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—— Abstract

We study a generalization of the classic paging problem that allows the amount of available memory
to vary over time — capturing a fundamental property of many modern computing realities, from
cloud computing to multi-core and energy-optimized processors.

It turns out that good performance in the “classic” case provides no performance guarantees
when memory capacity fluctuates: roughly speaking, moving from static to dynamic capacity can
mean the difference between optimality within a factor 2 in space and time, and suboptimality by an
arbitrarily large factor. More precisely, adopting the competitive analysis framework, we show that
some online paging algorithms, despite having an optimal (h, k)—competitive ratio when capacity
remains constant, are not (3, k)—competitive for any arbitrarily large k in the presence of minimal
capacity fluctuations.

In this light it is surprising that several classic paging algorithms perform remarkably well even
if memory capacity changes adversarially — in fact, even without taking those changes into explicit
account! In particular, we prove that LFD still achieves the minimum number of faults, and that
several classic online algorithms such as LRU have a “dynamic” (h, k) —competitive ratio that is the
best one can achieve without knowledge of future page requests, even if one had perfect knowledge
of future capacity fluctuations. Thus, with careful management, knowing/predicting future memory
resources appears far less crucial to performance than knowing/predicting future data accesses.

We characterize the optimal “dynamic” (h, k)—competitive ratio exactly, and show it has a
k%}H»U thus
proving a strict if minuscule separation between online paging performance achievable in the presence

somewhat complex expression that is almost but not quite equal to the “classic” ratio

or absence of capacity fluctuations.
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1 Introduction

This work examines a generalization of the classic paging problem that allows the amount of
available memory to vary over time. After briefly reviewing the paging problem (Subsec-
tion 1.1) this section motivates paging with dynamic capacity (Subsection 1.2) and provides
an overview of our results and of the organization of the rest of the article (Subsection 1.3).

1.1 The paging problem

The memory/data storage system of modern computing devices is almost always organized
as a hierarchy of several layers of progressively larger capacity but also higher access cost
(in terms of both time and energy); efficiently orchestrating the flow of information across
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the memory hierarchy is crucial for performance. The most widely used model for studying
this paging problem is that of a two-layer system: a smaller memory layer with a capacity
of k pages (data blocks), and a larger layer of infinite capacity whose pages can only be
accessed by first copying them into memory — an operation termed a (page) fault. Given any
sequence of pages that must be accessed in order, an algorithm for the paging problem must
choose which page(s) to “evict” from memory, whenever a new page must be copied into it,
so as to minimize the total number of faults.

The simple algorithm LFD (Longest Forward Distance) that evicts the page accessed
furthest in the future has long been known to be optimal [4]. However, paging is often studied
as an online problem, i.e. an algorithm can decide evictions only on the basis of past requests.
A popular framework for evaluating the performance of online paging algorithms is that
of competitive analysis [20]. A paging algorithm is said to have an (h, k)—competitive ratio
of (no more than) p if, for every request sequence, it incurs in expectation with a memory
of capacity k at most p times as many faults as an optimal offline algorithm incurs with a
memory of capacity h < k, plus a number of faults independent of the request sequence. The
ratio % is called the resource augmentation. Resource augmentation and competitive ratio
capture, respectively, the space and access cost overheads incurred by an online algorithm.

Many simple, deterministic algorithms including LRU?, FIFO?, FWF? and CLOCK*
have an (h, k)-competitive ratio of ﬁm [30, 8]; and the same ratio holds for RAND?® [29].
This ratio is optimal for deterministic algorithms, and even for randomized ones if page
requests can depend on previous choices of the paging algorithm (the “adaptive adversary”
model [29] which we adopt throughout the article®). Since #/2—%1
algorithms never fare worse than the optimal offline algorithm would on a memory system
with half the capacity and twice the access cost. This justifies the use of competitive analysis
for preliminary performance evaluation of paging algorithms. Its “worst-case” approach may
be somewhat pessimistic, but it is not overly so for many popular online paging algorithms —
for which it provides guarantees of performance within a factor 2 of the optimal under any
workload (in terms of faults and required memory capacity). In contrast, the finer granularity
evaluation provided by experimental benchmarking is inevitably tied to specific workloads.

< 2, many simple online

[8] and [10] provide two excellent surveys of the many variants of competitive analysis
for the paging problem: these include somehow limiting the choice of the adversarial
request sequence [9, 13, 14, 21], amortizing the performance evaluation over a spectrum of
sequences [1, 2, 5] or of memory capacities [32], considering pages of different size and access
cost [19, 32], and accounting for the non-zero cost of non-fault requests [31].

Least Recently Used — evict the least recently accessed page.

First In First Out — evict the page brought least recently into memory.

Flush When Full — evict all pages whenever memory is full and space is needed.

Mark any page accessed; to evict a page, cycle through pages, unmarking those found marked and
evicting the first found unmarked.

Evict a page chosen uniformly at random.

More precisely, in the online adaptive adversary model, the choices of the reference offline algorithm can
depend only on the past random choices of the online algorithm; in the offline adaptive adversary model
they can depend on the random choices of the online algorithm over the entire request sequence. The
bounds above — and in fact all the bounds in this article — hold for both models, with one exception:
the upper bound on the competitive ratio of RAND above, and the corresponding upper bound we
provide for RAND in Theorem 10, only hold in the adaptive online model.

W oo =
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1.2 Memory capacity often varies over time

In all variants of the paging problem, until a few years ago memory capacity was always
fixed throughout the request sequence. This no longer reflects many computing realities. In
a cloud computing environment, the amount of physical memory available to an individual
virtual machine varies considerably over time depending on the virtual machine’s load and
on the number, load and relative class of service of other virtual machines hosted on the
same hardware. Even on a simple PC, most modern operating systems have and use the
option of declaring some critical virtual pages temporarily “unswappable”, pinning them in
main memory and thus reducing the amount of main memory available to user processes.
Memory fluctuations also take place when considering the cache-RAM interface — in which
case memory represents cache memory and pages represent cache lines. In many multi-core
processor designs cache capacity is partitioned dynamically between different cores [28]. And
low-power chip designs can often dynamically disable underutilized portions of the cache to
save energy [18], again resulting in a capacity that can vary over time.

Note that, although there exists a large body of work on servicing the same request
sequence with a policy that is simultaneously “good” on memories of different [32] and
perhaps unknown [15] but unchanging capacity, allowing capacity to vary dynamically during
the course of the computation is an entirely different problem; as we shall see, a solution to
the former does not guarantee even an approximate solution to the latter.

A seminal work considering memory fluctuations in a hierarchical memory system is [3],
that presents efficient algorithms for problems such as sorting or FFT assuming each algorithm
can explicitly choose which pages to keep in memory. A slightly different approach is that
taken by the recent literature on cache-adaptive algorithms for sorting, FFT and many other
problems [6, 7], where management of the memory is devolved to an “automatic optimal” page
replacement policy; the choice is justified by showing that a LRU policy is O(1)-competitive
with O(1) resource augmentation.

Our work instead focuses on the page replacement policy itself, assuming as in classic
paging that the request sequence is provided by an adversary. The adversary also controls
how memory capacity fluctuates between 1 and k pages; these fluctuations may be either
known beforehand to the paging algorithm (an “offline” problem), or unknown until they take
place (an “online” problem). We stress that, when comparing different paging algorithms, we
take a slightly different approach from that of [7]: we assume identical/proportional memory
capacity when servicing the same page request, whereas [7] assumes identical/proportional
capacity after an identical/proportional number of faults. As [7] itself notes when referencing
this work (the preliminary version of which predates [7]), both models are natural and reflect
a different emphasis on what may initiate capacity changes.

Another related, but fundamentally different, paradigm is that of RAM rental [11, 23],
where memory capacity fluctuates under control of the paging algorithm and the goal is to
minimize a linear combination of average capacity and fault rate over time. In practice there
are very strong constraints on the set of admissible capacity values, on how they can change
over time, and on their relative costs (which may themselves fluctuate). Also, a number of
architectural approaches (e.g. [12]) decouple the portion of the system responsible for page
replacement from that responsible for capacity allocation. Then, assuming as we do that
capacity fluctuations are not controlled by the paging algorithm (in fact, that they may be
unknown beforehand and even chosen adversarially) leads to a more robust evaluation of
page replacement policies.
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1.3 Our results

The rest of this article is organized as follows. Section 2 introduces some formalism and
terminology. In particular, it extends the notion of “online vs. offline” problem to encompass
the extra dimension of future memory capacity, and it extends the notion of (h, k)—resource
augmentation to the dynamic capacity scenario (in a nutshell, restricting the offline algorithm
to at most a fraction % of the online algorithm’s current memory capacity).

Section 3 shows the existence of online paging algorithms that have an (optimal)
(h, k)-competitive ratio of k_#h“ in the “classic” paging model, and yet are no longer
(3, k)—competitive for any arbitrarily large k if their memory capacity is subject to single
page fluctuations. This very negative result provides strong justification for our inquiry, as
one cannot infer performance in the presence of (even minimal) memory fluctuations from
performance in their absence.

In this light, it is surprising that many well-known algorithms perform remarkably well
in the presence of memory fluctuations even if those fluctuations are chosen adversarially.
In Section 4 we show that the classic LFD algorithm remains strictly optimal for all possible
memory capacity fluctuations even though it does not explicitly take those fluctuations into
account (i.e. it is an online algorithm in terms of memory fluctuations). We also show that
in the dynamic capacity framework every online algorithm that is either marking [14] like
LRU, FWF or MARK", or dynamically conservative (a simple refinement of the notion of
“conservative algorithm”[33]), like LRU, CLOCK or FIFO, has an (h, k)—competitive ratio
ms. Exactly the same bound holds for
RAND (against an online adaptive adversary).

no larger than ppr(h, k) = maxg <g pen

Section 5 analyses pgr(h, k). We show that it is a lower bound to the (h, k) —competitive
ratio achievable by any online paging algorithm in the presence of memory fluctuations,
proving the optimality of marking and dynamically conservative algorithms. We also

show that pgr(h, k) almost, but not quite, matches the “classic” bound of k%hﬂ

(h, k)—competitive ratio. More precisely, ppr(h, k) is always less than (1 + ;) times the

classic k%hﬂ ratio — and if h > k — vk the two quantities actually coincide. However,

per(h, k) is also at least 1 + (1 — /%) times as large as k—Lh-s—l for any odd h and k = 2h,

which proves a strict if minuscule separation between performance achievable in the presence
and absence of memory fluctuations.

on the

Section 6 briefly looks at the implications of our results for the RAM rental problem. In a
nutshell, since many simple replacement are near optimal regardless of capacity fluctuations,
RAM rental is simplified into the problem of just choosing a “good” capacity sequence
without worrying about replacement.

Finally, Section 7 summarizes our results and looks at their significance and at possible
directions of future work.

2 Some formalism/terminology

We can easily extend the notion of request sequence ¢ = r1,r9,... to the case of memory
fluctuations. We simply assume that, interleaved with standard page requests, it is possible
to have two additional types of requests, growths and shrinks. On a growth, memory capacity
increases by 1 page; on a shrink, it decreases by 1 — and if the memory was full a page must

7 Mark any page accessed; evict a random unmarked page, first unmarking all pages if all are marked.
8 The “EL” in pEL stood for “elastic” in an early, poster version of this work titled “Elastic paging” [25].
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be evicted. We assume that initially memory capacity is 0. Throughout the rest of the
article, we denote a growth request by the symbol + and a shrink request by the symbol —,
and we denote k consecutive growths / shrinks by +* and —*. Thus, a standard request
sequence pi, ..., p, on a memory of capacity k simply becomes +*,pq,...,p, in the more
general dynamic capacity framework.

The request sequence automatically induces a page sequence m =< py,pa,--- > (the
sequence of requested pages p1,pa,..., as in the classic paging problem) and a capacity
sequence |, = mgi,Msa,... where m; is the memory capacity immediately before the request
for p; (i.e. it is equal to the number of +s minus the number of —s in the request prefix
ending with p;). Note that the presence of growths and shrinks introduces a second aspect
of “onlineness”. More formally:

» Definition 1. A paging algorithm ALG is online relative to the page sequence if its eviction
choices before servicing a request are independent of any future page requests; otherwise it is
offline relative to the page sequence. Similarly, ALG is online relative to the capacity sequence
if its eviction choices before servicing a request are independent of any subsequent growths
and shrinks; otherwise it is offline relative to the capacity sequence. ALG is a fully online,
partially offline and fully offline paging algorithm if it is online relative to (respectively) both,
one, or neither of the page and the capacity sequence.

Thus, in the dynamic capacity model, all well-known paging algorithms such as LRU,
FIFO, FWF, CLOCK, RAND and MARK are fully online, and LFD is partially offline, being
offline relative to the page sequence but online relative to the capacity sequence.

We can easily extend the notion of (h, k)—competitive ratio to the dynamic capacity
model by comparing the cost (i.e. number of faults) incurred by an online algorithm whose
memory capacity never exceeds k to the cost incurred by an offline algorithm whose memory
capacity never exceeds % times that of the online algorithm. More formally, denote by OPT
the optimal offline algorithm, and by carg(m, 1) the cost incurred by an algorithm ALG

when servicing a page sequence m = pq,...,p, with a capacity sequence p = mq,...,my.
Also, given a capacity sequence p = my, ..., m, and a non-negative number a, denote by
la - 1] the capacity sequence mf, ..., m!, with m} = |a-m;]. Then:

» Definition 2. A paging algorithm ALG has a dynamic (h, k)—competitive ratio of (at
most) p if there exists some constant d such that, for any page sequence ™ = py,...,p, and
any capacity sequence |t = myq, ..., My, such that, Vi, m; < k:

h
carc(m p) < p-copr(m, LE pu))+d

Note that the dynamic (h, k)—competitive ratio of an algorithm is always an upper
bound to its (h, k)—competitive ratio. Thus online paging with dynamic capacity is in some
sense “harder” than classic online paging, and no online algorithm can have a dynamic
(h, k)—competitive ratio lower than the “classic” ratio k_ilfm

3 Minimal capacity fluctuations can lead to arbitrarily large
performance degradation

This section shows that there exist online paging algorithms that do not depend explicitly
on memory capacity, and that have an optimal (h, k)-competitive ratio in the classic setting
of fixed memory capacity, but are not competitive at all, even with arbitrary resource
augmentation, when faced with even slight fluctuations in memory capacity. Consider the
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online paging algorithm LFRU (Least Frequently / Recently Used) that starts as LRU and
then alternates between LFU and LRU — switching from LRU to LFU after any palindrome
subsequence incurring more faults in its second half, and switching from LFU to LRU after
any palindrome subsequence incurring more faults in its first half:

Algorithm 1 LFRU: service pg, ..., p, as follows.
at po POLICY «+ LRU

fori=1...ndo

if at p; POLICY = LRU AND 3j < ::

< pj...p; > is palindrome AND faults(p; .. ,meJ) < faults(p[mW coeDi)
2 2

then at p;+1 POLICY «+ LFU

else if at p; POLICY = LFU AND 3j < i:

< pj...p; > is palindrome AND faults(p; .. .meJ) > faults(p[mW coaDi)
2 2

then at p;11 POLICY + LRU

end for

We would convince the reader that LFRU, while undoubtedly artificial and difficult to
implement in practice, is not too different from many real-world paging heuristics designed for
static memory capacity (note that the behaviour of LFRU, like that of LRU and LFU, does
not depend explicitly on memory capacity). In fact, pure LRU tends to be outperformed in
practice by various LRU/LFU hybrids [22, 24]. The main reason is the common coexistence
of “local” or “temporal” computations sporting a high degree of temporal locality and data
reuse, and “streaming” computations that access long sequences of sequential data without
any temporal locality. In such cases, under LRU and similar policies such as CLOCK,
streaming data not only gain no benefit from being kept in the fast memory layer (since
every new access is a fault) but actively pollute it, forcing the eviction of temporal data and
preventing the temporal computation from deriving more than a minimal benefit from the
fast memory layer. One possible solution is to combine LRU with eviction schemes biased,
like LFU, against data that have no reuse history even if their last (and only) access was
very recent. And since LRU performs best when future requests are a “mirror image” of the
past, it may seem reasonable to switch to it when such palindrome sequences sport good
data-reuse behaviour, and switch to LFU when such palindrome sequences exhibit sport poor
data-reuse behaviour — which is what LFRU does.

It turns out that LFRU has an optimal (h, k)—competitive ratio in the classic paging
model where memory capacity is fixed. At the same time, even if faced with capacity
fluctuations of just a single page, and even if allowed the use of an arbitrarily large amount
of memory, LFRU’s fault rate can be arbitrarily larger than that of an offline algorithm
running with just 3 pages of memory. More formally we prove:

» Theorem 3. LFRU has an (h, k)—competitive ratio equal to #ﬂ if memory capacity is
constant, but has no finite dynamic (h, k)—competitive ratio for any h > 3 and any arbitrarily
large k.

Proof. Let us first prove that LFRU has an (h, k)—competitive ratio equal to k_Lh_H if
memory maintains an arbitrary but fixed capacity k. We need only prove that, as long as
LFRU keeps behaving as LRU, on no page request sequence a palindrome subsequence incurs
more faults in its second half: then LFRU keeps behaving exactly as LRU and shares its

(h, k)-competitive ratio of k—iﬁ-{-l
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Consider a palindrome page subsequence m = p;,,...,Pi,,Di,, - .-, Pi; of even length 2¢,
containing A < ¢ distinct pages p1,...,px. Note that, if A < k, by the end of the first half of
7w the A most recently requested pages are p;, ..., px, which are then in memory and prevent
any fault from taking place during the second half of 7. Then, we need only consider the
case A\ > k.

Let us focus on the first half of 7. For each distinct page, we analyse separately the first
request to it (which we call a cold request), and the remaining requests, if any (which we
call hot requests). The i*" cold request is certainly a fault for any i > k, since at least k
distinct pages have been requested before it in p;,,...,p;,; so the number of cold requests
incurring faults is at least £ — k. Let us now look at hot requests, and let r; be the number
of hot requests of p; in the first half of 7. For 1 <i < AXand 1 <j <r;, let Df be the set of
distinct pages requested between the j** hot request for p; and the previous request for p;,
inclusive (so Df always includes p;). Then the j** hot request to p; is a fault if and only if
|D?| > k, and the total number of faults in p;,, ..., p;, is:

£2 > (0= k) +1{G5) : [DI] > kY] (1)

Let us now focus on the second half of 7. Again, we divide requests for any distinct page
into a cold request (the first) and hot requests (subsequent ones, if any). The first k& cold
requests of p;,,...,p;, are for the last k distinct pages requested in p;,, ..., p;,, which are
then present in memory at the beginning of p;,,...,p;,. So in p;,,...,p;, none of the first k
cold requests incurs a fault, yielding and at most A — k faults on cold requests. Let us now
look at the hot requests of p;,,...,ps,; those for p; are obviously r;, as in the first half of 7.
For1<i<Aand1<j <y let D; be set of distinct pages between the jth hot request for
p; and its previous request, including p; itself; then the j** hot request for p; is a fault if and
only if |Df\ > k, and the total number of faults in p;,,...,p;, is:

1 — .

f7 < (—=k)+{(i,4) : |D]| > k}| (2)

It is crucial to observe that, since 7 is palindrome, D = Dj. ;.. Then [{(,]) : |DJ| >
kY = [{(,4) : |[D!| > k}| and fwé > f,r% . The analysis is virtually identical for palindrome
subsequences of odd length; and thus with static memory capacity LFRU incurs no more
faults on the second half of any palindrome subsequence than in the first half and has an
(h, k)—competitive ratio equal to k—Lh-H

To prove that LFRU can incur arbitrarily more faults than an optimal offline algorithm
OPT when memory capacity fluctuates — even if OPT is limited to a capacity fluctuating
between capacity 3 and 2, while LFRU’s fluctuates between 3m and 3m — 1 for an arbitrarily
large m — we show how LFRU can be coaxed into, and kept in, LFU behaviour, and how
that behaviour can result in arbitrarily more faults than OPT even with arbitrarily larger
capacity.

Denoting by 7™ the concatenation of m consecutive copies of r, consider a page sequence
formed by a prefix m; =< p1, D2, D5 - - - s Pns P15 D25 P35 - - - D3m> P3ms - - - , P2, P1 > followed by
a suffix py = (p2,p1)*~ 1. Assume LFRU’s memory capacity while servicing ; remains equal
to 3m except for the last 3m requests, during which it drops by 1 to 3m — 1; and assume it
then remains equal to 3m — 1 while servicing 73. It is immediate to see that when capacity
drops p; is evicted, and that the last 6m requests of m; form a palindrome subsequence
experiencing a fault (only) on the last request. Thus, on that request, LFRU switches to
LFU behaviour, and evicts py (which, like py, has experienced ¢ — 1 fewer requests than every
other page p;, i > 3). Then LFRU services my = (p2, p1)*~! with memory capacity 3m — 1
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by alternatively evicting po and p; in turn, since p; and p; remain until the end of 75 the
two pages having experienced the fewest requests so far; thus LFRU incurs at least 2¢ — 2
faults to service ms.

An optimal algorithm (or even just LRU) with memory capacity 3 throughout all but
the last 3m requests of 71, and with memory capacity 2 thereafter, would instead incur no
more than 3m + 3m + 3m = 9m faults during 1, and no faults at all during 72 (retaining
only p; and py in memory). Thus, since £ can be chosen arbitrarily larger than m, LFRU
cannot have a finite (3, 3m)—competitive ratio for any arbitrarily large m. |

4 Dealing with adversarial fluctuations efficiently — and “implicitly”
In the light of Theorem 3 it may be surprising that many well-known “good” paging algorithms
still perform remarkably well in the dynamic capacity setting — even though they do not take
memory fluctuations into explicit account. It is very easy to prove:

» Theorem 4. LFD incurs the minimal number of faults on any request sequence.

Proof. We can safely ignore algorithms leaving unoccupied space in memory after an eviction,
as such an eviction could be delayed without incurring additional faults. Let a page be
close if it will be accessed before another page currently in memory, far otherwise. LFD is
the algorithm evicting no close pages. We prove the theorem showing that one can always
eliminate the earliest close eviction without altering previous evictions or increasing the
number of faults.

Let p be the close page evicted earliest, at time ¢, by an algorithm ALG servicing a request
sequence. Consider the algorithm ALG that operates as ALG until ¢, when it instead evicts
a far page p, and then operates as follows. Denote by M and M the sets of pages respectively
in ALG’s and ALG’s memory. When both ALG and ALG must incur an eviction, ALG
evicts the same page as ALG if possible; otherwise, when ALG must incur an eviction, it
evicts a page not in M (as soon as M = M, ALG and ALG coincide). After ¢, let t' be the
time of the first request or eviction of either p or p. Until ¢ ALG and ALG incur exactly
the same faults and evictions, and thus M \ M = {p} and M \ M = {p}. At t' ALG evicts p
if and only if ALG evicts p — in which case M and M converge. Otherwise p is requested at
t’ and ALG, but not ALG, incurs a fault; and since ALG never evicts a page unless ALG
also has evicted it, [M \ M| never increases after ¢, and drops to 0 no later than the first
fault incurred by ALG and not by ALG. In both cases ALG incurs no more misses than
ALG. <

It is interesting to note that Theorem 4 yields as an immediate corollary Theorem 4.1
in [17] — in a nutshell, for a given, dynamically changing, partition of the memory space
between different processes, using LFD for each process on its own partition yields the
minimum total number of faults. It is not, however, immediately obvious that the result
in [17] implies the thesis of Theorem 4. Furthermore, the result in [17] is only stated, and
not proved — the proof is deferred to the full version of the article because of its complexity
compared to the “classic” proof of LFD’s optimality.

Let us now focus on online paging algorithms. It turns out that the dynamic (h, k) —compe-
titive ratio achievable by many well-known online algorithms is almost, but not quite, as
good as the “plain” (h, k)—competitive ratio k_#hﬂ — and in particular equal to:

kl

peL ) = R e o - 7
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The formula for pgy is more complex, but vaguely reminiscent of the formula for the
“classic” (h, k)-competitive ratio; and indeed it is easy to verify that for h = k both equal k.
A detailed analysis of the behaviour of pgy, including a proof that it is a lower bound on the
dynamic (h, k)—competitive ratio of any online algorithm, can be found in the following Sec-
tion 5. The remainder of this section is devoted to proving that a dynamic (h, k) —competitive
ratio prr(h, k) is indeed achieved by all marking algorithms® (including MARK, LRU and
FWF), by RAND, and by all dynamically conservative algorithms. The latter form a class
of algorithms that is slightly narrower than that of conservative algorithms![33] but still
includes LRU, FIFO and CLOCK. The cornerstone of the analysis lies in the notion of short
subsequence, which is the “correct” extension of the concept of k—phase to dynamic capacity:

» Definition 5. Given a generic (sub)sequence of consecutive requests, its width is the
number of distinct pages in it.

» Definition 6. Consider a generic request sequence o, and a subsequence o’ of consecutive
requests in o (including page requests, growths and shrinks). o’ is short if, for every prefic ™
of o', the width of ™ does not exceed the memory capacity at the end of .

» Definition 7. A dynamically conservative algorithm never incurs more than w faults on
any short subsequence of width w.

Note that a dynamically conservative algorithm is also always a conservative algorithm
according to the definition of [33] since with a memory of fixed capacity k every short
subsequence involves access to at most k pages, and thus incurs at most k faults. The
converse is not true: LFRU from Section 3 is conservative but not dynamically conservative.
However, we can easily prove:

» Theorem 8. LRU, FIFO and CLOCK are dynamically conservative.

Proof. It is not difficult to verify that all three algorithms have the following property: if a
page p is brought into memory at time ¢, and a page p’ already in memory at time ¢ and is
never accessed again, then p’ will be evicted before p. This holds for LRU because p is more
recently accessed than p’. It holds for FIFO because p’ entered the memory before p. It holds
for CLOCK because after ¢ the unmark/evict process will encounter p’ before encountering p
— thus either evicting or at least unmarking p’ before unmarking p, and thus certainly evicting
it before evicting p. Then none of the three algorithms evicts a page accessed during a short
sequence before the end of the sequence (since there is always sufficient memory to hold all
pages accessed during the sequence), and thus none can incur more faults than the width of
the sequence. <

The main result of this section is then:

» Theorem 9. The dynamic (h, k)—competitive ratio of any online paging algorithm that is
either marking or dynamically conservative is no larger than pgr(h, k).

Proof. Let us begin with marking algorithms. The proof bears some resemblance to that
of the static case, with a number of subtle but profound differences. One such difference is
that, instead of partitioning the request sequence into maximal length phases each involving

9 A marking algorithm marks a page in memory whenever it accesses it, never evicts a marked page, and
unmarks all pages if all are marked and one must be evicted (e.g. in response to a fault or a shrink).
10 A conservative algorithm never incurs more than k faults on a sequence of accesses involving at most k

distinct pages and a memory of capacity k.
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access to k distinct pages, we partition it into maximal short sequences 7y, ..., 7, where
m; is the longest short sequence beginning immediately after the end of 7;_;. Furthermore,
the strategy of analysing each short subsequence in isolation does not work, and we can
only bound the ratio over the whole sequence, through careful accounting and a potential
argument.

Denote by w; the width of ;. We can assume without loss of generality that the request
sequence ends with a page request, so w; > 0 Vi. Note that, for ¢ > 1, the first request m; ;
of m; must be either a shrink or a request for a page not in m;_1; in the first case we say that
m;—1 1S capacity bound, in the second that it is page bound.

It is easy to verify by simultaneous induction the following claims hold for all i:

1. All pages in memory are unmarked when 7; ; is serviced.

2. Every one of the w; pages accessed during 7; (and no other page) remains marked and
thus in memory until the end of ;.

3. Immediately before m;; 1 is serviced, the memory is full and holds w; pages, all marked.

Claim 1 holds trivially for ¢ = 1. If Claim 1 holds for ¢, Claim 2 also holds for i, since
until the end of m; the memory is large enough to accommodate all pages accessed so far
during 7;, which are the only ones marked. If Claim 2 holds for ¢, Claim 3 also holds for i,
since immediately before ;1 1 is serviced the memory capacity exactly matches the number
of distinct pages accessed in ;. If Claim 3 holds for 4, Claim 1 holds for ¢ + 1 (proving the
inductive step), since the first request of ;11 must be either a shrink or a request for a page
not in 7;, and thus causes all pages in memory to become unmarked.

From Claim 2 it is obvious that a marking algorithm incurs a number of faults at most
equal to w; during short sequence 7;, for a total number of faults equal to at most:

n
carg < Z w; (3)
i=1

Let us compute the number of faults incurred by any other algorithm ALG with a
memory of capacity at most % times that of the marking algorithm, in the interval 7} from
immediately after the first request o of m; is serviced, to immediately after the first request
of m;y1 is serviced or to the end of the request sequence if ¢ = n. Let r; be equal to 1 if m;
is page bound, and to 0 if it is capacity bound, for 1 < ¢ < n, and let 1o = 0 and r,, = 0.
Remember that the first request of a short phase 7; is a shrink if 7;_; is capacity bound,
and a page not in m;_; if m;_1 is page bound — and a growth if i = 1. Denoting by w; the
number of distinct pages in 7} after removing the page involved in the first request of m; if
any (i.e. if m;_1 is page bound), we can then write for 1 < i < n:

wp = —ri_1+w; + 1 (4)

The subset of these pages in the memory of ALG immediately before servicing the first
request of 7 is then at most:

o ifi=1, 5)
= L%(wi_l — I)J if ¢ > 1.

Equation 5 is immediate if ¢ = 1 or if m;_; is capacity bound - since then the first
request of m; shrinks the memory available to ALG from w;_; to w;—1 — 1. If instead
m;_1 is page bound, of the L%wi_lj pages ALG’s memory can hold, one must be the first
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page of m; that has just been requested and that does not contribute to m; — leaving only
| 2w;—1] —1 < [ %(w;—1 — 1)]. Then the total number of faults incurred by ALG is at least:

n

Zw —m;) Z Ti—1+wi+7"i)_2|_%(wi 1) Z —(wi —1)]) (6)

=2

Remembering that both w; and w; — |
+b _ d
Vabcd>0wehavethatg+d Cfrd-%—}—Hd
tive ratio of ALG is at most:

n A
W, W; k
Zz_l < aX 7

< < —

S (i = D)) e w— [(w - 1)) wela B B E]
This proves the theorem for marking algorithms. The proof for dynamically conservative
algorithms proceeds identically, except for the fact that in this case one can immediately
obtain, from Definition 7, the bound given by Equation 3 on the cost incurred by the online
algorithm. <

(w; — 1)] with h < k are positive, and that
b <'max(%,2), the dynamic (h, k)—competi-

(7)

The analysis of RAND faces similar difficulties similar to those in the proof of Theorem 9
in terms of “compartimentalization of costs”; but they can be addressed in a different way
due to the randomized nature of the algorithm, by exploiting its lack of memory. In this
sense it may be somewhat surprising that ezactly the same bound obtained in Theorem 9
also applies to RAND, particularly because in the (very slightly different) cache-adaptive
model RAND is not competitive at all, regardless of resource augmentation'!. Instead, we
prove:

» Theorem 10. RAND’s dynamic (h, k)—competitive ratio is no larger than pgr(h, k) in
the adaptive online adversary model.

Proof. We cannot apply the “classic” paging analysis of RAND due to the fact that, if h < k,
cache shrinks may not be “synchronized” and RAND may incur shrinks when the optimal
offline algorithm OPT does not. Instead of comparing the number of faults cranp and
copr incurred, respectively, by RAND and OPT, we then begin by comparing the number
of page evictions eganp and eppr. For simplicity, assume that, after any given request (for
a page, or for a capacity change), the request is served in the following order. OPT performs
any page eviction; then it loads into memory any requested page not yet there; then RAND
does the same; finally, OPT adjusts its memory capacity, and then RAND does the same.
Note that since capacity is adjusted one page at a time (see Section 2), evictions are always
performed one page at a time.

Let the garbage of RAND at any given point in time be the set G of pages in its memory
and not in the memory of OPT. First of all, note that G can increase only when OPT incurs
an eviction (and at most by 1 page for each eviction), since RAND never brings into memory
a page not requested by OPT — which at that point must then be in OPT’s memory.

1 This can be easily seen by the reader familiar with the cache-adaptive model. Consider, for an arbitrarily

large ¢ > 2, the memory sequence pac, . . ., po, (p1,po)362. OPT can service the sequence with memory 2
incurring only 2¢ + 1 faults. RAND with memory 2¢ has a non-zero probability of evicting p1 on every
request for po and viceversa, and thus incurring more than 3¢* > (2¢ 4 1)c faults — so in the worst case
it completes the sequence after OPT even with the advantage of c—speed and c—memory augmentation.
While this simple example leverages the worst-case accounting of the standard cache-adaptive model,
even more sophisticated accounting “in expectation” faces similar difficulties — informally because in
the cache-adaptive model even a minuscule probability of missing a shrink deadline can be catastrophic.
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Immediately before RAND incurs an eviction, its memory must be full; denote by &’ and
h' the memory capacity of RAND and OPT at that point. If the eviction is the result of a
shrink, then the number of pages in RAND’s memory that are not garbage are at most:

W= LRk - 1)) ®)

Note that at this point OPT has adjusted its memory capacity to the shrink but RAND
has not. If the eviction is the result of a page fault, then the requested page at this point is
in OPT’s memory but not in RAND’s, and the number of pages in RAND’s memory that
are not garbage are at most:

W 1= 3R] - 1< 1 - ) )

Thus the probability that, when RAND incurs an eviction, |G| decreases by 1 is at least:

K= Ak - 1)

= min 10
PrRAND ke{l,.. .k} k (10)
and at any given time we have that, in expectation:
|G| < eopr — €RAND " PRAND (11)

Appending to any request sequence sufficient shrinks to bring RAN D’s memory capacity
to 0 obviously brings |G| to 0, without increasing the number of faults incurred by RAND
or OPT. For any algorithm that evicts a single page at a time, when the memory holds no
pages the number of faults and evictions incurred must coincide. Setting |G| to 0, as well
as copr = eopr and CRAND = €rAND, in Equation 11 then yields for RAND a dynamic
(h, k)—competitive ratio equal at most to:

!

CRAND _ 1 B k
>~ =, max /ﬁ
corT PRAND  Kke{l,. .k} k! — th _ ﬂ

(12)
<

5 An exact characterization of the competitive ratio

The upper bound pg (h, k) obtained in Section 4 for the dynamic (h, k)—competitive ratio
of many online paging algorithms is actually tight. In fact, no paging algorithm that is online
relative to the page request sequence can achieve a better (h, k)—competitive ratio, even if it
has from the start full knowledge of the entire capacity sequence. More formally we can prove:

» Theorem 11. No paging algorithm that is online relative to the page sequence has a dynamic
(h, k)—competitive ratio (against any online or offline adaptive adversary if randomized)

lower than:
K
peL(h, k) = mawk/e{l,...,k}m
Proof. Let k = argmaxkfe{l’wk}m, and let ALG be a generic paging algorithm
online relative to the page sequence. Consider a request sequence o, =< +(E*1), Tlyeney Ty >,

where:

T =< FRRAD (kD) +(k7k+1)7pi%’ _(k—E+1) (13)

1 “ey
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and p; ; is any one page, from the set pi, ..., pg, that is not in ALG’s memory just before it
is requested — note that immediately before any page request ALG’s memory holds at most

k — 1 pages, so there always exists one such page. ALG then incurs a fault on every page
request, for a total number of faults equal to:

CALc;(Un)ZTL-E (14)

Also, note that the capacity sequence associated to o,, does not depend on ALG, so we
can freely assume that the design of ALG incorporates full knowledge of it.

Consider an offline algorithm ALG with access to a memory that has at most % times
the capacity of ALG’s at any given time; in particular, ALG’s memory capacity grows to h
immediately before any page request, and immediately afterwards drops to capacity:

h — h

k
—(k—=1)] =|h-——| <h 15
2 E=1) = [y~ 7] (15)

ALG can easily maintain in its “permanent” Lh% — 2] memory locations the Lh% —
pages with most expected accesses in o, incurring for each only one initial fault. Note that the

o . T lhE-%] _ 2 E_h
total number of accesses to these pages is, in expectation, at least nk - % =nlhi— %]

Every other page, when requested, is brought into the “temporary” location(s) immediately
eliminated by the following shrink. ALG then incurs an expected number of faults equal to:

k h — k h
caralon) < LhE - EJ +n(k — Lh% - EJ) (16)
Then the competitive ratio of ALG can be no lower than:
7. /
i L — E_n - E_np weps )
o earg(@n) o hE - b bn(k - [hf - R]) WEUR K= (R - g

It is important to observe that, if ALG is randomized, ALG need only know ALG’s
probabilistic behaviour to choose which pages to keep in its own memory; and it can choose
which page to request next based only on ALG’s current memory contents. Thus the lower
bound we proved holds for deterministic and randomized algorithms both in the adaptive
offline and in the adaptive online adversary models. |

As noted in Section 4 the expression of the optimal dynamic (h, k)-competitive ratio
per(h, k) appears considerably more complex than, but vaguely reminiscent of, that of the
“classic” bound on the (h, k)—competitive ratio, k—i};ﬁ-l It is natural to ask whether the two
are actually different, and if so to what extent. We show that pgr (h, k) is, in fact, a factor
~1+ % larger for some “natural” values of h and k — though it is never more than a factor
1+ % larger, and actually coincides with k—Lthl if h is equal or very close to k. This is stated
more formally in the following two theorems:

» Theorem 12. For any odd h and k = 2h, ppr(h,k) > (1+ ¢ — k%)%fwrl

Proof. For any integer ¢ > 0, choosing h = 2i + 1, k = 2h, and k' = k — 1, we obtain
immediately:

8> 4i 41 - 4i+1 4t
N e G D [ S T2 e Py gy 25 R} T
k-1 k-1 5+1 k 12 k
— — : . — (14— 18
E L s B ) (18)
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» Theorem 13. —— < ppr(h,k) < (1+ §)=5=7 for all b,k € Z% with h < k, and
peL(hk) = i if k> h >k — VE.

Proof. It is immediate to verify that, for k' = k:

K k
h, k) > ; = 19
pE‘L(v)—k,_Lh%_% k—h-i—]. ( )
And since, if k" < h, we have that:
K’ K’ KL k
; < ; = * < 20
K —hE —h) = — (R by gk _pEE L RE T kb1 (20)

then values of k' < h can be disregarded in the max operation. To prove that, for all h < k,
pen(hk) < (1+ %)%h“, note that:

k/
peL(h, k) =marpecp,. py
T
%4 k k
< maxpeq,.. k ; = = (21)
R GE ) R 0E D kAT
Then we obtain:
pprh k) kol g PR g L ] (22)
k = R R n
= k—h+2 k—h+3 k+ 5 k

To prove that pgr(h, k) coincides with k%hﬂ for h > k — V/k let us rewrite h and &’ as
h=k—aand ¥ =k -0, Witha>banda,b€Z(f. We obtain:

k—b
h > k:—\/E,k‘ = max
peL(h > ( ) k) Visastk—b— =000 k|

%
k—b
= max — .
Visasbk—b—|k—(a+b)+ % -1+ ¢]
= max k—b
\/E>a>bk—b_k+(a+b)+1_La(bljl)J
k k
< maXx (23)

\/E>a>bk7h+17L%J T k—h+1

where the last equality follows from the fact that, since a = k—h < Vkand b < a—1 < Vk—1,
then a(b+ 1) < k. <

The complex expression of pgr(h, k) is in part due to the “rounding” of the memory
capacity of the optimal offline algorithm. However, it is important to note that this rounding
is not sufficient to explain why pgr (h, k) can be strictly larger than the “classic” ratio ﬁ%
obtained when capacity is fixed at its maximum value: at smaller capacities rounding can
only favour the online algorithm, and for any fixed ratio %, k,_kihl,ﬂ strictly decreases with &/,
again favouring the online algorithm at smaller capacities. Capacity fluctuations (rather than
simply the choice between different, constant capacities) are then the source of the separation
between pgr(h, k) and the “classic” (h, k)-competitive ratio k—#h-&-l
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6 Decoupling replacement from capacity in RAM rental

The results from Section 4 can be readily applied to the RAM rental problem, in which a
paging algorithm ALG can choose the capacity sequence (with maximum capacity k), and
the cost it incurs and must minimize on a request sequence o is:

lo|

Rlipc(o) =) (af (i) + Bu(i)) (24)

i=1

where w(i) is the capacity when serving the it" request of o, and f(i) is 1 if that request is a
fault and 0 otherwise. The fundamental consequence of our results from Section 4 is that to
a large extent the replacement policy can be decoupled from the choice of capacities. More
precisely, Theorem 9 yields:

» Corollary 14. Consider a paging algorithm ALG, servicing each request o; of a sequence
o with capacity w(i) < h and an arbitrary (even offline) replacement policy; and a second
paging algorithm ALG' servicing o; with capacity 2w(i) and a replacement policy that can
be any marking or dynamically conservative algorithm. Then, for any choice of a, B and
w(-) < h:

RY (o) <2 Rlypal(o). (25)

which follows immediately from the fact that the sum of all faults incurred by ALG’ is at
most twice that by ALG as long as ALG’ maintains twice the capacity of ALG. In other
words, RAM rental is all about choosing the correct capacity at any given time; and any of
the “classic” replacement policies analysed in the previous section will be close to optimal for
any choice of a, of B, and of the capacity sequence.

7 Conclusions

Good performance in the case of constant memory capacity provides no performance guaran-
tees whatsoever in the case of fluctuating memory capacity: moving from a scenario where
capacity remains constant to one where it can fluctuate by a single page can mean the
difference between performance optimal within a factor 2, and performance suboptimal by
an arbitrarily large factor. This suggests the need of extreme caution when evaluating with
classic methodologies the performance of paging algorithms meant for memory systems with
dynamic capacity.

A counterpoint to this very “negative” result is that several extremely simple classic
paging algorithms achieve optimal or nearly optimal performance even in the dynamic
capacity framework - which is surprising because none of those algorithms is designed to take
memory capacity fluctuations into explicit account. Counterintuitively then, while knowledge
of future page requests provides an advantage, knowledge of future memory capacity does
not. A practical corollary is that, in the design of memory architectures, one can efficiently
decouple the problem of allocating memory resources to different cores/processes/threads
from the problem of managing the allocated memory — greatly simplifying system design
and analysis and providing a strong (a posteriori!) theoretical justification for the exokernel
approach [12].

As in classic paging, in the dynamic capacity framework competitive analysis fails to
distinguish between the performance of LRU, of FIFO, and of more naive algorithms such
as RAND or FWF — at least without resorting to more sophisticated approaches such as
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access graphs. While each of these algorithms is still guaranteed to outperform an optimal
offline algorithm (and thus any other online algorithm) whose memory system has half the
capacity and twice the access cost, there are probably differences within those factors of 2
that would be important to characterize in practice. It is by no means clear whether the
winner in the dynamic capacity scenario would be the same as in the classic one, or whether
models designed a posteriori to explain the superiority of e.g. LRU over FIFO would still
provide correct predictions.

In this sense we are not aware of any experimental benchmarks specifically designed
to assess the impact of memory capacity fluctuations. A fundamental obstacle in their
development seems to be the difficulty of characterizing “typical” fluctuation patterns
encountered in practice. An interesting line of inquiry would be to investigate whether one
can obtain, from the performance numbers of a black box algorithm under a small “basis”
of specific fluctuation patterns, sufficient information to compute a good assessment of the
algorithm’s performance numbers under any other pattern.

Finally, the impact of resource fluctuation on how efficiently a task can be solved is a
line of inquiry obviously not limited to memory management. There are a number of other
problems where the amount of resources available can realistically vary over time. Examples
include call admission [16] (with variable circuit capacity) and the numerous variants of
online scheduling [27] (with e.g. variable number or speed of servers). In addition to studying
each problem individually, it would be extremely interesting to identify broad classes sharing
similar characteristics. For example, which problems can be solved optimally or almost
optimally without knowledge of the amount of resources available in the future (as in the
case of paging with dynamic memory capacity)?
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