of theirs immediately gives a stronger version of the trace bound as well:

I Corollary 6. For an m× n real matrix A, let M = ATA. Then:

herdisc∞(A) ≥ tr2 M

8emin{n,m} trM2

√
trM

max{m,n} .

In establishing lower bounds on herdisc2(A) in terms of eigenvalues, we need to first prove
an equivalent of the determinant lower bound for non-square matrices (and for `2-discrepancy
rather than `∞):

I Theorem 7. For an m× n real matrix A, we have

herdisc∞(A) ≥ herdisc2(A) ≥
√

n

8πem det(ATA)1/2n.
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We remark that proving Theorem 7 for the `∞-case appears as an exercise in [16] and we
make no claim that the proof of Theorem 7 requires any new or deep insights (we suspect
that it is folklore, but have not been able to find a mentioning of the above theorem in the
literature). We finally arrive at our main result for lower bounding hereditary `2-discrepancy:

I Corollary 8. For an m×n real matrix A, let λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 denote the eigenvalues
of ATA. For all positive integers k ≤ min{n,m}, we have

herdisc2(A) ≥ k

e

√
λk

8πmn.

We note that Theorem 5 actually follows (up to constant factors) from Corollary 8 using
the fact that herdisc∞(A) ≥ herdisc2(A), but we will present separate proofs of the two
theorems since the direct proof of Theorem 5 is very short and crisp.

The exciting part in having established Corollary 8, is that it hints the direction for giving
an efficient algorithm for obtaining colorings x with disc2(A, x) being bounded by some
function of herdisc2(A). More concretely, we give an algorithm that is based on computing
an eigendecomposition of ATA and using this to perform partial coloring that is orthogonal
to the eigenvectors corresponding to the largest eigenvalues. Via Corollary 8, this gives a
coloring with hereditary `2 guarantees. The precise guarantees of our algorithm are given in
the following:

I Theorem 9. There is an O((m + n)n2) time algorithm that given an m × n matrix A,
computes a coloring x ∈ {−1,+1}n satisfying disc2(A, x) = O(

√
lgn · herdisc2(A)).

We implemented our algorithm and performed various experiments to examine its practical
performance. Section 4 shows that the algorithm far outperforms random sampling a coloring
x ∈ {−1,+1}n. In fact, it far outperforms random sampling, even if we repeatedly sample
vectors for as long time as our algorithm runs and use the best one sampled. Moreover,
the algorithm is efficient enough that it can be run on 1000 × 1000 matrices in less than
10 seconds and on matrices of sizes up to 10000 × 10000 in about 4 hours on a standard
laptop. While it is conceivable that Bansal’s SDP based approach can be modified to give `2
guarantees with a polynomial running time, it seems highly unlikely that it can process such
large matrices in a reasonable amount of time. Moreover, our algorithm is much simpler to
analyse and implement.

2 Eigenvalue Bounds for Hereditary Discrepancy

In this section, we prove new results relating the hereditary discrepancy of a matrix A to the
eigenvalues of ATA. The section is split in two parts, one studying hereditary `∞-discrepancy
and one studying hereditary `2-discrepancy.

2.1 Hereditary `∞-discrepancy
Our first result concerns hereditary `∞-discrepancy and is a strengthening of the previous
bound due to Chazelle and Lvov [10] (see Section 1). The simplest formulation is the
following:

I Restatement of Theorem 5. For an m × n real matrix A, let λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0
denote the eigenvalues of ATA. For all positive integers k ≤ min{n,m}, we have

herdisc∞(A) ≥ k

2e

√
λk

mn
.

STACS 2019
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Theorem 5 is an immediate corollary of the following slightly more general result:

I Theorem 10. For an m × n real matrix A, let λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 denote the
eigenvalues of ATA. For all positive integers k ≤ min{n,m}, we have

herdisc∞(A) ≥ 1
2

(∏k
i=1 λi(

n
k

)(
m
k

) )1/2k

Theorem 5 follows from Theorem 10 by using that
(

n
k

)
≤ (en/k)k and that

∏k
i=1 λi ≥ λk

k.
Thus our goal is to prove Theorem 10. The first step of our proof uses the following linear
algebraic fact:

I Lemma 11. For an m×n real matrix A, let λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 denote the eigenvalues
of ATA. For all positive integers k ≤ n, there exists an m× k submatrix C of A such that
det(CTC) ≥ (

∏k
i=1 λi)/

(
n
k

)
.

Proof. The k’th symmetric function of λ1, . . . , λn is defined as (see e.g. the textbook [19] p.
494): sk =

∑
1≤i1<···<ik≤n λi1 · · ·λik

. Since all λi are non-negative, we have sk ≥
∏k

i=1 λi. If
we let Sk(ATA) denote the set of all k × k principal submatrices of ATA, then it also holds
that (see e.g. the textbook [19] p. 494): sk =

∑
B∈Sk(AT A) det(B). Since |Sk(ATA)| =

(
n
k

)
there must be a B ∈ Sk(ATA) for which det(B) ≥

(∏k
i=1 λi

)
/
(

n
k

)
. Since B is a k × k

principal submatrix of ATA, it follows that there exists an m × k submatrix C of A such
that B = CTC and thus det(CTC) ≥

(∏k
i=1 λi

)
/
(

n
k

)
. J

With Lemma 11 established, we are ready to present the proof of Theorem 10:

Proof of Theorem 10. Let A be a real m× n matrix and let λ1 ≥ · · · ≥ λn ≥ 0 denote the
eigenvalues of ATA. From Lemma 11, it follows that for every k ≤ n, there is an m × k
submatrix C of A such that det(CTC) ≥ (

∏k
i=1 λi)/

(
n
k

)
. If we also have k ≤ m, we can

let Sk(C) denote the set of all k × k principal submatrices of C and use the Cauchy-Binet
formula to conclude that: det(CTC) =

∑
D∈Sk(C) det(D)2. But Sk(C) ⊆ Sk(A) hence there

must exist a k × k matrix D ∈ Sk(A) such that

det(D)2 ≥ det(CTC)
|Sk(C)| ≥

∏k
i=1 λi(

n
k

)(
m
k

) ⇒ |det(D)| ≥

√∏k
i=1 λi(

n
k

)(
m
k

) .
It follows from the determinant lower bound for hereditary discrepancy (Theorem 1) that

herdisc∞(A) ≥ 1
2 |det(D)|1/k ≥ 1

2

(∏k
i=1 λi(

n
k

)(
m
k

) )1/2k

. J

Having established a stronger connection between eigenvalues and hereditary discrepancy
than the one given by Chazelle and Lvov [10], we can also re-execute their proof of the trace
bound and obtain the following strengthening:

I Restatement of Corollary 6. For an m× n real matrix A, let M = ATA. Then:

herdisc∞(A) ≥ tr2 M

8emin{n,m} trM2

√
trM

max{m,n} .
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Proof. Let λ1 ≥ · · · ≥ λn ≥ 0 denote the eigenvalues of M . Chazelle and Lvov [10] proved
that if we choose k = tr2 M/(2 trM2) then λk ≥ trM/(4n). Examining their proof, one can
in fact strengthen it slightly to λk ≥ trM/(4 min{m,n}) (their proof of ([10] Lemma 2.4)
considers a uniform random eigenvalue λ amongst λ1, . . . , λn and uses that trM = nE[λ].
However, one needs only λ to be uniform random amongst the non-zero eigenvalues and
there are at most min{m,n} such eigenvalues yielding trM = min{n,m}E[λ]). Inserting
these bounds in Theorem 5 gives us

herdisc∞(A) ≥ tr2 M

8e trM2

√
trM

mnmin{m,n} = tr2 M

8emin{n,m} trM2

√
trM

max{m,n} . J

2.2 Hereditary `2-discrepancy
This section proves the following determinant result for hereditary `2-discrepancy of m× n
matrices:

I Restatement of Theorem 7. For an m× n real matrix A with det(ATA) 6= 0, we have

herdisc∞(A) ≥ herdisc2(A) ≥
√
nm

8πe det(ATA)1/2n.

The fact herdisc∞(A) ≥ herdisc2(A) is true for all A, thus the difficulty in proving
Theorem 7 lies in establishing that herdisc2(A) ≥

√
nm/(8πe) det(ATA)1/2n. Our proof uses

many of the ideas from the proof of the determinant lower bound (Theorem 1) in [13]. We
start by introducing the linear discrepancy in the `2 setting and summarize known relations
between linear discrepancy and hereditary discrepancy.

I Definition 12. Let A be an m×n real matrix. Then its linear `2-discrepancy is defined as:

lindisc2(A) := max
c∈[−1,+1]

min
x∈{−1,+1}n

1√
m
‖A(x− c)‖2.

The linear `2-discrepancy has a clean geometric interpretation (this is a direct translation
of the similar interpretation of linear `∞-discrepancy given e.g. in [13, 16]). For an m×n real
matrix A, let: UA := {x : ‖Ax‖2 ≤

√
m}. For t > 0, place 2n translated copies U1, . . . , U2n

of tUA such that there is one copy centered at each point in {−1,+1}n. Then lindisc2(A) is
the least number t for which the sets Uj cover all of [−1,+1]n.

We will need the following relationship between the hereditary and linear discrepancy:

I Lemma 13 (Lovász et al. [13]). For all m× n real matrices A, it holds that lindisc2(A) ≤
2 herdisc2(A).

We remark that [13] proved Lemma 13 only for the `∞-discrepancy, but their proof only
uses the fact that {x : ‖Ax‖∞ ≤ 1} is centrally symmetric and convex (see [13] Lemma 1).
The same is true for the UA defined above.

In light of Lemma 13, we set out to lower bound the linear discrepancy of an m × n
matrix A in terms of det(ATA). We will prove the following lemma using an adaptation of
the ideas in [13] (we have not been able to find a proof of this result elsewhere, but remark
that the case of m = n should follow by adapting the proof in [13]):

I Lemma 14. Let A be an m × n real matrix with det(ATA) 6= 0. Then lindisc2(A) ≥√
n/(2πem) det(ATA)1/2n.

STACS 2019
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Proof. From the geometric interpretation given earlier, we know that if we place a copy of
lindisc2(A)UA on each point in {−1,+1}n, then they cover all of [−1, 1]n hence
vol(lindisc2(A)UA) ≥ vol([−1, 1]n)/2n = 1. But

vol(lindisc2(A)UA) = (lindisc2(A))n vol(UA)
= (lindisc2(A))n vol({x : ‖Ax‖2 ≤

√
m})

= (lindisc2(A))n vol({x : xTATAx ≤ m}).

Observe now that {x : xTATAx ≤ m} = {x : xT (m−1ATA)x ≤ 1} is an ellipsoid. It is well-
known that the volume of such an ellipsoid equals vn/

√
det(m−1ATA)=vn/

√
m−n det(ATA)

where vn is the volume of the n-dimensional `2 unit ball. Since vn = πn/2/Γ(n/2 + 1) ≤
(2πe/n)n/2, we conclude:

1 ≤ (lindisc2(A))nvn√
m−n det(ATA)

⇒

1 ≤ (lindisc2(A))n

(
2πem
n

)n/2 1√
det(ATA)

⇒

lindisc2(A) ≥
√

n

2πem det(ATA)1/2n. J

Combining Lemma 13 and Lemma 14 proves Theorem 7.
Having establishes Theorem 7, we are ready to prove our last result on hereditary

`2-discrepancy:

I Restatement of Corollary 8. For an m× n real matrix A, let λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 de-
note the eigenvalues of ATA. For all positive integers k ≤ min{n,m}, we have herdisc2(A) ≥
(k/e)

√
λk/(8πmn).

Proof. Let A be an m × n real matrix and let λ1 ≥ · · · ≥ λn ≥ 0 be the eigenvalues of
ATA. From Lemma 11, we know that for all k ≤ n, there is an m × k submatrix C of
A such that det(CTC) ≥ (

∏k
i=1 λi)/

(
n
k

)
≥ (kλk/(en))k. From Theorem 7, we get that

herdisc2(C) ≥
√
k/(8πem) det(CTC)1/2k ≥ (k/e)

√
λk/(8πmn). Since C is obtained from A

by deleting a subset of the columns, it follows that herdisc2(A) ≥ herdisc2(C), completing
the proof. J

3 Discrepancy Minimization with Hereditary `2 Guarantees

This section gives our new algorithm for discrepancy minimization. The goal is to prove the
following:

I Restatement of Theorem 9. There is an O((m+n)n2) time algorithm that given an m×n
matrix A, computes a coloring x ∈ {−1,+1}n satisfying disc2(A, x) = O(

√
lgn ·herdisc2(A)).

Our algorithm follows the same overall approach as several previous algorithms. The
general setup is that we first give a procedure for partial coloring. This procedure takes a
matrix A and a partial coloring x ∈ [−1,+1]n. We say that coordinates i of x such that
|xi| < 1 are live. If there are k live coordinates prior to calling the partial coloring method,
then upon termination we get a new vector γ such that the number of live coordinates in
x̂ = x+ γ is no more than k/2. At the same time, all coordinates of x̂ are bounded by 1 in
absolute value and ‖Ax̂‖2 is not much larger than ‖Ax‖2.

We start by presenting the partial coloring algorithm and then show how to use it to get
the final coloring.
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3.1 Partial Coloring
In this section, we present our partial coloring algorithm. The algorithm takes as input an
m× n matrix A and a vector x ∈ [−1,+1]n. We think of the vector x as a partial coloring.
We call a coordinate xi of x live if |xi| < 1 and we let k denote the number of live coordinates
in x. For ease of notation, we let livex(i) denote the index of the i’th live coordinate in x
and we define ⊕x : Rn × Rk → Rn as the function such that a⊕x b for a ∈ Rn and b ∈ Rk,
is the vector obtained from a by adding the i’th coordinate of b to the coordinate of index
livex(i) in a (where livex(i) refers to the i’th live coordinate in x).

Upon termination, the algorithm returns another vector γ ∈ Rk. If we let x̂ = x⊕x γ be
the vector in Rn obtained from x by adding γi to xlivex(i), then the partial coloring algorithm
guarantees the following:
1. There are at most k/2 live coordinates in x̂.
2. For all i, we have |x̂i| ≤ 1.
3. ‖Ax̂‖2

2 − ‖Ax‖2
2 = O(m(herdisc2(A))2).

Thus upon termination, the new vector x̂ has half as many live coordinates, and the
discrepancy did not increase by much. In particular the change is related to the hereditary
`2-discrepancy of A.

The main idea in our algorithm is to use the connection between eigenvalues and hereditary
`2-discrepancy that we proved in Corollary 8. Our algorithm proceeds in iterations, where in
each step it finds a vector v and adds it to γ. The way we choose v is roughly to find the
eigenvectors of ATA and then pick v orthogonal to the eigenvectors corresponding to the
largest eigenvalues. This bounds the difference ‖A(x⊕x (γ + v))‖2 − ‖A(x⊕x γ)‖2 in terms
of the eigenvalues and thus hereditary `2-discrepancy. At the same time, we use the ideas by
Beck and Fiala (and many later papers) where we include constraints forcing v orthogonal
to ei for every coordinate i that is not live. The algorithm is as follows:

PartialColor(A, x):
1. Let k denote the number of live coordinates in x and let C denote the m × k matrix

obtained from A by deleting all columns corresponding to coordinates that are not live.
2. Initialize γ = 0 ∈ Rk.
3. Compute an eigendecomposition of CTC to obtain the eigenvalues λ1 ≥ · · · ≥ λk ≥ 0

and corresponding eigenvectors µ1, . . . , µk.
4. While True:

a. Compute the set S of coordinates i such that |γi + xlivex(i)| = 1. If |S| ≥ k/2, return
γ.

b. Find a unit vector v orthogonal to all ej with j ∈ S and to all µi with i ≤ k/4.
c. Let σ = − sign(〈Ax,A(0⊕x v)〉). Compute the largest β > 0 such that all coordinates

of x⊕x (γ + σβv) are less than or equal to 1 in absolute value. Update γ ← γ + σβv.

Correctness. We prove that the vector γ returned by the above PartialColor algorithm
satisfies the three claimed properties. First observe that in every iteration of the while loop,
we find a vector v that is orthogonal to ei whenever |γi +xlivex(i)| = 1. Hence if |γi +xlivex(i)|
becomes 1, it never changes again. Moreover, by maximizing β in each iteration, we guarantee
that at least one more coordinate satisfies |γi + xlivex(i)| = 1 after every iteration. Thus the
algorithm terminates after at most k/2 iterations of the while loop and no coordinate of
x⊕x γ is larger than 1 in absolute value. What remains is to bound ‖A(x⊕x γ)‖2

2 − ‖Ax‖2
2.
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Let v(i) denote the vector v found during the i’th iteration of the while loop. Upon
termination, we have that γ = σ1β1v

(1) + · · ·+ σrβrv
(r) where σi = − sign(〈Ax, v(i)〉) and

each v(i) is orthogonal to µ1, . . . , µk/4. Thus γ is also orthogonal to µ1, . . . , µk/4. We therefore
have:
‖A(x⊕x γ)‖2

2 = ‖A(x+ (0⊕x γ))‖2
2

≤ ‖Ax‖2
2 + ‖A(0⊕x γ)‖2

2 + 2〈Ax,A(0⊕x γ)〉

= ‖Ax‖2
2 + ‖Cγ‖2

2 + 2
r∑

i=1

〈Ax,A(0⊕x σiβiv
(i))〉

≤ ‖Ax‖2
2 + λk/4‖γ‖2

2 − 2
r∑

i=1

sign(〈Ax,A(0⊕x v
(i))〉)〈Ax,A(0⊕x βiv

(i))〉

= ‖Ax‖2
2 + λk/4‖γ‖2

2 − 2
r∑

i=1

sign(〈Ax,A(0⊕x v
(i))〉)2|〈Ax,A(0⊕x βiv

(i))〉|

≤ ‖Ax‖2
2 + ‖γ‖2

∞kλk/4 − 0

≤ ‖Ax‖2
2 + 4kλk/4.

We would like to use Corollary 8 to relate kλk/4 to the hereditary discrepancy of A. Since
C is an m × k submatrix of A, we have herdisc2(A) ≥ herdisc2(C). Using Corollary 8 we
have herdisc2(C) ≥ (k/4e)

√
λk/4/mk = (1/4e)

√
kλk/4/(8π)m. Hence we conclude that

‖Ax̂‖2
2 − ‖Ax‖2

2 ≤ 128e2πm(herdisc2(A))2 = O(m(herdisc2(A))2).

Running Time. Step 1. of PartialColor takes O(mk) time and step 2. takes O(k). Step 3.
takes O(mk2) time to compute CTC (can be improved via fast matrix multiplication) and
O(k3) time to compute the eigendecomposition. As argued above, each iteration of the while
loop increases the size of S by at least one. Hence there are no more than k/2 iterations of
the loop. Computing S in step (a) takes O(k) time. Finding the unit vector v in step (b) can
be done in O(k2) time as follows: Whenever adding a coordinate i to S, use Gram-Schmidt
to compute the normalized (unit-norm) projection êi of ei onto the orthogonal complement
of µ1, . . . , µk/4 and all previous vectors êj . This takes O(k2) time per i. To find v, sample a
uniform random unit vector in Rk and run Gram-Schmidt to compute its projection onto
the orthogonal complement of êj for j ∈ S and µ1, . . . , µk/4. The expected length of the
projection is Ω(1) and we can scale it to unit length afterwards. This gives the desired
vector. The Gram-Schmidt step takes O(k2) time. Computing A(0⊕x v) in step (c) takes
O(mk) time and computing Ax can be done outside the while loop in O(mn) time. The
inner product takes O(m) time to compute. Computing β and adding σβv to γ takes O(k)
time. Overall, the PartialColor algorithm takes O(mn+mk2 + k3) time. If Ax is given as
argument to the algorithm, the time is further reduced to O((m+ k)k2).

3.2 The Final Algorithm
Now that we have the PartialColor algorithm, getting to a low discrepancy coloring is
straight forward. Given an m× n matrix A, we initialize x← 0. We then repeatedly invoke
PartialColor(A, x). Each call returns a vector γ. We update x← x+ γ and continue. We
stop once there are no live coordinates in x, i.e. all coordinates satisfy |xi| = 1.

In each iteration, the number of live coordinates of i decreases by at least a factor two,
and thus we are done after at most lgn iterations. This means that the final vector x satisfies

‖Ax‖2
2 ≤ lgn ·O(m(herdisc2(A))2)⇒

‖Ax‖2 = O(
√
m lgn · herdisc2(A))⇒

disc2(A, x) = O(
√

lgn · herdisc2(A)).
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For the running time, observe that after each call to PartialColor, we can compute A(x+γ)
from Ax in O(mk) time. Thus we can provide Ax as argument to PartialColor and thereby
reduce its running time to O((m+ k)k2). Since k halves in each iteration, we get a running
time of

O

( lg n∑
i=1

(m+ n/2i)(n/2i)2

)
= O((m+ n)n2).

This concludes the proof of Theorem 9.

4 Experiments

In this section, we present a number of experiments to test the practical performance of
our discrepancy minimization algorithm. We denote the algorithm by L2Minimize in
the following. We compare it to two base line algorithms Sample and SampleMany.
Sample simply picks a uniform random {−1,+1} vector as its coloring. SampleMany
repeatedly samples a uniform random {−1,+1} vector and runs for the same amount of time
as L2Minimize. It returns the best vector found within the time limit.

The algorithms were implemented in Python, using NumPy and SciPy for linear algebra
operations. All tests were run on a MacBook Pro (15-inch, Late 2013) running macOS Sierra
10.13.3. The machine has a 2 GHz Intel Core i7 and 8GB DDR3 RAM.

We tested the algorithms on three different classes of matrices:
Uniform matrices: Each coordinate is uniform random and independently chosen among
−1 and +1.
2D Corner matrices: Obtained by sampling two sets P = {p1, . . . , pn} and Q =
{q1, . . . , qm} of n and m points in the plane, respectively. The points are sampled
uniformly in the [0, 1]× [0, 1] unit square. The resulting matrix has one column per point
pj ∈ P and one row per point qi ∈ Q. The entry (i, j) is 1 if pj is dominated by qi,
i.e. qi.x > pj .x and qi.y > pj .y and it is 0 otherwise. Such matrices are known to have
hereditary `2-discrepancy O(lg1.5 n) [20].
2D Halfspace matrices: Obtained by sampling a set P = {p1, . . . , pn} of n points in the
unit square [0, 1] × [0, 1], and a set Q of m halfspace. Each halfspace in Q is sampled
by picking one point a uniformly on either the left boundary of the unit square or on
the top boundary, and another point b uniformly on either the right boundary or the
bottom boundary of the unit square. The halfspace is then chosen uniformly to be either
everything above the line through a, b or everything below it. The resulting matrix has
one column per point pj ∈ P and one row per halfspace hi ∈ Q. The entry (i, j) is 1 if pj

is in the halfspace hi and it is 0 otherwise. Such matrices are known to have hereditary
`2-discrepancy O(n1/4) [15].

Each test is run 10 times and the average `2 discrepancy and average runtime is reported.
The running times of the algorithms varied exclusively with the matrix size and not the type
of matrix, thus we only show one time column which is representative of all types of matrices.
The results are shown in Table 1.

The table clearly shows that L2Minimize gives superior colorings for all types of matrices
and all sizes. The tendency is particularly clear on the structured matrices 2D Corner and
2D Halfspace where the coloring found by L2Minimize on 10000 × 10000 matrices is a
factor 25-30 smaller than a single round of random sampling (Sample) and a factor 5-7
better than random sampling for as long time as L2Minimize runs (SampleMany).
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Table 1 Results of experiments with our L2Minimize algorithm. The Matrix Size column gives
the size m × n of the input matrix. The Disc columns shows disc2(A, x) = ‖Ax‖2/

√
m for the

coloring x found by the algorithm on the given type of matrix. Time is measured in seconds. Each
entry is the average of 10 executions.

Algorithm Matrix Size Disc Uniform Disc 2D Corner Disc 2D Halfspace Time (s)
L2Minimize 200× 200 7.2 1.8 1.6 < 1

Sample 200× 200 13.8 7.6 11.0 < 1
SampleMany 200× 200 11.6 2.3 2.7 < 1
L2Minimize 1000× 1000 15.7 1.9 2.3 9

Sample 1000× 1000 31.6 16.0 18.3 < 1
SampleMany 1000× 1000 28.9 4.9 5.5 9
L2Minimize 4000× 4000 31.0 2.1 2.6 717

Sample 4000× 4000 63.1 21.0 34.0 < 1
SampleMany 4000× 4000 60.3 9.5 10.7 717
L2Minimize 10000× 10000 48.3 2.1 3.1 15260

Sample 10000× 10000 99.9 51.4 96.8 < 1
SampleMany 10000× 10000 96.8 14.2 15.6 15260
L2Minimize 10000× 2000 35.9 2.1 2.7 535

Sample 10000× 2000 44.7 20.6 24.1 < 1
SampleMany 10000× 2000 43.4 6.7 8.0 535
L2Minimize 2000× 10000 21.4 1.8 2.0 5809

Sample 2000× 10000 99.9 40.8 70.8 < 1
SampleMany 2000× 10000 92.2 13.8 16.4 5809

The O((m + n)n2) running time makes the algorithm practical up to matrices of size
about 10000× 10000, at which point the algorithm runs for 15260 seconds ≈ 4 hours and 15
minutes.
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