
36th International Symposium
on Theoretical Aspects of
Computer Science

STACS 2019, March 13–16, 2019, Berlin, Germany

Edited by

Rolf Niedermeier
Christophe Paul

LIPIcs – Vo l . 126 – STACS 2019 www.dagstuh l .de/ l ip i c s

Editors

Rolf Niedermeier
Algorithmics and Computational Complexity, Fakultät IV, TU Berlin, Berlin, Germany
rolf.niedermeier@tu-berlin.de

Christophe Paul
CNRS, Université de Montpellier, LIRMM, Montpellier, France
christophe.paul@lirmm.fr

ACM Classification 2012
Theory of computation → Models of computation; Mathematics of computing → Combinatorics;
Mathematics of computing → Graph theory; Theory of computation → Formal languages and automata
theory; Theory of computation → Logic; Theory of computation → Parameterized complexity and exact
algorithms

ISBN 978-3-95977-100-9

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at https://www.dagstuhl.de/dagpub/978-3-95977-100-9.

Publication date
March, 2019

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at https://portal.dnb.de.

License
This work is licensed under a Creative Commons Attribution 3.0 Unported license (CC-BY 3.0):
https://creativecommons.org/licenses/by/3.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.STACS.2019.0

ISBN 978-3-95977-100-9 ISSN 1868-8969 https://www.dagstuhl.de/lipics

mailto:rolf.niedermeier@tu-berlin.de
mailto:christophe.paul@lirmm.fr
https://www.dagstuhl.de/dagpub/978-3-95977-100-9
https://www.dagstuhl.de/dagpub/978-3-95977-100-9
https://portal.dnb.de
https://creativecommons.org/licenses/by/3.0/legalcode
https://doi.org/10.4230/LIPIcs.STACS.2019.0
https://www.dagstuhl.de/dagpub/978-3-95977-100-9
https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

0:iii

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Luca Aceto (Chair, Gran Sasso Science Institute and Reykjavik University)
Susanne Albers (TU München)
Christel Baier (TU Dresden)
Javier Esparza (TU München)
Michael Mitzenmacher (Harvard University)
Madhavan Mukund (Chennai Mathematical Institute)
Anca Muscholl (University Bordeaux)
Catuscia Palamidessi (INRIA)
Raimund Seidel (Saarland University and Schloss Dagstuhl – Leibniz-Zentrum für Informatik)
Thomas Schwentick (TU Dortmund)
Reinhard Wilhelm (Saarland University)

ISSN 1868-8969

https://www.dagstuhl.de/lipics

STACS 2019

https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

Contents

Foreword
Rolf Niedermeier and Christophe Paul . 0:ix

Invited Talks

Computational Complexity and Partition Functions
Leslie Ann Goldberg . 1:1–1:3

The Many Facets of String Transducers
Anca Muscholl and Gabriele Puppis . 2:1–2:21

Algorithmic Data Science
Petra Mutzel . 3:1–3:15

Tutorials

Fine-Grained Complexity Theory
Karl Bringmann . 4:1–4:7

From Graph Theory to Network Science:
The Natural Emergence of Hyperbolicity

Tobias Friedrich . 5:1–5:9

Regular Contributions

The Semialgebraic Orbit Problem
Shaull Almagor, Joël Ouaknine, and James Worrell . 6:1–6:15

Best-Of-Two-Worlds Analysis of Online Search
Spyros Angelopoulos, Christoph Dürr, and Shendan Jin . 7:1–7:17

Bipartite Diameter and Other Measures Under Translation
Boris Aronov, Omrit Filtser, Matthew J. Katz, and Khadijeh Sheikhan 8:1–8:14

Solving Simple Stochastic Games with Few Random Nodes Faster Using Bland’s
Rule

David Auger, Pierre Coucheney, and Yann Strozecki . 9:1–9:16

Distributed Coloring of Graphs with an Optimal Number of Colors
Étienne Bamas and Louis Esperet . 10:1–10:15

On the Descriptive Complexity of Color Coding
Max Bannach and Till Tantau . 11:1–11:16

Bounding Quantum-Classical Separations for Classes of Nonlocal Games
Tom Bannink, Jop Briët, Harry Buhrman, Farrokh Labib, and Troy Lee 12:1–12:11

Token Sliding on Split Graphs
Rémy Belmonte, Eun Jung Kim, Michael Lampis, Valia Mitsou, Yota Otachi, and
Florian Sikora . 13:1–13:17

36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019).
Editors: Rolf Niedermeier and Christophe Paul

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:vi Contents

Building Strategies into QBF Proofs
Olaf Beyersdorff, Joshua Blinkhorn, and Meena Mahajan . 14:1–14:18

Tight Analysis of the Smartstart Algorithm for Online Dial-a-Ride on the Line
Alexander Birx and Yann Disser . 15:1–15:17

Enumerating Minimal Dominating Sets in Triangle-Free Graphs
Marthe Bonamy, Oscar Defrain, Marc Heinrich, and Jean-Florent Raymond 16:1–16:12

Sparsification of Binary CSPs
Silvia Butti and Stanislav Živný . 17:1–17:8

Tractable QBF by Knowledge Compilation
Florent Capelli and Stefan Mengel . 18:1–18:16

A Tight Extremal Bound on the Lovász Cactus Number in Planar Graphs
Parinya Chalermsook, Andreas Schmid, and Sumedha Uniyal . 19:1–19:14

Average-Case Completeness in Tag Systems
Matthew Cook and Turlough Neary . 20:1–20:17

Pairwise Preferences in the Stable Marriage Problem
Ágnes Cseh and Attila Juhos . 21:1–21:16

Closure Properties of Synchronized Relations
María Emilia Descotte, Diego Figueira, and Santiago Figueira 22:1–22:17

Resource-Bounded Kolmogorov Complexity Provides an Obstacle to Soficness of
Multidimensional Shifts

Julien Destombes and Andrei Romashchenko . 23:1–23:17

Constant-Time Retrieval with O(log m) Extra Bits
Martin Dietzfelbinger and Stefan Walzer . 24:1–24:16

Complexity of the Steiner Network Problem with Respect to the Number of
Terminals

Eduard Eiben, Dušan Knop, Fahad Panolan, and Ondřej Suchý 25:1–25:17

Space Lower Bounds for the Signal Detection Problem
Faith Ellen, Rati Gelashvili, Philipp Woelfel, and Leqi Zhu . 26:1–26:13

Progressive Algorithms for Domination and Independence
Grzegorz Fabiański, Michał Pilipczuk, Sebastian Siebertz, and Szymon Toruńczyk . 27:1–27:16

Modification to Planarity is Fixed Parameter Tractable
Fedor V. Fomin, Petr A. Golovach, and Dimitrios M. Thilikos 28:1–28:17

Visibly Pushdown Languages over Sliding Windows
Moses Ganardi . 29:1–29:17

Fast and Longest Rollercoasters
Paweł Gawrychowski, Florin Manea, and Radosław Serafin . 30:1–30:17

Wealth Inequality and the Price of Anarchy
Kurtuluş Gemici, Elias Koutsoupias, Barnabé Monnot,
Christos H. Papadimitriou, and Georgios Piliouras . 31:1–31:16

Contents 0:vii

Lean Tree-Cut Decompositions: Obstructions and Algorithms
Archontia C. Giannopoulou, O-joung Kwon, Jean-Florent Raymond, and
Dimitrios M. Thilikos . 32:1–32:14

Dispersing Obnoxious Facilities on a Graph
Alexander Grigoriev, Tim A. Hartmann, Stefan Lendl, and Gerhard J. Woeginger 33:1–33:11

Reachability in O(log n) Genus Graphs is in Unambiguous Logspace
Chetan Gupta, Vimal Raj Sharma, and Raghunath Tewari . 34:1–34:13

Dominating Sets and Connected Dominating Sets in Dynamic Graphs
Niklas Hjuler, Giuseppe F. Italiano, Nikos Parotsidis, and David Saulpic 35:1–35:17

On Kernelization for Edge Dominating Set under Structural Parameters
Eva-Maria C. Hols and Stefan Kratsch . 36:1–36:18

Compressed Decision Problems in Hyperbolic Groups
Derek Holt, Markus Lohrey, and Saul Schleimer . 37:1–37:16

How to Secure Matchings Against Edge Failures
Felix Hommelsheim, Moritz Mühlenthaler, and Oliver Schaudt 38:1–38:16

A Deterministic Polynomial Kernel for Odd Cycle Transversal and Vertex
Multiway Cut in Planar Graphs

Bart M.P. Jansen, Marcin Pilipczuk, and Erik Jan van Leeuwen 39:1–39:18

A Characterization of Subshifts with Computable Language
Emmanuel Jeandel and Pascal Vanier . 40:1–40:16

Lower Bounds for DeMorgan Circuits of Bounded Negation Width
Stasys Jukna and Andrzej Lingas . 41:1–41:17

Depth First Search in the Semi-streaming Model
Shahbaz Khan and Shashank K. Mehta . 42:1–42:16

On Finite Monoids over Nonnegative Integer Matrices and Short Killing Words
Stefan Kiefer and Corto Mascle . 43:1–43:13

Tight Complexity Lower Bounds for Integer Linear Programming with Few
Constraints

Dušan Knop, Michał Pilipczuk, and Marcin Wrochna . 44:1–44:15

The Set Cover Conjecture and Subgraph Isomorphism with a Tree Pattern
Robert Krauthgamer and Ohad Trabelsi . 45:1–45:15

Algorithmic Properties of Sparse Digraphs
Stephan Kreutzer, Irene Muzi, Patrice Ossona de Mendez, Roman Rabinovich, and
Sebastian Siebertz . 46:1–46:20

Tree Automata with Global Constraints for Infinite Trees
Patrick Landwehr and Christof Löding . 47:1–47:15

Constructive Discrepancy Minimization with Hereditary L2 Guarantees
Kasper Green Larsen . 48:1–48:13

Quantum Advantage for the LOCAL Model in Distributed Computing
François Le Gall, Harumichi Nishimura, and Ansis Rosmanis . 49:1–49:14

STACS 2019

0:viii Contents

Lifting Theorems for Equality
Bruno Loff and Sagnik Mukhopadhyay . 50:1–50:19

Car-Sharing on a Star Network: On-Line Scheduling with k Servers
Kelin Luo, Thomas Erlebach, and Yinfeng Xu . 51:1–51:14

Beyond Boolean Surjective VCSPs
Gregor Matl and Stanislav Živný . 52:1–52:15

The Containment Problem for Unambiguous Register Automata
Antoine Mottet and Karin Quaas . 53:1–53:15

Stabilization Time in Weighted Minority Processes
Pál András Papp and Roger Wattenhofer . 54:1–54:15

Finite Sequentiality of Unambiguous Max-Plus Tree Automata
Erik Paul . 55:1–55:17

Paging with Dynamic Memory Capacity
Enoch Peserico . 56:1–56:18

Random Noise Increases Kolmogorov Complexity and Hausdorff Dimension
Gleb Posobin and Alexander Shen . 57:1–57:14

A Unified Approach to Tail Estimates for Randomized Incremental Construction
Sandeep Sen . 58:1–58:16

A ZPP NP [1] Lifting Theorem
Thomas Watson . 59:1–59:16

Foreword

The International Symposium on Theoretical Aspects of Computer Science (STACS) confer-
ence series is an internationally leading forum for original research on theoretical aspects of
computer science. Typical areas are:

algorithms and data structures, including: design of parallel, distributed, approximation,
parameterized and randomized algorithms; analysis of algorithms and combinatorics
of data structures; computational geometry, cryptography, algorithmic learning theory,
algorithmic game theory;
automata and formal languages, including: algebraic and categorical methods, coding
theory;
complexity and computability, including: computational and structural complexity theory,
parameterized complexity, randomness in computation;
logic in computer science, including: finite model theory, database theory, semantics,
specification verification, rewriting and deduction;
current challenges, for example: natural computing, quantum computing, mobile and net
computing, computational social choice.

STACS is held alternately in France and in Germany. This year’s conference (taking place
March 13–16 in Berlin) is the 36th in the series. Previous meetings took place in Paris (1984),
Saarbrücken (1985), Orsay (1986), Passau (1987), Bordeaux (1988), Paderborn (1989), Rouen
(1990), Hamburg (1991), Cachan (1992), Würzburg (1993), Caen (1994), München (1995),
Grenoble (1996), Lübeck (1997), Paris (1998), Trier (1999), Lille (2000), Dresden (2001),
Antibes (2002), Berlin (2003), Montpellier (2004), Stuttgart (2005), Marseille (2006), Aachen
(2007), Bordeaux (2008), Freiburg (2009), Nancy (2010), Dortmund (2011), Paris (2012),
Kiel (2013), Lyon (2014), München (2015), Orléans (2016), Hannover (2017), Caen (2018).

The interest in STACS has remained at a very high level over the past years. The STACS
2019 call for papers led to 260 submissions with authors from 39 countries. Each paper
was assigned to three program committee members who, at their discretion, asked external
reviewers for reports. The committee selected 54 papers during a three-week electronic
meeting held in November/December 2018. This means an acceptance rate of only 21%. For
the fifth time within the STACS conference series, there was also a rebuttal period during
which authors could submit remarks to the PC concerning the reviews of their papers. As
co-chairs of the program committee, we would like to sincerely thank all its members and
491 external reviewers for their valuable work. In particular, there were intense and interesting
discussions inside the PC committee. The overall very high quality of the submissions made
the selection an extremely difficult task. This year, the conference includes two invited
tutorials. We would like to express our thanks to the speakers Karl Bringmann (Saarbrücken)
and Tobias Friedrich (Potsdam) for their tutorials, as well as to the three invited speakers,
Leslie Ann Goldberg (Oxford), Anca Muscholl (Bordeaux), and Petra Mutzel (Dortmund).
Special thanks go to the local organizing committee for continuous help throughout the
conference organization. In particular, we wish to thank Till Fluschnik for his day-to-day
support on the technical side and Christlinde Thielcke for her permanent administrative
support. We also thank André Nichterlein for his final assistance in producing the conference
proceedings and TUBS GmbH for their handling of financial accounting.
36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019).
Editors: Rolf Niedermeier and Christophe Paul

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:x Foreword

Moreover, we thank Michael Wagner from the Dagstuhl/LIPIcs team for assisting us
in the publication process and the final production of the proceedings. These proceedings
contain extended abstracts of the accepted contributions and abstracts of the invited talks
and the tutorials. The authors retain their rights and make their work available under a
Creative Commons license. The proceedings are published electronically by Schloss Dagstuhl
– Leibniz-Center for Informatics within their LIPIcs series. STACS 2019 has received funds
and help from the Deutsche Forschungsgemeinschaft (DFG) and support and help from the
Technische Universität Berlin (TU Berlin), for which we are very grateful.

Berlin and Montpellier, March 2019 Rolf Niedermeier and Christophe Paul

Conference Organization

Program Committee

Christoph Berkholz Humboldt-Universität zu Berlin
Benedikt Bollig LSV & ENS Paris-Saclay, CNRS
Karl Bringmann Max Planck Institute for Informatics, Saarbrücken
Gerth Stølting Brodal Aarhus University
Maike Buchin Ruhr-Universität Bochum
David Eppstein University of California, Irvine
Serge Gaspers UNSW Sydney and Data61, CSIRO
Edward Hirsch St. Petersburg State University
Telikepalli Kavitha Tata Institute of Fundamental Research, Mumbai
Hartmut Klauck National University of Singapore
Antonín Kučera Masaryk University, Brno
K Narayan Kumar Chennai Mathematical Institute
Dietrich Kuske TU Ilmenau
Jérôme Lang CNRS, LAMSADE, Université Paris-Dauphine
Sophie Laplante IRIF, Université Paris Diderot
Kazuhisa Makino Kyoto University
Barnaby Martin Durham University
Cyril Nicaud Université Paris Est, LIGM
Rolf Niedermeier TU Berlin (co-chair)
Jakob Nordström KTH Royal Institute of Technology, Stockholm
Christophe Paul LIRMM, CNRS, Université de Montpellier (co-chair)
Pascal Schweitzer TU Kaiserslautern
Shinnosuke Seki University of Electro-Communications, Tokyo
Michał Skrzypczak University of Warsaw
Srikanth Srinivasan Indian Institute of Technology Bombay, Mumbai
Jan Arne Telle University of Bergen
Denis Trystram University Grenoble Alpes
Takeaki Uno National Institute of Informatics, Tokyo
Mikhail Volkov Ural Federal University, Ekaterinburg
Stefan Woltran TU Wien

36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019).
Editors: Rolf Niedermeier and Christophe Paul

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:xii Conference Organization

Local Organizing Committee (TU Berlin)

Matthias Bentert
Robert Bredereck
Till Fluschnik
Vincent Froese
Klaus Heeger
Anne-Sophie Himmel
Andrzej Kaczmarczyk
Dušan Knop
Leon Kellerhals
Hendrik Molter
André Nichterlein
Rolf Niedermeier (chair)
Malte Renken
Christlinde Thielcke
Philipp Zschoche

External Reviewers

Amir Abboud
Peyman Afshani
S. Akshay
Kazuyuki Amano
Bo An
Dmitry Ananichev
Eric Angel
Antonios Antoniadis
Tetsuya Araki
Elena Arseneva Khramtcova
James Aspnes
Albert Atserias
Nathalie Aubrun
David Avis
Haris Aziz
Maxim Babenko
Arturs Backurs
Nikhil Balaji
Jozsef Balogh
Hideo Bannai
Nikhil Bansal
Jérémy Barbay
Nicolas Basset
Julien Baste
Isabel Beckenbach
Djamal Belazzougui
Rémy Belmonte
Alexander Belov
Matthias Bentert
Cédric Bentz
Sebastian Berndt
Vincent Berry
Nathalie Bertrand
Dietmar Berwanger
Amey Bhangale
Umang Bhaskar
Sayan Bhattacharya
Laurent Bienvenu
Johanna Björklund
Thomas Bläsius
Bernhard Bliem
Ivan Bliznets
Achim Blumensath
Ilario Bonacina
Edouard Bonnet
Bartłomiej Bosek
Nicolas Bousquet
Cornelius Brand
Tomas Brazdil

Sabine Broda
Jonah Brown-Cohen
Guido Brückner
Binh-Minh Bui-Xuan
Christina Büsing
Michaël Cadilhac
Alan Cain
Florent Capelli
Francesco Caravelli
Arnaud Carayol
Marco Carmosino
Olivier Carton
André Chailloux
Sourav Chakraborty
Yi-Jun Chang
Steven Chaplick
Vaggos Chatziafratis
Jiehua Chen
Victor Chepoi
Danila Cherkashin
Ashish Chiplunkar
Dmitry Chistikov
Rajesh Chitnis
Ananya Christman
Vincent Cohen-Addad
Thomas Colcombet
Stefano Coniglio
Alessio Conte
Miguel Couceiro
Ágnes Cseh
Wojciech Czerwiński
Mattia D’Emidio
Konrad Kazimierz Dabrowski
Ugo Dal Lago
Peter Damaschke
Bireswar Das
Syamantak Das
Laure Daviaud
Ronald de Haan
Arnaud de Mesmay
Susanna F. de Rezende
Holger Dell
Dariusz Dereniowski
Stéphane Devismes
Benjamin Doerr
Francesco Dolce
Ran Duan
Devdatt Dubhashi
François Durand

Pierre-Francois Dutot
Wolfgang Dvořák
Attila Egri-Nagy
Eduard Eiben
Khaled Elbassioni
Murray Elder
Jan Elffers
Marek Eliáš
Elaine Eschen
Kousha Etessami
Angelo Fanelli
John Fearnley
Carl Feghali
Stefan Felsner
Asaf Ferber
Henning Fernau
Laurent Feuilloley
Johannes Fichte
Hendrik Fichtenberger
Aris Filos-Ratsikas
Arnold Filtser
Jorg Flum
Till Fluschnik
Jacob Focke
Sebastian Forster
Fabrizio Frati
Dominik D. Freydenberger
André Frochaux
Vincent Froese
Matthias Függer
Hiroshi Fujiwara
Eric Fusy
Ariel Gabizon
Jakub Gajarsky
Pietro Galliani
Philippe Gambette
Robert Ganian
Mohit Garg
Naveen Garg
Paul Gastin
Cyril Gavoille
Pawel Gawrychowski
Enrico Gerding
Panos Giannopoulos
Archontia Giannopoulou
Hugo Gilbert
Andreas Göbel
Stephan Gocht
Tomasz Gogacz

36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019).
Editors: Rolf Niedermeier and Christophe Paul

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:xiv External Reviewers

Alexander Göke
Petr Golovach
Alexander Golovnev
Mika Göös
Gramoz Goranci
Daniel Graça
Erich Grädel
Fabrizio Grandoni
Kasper Green Larsen
Elena Grigorescu
Martin Grohe
Rohit Gurjar
Gregory Gutin
Marc Gyssens
Christoph Haase
Vesa Halava
Guangyue Han
Xin Han
Prahladh Harsha
Frédéric Havet
Markus Hecher
Loic Helouet
Petr Hlineny
Markus Holzer
Kaave Hosseini
Chien-Chung Huang
Pavel Hubáček
Tomohiro I
Rasmus Ibsen-Jensen
Shinji Imahori
Dmitry Itsykson
Yoichi Iwata
Lars Jaffke
Petr Jancar
Bart M. P. Jansen
Bruno Jartoux
Ismaël Jecker
Artur Jeż
Łukasz Jeż
Zhengfeng Ji
Matthew Johnson
Martin Jonas
Peter Jonsson
Gwenaël Joret
Vincent Jugé
Marcin Jurdzinski
Andrzej Kaczmarczyk
Naoyuki Kamiyama
Iyad Kanj
Adam Karczmarz
Jarkko Kari
Nikolai Karpov
Yoshiyuki Karuno

Steve Kass
Yasushi Kawase
Jens Keppeler
Thomas Kesselheim
Emanuel Kieronski
Benjamin Kiesl
Shuji Kijima
Eunjung Kim
Sang-Sub Kim
Kei Kimura
Tamás Király
Masashi Kiyomi
Joachim Klein
Kim-Manuel Klein
Alexander Knop
Dušan Knop
Yusuke Kobayashi
Eryk Kopczynski
Dominik Köppl
Arpita Korwar
Dmitry Kosolobov
Robin Kothari
Martin Koutecký
Yiannis Koutis
Lukasz Kowalik
Alexander Kozachinskiy
Jan Kretinsky
Amer Krivosija
Markus Kröll
Manfred Kufleitner
Alexander Kulikov
Amit Kumar
Michal Kunc
Marvin Künnemann
Kazuhiro Kurita
O-Joung Kwon
Sébastien Labbé
Arnaud Labourel
Guillaume Lagarde
Jean Marie Lagniez
Michael Lampis
John Lapinskas
Massimo Lauria
Mathieu Laurière
Tien-Nam Le
Francois Le Gall
Thierry Lecroq
Johannes Lengler
Pascal Lenzner
Avivit Levy
Nathan Lhote
Nutan Limaye
Stratis Limnios

Andrea Lincoln
Zhenming Liu
Christof Löding
Markus Lohrey
Satyanarayana Lokam
Daniel Lokshtanov
Sylvain Lombardy
Anna Lubiw
Giorgio Lucarelli
Junjie Luo
Ramanujan M. S.
Jeremy Macdonald
Alexander Mäcker
Meena Mahajan
Mohammad Mahmoody
Cécile Mailler
Adam Malinowski
Jan Maly
Florin Manea
David Manlove
Maurice Margenstern
Andrea Marino
Claire Mathieu
Samuel McCauley
Andrew McGregor
Kitty Meeks
Saeed Mehrabi
Or Meir
Stefan Mengel
Robert Mercas
Wolfgang Merkle
Friedhelm Meyer Auf der Heide
David Mezlaf
Mehdi Mhalla
Othon Michail
Vincent Michielini
Ivan Mikhajlin
Martin Milanič
Dor Minzer
Ilya Mironov
Neeldhara Misra
Valia Mitsou
Shuichi Miyazaki
Matthias Mnich
Xavier Molinero
Hendrik Molter
Tobias Mömke
Clement Mommessin
Nelma Moreira
Antoine Mottet
Amer Mouawad
Grégory Mounié
Aida Mousavifar

External Reviewers 0:xv

Sagnik Mukhopadhyay
Martin Mundhenk
Kengo Nakamura
Anand Natarajan
Jesper Nederlof
Volodymyr Nekrashevych
Jelani Nelson
Stefan Neumann
André Nichterlein
Matthias Niewerth
Sergey Nikolenko
Aleksandar Nikolov
Prajakta Nimbhorkar
Reino Niskanen
Alexandre Niveau
Alexandre Nolin
Petr Novotný
Jan Obdrzalek
Pascal Ochem
Joanna Ochremiak
Alexander Okhotin
Krzysztof Onak
Tim Oosterwijk
Sebastian Ordyniak
Magdalena Ortiz
Yota Otachi
Martin Otto
Shayan Oveis Gharan
Dana Pardubska
Paweł Parys
Ami Paz
Timothée Pecatte
Tomáš Peitl
Vianney Perchet
Simon Perdrix
Sylvain Perifel
Clément Pernet
Fedor Petrov
Elena Petrova
Giovanni Pighizzini
Michał Pilipczuk
G. Michele Pinna
Solon Pissis
Alexandru Popa
Natacha Portier
Igor Potapov
Anupam Prakash
M. Praveen
Nicola Prezza
Elena Pribavkina
Kirk Pruhs
Marcin Przybyłko
Gabriele Puppis
Svetlana Puzynina
Jaikumar Radhakrishnan

Jakub Radoszewski
Benjamin Raichel
Günther Raidl
Venkatesh Raman
Narad Rampersad
Michael Rao
Gaurav Rattan
Bhaskar Ray Chaudhury
Jean-Florent Raymond
Igor Razgon
Damien Regnault
Vojtech Rehak
Daniel Reichman
Felix Reidl
Jan Reimann
Fabian Reiter
Malte Renken
Anja Rey
Pierre-Alain Reynier
Gaétan Richard
David Richerby
Kilian Risse
Cristian Riveros
Robert Robere
Emanuele Rodaro
Jérémie Roland
Jonathan Rollin
Andrei Romashchenko
Adi Rosén
Raphael Rossignol
Thomas Rothvoss
Andrew Ryzhikov
Toshiki Saitoh
Prakash Saivasan
Andrej Sajenko
Ville Salo
Rahul Santhanam
Swagato Sanyal
Ramprasad Saptharishi
Thatchaphol Saranurak
Ignasi Sau
Thomas Sauerwald
David Saulpic
Nitin Saurabh
Saket Saurabh
Nadja Scharf
Kevin Schewior
Markus L. Schmid
Jens M. Schmidt
Nicole Schweikardt
Alexander Shen
Xiangkun Shen
Akiyoshi Shioura
Takeharu Shiraga
Arseny Shur

Sebastian Siebertz
Florian Sikora
Rodrigo Silveira
Sunil Simon
Friedrich Slivovsky
Alexander Smal
Christian Sohler
Dmitry Sokolov
Manuel Sorge
Jiri Srba
A V Sreejith
Abhinav Srivastav
Piyush Srivastava
K V Subrahmanyam
Zhaohong Sun
Anupa Sunny
Akira Suzuki
Joseph Swernofsky
Marek Sys
Kenjiro Takazawa
Navid Talebanfard
Suguru Tamaki
Shin-Ichi Tanigawa
Till Tantau
Alexandre Termier
Sumedh Tirodkar
Sophie Tison
Ioan Todinca
Meng-Tsung Tsai
Ryuhei Uehara
René van Bevern
Jan van den Brand
Rob van Stee
Pascal Vanier
Carmine Ventre
Nikolay Vereshchagin
Sergey Verlan
Marc Vinyals
Caterina Viola
Ben Lee Volk
Moritz von Looz
Magnus Wahlström
Haitao Wang
Kunihiro Wasa
Oren Weimann
Armin Weiss
Mathias Weller
Philip Wellnitz
Josef Widder
Piotr Więcek
Andreas Wiese
Ryan Williams
Sarah Winter
Gerhard J. Woeginger
Dominik Wojtczak

STACS 2019

0:xvi External Reviewers

Marcin Wrochna
Mingyu Xiao
Chao Xu
Easton Li Xu
Masaki Yamamoto
Katsuhisa Yamanaka
Koichi Yamazaki

Yu Yokoi
Yuichi Yoshida
Raphael Yuster
Viktor Zamaraev
Meirav Zehavi
Peter Zeman
Thomas Zeume

Jingru Zhang
Yong Zhang
Arjana Žitnik
Stanislav Živný
Philipp Zschoche
Paweł Żyliński

Computational Complexity and Partition
Functions
Leslie Ann Goldberg
Department of Computer Science, University of Oxford, Oxford, UK
leslie.goldberg@cs.ox.ac.uk

Abstract
This paper is an extended abstract of my STACS 2019 talk “Computational Complexity and Partition
Functions”.

2012 ACM Subject Classification Theory of computation

Keywords and phrases partition functions, approximation

Digital Object Identifier 10.4230/LIPIcs.STACS.2019.1

Category Invited Talk

Funding The research leading to these results has received funding from the European Research
Council under the European Union’s Seventh Framework Programme (FP7/2007-2013) ERC grant
agreement no. 334828. The paper reflects only the authors’ views and not the views of the ERC or
the European Commission. The European Union is not liable for any use that may be made of the
information contained therein.

1 Extended Abstract and Annotated Bibliography

A partition function is a polynomial which summarises properties of physical systems such
as spin models (for example – the Ising model, the Potts model, the hard core model, or the
monomer-dimer model). The talk does not assume knowledge of these models. The goal in
the research area is to develop good approximation algorithms for partition functions, and
to understand, in terms of the parameters of the models, when the partition functions can
be (approximately) evaluated. Typically, a partition function is represented implicitly by a
(small) graph, but it has exponentially many terms, so evaluation is non-trivial.

This talk is a survey, designed to introduce results, methods, and open problems in the
area. An emerging trend is that, in order to really understand partition functions, it is
useful to work over complex numbers, rather than just over the reals. This written extended
abstract does not discuss methods – it is meant to serve more as an annotated bibliography –
helping somebody who attended the talk to find the relevant papers.

The talk will start by introducing the independence polynomial of a graph, which is the
partition function of the hard core model. This is a model of a gas whose particles occupy
the vertices of a graph. Particles have non-negligible size (so cannot be adjacent). The model
has a parameter λ. The partition function is given by ZG(λ) =

∑
I∈IG

λ|I|, where IG is the
set of independent sets of a graph G and |I| is the number of vertices in the independent
set I. We will consider the problem of approximating ZG(λ), given a graph G with maximum
degree at most ∆.

When λ is a real number, much is known. In particular, the complexity of approximat-
ing ZG(λ) is completely captured by two real-valued thresholds λ∗ and λc which depend on
∆ and satisfy 0 < λ∗ < λc. In the positive direction, ZG(λ) is efficiently approximable if λ is
in the interval (−λ∗, λc) [8, 11, 15, 16].

Outside of the interval [−λ∗, λc], subject to suitable complexity-theoretic assumptions,
no efficient approximation algorithm exists [7, 14]. The talk will discuss the relevance of

© Leslie Ann Goldberg;
licensed under Creative Commons License CC-BY

36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019).
Editors: Rolf Niedermeier and Christophe Paul; Article No. 1; pp. 1:1–1:3

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-1879-6089
mailto:leslie.goldberg@cs.ox.ac.uk
https://doi.org/10.4230/LIPIcs.STACS.2019.1
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

1:2 Computational Complexity and Partition Functions

the thresholds −λ∗ and λc. In fact, these are the two real points on the boundary of a
cardiod-shaped region in the complex plane [12] which is the region in which the “occupation
ratio” at the root of a ∆-regular tree converges, as the height of the tree grows. (This
means that, for parameters λ inside this region, when we consider the model on a ∆-regular
tree, the contribution to the partition function from independent sets in which the root is
occupied converges to some fixed fraction of the value of the total partition function.) Peters
and Regts naturally asked whether this cardiod coincides with the region where efficient
approximation is possible. It is now known [5] that efficient approximation is impossible
outside of the cardiod (subject to complexity-theoretic assumptions). Inside the cardiod,
there are many regions where we do have efficient approximation algorithms [4, 8, 11, 12]
but the full picture is not fully resolved, so there are plenty of open questions.

Another interesting partition function is the matching polynomial of a graph, which is the
partition function of the monomer dimer model. A “monomer” is an unmatched vertex in a
matching, and a “dimer” is a pair of matched vertices. The model has a parameter γ and the
partition function is given by ZG(γ) =

∑
M∈MG

γ|M |, whereMG is the set of matchings of
a graph G and |M | is the number of edges in a matching M . When γ is a positive real, there
is an efficient randomised approximation algorithm based on Monte Carlo simulation [10].
The applicability of deterministic approximation is fully resolved for bounded-degree graphs.
It turns out that this is possible for any γ except (subject to complexity assumptions) when
γ is a real number less than −1/(4(∆ − 1)) [3, 6, 11]. The reason that approximation is
impossible for these values of γ (and possible elsewhere) is to do with the fact that this is
where the zeroes of the polynomial are located [9]. In general, the method of Barvinok [1, 2]
leads to efficient approximation algorithms in complex domains where there are no roots, but
in turn, the existence of roots sometimes leads to provable intractability. The approximability
question has also been investigated when the bounded-degree requirement is relaxed to
a notion of average degree, namely the connective constant. For graphs with bounded
connective constant, it turns out that efficient approximation is possible everywhere except
when γ is a negative real. Moreover, there is a set of values which is dense on the negative real
axis where efficient approximation is impossible (subject to complexity assumptions) [6, 13].

There are many interesting partition functions, such as the partition functions of the
Ising model and the Potts model, that will not be discussed in the talk. The chosen examples
are designed to give a taste of results, methods and open problems in this research area.

References

1 A. Barvinok. Combinatorics and Complexity of Partition Functions. Algorithms and Combin-
atorics. Springer International Publishing, 2017.

2 A. I. Barvinok. Computing the Permanent of (Some) Complex Matrices. Foundations of
Computational Mathematics, 16(2):329–342, 2016.

3 M. Bayati, D. Gamarnik, D. A. Katz, C. Nair, and P. Tetali. Simple deterministic approximation
algorithms for counting matchings. In Proceedings of the 39th Annual ACM Symposium on
Theory of Computing, San Diego, California, USA, June 11-13, 2007, pages 122–127, 2007.

4 Ferenc Bencs and Péter Csikvári. Note on the zero-free region of the hard-core model. arXiv
e-prints, page arXiv:1807.08963, July 2018. arXiv:1807.08963.

5 I. Bezáková, A. Galanis, L. A. Goldberg, and D. Štefankovič. Inapproximability of the
independent set polynomial in the complex plane. In Proceedings of the 50th Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2018, pages 1234–1240, 2018. Full
version available from https://arxiv.org/abs/1711.00282.

http://arxiv.org/abs/1807.08963
https://arxiv.org/abs/1711.00282

L. A. Goldberg 1:3

6 Ivona Bezáková, Andreas Galanis, Leslie Ann Goldberg, and Daniel Stefankovic. The complex-
ity of approximating the matching polynomial in the complex plane. CoRR, abs/1807.04930,
2018. arXiv:1807.04930.

7 Andreas Galanis, Leslie Ann Goldberg, and Daniel Štefankovič. Inapproximability of the
Independent Set Polynomial Below the Shearer Threshold. In 44th International Colloquium
on Automata, Languages, and Programming, ICALP 2017, July 10-14, 2017, Warsaw, Poland,
pages 28:1–28:13, 2017. doi:10.4230/LIPIcs.ICALP.2017.28.

8 Nicholas J. A. Harvey, Piyush Srivastava, and Jan Vondrák. Computing the Independence
Polynomial: from the Tree Threshold down to the Roots. In Proceedings of the Twenty-Ninth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA, USA,
January 7-10, 2018, pages 1557–1576, 2018. doi:10.1137/1.9781611975031.102.

9 O. J. Heilmann and E. H. Lieb. Theory of monomer-dimer systems. Communications in
Mathematical Physics, 25(3):190–232, 1972.

10 M. Jerrum and A. Sinclair. Approximating the Permanent. SIAM J. Comput., 18(6):1149–1178,
1989.

11 Viresh Patel and Guus Regts. Deterministic Polynomial-Time Approximation Algorithms
for Partition Functions and Graph Polynomials. SIAM J. Comput., 46(6):1893–1919, 2017.
doi:10.1137/16M1101003.

12 Han Peters and Guus Regts. On a conjecture of Sokal concerning roots of the independence
polynomial. CoRR, abs/1701.08049, 2017. arXiv:1701.08049.

13 A. Sinclair, P. Srivastava, D. Štefankovič, and Y. Yin. Spatial mixing and the connective
constant: optimal bounds. Probability Theory and Related Fields, 168(1):153–197, 2017.

14 Allan Sly and Nike Sun. Counting in two-spin models on d-regular graphs. Ann. Probab.,
42(6):2383–2416, November 2014. doi:10.1214/13-AOP888.

15 Piyush Srivastava. Approximating the hard core partition function with negative activities.
Manuscript, available at www.its.caltech.edu/~piyushs/, April 2015.

16 Dror Weitz. Counting Independent Sets Up to the Tree Threshold. In Proceedings of the
Thirty-eighth Annual ACM Symposium on Theory of Computing, STOC ’06, pages 140–149,
New York, NY, USA, 2006. ACM. doi:10.1145/1132516.1132538.

STACS 2019

http://arxiv.org/abs/1807.04930
http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.28
http://dx.doi.org/10.1137/1.9781611975031.102
http://dx.doi.org/10.1137/16M1101003
http://arxiv.org/abs/1701.08049
http://dx.doi.org/10.1214/13-AOP888
www.its.caltech.edu/~piyushs/
http://dx.doi.org/10.1145/1132516.1132538

The Many Facets of String Transducers
Anca Muscholl
LaBRI, University of Bordeaux, France

Gabriele Puppis
CNRS, LaBRI, France

Abstract
Regular word transductions extend the robust notion of regular languages from a qualitative to a
quantitative reasoning. They were already considered in early papers of formal language theory, but
turned out to be much more challenging. The last decade brought considerable research around
various transducer models, aiming to achieve similar robustness as for automata and languages. In
this paper we survey some older and more recent results on string transducers. We present classical
connections between automata, logic and algebra extended to transducers, some genuine definability
questions, and review approaches to the equivalence problem.

2012 ACM Subject Classification Theory of computation → Transducers

Keywords and phrases String transducers, complexity

Digital Object Identifier 10.4230/LIPIcs.STACS.2019.2

Category Invited Talk

Funding Work supported by ANR DeLTA (ANR-16-CE40-0007).

Acknowledgements We would like to thank our colleagues, in particular D. Figueira, O. Gauwin,
F. Mazowiecki and I. Walukiewicz, for their comments on a draft version of this paper.

1 Introduction

Since the early times of computer science, the notion of transduction has played a funda-
mental role, as computers typically process data and transform it between different formats.
Numerous fields of computer science are ultimately concerned with transformations, ranging
from databases to image processing, and an important issue is to perform transformations
with low cost, whenever possible.

The most basic form of transformations is realized by processing inputs and producing
outputs using finite memory. Such machines are called finite-state transducers. Finite-state
string transducers were considered in very early work in formal language theory [22, 73, 41,
54, 67, 1, 40, 26, 14], and it was soon clear that achieving a good understanding of transducers
would be much more challenging than for the classical finite-state automata. There are many
aspects that change from automata to transducers, in particular non-determinism and the
capability to process the input in both directions strictly increase the expressive power of
transducers, while this not the case for automata [69, 77]. A further difference is that some
fundamental questions, such as the equivalence problem, are undecidable for transducers.

We consider in this survey string transducers, as non-deterministic finite-state transducers
that compute relations (or functions) over finite words. It turns out that for string-to-
string functions, (single-valued) two-way transducers nicely capture the notion of regularity:
Engelfriet and Hoogeboom showed in [42] that two-way transducers have the same expressive
power as Courcelle’s monadic second-order logic definable graph transductions [28], restricted
to words. This equivalence supports thus the notion of “regular” functions, in the spirit
of classical results on regular word languages from automata theory and logic (due to

© Anca Muscholl and Gabriele Puppis;
licensed under Creative Commons License CC-BY

36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019).
Editors: Rolf Niedermeier and Christophe Paul; Article No. 2; pp. 2:1–2:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.STACS.2019.2
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

2:2 The Many Facets of String Transducers

Büchi, Elgot, Trakhtenbrot, Rabin, and others). Recently, Alur and Cerný [3] fostered new
interest into this topic by introducing streaming string transducers, that have the same
expressiveness as the two previous models, but allow for more flexibility in extending the
model of string-to-string transductions to other quantitative models.

This survey is about classical connections between automata, logic and algebra extended
to transducers, some genuine definability questions for transducers, and the main approaches
to the equivalence problem. For space reasons we had to leave out several interesting
topics, for example regular expressions for transductions [6, 33, 20], transductions over
infinite strings [5, 45], visibly pushdown transducers [31, 49], or multi-tape transducer
models [63, 25, 23]. Finally, we acknowledge the inspiration provided by a recent survey by
Filiot and Reynier [50].

2 String transducers: the setting

As it happens for languages, relations on strings can be specified using many different
formalisms. Following a long-lasting tradition, classes of relations are defined using equational,
descriptive, or operational formalisms, e.g. algebras, logics, or automata. Unlike for languages,
however, different specification formalisms for relations have often different expressive powers,
as well as different closure and algorithmic properties. Another important distinction is
whether we consider arbitrary relations or functions. For simplicity, hereafter we use the term
function to generically refer to a partial function, and we say that a relation is single-valued
if it is a (partial) function. Similarly, we say that a relation is k-valued (resp. finite-valued)
is it is a union of k (resp. finitely many) partial functions.

Below, we present a few common formalisms based on logics and automata that received
most of the attention in the literature.

MSO transductions

Within the realm of logics, monadic second-order (MSO) logic is one of the most expressive
formalisms for specifying functions, but also relations on words. The approach, as originally
proposed by Courcelle for graphs [28], consists of logically interpreting an output on a given
input (or copies of it), where both input and output are seen as relational structures. More
precisely, an MSO interpretation consists of a family of MSO formulas ϕdom, ϕpos(x), ϕc-lab(x)
(one for every letter c in the target alphabet), and ϕsucc(x, y), that describe, respectively,
when the output string is defined, which positions from the input become positions of the
output, the labels of the output positions, and the successor relation. An MSO transduction
can be seen as an MSO interpretation preceded by an operation that copies the input a fixed
number of times, annotating each copy with a distinguished color. For example, Figure 1
gives a very simple example of MSO transduction that removes all occurrence of b from the
input, and replaces every a by a c.

ϕpos(x) := a(x)

ϕc-lab(x) := true

ϕsucc(x, y) := x < y ∧ a(x) ∧ a(x)
∧ ∀z x < z < y → b(z)

a a b b a b

7→

c c b b c b

Figure 1 An MSO transduction with formulas defining positions, labels, and successor relation.

A. Muscholl and G. Puppis 2:3

c | a c

c | b c

c | c

c | c

a | ε

b | ε
abbaaababab 7→ babbaaababa

Figure 2 A 1NFT. An arrow labeled by c | v represents a transition that consumes an input
letter c ∈ {a, b} and appends the word v to the output.

In order to define multi-valued relations, one can first annotate the input with arbitrary
colors, and then perform an MSO transduction on the annotated input: this allows a certain
degree of freedom in the possible outputs associated with the original input. The latter type
of relation is called NMSO transduction, the ‘N’ standing for non-deterministic. There are of
course restricted variants of (N)MSO transductions, where, for instance, monadic second-
order quantification is forbidden (FO transductions), or where the order on output positions
is directly inherited from the order on input positions (order-preserving MSO transductions).
For example, the transduction of Figure 1 is an order-preserving FO transduction.

While the formalism of string-to-string (N)MSO transductions is already quite expressive,
automata are certainly the most versatile tool for defining relations in an operational way.
The literature offers many different models of automata for relations (a.k.a. transducers),
which can roughly be distinguished based on the amount of non-determinism and on how
the input and the associated output are consumed and produced, respectively. For instance,
one can distinguish between models in which the input head moves only from left to right
(one-way) or in either direction (two-way).

One-way transducers

A rather simple model is that of one-way non-deterministic finite-state transducer (abbrevi-
ated as 1NFT), describing the so-called rational relations. This is basically a non-deterministic
automaton in which every transition consumes at most one letter from the input and appends
a word of any length to the output. Figure 2 gives an example of a 1NFT realizing the cyclic
rotation f defined by f(ua) = au and f(ub) = bu, for all u ∈ {a, b}∗.

1NFT are readily seen to be equivalent to the formalism of order-preserving NMSO
transductions. They can also be equally presented as languages. For example, Nivat [67]
observed that the set of runs of a 1NFT can be presented as a language of interleavings of
input and output letters, called synchronization language. As a consequence, every rational
relation R ⊆ Σ∗ × Γ∗ can be presented by at least one regular synchronization language
(possibly more) over Σ] Γ.

The deterministic variant of 1NFT, denoted 1DFT and defining the so-called of sequential
functions, has a deterministic underlying automaton and at most one transition (p, a, q, u),
for every pair of states p, q and input letter a. In addition, every final state is associated
with an output word that is produced at the end of the run1.

1 This feature is necessary to realize functions that are not monotone w.r.t. prefix order. According to the
classical terminology, these functions should be called subsequential, whereas sequential was originally

STACS 2019

2:4 The Many Facets of String Transducers

c = ␣ | x := ε
y := y ␣ x

c 6= ␣ | x := x c
y := y

output := x, ␣ y Alan ␣ M. ␣ Turing 7→ Turing, ␣ Alan ␣ M.

Figure 3 A DSST that updates two registers, named x, y, based on whether the input letter c is
the blank space or not.

As a matter of fact, interesting subclasses of rational relations can be obtained by
restricting the forms of interleavings of input and output letters in the synchronization
languages. For example, synchronization languages contained in (ΣΓ)∗(Σ∗ ∪ Γ∗), which
enforce a strict alternation between input and output letters, capture the class of automatic
relations. This latter class is closed under all boolean operations (union, intersection,
complement), and has a decidable equivalence problem and several other nice algorithmic
properties [71]. The idea of defining classes of relations based on synchronization languages
was investigated in detail in a series of works [43, 47, 36, 35].

Two-way transducers

The two-way variant of a non-deterministic finite-state transducer (abbreviated as 2NFT)
allows the input head to move in any direction, to the left or to the right. This gives a more
powerful model than 1NFT, which captures e.g. the relation {(u, un) : u ∈ Σ∗, n ∈ N}.

When 2NFT are restricted to be single-valued, they turn out to be be equivalent to
MSO transductions, so to their deterministic variant 2DFT as well [42]. This is a striking
difference compared to the one-way models, where single-valued 1NFT are strictly more
powerful than 1DFT.

Streaming string transducers

More recently, a third transducer model, called streaming string transducer (abbreviated as
DSST or NSST, depending on whether it is deterministic or not), was proposed by Alur and
Cerný in [3]. In this model the input is processed from left to right, while storing partial
outputs in a finite set R of write-only registers. Transitions consume one input letter at a time,
and can append words to the left and to the right of a register, as well as concatenate registers
together. In particular, register updates correspond to substitutions σ : R → (R ∪ Γ)∗,
where Γ is the output alphabet. As an example, the streaming transducer in Figure 3
reformats author names in bibliographies by transforming strings of the form first-name
second-name surname into strings of the form surname, first-name second-name.

An SST is called copyless if no register occurs more than once in the right hand–=-sides
of the update rules. According to the usual nomenclature we refer to copyless SST just as
SST, and to unrestricted SST as copyful SST. Copyful DSST are close to an old formalism for
grammars called HDT0L, a special family of Lindenmayer systems. Strictly speaking, HDT0L
systems define word languages, as images of an initial word via sequences of morphisms, that
is, words of the form hi1 ◦ · · · ◦ hin(w) for some indexes i1, . . . , in and for a fixed tuple of
morphisms h1, . . . , hk and a fixed word w. Such grammars can be extended naturally so
as to define functions from an indexing sequence i1, . . . , in (the input) to hi1 ◦ · · · ◦ hin(w)

reserved to prefix-monotone functions realized by 1DFT without the final output rule. We prefer the
generic name “sequential function”.

A. Muscholl and G. Puppis 2:5

(the output). Copyful DSST define precisely those functions that can be obtained from the
previous ones by restricting their domains to regular languages, and by possibly applying a
final additional morphism [51].

In the single-valued case, NSST can be determinized and are expressively equivalent to
2DFT and MSO transductions [3]. Determinization incurs an exponential blow-up, and
so does the transformation from DSST to 2DFT. Surprisingly, the reverse transformation
from DSST to 2DFT turned out to be doable in quadratic time [32], through a construction
based on reversible (i.e. deterministic and co-deterministic) transducers. Based on the
equivalence between 2DFT, DSST, and MSO transductions, one often calls the induced class
of string-to-string functions regular, in the spirit of classical results on regular languages,
relating automata theory and logics. Unfortunately, this correspondence cannot be fully
generalized to the relational case, where the transducer models 2NFT and NSST turn out to
be incomparable. For example, the relation {(u, un) : u ∈ Σ∗, n ∈ N} is 2NFT-definable,
but not NSST-definable, whereas the relation {(uv, vu) : u, v ∈ Σ∗} is NSST-definable but
not 2NFT-definable. It is however the case that NSST and NMSO transductions are equally
expressive even in the relational case, as shown in [4]. Moreover, it is possible to capture
the latter class of relations by a variant of two-way transducers, enhanced with the so-called
common guess [19]. Formally, a two-way transducer (input-deterministic or not) has common
guess if, before starting the computation, it can annotate the input with arbitrary colors, so
that the same color is read each time the head revisits a position. This model is naturally
closed under projections on the input, and easily simulates NSST. As a consequence, 2DFT
with common guess are equivalent to NSST and to NMSO transductions:

I Proposition 1. NMSO transductions, NSST, and 2DFT with common guess define the
same class of relations.

In the following sections we will consider two families of decision problems on relations:
the class-membership and the equivalence problems. These are very natural problems, that
cover most of the difficulties of reasoning with relations. As we will see, the rule of thumb in
this context is that most problems turn out to be undecidable as soon as they involve non-
trivial properties of rational relations. However, decidability can be recovered in restricted
settings, notably in the single-valued, and possibly finite-valued, case. An alternative idea
that is often used for recovering decidability of those problems is the origin semantics [17],
that we discuss in Section 5.

3 Class-membership problems

Given any two classes C1, C2 of relations, the following class-membership (or characterization)
problem arises naturally: given a relation R ∈ C1, decide whether R ∈ C2. Clearly, the
decidability status and complexity of the above problem depends on the choice of the classes
C1, C2, and on the formalisms used to represent their relations. Before discussing in more
detail a few decidable cases, and their complexity, we give a necessary, and rather strict
criterion for avoiding undecidability. The criterion is based on the following undecidability
result for the universality problem of rational relations:

I Theorem 2 (Fischer and Rosenberg [52]). It is undecidable whether a given 1NFT realizes
the universal relation Σ∗ × Γ∗.

Proof. We give a simple proof of this undecidability result due to Ibarra [60], showing
that undecidability even holds for a unary output alphabet. The proof reduces the Post

STACS 2019

2:6 The Many Facets of String Transducers

Correspondence Problem: given two word morphisms f, g : Ω∗ → ∆∗, with Ω and ∆ finite
alphabets, decide whether there is a non-empty word w ∈ Ω+ so that f(w) = g(w). Given
such f and g, let R+ be the set of all pairs (w u, cn) such that n = |u| and u = f(w) = g(w)
– here we assume w.l.o.g. that the alphabets Ω and ∆ are disjoint. Intuitively R+ consists of
correct encodings of solutions of the PCP instance. Further let R− = (Σ∗ × Γ∗) \R+ be the
complement relation, where Σ = Ω]∆ and Γ = {c}. In particular, R− contains pairs of the
form (w u, cn) ∈ (Ω+∆∗)× Γ∗ such that either n 6= |u|, or u 6= f(w), or u 6= g(w). Note that
R− is universal if and only if there is no solution to the PCP instance.

Now, it suffices to verify that R− is a rational relation. The pairs outside (Ω+∆∗)× Γ∗
can be easily realized by a 1NFT. Similarly, the pairs (w u, cn) satisfying n 6= |u| can be
obtained by consuming the suffix u of the input while producing an output cn of length
strictly smaller or greater than |u|. The remaining pairs satisfying u 6= f(w) ∧ n = |u|
(resp. u 6= g(w)∧n = |u|) are covered using the following strategy. One guesses factorizations
of w and u of the form w1 aw2 and u1 u2, so that u2 does not begin with f(a) (resp. g(a)),
and |u1| = |f(w1)| (resp. |u1| = |g(w1)|). Accordingly, one outputs c|f(w1)| (resp. c|g(w1)|)
while reading w1, and c|u2| while reading u2. J

When considering a class-membership problem from a class C1 that contains all rational
relations to a proper subclass C2 of it that contains at least the universal relation, one can
sometimes adapt the proof above to show that the considered problem is undecidable. For
example, following a result from [7], if C1 is the class of 2NFT-definable relations and C2 is
the class of rational relations, then, given a PCP instance (f, g), one can modify the relation
R− in the previous proof by replacing the pairs (w u, cn) with pairs of the form (w u,w cn),
where the first part w of the input is copied once to the output. These pairs can be easily
produced by a two-way transducer that reads the input twice. It can be shown that, when
the PCP instance has a solution, the second pass on the input is necessary for producing the
correct number of c’s. Otherwise, if the PCP instance has no solutions, then the relation
becomes 1NFT-definable: a transducer can read the input prefix w to copy it onto the output,
and then cover the arbitrary remaining parts of the input and the output. From this it
follows that the class-membership problem from 2NFT to 1NFT is undecidable.

Theorem 2 exploits in a crucial way relations that associate arbitrarily many outputs with
the same input, and in particular the existence of the universal relation. This suggests that
decidability of universality and class-membership problems can be recovered by restricting to
classes of functions. 2 We present below a few cases in which this approach succeeds, notably,
for 1NFT/2NFT/NSST vs. single-valued 1NFT/2NFT/NSST (single-valuedness), for 1NFT
vs. 1DFT (sequentiality), for 2NFT vs. single-valued 1NFT (one-way definability), and for
2NFT vs. FO transductions (FO-definability).

Single-valuedness

The class-membership problem from the class C1 of rational relations to the class C2 of
rational functions boils down to testing single-valuedness of 1NFT. This property was first
shown to be decidable by Schützenberger [75]. Later, polynomial-time algorithms were given
in [58, 81, 12]. The precise complexity is Nlogspace-complete, which can be shown using a
rather simple reduction to emptiness of one-counter automata, as explained below. Using

2 Hereafter, for simplicity, we forbid the use of ε-moves in all models of one-way and two-way transducers
(SST already forbid these moves by definition). This assumption does not affect the expressiveness
of the models, nor the complexity of the considered problems, since in the single-valued case one can
efficiently remove ε-moves.

A. Muscholl and G. Puppis 2:7

a similar technique, one can prove that single-valuedness remains decidable for 2NFT and
NSST, but now with Pspace complexity (for 2NFT decidability was first shown in [30], and
for NSST was shown in [4]).

I Theorem 3. The single-valuedness problem is
1. Nlogspace-complete for 1NFT.
2. Pspace-complete for 2NFT.
3. in Pspace for NSST.

Proof. Given a 1NFT T , one guesses an input word, together with two runs of T on it, and
checks that the respective outputs are different. The test for different outputs can be done
with a counter, that verifies on a given input that either (1) the lengths of the two outputs
are different, or (2) there is some position in the two outputs where the respective symbols
differ. In both cases the question can be reduced to emptiness of a one-counter automaton of
quadratic size, which yields the claimed complexity. More precisely, the counter is updated
on the basis of the number of output symbols produced by the transitions in the two runs,
one contributing positively and the other contributing negatively; checking the same position
in the two outputs amounts at checking that the value of counter is zero.

The result for single-valuedness of a 2NFT T follows the same idea as above, except
that now the (one-way) one-counter automaton is obtained through a crossing sequence
construction [77], and thus has exponential size. More precisely, one follows two runs of T
on the same input by guessing tuples of states crossing each position. The length of every
tuple can be bounded by 2n, where n is the number of states of T , since to detect a violation
of single-valuedness it suffices to consider only runs that visit the same position with the
same state at most twice. This reduces single-valuedness of T to emptiness of a one-counter
automaton of exponential size, which can be checked in Pspace. Then Pspace-hardness
follows by reducing emptiness of intersection of finite-state automata [62].

Similarly, for NSST, the one-counter automaton that checks different outputs is expo-
nential in the number of registers, since it needs to guess, for instance, which registers have
a non-empty content that eventually appears in the final output [4]. To the best of our
knowledge no matching lower bound is known in this case. J

Sequentiality

Let us now consider the problem of testing sequentiality of 1NFT, namely, the class-
membership problem from rational to sequential functions. The problem was first shown
decidable by Choffrut [26]. Later the complexity was shown to be in Ptime [11]. In fact, a
close inspection to those proofs shows that the problem is Nlogspace-complete:

I Theorem 4. The sequentiality problem for 1NFT is Nlogspace-complete.

Proof. The theorem is established by first giving a topological characterization of sequential
functions as those rational functions that are Lipschitz w.r.t. the prefix distance d; more
precisely, such that there is a uniform constant k satisfying d(f(u), f(v)) ≤ k · d(u, v) for all
u, v ∈ dom(f), where d(u, v) = |u|+ |v| − 2|u ∧ v| and u ∧ v is the longest common prefix of
u and v. For example, the function f : cu 7→ uc (c ∈ {a, b}, u ∈ {a, b}∗) is Lipschitz with
constant k = 1, while its inverse f−1 : uc 7→ cu is not.

If one starts with a 1NFT T , the above characterization can be rephrased in terms of a
structural property of the squared transducer T 2, which has for states the pairs of states of
T and associates with any input u a pair of possible outputs (v1, v2) of T on u. Formally

STACS 2019

2:8 The Many Facets of String Transducers

[11], one proves that the function realized by T is Lipschitz w.r.t. the prefix distance if and
only if T 2 satisfies the so-called twinning property:

for every path (q0, q
′
0) −u|v1,v2−−−−→ (q, q′) −v|w1,w2−−−−−→ (q, q′) in T 2, with (q0, q

′
0) initial state,

either w1 = w2 = ε or |w1| = |w2| ∧ v1 ·wω1 = v2 ·wω2 (in particular, the latter condition
implies that w1, w2 are conjugated).

For non-empty w1, w2 as above, one can check the condition |w1| = |w2| of the twinning
property with a one-counter automaton of quadratic size. As for the second condition
v1 ·wω1 = v2 ·wω2 , it boils down to checking that the trimmed part of T , seen as a transducer
on infinite words with a trivial Büchi condition (all states set to be final), is single-valued.
The latter problem is easily shown to be in Nlogspace. J

Some generalizations of the above result were given for transducers on infinite ω-words
[11] and for variants of SST with updates of the form x := y · v, where x, y are registers and
v is a word (possibly over an infinitary group) [34].

One-way definability

Here we explain how to decide which regular functions are rational, or, equally, we solve the
class-membership problem from single-valued 2NFT to 1NFT. The problem was first shown
decidable, with non-elementary complexity, by Filiot et al. in [46]. In [9, 10], the complexity
was improved to 2-Expspace, together with an Expspace lower bound. A refinement of a
pumping argument in [10] due to I. Jecker, shows that the problem is Expspace-complete.

I Theorem 5. One-way definability of 2NFT is Expspace-complete.

The key notion underlying the above result is that of inversion of a run, which roughly
corresponds to having long factors of the output that are generated without following the
left-to-right order. The minimum length of factors forming an inversion is chosen as a
function of the number of states of the transducer, so as to enable suitable pumping and
combinatorial arguments. The characterization shows that a single-valued 2NFT is equivalent
to some 1NFT if and only if every inversion in every successful run delimits a factor of the
output that is periodic, with uniformly bounded period. As an example, consider a 2NFT
T that realizes the function f(u) = uu, e.g. as follows (we draw arrows to represent some
dependency relationships between positions in the output and in the input):

u︷ ︸︸ ︷

︸ ︷︷ ︸
u

︸ ︷︷ ︸
u

a1 a2 a3 · · · an−2 an−1 an

a1 a2 a3 · · · an−2 an−1 an a1 a2 a3 · · · an−2 an−1 an

· · · · · ·

Every run of T that is long enough must have an inversion, essentially because one can find
many output positions in the first copy of u and many output positions in the second copy of
u for which the origin arrows are pairwise crossing. Based on the previous characterization,
we know that f cannot be defined by a 1NFT. Observe however, that if the domain of f is
restricted to a periodic language, e.g. dom(f) = (ab)∗, then f becomes definable by a 1NFT,
e.g. one that produces ab at each position of the input.

In [8] a result similar to Theorem 5 is obtained, that characterizes effectively the functions
definable by sweeping transducers, i.e., 2NFT with head reversals occurring only at the
extremities of the input. This latter characterization can be used to minimize the number of

A. Muscholl and G. Puppis 2:9

passes performed by a sweeping transducer. Moreover, [8] shows a correspondence between
the number of passes of sweeping transducers and the number of registers of equivalent
concatenation-free NSST, namely, NSST in which the right hand-side of every update rule
contains at most one register (in particular, updates of the form x := . . . y . . . z . . . are
forbidden). Based on this correspondence one derives a minimization procedure for the
number of registers of concatenation-free NSST:

I Theorem 6 ([8]). One can compute in 2-Expspace the minimum number of registers
needed to implement a function given as a concatenation-free NSST. The complexity is
Expspace if the given NSST is unambiguous.

FO-definability

We finally turn towards FO-definability of regular functions. The reader may recall the
deep theorem of Schützenberger about the equivalence of star-free and aperiodic word
languages [74]. This theorem gives a decision procedure for knowing whether a regular
language is first-order expressible (or equivalently, [64]), using semigroup properties (see
also [68, 82, 38, 39] for some more recent presentations). The general idea is to lift the
characterization of FO-definable regular languages to regular functions.

A first trivial observation is that FO-definability of the domain language is a necessary,
but not a sufficient condition: for instance, the function f(w) = w(2)w(4) · · ·w(2b |w|2 c) has
domain Σ∗, which is a star-free language, but it is not an FO transduction. We will see that
the natural and correct choice is rather to test aperiodicity on the automaton underlying
the transducer – intuitively, aperiodicity means that any two inputs un and un+1, for large
enough n, induce the same transformation in the underlying automaton.

The FO-definability problem for regular functions is still open in its full generality, and
thought to be difficult. Non-effective characterizations were obtained for 2NFT [24] and
for DSST [48]. In both cases the characterization is expressed in terms of the aperiodicity
property of a suitable transition monoid – for 2NFT, this is just the standard transition
monoid of the underlying automaton, while for DSST, the transition monoid is defined on
the basis of the underlying automaton and the register updates.

I Theorem 7 ([24, 48]). The string-to-string FO transductions are precisely
the functions realized by 2NFT with an aperiodic transition monoid,
the functions realized by DSST with an aperiodic transition monoid.

I Open question 8. Is it decidable whether a transduction given by a 2NFT/DSST is
first-order definable?

There are essentially two ways by means of which one can simplify the FO-definability
problem and establish decidability: by either moving from classical semantics to origin
semantics, or by restricting further the class of functions. The first approach was followed
in [17], where the problem of deciding whether a given 2DFT is origin-equivalent to some
FO transduction was shown to be decidable. We will discuss this approach later, in Section
5, while here we focus on the second approach, specifically by considering the subclass of
rational (rather than regular) functions. We point out that both approaches, in the end, give
a notion of ‘minimal’ object that is used as a canonical representative of the given function.

For the sake of presentation, we begin by considering an even more restricted case, that
of sequential (i.e. 1DFT-definable) functions. As already explained, the goal here is to test
aperiodicity on the automaton underlying the minimal 1DFT, where minimality is intended

STACS 2019

2:10 The Many Facets of String Transducers

in a strong categorical sense, namely, as an object to which every other equivalent object can
be homomorphically mapped to:

I Theorem 9 ([27]). For every sequential function f , there is a transducer Tf that realizes
f and such that for every equivalent trimmed transducer T , there is a unique morphism from
T to Tf . Moreover, Tf can be constructed in Ptime from a 1DFT realizing f .

Before sketching the construction of the minimal transducer Tf , it is worth spending a
few more words on the notion of transducer morphism. For this notion, it is tempting to
adopt the classical definition of graph morphism, that preserves transitions as labeled edges.
However, there are 1NFT that realize the same function using a minimal number of states,
but that are not isomorphic in the usual sense, e.g.:

a | a a | ε a | ε a | a

This simple observation suggests that the correct notion of transducer morphism should take
into account the possible different ‘speeds’ at which equivalent transducers may produce
their outputs. This can be done by pairing the morphism application with a mapping from
states to elements of the free group (Γ ∪ Γ−1)∗ that encode output lags.

Proof of Theorem 9. The main ingredient underlying the definition of Tf is a notion of
congruence for sequential functions, very similar to the Nerode congruence. The additional
crux is to correctly identify words that induce the same behavior w.r.t. the produced output.
This requires a normalization step, that guarantees that outputs are produced as early as
possible, based only on the finite information that comes from the consumed part of the
input. Formally, given a function f , let f̂ be the function that has as domain the prefix
closure of the domain of f , and such that f̂(u) =

∧
{f(uv) : uv ∈ dom(f)} is the longest

common prefix of all f(uv). Using f̂ , one defines the equivalence ≡f by u ≡f v if and only if
for all words w, either f(uw) and f(vw) are undefined, or they are both defined and, once the
respective prefixes f̂(u) and f̂(v) are removed, they result in the same word. It is not difficult
to see that ≡f is a right congruence, and that it has finite index if and only if f is sequential.
Finally, one defines3 the minimal transducer Tf that has as states the ≡f -equivalence classes
[u] (u ∈ Σ∗) and transitions of the form [u] −a|v−−→ [ua], where v is obtained from f̂(ua) by
removing the prefix f̂(u). J

Based on Theorem 7 and Theorem 9, one concludes that f is an FO transduction if and
only if the underlying automaton of Tf is finite and aperiodic. Moreover, it is easy to see
that if f is defined by a 1DFT, then Tf is finite, and aperiodicity can be tested in Pspace.
This shows that the FO-definability problem for 1DFT is in Pspace.

Recently, Filiot et al. [44] generalized the characterization of FO-definability from 1DFT
to 1NFT (in fact, to the equivalent, but less succinct model of bimachines):

I Theorem 10 ([44]). A rational function f is an FO transduction if and only if its canonical
bimachine is aperiodic. Moreover, if f is given by a bimachine (resp. by a 1NFT), then the
property can be decided in Pspace (resp. 2-Exptime).

3 Technically speaking, the outlined definition of Tf misses the production of the initial prefix f̂(ε) of the
output. To fix this problem one can equip transducers with an initial production rule, very similar to
the final production rule that they already have (cf. [27]).

A. Muscholl and G. Puppis 2:11

We discuss the terminology and the main ideas underlying the decidability of the above
problem (for more details, we refer the reader to [44, 50]). First, the model of bimachine, which
was originally introduced in [74], is conveniently seen as a 1DFT enhanced with regular look-
ahead. Here by regular look-ahead we mean a finite-state automaton that deterministically
processes the input from right to left (so it is co-deterministic). The transitions of a 1DFT
T enhanced with the look-ahead automaton A depend on the current state of T , the input
symbol, and the state reached by A after processing the suffix of the input up to the current
position. In [41], it is shown that 1NFT are exactly as expressive as bimachines (or equally,
1DFT with regular look-ahead), with a doubly-exponential time translation from the former
to the latter – one exponent is due to the co-deterministic look-ahead, and the other exponent
is due to the determinization of the transducer parametrized by the look-ahead.

The existence of a canonical bimachine realizing a rational function f essentially relies
on the possibility of computing a minimal look-ahead automaton based only on f , and
then using this to reduce to the previous minimization problem for simple 1DFT without
look-ahead. More precisely, in [70] it is shown that, given any function f , one can define a
co-deterministic (possibly infinite) automaton Af such that f is rational if and only if

Af is finite,
the function f [Af] that maps every input u ∈ dom(f), annotated with the unique run of
A on u, to the output f(u), is sequential.

For example, the co-deterministic automaton Af can be obtained from a left congruence ∼f
defined by u ∼f v if and only if there is a bound k (depending on u, v) such that, for all words
w, either f(wu), f(wv) are undefined, or they are both defined and d(f(wu), f(wv)) ≤ k,
where d is the prefix distance defined on page 7.

Summing up, assuming that f is rational, one constructs the minimal co-deterministic
automaton Af and the minimal 1DFT Tf for the sequential function f [Af]. Pairing Af and
Tf results in a minimal and canonical bimachine realizing f . It is then routine to prove that
f is an FO transduction if and only if both Af and Tf are aperiodic.

We conclude by observing that the complexity in Theorem 10 is optimal when we are
concerned with functions described by bimachines (Pspace-hardness follows from the usual
reduction from universality of finite-state automata). However, when the function is given by
a 1NFT, the FO-definability problem is only known to be between Pspace and 2-Exptime.

4 The equivalence problem

Historically, string transducers have been first studied within their deterministic, or unambigu-
ous, one-way machine models. One reason for this is that many fundamental problems about
rational relations are undecidable, in particular the equivalence problem (recall Theorem 2).

This section reviews the status of the equivalence problem for various types of string
transducers, together with a selection of the main technical arguments for proving decidability.
One of the first references for decidability in the deterministic case, and specifically for
length-preserving 1DFT, is due to Moore [66]. The result was then extended progressively.
Equivalence for 1DFT was shown decidable by Blattner and Head [16]. The same authors
also showed that it is decidable whether a 1NFT is single-valued (see also [75]), and that
equivalence of single-valued 1NFT is decidable [15]. For two-way transducers, Gurari
showed that equivalence is Pspace-complete in the deterministic case [56], by reducing it to
emptiness of bounded-reversal counter machines [59], a polynomial-time solvable problem [57].
Interestingly, the complexity remains the same for single-valued 2NFT, even though, to the
best of our knowledge there is no reference available for this latter result.

The above decidability and complexity results can be presented in a uniform way using
reductions to equivalence of finite-state automata and to single-valuedness of relational
transducers (see Section 3):

STACS 2019

2:12 The Many Facets of String Transducers

I Theorem 11. The equivalence problem T1
?= T2 is

1. Nlogspace-complete if T1, T2 are 1DFT.
2. Ptime if T1, T2 are unambiguous 1NFT.
3. Pspace-complete if T1, T2 are 2DFT, or single-valued 2NFT or NSST.

Proof. The idea is to reduce the equivalence problem for T1 and T2 to testing equivalence of
the domains and single-valuedness of the union of T1 and T2. For example, when T1, T2 are
1DFT, testing equivalence of the underlying deterministic automata is in Nlogspace, and
the same for testing single-valuedness of the 1NFT T1 ∪ T2 (cf. Theorem 3).

For single-valued 1NFT, it is the complexity of the equivalence problem for the domains
that dominates, since this is in general Pspace-complete [62]. However, if the transducers
are unambiguous (which is not a restriction, see e.g. [40, 76]), then T1

?= T2 can be solved in
Ptime [58], since equivalence of unambiguous automata has a polynomial-time solution [78].

Finally, when T1, T2 are 2NFT (or NSST), single-valuedness of T1 ∪ T2 is in Pspace,
again by Theorem 3. We need only to show that domain equivalence can also be solved in
Pspace. While this is easy for NSST, it is perhaps not completely obvious that we can check
equivalence of two-way, non-deterministic automata in Pspace. This is indeed the case using
e.g. a construction due to Vardi [79]: for every two-way, non-deterministic automaton A of
size n, one can construct two deterministic, one-way automata of size 2O(n2), recognizing
respectively L(A) and its complement. As usual, Pspace-hardness for 2NFT follows from
emptiness of intersection of finite-state automata [62]; for NSST it follows from universality
of finite-state automata [65]. J

It is worth noting that the exact complexity for the equivalence problem of DSST is
unknown, since the problem is shown to be in Pspace and Nlogspace-hard:

I Open question 12. What is the exact complexity of the equivalence problem for DSST?

A powerful tool that can be used to establish decidability of equivalence problems on
transducers is the Ehrenfeucht conjecture. It was originally stated as a conjecture about
formal languages: for every language L ⊆ Σ∗, there is a finite subset F ⊆ L such that for
every homomorphisms f, g : Σ∗ → ∆∗,

∀u ∈ L f(u) = g(u) if and only if ∀u ∈ F f(u) = g(u).

Such a set F is called a test set for L. There is an equivalent formulation of Ehrenfeucht
conjecture in terms of word equations [61]. Let Σ and Ω be two alphabets, where the
elements in Ω are variables. A word equation is a pair (u, v) ∈ Ω∗ × Ω∗, and a solution is a
homomorphism σ : Ω→ Σ∗ such that σ(u) = σ(v). The Ehrenfeucht conjecture then says
that any system of equations over Ω has a finite, equivalent subsystem, where equivalence
means that the solution sets are the same. The proof of Ehrenfeucht conjecture is based on
encodings of the free monoid and Hilbert’s basis theorem [2, 55].

An elegant application of Ehrenfeucht conjecture is due to Culik and Karhumäki, who
established decidability of the equivalence problem for k-valued 1NFT [29]. Their decidability
result does not come with any complexity upper bound, however the following stronger result
leads to an algorithm of elementary complexity:

I Theorem 13 ([80, 72]). Every k-valued 1NFT can be effectively decomposed into a union
of k unambiguous 1NFT of exponential size.

Since k-valuedness of 1NFT can be checked in Ptime [58], this yields:

A. Muscholl and G. Puppis 2:13

I Corollary 14. The equivalence problem for k-valued 1NFT is in Exptime (for fixed k).

Let us come back to the argument used by Culik and Karhumäki for the equivalence of
k-valued 1NFT [29]. The proof consists of two parts. First the Ehrenfeucht conjecture is
used to show that there is a finite test set for any two k-valued transducers with at most n
states (for any fixed n). In this case, a test set is a language F such that any two transducers
with at most n states are equivalent if and only if they are equivalent on inputs from F . In
the second part it is shown how to find effectively a finite test set for the class of k-valued
transducers with at most n states. This step amounts to determine whether two finite
systems of equations are equivalent, which reduces to solvability of word equations, and can
be solved by Makanin’s algorithm (see e.g. [37]). This proof idea extends to k-valued 2NFT:

I Theorem 15 ([29]). The equivalence problem for k-valued 2NFT is decidable.

Proof. We sketch the proof of [29] for one-way transducers, then explain how it adapts to
two-way transducers. We tacitly assume that all transducers are trimmed.

For the existence of a test set one uses the formulation of Ehrenfeucht conjecture with
word equations. As mentioned, the set we are looking for will be a test set for any pair of
k-valued transducers with at most n states (and fixed alphabets). An important observation
is that for k-valued transducers (one-way or two-way), the following holds: for every pair
of states p, q and input letter a, at most k different output words can label the transition
(p, a, q). Thanks to this, any k-valued transducer with at most n states can be described by
a partial mapping ∆ : {1, . . . , n}2 × Σ × {1, . . . , k} → Ω into a finite set Ω of variables (a
schema), paired with an interpretation σ : Ω→ Γ∗. The (uninterpreted) output of a run that
respects a schema ∆ is then a word over Ω. For instance, below we depict a transducer (on
the left) with the corresponding schema (on the right):

a | bc

a | b

a | b

a | cb

a | b
a | x1

a | x2

a | x3

a | x4

a | x5

Note that the transducer is 3-valued, and its schema satisfies for instance the equation
x1x3x

m
5 = x2x3x

m
5 , relating two runs with the same output and over the input u = am+2.

Now, for every pair of concrete k-valued transducers T1, T2 with at most n states, and for
every input u, the runs of T1 and respectively T2, over u, can be partitioned into at most
k groups, each associated with an output among the k possible ones. For each group of
runs, we can write word equations over Ω as expected. So two transducers as above, being
interpretations of some schemata ∆1,∆2, are equivalent only if they satisfy a formula ϕn
of the form

∧
u∈Σ∗

∨
π Sπ, where π ranges over the possible ∆1,∆2 and partitions the set

of runs of ∆1 and respectively ∆2, over the input u, into at most k groups, and Sπ is the
associated system of word equations. Ehrenfeucht conjecture is used in [29] to show that any
ϕn as above is equivalent to some finite formula ϕn,m =

∧
u∈Σ≤m

∨
π Sπ.

For the effectiveness part, let us assume that for some m, the formulas ϕn,m and ϕn,m+1
are equivalent, i.e., they have the same sets of solutions (recall that testing the latter
equivalence reduces to solvability of word equations). The goal is to prove that Σ≤m is a
test set, namely, for all r > m and all k-valued transducers T1, T2 of size at most n,

T1 ≡r T2 if and only if T1 ≡m T2

where T1 ≡m T2 stands for equivalence relativized to inputs of length at most m. The above
property is proved by induction on r, as follows. Suppose for the moment that, given any

STACS 2019

2:14 The Many Facets of String Transducers

transducer T and any input letter a, one can construct a transducer Ta with the same number
of states as T and such that Ta(u) = T (au). Clearly, T1 ≡r+1 T2 is equivalent to T1,a ≡r T2,a
for every a ∈ Σ, and T1 ≡0 T2 (the latter being abbreviated as (∗) below). Therefore,

T1 ≡r+1 T2 ⇔ T1,a ≡r T2,a (∀a ∈ Σ) and (∗) T1 ≡m T2.

m (ind. hyp.) m

T1,a ≡m T2,a (∀a ∈ Σ) and (∗) ⇔ T1 ≡m+1 T2

This shows that Σ≤m is a test set. According to the first part, we are guaranteed to find
such an m.

If T is a 1NFT, one can build Ta while preserving the number of states, just by a shortcut
of the transitions departing from the initial state, which can be assumed to have no incoming
transition. If T is a 2NFT, a similar idea works, but now the shortcut is more complex
since the first input position can be read several times. Still we can shortcut the transitions
involving the first input position, assuming, w.l.o.g., that all our transducers have the extra
possibility to check whether the current position is the first one. J

Recall that single-valued NSST and 2NFT are equivalent transducer models (actually
equivalent to DSST and 2DFT). It is natural to ask whether this equivalence extends to
k-valued transducers. One direction is an easy generalization of the deterministic case:

I Proposition 16. For every k-valued 2NFT, there is an equivalent k-valued NSST.

I Open question 17. Are NSST strictly more expressive than 2NFT in the k-valued case?

The approach of Culik and Karhumäki [29] does not appear to generalize to NSST (and
not even to the equivalent model of 2NFT with common guess, cf. Section 2). The main
difficulty is that it is not clear how to construct the transducer Ta from T while preserving
the number of states. This difficulty, however, can be overcome for k-valued, 1-register NSST,
which thus turn out to have a decidable equivalence problem:

I Theorem 18. The equivalence problem for k-valued, 1-register NSST is decidable.

The above result also follows from [53], where, in analogy with Theorem 13, it is shown
that k-valued, 1-register NSST can be effectively decomposed into k unambiguous NSST.
Not surprisingly, a generalization of the decomposition theorem for k-valued NSST with
multiple registers faces the same difficulties as the approach of Culik and Karhumäki. We
conjecture however that Theorem 18 generalizes to concatenation-free NSST:

I Conjecture 19. The equivalence problem for k-valued, concatenation-free NSST is decid-
able.

The difficulty in proving this conjecture is combinatorial, since it requires to determine if
for two partial runs of an NSST, there is some extension that makes their outputs equal.

We conclude this section by presenting a different approach to show equivalence of
transducers, that was recently applied to copyful DSST:

I Theorem 20 ([51]). The equivalence problem for copyful DSST is decidable.

Proof. The original proof of [51] shows that copyful DSST are equivalent to HDT0L systems,
and then applies [29]. An alternative proof was presented in [13], translating copyful DSST
into so-called polynomial automata, and showing that the zeroness problem for such automata

A. Muscholl and G. Puppis 2:15

is decidable. Recently, Bojańczyk reformulated the proof in terms of polynomial grammars
[18]. We briefly sketch his proof below.

The starting idea is to encode words by values computed by polynomials. Such encodings
were known even before Matiyasevich’ negative solution to Hilbert’s 10th problem and
Makanin’s algorithm for word equations. For example, [18] represents a binary word w by the
pair enc(w) = (bin(w), 2|w|), where bin(w) is the integer with binary representation w. Word
concatenation becomes then a polynomial operation: if wi is encoded by Ai = (Ai,1, Ai,2),
then w1w2 is encoded by the pair of integers A1 � A2 := (A1,1A2,2 + A2,1, A1,2A2,2). A
copyful DSST easily translates into a context-free grammar that generates pairs of integers,
a so-called polynomial grammar [18].

For example, for the DSST of Figure 3, the grammar has one non-terminal A = (Ax, Ay)
for the unique state, plus a starting symbol S for the final output. The rules are as follows:

S → Ax � enc(, ␣)�Ay
(Ax, Ay) → (enc(ε), Ay � enc(␣)�Ax)
(Ax, Ay) → (Ax � enc(c), Ay) (∀c 6= ␣).

The question of whether two copyful DSST T, T ′ are equivalent reduces to asking whether
the difference S − S′ of the starting symbols of the associated grammars generates only the
null vector. Using the decidability of the first-order of reals, there is a semi-algorithm to
know if a polynomial grammar can generate some non-zero value, by enumerating derivations.
Using Hilbert’s basis theorem, there is also a semi-algorithm for proving that a polynomial
grammar generates only the null vector, by enumerating finite sets of polynomials and
checking that (1) they induce a solution for the grammar, and (2) they produce only zero
(see [18] for details). This shows that one can decide whether a polynomial grammar generates
only the null vector, hence the equivalence of copyful DSST. J

5 Transducers with origins

Transducers with origin information have been introduced by Bojańczyk in [17] as a way
to recover the algebraic world that appears to get lost when switching from regular string
languages to regular string transductions. We recall that for 2DFT or DSST there is no
canonical (e.g. minimal) model on which properties like aperiodicity can be tested. As we saw
in Section 3, the situation is slightly better for one-way transducers, that do have canonical
models – the minimal transducer in the deterministic case, and the canonical bimachine in
the general case.

In the standard semantics, a string transduction is simply a relation R ⊆ Σ∗ × Γ∗ that
consists of pairs of words. In the origin semantics, a transduction is a set of pairs from
Σ∗× (Γ×N)∗ such that the output from (Γ×N)∗ also records at which position of the input
it was generated. Every formalism used for describing transductions, be it transducers, logic
or expressions, can be enriched by the origin information in a natural way. For example, the
origin semantics for 1NFT is the same as a synchronization language – recall from Section
2 that this is a language of interleavings of input and output letters, and that there could
be many synchronization languages representing the same relation. For 2NFT, the origin
semantics is conveniently described by origin graphs, which are special graphs consisting of
two total orders (for the input and the output), together with edges from output positions
to input positions (the origin mapping). For example, the two origin graphs of Figure 4 are
different, although they have the same input/output pair.

Recall that a string-to-string function is called regular if it is realized by one of the
following, equivalent formalisms: 2DFT, DSST, MSO transductions. The main contribution

STACS 2019

2:16 The Many Facets of String Transducers

a a a · · · a a a

a a a · · · a a a

a a a · · · a a a

a a a · · · a a a

Figure 4 Two origin graphs; the upper line is the input, the lower line the output.

of [17] was to show a Myhill-Nerode theorem for regular functions with origin semantics, and
give an effective characterization for the subclass of FO transductions. The result amounts to
define left and right congruences, as follows. Recall that the Nerode (right) congruence for a
language K defines u ≡ v if u−1K = v−1K. Similarly, for a function f : Σ∗ → Γ∗, we define
a right congruence by u ≡R v if fu_ = fv_, where fu_(w) is obtained from f(uw) by replacing
all maximal non-empty factors with origins inside u by a special marker •. For example,
for f(w) = ww there are two possibilities for fu_, depending on whether u is empty or not:
one is v 7→ vv, and the other is v 7→ • v • v. Symmetrically, one defines a left congruence
≡L using f_u(w), that is obtained from f(wu) by replacing with • all maximal non-empty
factors with origins inside u.

I Theorem 21 ([17]). Let f be a string-to-string function with origins.
1. f is regular if and only if the associated congruences ≡L and ≡R have finite index.
2. A regular f is origin-equivalent to an FO transduction if and only if all classes of the

associated congruences ≡L and ≡R are FO-definable languages.

An immediate consequence of the above theorem is that one can decide FO-definability
in the origin semantics. Using that the congruences ≡L and ≡R can be tested in Pspace we
get:

I Corollary 22. The problem whether given 2DFT or DSST is origin-equivalent to some FO
transduction is Pspace-complete.

Register minimization of DSST is another problem that can be solved under the origin
semantics, as stated below. The main ingredient of the characterization is the notion of
k-crossing. Formally, an output position y is said to cross an input position x if the origin of
y is x or to the left of x, and the origin of y + 1 is to the right of x (if y + 1 is defined). An
origin graph is k-crossing if every input position is crossed by at most k output positions.

I Theorem 23 ([19]). A set G of origin graphs is realizable by a k-register DSST if and only
if it satisfies all conditions below:
1. every graph in G is k-crossing,
2. there is a constant c such that, for all graphs in G, every input position is the origin of at

most c output positions,
3. G is MSO-definable.

Taking the right hand-side graph of Figure 4 as an example, one sees that c = k = 1,
and the MSO formula defining such graphs says, among other things, that the origin of the
output position y + 1 is the predecessor of the origin of y.

Another quite interesting phenomenon is that the equivalence problem becomes decidable
in the origin semantics, even for non-deterministic, two-way transducers with common guess:

I Theorem 24 ([21]). The origin-equivalence problem for 2NFT (possibly enhanced with
common guess) is Pspace-complete.

A. Muscholl and G. Puppis 2:17

The previous result is consistent with the intuition that under the origin semantics, one
does not reason anymore on two separate objects (input and output), but on one single object
(the origin graph). In this perspective, it becomes natural to ask whether some amount of
information can be removed from the origin semantics, while still preserving decidability of
equivalence. The argument below reveals that not much information can be removed.

Consider a modified notion of origin, that instead of mapping output positions to input
positions, defines an equivalence on the output so that any two positions are equivalent when
they have the same origin in the input. A small modification of the proof of Theorem 2
show that decidability of equivalence is lost under this weaker semantics. Indeed, one can
replace the pairs (wu, cn) that encode non-solutions of the PCP instance by pairs of the
form (w′u′, cn), where w′u′ is obtained from wu by inserting a fixed dummy word ␣ · · · ␣
between every two consecutive positions, so that it becomes possible to produce at most
one output letter at each input position. In this case, the equal-origin information becomes
vacuous, and the universality problem turns out to be undecidable.

6 Conclusions

We have reviewed some of the fundamental questions on string transducers, mostly concerning
characterization and equivalence problems. Some of the problems were shown decidable,
notably in the single-valued and in the finite-valued case, but a few important problems
remain open.

This is the case, for instance, for the FO-definability problem for regular functions: given
a 2DFT or a DSST, is it equivalent to some FO transduction? As a possible first attempt, one
may try to look at FO-definability for restricted variants of 2DFT and DSST (e.g. sweeping
2DFT and concatenation-free DSST), trying to lift the known characterization for 1DFT.

Another challenging question that remains unanswered is whether k-valued NSST are as
expressive as k-valued 2NFT, or strictly more expressive. The related problem of testing
equivalence of k-valued NSST is also open. A solution to both problems might stem from a
decomposition theorem, that is, from a proof that every k-valued NSST can be decomposed
into an equivalent finite union of DSST. This latter result however seems rather difficult
to get, due to the underlying word combinatorics. Also in this case, it might be helpful to
consider first the problem for the restricted class of concatenation-free NSST.

We finally recall a couple of open problems related to equivalence and single-valuedness
of SST. We have seen that equivalence for single-valued NSST is Pspace-complete, but
what about DSST? Is the equivalence problem still Pspace-hard, or is it possible to exploit
determinism to lower the complexity? Similarly, the problem of testing singe-valuedness
on NSST is shown to be in Pspace, but no matching lower bound is known. Finally, the
problem of minimizing the number of registers in a DSST is also open.

References
1 Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. A general theory of translation.

Math. Syst. Theory, 3(3):193–221, 1969.
2 M.H. Albert and J. Lawrence. A proof of Ehrenfeucht’s conjecture. Theor. Comput. Sci.,

41(1):121–123, 1985.
3 Rajeev Alur and Pavel Cerný. Expressiveness of streaming string transducer. In IARCS

Annual Conference on Foundation of Software Technology and Theoretical Computer Science
(FSTTCS’10), volume 8 of LIPIcs, pages 1–12. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2010.

STACS 2019

2:18 The Many Facets of String Transducers

4 Rajeev Alur and Jyotirmoy Deshmukh. Nondeterministic streaming string transducers. In
International Colloquium on Automata, Languages and Programming (ICALP’11), volume
6756 of LNCS. Springer, 2011.

5 Rajeev Alur, Emmanuel Filiot, and Ashutosh Trivedi. Regular Transformations of Infinite
Strings. In Proc. of Annual IEEE Symposium on Logic in Computer Science (LICS’12), pages
65–74. IEEE, 2012.

6 Rajeev Alur, Adam Freilich, and Mukund Raghothaman. Regular combinators for string
transformations. In Joint meeting of Annual Conference on Computer Science Logic (CSL)
and Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), LIPIcs, pages
9:1–9:10. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2014.

7 Félix Baschenis, Olivier Gauwin, Anca Muscholl, and Gabriele Puppis. One-way Definability
of Sweeping Transducers. In IARCS Annual Conference on Foundation of Software Technology
and Theoretical Computer Science (FSTTCS’15), volume 45 of LIPIcs, pages 178–191. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2015.

8 Félix Baschenis, Olivier Gauwin, Anca Muscholl, and Gabriele Puppis. Minimizing Resources
of Sweeping and Streaming String Transducers. In International Colloquium on Automata,
Languages, and Programming (ICALP’16), volume 55 of LIPIcs, pages 114:1–114:14. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2016.

9 Félix Baschenis, Olivier Gauwin, Anca Muscholl, and Gabriele Puppis. Untwisting two-way
transducers in elementary time. In ACM/IEEE Symposium on Logic in Computer Science
(LICS’17). IEEE Computer Society, 2017.

10 Félix Baschenis, Olivier Gauwin, Anca Muscholl, and Gabriele Puppis. One-way definability
of two-way word transducers. Logical Methods in Computer Science, 14(4):1–54, 2018.

11 Marie-Pierre Béal and Olivier Carton. Determinization of transducers over finite and infinite
words. Theor. Comput. Sci., 289(1):225–251, 2002.

12 Marie-Pierre Béal, Olivier Carton, Christophe Prieur, and Jacques Sakarovitch. Squaring
transducers: an efficient procedure for deciding functionality and sequentiality. Theor. Comput.
Sci., 292:45–63, 2003.

13 Michael Benedikt, Timothy Duff, Aditya Sharad, and James Worrell. Polynomial automata:
Zeroness and applications. In Annual ACM/IEEE Symposium on Logic in Computer Science
(LICS’17), pages 1–12. IEEE, 2017.

14 Jean Berstel. Transductions and context-free languages. Teubner Studienbücher Stuttgart,
1979.

15 Meera Blattner and Tom Head. Single-valued a-transducers. J. Comput. and System Sci.,
15:310–327, 1977.

16 Meera Blattner and Tom Head. The decidability of equivalence for deterministic finite
transducers. J. Comput. and System Sci., 19:45–49, 1979.

17 Mikolaj Bojańczyk. Transducers with origin information. In International Colloquium on
Automata, Languages and Programming (ICALP’14), number 8572 in LNCS, pages 26–37.
Springer, 2014.

18 Mikolaj Bojańczyk. The Hilbert Method for Transducer Equivalence. ACM SIGLOG News,
January 2019.

19 Mikolaj Bojańczyk, Laure Daviaud, Bruno Guillon, and Vincent Penelle. Which Classes of
Origin Graphs Are Generated by Transducers? In International Colloquium on Automata,
Languages and Programming (ICALP’17), volume 80 of LIPIcs, pages 114:1–114:13. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2017.

20 Mikolaj Bojańczyk, Laure Daviaud, and Shankara Narayanan Krishna:. Regular and First-
Order List Functions. In Proc. of Annual ACM/IEEE Symposium on Logic in Computer
Science (LICS 2018), pages 125–134. ACM, 2018.

21 Sougata Bose, Anca Muscholl, Vincent Penelle, and Gabriele Puppis. Origin-Equivalence of
Two-Way Word Transducers Is in PSPACE. In IARCS Annual Conference on Foundations of

A. Muscholl and G. Puppis 2:19

Software Technology and Theoretical Computer Science (FSTTCS’18), volume 122 of LIPIcs,
pages 1–18. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2018.

22 Julius Richard Büchi. Weak Second-order Arithmetic and Finite Automata. Mathematical
Logic Quarterly, 6(1-6):66–92, 1960.

23 Olivier Carton, Christian Choffrut, and Serge Grigorieff. Decision problems among the main
subfamilies of rational relations. ITA, 40(2):255–275, 2006.

24 Olivier Carton and Luc Dartois. Aperiodic two-way transducers and FO-transductions. In
Proc. of EACSL Annual Conference on Computer Science Logic (CSL’15), LIPIcs, pages
160–174. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2015.

25 Olivier Carton, Léo Exibard, and Olivier Serre. Two-Way Two-Tape Automata. In Proc. in
Developments in Language Theory (DLT’17), number 10396 in LNCS, pages 147–159. Springer,
2017.

26 Christian Choffrut. Une caractérisation des fonctions séquentielles et des fonctions sous-
séquentielles en tant que relations rationnelles. Theor. Comput. Sci., 5:325–338, 1977.

27 Christian Choffrut. Minimizing subsequential transducers: a survey. Theor. Comput. Sci.,
292(131-143), 2003.

28 Bruno Courcelle and Joost Engelfriet. Graph Structure and Monadic Second-Order Logic – A
Language-Theoretic Approach, volume 138 of Encyclopedia of mathematics and its applications.
Cambridge University Press, 2012.

29 Karel Culik II and Juhani Karhumäki. The equivalence of finite valued transducers (on HDT0L
languages) is decidable. Theor. Comput. Sci., 47:71–84, 1986.

30 Karel Culik II and Juhani Karhumäki. The Equivalence Problem for Single-Valued Two-Way
Transducers (on NPDT0L Languages) is Decidable. SIAM J. Comput, 16(2):221–230, 1987.

31 Luc Dartois, Emmanuel Filiot, Pierre-Alain Reynier, and Jean-Marc Talbot. Two-Way Visibly
Pushdown Automata and Transducers. In Proc. of Annual ACM/IEEE Symposium on Logic
in Computer Science (LICS’16), pages 217–226. ACM, 2016.

32 Luc Dartois, Paulin Fournier, Ismaël Jecker, and Nathan Lhote. On Reversible Transducers. In
Proc. of International Colloquium on Automata, Languages, and Programming (ICALP’17,),
number 113 in LIPIcs, pages 1–12. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2017.

33 Vrunda Dave, Paul Gastin, and Shankara Narayanan Krishna. Regular Transducer Expressions
for Regular Transformations. In Proc. of Annual ACM/IEEE Symposium on Logic in Computer
Science (LICS 2018), pages 315–324. ACM, 2018.

34 Laure Daviaud, Pierre-Alain Reynier, and Jean-Marc Talbot. A Generalised Twinning Property
for Minimisation of Cost Register Automata. In Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS ’16), pages 857–866. ACM, 2016.

35 María Emilia Descotte, Diego Figueira, and Santiago Figueira. Closure properties of syn-
chronized relations. In International Symposium on Theoretical Aspects of Computer Science
(STACS’19), LIPIcs. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2019. to appear.

36 María Emilia Descotte, Diego Figueira, and Gabriele Puppis. Resynchronizing Classes of
Word Relations. In International Colloquium on Automata, Languages, and Programming
(ICALP’18), volume 123 of LIPIcs, pages 1–13. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2018.

37 Volker Diekert. Makanin’s Algorithm. In M. Lothaire, editor, Algebraic combinatorics on
words. Cambridge University Press, 2002.

38 Volker Diekert, Paul Gastin, and Manfred Kufleitner. A survey on Small Fragments of First-
Order Logic over Finite Words. International Journal of Foundations of Computer Science,
19(3):513–548, 2008.

39 Volker Diekert and Manfred Kufleitner. A Survey on the Local Divisor Technique. Theor.
Comput. Sci., 610:13–23, 2016.

40 Samuel Eilenberg. Automata, Languages and Machines. Academic Press, New York, 1976.
41 Calvin C. Elgot and Jorge E. Mezei. On Relations Defined by Generalized Finite Automata.

IBM Journal of Research and Development, 9(1):47–68, 1965.

STACS 2019

2:20 The Many Facets of String Transducers

42 Joost Engelfriet and Hendrik Jan Hoogeboom. MSO definable string transductions and
two-way finite-state transducers. ACM Trans. Comput. Log., 2(2):216–254, 2001.

43 Diego Figueira and Leonid Libkin. Synchronizing Relations on Words. Theory Comput. Syst.,
57(2):287–318, 2015.

44 Emmanuel Filiot, Olivier Gauwin, and Nathan Lhote. Aperiodicity of Rational Functions Is
PSPACE-Complete. In IARCS Annual Conference on Foundations of Software Technology and
Theoretical Computer Science (FSTTCS’16), volume 65 of LIPIcs, pages 13:1–13:15. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2016.

45 Emmanuel Filiot, Olivier Gauwin, Nathan Lhote, and Anca Muscholl. On Canonical Models for
Rational Functions over Infinite Words. In Proc. of IARCS Annual Conference on Foundations
of Software Technology and Theoretical Computer Science (FSTTCS’18), volume 30 of LIPIcs,
pages 1–17. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2018.

46 Emmanuel Filiot, Olivier Gauwin, Pierre-Alain Reynier, and Frédéric Servais. From Two-Way
to One-Way Finite State Transducers. In ACM/IEEE Symposium on Logic in Computer
Science (LICS’13), pages 468–477, 2013.

47 Emmanuel Filiot, Ismaël Jecker, Christof Löding, and Sarah Winter. On Equivalence and
Uniformisation Problems for Finite Transducers. In Proc. of nternational Colloquium on
Automata, Languages, and Programming (ICALP’16), number 125 in LIPIcs, pages 1–14.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2016.

48 Emmanuel Filiot, Shankara Narayanan Krishna, and Ashutosh Trivedi. First-order Definable
String Transformations. In IARCS Annual Conference on Foundations of Software Technology
and Theoretical Computer Science (FSTTCS’14), LIPIcs, pages 147–159. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2014.

49 Emmanuel Filiot, Jean-François Raskin, Pierre-Alain Reynier, Frédéric Servais, and Jean-Marc
Talbot. Visibly pushdown transducers. J. Comput. Syst. Sci., 97:147–181, 2018.

50 Emmanuel Filiot and Pierre-Alain Reynier. Transducers, logic and algebra for functions of
finite words. ACM SIGLOG News, pages 4–19, 2016.

51 Emmanuel Filiot and Pierre-Alain Reynier. Copyful Streaming String Transducers. In
International Workshop on Reachability Problems (RP’17), number 10506 in LNCS, pages
75–86. Springer, 2017.

52 Patrick C. Fischer and Arnold L. Rosenberg. Multi-tape one-way nonwriting automata. J.
Comput. and System Sci., 2:88–101, 1968.

53 Paul Gallot, Anca Muscholl, Gabriele Puppis, and Sylvain Salvati. On the Decomposition of
Finite-Valued Streaming String Transducers. In Annual Symposium on Theoretical Aspects
of Computer Science (STACS’17), volume 66 of LIPIcs, pages 34:1–34:14. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2017.

54 Seymour Ginsburg and Gene F. Rose. A characterization of machine mappings. Canad. J.
Math., 18:381–388, 1966.

55 Victor S. Guba. Equivalence of infinite systems of equations in free groups and semigroups to
finite subsystems. Mat. Zametki, 40(3):688—-690, 1986.

56 Eitan M. Gurari. The equivalence problem for deterministic two-way sequential transducers is
decidable. SIAM Journal of Computing, 448–452, 1982.

57 Eitan M. Gurari and Oscar H. Ibarra. The complexity of decision problems for finite-turn
multicounter machines. J. Comput. and System Sci., 16(1):61–66, 1981.

58 Eitan M. Gurari and Oscar H. Ibarra. A note on finite-valued and finitely ambiguous
transducers. Math. Syst. Theory, 16(1):61–66, 1983.

59 Oscar H. Ibarra. Reversal-bounded multicounter machines and their decision problems. JACM,
1978.

60 Oscar H. Ibarra. The unsolvability of the equivalence problem for e-free NGSM’s with unary
input (output) alphabet and applications. SIAM J. of Comput., 7(4):524–532, 1978.

61 Juhani Karhumäki. The Ehrenfeucht conjecture: a compactness claim for finitely generated
free monoids. Theor. Comput. Sci., 29:285–308, 1984.

A. Muscholl and G. Puppis 2:21

62 Dexter Kozen. Lower bounds for natural proof systems. In Annual Symposium on Foundations
of Computer Science (FOCS’77), pages 254–266. IEEE, 1977.

63 Christof Löding and Christopher Spinrath. Decision Problems for Subclasses of Rational
Relations over Finite and Infinite Words. Discrete mathematics and theoretical computer
science, 2019.

64 Robert McNaughton and Seymour Papert. Counter-Free Automata. MIT Press, 1971.
65 Albert R. Meyer and Larry J. Stockmeyer. The Equivalence Problem for Regular Expressions

with Squaring Requires Exponential Space. In 13th Annual Symposium on Switching and
Automata Theory, pages 125–129. IEEE Computer Society, 1972.

66 Edward F Moore. Gedanken-experiments on sequential machines. Automata studies, 34:129–
153, 1956.

67 Maurice Nivat. Transduction des langages de Chomsky. Annales de l’Institut Fourier, 18:339–
455, 1968.

68 Jean-Eric Pin. Logic, Semigroups and Automata on Words. Annals of Mathematics and
Artificial Intelligence, 16:343–384, 1996.

69 Michael O. Rabin and Dana Scott. Finite automata and their decision problems. IBM Journal
of Research and Development, pages 114–125, 1959.

70 Christophe Reutenauer and Marcel-Paul Schützenberger. Minimization of rational word
functions. SIAM Journal of Computing, 20(4):669–685, 1991.

71 Sasha Rubin. Automata Presenting Structures: A Survey of the Finite String Case. Bulletin
of Symbolic Logic, 14(2):169–209, 2008.

72 Jacques Sakarovitch and Rodrigo de Souza. Lexicographic decomposition of K-valued trans-
ducers. Theory Comput. Sci., 47:758–785, 2010.

73 Marcel-Paul Schützenberger. A remark on finite transducers. Information and Control,
4(2-3):185–196, 1961.

74 Marcel-Paul Schützenberger. On Finite Monoids Having Only Trivial Subgroups. Information
and Control, 8:190–194, 1965.

75 Marcel-Paul Schützenberger. Sur les relations rationnelles. In Proc. of 2nd GI conference,
Automata Theory and Formal Languages, number 33 in LNCS, pages 209–213. Springer, 1975.

76 Marcel-Paul Schützenberger. Sur les relations rationnelles entre monoïdes libres. Theor.
Comput. Sci., 3(2):243–259, 1976.

77 John C. Shepherdson. The reduction of two-way automata to one-way automata. IBM Journal
of Research and Development, 3(2):198–200, 1959.

78 Richard E. Stearns and Harry B. Hunt III. On the equivalence and containment problems
for unambiguous regular expressions, grammars and automata. In Annual Symposium on
Foundations of Computer Science (FOCS’81), pages 74–81, 1981.

79 Moshe Y. Vardi. A Note on the Reduction of Two-Way Automata to One-Way Automata.
Information Processing Letters, 30:261–264, 1989.

80 Andreas Weber. Decomposing A k-Valued Transducer into k Unambiguous Ones. RAIRO-ITA,
30(5):379–413, 1996.

81 Andreas Weber and Reinhard Klemm. Economy of description for single-valued transducers.
Inf. Comput., pages 327–340, 1995.

82 Thomas Wilke. Classifying Discrete Temporal Properties. In Annual Symposium on Theoretical
Aspects of Computer Science (STACS’99), volume 1563 of LNCS, pages 32–46. Springer, 1999.

STACS 2019

Algorithmic Data Science
Petra Mutzel
TU Dortmund, Department of Computer Science, Otto-Hahn-Str. 14, 44221 Dortmund, Germany
https://ls11-www.cs.tu-dortmund.de
petra.mutzel@cs.tu-dortmund.de

Abstract
The area of algorithmic data science provides new opportunities for researchers in the algorithmic
community. In this paper we will see examples that demonstrate that algorithm engineering is the
perfect basis for algorithmic data science. But there are also many open interesting questions for
purely theoretically interested computer scientists. In my opinion, these opportunities should be
taken because this will be fruitful for both areas, algorithmics as well as data sciences. I like to call
for more participation in algorithmic data science by our community. Now we have the opportunity
to shape this new emerging field.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms;
Theory of computation → Graph algorithms analysis; Theory of computation → Complexity theory
and logic; Mathematics of computing → Combinatorial algorithms

Keywords and phrases Algorithmic Data Science, Graph Similarity, Weisfeiler-Leman

Digital Object Identifier 10.4230/LIPIcs.STACS.2019.3

Category Invited Talk

Funding This work has been supported by the German Science Foundation (DFG) within the
Collaborative Research Center SFB 876 “Providing Information by Resource-Constrained Data
Analysis”, project A6 “Resource-efficient Graph Mining”.

1 Introduction

“Data is the new oil. It’s valuable, but if unrefined it cannot really be used.” – You may
have read this quote, originally phrased by the Mathematician Clive Humby in 2006, several
times. However, more than 12 years later, it is still relevant.

The ongoing digital transformation of business and society also affects science. The
incoming amount of data that is stored and communicated is still increasing. Autonomously
driving cars are not only recording data by various sensors but also sending their data (e.g.,
location, speed) to other cars that will be analysed in order to avoid critical situations.
Smart home sensors are not only convenient but are very helpful for senior citizens who
prefer to spend their life at home instead of institutional care. There are many other
application domains, e.g., social media interaction, web mining, and video streaming systems.
Concerning science, data analysis already became essential in many areas, e.g., biology,
chemistry, medicine, neuroscience, linguistics, and geography.

Data science is the field responsible for extracting information out of (unstructured)
data. This includes data integration, data cleaning, mathematical modelling, data analysis,
and visualisation. Originally settled in the field of statistics, with increasing data sizes,
also computer science and applied mathematics became increasingly relevant to the field.
However, in contrast to common believe, for the analysis of the data, not only machine
learning knowledge is needed. The area of data science is very broad, and not all the
tasks need statistical concepts or machine learning. There are many problems for which
fundamental and deep knowledge of theoretical aspects of computer science is needed.

© Petra Mutzel;
licensed under Creative Commons License CC-BY

36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019).
Editors: Rolf Niedermeier and Christophe Paul; Article No. 3; pp. 3:1–3:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-7621-971X
https://ls11-www.cs.tu-dortmund.de
mailto:petra.mutzel@cs.tu-dortmund.de
https://doi.org/10.4230/LIPIcs.STACS.2019.3
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

3:2 Algorithmic Data Science

In this paper we will see that data analysis provides many opportunities for researchers
based in theoretical computer science as well as in algorithmic theory and algorithm engin-
eering. However, there is only a very small overlap of researchers having published in both,
leading theoretical computer science venues and data mining venues. The author is convinced
that the field of data science will need more researchers from the theoretical computer science
community. Experience shows that when co-authors from both communities join their forces,
the outcome is quite profitable. For example, very recently, the mixed team Ben-David,
Hrubeś, Moran, Shpilka, and Yehudayoff [8] has shown that simple scenarios of learnability
are undecidable using the standard axioms of mathematics. For their proof they used the
equivalence between learnability and compression. The purpose of this paper is to call for
more activity of our community concerning data science tasks. In order to be more visible
and to make our algorithmic basis clear, we could, e.g., start an initiative and make the
name algorithmic data science our own.

The paper is organised as follows. Section 2 motivates the need for algorithmic data
science performed by theoretical computer scientists and provides a brief introduction into
data science and its main analysis tasks. Section 3 is more specific and gives an introduction
to the wide area of graph similarity. The author has chosen this topic, since it is quite
important in data science and machine learning, and it has many relations to different fields,
since it connects graph algorithms with graph theory, algebra, descriptive logic, pebble games,
linear programming relaxations, and functional analysis. Last but not least, there are plenty
of interesting open questions.

2 Motivation

The vast majority of publications in data mining conferences and journals is applied. Similarly
to algorithm engineering, in the top ranked publication venues also some kind of theory is
mandatory. The area of algorithm engineering is relatively close to algorithmic data science,
since it is about the design, theoretical analysis, implementation, and experimental evaluation
of algorithms and data structures. The focus is on solving a real problem with realistic
data provided by practitioners. Algorithm engineering researchers are always interested in
the application of their research results. In order to be successful (in publishing at high
ranked algorithmic venues) a solid basis on fundamental theoretical algorithmic knowledge is
needed. It is important to be able to assess the limits of what is feasible and, if this does
not meet the practical requirements, to be able to extend feasibility by means of guaranteed
approvals. Alternatively, the structure of the data may help for making an approach efficient
or sometimes also the change of the mathematical model of the problem. Sometimes this
even leads to better practical and theoretical methods (see, e.g., subsection 3.1). Algorithmic
data science essentially asks for the same. The aim is to develop new algorithms and tools for
the analysis of the given data. Also for these tasks, a solid and deep knowledge of algorithmic
concepts is needed. In both areas, close cooperation with the respective domain scientists is
necessary.

Topics of interest for theoretical computer scientists

Blum, Hopcroft, and Kannan [9] recently published a book titled “Foundations of Data
Science”, since they were convinced that the “emergence of the web and social networks as
central aspects of daily life presents both opportunities and challenges for theory” ([9], p. 9).
They state that in their book they “cover the theory we expect to be useful in the next 40
years” ([9], p. 9). This includes high-dimensional geometry, singular value decomposition,

P. Mutzel 3:3

random walks, sampling, sketching, streaming, clustering, graphical models, and foundations
of machine learning.

In his book “Data Mining: The Textbook” [2] Aggarwal argues that the following
four problems are fundamental to the process of analysing data: clustering, classification,
association pattern mining, and outlier detection. However, an important basis for all of
these are distances and similarity.

Clustering is the task to group the given data points so that items within the same group
are more similar to each other than to outside items. Already from this definition it becomes
clear that there are many possibilities to formally define the clustering problem. Clustering
has been studied for a long time in the statistics community and in practical computer
science (e.g., data bases, machine learning). Only recently, there is increasing interest by
researchers in theoretical computer science (see, e.g., [1, 18]). Clustering has become even
more popular during the big data hype, since it can be used for data sparsification and
sampling approaches (e.g., [18]). Also for big data approaches on graphs, clustering plays an
important role and became a research object of its own in the area of sublinear algorithms
(e.g., [14]).

In contrast to clustering which belongs to so-called unsupervised learning, classification is
a supervised learning approach. In classification a training set of data is provided whose items
are labelled by its classes (groups). The aim is to train a classifier so that a new incoming
item will be assigned to its correct class. Similar to clustering, also classification problems
differ widely and have many applications in practice, e.g., in medicine for making decisions
or predictions. Other popular applications are in spam detection. Classification is mostly
studied in the machine learning community, while the related regression problems, where the
labels are continuous, are mostly studied in statistics. However, this separation increasingly
disappears. Popular approaches are support vector machines (e.g., in combination with
kernel functions), k-nearest neighbour methods, logistic regression, Bayes classifiers, decision
tree methods, and deep learning.

A popular data mining task is to find frequent patterns in a data set. A given parameter
defines the minimum support s. An item is said to be frequent if it occurs at least s times.
For example, in a graph G the set of (frequent) subgraphs (often restricted to a certain size)
are those appearing at least s times in G. In a (temporal) sequence of data the considered
patterns are subsequences. The aim is to find inherent regularities in the data. This is
useful for deriving similarity measures on given data sets, which is important for clustering,
classification, and outlier detection. Association pattern mining denotes a generalisation of
frequent pattern mining, since it does not only rely on absolute frequencies but also on other
statistical quantifications leading to association rules from a statistical perspective. The
confidence of a rule A⇒ B is defined as the fraction of data points containing A that also
contain B. The algorithmic aspects of frequent pattern mining problems have been studied
widely in the early data mining literature. In their book [3], Aggarwal and Han provide a
great survey on the current state of this topic.

Outlier detection is the problem of finding data items that are different from the majority
of the given data set. Outliers may reflect errors in the data or they may belong to certain
interesting rare events (e.g., in physics). Applications include fraud detection, network
intrusion detection, finding unusual symptoms in medicine, or measuring errors from sensors.
Also for this task, many models and approaches have been developed so far. There are
statistical models (e.g., statistical tests), models based on spatial proximity (e.g., k-nearest
neighbour), density-based techniques, ensemble techniques, and many more. The three above
mentioned data analysis tasks clustering, classification, and association pattern mining can
be used for finding outliers.

STACS 2019

3:4 Algorithmic Data Science

All of the above tasks rely on a notion of similarity or dissimilarity. For vectorial data
or spatial data it is natural to use distance functions (two points are close to each other if
their distance is small), whereas for graphs the notion of similarity is more common. In this
context, also fundamental algorithmic techniques and data structures such as finding nearest
neighbours and locality-sensitive hashing are useful.

It is important to develop special methods for certain data domains. For text data, pattern
mining algorithms as well as compressed data structures are relevant. Of increasing interest
are sequence data and time-series data recorded by sensors. For these data types, topics
like sequence similarity, time series forecasting, classification, motifs, clustering, and outlier
detection are of interest. Streaming algorithms are essential for dealing with continuous data
streams.

Spatial data appears in the public health sector, energy and water supplies, smart cities,
and many other domains. Examples are, e.g., remotely-sensed satellite images for weather
forecast, climate, or crops. In summer 2018, the University Consortium for Geographic
Information Science (UCGIS) published a call to action for bringing the geospatial perspective
into data science degrees and curricula [47].

A natural representation for linked data sets are graphs. Some applications lead to
sequences of large graphs, such as the web graph, while others to large numbers of small
static graphs as in chemical molecule databases. One example of successful algorithmic data
science where both communities, the data mining and the algorithmic community merged,
is the computation of distances in a graph, which is important for social network analysis
(e.g., centrality metrics). Other topics such as connectivity, matchings, network design and
partitioning problems have not yet been brought to data science attention, although there
will be potential. Concerning the classical basic graph algorithms, Skiena states: “I have
not seen these tools applied as generally in data science as I think they should be” ([45],
p. 323). A possible reason for this may be that the graphs tend to be quite large. On the
other hand, this maybe overcome with graph sketching, graph sparsification, graph sampling,
sublinear graph algorithms, and network summarisation. All of these are topics studied in
the theoretical computer science community and of interest to data science.

3 Graph Similarity

The basis for many data analysis tasks for graphs and networks like clustering, classification
and outlier analysis is graph similarity. One can think of many different models and
definitions for this depending on the current applications. Although some similarity notions
have been studied from practical and theoretical perspectives already, there are still many
open questions.

3.1 Isomorphism based Approaches
Graph similarity is closely related to graph isomorphism. In the data mining literature, the
notion of exact graph matching is devoted to find strict correspondences between two graphs
being matched, or at least their subgraphs.

Graph isomorphism

Obviously, two graphs are most similar if they are isomorphic to each other.

I Definition 1. Let G = (VG, EG) and H = (VH , EH) be two simple graphs. A bijective map
π : VG → VH is a graph isomorphism if the following holds:

P. Mutzel 3:5

∀ v, w ∈ VG : (v, w) ∈ EG ⇐⇒ (π(v), π(w)) ∈ EH .

The graph isomorphism problem asks the question if a graph isomorphism between two given
graphs exists.

The complexity of the graph isomorphism problem is still open. NP-completeness of the
problem would result in the collapse of the polynomial time hierarchy to its second level [41].
There are quite a few special graph classes for which the graph isomorphism problem is known
to be solvable in polynomial time such as planar graphs [26], bounded degree graphs [33], and
graphs of bounded tree width [10]. A quite general result by Grohe and Marx shows that the
graph isomorphism problem can be solved in O(nf(|H|)) time for H-topological-minor-free
graphs [22], where f denotes a function. For a long time, fixed-parameter-tractability of
the graph isomorphism problem concerning the parameter tree width was open. Recently,
Lokshtanov et al. [32] solved the problem by suggesting a graph canonisation approach
leading to a 2O(k5 log k)n5 time algorithm that either solves the graph isomorphism problem
for two given graphs or concludes that one of the graphs does not have tree width bounded
by k. Grohe et al. [23] have improved this result to an isomorphism test for graphs with tree
width k with running time O(2k polylog(k)poly(n)).

The theoretically best algorithm for general graphs known is the quasi-polynomial time
algorithm by Babai [6]. Surprisingly, most practical instances on general graphs can be solved
quite fast. However, most of the graph pairs provided for graph analysis are not isomorphic
to each other and we are interested in their similarity.

Maximum common subgraph

A natural extension of graph isomorphism to graph similarity between G and H is to search
for the largest subgraph that is contained in G and H. This gives rise to the maximum
common subgraph problem.

I Definition 2. Let G = (VG, EG) and H = (VH , EH) be two simple graphs. A graph C is
called a common subgraph if there exist two vertex sets R ⊆ VG and S ⊆ VH so that the
induced subgraphs G[R] and H[S] are isomorphic to C. The common subgraph of largest size
is called the maximum common subgraph.

G H

Figure 1 Two graphs and their maximum common subgraph displayed with blue vertices. The
red darts demonstrate the mapping between the two isomorphic subgraphs.

Figure 1 shows two graphs and their maximum common subgraph. In contrast to the
graph isomorphism problem, the maximum common subgraph problem is well-known to
be NP-hard. Also here many variants are possible by asking for non-induced subgraphs

STACS 2019

3:6 Algorithmic Data Science

or introducing weights to the vertices and edges. Kann studied the complexity of several
variations of the maximum common subgraph problem including approximation [27]. In
practice, researchers often use the relationship between the maximum common subgraph
problem and the maximum clique problem in the product graph of G = (VG, EG) and
H = (VH , EH). If the graphs are small, then the algorithm by Bron and Kerbosch [12] can
be used which enumerates the set of all maximal cliques in a graph. For larger graphs, this
can be combined with branch-and-bound techniques. The theoretical fastest clique algorithm
by Robson [40] leads to running time O(20.249|VG||VH |). However, this algorithm has not
been published so far and is quite involved. Therefore, the result by Fomin, Grandoni, and
Kratsch [19] is of interest for practitioners, since it introduces a simple algorithm with running
time O(20.288|VG||VH |). In [30] Kriege suggested an algorithm based on graph canonisation
with running time O(2VH +V 1/2+o(1)

G) assuming that |VG| ≤ |VH |.
Concerning special graph classes, the maximum common subgraph problem remains

NP-hard even if both given graphs are trees [11]. However, if the output is restricted to be
connected, then this problem can be solved in polynomial time [35]. Akutsu and Tamura [4]
have shown that the maximum common connected subgraph problem is NP-hard in vertex-
labeled partial 11-trees of bounded degree. Kriege et al. [28] have shown that the problem
remains NP-hard in biconnected partial 2-trees with all but one vertex of degree three or less.

Figure 2 The structure of the caffeine molecule and its molecule graph with vertex labels (atoms)
and edge attributes (single or double bonds).

In practice, this problem is highly relevant for chemical molecule databases used for
drug design. Molecule graphs are often outerplanar, almost all of them are planar. They
have bounded tree width and vertex degree. Very important are the vertex and edge labels
corresponding to atoms and activity attributes (see Fig. 2). Chemists want to find small
molecules having a similar function as a given molecule or they want to conduct high-
throughput screening in order to find promising candidates. Graph similarity approaches
work well for answering these type of questions, since there is a direct connection between the
structure (atoms and their bonds) and the effect of a molecule. When studying the chemical
problem, it turned out that a restricted version of the maximum common subgraph problem
which preserves the blocks (maximal biconnected components) and the bridges of the input
graphs, is even of more relevance to the chemists. Luckily, this restricted version can be solved
in polynomial time [28] in contrast to the original stated problem. For outerplanar bounded
degree graphs, the block-and-bridge preserving maximum common connected subgraph can
be computed in quadratic time [16]. These examples show that looking at the practical data
as well as analysing the given practical problem may often help to find theoretically and
practically useful algorithms. A new direction relevant to molecular graphs is to further relax
the restriction of isomorphism and instead only require a homeomorphism (see, e.g., [17]).
Recently, Kriege, Humbeck and Koch [29] have provided a survey on chemical similarity and
substructure search in the area of drug design.

P. Mutzel 3:7

3.2 Distance based Approaches
Distance based approaches for graph comparison have been used widely in the machine
learning community and in certain application domains like bioinformatics.

Frobenius distance

A natural distance measure between two graphs G and H is to search a permutation of the
vertex set of G so that the number of edge mismatches is minimised. The Frobenius distance
between two graphs investigated in [25] takes up this idea. Here, a permutation π of the
rows and columns of the adjacency matrix AG is searched that minimises the Frobenius
norm of the matrix AπG −AH . Although this problem has been extensively studied in the
machine learning literature (also called graph matching) only few theoretical results are
known. Recently, Grohe, Rattan, and Woeginger [25] have investigated the complexity of
this and related problems. They have shown that this graph similarity problem is NP-hard
even if both input graphs are trees or if one input graph is a path. On the other hand,
the authors show that in the case that the two graphs are a path and a tree, the problem
can be solved in polynomial time. On the positive side, they also show that the weighted
version (taking weights of the edges into account) of the graph similarity problem related
to the Frobenius norm is tractable if both adjacency matrices are positive semidefinite and
have bounded rank, and where one of the matrices has a bounded clustering number. For
details, please see [25]. Many problems in this area are worth further studying. It would
be of interest if the problem or some restrictions can be approximated in polynomial time.
Also results concerning fixed-parameter-tractability would be of great interest for algorithmic
data science.

Graph edit distance

A more general distance is the graph edit distance in which the goal is to transform graph
G into graph H by adding, substituting or deleting vertices and edges with the smallest
total cost. This very general problem is often used in bioinformatics (e.g., for sequence
comparisons), since it has the advantage that arbitrary vertex and edge attributes (e.g.,
labels) and many different cost functions and edit operations can be taken into account.
However, this flexibility also comes with costs. The graph edit distance is a generalisation of
the maximum common subgraph problem, which is NP-complete and hard to approximate
with given guarantees [27]. Practical approaches for computing the graph edit distance of
two given graphs are often based on backtracking or tree search algorithms and work for
small graphs only. Recently, a binary linear programming formulation for computing the
graph edit distance has been proposed (Lerouge et al., 2017), which allows to compare graphs
of moderate size using state-of-the art general purpose solvers.

3.3 Weisfeiler-Leman Approaches
Despite the fact that the complexity of the graph isomorphism problem is open, experience
shows that the problem can be solved quite fast in practice for most instances. The basis for
many of the practical algorithms (e.g., nauty [36]) as well as for the quasi-polynomial time
algorithm by Babai [6] is the vertex colouring algorithm by Weisfeiler-Leman1. The hypothesis

1 In the literature found as Lehman as well as Leman

STACS 2019

3:8 Algorithmic Data Science

that similar graphs tend to have similarly coloured vertex sets led to its usage for classification
tasks. For many practical tasks, Weisfeiler-Leman based classification (also called colour
refinement) successfully competes with or even dominates the best state-of-the-art methods.

Basic Weisfeiler-Leman

The Weisfeiler-Leman algorithm (WL) simultaneously colours the vertices of the two given
graphs iteratively. In the beginning, all vertices get the same colour c. In each iteration,
the vertex sets of each colour class are further separated. This is done by looking at the
neighbours of each vertex. E.g., if a vertex v has three neighbours of a colour c while vertex
w has only two neighbours of colour c, then v and w will get different colours. The algorithm
stops if the colour classes do not change anymore. If now the two given graphs have different
colour classes, we know that these graphs cannot be isomorphic to each other.

Figure 3 shows two graphs and their colouring after the second iteration. By looking at
the colour histograms of each graph, which are different for our example, it becomes clear
that the two graphs cannot be isomorphic to each other. So we do not even need to compute
further iterations. We say that the Weisfeiler-Leman algorithm distinguishes the two graphs
if the colour patterns are different.

G H G H G H

Initialisation 1st iteration 2nd iteration

Figure 3 The first iterations of the WL-algorithm for two graphs G and H.

In the case that the colour classes are identical after the final round of the Weisfeiler-
Leman algorithm, we cannot be sure if both graphs are isomorphic to each other. Consider,
for instance, a k-regular graph (all vertices have degree k). The algorithm would stop after
the first round, since every vertex has the same number of neighbours of colour c. Hence
all vertices get the same colour. Hence, the WL algorithm can be used as a heuristic with
one-sided error for solving the graph isomorphism problem.

WL has the nice property that two random graphs will end up with different colour
classes with high probability [7]. In data analysis, the algorithm is been used for solving
classification problems via graph kernels. Graph kernels have been used with established
learning algorithms such as support vector machines and have proven to be a key technique
for solving classification and prediction tasks on graphs [43].

A graph kernel is a similarity measure between graphs, which can be represented as a
dot product between feature vectors obtained from the graphs. The colour histograms after
every round of the WL-algorithm directly provide such a feature vector. E.g., in our example
the feature vector after the first round for G would be (3, 1, 1) (three yellow, one red, one
blue) and after the second round (2, 0, 0, 1, 1, 1, 0) (because there is no red, blue or dark green
coloured vertex in G). In order to get one feature vector, we can simply concatenate the
two feature vectors, hence we get (3, 1, 1, 2, 0, 0, 1, 1, 1, 0). We could also scale some of these
vectors up or down. The similarity measure is then given by the dot product of these feature
vectors. By doing this for all pairs of graphs in a given data set, we get a similarity function
that can be plugged into a learning algorithm, such as a support vector machine.

P. Mutzel 3:9

G initialisation 2-WL 1st iteration 2-WL

Figure 4 An example for the first rounds of 2-WL (set-based) for a graph G.

Higher dimensional Weisfeiler-Leman approaches

We get a stronger version of the WL algorithm by colouring the set of all k-tuples or k-sets of
vertices. There are many different possibilities to generalise the WL approach to k dimensions
by defining the neighbourhood of the elements. So be aware about the different definitions
in the literature, in particular, if results from other papers concerning the k-WL are used.
Most results may be true for the various definitions, but not all of them.

For simplicity we discuss the version in which we consider the set of all unordered k-sets
instead of tuples. Then we say that two k-sets of vertices are neighbours if they differ in
exactly one element. Initially, the k-sets R and S get the same colour if the induced graphs
G[R] and H[S], respectively, are isomorphic to each other. In each iteration two k-sets R
and S of the same colour get different colours, if there exists a colour c for which R and S
have a different number of neighbours coloured c. Figure 4 shows an example for k = 2.

It turns out that, in general, the k-WL algorithm is stronger than the original WL-
algorithm in the sense that it is able to distinguish two non-isomorphic graphs (answer
“not isomorphic”) whenever the original is able to do so. Moreover, for large enough k,
the generalised approach would be able to solve the graph isomorphism problem. However,
note that already the initialisation phase for k = n asks for solving the graph isomorphism
problem. Babai in his quasi-polynomial algorithm uses the k-tuple WL for k = O(logn)
and many other involved algebraic techniques [6]. Cai, Führer, and Immerman [13] have
shown that for every k there exist 3-regular graphs Gk and Hk of size O(k) that are not
distinguishable by the k-WL. Altogether we can say that the k-WL for k ≥ 2 is quite strong,
but it is also slow to compute.

Because the k-WL algorithm is too slow for using it for classification tasks in data analysis,
we have suggested a local version which takes the graph structure into account [37]. Here, we
say that two k-sets are neighbours if they differ in exactly one element and there is an edge
from a vertex in R (resp. S) to a vertex in S (resp. R). So our new local kernel takes both,
local and global graph properties into account. Since for sparse graphs the neighbourhood
of a k-set in the local WL is much smaller compared to the neighbourhood in the original
k-WL, the algorithm runs much faster on such graphs. Our experiments on several graph
classification benchmarks have shown that our kernels often outperform the state-of-the-art
in terms of classification accuracies.

Surprisingly, in our experiments, our local version concerning k-sets (we tested for k = 2, 3)
was at least as strong as the global k-WL and often even stronger. Also the number of colour
classes of our local version is in general larger than that of k-WL (see, e.g., Fig. 5). This
is nice, since in the best case, every vertex gets a different colour; and then it is easy to
distinguish two non-isomorphic graphs. Currently, we are investigating the relationships
more deeply; our theoretical as well as new empirical results can be found in [38]. Observe
that there are quite a few different definitions of the k-WL in the literature, which differ in
their strength. For more information, see, e.g., [21].

STACS 2019

3:10 Algorithmic Data Science

G initialisation 2-LWL 1st iteration 2-LWL

Figure 5 An example for the first rounds of the local 2-LWL (set-based) for a graph G.

Linear programming provides a nice relationship between graph isomorphism and the
outcome of the Weisfeiler-Leman algorithm. There is a natural integer linear program for the
graph isomorphism problem in which the nonnegative integer solutions of the equation system
correspond to permutation matrices. Tinhofer [46] has denoted the nonnegative fractional
solutions of the LP-relaxation of this integer linear program fractional isomorphisms. He
has shown that two graphs are fractional isomorphic if and only if the Weisfeiler-Leman
algorithm is not able to distinguish them.

Weisfeiler-Leman and its relation to descriptive complexity

Cai, Han, and Führer [13] have revealed interesting connections between the k-WL and
descriptive complexity. They provide a linear lower bound for the number of variables
needed for first-order logic with counting to distinguish a sequence of pairs of graphs Gn and
Hn. The authors prove the equivalence of the k-variable language with counting and the
(k − 1)-dimensional WL. Then they introduce combinatorial pebble games and prove that
they are logically equivalent in the considered languages.

Atserias and Maneva [5] provide an equation system related to the generalisation of the
Weisfeiler-Leman algorithm to k-tuples which is in close relation to the level-k Sherali-Adams
relaxation of Tinhofer’s equation system. More precisely, they show that the levels of the
Sherali-Adams hierarchy of linear programming relaxations applied to Tinhofer’s equation
system interleave with the levels of k-dimensional Weisfeiler-Leman, and in addition with
the levels of indistinguishability in a logic with counting quantifiers and bounded number
of variables. The former results have also been obtained by Malkin [34] using polyhedral
arguments. Grohe and Otto [24] have further simplified the arguments and strengthened the
above result using a modified k-pebble counting game.

Counting homomorphisms

In the graph mining community, graph similarity is often measured by counting small
subgraphs. For example, for a given input graph, the number of triangles, paths of length
4, and subtrees of certain sizes and structure are counted. These counts provide the input
values for a feature vector for this graph. The dot product yields a graph kernel which can
then be used for graph classification using a support vector machine (e.g., see [44]).

Dell, Grohe, and Rattan [15] suggest to count homomorphism vectors restricted to certain
subgraphs instead. Their motivation is a classical result due to Lovász stating that a graph
G can be characterised by counting the homomorphisms from the set of all graphs F to
G. The authors show that if the homomorphism vectors are restricted to trees, then the
feature vectors of the homomorphism counts of two graphs are identical if and only if the
Weisfeiler-Leman algorithm does not distinguish the graphs. The LP-relaxation of the natural

P. Mutzel 3:11

integer linear program for the graph isomorphism problem has a rational solution if and
only if the two feature vectors of the homomorphism counts are identical [15]. Moreover, the
authors generalised their result to the k-dimensional Weisfeiler-Leman algorithm. For this,
they restrict the homomorphism counts to the graph class of all graphs of tree width at most
k. Then they show that the following three statements are equivalent:
(i) The feature vectors of the homomorphism counts restricted to the graph class of graphs

with tree width at most k of two given graphs are identical.
(ii) The k-dimensional Weisfeiler-Leman algorithm does not distinguish both graphs.
(iii) The system of linear equations has a nonnegative solution.
The following results have been proven for one direction only: In the case that the system of
linear equations has a real solution, then the feature vectors of the homomorphism counts
restricted to the graph class of graphs with path width at most k of two given graphs are
identical. It is still open if the converse holds. The authors state that it would be very
interesting to study the graph similarity measures induced by the homomorphism vectors [15].

Weisfeiler-Leman and deep learning

Deep neural networks are incredibly popular these days, since they have led to qualitative
breakthroughs on a wide variety of tasks. They are among the most successful machine
learning approaches for voice recognition and image recognition. Today they are used
for almost any application related to sound, text, images, videos, graphs, and time series.
Although there is plenty of successful empirical research on a wide variety of applications,
there are only few theoretical papers explaining their behaviour.

Gilmer et al. [20] have suggested a message passing neural network for graphs with
vertex and edge features which covers most of the current graph neural networks. Similar to
Weisfeiler-Leman, also these graph neural networks are based on neighbourhood aggregation.
In contrast to WL, the aggregation functions do not need to be discrete, and the architecture
of the T -layered network defines the neighbourhood.

Morris et al. [39] have studied the relationship between Weisweiler-Leman and graph
neural networks. The authors have shown that graph neural networks can be viewed as
a neural version of the Weisfeiler-Leman algorithm, in which the colours are replaced by
continuous feature vectors. The neural networks aggregate over the vertex neighbourhoods.
The paper shows that although the graph neural networks are more flexible concerning
learning tasks, they are not able to distinguish pairs of non-isomorphic graphs that cannot
be distinguished by Weisfeiler-Leman. On the other hand, there exist architectures and
parameters so that graph neural networks have the same strength as Weisfeiler-Leman. Based
on their observation, the authors have suggested so-called k-graph neural networks as well as
new hierarchical versions, and prove an equivalence concerning strength to the k-dimensional
Weisfeiler-Leman approach. Their experimental study has revealed that their new hierarchical
approach is able to dominate the state-of-the-art approaches. This a nice example where
theory does lead to innovative approaches improving the practical state-of-the-art.

4 Conclusion

This paper tries to motivate the readers to get interested to the area of algorithmic data
science. There are plenty of opportunities for achieving new theoretical results as well as
practical impact. The paper should not be seen as a survey on the area of data analysis on
graphs but rather as an attempt to get the reader interested in algorithmic data science. If
you want to learn a bit more, you can find some suggestions in the following.

STACS 2019

3:12 Algorithmic Data Science

Skiena [45] wrote a great book that gives a nice introduction into data science focusing
on the skills and principles needed for the whole process including data integration, data
cleaning, data analysis and visualisation. In particular, the author provides intuition for
the presented statistical and mathematical concepts. The recent books by Blum, Hopcroft,
and Kannan [9] as well as Aggarwal [2] dig deeper into theory (see section 2). Leskovec,
Rajaraman and Ullman [31] cover certain aspects concerning Web mining including the
technology of search engines like link-spam detection and recommendation systems. Other
interesting books are, e.g., [48] and [42].

References
1 Marcel R. Ackermann, Johannes Blömer, Daniel Kuntze, and Christian Sohler. Analysis of Ag-

glomerative Clustering. Algorithmica, 69(1):184–215, 2014. doi:10.1007/s00453-012-9717-4.
2 Charu C. Aggarwal. Data Mining: The Textbook. Springer Publishing Company, Incorporated,

2015.
3 Charu C. Aggarwal and Jiawei Han. Frequent Pattern Mining. Springer Publishing Company,

Incorporated, 2014.
4 Tatsuya Akutsu and Takeyuki Tamura. A Polynomial-Time Algorithm for Computing the

Maximum Common Subgraph of Outerplanar Graphs of Bounded Degree. In Branislav
Rovan, Vladimiro Sassone, and Peter Widmayer, editors, 37th International Symposium on
Mathematical Foundations of Computer Science, MFCS 2012, pages 76–87, Berlin, Heidelberg,
2012. Springer.

5 Albert Atserias and Elitza Maneva. Sherali–Adams Relaxations and Indistinguishability in
Counting Logics. SIAM Journal on Computing, 42(1):112–137, 2013. doi:10.1137/120867834.

6 László Babai. Graph isomorphism in quasipolynomial time. In Proceedings of the Forty-eighth
Annual ACM Symposium on Theory of Computing, STOC 2016, pages 684–697, New York,
NY, USA, 2016. ACM.

7 László Babai, Paul Erdös, and Stanley M. Selkow. Random Graph Isomorphism. SIAM
Journal on Computing, 9(3):628–635, 1980. doi:10.1137/0209047.

8 Shai Ben-David, Pavel Hrubes, Shay Moran, Amir Shpilka, and Amir Yehudayoff. Learn-
ability can be undecidable. Nature Machine Intelligence, 1:44–48, 2019. doi:10.1038/
s42256-018-0002-3.

9 Avrim Blum, John Hopcroft, and Ravi Kannan. Foundations of Data Science, 2018. URL:
https://www.cs.cornell.edu/jeh/book.pdf.

10 Hans L. Bodlaender. Polynomial algorithms for graph isomorphism and chromatic index on
partial k-trees. Journal of Algorithms, 11(4):631–643, 1990. doi:10.1016/0196-6774(90)
90013-5.

11 Franz J. Brandenburg. Subgraph isomorphism problems for k-connected partial k-trees.
Unpublished manuscript, 2000.

12 Coen Bron and Joep Kerbosch. Algorithm 457: finding all cliques of an undirected graph. In
CACM, 1973.

13 Jin-yi Cai, Martin Fürer, and Neil Immerman. An optimal lower bound on the number of
variables for graph identificationS. Combinatorica, 12(4):389–410, 1992.

14 Artur Czumaj, Pan Peng, and Christian Sohler. Testing Cluster Structure of Graphs. In
Rocco A. Servedio and Ronitt Rubinfeld, editors, Proceedings of the Forty-Seventh Annual
ACM on Symposium on Theory of Computing, STOC 2015, pages 723–732. ACM, 2015.
doi:10.1145/2746539.2746618.

15 Holger Dell, Martin Grohe, and Gaurav Rattan. Lovász Meets Weisfeiler and Leman. In
Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Donald Sannella, editors,
45th International Colloquium on Automata, Languages, and Programming (ICALP 2018),
volume 107 of Leibniz International Proceedings in Informatics (LIPIcs), pages 40:1–40:14,

http://dx.doi.org/10.1007/s00453-012-9717-4
http://dx.doi.org/10.1137/120867834
http://dx.doi.org/10.1137/0209047
http://dx.doi.org/10.1038/s42256-018-0002-3
http://dx.doi.org/10.1038/s42256-018-0002-3
https://www.cs.cornell.edu/jeh/book.pdf
http://dx.doi.org/10.1016/0196-6774(90)90013-5
http://dx.doi.org/10.1016/0196-6774(90)90013-5
http://dx.doi.org/10.1145/2746539.2746618

P. Mutzel 3:13

Dagstuhl, Germany, 2018. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/
LIPIcs.ICALP.2018.40.

16 Andre Droschinsky, Nils Kriege, and Petra Mutzel. Finding Largest Common Substructures
of Molecules in Quadratic Time. In Bernhard Steffen, Christel Baier, Mark van den Brand,
Johann Eder, Mike Hinchey, and Tiziana Margaria, editors, SOFSEM 2017: Theory and
Practice of Computer Science - 43rd International Conference on Current Trends in Theory
and Practice of Computer Science, volume 10139 of Lecture Notes in Computer Science, pages
309–321. Springer, 2017. doi:10.1007/978-3-319-51963-0_24.

17 Andre Droschinsky, Nils M. Kriege, and Petra Mutzel. Largest Weight Common Subtree
Embeddings with Distance Penalties. In Igor Potapov, Paul G. Spirakis, and James Worrell,
editors, 43rd International Symposium on Mathematical Foundations of Computer Science,
MFCS 2018, volume 117 of LIPIcs, pages 54:1–54:15. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, 2018. doi:10.4230/LIPIcs.MFCS.2018.54.

18 Dan Feldman, Melanie Schmidt, and Christian Sohler. Turning big data into tiny data:
Constant-size coresets for k-means, PCA and projective clustering. In Sanjeev Khanna, editor,
Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2013, pages 1434–1453. SIAM, 2013. doi:10.1137/1.9781611973105.103.

19 Fedor V. Fomin, Fabrizio Grandoni, and Dieter Kratsch. Measure and Conquer: A Simple
O(20.288N) Independent Set Algorithm. In Proceedings of the Seventeenth Annual ACM-SIAM
Symposium on Discrete Algorithm, SODA ’06, pages 18–25, Philadelphia, PA, USA, 2006.
Society for Industrial and Applied Mathematics. URL: http://dl.acm.org/citation.cfm?
id=1109557.1109560.

20 Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl.
Neural Message Passing for Quantum Chemistry. In Doina Precup and Yee Whye Teh, editors,
Proceedings of the 34th International Conference on Machine Learning (ICML), volume 70 of
Proceedings of Machine Learning Research (PMLR). PMLR, 2017.

21 Martin Grohe. Descriptive Complexity, Canonisation, and Definable Graph Structure Theory.
Lecture Notes in Logic. Cambridge University Press, 2017.

22 Martin Grohe and Daniel Marx. Structure Theorem and Isomorphism Test for Graphs
with Excluded Topological Subgraphs. SIAM Journal on Computing, 44(1):114–159, 2015.
doi:10.1137/120892234.

23 Martin Grohe, Daniel Neuen, Pascal Schweitzer, and Daniel Wiebking. An Improved Isomorph-
ism Test for Bounded-Tree-Width Graphs. In Ioannis Chatzigiannakis, Christos Kaklamanis,
Dániel Marx, and Donald Sannella, editors, 45th International Colloquium on Automata,
Languages, and Programming, ICALP 2018, volume 107 of LIPIcs, pages 67:1–67:14. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018. doi:10.4230/LIPIcs.ICALP.2018.67.

24 Martin Grohe and Martin Otto. Pebble games and linear equations. The Journal of Symbolic
Logic, 80(3):797–844, 2015. doi:10.1017/jsl.2015.28.

25 Martin Grohe, Gaurav Rattan, and Gerhard J. Woeginger. Graph Similarity and Approximate
Isomorphism. In Igor Potapov, Paul G. Spirakis, and James Worrell, editors, 43rd International
Symposium on Mathematical Foundations of Computer Science, MFCS 2018, volume 117 of
LIPIcs, pages 20:1–20:16. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018. doi:
10.4230/LIPIcs.MFCS.2018.20.

26 John E. Hopcroft and Joseph K. Wong. Linear Time Algorithm for Isomorphism of Planar
Graphs (Preliminary Report). In Proceedings of the Sixth Annual ACM Symposium on
Theory of Computing, STOC 1974, pages 172–184, New York, NY, USA, 1974. ACM. doi:
10.1145/800119.803896.

27 Viggo Kann. On the approximability of the maximum common subgraph problem. In Alain
Finkel and Matthias Jantzen, editors, STACS 92, pages 375–388, Berlin, Heidelberg, 1992.
Springer Berlin Heidelberg.

STACS 2019

http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.40
http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.40
http://dx.doi.org/10.1007/978-3-319-51963-0_24
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.54
http://dx.doi.org/10.1137/1.9781611973105.103
http://dl.acm.org/citation.cfm?id=1109557.1109560
http://dl.acm.org/citation.cfm?id=1109557.1109560
http://dx.doi.org/10.1137/120892234
http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.67
http://dx.doi.org/10.1017/jsl.2015.28
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.20
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.20
http://dx.doi.org/10.1145/800119.803896
http://dx.doi.org/10.1145/800119.803896

3:14 Algorithmic Data Science

28 Nils Kriege, Florian Kurpicz, and Petra Mutzel. On maximum common subgraph problems in
series-parallel graphs. European Journal of Combinatorics, 68:79–95, 2018. Combinatorial
Algorithms, Dedicated to the Memory of Mirka Miller. doi:10.1016/j.ejc.2017.07.012.

29 Nils M. Kriege, Lina Humbeck, and Oliver Koch. Chemical Similarity and Substructure
Searches. In Shoba Ranganathan, Michael Gribskov, Kenta Nakai, and Christian Schönbach,
editors, Encyclopedia of Bioinformatics and Computational Biology, pages 640–649. Academic
Press, Oxford, 2019. doi:10.1016/B978-0-12-809633-8.20195-7.

30 Nils Morten Kriege. Comparing Graphs: Algorithms & Applications. Phd thesis, TU Dortmund,
2015.

31 Jure Leskovec, Anand Rajaraman, and Jeffrey David Ullman. Mining of Massive Datasets.
Cambridge University Press, 2 edition, 2014. doi:10.1017/CBO9781139924801.

32 Daniel Lokshtanov, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Fixed-Parameter
Tractable Canonization and Isomorphism Test for Graphs of Bounded Treewidth. SIAM
Journal on Computing, 46(1):161–189, 2017. doi:10.1137/140999980.

33 Eugene M. Luks. Isomorphism of graphs of bounded valence can be tested in polynomial time.
Journal of Computer and System Sciences, 25:42–65, 1982.

34 Peter N. Malkin. Sherali-Adams relaxations of graph isomorphism polytopes. Discrete
Optimization, 12:73–97, 2014.

35 David W. Matula. Subtree Isomorphism in O(n5/2). In B. Alspach, P. Hell, and D.J. Miller,
editors, Algorithmic Aspects of Combinatorics, volume 2 of Annals of Discrete Mathematics,
pages 91–106. Elsevier, 1978. doi:10.1016/S0167-5060(08)70324-8.

36 Brendan D. McKay and Adolfo Piperno. Practical Graph Isomorphism, II. J. Symb. Comput.,
60:94–112, 2014. doi:10.1016/j.jsc.2013.09.003.

37 Christopher Morris, Kristian Kersting, and Petra Mutzel. Glocalized Weisfeiler-Lehman Graph
Kernels: Global-Local Feature Maps of Graphs. In Vijay Raghavan, Srinivas Aluru, George
Karypis, Lucio Miele, and XindongWu, editors, IEEE International Conference on Data Mining
(ICDM), 2017, pages 327–336. IEEE Computer Society, 2017. doi:10.1109/ICDM.2017.42.

38 Christopher Morris and Petra Mutzel. Towards a practical k-dimensional Weisfeiler-Leman
algorithm. Unpublished manuscript, 2019.

39 Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric Lenssen,
Gaurav Rattan, and Martin Grohe. Weisfeiler and Leman go neural: Higher-order graph
neural networks. CoRR, abs/1810.02244, 2018. to appear at AAAI 2019. arXiv:1810.02244.

40 John M. Robson. Finding a maximum independent set in time O(2n/4). Technical report,
LaBRI, Université Bordeaux I, 2001.

41 Uwe Schöning. Graph isomorphism is in the low hierarchy. Journal of Computer and System
Sciences, 37(3):312–323, 1988. doi:10.1016/0022-0000(88)90010-4.

42 Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning: From Theory to
Algorithms. Cambridge University Press, 2014. doi:10.1017/CBO9781107298019.

43 Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn, and Karsten M.
Borgwardt. Weisfeiler-Lehman Graph Kernels. Journal of Machine Learning Research, 12:2539–
2561, 2011.

44 Nino Shervashidze, SVN Vishwanathan, Tobias Petri, Kurt Mehlhorn, and Karsten Borgwardt.
Efficient graphlet kernels for large graph comparison. In David van Dyk and Max Welling,
editors, Proceedings of the Twelth International Conference on Artificial Intelligence and
Statistics, volume 5 of Proceedings of Machine Learning Research, pages 488–495, Hilton
Clearwater Beach Resort, Clearwater Beach, Florida USA, 2009. PMLR. URL: http://
proceedings.mlr.press/v5/shervashidze09a.html.

45 Steven S. Skiena. The Data Science Design Manual. Springer, 2017. URL: https://www.
springer.com/de/book/9783319554433.

46 Gottfried Tinhofer. A note on compact graphs. Discrete Applied Mathematics, 30(2):253–264,
1991.

http://dx.doi.org/10.1016/j.ejc.2017.07.012
http://dx.doi.org/10.1016/ B978-0-12-809633-8.20195-7
http://dx.doi.org/10.1017/CBO9781139924801
http://dx.doi.org/10.1137/140999980
http://dx.doi.org/10.1016/S0167-5060(08)70324-8
http://dx.doi.org/10.1016/j.jsc.2013.09.003
http://dx.doi.org/10.1109/ICDM.2017.42
http://arxiv.org/abs/1810.02244
http://dx.doi.org/10.1016/0022-0000(88)90010-4
http://dx.doi.org/10.1017/CBO9781107298019
http://proceedings.mlr.press/v5/shervashidze09a.html
http://proceedings.mlr.press/v5/shervashidze09a.html
https://www.springer.com/de/book/9783319554433
https://www.springer.com/de/book/9783319554433

P. Mutzel 3:15

47 University Consortium for Geographic Information Science. A UCGIS Call to Action: Bringing
the Geospatial Perspective to Data Science Degrees and Curricula, 2018. URL: https:
//www.ucgis.org/assets/docs/UCGIS-Statement-on-Data-Science-Summer2018.pdf.

48 Mohammed J. Zaki and Meira Wagner Jr. Data Mining and Analysis: Fundamental Concepts
and Algorithms. Cambridge University Press, New York, NY, USA, 2014.

STACS 2019

https://www.ucgis.org/assets/docs/UCGIS-Statement-on-Data-Science-Summer2018.pdf
https://www.ucgis.org/assets/docs/UCGIS-Statement-on-Data-Science-Summer2018.pdf

Fine-Grained Complexity Theory
Karl Bringmann
Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, Germany
kbringma@mpi-inf.mpg.de

Abstract
Suppose the fastest algorithm that we can design for some problem runs in time O(n2). However,
we want to solve the problem on big data inputs, for which quadratic time is impractically slow.
We can keep searching for a faster algorithm, but maybe none exists. Is there any reasoning that
provides evidence against significantly faster algorithms, and thus allows us to stop searching? In
other words, is there an analogue of NP-hardness for polynomial-time problems?

In this tutorial, we will give an introduction to fine-grained complexity theory, which allows
to rule out faster algorithms by proving conditional lower bounds via fine-grained reductions from
certain key conjectures. We will define these terms and show exemplary lower bounds.

2012 ACM Subject Classification Theory of computation → Problems, reductions and completeness

Keywords and phrases Hardness in P, conditional lower bound, fine-grained reduction

Digital Object Identifier 10.4230/LIPIcs.STACS.2019.4

Category Tutorial

1 Introduction

The traditional way of establishing a problem as intractable is to prove it to be NP-hard.
This makes a polynomial-time algorithm unlikely, so even for medium-size instances we
cannot expect to solve the problem in reasonable time, at least on worst-case instances.

However, in a modern big data world with inputs such as DNA sequences, social network
graphs, or sensor network measurings, even a quadratic-time algorithm can be too slow and
essentially only near-linear-time algorithms are feasible. This shift necessitates changes in
intractability theory. In order to avoid searching until eternity for a faster algorithm that does
not exist, we need intractability tools that establish far-from-linear lower bounds. In other
words, we need an analogue of NP-hardness for polynomial-time problems. Unfortunately,
P vs. NP is too coarse to even differentiate between running time O(n) and O(n100), and no
techniques for proving unconditional lower bounds higher than Θ(n logn) are known.

Therefore, the modern approach is to prove conditional lower bounds. To this end, we
start from a widely believed conjecture1 about the time complexity of a key problem, and
transfer the conjectured intractability to another problem via a fine-grained reduction, yielding
a conditional lower bound on how fast the other problem can be solved. An exemplary
conjecture is the Strong Exponential Time Hypothesis, which essentially states that any
algorithm for Satisfiability requires time 2(1−o(1))n in the worst case [31], see Section 2 for
details. The resulting area of fine-grained complexity theory, also sometimes called hardness
in P, had initial results in the early 90s [29], was heavily influenced by developments in
the fixed-parameter tractability community [23,27,33], and started to mature in the last 5
years, with a wealth of publications appearing every year at the topmost theory conferences,
see [1–4,6–15,17,18,20,21,25,30,34,35,39].

1 Some authors prefer the terminology hypothesis.

© Karl Bringmann;
licensed under Creative Commons License CC-BY

36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019).
Editors: Rolf Niedermeier and Christophe Paul; Article No. 4; pp. 4:1–4:7

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kbringma@mpi-inf.mpg.de
https://doi.org/10.4230/LIPIcs.STACS.2019.4
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

4:2 Fine-Grained Complexity Theory

The development of fine-grained complexity theory in particular enabled the design of
conditionally best-possible algorithms: On the one hand, we design an efficient algorithm
running in some time bound T (n), on the other hand, we prove a conditional lower bound
ruling out time T (n)1−δ for any δ > 0 using fine-grained complexity theory. Together, we
determined T (n) as the best-possible time complexity of our problem (up to lower order
factors and conditional on a plausible complexity-theoretic assumption). This provides strong
indication to stop searching for a faster algorithm.

Despite fine-grained complexity theory being a young field of research, conditionally best-
possible algorithms have already been found for various problems. The fine-grained approach
has been particularly successful for dynamic programming problems. For instance, assuming
the Strong Exponential Time Hypothesis, quadratic running time is essentially optimal for
similarity measures such as Edit distance [13], Longest Common Subsequence [3, 21], and
Fréchet distance [18]. These developments have also fueled algorithmic improvements, e.g.,
the classic O(nt)-time algorithm for Subset Sum2 from 1957 [16] has been improved to time
O(tpolylog(t)) [19], which matches a SETH-based lower bound [5].

In this tutorial, we give an introduction to fine-grained complexity theory. An overview
of the key conjectures is presented in Section 2. We introduce the notions of fine-grained
reduction and conditional lower bound in Section 3. Then, in Sections 4 and 5 we show basic
examples of fine-grained reductions. Finally, we conclude in Section 6.

2 Key Conjectures

The four most central conjectures of fine-grained complexity theory are as follows.

Satisfiability

Recall the standard k-SAT problem: We are given a formula on n Boolean variables in
k-CNF (i.e., the formula is a conjunction of clauses, where each clause is a disjunction of at
most k literals, and each literal is a negated or unnegated variable). The task is to decide
whether there is a satisfying assignment (i.e., an assignment of each variable to true or
false for which the formula evaluates to true). This problem can be solved naively in time
O(2nnk), by enumerating all 2n assignments and checking each of at most O(nk) clauses.
The Strong Exponential Time Hypothesis (SETH) states that the naive running time is
essentially optimal when k tends to infinity. More formally, for any δ > 0 there is a k ≥ 3
such that k-SAT has no O(2(1−δ)n)-time algorithm [31].

Orthogonal Vectors

Given setsA,B consisting of n vectors in {0, 1}d, decide whether there are vectors a ∈ A, b ∈ B
that are orthogonal (i.e., for any 1 ≤ i ≤ d we have a[i] · b[i] = 0). This problem can be
solved naively in time O(n2d), by enumerating all pairs of vectors and checking orthogonality
in time O(d). It is conjectured that Orthogonal Vectors has no O(n2−δdc)-time algorithm
for any δ, c > 0. It is well-known that SETH implies the Orthogonal Vectors conjecture [41].

2 Given a set X of n positive integers and a target t, does any subset of X sum to exactly t?

K. Bringmann 4:3

All Pairs Shortest Path

Given a graph G with n nodes and positive edge weights, compute for all pairs of nodes their
shortest path distance. The classic Floyd-Warshall algorithm solves this problem in time
O(n3) [28, 40]. It is conjectured that All Pairs Shortest Path has no O(n3−δ)-time algorithm
for any δ > 0.

3SUM

Given a set X of n integers, decide whether there are a, b, c ∈ X with a+b+c = 0. A folklore
algorithm solves this problem in time O(n2). It is conjectured that there is no O(n2−δ)-time
algorithm for any δ > 0.

We remark that for all of these problems, lower order improvements beyond the stated
running times are known. For instance, All Pairs Shortest Path can be solved in time
n3/2Ω(

√
logn) [42]. However, these improvements are not enough to falsify the conjectures.

3 Fine-Grained Reductions and Conditional Lower Bounds

For simplicity and since they form the majority of reductions in the literature, here we only
consider many-one reductions, also known as Karp reductions. For a fine-grained variant of
Turing reductions, see e.g. [37].

I Definition 1. For problems P,Q and time bounds tP , tQ, a fine-grained reduction from
(P, tP) to (Q, tQ) is an algorithm that, given an instance I of P , computes an instance J
of Q such that:
1. I is a YES-instance of P if and only if J is a YES-instance of Q,
2. for any ε > 0 there is a δ > 0 such that tQ(|J |)1−ε = O(tP (|I|)1−δ), and
3. the running time of the reduction is O(tP (|I|)1−γ) for some γ > 0.

In particular, if there is a fine-grained reduction from (P, tP) to (Q, tQ) and there is an
algorithm for Q running in time O(tQ(n)1−ε) for some ε > 0, then by combining the two we
can solve any instance I of P in time

O(tP (|I|)1−γ + tQ(|J |)1−ε) = O(tP (|I|)1−γ + tP (|I|)1−δ) = O(tP (|I|)1−δ′
),

for some δ′ > 0. In other words, any significant improvement over time tQ(n) for Q yields
a significant improvement over time tP (n) for P . Or, equivalently, if P cannot be solved
significantly faster than in time tP (n), then Q cannot be solved significantly faster than in
time tQ(n).

Suppose we have a fine-grained reduction from (All Pairs Shortest Path, n3) to (Q, tQ).
Then problem Q cannot be solved in time O(tQ(n)1−ε) for any ε > 0 unless All Pairs Shortest
Path can be solved in time O(n3−δ) for some δ > 0, meaning that the All Pairs Shortest
Path conjecture fails. In this situation, we say that we have proven a conditional lower bound
of tQ(n)1−o(1) for problem Q, assuming the All Pairs Shortest Path conjecture.

4 Example I: SETH-Hardness of Orthogonal Vectors

As a first example for a fine-grained reduction, we present the following by-now classic result.

I Theorem 2 ([41]). The Strong Exponential Time Hypothesis implies the Orthogonal Vectors
conjecture.

STACS 2019

4:4 Fine-Grained Complexity Theory

Proof. We show a fine-grained reduction from Satisfiability to Orthogonal Vectors. Specific-
ally, given a k-CNF formula φ on n variables and m clauses, we will construct sets A,B of
N = 2n/2 vectors in dimension D = m.

Denote the clauses of φ by C1, . . . , Cm. We split the n variables into sets X,Y of size
n/2. For any assigment α of X, we construct a corresponding vector a(α) ∈ A, by setting its
i-th coordinate to 0 if α satisfies clause Ci (i.e., if there is a literal in Ci that is set to true
by applying assignment α to X), and setting it to 1 otherwise. Similarly, for any assigment
β of Y , we construct a corresponding vector b(β) ∈ B, by setting its i-th coordinate to 0 if β
satisfies clause Ci, and setting it to 1 otherwise. Observe that a(α) and b(β) are orthogonal
if and only if (α, β) forms a satisfying assignment of φ, since orthogonality means that each
clause is satisfied by at least one of the two half-assignments α, β. Thus, we constructed an
equivalent Orthogonal Vectors instance.

Note that we indeed constructed sets A,B consisting of N = 2n/2 vectors in {0, 1}D
for D = m. Also note that we can construct A,B in time O(ND). Now suppose that
the Orthogonal Vectors conjecture fails, i.e., Orthogonal Vectors has an O(N2−εDc)-time
algorithm for some ε, c > 0. Then by combining this algorithm with our reduction, we can
solve k-SAT on n variables and m clauses in time O(2n/2m+ 2(2−ε)n/2mc) = O(2(1−δ)nmc′)
for some δ > 0, c′ ≥ 1. Since in k-CNF there are O(nk) different clauses, and we can
bound the polynomial O(nk) by the exponential function O(2δn/(2c′)), we may estimate the
factor mc′ by O(2δn/2). This yields a final time bound of O(2(1−δ/2)n) for k-SAT, which
contradicts SETH. As contraposition, we obtain that SETH implies the Orthogonal Vectors
conjecture. J

5 Example II: Regular Expression Pattern Matching

Let us recall the basics of regular expressions. A regular expression R is a search pattern that
matches any string in the corresponding language L(R). Here we only consider the following
operations over a fixed alphabet Σ. For any symbol c ∈ Σ, the regular expression R = c

matches the length-1 string c, i.e., L(R) = {c}. For any regular expressions R1, R2, the regular
expression R = R1|R2 matches any string matched by R1 or R2, i.e., L(R) = L(R1)∪L(R2).
For any regular expressions R1, R2, the regular expression R = R1 ◦R2 matches any string
that is a concatenation of a string matched by R1 with a string matched by R2, i.e.,
L(R) = {ab | a ∈ L(R1), b ∈ L(R2)}.

In the Regular Expression Pattern Matching problem, given a regular expression R and
a text string T , the task is to decide whether any substring of T matches R. Denoting
the length of T by n and the number of operations that define R by m, there is a classic
O(nm)-time algorithm for this problem [36]. Here we show the following tight lower bound.

I Theorem 3 ([14]). Regular Expression Pattern Matching has no O((n + m)2−ε)-time
algorithm for any ε > 0, unless the Orthogonal Vectors conjecture fails.

Proof. For a fine-grained reduction from Orthogonal Vectors to Regular Expression Pattern
Matching, consider an Orthogonal Vectors instance A,B ⊆ {0, 1}D of size N . We construct
a regular expression R and a text string T as follows.

On the coordinate level, we define two regular expressions

CR(1) := 0 and CR(0) := (0|1).

Note that for coordinates x, y ∈ {0, 1}, regular expression CR(x) matches string y if and
only if x · y = 0.

K. Bringmann 4:5

On the vector level, for any vector b ∈ B we construct the regular expression

V R(b) := CR(b[1]) ◦ CR(b[2]) ◦ . . . ◦ CR(b[D]).

Note that for vectors a, b ∈ {0, 1}D, the regular expression V R(b) matches the string
a[1]a[2] . . . a[D] if and only if a and b are orthogonal.

On the level of sets of vectors, for the set B = {b1, . . . , bN} we construct the regular
expression

R := V R(b1)|V R(b2)| . . . |V R(bN).

Note that for a vector a ∈ {0, 1}D, the regular expression R matches the string a[1]a[2] . . . a[D]
if and only if a is orthogonal to some b ∈ B.

Finally, we define the text string T to be the concatenation of all vectors in A, padded
by a dummy symbol ‘#’, i.e., for A = {a1, . . . , aN} we set

T := a1[1] . . . a1[D]#a2[1] . . . a2[D]# . . .#aN [1] . . . aN [D].

Since the dummy symbol does not appear in R, the regular expression R matches text T if
and only if there is a vector a ∈ A such that R matches a[1]a[2] . . . a[D]. Hence, (R, T) is a
YES-instance of Regular Expression Pattern Matching if and only if (A,B) is a YES-instance
of Orthogonal Vectors.

Note that R and T have size O(ND) and can be constructed in time O(ND). Thus, any
O((n+m)2−ε)-time algorithm for Regular Expression Pattern Matching for some ε > 0 would
yield an algorithm for Orthogonal Vectors in time O((ND)2−ε+ND) = O(N2−δDc) for some
δ, c > 0, which contradicts the Orthogonal Vectors conjecture. Hence, Regular Expression
Pattern Matching is not in time O((n+m)2−ε) for any ε > 0 unless the Orthogonal Vectors
conjecture fails. J

6 Conclusion

In this short introduction to fine-grained complexity theory we focused on the main conjectures
and two basic examples. Over the last years, fine-grained complexity theory developed into
a widely applicable tool with many interesting directions including extensions to dynamic
graph algorithms [9], hardness of approximation [8], compressed data [1], external memory
algorithms [26], and many more. Besides the four main conjectures presented here, several
other conjectures have been used and relations among conjectures have been explored [4, 22,
24,32].

For further reading, we refer to the surveys [37, 38]. Lecture material including slides can
can be found at https://www.mpi-inf.mpg.de/departments/algorithms-complexity/
teaching/summer16/poly-complexity/ (or linked on the author’s homepage).

References
1 Amir Abboud, Arturs Backurs, Karl Bringmann, and Marvin Künnemann. Fine-Grained

Complexity of Analyzing Compressed Data: Quantifying Improvements over Decompress-and-
Solve. In FOCS, pages 192–203, 2017.

2 Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. If the Current Clique
Algorithms are Optimal, So is Valiant’s Parser. In FOCS, pages 98–117, 2015.

3 Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. Tight Hardness Results for
LCS and Other Sequence Similarity Measures. In FOCS, pages 59–78, 2015.

STACS 2019

https://www.mpi-inf.mpg.de/departments/algorithms-complexity/teaching/summer16/poly-complexity/
https://www.mpi-inf.mpg.de/departments/algorithms-complexity/teaching/summer16/poly-complexity/

4:6 Fine-Grained Complexity Theory

4 Amir Abboud, Karl Bringmann, Holger Dell, and Jesper Nederlof. More consequences of
falsifying SETH and the orthogonal vectors conjecture. In STOC, pages 253–266. ACM, 2018.

5 Amir Abboud, Karl Bringmann, Danny Hermelin, and Dvir Shabtay. SETH-based lower
bounds for Subset Sum and Bicriteria Path. In SODA, 2019. To appear. See https://arxiv.
org/abs/1704.04546.

6 Amir Abboud and Søren Dahlgaard. Popular Conjectures as a Barrier for Dynamic Planar
Graph Algorithms. In FOCS, pages 477–486, 2016.

7 Amir Abboud, Thomas Dueholm Hansen, Virginia Vassilevska Williams, and Ryan Williams.
Simulating branching programs with edit distance and friends, or: a polylog shaved is a lower
bound made. In STOC, pages 375–388, 2016.

8 Amir Abboud, Aviad Rubinstein, and R. Ryan Williams. Distributed PCP Theorems for
Hardness of Approximation in P. In FOCS, pages 25–36, 2017.

9 Amir Abboud and Virginia Vassilevska Williams. Popular Conjectures Imply Strong Lower
Bounds for Dynamic Problems. In FOCS, pages 434–443, 2014.

10 Amir Abboud, Virginia Vassilevska Williams, and Huacheng Yu. Matching Triangles and
Basing Hardness on an Extremely Popular Conjecture. In STOC, pages 41–50, 2015.

11 Udit Agarwal and Vijaya Ramachandran. Fine-grained complexity for sparse graphs. In STOC,
pages 239–252, 2018.

12 Divesh Aggarwal and Noah Stephens-Davidowitz. (Gap/S)ETH hardness of SVP. In STOC,
pages 228–238, 2018.

13 Arturs Backurs and Piotr Indyk. Edit Distance Cannot Be Computed in Strongly Subquadratic
Time (unless SETH is false). In STOC, pages 51–58, 2015.

14 Arturs Backurs and Piotr Indyk. Which Regular Expression Patterns Are Hard to Match? In
FOCS, pages 457–466, 2016.

15 Arturs Backurs, Liam Roditty, Gilad Segal, Virginia Vassilevska Williams, and Nicole Wein.
Towards tight approximation bounds for graph diameter and eccentricities. In STOC, pages
267–280, 2018.

16 R.E. Bellman. Dynamic programming. Princeton University Press, 1957.
17 Huck Bennett, Alexander Golovnev, and Noah Stephens-Davidowitz. On the Quantitative

Hardness of CVP. In FOCS, pages 13–24, 2017.
18 Karl Bringmann. Why Walking the Dog Takes Time: Frechet Distance Has No Strongly

Subquadratic Algorithms Unless SETH Fails. In FOCS, pages 661–670, 2014.
19 Karl Bringmann. A Near-Linear Pseudopolynomial Time Algorithm for Subset Sum. In SODA,

pages 1073–1084. SIAM, 2017.
20 Karl Bringmann, Allan Grønlund, and Kasper Green Larsen. A Dichotomy for Regular

Expression Membership Testing. In FOCS, pages 307–318, 2017.
21 Karl Bringmann and Marvin Künnemann. Quadratic Conditional Lower Bounds for String

Problems and Dynamic Time Warping. In FOCS, pages 79–97, 2015.
22 Marco L. Carmosino, Jiawei Gao, Russell Impagliazzo, Ivan Mihajlin, Ramamohan Paturi, and

Stefan Schneider. Nondeterministic Extensions of the Strong Exponential Time Hypothesis
and Consequences for Non-reducibility. In ITCS, pages 261–270, 2016.

23 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.

24 Marek Cygan, Marcin Mucha, Karol Wegrzycki, and Michał Włodarczyk. On Problems
Equivalent to (min, +)-Convolution. In ICALP, volume 80 of LIPIcs, pages 22:1–22:15, 2017.

25 Holger Dell and John Lapinskas. Fine-grained reductions from approximate counting to
decision. In STOC, pages 281–288, 2018.

26 Erik D. Demaine, Andrea Lincoln, Quanquan C. Liu, Jayson Lynch, and Virginia Vassilevska
Williams. Fine-grained I/O Complexity via Reductions: New Lower Bounds, Faster Algorithms,
and a Time Hierarchy. In ITCS, volume 94 of LIPIcs, pages 34:1–34:23, 2018.

27 Rodney G. Downey and Michael R. Fellows. Parameterized Complexity. Monographs in
Computer Science. Springer, 1999.

https://arxiv.org/abs/1704.04546
https://arxiv.org/abs/1704.04546

K. Bringmann 4:7

28 Robert W. Floyd. Algorithm 97: Shortest path. Commun. ACM, 5(6):345, 1962.
29 Anka Gajentaan and Mark H. Overmars. On a Class of O(n2) Problems in Computational

Geometry. Comput. Geom., 5:165–185, 1995.
30 Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol Saranurak.

Unifying and Strengthening Hardness for Dynamic Problems via the Online Matrix-Vector
Multiplication Conjecture. In STOC, pages 21–30, 2015.

31 Russell Impagliazzo and Ramamohan Paturi. On the Complexity of k-SAT. J. Comput. Syst.
Sci., 62(2):367–375, 2001.

32 Marvin Künnemann, Ramamohan Paturi, and Stefan Schneider. On the Fine-Grained Com-
plexity of One-Dimensional Dynamic Programming. In ICALP, volume 80 of LIPIcs, pages
21:1–21:15, 2017.

33 Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Lower bounds based on the Exponential
Time Hypothesis. Bulletin of the EATCS, 105:41–72, 2011.

34 Liam Roditty and Virginia Vassilevska Williams. Fast approximation algorithms for the
diameter and radius of sparse graphs. In STOC, pages 515–524, 2013.

35 Barna Saha. Language Edit Distance and Maximum Likelihood Parsing of Stochastic Gram-
mars: Faster Algorithms and Connection to Fundamental Graph Problems. In FOCS, pages
118–135, 2015.

36 Ken Thompson. Regular Expression Search Algorithm. Commun. ACM, 11(6):419–422, 1968.
37 Virginia Vassilevska Williams. Hardness of Easy Problems: Basing Hardness on Popular

Conjectures such as the Strong Exponential Time Hypothesis (Invited Talk). In IPEC,
volume 43 of LIPIcs, pages 17–29, 2015.

38 Virginia Vassilevska Williams. On some fine-grained questions in algorithms and complexity.
In ICM, 2018. To appear. See https://people.csail.mit.edu/virgi/eccentri.pdf.

39 Virginia Vassilevska Williams and Ryan Williams. Subcubic Equivalences between Path,
Matrix and Triangle Problems. In FOCS, pages 645–654, 2010.

40 Stephen Warshall. A Theorem on Boolean Matrices. J. ACM, 9(1):11–12, 1962.
41 Ryan Williams. A new algorithm for optimal 2-constraint satisfaction and its implications.

Theor. Comput. Sci., 348(2-3):357–365, 2005.
42 Ryan Williams. Faster all-pairs shortest paths via circuit complexity. In STOC, pages 664–673,

2014.

STACS 2019

https://people.csail.mit.edu/virgi/eccentri.pdf

From Graph Theory to Network Science:
The Natural Emergence of Hyperbolicity
Tobias Friedrich
Hasso Plattner Institute, University of Potsdam, Potsdam, Germany
https://hpi.de/friedrich/
friedrich@hpi.de

Abstract
Network science is driven by the question which properties large real-world networks have and how
we can exploit them algorithmically. In the past few years, hyperbolic graphs have emerged as a
very promising model for scale-free networks. The connection between hyperbolic geometry and
complex networks gives insights in both directions:

(1) Hyperbolic geometry forms the basis of a natural and explanatory model for real-world
networks. Hyperbolic random graphs are obtained by choosing random points in the hyperbolic
plane and connecting pairs of points that are geometrically close. The resulting networks share
many structural properties for example with online social networks like Facebook or Twitter. They
are thus well suited for algorithmic analyses in a more realistic setting.

(2) Starting with a real-world network, hyperbolic geometry is well-suited for metric embeddings.
The vertices of a network can be mapped to points in this geometry, such that geometric distances are
similar to graph distances. Such embeddings have a variety of algorithmic applications ranging from
approximations based on efficient geometric algorithms to greedy routing solely using hyperbolic
coordinates for navigation decisions.

2012 ACM Subject Classification Computing methodologies → Network science

Keywords and phrases Graph Theory, Graph Algorithms, Network Science, Hyperbolic Geometry

Digital Object Identifier 10.4230/LIPIcs.STACS.2019.5

Category Tutorial

1 Introduction

In the field of algorithms, a major discrepancy between theory and practice derives from the
fact that the analysis usually assumes worst-case instances. However, real-world instances
behave very differently. In fact, numerous NP-hard problems can be solved in reasonable
time even on large real-world instances, using techniques such as branch-and-bound [30],
branch-and-reduce [5], or reductions to integer linear programming [26], which in itself is
an NP-hard problem that is rather well-behaved on practical instances. One approach
to bridge this gap between theory and practice is to employ an average-case analysis by
bounding the expected run time under the assumption that the input is randomly drawn
from a certain distribution. This was already pointed out by Karp [42] in 1983, who noted
that: “One way to validate or compare imperfect1 algorithms for NP-hard combinatorial
problems is simply to run them on typical instances and see how often they fail. [. . .]
While probabilistic assumptions are always open to question, the approach seems to have
considerable explanatory power.” In 1986, Levin [45] laid the foundation for average-case
complexity theory by providing an average-case complete problem. For more on this topic,
see the survey by Bogdanov and Trevisan [19].

1 Karp calls an algorithm “imperfect” if it potentially outputs the wrong answer or runs too long.

© Tobias Friedrich;
licensed under Creative Commons License CC-BY

36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019).
Editors: Rolf Niedermeier and Christophe Paul; Article No. 5; pp. 5:1–5:9

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-0076-6308
https://hpi.de/friedrich/
mailto:friedrich@hpi.de
https://doi.org/10.4230/LIPIcs.STACS.2019.5
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

5:2 From Graph Algorithms to Network Science

Probability distributions on graphs
The practical relevance and “considerable explanatory power” [42] of an average-case analysis
of course heavily depends on the assumed probability distribution of the input. Thus, when
focusing on graph problems, the considered graph model should mimic at least the most
important properties of typical real-world networks. Two fundamental properties that have
been observed in large real-world networks of many domains are the following.

Heterogeneity. Large real-world networks are highly heterogeneous, i.e., they usually have
some high-degree and many low-degree vertices. In fact, many real-world networks
are scale-free, which means that the number of vertices of degree at most x is roughly
proportional to x−β for some constant β. One then says that such graphs have a power-law
degree distribution with power-law exponent β, which usually lies between 2 and 3.

Interdependency. Edges in real-world networks are typically not independent, i.e., vertices
with a common neighbor tend to be rather similar and thus more likely to be connected
than two random vertices. Formally, this can be measured using the so-called clustering
coefficient, which comes in two flavors, local and global. The global clustering coefficient
is the ratio of triangles among triples of vertices that have at least two edges; and the
local clustering coefficient of a single vertex is the ratio of connected neighbors among all
pairs of neighbors (one then usually considers these local clustering coefficients averaged
over all vertices).

We note that some types of real-world networks are homogeneous in the sense that most
vertices have roughly the same degree (e.g., the degrees of most vertices in a typical road
network lie between 1 and 4 [52]). However, large networks from many domains (social
networks, electricity maps, biological networks, co-author graphs, romantic relationships,
etc. [41, 29, 46, 47]) are highly heterogeneous. Intuitively, this reflects the fact that the
entities represented by nodes typically differ in importance, influence, or popularity.

The interdependency between edges is also not surprising. For example, two autonomous
systems in the Internet that both have a direct connection to a third autonomous system
are likely to be geographically close, which increases the chance that they also have a direct
connection. In a similar fashion, two researchers who collaborated with the same third
researcher are probably working on similar topics and are thus more likely to collaborate than
two random researchers. One can therefore expect the clustering coefficients of real-world
networks to be bounded away from 0 (e.g., the local clustering coefficients of collaboration
networks are mostly above 0.5 [52]). In the following we briefly discuss different random
graph models with heterogeneity and interdependency in mind.

Random graphs
The earliest and most-studied model is the Erdős-Rényi random graph [31]. In this model, an
input graph G(n, p) with n vertices is generated by connecting each vertex pair independently
with probability p. Erdős-Rényi graphs are popular among researchers mainly for two reasons.
First, for p = 1

2 , it produces each (labeled) graph with n vertices with the same probability,
which seems like a desirable property. Second, it is simple, which makes it accessible to
rigorous and very detailed mathematical analysis. It is thus not surprising, that, on the
one hand, Erdős-Rényi graphs were used in the early days of average-case analysis, and are,
on the other hand, still the object of current research. To name two examples, Angluin
and Valiant [8] showed in 1977 that on Erdős-Rényi random graphs the NP-hard problem
Hamiltonian Circuit can be solved in expected time O(n log2 n) if the probability p

T. Friedrich 5:3

is sufficiently large. Also the the W[1]-hard k-Clique problem admits an average-case
FPT-algorithm on Erdős-Rényi graphs, bringing together the fields of average-case and
parameterized complexity [33].

Unfortunately, graphs generated with the Erdős-Rényi model lack the above-mentioned
desired properties. Asymptotically almost surely (i.e, with probability → 1 for n→∞), all
vertices have roughly the same degree, leading to almost regular graphs, and their clustering
coefficients tend to 0 for n→∞.

Heterogeneous random graphs
To account for the heterogeneity of real-world networks, different models have been introduced.
The Barabási-Albert model [9] (also called preferential attachment) adds one vertex at a
time, connecting it to already existing vertices with probability proportional to their degree.
This model actually has an explanatory character in the sense that a reasonable assumption
(namely that already popular nodes are more attractive to new nodes) leads to the power-law
degree distribution observed in practice. On the downside, this procedural description of the
model introduces strong stochastic dependencies, which makes a mathematical analysis of
the resulting graphs rather difficult [21]. The Chung-Lu model [27, 28] produces scale-free
graphs by assigning weights to the nodes (following a power law) and connecting every pair
of vertices with a probability proportional to the product of their weights [3, 4]. Though
the Chung-Lu model cannot explain the emergence of a power-law degree distribution in
real-world networks, it is much more accessible to a mathematical analysis due to the fact
that edges are chosen independently. Further similar random models are inhomogeneous
random graphs by van der Hofstad [40] and Norros-Reittu graphs [48].

However, despite this abundance of theoretical models for power-law networks, all of
them fall short in describing real-world networks as their clustering coefficient tends to 0 for
n→∞ while it is bounded away from 0 for most real-world networks.

Random graphs with interdependencies
There are a number of random graph models that lead to graphs with non-vanishing clustering
coefficients. An example of such models are geometric random graphs [38] (also called random
unit disk graphs). Such a graph is obtained by assigning random coordinates to each vertex
and connecting two vertices if and only if they are close (with respect to Euclidean distance).
It is not surprising that the geometric locality (two vertices close to a third vertex are also
close to each other) leads to high clustering coefficients in the resulting graphs [49]. Though
random geometric graphs are well suited to represent sensor networks [51], they are less
suited for many other real-world networks. As in the Erdős-Rényi model, the resulting degree
distribution is rather homogeneous [49]. Moreover, two other properties often observed in
large real-world networks, namely sparsity and a small diameter, cannot be achieved together
by random unit disk graphs for the following reason: If the generated graph is sparse, the
vertices have to occupy an area linear in the number of vertices. This inevitably leads to a
polynomial diameter (e.g.,

√
n in the 2-dimensional Euclidean plane).

Watts and Strogatz [56] proposed a model leading to sparse graphs with high clustering
and logarithmic diameter and coined the term small-world network for this type of network.
Their model starts with a regular graph with high clustering and randomly rewires edges
(i.e., it deletes and adds edges randomly). The resulting graphs inherit the high clustering
from the initial graph while obtaining a small diameter due to the edges added independently
at random (as in the Erdős-Rényi model). On the downside, this model also leads to a
homogeneous degree distribution.

STACS 2019

5:4 From Graph Algorithms to Network Science

2 Combining heterogeneity and interdependency

None of the aforementioned models fulfill both properties (heterogeneity and interdependency)
at the same time. A natural model that leads to graphs with both features are hyperbolic
random graphs as introduced by Krioukov et al. [44]. We strongly believe that hyperbolic
random graphs are an excellent model to describe and study real-world networks. This
believe is supported by an empirical analysis of a few hundred real-world networks [14]. In
the following we briefly describe the model, discuss previous results establishing additional
desirable properties and thereby debate why we believe that hyperbolic random graphs are
well suited for representing large real-world networks.

Definition and basic properties
Hyperbolic random graphs are generated in the same way as geometric random graphs,
replacing the Euclidean with the hyperbolic plane, i.e., the vertices are assigned to random
positions within a disk of the hyperbolic plane and two vertices are connected if and only
if their hyperbolic distance is small. As in the Euclidean case, the geometry leads to a
non-vanishing clustering coefficient [44, 39, 25]. However, the hyperbolic plane expands
exponentially, i.e., the area and the circumference of a disk grows exponentially in its radius.
Thus, when distributing the vertices evenly within a disk in the hyperbolic plane, most
vertices will end up close to the boundary of the disk; see Figure 1a. As distances are much
larger between vertices close to the boundary, these vertices have low degree, while the few
vertices close to the center have high degree. In fact, this way of distributing the vertices
leads to a power-law degree distribution with power-law exponent β = 3 [44, 39]. Moreover,
one can obtain arbitrary exponents β, with β > 2, by assuming a hyperbolic space with
different negative curvature when sampling the radial coordinates of the vertices [18]. Thus,
the power-law exponent is a parameter of the model. Similarly, the expected average degree
of the vertices can be controlled by changing the threshold distance, below which vertices
are still connected.

Beyond these two fundamental properties of a heterogeneous degree distribution and
interdependency between edges, hyperbolic random graphs show other desirable properties.
In contrast to the Euclidean plane, the exponential expansion of hyperbolic space makes it
possible to have a graph with low average degree and only logarithmic diameter (intuitively
speaking, spreading the vertices over a region with linear area no longer implies that this
region has polynomial diameter as in the Euclidean plane). In fact, hyperbolic random
graphs have polylogarithmic diameter [35, 36, 43] and the average distance between pairs of
vertices is Θ(log logn) [1].

Such a more realistic random graph model now opens up the possibility to explain why
real-world instances tend to be algorithmically well-behaved, by performing an average-case
analysis. There is not much work in this direction. One particular example is bidirectional
breadth-first search. Borassi and Natale [22] observed that bidirectional search performs
sublinear in practice. This was the motivation for Bläsius et al. [12], who proved that the
runtime of bidirectional search is sublinear runtime with high probability for hyperbolic
random graphs.

Component structure and connectivity
Note that there is no explicit mechanism ensuring that a hyperbolic random graph is
connected, and in fact, it usually consists of multiple connected components. As some
applications are only interested in connected graphs, it is good to know that hyperbolic

T. Friedrich 5:5

(a) Due to the exponential expansion of
the hyperbolic plane, most vertices lie close
to the disk’s boundary. Nodes close to the
center are rare, but highly connected, lead-
ing to the power-law degree distribution.

(b) The embedding of the Internet by Boguná et al. [20]
into the hyperbolic plane enables greedy routing with high
success ratio and low stretch, i.e., for 97% of the vertex pairs,
greedy routing succeeds and resulting paths are on average
only 10% longer than the shortest paths.

Figure 1 A hyperbolic random graph (a) and an embedding of the Internet into the hyperbolic
plane (b).

random graphs (at least for 2 < β < 3) have a so-called giant component [17], i.e., a
connected component with a linear number of vertices, while all other components have only
polylogarithmic size [43].

Related to the component structure is the question of how densely connected each
component is. Despite the fact that we assume real-world networks to have constant average
degree, we still expect to find large highly connected subgraphs forming communities. For
hyperbolic random graphs with power-law exponent 2 < β < 3, it has been shown that the
largest clique has polynomial size Θ(

√
n3−β) and that there are

√
n(3−β)k ·Θ(k)−k cliques

of size k [34, 15]. On the other hand, different parts of the graph are loosely connected
in the sense that hyperbolic random graphs have small balanced separators. To be more
precise, if 2 < β < 3, there exists a hierarchy of balanced separators each having size
Θ(
√
n3−β) [10], leading to sublinear treewidth of Θ(

√
n3−β) (which is tight due to the

matching bound for the clique size). On the one hand, this result enables faster algorithms
by using dynamic programming on the tree decomposition. On the other hand, it gives
structural insights distinguishing hyperbolic random graphs further from the Barabási-Albert
model having linear treewidth [37]. We note that real-world networks typically have rather
small treewidth [2, Tables I and V], which gives another indication that hyperbolic random
graphs are well suited for representing large real-world networks.

Generating algorithms and related models

Algorithmically, hyperbolic random graphs can naively be generated in Θ(n2) time [7], which
has been improved to O(n1.5 logn) [55] and even down to linear [24, 54, 50, 23] by using
geometric data structures. The algorithm of Bringmann et al. [24, 23] additionally makes use
of the relationship between hyperbolic random graphs and so-called geometric inhomogeneous

STACS 2019

5:6 From Graph Algorithms to Network Science

random graphs (GIRGs), which can be seen as a combination of the Chung-Lu model with a
geometry. In a similar way, hyperbolic random graphs have been related to Barabási-Albert
graphs additionally equipped with a geometry [32].

The hyperbolic metric of real-world networks
Beyond the very promising hyperbolic random graph model (showing properties that one
expects in large real-world networks of many domains), the metric defined by most networks
appears to be very similar to the metric of the hyperbolic plane. To support this observation,
we name three examples. Boguná [20] embedded the Internet network into the hyperbolic
plane by assigning a hyperbolic coordinate to every autonomous system; see Figure 1b. They
observed that greedy routing solely based on these coordinates is almost maximally efficient,
i.e., it finds short paths between almost any two pairs of vertices. Verbeek and Suri [53]
show that graphs with low quasi-cyclicity (which appears to be low for many networks)
admit a metric embedding into a hyperbolic space of constant dimension with constant
additive distortion. Finally, Albert et al. [6] computed the so-called Gromov hyperbolicity
(which basically measures how close a graph metric is to the metric of the hyperbolic plane)
for several biological and social networks. They found out that these networks are indeed
hyperbolic in this sense, i.e., their Gromov hyperbolicity is small. Though all three results
relate networks to hyperbolic geometry in different ways, they all support the above claim
that the metric of networks is similar to the hyperbolic metric.

Embeddings in the hyperbolic plane
A common application of a random model describing real-world instances reasonably well
is the possibility to perform a meaningful average-case analysis. However, acknowledging
hyperbolic random graphs as a reasonable model for real-world networks opens up another
line of research: viewing a given real-world network as a hyperbolic random graph but
without known coordinates. It is then a natural question, whether we can retrieve the missing
geometric information, i.e., whether we can embed the graph into the hyperbolic plane such
that most edges are short and most non-adjacent vertices are far apart. There are a number
of algorithms for embedding a network into the hyperbolic space. Algorithms with quasilinear
runtime are known for maximum likelihood embeddings [11, 16] and for optimizing greedy
routing [13].

References
1 Mohammed Amin Abdullah, Michel Bode, and Nikolaos Fountoulakis. Typical Distances in a

Geometric Model for Complex Networks. CoRR, abs/1506.07811, 2015.
2 Aaron B. Adcock, Blair D. Sullivan, and Michael W. Mahoney. Tree Decompositions and Social

Graphs. Internet Mathematics, 12(5):315–361, 2016. doi:10.1080/15427951.2016.1182952.
3 William Aiello, Fan Chung, and Linyuan Lu. A random graph model for massive graphs. In

32nd STOC, pages 171–180, 2000. doi:10.1145/335305.335326.
4 William Aiello, Fan Chung, and Linyuan Lu. A Random Graph Model for Power Law Graphs.

Experimental Mathematics, 10(1):53–66, 2001. doi:10.1080/10586458.2001.10504428.
5 Takuya Akiba and Yoichi Iwata. Branch-and-Reduce Exponential/FPT Algorithms in Practice:

A Case Study of Vertex Cover. Theoretical Computer Science, 609:211–225, 2016. doi:
10.1016/j.tcs.2015.09.023.

6 Réka Albert, Bhaskar DasGupta, and Nasim Mobasheri. Topological Implications of Negative
Curvature for Biological and Social Networks. Physical Review E, 89:032811, 2014. doi:
10.1103/PhysRevE.89.032811.

http://dx.doi.org/10.1080/15427951.2016.1182952
http://dx.doi.org/10.1145/335305.335326
http://dx.doi.org/10.1080/10586458.2001.10504428
http://dx.doi.org/10.1016/j.tcs.2015.09.023
http://dx.doi.org/10.1016/j.tcs.2015.09.023
http://dx.doi.org/10.1103/PhysRevE.89.032811
http://dx.doi.org/10.1103/PhysRevE.89.032811

T. Friedrich 5:7

7 Rodrigo Aldecoa, Chiara Orsini, and Dmitri Krioukov. Hyperbolic graph generator. Computer
Physics Communications, 196:492–496, 2015. doi:10.1016/j.cpc.2015.05.028.

8 D. Angluin and L.G. Valiant. Fast Probabilistic Algorithms for Hamiltonian Circuits and
Matchings. Journal of Computer and System Sciences, 18(2):155–193, 1979. doi:10.1016/
0022-0000(79)90045-X.

9 Albert-László Barabási and Réka Albert. Emergence of Scaling in Random Networks. Science,
286(5439):509–512, 1999. doi:10.1126/science.286.5439.509.

10 Thomas Bläsius, Tobias Friedrich, and Anton Krohmer. Hyperbolic Random Graphs: Separa-
tors and Treewidth. In 24th ESA, pages 15:1–15:16, 2016. doi:10.4230/LIPIcs.ESA.2016.15.

11 Thomas Bläsius, Tobias Friedrich, Anton Krohmer, and Sören Laue. Efficient Embedding
of Scale-Free Graphs in the Hyperbolic Plane. In 24th ESA, pages 16:1–16:18, 2016. doi:
10.4230/LIPIcs.ESA.2016.16.

12 Thomas Bläsius, Cedric Freiberger, Tobias Friedrich, Maximilian Katzmann, Felix Montenegro-
Retana, and Marianne Thieffry. Efficient Shortest Paths in Scale-Free Networks with Underlying
Hyperbolic Geometry. In 45th ICALP, pages 20:1–20:14, 2018.

13 Thomas Bläsius, Tobias Friedrich, Maximilian Katzmann, and Anton Krohmer. Hyperbolic
Embeddings for Near-Optimal Greedy Routing. In 20th ALENEX, pages 199–208, 2018.

14 Thomas Bläsius, Tobias Friedrich, Maximilian Katzmann, Anton Krohmer, and Jonathan
Striebel. Towards a Systematic Evaluation of Generative Network Models. In 15th WAW,
pages 99–114, 2018.

15 Thomas Bläsius, Tobias Friedrich, and Anton Krohmer. Cliques in Hyperbolic Random Graphs.
Algorithmica, 80:2324–2344, 2018.

16 Thomas Bläsius, Tobias Friedrich, Anton Krohmer, and Sören Laue. Efficient Embedding
of Scale-Free Graphs in the Hyperbolic Plane. IEEE/ACM Transactions on Networking,
26(1-57570FN):920–933, 2018.

17 Michel Bode, Nikolaos Fountoulakis, and Tobias Müller. On the Largest Component of a
Hyperbolic Model of Complex Networks. Electronic Journal of Combinatorics, 22(3):P3.24,
2015.

18 Michel Bode, Nikolaos Fountoulakis, and Tobias Müller. The probability of connectivity in a
hyperbolic model of complex networks. Random Structures & Algorithms, 49(1):65–94, 2016.
doi:10.1002/rsa.20626.

19 Andrej Bogdanov and Luca Trevisan. Average-Case Complexity. Foundations and Trends in
Theoretical Computer Science, 2(1):1–106, 2006. doi:10.1561/0400000004.

20 Marián Boguná, Fragkiskos Papadopoulos, and Dmitri Krioukov. Sustaining the Internet with
Hyperbolic Mapping. Nature Communications, 1:62, 2010. doi:10.1038/ncomms1063.

21 Béla Bollobás and Oliver Riordan. The Diameter of a Scale-Free Random Graph. Combinatorica,
24:5–34, 2004. doi:10.1007/s00493-004-0002-2.

22 Michele Borassi and Emanuele Natale. KADABRA is an ADaptive Algorithm for Betweenness
via Random Approximation. In 24th ESA, volume 57, pages 20:1–20:18, 2016.

23 Karl Bringmann, Ralph Keusch, and Johannes Lengler. Sampling Geometric Inhomogeneous
Random Graphs in Linear Time. In 25th ESA, pages 20:1–20:15, 2017.

24 Karl Bringmann, Ralph Keusch, and Johannes Lengler. Geometric inhomogeneous random
graphs. Theoretical Computer Science, 2019.

25 Elisabetta Candellero and Nikolaos Fountoulakis. Clustering and the Hyperbolic Geometry of
Complex Networks. Internet Mathematics, 12(1-2):2–53, 2016. doi:10.1080/15427951.2015.
1067848.

26 Markus Chimani, Maria Kandyba, Ivana Ljubić, and Petra Mutzel. Obtaining Optimal k-
Cardinality Trees Fast. In 20th ALENEX, pages 27–36, 2008. doi:10.1137/1.9781611972887.
3.

27 Fan Chung and Linyuan Lu. Connected Components in Random Graphs with Given Expected
Degree Sequences. Annals of Combinatorics, 6(2):125–145, 2002. doi:10.1007/PL00012580.

STACS 2019

http://dx.doi.org/10.1016/j.cpc.2015.05.028
http://dx.doi.org/10.1016/0022-0000(79)90045-X
http://dx.doi.org/10.1016/0022-0000(79)90045-X
http://dx.doi.org/10.1126/science.286.5439.509
http://dx.doi.org/10.4230/LIPIcs.ESA.2016.15
http://dx.doi.org/10.4230/LIPIcs.ESA.2016.16
http://dx.doi.org/10.4230/LIPIcs.ESA.2016.16
http://dx.doi.org/10.1002/rsa.20626
http://dx.doi.org/10.1561/0400000004
http://dx.doi.org/10.1038/ncomms1063
http://dx.doi.org/10.1007/s00493-004-0002-2
http://dx.doi.org/10.1080/15427951.2015.1067848
http://dx.doi.org/10.1080/15427951.2015.1067848
http://dx.doi.org/10.1137/1.9781611972887.3
http://dx.doi.org/10.1137/1.9781611972887.3
http://dx.doi.org/10.1007/PL00012580

5:8 From Graph Algorithms to Network Science

28 Fan Chung and Linyuan Lu. The average distances in random graphs with given expected
degrees. Proceedings of the National Academy of Sciences, 99(25):15879–15882, 2002.

29 Aaron Clauset, Cosma Rohilla Shalizi, and M. E. J. Newman. Power-Law Distributions in
Empirical Data. SIAM Review, 51(4):661–703, 2009. doi:10.1137/070710111.

30 Daniel Delling, Andrew V. Goldberg, Ilya Razenshteyn, and Renato F. Werneck. Exact
Combinatorial Branch-and-Bound for Graph Bisection. In 14th ALENEX, pages 30–44, 2012.
doi:10.1137/1.9781611972924.3.

31 P. Erdős and A. Rényi. On Random Graphs I. Publicationes Mathematicae, 6:290–297, 1959.
32 L. Ferretti, M. Cortelezzi, and M. Mamino. Duality between preferential attachment and

static networks on hyperbolic spaces. Europhysics Letters, 105(3):38001, 2014.
33 Nikolaos Fountoulakis, Tobias Friedrich, and Danny Hermelin. On the Average-Case Complexity

of Parameterized Clique. Theoretical Computer Science, 576:18–29, 2015. doi:10.1016/j.
tcs.2015.01.042.

34 Tobias Friedrich and Anton Krohmer. Cliques in Hyperbolic Random Graphs. In 34th
INFOCOM, pages 1544–1552, 2015.

35 Tobias Friedrich and Anton Krohmer. On the Diameter of Hyperbolic Random Graphs. In
42nd ICALP, pages 241–252, 2015.

36 Tobias Friedrich and Anton Krohmer. On the Diameter of Hyperbolic Random Graphs. SIAM
Journal on Discrete Mathematics, 32(2):1314–1334, 2018.

37 Yong Gao. Treewidth of Erdős-Rényi Random Graphs, Random Intersection Graphs, and
Scale-Free Random Graphs. Discrete Applied Mathematics, 160(4–5):566–578, 2012. doi:
10.1016/j.dam.2011.10.013.

38 E. Gilbert. Random Plane Networks. Journal of the Society for Industrial and Applied
Mathematics, 9(4):533–543, 1961. doi:10.1137/0109045.

39 Luca Gugelmann, Konstantinos Panagiotou, and Ueli Peter. Random hyperbolic graphs:
degree sequence and clustering. In 39th ICALP, pages 573–585, 2012.

40 Remco van der Hofstad. Random Graphs and Complex Networks:, volume 1 of Cambridge
Series in Statistical and Probabilistic Mathematics. Cambridge University Press, 2016. doi:
10.1017/9781316779422.

41 Matthew O. Jackson. Social and Economic Networks. Princeton University Press, 2010.
42 Richard M. Karp. The Probabilistic Analysis of Combinatorial Optimization Algorithms. In

Proceedings of the International Congress of Mathematicians, pages 1601–1609, 1983.
43 Marcos Kiwi and Dieter Mitsche. A Bound for the Diameter of Random Hyperbolic Graphs.

In 12th ANALCO, pages 26–39, 2015. doi:10.1137/1.9781611973761.3.
44 Dmitri Krioukov, Fragkiskos Papadopoulos, Maksim Kitsak, Amin Vahdat, and Marián

Boguñá. Hyperbolic geometry of complex networks. Physical Review E, 82(3):036106, 2010.
doi:10.1103/PhysRevE.82.036106.

45 Leonid A. Levin. Average Case Complete Problems. SIAM Journal on Computing, 15(1):285–
286, 1986. doi:10.1137/0215020.

46 Michael Mitzenmacher. A Brief History of Generative Models for Power Law and Lognor-
mal Distributions. Internet Mathematics, 1(2):226–251, 2003. doi:10.1080/15427951.2004.
10129088.

47 M. E. J. Newman. Power laws, Pareto distributions and Zipf’s law. Contemporary Physics,
46(5):323–351, 2005. doi:10.1080/00107510500052444.

48 Ilkka Norros and Hannu Reittu. On a conditionally Poissonian graph process. Advances in
Applied Probability, 38(1):59–75, 2006.

49 M. Penrose. Random Geometric Graphs. Oxford scholarship online. Oxford University Press,
2003.

50 Manuel Penschuck. Generating Practical Random Hyperbolic Graphs in Near-Linear Time
and with Sub-Linear Memory. In 16th SEA, pages 26:1–26:21, 2017.

51 G. J. Pottie and W. J. Kaiser. Wireless integrated network sensors. Communications of the
ACM, 43(5):51–58, 2000. doi:10.1145/332833.332838.

http://dx.doi.org/10.1137/070710111
http://dx.doi.org/10.1137/1.9781611972924.3
http://dx.doi.org/10.1016/j.tcs.2015.01.042
http://dx.doi.org/10.1016/j.tcs.2015.01.042
http://dx.doi.org/10.1016/j.dam.2011.10.013
http://dx.doi.org/10.1016/j.dam.2011.10.013
http://dx.doi.org/10.1137/0109045
http://dx.doi.org/10.1017/9781316779422
http://dx.doi.org/10.1017/9781316779422
http://dx.doi.org/10.1137/1.9781611973761.3
http://dx.doi.org/10.1103/PhysRevE.82.036106
http://dx.doi.org/10.1137/0215020
http://dx.doi.org/10.1080/15427951.2004.10129088
http://dx.doi.org/10.1080/15427951.2004.10129088
http://dx.doi.org/10.1080/00107510500052444
http://dx.doi.org/10.1145/332833.332838

T. Friedrich 5:9

52 Ryan Rossi and Nesreen Ahmed. The Network Data Repository with Interactive Graph
Analytics and Visualization. In 29th AAAI, pages 4292–4293, 2015. URL: http://www.aaai.
org/ocs/index.php/AAAI/AAAI15/paper/view/9553.

53 Kevin Verbeek and Subhash Suri. Metric Embedding, Hyperbolic Space, and Social Networks.
In 30th SoCG, pages 501–510, 2014. doi:10.1145/2582112.2582139.

54 M. von Looz, M. S. Özdayi, S. Laue, and H. Meyerhenke. Generating Massive Complex
Networks with Hyperbolic Geometry Faster in Practice. In 20th IEEE HPEC, pages 1–6, 2016.
doi:10.1109/HPEC.2016.7761644.

55 Moritz von Looz, Henning Meyerhenke, and Roman Prutkin. Generating Random Hyperbolic
Graphs in Subquadratic Time. In 26th ISAAC, pages 467–478, 2015.

56 Duncan J. Watts and Steven H. Strogatz. Collective Dynamics of ‘Small-World’ Networks.
Nature, 939:440–442, 1998. doi:10.1038/30918.

STACS 2019

http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9553
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9553
http://dx.doi.org/10.1145/2582112.2582139
http://dx.doi.org/10.1109/HPEC.2016.7761644
http://dx.doi.org/10.1038/30918

The Semialgebraic Orbit Problem
Shaull Almagor
Department of Computer Science, Oxford University, UK
shaull.almagor@cs.ox.ac.uk

Joël Ouaknine
Max Planck Institute for Software Systems, Germany
Department of Computer Science, Oxford University, UK
joel@mpi-sws.org

James Worrell
Department of Computer Science, Oxford University, UK
jbw@cs.ox.ac.uk

Abstract
The Semialgebraic Orbit Problem is a fundamental reachability question that arises in the analysis
of discrete-time linear dynamical systems such as automata, Markov chains, recurrence sequences,
and linear while loops. An instance of the problem comprises a dimension d ∈ N, a square matrix
A ∈ Qd×d, and semialgebraic source and target sets S, T ⊆ Rd. The question is whether there exists
x ∈ S and n ∈ N such that Anx ∈ T .

The main result of this paper is that the Semialgebraic Orbit Problem is decidable for dimension
d ≤ 3. Our decision procedure relies on separation bounds for algebraic numbers as well as a classical
result of transcendental number theory – Baker’s theorem on linear forms in logarithms of algebraic
numbers. We moreover argue that our main result represents a natural limit to what can be decided
(with respect to reachability) about the orbit of a single matrix. On the one hand, semialgebraic
sets are arguably the largest general class of subsets of Rd for which membership is decidable. On
the other hand, previous work has shown that in dimension d = 4, giving a decision procedure for
the special case of the Orbit Problem with singleton source set S and polytope target set T would
entail major breakthroughs in Diophantine approximation.

2012 ACM Subject Classification Computing methodologies → Algebraic algorithms; Theory of
computation → Logic and verification

Keywords and phrases linear dynamical systems, Orbit Problem, first order theory of the reals

Digital Object Identifier 10.4230/LIPIcs.STACS.2019.6

Related Version A full version of the paper is available at https://arxiv.org/abs/1901.11023.

Funding Joël Ouaknine: Supported by ERC grant AVS-ISS (648701), and by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation) – Projektnummer 389792660 –
TRR 248.
James Worrell: Supported by EPSRC Fellowship EP/N008197/1.

1 Introduction

This paper concerns decision problems of the following form: given d ∈ N, a square matrix
A ∈ Qd×d, and respective source and target sets S, T ⊆ Rd, does there exist n ∈ N and
x ∈ S such that Anx ∈ T? One way to categorise such problems is according to the
types of sets allowed for the source and target (e.g., polytopes or semialgebraic sets). We
collectively refer to the various problems that arise in this way as Orbit Problems. Orbit
Problems occur naturally in the reachability analysis of discrete-time linear dynamical
systems, including Markov chains, automata, recurrence sequences, and linear loops in
program analysis (see [5, 11, 9] and references therein).

© Shaull Almagor, Joël Ouaknine, and James Worrell;
licensed under Creative Commons License CC-BY

36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019).
Editors: Rolf Niedermeier and Christophe Paul; Article No. 6; pp. 6:1–6:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:shaull.almagor@cs.ox.ac.uk
mailto:joel@mpi-sws.org
mailto:jbw@cs.ox.ac.uk
https://doi.org/10.4230/LIPIcs.STACS.2019.6
https://arxiv.org/abs/1901.11023
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

6:2 The Semialgebraic Orbit Problem

In order to describe the main result of this paper in relation to existing work, we identify
three successively more general types of Orbit Problems. In the point-to-point version both
the source and target are singletons with rational coordinates; in the Polytopic Orbit Problem
the source and target S and T are polytopes (i.e., sets defined by conjunctions of linear
inequalities with rational coefficients); in the Semialgebraic Orbit Problem S and T are
semialgebraic sets defined with rational parameters.

The question of the decidability of the point-to-point Orbit Problem was raised by
Harrison in 1969 [10]. The problem remained open for ten years until it was finally resolved
in a seminal paper of Kannan and Lipton [11], who in fact gave a polynomial-time decision
procedure.

The Polytopic Orbit Problem is considerably more challenging than the point-to-point
version, and its decidablity seems out of reach for now. Indeed the special case in which S
is a singleton and T is a linear subspace of Rd of dimension d− 1 is a well-known decision
problem in its own right, called the Skolem Problem, whose decidability has been open for
many decades [20]. In contrast to the point-to-point case the only positive decidability
results for the Polytopic Orbit Problem are in the case of fixed dimension d. For the Skolem
Problem, decidability is known for d ≤ 4 [14, 22]. In case S and T are allowed to be arbitrary
polytopes, decidability is known in case d ≤ 3 [1] (see also [4]). While Kannan and Lipton’s
decision procedure in the point-to-point case mainly relied on algebraic number theory (e.g.,
separation bounds between algebraic numbers and prime factorisation of ideals in rings of
algebraic integers), the decision procedures for the Skolem Problem and the Polytopic Orbit
Problem additionally use results about transcendental numbers (specifically Baker’s theorem
about linear forms in logarithms of algebraic numbers). It was shown in [4] that the existence
of a decision procedure for the Polytopic Orbit Problem in dimension d = 4 would entail
computability of the Diophantine approximation types of a general class of transcendental
numbers (a problem considered intractable at present). Not only does this suggest that
the use of transcendental number theory is unavoidable in analysing the Polytopic Orbit
Problem, it also indicates that further progress beyond the case d = 3 is contingent upon
significant advances in the field of Diophantine approximation.

In this paper we remain in dimension d = 3 and consider a generalisation of previous
work by allowing the source and target sets to be semialgebraic, that is, defined by Boolean
combinations of polynomial equalities and inequalities. This allows us to handle three-
dimensional source and target sets in much greater geometrical generality than polytopes. In
applications to program analysis and dynamical systems, semialgebraic sets are indispensable
in formulating sufficiently expressive models (e.g., to describe initial conditions and transition
guards) and in model analysis (e.g., in synthesising invariants and barrier certificates and
approximating sets of reachable states) [15, 12].

The Semialgebraic Orbit Problem could be reduced to the polytopic case in a fairly
straightforward fashion by increasing the dimension d according to the degree of the polyno-
mials appearing in the semialgebraic constraints. However such a general approach is doomed
to failure in view of the obstacles to obtaining decidability in the polytopic case beyond
dimension 3 and instead we develop specific techniques for the semialgebraic case that are
considerably more challenging than in the Polytopic Problem. As in previous work on the
Skolem Problem and on the Polytopic Orbit Problem, Baker’s Theorem plays a crucial role
in the present development. The main difficulty in generalising from the polytopic case to the
semialgebraic case lies in the delicate analytic arguments that are required to bring Baker’s
Theorem to bear. More precisely: (i) we need to resort to symbolic quantifier elimination
(in lieu of explicit Fourier-Motzkin elimination, which had been used in the Polytopic Orbit

S. Almagor, J. Ouaknine, and J. Worrell 6:3

Problem), since we are now dealing with non-linear constraints; (ii) we also need to perform
spectral calculations symbolically, via the use of Vandermonde methods, instead of the
explicit direct approach possible in our earlier work; and (iii) we replace triangulation of
polytopes by cylindrical algebraic decomposition of semialgebraic sets into cells, which again
necessitates a new symbolic treatment along with a substantially refined analysis based on
Taylor approximation of the attendant functions.

In summary, this paper provides a decision procedure for the Orbit Problem in dimension
d = 3 with semialgebraic source and target sets. The latter appear to be a natural limit to
the positive decidability results that can be obtained for this problem, barring major new
advances in Diophantine approximation.

At a technical level, our contributions are twofold: in Section 3 we start by analysing
the case of the Orbit Problem in which S is a singleton and T a semialgebraic set. We
then reduce this problem in Section 3.1 to solving certain systems of polynomial-exponential
equalities and inequalities, and in Section 3.2 we show precisely how to solve such systems.
The second technical contribution consists in handling the general case of the Semialgebraic
Orbit Problem, in Section 4. There, we show how to circumvent problems that arise when
quantifying over the set S, and arrive at a system that can ultimately be solved using the
techniques and results developed in Section 3.2.

For brevity, some proofs are omitted, and can be found in the full version on the authors’
homepages.

2 Mathematical Tools

In this section we introduce the key technical tools used in this paper.

2.1 Algebraic numbers
For p ∈ Z[x] a polynomial with integer coefficients we denote by ‖p‖ the bit length of its
representation as a list of coefficients encoded in binary. Note that the degree of p, denoted
deg(p) is at most ‖p‖, and the height of p – i.e., the maximum of the absolute values of its
coefficients, denoted H(p) – is at most 2‖p‖.

We begin by summarising some basic facts about algebraic numbers and their (efficient)
manipulation. The main references include [3, 6, 19]. A complex number α is algebraic if it
is a root of a single-variable polynomial with integer coefficients. The defining polynomial
of α, denoted pα, is the unique polynomial of least degree, and whose coefficients do not
have common factors, which vanishes at α. The degree and height of α are respectively those
of p, and are denoted deg(α) and H(α). We denote the field of algebraic numbers by A.
A standard representation1 for algebraic numbers is to encode α as a tuple comprising its
defining polynomial together with rational approximations of its real and imaginary parts
of sufficient precision to distinguish α from the other roots of pα. More precisely, α can be
represented by (pα, a, b, r) ∈ Z[x]×Q3 provided that α is the unique root of pα inside the
circle in C of radius r centred at a+ bi. A separation bound due to Mignotte [13] asserts
that for roots α 6= β of a polynomial p ∈ Z[x], we have

|α− β| >
√

6
d(d+1)/2Hd−1 (1)

1 Note that this representation is not unique.

STACS 2019

6:4 The Semialgebraic Orbit Problem

where d = deg(p) and H = H(p). Thus if r is required to be less than a quarter of the
root-separation bound, the representation is well-defined and allows for equality checking.
Given a polynomial p ∈ Z[x], it is well-known how to compute standard representations of
each of its roots in time polynomial in ‖p‖ [3, 6, 17]. Thus given an algebraic number α for
which we have (or wish to compute) a standard representation, we write ‖α‖ to denote the
bit length of this representation. From now on, when referring to computations on algebraic
numbers, we always implicitly refer to their standard representations.

Note that Equation (1) can be used more generally to separate arbitrary algebraic
numbers: indeed, two algebraic numbers α and β are always roots of the polynomial pαpβ of
degree at most deg(α) + deg(β), and of height at most H(α)H(β). Given algebraic numbers
α and β, one can compute α+ β, αβ, 1/α (for α 6= 0), α, and |α|, all of which are algebraic,
in time polynomial in ‖α‖ + ‖β‖. Likewise, it is straightforward to check whether α = β.
Moreover, if α ∈ R, deciding whether α > 0 can be done in time polynomial in ‖α‖. Efficient
algorithms for all these tasks can be found in [3, 6].

2.2 First-order theory of the reals

Let ~x = x1, . . . , xm be a list of m real-valued variables, and let σ(~x) be a Boolean combination
of atomic predicates of the form g(~x) ∼ 0, where each g(~x) ∈ Z[x] is a polynomial with
integer coefficients over these variables, and ∼ ∈ {>,=}. A formula of the first-order theory
of the reals is of the form Q1x1Q2x2 · · ·Qmxmσ(~x), where each Qi is one of the quantifiers ∃
or ∀. Let us denote the above formula by τ , and write ‖τ‖ to denote the bit length of its
syntactic representation. Tarski famously showed that the first-order theory of the reals is
decidable [21]. His procedure, however, has non-elementary complexity. Many substantial
improvements followed over the years, starting with Collins’s technique of cylindrical algebraic
decomposition [7], and culminating with the fine-grained analysis of Renegar [19]. In this
paper, we will use the following theorems [18, 19].

I Theorem 1 (Renegar [18]). The problem of deciding whether a closed formula τ of the form
above holds over the reals is in 2EXP, and in PSPACE if τ has only existential quantifiers.

I Theorem 2 (Renegar [19]). There is an algorithm that, given a sentence τ(x1, . . . , xm)
where x1, . . . , xm are free variables, computes an equivalent quantifier-free formula in dis-
junctive normal form (DNF) Φ(x1, . . . , xm) =

∨
I

∧
J RI,J(x1, . . . , xm) ∼I,J 0 where RI,J is

a polynomial 2 and ∼I,J∈ {>,=}. Moreover, the algorithm runs in time 22O(‖τ‖) , and in
particular, ‖Φ‖ = 22O(‖τ‖) .

A set S ⊆ Rd is semialgebraic if there exists a formula Φ(x1, . . . , xd) in the first-order
theory of the reals with free variables x1, . . . , xd such that S = {(c1, . . . , cd) : Φ(c1, . . . , cd)
is true}.

We remark that algebraic constants can also be incorporated as coefficients in the first-
order theory of the reals (and in particular, in the definition of semialgebraic sets), as follows.
Consider a polynomial g(x1, . . . , xm) with algebraic coefficients c1, . . . , ck. We replace every
cj with a new, existentially-quantified variable yj , and add to the sentence the predicates
pcj (yj) = 0 and (yj − (a+ bi))2 < r2, where (pcj , a, b, r) is the representation of cj . Then, in
any evaluation of this formula to True, it must hold that yj is assigned value cj .

2 Technically, the indices should be I, JI , but we omit the dependency of J on I for simplicity.

S. Almagor, J. Ouaknine, and J. Worrell 6:5

3 Almost Self-Conjugate Systems of Inequalities

In this section we lay the groundwork for solving the Semialgebraic Orbit Problem. We do
so by initially treating the case where the set S of initial points is a singleton.

3.1 Analysis of the Point-to-Semialgebraic Orbit Problem
The point-to-semialgebraic Orbit Problem is to decide, given a matrix A ∈ Q3×3, an initial
point s ∈ Q3 and a semialgebraic target T ⊆ R3, whether there exists n ∈ N such that
Ans ∈ T .

By Theorem 2, we can compute a quantifier-free representation of T . That is, we can
write T = {(x, y, z) :

∨
I

∧
J RI,J(x, y, z) ∼I,J 0} where RI,J are polynomials with integer

coefficients, and ∼I,J ∈ {>,=}. For the purpose of solving the point-to-semialgebraic Orbit
Problem, we note that it is enough to consider each disjunct separately. Thus, we can assume
T = {(x, y, z) :

∧
J RJ(x, y, z) ∼J 0}, and it remains to decide whether there exists n ∈ N

such that
∧
J RJ(Ans) ∼J 0.

Note that, as per Theorem 2, we have that ‖RJ‖ = 22O(‖T‖) . Moreover, the number of
terms in the DNF formula above can itself be doubly-exponential in ‖T‖. Complexity wise,
this is the most expensive part of our algorithm.

Consider the eigenvalues of A. Since A is a 3 × 3 matrix, then either it has only real
eigenvalues, or it has one real eigenvalue and two conjugate complex eigenvalues. In particular,
if A has complex eigenvalues, then it is diagonalisable.

The case where A has only real eigenvalues is treated in the full version for the general
case of the Semialgebraic Orbit Problem, and is considerably simpler.

Henceforth, we assume A has complex eigenvalues, so that A = PDP−1 with D =λ 0 0
0 λ 0
0 0 ρ

, where λ is a complex eigenvalue, ρ ∈ R, and P an invertible matrix.

Observe that An = PDnP−1. By carefully analysing the structure of P , it is not hard to

show that Ans =

a1λ
n + a1λ

n + b1ρ
n

a2λ
n + a2λ

n + b2ρ
n

a3λ
n + a3λ

n + b3ρ
n

 where the ai and bi are algebraic and the bi are

also real (see the full version for a detailed analysis).
Thus, we want to decide whether there exists n ∈ N such that RJ(a1λ

n + a1λ
n +

b1ρ
n, a2λ

n + a2λ
n + b2ρ

n, a3λ
n + a3λ

n + b3ρ
n) ∼J 0 for every J . Since RJ is a polynomial,

then by aggregating coefficients we can write

RJ(Ans) =
∑

0≤p1,p2,p3≤k

αp1,p2,p3λ
np1λ

np2
ρnp3 + αp1,p2,p3λ

np1
λnp2ρnp3 (2)

for some k ∈ N. Note that we treat the (real) coefficients of ρ as a sum of complex conjugate
coefficients, but this can easily be achieved by writing e.g., cρnp = c

2ρ
np + c

2ρ
np.

We notice that for every J , the polynomial RJ(Ans), consists of conjugate summands.
More precisely, RJ(Ans), when viewed as a polynomial in λn, λn, and ρn, has the following
property.

I Property 3 (Almost Self-Conjugate Polynomial). A complex polynomial Q(z1, z2, z3) over
C3 is almost self-conjugate if

Q(z1, z2, z3) =
∑

0≤t1,t2,t3≤`
δt1,t2,t3z

t1
1 z

t2
2 z

t3
3 + δt1,t2,t3z

t1
2 z

t2
1 z

t3
3 .

STACS 2019

6:6 The Semialgebraic Orbit Problem

That is, if z2 = z1 and z3 is a real variable, then the monomials in Q appear in conjugate
pairs with conjugate coefficients.

We refer to the conjunction
∧
J RJ(Ans) ∼J 0 as an almost self-conjugate system. It

remains to show that we can decide whether there exists n ∈ N that solves the system.

3.2 Solving Almost Self-Conjugate Systems
Our starting point is now an almost self-conjugate system as described above. In the following,
we will consider a single conjunct RJ(Ans) ∼J 0.

We start by normalising the expression RJ (Ans) ∼J 0 in the form of (2), as follows. Let
Λ = max

{
|λp1λ

p2
ρp3 | : αp1,p2,p3 6= ∅

}
, we divide the expression in (2) by Λn, and get that

RJ(Ans) ∼J 0 iff

k∑
m=0

βmγ
nm + βmγ

nm + r(n) ∼J 0 (3)

where the βm are algebraic coefficients, γ = λ
|λ| satisfies |γ| = 1 and r(n) =

∑k′

l=1 χlµ
n
l +χlµln

with χl being algebraic coefficients, and |µl| < 1 for every 1 ≤ l ≤ k′. Moreover, every µl is a
quotient of two elements of the form λp1λ

p2
ρp3 , and thus, by Section 2.1, deg(µl) = ‖RJ‖O(1)

and H(µl) = 2‖RJ‖O(1) . Note that for simplicity, we reuse the number k, although it may
differ from k in (2). We refer to Equation (3) as the normalised expression.

In the following, we assume that at least one of the βj is nonzero for j ≥ 1. Indeed,
otherwise we can recast our analysis on r(n), which is of lower order.

We now split our analysis according to whether or not γ is a root of unity. That is,
whether γd = 1 for some d ∈ N.

3.2.1 The case where γ is a root of unity
Suppose that γ is a root of unity. Then, the set {γn : n ∈ N} is a finite set

{
γ0, . . . , γd−1}.

Thus, by splitting the analysis of Ans according to n mod d, we can reduce the problem to d
instances which involve only real numbers. In the full version we detail how to handle this
case, and comment on its complexity.

3.2.2 The case where γ is not a root of unity
When γ is not a root of unity, the set {γn : n ∈ N} is dense in the unit circle. With this
motivation in mind, we define, for a normalised expression, its dominant function f : C→ R
as f(z) =

∑k
m=0 βmz

m + βmz
m. Observe that (3) is now equivalent to f(γn) + r(n) ∼J 0.

Our main technical tool in handling (3) is the following lemma.

I Lemma 4. Consider a normalised expression as in (3). Let ‖I‖ be its encoding length,
and let f be its dominant function. Then there exists N ∈ N computable in polynomial time
in ‖I‖ with N = 2‖I‖O(1) such that for every n > N it holds that
1. f(γn) 6= 0,
2. f(γn) > 0 iff f(γn) + r(n) > 0,
3. f(γn) < 0 iff f(γn) + r(n) < 0.
In particular, the lemma implies that if f(γn) + r(n) = 0, then n ≤ N . That is, if ∼J is “=”,
then there is a bound on n that solves the system.

S. Almagor, J. Ouaknine, and J. Worrell 6:7

I Remark 5. In the formulation of Lemma 4, we measure the complexity with respect to ‖I‖.
However, recall that when the input is T , we actually have ‖I‖ = 22O(‖T‖) . The analysis in
Lemma 4 thus allows us to separate the blowup required for analysing the semialgebraic target
from our algorithmic contribution. In particular, when the target has bounded description
length, we can obtain better complexity bounds.

We prove Lemma 4 in the remainder of this section.

Since {γn : n ∈ N} is dense on the unit circle, our interest in f is also about the unit
circle. By identifying C with R2, we can think of f as a function of two real variables. In
this view, f(x, y) is a polynomial with algebraic coefficients, and we can therefore compute
a description of the algebraic set Zf =

{
(x, y) : f(x, y) = 0 ∧ x2 + y2 = 1

}
. We start by

showing that this set is finite. Define g : (−π, π] → R by g(x) = f(eix). Explicitly, we
have g(x) =

∑k
m=0 2|βm| cos(mx+ θm) where θm = arg(βm). Clearly there is a one-to-one

correspondence between Zf and the roots of g.

We present the following proposition, which will be reused later in the proof.

I Proposition 6. For every x ∈ (−π, π] there exists 1 ≤ i ≤ 4k such that g(i)(x) 6= 0, where
g(i) is the i-th derivative of g.

Proof. Assume by way of contradiction that g′(x) = . . . = g4k(x) = 0. For every 1 ≤ i ≤ 4k
we have that

g(i)(x) =

∑k
m=1 m

i2|βm| cos(mx+ θm) i ≡4 0∑k
m=1−mi2|βm| sin(mx+ θm) i ≡4 1∑k
m=1−mi2|βm| cos(mx+ θm) i ≡4 2∑k
m=1 m

i2|βm| sin(mx+ θm) i ≡4 3

(note that the summand that corresponds to m = 0 is dropped out in the derivative, as it is
constant).

Splitting according i mod 4, we rewrite the equations g(i)(x) = 0 in matrix form as
follows.3

for i ≡4 0 :

14 24 · · · k4

18 28 · · · k8

...
...

...
...

14k 24k · · · k4k

2|β1| cos(x+ θ1)
2|β2| cos(2x+ θ2)

...
2|βk| cos(kx+ θk)

 =

0
0
...
0

3 By splitting modulo 2, we could actually improve the bound in the proposition from 4k to 2k, but this
further complicates the proof.

STACS 2019

6:8 The Semialgebraic Orbit Problem

for i ≡4 1 :

−11 −21 · · · −k1

−15 −25 · · · −k5

...
...

...
...

−14k−3 −24k−3 · · · −k4k−3

2|β1| sin(x+ θ1)
2|β2| sin(2x+ θ2)

...
2|βk| sin(kx+ θk)

 =

0
0
...
0

for i ≡4 2 :

−12 −22 · · · −k2

−16 −26 · · · −k6

...
...

...
...

−14k−2 −24k−2 · · · −k4k−2

2|β1| cos(x+ θ1)
2|β2| cos(2x+ θ2)

...
2|βk| cos(kx+ θk)

 =

0
0
...
0

for i ≡4 3 :

13 23 · · · k3

17 27 · · · k7

...
...

...
...

14k−1 24k−1 · · · k4k−1

2|β1| sin(x+ θ1)
2|β2| sin(2x+ θ2)

...
2|βk| sin(kx+ θk)

 =

0
0
...
0

Observe that the matrices we obtain are minors of Vandermonde Matrices (up to their

sign), and as such are non-singular [8]. It follows that
2|β1| sin(x+ θ1)
2|β2| sin(2x+ θ2)

...
2|βk| sin(kx+ θk)

 =

0
0
...
0

 and

2|β1| cos(x+ θ1)
2|β2| cos(2x+ θ2)

...
2|βk| cos(kx+ θk)

 =

0
0
...
0

Recall that we assume at least one βj is nonzero for some 1 ≤ j ≤ k, so we have cos(jx+θj) =
sin(jx+ θj) = 0, which is clearly a contradiction. We thus conclude the proof. J

By Proposition 6, it follows that g is not constant, and therefore f(x, y) is not constant on
the curve x2 +y2 = 1. By Bezout’s Theorem, we have that Zf is finite, and consists of at most
4k points. Moreover, f is a semialgebraic function (that is, its graph {(x, y, f(x, y)) : x, y ∈ R}
is semialgebraic set in R3). Thus, the points in Zf have semialgebraic coordinates, and we
can compute them. By identifying R2 with C, denote Zf = {z1, . . . , z4k}.
I Remark 7. Since the polynomial f has algebraic coefficients, it is not immediately clear how
the degree and height of the points in Zf relate to ‖f‖. However, recall that the algebraic
coefficients in f are polynomials in the entries of Ans, which are, in turn, algebraic numbers
of degree at most 3 whose description is polynomial in that of A and s.

Thus, we can define Zf with a formula in the first-order theory of the reals with a fixed
number of variables. Using results of Renegar [19], we show in the full version that the points
in Zf have semialgebraic coordinates with description length polynomial in ‖f‖.

We now employ the following lemma from [16], which is itself a consequence of the
Baker-Wüstholz Theorem [2].

I Lemma 8 ([16]). There exists D ∈ N such that for all algebraic numbers ζ, ξ of modulus
1, and for every n ≥ 2, if ζn 6= ξ, then |ζn − ξ| > 1

n(‖ζ‖+‖ξ‖)D .

Since γ is not a root of unity, it holds that γn1 6= γn2 for every n1 6= n2 ∈ N. Thus, there
exists a computable N1 ∈ N such that γn /∈ Zf for every n > N1. Moreover, by [5, Lemma
D.1], we have that N1 = ‖f‖O(1). By Lemma 8, there exists a constant D ∈ N such that for
every n ≥ N1 and 1 ≤ j ≤ 4k we have that |γn − zj | > 1

n(‖f‖D) (since ‖zj‖+ ‖γ‖ = O(‖f‖)).
Intuitively, for n > N1 we have that γn does not get close to any zi “too quickly” as a
function of n. In particular, for n > N1 we have f(γn) 6= 0. It thus remains to show that for

S. Almagor, J. Ouaknine, and J. Worrell 6:9

large enough n, r(n) does not affect the sign of f(γn) + r(n). Intuitively, this is the case
because r(n) decreases exponentially, while |f(γn)| is bounded from below by an inverse
polynomial.

For every zj ∈ Zf , let ϕj = arg zj , so that f(z) = 0 iff g(ϕj) = 0. We assume w.l.o.g.
that ϕj ∈ (−π, π) for every 1 ≤ j ≤ 4k. Indeed, if ϕj = π for some j, then we can shift the
domain of g slightly so that all zeros are in the interior.

For every 1 ≤ j ≤ 4k, let Tj be the Taylor polynomial of g around ϕj such that the degree
dj of Tj is minimal and Tj is not identically 0. Thus, we have Tj(x) = g(dj)(ϕj)

dj ! (x− ϕj)dj .
By Proposition 6 we have that dj ≤ 4k for every j. In addition, the description of Tj is
computable from that of ‖f‖.

By Taylor’s inequality, we have that for every x ∈ [−π, π] it holds that |g(x)− Tj(x)| ≤
Mj |x−ϕj |dj+1

(dj+1)! where Mj = maxx∈[−π,π]
{
g(dj+1)(x)

}
(where g is extended naturally to the

domain [−π, π]). By our description of g(dj+1)(x), we see that Mj is bounded by M =
4kmax1≤i≤k {|βi|} k4k+1.

Let ε1 > 0 be such that the following conditions hold for every 1 ≤ j ≤ 4k.
1. sign(g′(x)) does not change in (ϕj , ϕj + ε1) nor in (ϕj − ε1, ϕj).
2. |g(x)− Tj(x)| ≤ 1

2 |Tj(x)| for every x ∈ (ϕj − ε1, ϕj + ε1).
3. sign(g′(x)) = sign(T ′j(x)) for every x ∈ (ϕj − ε1, ϕj + ε1).
Note that we can assume (ϕj − ε1, ϕj + ε1) ⊆ (−π, π), since by our assumption ϕj ∈ (−π, π)
for all 1 ≤ j ≤ 4k.

An ε1 as above exists due to the following properties (see Figure 1 for an illustration):
There are only finitely many points where g′(x) = 0,
Tj(x) is of degree dj , whereas |g(x)− Tj(x)| is upper-bounded by a polynomial of degree
dj + 1, and
T ′j(x) is the Taylor polynomial of degree dj − 1 of g′(x) around ϕj , so by bounding the
distance |g′(x)− T ′j(x)| we can conclude the third requirement.

φ1 φ2

g

T1

T2

Figure 1 g(x) and two Taylor polynomials: T1(x) around ϕ1 and T2(x) around ϕ2. The shaded
regions show where requirements (1)–(3) hold, which determine ε1. Observe that for T1, the most
restrictive requirement is |g(x)− T1(x)| ≤ 1

2T1(x), whereas for T2 the restriction is the requirement
that T2(x) is monotone.

In order to establish Lemma 4, we must be able to effectively compute ε1. We thus
proceed with the following lemma.

I Lemma 9. ε1 can be computed in polynomial time in ‖f‖, and 1
ε1

= 2‖f‖O(1) .

Proof. We compute δ1, δ2, δ3 that satisfy requirements 1,2, and 3, respectively. Then, taking
ε1 = min {δ1, δ2, δ3} will conclude the proof.

STACS 2019

6:10 The Semialgebraic Orbit Problem

Condition 1. We compute δ1 > 0 such that sign(g′(x)) does not change in (ϕj−δ1, ϕj) nor in
(ϕj , ϕj+δ1). This is done as follows. Recall that g(x) = f(eix) =

∑k
m=0 βme

imx+βmeimx.
It is not hard to check that g′(x) =

∑k
m=0 imβme

imx + imβmeimx. Let f̂(z) : C→ R be
the function f̂(z) =

∑k
m=0 imβmz + imβmz, then g′(x) = f̂(eix) and

∥∥∥f̂∥∥∥ = O(‖f‖).

Consider the algebraic set F =
{
z : |z| = 1 ∧ f̂(z) = 0

}
, then {x : g′(x) = 0} =

{arg(z) : z ∈ F}. By similar arguments as those by which we found the roots of f on the
unit circle, namely by adapting Proposition 6 to f̂ , we can conclude that F contains at most
4k points. Thus, it is enough to set δ1 such that

(⋃4k
j=1(ϕj − δ1, ϕj) ∪ (ϕj , ϕj + δ1)

)
∩F =

∅.
By Equation (1), we have that for z 6= z′ ∈ F it holds that |z − z′| >

√
6

d
d+1

2 ·Hd−1
where d

and H are the degree and height of the roots of f̂(z) (see Remark 7). Thus, 1/|z − z′| is
2‖f‖O(1) , and has a polynomial description. Since | arg(z)−arg(z′)| > |z−z′|, we conclude
that by setting δ1 = min {|z − z′| : z 6= z′ ∈ F} /3, it holds that 1

δ1
has a polynomial

description in ‖f‖, and δ1 satisfies the required condition.
Condition 2. Next, we compute δ2 > 0 such that |g(x) − Tj(x)| ≤ 1

2 |Tj(x)| for every
x ∈ (ϕj − δ2, ϕj + δ2). Recall that Tj(x) = g(dj)(ϕj)

dj ! (x − ϕj)dj . Note that this case is
more challenging than Condition 1, as unlike g(x) = f(eix), the polynomial Tj(x) has
potentially transcendental coefficients (namely ϕj). For clarity, we omit the index j in
the following. Thus, we write T, d, ϕ instead of Tj , dj , ϕj , etc.
In order to ignore the absolute value, assume T (x) ≥ g(x) > 0 in an interval (ϕ,ϕ+ ξ)
for some ξ > 0 (the other cases are treated similarly). Then, the inequality above
becomes g(x) − 1

2T (x) ≥ 0. Since the degree of T is d, then by the definition of T ,
the first d − 1 derivatives of g in ϕ vanish. Define h(x) = g(x) − 1

2T (x), then we have
h(ϕ) = 0, h′(ϕ) = 0, . . . , h(d−1)(ϕ) = 0 and h(d)(ϕ) = g(d)(ϕ)− 1

2g
(d)(ϕ) = 1

2g
(d)(ϕ). By

our assumption, T (x) ≥ 1
2T (x) for x ∈ (ϕ,ϕ + ξ), so h(d)(ϕ) > 0. In addition, recall

that |h(d+1)(x)| = |g(d+1)(x)| ≤ M for every x ∈ [−π, π]. Thus, by writing the d-th
Taylor expansion of h(x) around ϕ, we have that h(x) = h(d)(ϕ)

d! (x− ϕ)d + E(x) where
|E(x)| ≤ M

(d+1)! (x− ϕ)d+1. We now have that

h(x) ≥ 1
2
g(d)(ϕ)
d! (x− ϕ)d − M

(d+ 1)! (x− ϕ)d+1.

Taking x ∈ (ϕ,ϕ + g(d)(ϕ)(d+1)
2M), it is easy to check that h(x) ≥ 0. We can now set

δ2 = g(d)(ϕ)(d+1)
2M , which satisfies the required condition.

Condition 3. Finally, we compute δ3 > 0 such that sign(g′(x)) = sign(T ′j(x)) for every
x ∈ (ϕj − δ3, ϕj + δ3). Observe that T ′j(x) is the dj − 1-th Taylor polynomial of g′(x)
around ϕj . Thus, by following the reasoning used to find δ2, we can find δ3 such that
|g′(x)− T ′j(x)| ≤ 1

2 |T
′
j(x)| for every x ∈ (ϕ− δ3, ϕ+ δ3), and in particular it holds that

sign(g′(x)) = sign(T ′j(x)) for every x ∈ (ϕj − δ3, ϕj + δ3).
As mentioned above, by setting ε1 = min {δ1, δ2, δ3}, we conclude the proof. J

Conditions 1,2, and 3 above imply that within the intervals (ϕj − ε1, ϕj + ε1) we have
that |g(x)| ≥ 1

2 |Tj(x)|, that g(x) and Tj(x) have the same sign, and that they are both
decreasing/increasing together.

We now claim that there exists a polynomial p(n) and a number N2 ∈ N such that for
every n > N2 it holds that |g(arg(γn))| > 1

p(n) . In order to compute p(n), we compute
separate polynomials for the domain

⋃4k
j=1(ϕj − ε1, ϕj + ε1) and for its complement. Then,

taking their minimum and bounding it from below by another polynomial yields p(n).

S. Almagor, J. Ouaknine, and J. Worrell 6:11

We start by considering the case where arg(γn) ∈
⋃4k
j=1(ϕj−ε1, ϕj+ε1). Recall that since

γ is not a root of unity, then for every n > N1 it holds that γn /∈ Zf = {z1, . . . , z4k}. Then, by
Lemma 8, for every 1 ≤ j ≤ 4k and every n ≥ N2 = max {N1, 2} we have |γn− zj | > 1

n(‖f‖D) .
In addition, |γn−zj | ≤ | arg(γn)−ϕj | (since the LHS is the Euclidean distance and the RHS is
the spherical distance). Therefore, | arg(γn)−ϕj | > 1

n(‖f‖D) , so either arg(γn) > ϕj + 1
n(‖f‖D)

or arg(γn) < ϕj − 1
n(‖f‖D) . Next, we have that if arg(γn) ∈ (ϕj − ε1, ϕj + ε1) for some 1 ≤

j ≤ 4k, then |g(arg(γn))| ≥ 1
2 |Tj(arg(γn))| ≥ 1

2 min
{
|Tj(ϕj + 1

n(‖f‖D))|, |Tj(ϕj − 1
n(‖f‖D))|

}
,

where the last inequality follows from condition 3 above, which implies that Tj is monotone
with the same tendency as g.

Observe that Tj(ϕj − 1
n(‖f‖D)) = g(dj)(ϕ)

dj !
1

n(‖f‖D) and that similarly Tj(ϕj + 1
n(‖f‖D)) =

− g
(dj)(ϕ)
dj !

1
n(‖f‖D) are both inverse polynomials (in n). Thus, |g(arg(γn))| is bounded from

below by an inverse polynomial. Moreover, these polynomials can be easily computed in
time polynomial in ‖f‖.

Finally, we note that for x /∈
⋃4k
j=1(ϕj − ε1, ϕj + ε1) we can compute in polynomial time

a bound B > 0 such that |g(x)| > B. Indeed, B = min{|g(x)| : x ∈ [−π, π] \
⋃4k
j=1(ϕj −

ε1, ϕj + ε1)} (where g(−π) is defined naturally by extending the domain), and we have that
|B| > 0 since we assumed non of the ϕj are exactly at π (in which case we would have had
g(−π) = 0). In particular, we can combine the two domains and compute a polynomial p as
required. We remark that we can compute ‖B‖ in polynomial time, since it is either at least
1
2 |Tj(ϕj ± ε1)| for some 1 ≤ j ≤ 4k (and by Lemma 9, ‖ε1‖ can be computed in polynomial
time), or it is the value of one of the extrema of g, and the latter can be computed by finding
the extrema of the (algebraic) function f on the unit circle.

To recap, for every n > N2 it holds that |g(arg(γn))| > 1
p(n) for a non-negative polynomial

p, and both N2 and p can be computed in polynomial time in the description of the input.
Next, we wish to find N3 ∈ N such that for every n > N3 it holds that r(n) < 1

p(n) .
Recall that r(n) =

∑k′

l=1 χlµ
n
l +χlµl

n where for every 1 ≤ l ≤ k′ we have that µl is algebraic
with deg(µl) = ‖f‖O(1) and H(µl) = 2‖f‖O(1) . Observe that 1 − |µl| is also an algebraic
number. Indeed, 1− |µl| = 1−

√
µlµl. Moreover, we get that deg(1− |µl|) ≤ deg(µl)4, as it

is the root of a polynomial of degree at most deg(µl)4, and that H(1− |µl|) is polynomial in
H(µl). Since |µl| < 1, by applying Equation (1), we get 1−|µl| = |1−|µl|| >

√
6

d(d+1)/2H(µl)d−1

where d = deg(µl)O(1) and H(µl) = 2‖I‖O(1) . It follows that we can compute δ ∈ (0, 1) with
1
δ = 2‖I‖O(1) such that 1− |µl| > δ, and hence |µ|n < 1− δ. Thus,

|r(n)| ≤
k′∑
l=1

2|χl||µl|mn ≤
k′∑
l=1

2|χl|(1− δ)mn ≤ 2k′ max
1≤l≤k′

|χl|(1− δ)n

We can now compute ε ∈ (0, 1) and N3 ∈ N such that:
1. 1

ε = 2‖I‖O(1)

2. N3 = 2‖I‖O(1)

3. For every n > N3 it holds that |r(n)| < (1− ε)n

Finally, by taking N4 ∈ N such that (1− ε)n < 1
p(n) (which satisfies N4 = 2‖I‖O(1)) for

all n > N4, we can now conclude that for every n > max {N2, N3, N4}, the following hold.
1. f(γn) = g(arg(γn)) 6= 0.
2. If f(γn) > 0, then g(arg(γn)) > 0, so g(arg(γn)) > 1

p(n) . Since |r(n)| < 1
p(n) , it follows

that f(γn)+r(n) = g(arg(γn))+r(n) > 1
p(n)−|r(n)| > 0. Conversely, if f(γn)+r(n) > 0,

then g(arg(γn)) + r(n) > 0, but since |g(arg(γn))| > 1
p(n) and |r(n)| < 1

p(n) , then it must
hold that g(arg(γn)) > 0, so f(γn) > 0.

STACS 2019

6:12 The Semialgebraic Orbit Problem

3. If f(γn) < 0, then g(arg(γn)) < 0, so g(arg(γn)) < − 1
p(n) . Since |r(n)| < 1

p(n) , it follows
that f(γn)+r(n) = g(arg(γn))+r(n) < − 1

p(n) +|r(n)| < 0. Conversely, if f(γn)+r(n) < 0,
then g(arg(γn)) + r(n) < 0, but since |g(arg(γn))| > 1

p(n) and |r(n)| < 1
p(n) , then it must

hold that g(arg(γn)) < 0, so f(γn) < 0.
This concludes the proof of Lemma 4. J

We are now ready to use Lemma 4 in order to solve the systems.

I Theorem 10. The problem of deciding whether an almost self-conjugate system has a
solution is decidable.

Proof. Consider an almost self-conjugate system of the form
∧
J RJ(Ans) ∼J 0. For each

expression RJ(Ans) ∼J 0, let f be the corresponding dominant function, as per Lemma 4,
and compute its respective bound N . If ∼J is “=”, then by Lemma 4, if the equation is
satisfiable for n ∈ N, then n < N .

If all the ∼J are “>”, then for each such inequality compute {z : f(z) > 0}, which is a
semialgebraic set. If the intersection of these sets is empty, then if n is a solution for the
system, it must hold that n < N . If the intersection is non-empty, then it is an open set.
Since γ is not a root of unity, then {γn : n ∈ N} is dense in the unit circle. Thus, there exists
n > N such that γn is in the above intersection, so the system has a solution. Checking the
emptiness of the intersection can be done using Theorem 1.

Thus, it remains to check whether there exists a solution n < N , which is clearly
decidable. J

Observe that from Theorem 10, combined with Section 3.1, we can conclude the decidab-
ility of the point-to-semialgebraic Orbit Problem. However, as it turns out, we can reuse
Theorem 10 to obtain a much stronger result, namely the decidability of the Semialgebraic
Orbit Problem.

4 The Semialgebraic Orbit Problem

In [1], we proved that the following problem is decidable: given two polytopes S, T ⊆ R3

and a matrix A ∈ Q3×3, does there exist n ∈ N such that AnS ∩ T 6= ∅. We now show that
the techniques developed here can be used as an alternative solution for this problem, and in
fact solve a much stronger variant, where S and T are replaced by semialgebraic sets. That
is, given two semialgebraic sets S, T ⊆ R3 and a matrix A ∈ Q3×3, does there exist n ∈ N
such that AnS ∩ T 6= ∅.

I Theorem 11. The Semialgebraic Orbit Problem is decidable.

Proof. Consider semialgebraic sets S, T ⊆ R3 and a matrix A ∈ Q3×3, as described above.
Recall that we can write S = {~x :

∨
I

∧
J RI,J(~x) ∼I,J 0} and similarly for T . Since we want

to decide whether some point in S hits T , we can consider each disjunct in the description of
S separately. Thus, we henceforth assume S = {~x :

∧
J RJ(~x) ∼J 0}.

We now turn to characterise the set AnS for every n ∈ N. For this purpose, we assume
A is invertible. The case where A is not invertible can be reduced to analysis in a lower
dimension, and is handled in the full version. For every n ∈ N, we now have

AnS =
{
An~x :

∧
J

RJ(~x) ∼J 0
}

=
{
~x :
∧
J

RJ((A−1)n~x) ∼J 0
}
.

S. Almagor, J. Ouaknine, and J. Worrell 6:13

We further assume that A has a complex eigenvalue. As in Section 3, the case where
all eigenvalues are real is simpler (even if A is not diagonalisable), and is handled in the

full version. We can now write A = PDP−1 with D =

λ 0 0
0 λ 0
0 0 ρ

, where λ is a complex

eigenvalue, ρ ∈ R, and P an invertible matrix. We thus have A−1 = PD−1P−1 where

D−1 =

 λ
|λ|2 0 0
0 λ

|λ|2 0
0 0 ρ−1

. We denote ζ = λ
|λ|2 and η = ρ−1, so D−1 =

ζ 0 0
0 ζ 0
0 0 η

. As

in Section 3, by analysing the structure of P and P−1, we have that for ~x = (x1, x2, x3),
(A−1)n(~x)i =

∑3
j=1(ai,jζn + ai,jζ

n + bi,jη
n)xj with ai,j ∈ A and bi,j ∈ A∩R. That is, each

coordinate 1 ≤ i ≤ 3, is a linear combination of x1, x2, x3 where the coefficients are of the
form above. In particular, the coefficient of every xj is an almost self-conjugate polynomial
(see the full version for a complete analysis).

Consider a monomial of the form xs1
1 x

s2
2 x

s3
3 in RJ(~x). Replacing ~x with (A−1)n~x,

the monomial then becomes Q(ζn, ζn, ηn)xs1
1 x

s2
2 x

s3
3 , where Q(z1, z2, z3) is an almost self-

conjugate polynomial. Indeed, this follows since the coordinates of (A−1)n~x above are
almost self-conjugate, and products of almost self-conjugate polynomials remain almost
self-conjugate.

Recall that the polynomials RJ in the description of S have integer (and in particular,
real) coefficients. By lifting the discussion about monomials to RJ , we can write

RJ((A−1)n(~x)) =
∑

0≤s1,s2,s3≤k

QJs1,s2,s3
(ζn, ζn, ηn)xs1

1 x
s2
2 x

s3
3

where k ∈ N and the coefficients QJs1,s2,s3
are almost self-conjugate.

Observe that now, there exists n ∈ N such that AnS ∩ T 6= ∅ iff there exists n ∈ N and
~x ∈ R3 such that ~x ∈ T and∧

J

∑
0≤s1,s2,s3≤k

QJs1,s2,s3
(ζn, ζn, ηn)xs1

1 x
s2
2 x

s3
3 ∼J 0. (4)

Intuitively, we now want to eliminate the quantifiers on ~x in the expression above. However,
we cannot readily do so, as the expression is also quantified by n ∈ N. Nonetheless, in the
following we manage to circumvent this problem by increasing the dimension of the problem.

Let K be the number of polynomials QJs1,s2,s3
that appear in the conjunction (4) above,

indexed by J, s1, s2, s3. Consider the set

U =
{

(y1, . . . , yK) ∈ RK : ∃~x ∈ R
3, x ∈ T∧∧

J

∑
0≤s1,s2,s3≤k y

J
s1,s2,s3

xs1
1 x

s2
2 x

s3
3 ∼J 0

}
That is, U is obtained by replacing each polynomial QJs1,s2,s3

with a “placeholder” real
variable yJs1,s2,s3

. U is clearly a semialgebraic set, so by Theorem 2, we can eliminate the
quantifier on ~x, and write

U =
{

(y1, . . . , yK) ∈ RK :
∧
J

SJ(y1, . . . , yK) ∼J 0
}

where SJ are polynomials with integer coefficients. It is now the case that there exists n ∈ N
such that AnS∩T 6= ∅ iff there exists n ∈ N such that (Q1(ζn, ζn, ηn), . . . , QK(ζn, ζn, ηn)) ∈
U . That is, we need to decide whether there exists n ∈ N such that SJ(Q1(ζn, ζn, ηn), . . . ,
QK(ζn, ζn, ηn)) ∼J 0 for every J .

STACS 2019

6:14 The Semialgebraic Orbit Problem

It is easy to see that since the polynomials Qi are almost self-conjugate, then so is
SJ(Q1(ζn, ζn, ηn), . . . , QK(ζn, ζn, ηn)), (when viewed as a polynomial in ζn, ζn, ηn).

Thus, the conjunction∧
J

SJ(Q1(ζn, ζn, ηn), . . . , QK(ζn, ζn, ηn))

is an almost self-conjugate system, and by Theorem 10, it is decidable whether it has a
solution. This concludes the proof. J

5 Discussion

This paper establishes the decidability of the Semialgebraic Orbit Problem in dimension at
most three. The class of semialgebraic sets is arguably the largest natural class of subsets
of Rn for which membership is decidable. Thus, our results reach the limit of what can
be decided about the orbit of a single matrix. Moreover, our techniques shed light on the
decidability (or hardness) of orbit problems in higher dimensions: the techniques we develop
for analysing orbits can be applied to any matrix (in any dimension) whose eigenvalues
have arguments that are pairwise linearly dependent over Q (i.e., the arguments of all the
eigenvalues are rational multiples of some angle θ). Indeed, it is easy to see that the orbits
generated by such matrices can be reduced to solving almost self-conjugate systems (see
Section 3). This can be put in contrast to known hardness results [4] in dimension d ≥ 4,
which require a single pair of eigenvalues whose arguments do not satisfy the above property.
Thus, we significantly sharpen the border of known decidability, and allow future research to
focus on hard instances.

Technically, our contribution uncovers two interesting tools. First, the identification of
almost self-conjugate polynomials, and their amenability to analysis (Section 3), and second,
the ability to abstract away integral exponents in order to perform quantifier elimination, by
increasing the dimension (Section 4). The former arises naturally in the context of matrix
exponentiation, while the latter is an obstacle that is often encountered when quantifying
over semialgebraic sets in the presence of a discrete operator (e.g., matrix exponentiation).
In the future, we plan to further investigate the applications of these directions.

References
1 S. Almagor, J. Ouaknine, and J. Worrell. The Polytope-Collision Problem. In 44th International

Colloquium on Automata, Languages, and Programming, ICALP 2017, July 10-14, 2017,
Warsaw, Poland, pages 24:1–24:14, 2017.

2 A. Baker and G. Wüstholz. Logarithmic forms and group varieties. J. reine angew. Math,
442(19-62):3, 1993.

3 S. Basu, R. Pollack, and M-F. Roy. Algorithms in real algebraic geometry, volume 20033.
Springer, 2005.

4 V. Chonev, J. Ouaknine, and J. Worrell. The polyhedron-hitting problem. In Proceedings
of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 940–956.
SIAM, 2015.

5 V. Chonev, J. Ouaknine, and J. Worrell. On the Complexity of the Orbit Problem. J. ACM,
63(3):23:1–23:18, 2016.

6 H. Cohen. A course in computational algebraic number theory, volume 138. Springer Science
& Business Media, 2013.

7 G. E. Collins. Quantifier elimination for real closed fields by cylindrical algebraic decompostion.
In Automata Theory and Formal Languages 2nd GI Conference Kaiserslautern, May 20–23,
1975, pages 134–183. Springer, 1975.

S. Almagor, J. Ouaknine, and J. Worrell 6:15

8 F.R. Gantmacher. The Theory of Matrices. Number v. 2 in The Theory of Matrices. Chelsea
Publishing Company, 1959.

9 V. Halava, T. Harju, M. Hirvensalo, and J. Karhumäki. Skolem’s Problem – On the Border
between Decidability and Undecidability. Technical Report 683, Turku Centre for Computer
Science, 2005.

10 M. A Harrison. Lectures on linear sequential machines. Technical report, DTIC Document,
1969.

11 R. Kannan and R. J. Lipton. Polynomial-time algorithm for the orbit problem. Journal of the
ACM (JACM), 33(4):808–821, 1986.

12 G. Lafferriere, G. J. Pappas, and S. Yovine. Symbolic Reachability Computation for Families
of Linear Vector Fields. J. Symb. Comput., 32(3):231–253, 2001.

13 M. Mignotte. Some useful bounds. In Computer algebra, pages 259–263. Springer, 1983.
14 M. Mignotte, T. Shorey, and R. Tijdeman. The distance between terms of an algebraic

recurrence sequence. J. für die reine und angewandte Math., 349, 1984.
15 M. Müller-Olm and H. Seidl. Computing polynomial program invariants. Inf. Process. Lett.,

91(5):233–244, 2004.
16 J. Ouaknine and J. Worrell. Ultimate Positivity is decidable for simple linear recurrence

sequences. In International Colloquium on Automata, Languages, and Programming, pages
330–341. Springer, 2014.

17 V. Y. Pan. Optimal and nearly optimal algorithms for approximating polynomial zeros.
Computers & Mathematics with Applications, 31(12):97–138, 1996.

18 J. Renegar. A Faster PSPACE Algorithm for Deciding the Existential Theory of the Reals. In
29th Annual Symposium on Foundations of Computer Science, White Plains, New York, USA,
24-26 October 1988, pages 291–295, 1988.

19 J. Renegar. On the computational complexity and geometry of the first-order theory of the
reals. Part I: Introduction. Preliminaries. The geometry of semi-algebraic sets. The decision
problem for the existential theory of the reals. Journal of symbolic computation, 13(3):255–299,
1992.

20 T. Tao. Structure and randomness: pages from year one of a mathematical blog. American
Mathematical Soc., 2008.

21 A. Tarski. A decision method for elementary algebra and geometry. Rand Corporation, 1951.
22 N. K. Vereshchagin. Occurrence of zero in a linear recursive sequence. Mathematical notes of

the Academy of Sciences of the USSR, 38(2):609–615, 1985.

STACS 2019

Best-Of-Two-Worlds Analysis of Online Search
Spyros Angelopoulos
Sorbonne Université, CNRS, Laboratoire d’informatique de Paris 6, LIP6, F-75252 Paris, France
Spyros.Angelopoulos@lip6.fr

Christoph Dürr
Sorbonne Université, CNRS, Laboratoire d’informatique de Paris 6, LIP6, F-75252 Paris, France
Christoph.Durr@lip6.fr

Shendan Jin
Sorbonne Université, CNRS, Laboratoire d’informatique de Paris 6, LIP6, F-75252 Paris, France
Shendan.Jin@lip6.fr

Abstract
In search problems, a mobile searcher seeks to locate a target that hides in some unknown position
of the environment. Such problems are typically considered to be of an on-line nature, in that the
input is unknown to the searcher, and the performance of a search strategy is usually analyzed by
means of the standard framework of the competitive ratio, which compares the cost incurred by the
searcher to an optimal strategy that knows the location of the target. However, one can argue that
even for simple search problems, competitive analysis fails to distinguish between strategies which,
intuitively, should have different performance in practice.

Motivated by the above, in this work we introduce and study measures supplementary to
competitive analysis in the context of search problems. In particular, we focus on the well-known
problem of linear search, informally known as the cow-path problem, for which there is an infinite
number of strategies that achieve an optimal competitive ratio equal to 9. We propose a measure
that reflects the rate at which the line is being explored by the searcher, and which can be seen
as an extension of the bijective ratio over an uncountable set of requests. Using this measure we
show that a natural strategy that explores the line aggressively is optimal among all 9-competitive
strategies. This provides, in particular, a strict separation from the competitively optimal doubling
strategy, which is much more conservative in terms of exploration. We also provide evidence that
this aggressiveness is requisite for optimality, by showing that any optimal strategy must mimic the
aggressive strategy in its first few explorations.

2012 ACM Subject Classification Theory of computation → Online algorithms

Keywords and phrases Online computation, search problems, linear search, performance measures

Digital Object Identifier 10.4230/LIPIcs.STACS.2019.7

Funding Supported by ANR OATA, ANR ENERGUMEN, DIM RFSI DACM and Labex Math-
ématique Hadamard. This research also benefited from the support of the FMJH Program PGMO
and from the support of EDF-Thales-Orange.

Acknowledgements We are thankful to Elmar Langetepe for discussions on the literature of online
search, as well as to Pascal Schweitzer for comments on an early draft of this paper.

1 Introduction

Searching for a hidden target is an important paradigm in computer science and operations
research, with numerous applications. A typical search problem involves an environment,
a mobile searcher (who may, or may not, have knowledge of the environment) and a hider
(sometimes also called target) who hides at some position within the environment that is
oblivious to the searcher. The objective is to define a search strategy, i.e., a traversal of the
environment, that optimizes a certain efficiency criterion. A standard approach to the latter
is by means of competitive analysis, in which we seek to minimize the worst-case cost for

© Spyros Angelopoulos, Christoph Dürr, and Shendan Jin;
licensed under Creative Commons License CC-BY

36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019).
Editors: Rolf Niedermeier and Christophe Paul; Article No. 7; pp. 7:1–7:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-9819-9158
mailto:Spyros.Angelopoulos@lip6.fr
https://orcid.org/0000-0001-8103-5333
mailto:Christoph.Durr@lip6.fr
https://orcid.org/0000-0003-1218-9085
mailto:Shendan.Jin@lip6.fr
https://doi.org/10.4230/LIPIcs.STACS.2019.7
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

7:2 Best-Of-Two-Worlds Analysis of Online Search

locating the target, divided by some concept of “optimal” solution; e.g., the minimum cost to
locate the target once its position is known. Even prior to the advent of online computation
and competitive analysis, search games had already been studied under such normalized
measures within operations research [9]. Explicit studies of the competitive ratio and the
closely related search ratio were given in [7] and [28], respectively, and led to the development
of online searching [24, 11] as a subfield of online computation. See also [1] for an in-depth
treatment of search games, including the role of payoff functions that capture the competitive
ratio.

In this work we revisit one of the simplest, yet fundamental search problems, namely
the linear search, or, informally, cow-path problem. The setting involves an infinite (i.e.,
unbounded) line, with a point O designated as its origin, a searcher which is initially placed
at the origin, and an immobile target which is at some position on the line that is unknown
to the searcher. More specifically, the searcher does not know whether the hider is at the left
branch or at the right branch of the line. The searcher’s strategy S defines its exploration of
the line, whereas the hider’s strategy H is determined by its placement on the line. Given
strategies S,H, the cost of locating the hider, denoted by c(S,H) is the total distance
traversed by the searcher at the first time it passes over H. Let |H| denote the distance of
the hider from the origin. The competitive ratio of S, denoted by cr(S), is the worst-case
normalized cost of S, among all possible hider strategies. Formally,

cr(S) = sup
H

c(S,H)
|H|

. (1)

It has long been known [8, 20] that the competitive ratio of linear search is 9, and is
achieved by a simple doubling strategy: in iteration i, the searcher starts from O, explores
branch i mod 2 at a length equal to 2i, and then returns to O. However, this strategy is
not uniquely optimal; in fact, it is known that there is an infinite number of competitively
optimal strategies for linear search (see Lemma 6 in Section 3). In particular, consider an
“aggressive” strategy, which in each iteration searches a branch to the maximum possible
extent, while maintaining a competitive ratio equal to 9. This can be achieved by searching,
in iteration i, branch i mod 2 to a length equal to (i+ 2)2i+1 (see Corollary 8).

While both doubling and aggressive are optimal in terms of competitive ratio, there
exist realistic situations in which the latter may be preferable to the former. Consider, for
example, a search-and-rescue mission for a missing backpacker who has disappeared in one
of two (very long) concurrent, hiking paths. Assuming that we select our search strategy
from the space of 9-competitive strategies, it makes sense to choose one that is tuned to
discovering new territory, rather than a conservative strategy that tends to often revisit
already explored areas.

With the above observation in mind, we first need to quantify what constitutes efficiency in
exploration. To this end, given a strategy S and l ∈ R+, we define D(S, l) as the cost incurred
by S the first time the searcher has explored an aggregate length equal to l, combined in both
branches. An efficient strategy should be such that D(S, l) is small, for all l. Unfortunately,
this criterion by itself is insufficient: Consider a strategy that first searches one branch to a
length equal to L, where L is very large. Then D(S, l) is as small as possible for all l < L;
however, this is hardly a good strategy, since it all but ignores one of the branches (and thus
its competitive ratio becomes unbounded as L→∞).

To remedy this situation, we will instead use the above definition in a way that will allow
us a pairwise comparison of strategies, which also considers all possible explored lengths.
More formally, we define the following:

S. Angelopoulos, C. Dürr, and S. Jin 7:3

I Definition 1. Let S1, S2 denote two search strategies, we define the discovery ratio of S1
against S2, denoted by dr(S1, S2), as

dr(S1, S2) = sup
l∈R+

D(S1, l)
D(S2, l)

.

Moreover, given a class S of search strategies, the discovery ratio of S against the class S is
defined as

dr(S,S) = sup
S′∈S

dr(S, S′).

In the case S is the set Σ of all possible strategies, we simply call dr(S,S) the discovery ratio
of S, and we denote it by dr(S).

Intuitively, the discovery ratio preserves the worst-case nature of competitive analysis,
and at the same time bypasses the need for an “offline optimum” solution. Note that if a
strategy S has competitive ratio c then it also has discovery ratio c; this follows easily from
the fact that for every hider position H, c(S,H) ≥ D(S, |H|). However, the opposite is not
necessarily true.

It is worth pointing out that one could have defined the discovery ratio over a discrete,
countable space (i.e., the target hides at some integer distance from the origin), which turns
out to be identical to the bijective ratio. This performance measure was introduced in [5]
as an extension of (exact) bijective analysis of online algorithms [4], and which in turn
is based on the pairwise comparison of the costs induced by two online algorithms over
all request sequences of a certain size. Bijective analysis has been applied in fundamental
online problems (with a discrete, finite set of requests) such as paging and list update [6],
k-server [14, 5], and online search1 [15].

In what concerns linear search, in this work we choose to present the analysis over a
“continuous” space of requests for two reasons. First, we demonstrate that this is indeed
possible, which can be useful for other online problems which are defined over a continuous
setting of requests (e.g., k-server problems defined over a metric space rather than over a
finite graph). Second, the discretization introduces certain unnecessary and undesirable
technical issues, e.g., in the choice of the “right” t for strategy Rt (see Lemma 11). While
the analysis is still tractable for our problem, for more complex search domains such as star
search, the discrete analysis may be too complicated to yield results. We further discuss the
connections between the discovery and the bijective ratios in Section 4.

The above observation implies that the discovery ratio inherits the appealing properties
of bijective analysis, which further motivate its choice. In particular, note that bijective
analysis has helped to identify theoretically efficient algorithms which also tend to perform
well in practice (such as Least-Recently-Used for paging [6], and greedy-like k-server policies
for certain types of metrics [5]). Furthermore, if an algorithm has bijective ratio c, then its
average cost, assuming a uniform distribution over all request sequences of the same length,
is within a factor c of the average cost of any other algorithm. Thus, bijective analysis can be
used to establish “best of both worlds” types of performance comparisons. In fact, assuming
again uniform distributions, much stronger conclusions can be obtained, in that bijective
analysis implies a stochastic dominance relation between the costs of the two algorithms [5].
However, since the search domain is infinite, one must be careful in defining a uniform

1 In [15], online search refers to the problem of selling a specific item at the highest possible price, and is
not related to the problem of searching for a target.

STACS 2019

7:4 Best-Of-Two-Worlds Analysis of Online Search

distribution of requests. More specifically, one could fix L ≥ 1 and consider the uniform
density function on the space [−L,−1]∪ [1, L] (where the origin is assumed to be at 0). Thus,
the probability that a request is at distance at most x from the origin is (x − 1)/(L − 1).
Our results then correspond to the setting in which L is unknown to the algorithm, and
thus can be arbitrarily large. For known, and thus bounded L, the situation is much more
complicated, since the optimal competitive ratio now depends on L and does not have a
closed formula [13]. Our overall techniques still apply but the results unavoidably will be
much more technical, and probably not tight.

It should be noted that the central question we study in this work is related to a
phenomenon that is not unusual in the realm of online computation. Namely, for certain
online problems, competitive analysis results in very coarse performance classification of
algorithms. This is due to the pessimistic, worst-case nature of the competitive ratio. The
definitive example of an online problem in which this undesired situation occurs is the
(standard) paging problem in a virtual memory system, which motivated the introduction of
several analysis techniques alternative to the competitive ratio (see [19] for a survey). In our
paper we demonstrate that a similar situation arises in the context of online search, and we
propose a remedy by means of the discovery ratio. We emphasize, however, that in our main
results, we apply the discovery ratio as supplementary to the competitive ratio, instead of
using it antagonistically as a measure that replaces the competitive ratio altogether.

Contribution

We begin, in Section 2, by identifying the optimal tradeoff between the competitive ratio of a
strategy and its discovery ratio (against all possible strategies). The result implies that there
are strategies of discovery ratio 2 + ε, for arbitrarily small ε > 0, which is tight. As corollary,
we obtain that strategy doubling has discovery ratio equal to 3. These results allow us to
set up the framework and provide some intuition for our main results, but also demonstrate
that the discovery ratio, on itself, does not lead to a useful classification of strategies, when
one considers the entire space of strategies.

Our main technical results are obtained in Section 3. Here, we apply synthetically both
the competitive and the discovery ratios. More precisely, we restrict our interest to the
set of competitively optimal strategies, which we further analyze using the discovery ratio
as a supplementary measure. We prove that the strategy aggressive, which explores the
branches to the furthest possible extent while satisfying the competitiveness constraint, has
discovery ratio 8

5 ; moreover, we show that this is the optimal discovery ratio in this setting.
In contrast, we show that the strategy doubling has discovery ratio 7

3 . In addition, we
provide evidence that such “aggressiveness” is requisite. More precisely, we show that any
competitively optimal strategy that is also optimal with respect to the discovery ratio must
have the exact same behavior as the aggressive strategy in the first five iterations.

In terms of techniques, the main technical difficulty in establishing the discovery ratios
stems from answering the following question: given a length l ∈ R+, what is the strategy S
that minimizes D(S, l), and how can one express this minimum discovery cost? This is a
type of inverse or dual problem that can be of independent interest in the context of search
problems, in the spirit of a concept such as the reach of a strategy [23], also called extent
in [24] (and which is very useful in the competitive analysis of search strategies). We model
this problem as a linear program for whose objective value we first give a lower bound; then
we show this bound is tight by providing an explicit 9-competitive strategy which minimizes
D(S, l).

S. Angelopoulos, C. Dürr, and S. Jin 7:5

Related work

The linear search problem was first introduced and studied in works by Bellman [10] and
Beck [8]. The generalization of linear search to m concurrent, semi-infinite branches is known
as star search or ray search; thus linear search is equivalent to star search for m = 2. Optimal
strategies for linear search under the (deterministic) competitive ratio were first given by [9].
Moreover [21] gave optimal strategies for the generalized problem of star search, a result that
was rediscovered later [7]. Some of the related work includes the study of randomization [26];
multi-searcher strategies [29]; multi-target searching [27, 30]; searching with turn cost [18, 3];
searching with an upper bound on the target distance [23, 13]; fault-tolerant search [17]; and
the variant in which some probabilistic information on target placement is known [24, 25].
This list is not exclusive; see also Chapter 8 in the book [1].

Linear search and its generalization can model settings in which we seek an intelligent
allocation of resources to tasks under uncertainty. For this reason, the problem and its solution
often arises in the context of diverse fields such as AI (e.g., in the design of interruptible
algorithms [12, 2]) and databases (e.g., pipeline filter ordering [16]).

Strategy aggressive has been studied in [23, 24] in the special case of maximizing the
reach of a strategy (which informally is the maximum possible extent to which the branches
can be searched without violating competitiveness) when we do not know the distance of
the target from the origin. Although this gives some intuition that aggressive is indeed
a good strategy, to the best of our knowledge, our work is the first that quantifies this
intuition, in terms of comparing to other competitively optimal strategies using a well-defined
performance measure.

Due to space limitations, some proofs are omitted or only sketched.

Preliminaries

In the context of linear search, the searcher’s strategy can be described as an (infinite) sequence
of lengths at which the two branches (numbered 0,1, respectively) are searched. Formally, a
search strategy is determined by an infinite sequence of search segments {x0, x1, . . .} such
that xi > 0 and xi+2 > xi for all i ∈ N, in the sense that in iteration i, the searcher starts
from the origin, searches branch i mod 2 to distance xi from the origin, and then returns back
to O. We require that the search segments induce a complete exploration of both branches
of the line, in that for every d ∈ R+, there exist i, j ∈ N such that x2i ≥ d, and x2j+1 ≥ d.

The constraint xi+2 > xi implies that the searcher explores a new portion of the line
in each iteration. It is easy to see that any other strategy X that does not conform to the
above (namely, a strategy such that iterations i, i+ 1 search the same branch, or a strategy
in which xi+2 ≤ xi can be transformed to a conforming strategy X ′ such that for any hider
H, c(X ′, S) ≤ c(X,H)). For convenience of notation, we will define xi to be equal to 0, for
all i < 0. Given a strategy X, we define Tn(X) (or simply Tn, when X is clear from context)
to be equal to

∑n
i=0 xi. For n < 0, we define Tn := 0.

We say that the searcher turns in iteration i at the moment it switches directions during
iteration i, namely when it completes the exploration of length xi and returns back to the
origin. Moreover, at any given point in time t (assuming a searcher of unit speed), the
number of turns incurred by time t is defined accordingly.

We will denote by Σ the set of all search strategies, and by Σc the subset of Σ that
consists of strategies with competitive ratio c. Thus Σ9 is the set of competitively optimal
strategies, and Σ∞ ≡ Σ. When evaluating the competitive ratio, we will make the standard
assumption that the target must be at distance at least 1 from O, since no strategy can have
bounded competitive ratio if this distance can be arbitrarily small.

STACS 2019

7:6 Best-Of-Two-Worlds Analysis of Online Search

2 Strategies of optimal discovery ratio in Σ

We begin, by establishing the optimal tradeoff between the competitive ratio and the discovery
ratio against all possible strategies. This will allow us to obtain strategies of optimal discovery
ratio, and also setup some properties of the measure that will be useful in Section 3.

Let X,Y , denote two strategies in Σ, with X = (x0, x1, . . .). From the definition of the
discovery ratio we have that

dr(X,Y) = sup
i∈N

sup
δ∈(0,xi−xi−2]

D(X,xi−1 + xi−2 + δ)
D(Y, xi−1 + xi−2 + δ) .

Note that for i = 0, we have

D(X,xi−1 + xi−2 + δ)
D(Y, xi−1 + xi−2 + δ) = D(X, δ)

D(Y, δ) ≤
δ

δ
= 1.

This is because for all δ ≤ x0, D(X, δ) = δ, and for all δ > 0, D(Y, δ) ≥ δ. Therefore,

dr(X,Y) = sup
i∈N∗

sup
δ∈(0,xi−xi−2]

D(X,xi−1 + xi−2 + δ)
D(Y, xi−1 + xi−2 + δ) . (2)

The following theorem provides an expression of the discovery ratio in terms of the search
segments of the strategy.

I Theorem 2. Let X = (x0, x1, . . .). Then

dr(X,Σ) = sup
i∈N∗

2
∑i−1
j=0 xj + xi−2

xi−1 + xi−2
.

Proof. Fix Y ∈ Σ. From the definition of search segments in X, we have that

D(X,xi−1 + xi−2 + δ) = 2
i−1∑
j=0

xj + xi−2 + δ, for δ ∈ (0, xi − xi−2]. (3)

Moreover, for every Y , we have

D(Y, xi−1 + xi−2 + δ) ≥ xi−1 + xi−2 + δ. (4)

Substituting (3) and (4) in (2) we obtain

dr(X,Y) ≤ sup
i∈N∗

sup
δ∈(0,xi−xi−2]

2
∑i−1
j=0 xj + xi−2 + δ

xi−1 + xi−2 + δ
≤ sup
i∈N∗

2
∑i−1
j=0 xj + xi−2

xi−1 + xi−2
. (5)

For the lower bound, consider a strategy Yi = (yi0, yi1, . . .), for which yi0 = xi−1 + xi−2 + δ

(the values of yij for j 6= 0 are not significant, as long as Yi is a valid strategy). Clearly,
D(Yi, xi−1 + xi−2 + δ) = xi−1 + xi−2 + δ. Therefore, (2) implies

dr(X,Yi) ≥ sup
δ∈(0,xi−xi−2]

2
∑i−1
j=0 xj + xi−2 + δ

xi−1 + xi−2 + δ
=

2
∑i−1
j=0 xj + xi−2

xi−1 + xi−2
. (6)

The lower bound on dr(X,Σ) follows from dr(X,Σ) ≥ supi∈N∗ dr(X,Yi). J

S. Angelopoulos, C. Dürr, and S. Jin 7:7

In particular, note that for i = 2, Theorem 2 shows that for any strategy X,

dr(X,Σ) ≥ 3x0 + 2x1

x0 + x1
≥ 2.

We will show that there exist strategies with discovery ratio arbitrarily close to 2, thus
optimal for Σ. To this end, we will consider the geometric search strategy defined as
Gα = (1, α, α2, . . .), with α > 1.

I Lemma 3. For Gα defined as above, we have dr(Gα,Σ) = 2α2+α−1
α2−1 .

In particular, Lemma 3 shows that the discovery ratio of Gα tends to 2, as α → ∞,
hence Gα has asymptotically optimal discovery ratio. However, we can show a stronger
result, namely that Gα achieves the optimal trade-off between the discovery ratio and the
competitive ratio. This is established in the following theorem. Note that the competitive
ratio of Gα is easily verified to be 1 + 2 α2

α−1 (and is minimized for α = 2).

I Theorem 4. For every strategy X ∈ Σ, there exists α > 1 such that dr(X,Σ) ≥ 2α2+α−1
α2−1

and cr(X) ≥ 1 + 2 α2

α−1 .

In order to prove Theorem 4, we will use of a result by Gal [22] and Schuierer [31]
which, informally, lower-bounds the supremum of an infinite sequence of functionals by the
supremum of simple functionals of a certain geometric sequence, and which we state here
in a simplified form. This result will allow us to lower bound the supremum of a sequence
of functionals by the supremum of simple functionals of a geometric sequence. Given an
infinite sequence X = (x0, x1, . . .), define X+i = (xi, xi+1, . . .) as the suffix of the sequence
X starting at xi.

I Theorem 5 ([22, 31]). Let X = (x0, x1, . . .) be a sequence of positive numbers, r an integer,
and α = lim supn→∞(xn)1/n, for α ∈ R ∪ {+∞}. Let Fi, i ≥ 0 be a sequence of functionals
which satisfy the following properties:
1. Fi(X) only depends on x0, x1, . . . , xi+r,
2. Fi(X) is continuous for all xk > 0, with 0 ≤ k ≤ i+ r,
3. Fi(λX) = Fi(X), for all λ > 0,
4. Fi(X + Y) ≤ max(Fi(X), Fi(Y)), and
5. Fi+1(X) ≥ Fi(Xk+1), for all k ≥ 1,
then

sup
0≤i<∞

Fi(X) ≥ sup
0≤i<∞

Fi(Gα).

Proof of Theorem 4. Let X = (x0, x1, . . .) denote a strategy in Σ. From (6) we know that

dr(X,Σ) ≥ sup
i
Fi(X),

where Fi(X) is defined as the functional
2
∑i−1

j=0
xj+xi−2

xi−1+xi−2
. Moreover, the competitive ratio of

X can be lower-bounded by

cr(X) ≥ sup
i
F ′i (X), where F ′i (X) = 1 + 2

∑i+1
j=0 xj

xi
.

This follows easily by considering a hider placed at distance xi + ε, with ε→ 0, at the branch
that is searched by X in iteration i.

STACS 2019

7:8 Best-Of-Two-Worlds Analysis of Online Search

It is easy to see that both Fi(X) and F ′i (X) satisfy the conditions of Theorem 5 (this
also follows from Example 7.3 in [1]). Thus, there exists α defined as in the statement of
Theorem 5 such that

dr(X,Σ) ≥ sup
i
Fi(Gα) =

2
∑i−1
j=0 α

j + αi−2

αi−1 + αi−2 , and (7)

cr(X,Σ) ≥ sup
i
F ′i (Gα) = 1 + 2

∑i+1
j=0 α

j

αi
. (8)

It is easy to verify that if α = 1, then dr(X,Σ), cr(X,Σ) = ∞. We can thus assume that
α > 1, and thus obtain from (7), (8), after some manipulations, that

dr(X,Σ) ≥ sup
i

2(α2 − 1
αi−2) + α− 1
α2 − 1 = 2α2 + α− 1

α2 − 1 , and

cr(X,Σ) ≥ 1 + sup
i

2
∑i+1
j=0 α

j

αi
= sup

i
1 + 2

α2 − 1
αi

α− 1 = 1 + 2 α2

α− 1 ,

which concludes the proof. J

Note, however, that although Gα, with α→∞ has optimal discovery ratio, its competitive
ratio is unbounded. Furthermore, strategy doubling ≡ G2 has optimal competitive ratio
equal to 9, whereas its discovery ratio is equal to 3. This motivates the topic of the next
section.

3 The discovery ratio of competitively optimal strategies

In this section we focus on strategies in Σ9, namely the set of competitively optimal strategies.
For any strategy X ∈ Σ9, it is known that there is an infinite set of linear inequalities that
relate its search segments, as shown in the following lemma (see, e.g, [24]).

I Lemma 6. The strategy X = (x0, x1, x2, . . .) is in Σ9 if and only if its segments satisfy
the following inequalities

1 ≤ x0 ≤ 4, x1 ≥ 1 and xn ≤ 3xn−1 −
n−2∑
i=0

xi, for all n ≥ 1.

We now define a class of strategies in Σ9 as follows. For given t ∈ [1, 4], let Rt denote the
strategy whose search segments are determined by the linear recurrence

x0 = t, and xn = 3xn−1 −
n−2∑
i=0

xi, for all n ≥ 1.

In words, Rt is such that for every n > 1, the inequality relating x0, . . . , xn is tight. The
following lemma determines the search lengths of Rt as function of t. The lemma also implies
that Rt is indeed a valid search strategy, for all t ∈ [1, 4], in that xn > xn−2, for all n, and
xn →∞, as n→∞.

I Lemma 7. The strategy Rt is defined by the sequence xn = t(1+ n
2)2n, for n ≥ 0. Moreover,

Tn(Rt) = t(n+ 1)2n.

S. Angelopoulos, C. Dürr, and S. Jin 7:9

Proof. The lemma is clearly true for n ∈ {0, 1}. For n ≥ 2, the equality xn = 3xn−1 −∑n−2
i=0 xi implies that Tn =

∑n
i=0 xi = 4xn−1. Therefore,

Tn − Tn−1 = 4xn−1 − 4xn−2 ⇒ xn = 4(xn−1 − xn−2).

The characteristic polynomial of the above linear recurrence is ξ2 − 4ξ + 4, with the unique
root ξ = 2. Thus, xn is of the form xn = (a+ bn)2n, for n ≥ 0, where a and b are determined
by the initial conditions x0 = t and x1 = 3t. Summarizing, we obtain that for n ≥ 0 we have
that xn = t(1 + n

2)2n, and Tn = 4xn−1 = t(n+ 1)2n. J

Among all strategies in Rt we are interested, in particular, in the strategy R4. This strategy
has some intuitively appealing properties: It maximizes the search segments in each iteration
(see Lemma 9) and minimizes the number of turns required to discover a certain length (as
will be shown in Corollary 10). Using the notation of the introduction, we can say that
R4 ≡ aggressive. In this section we will show that aggressive has optimal discovery ratio
among all competitively optimal strategies. Let us denote by x̄i the search segment in the
i-th iteration in aggressive.

I Corollary 8. The strategy aggressive can be described by the sequence x̄n = (n+ 2)2n+1,
for n ≥ 0. Moreover, Tn(aggressive) = (n+ 1)2n+2, for n ≥ 0.

The following lemma shows that, for any given n, the total length discovered by any
competitively optimal strategy X at the turning point of the n-th iteration cannot exceed
the corresponding length of aggressive. Its proof can also be found in [24], but we give a
different proof using ideas that we will apply later (Lemma 11).

I Lemma 9. For every strategy X = (x0, x1, . . .) with X ∈ Σ9, it holds that xn ≤ x̄n, for
all n ∈ N, where x̄n is the search segment in the n-th iteration of aggressive. Hence, in
particular, we have xn + xn−1 ≤ x̄n + x̄n−1, for all n ∈ N.

Proof. For a given n ≥ 0, let Pn denote the following linear program.

max xn

subject to 1 ≤ x0 ≤ 4,
x1 ≥ 1,

xi ≤ 3xi−1 −
i−2∑
j=0

xj , 1 ≤ i ≤ n.

We will show, by induction on i, that for all i ≤ n,

xn ≤ (i+ 2)2i−1xn−i − i2i−1Tn−i−1(X).

The lemma will then follow, since for i = n we have

xn ≤ (n+ 2)2n−1x0 ≤ (n+ 2)2n−1 · 4 = (n+ 2)2n+1 = x̄n,

where the last equality is due to Corollary 8. We will now prove the claim. Note that,
the base case, namely i = 1, follows directly from the LP constraint. For the induction
hypothesis, suppose that for i ≥ 1, it holds that

xn ≤ (i+ 2)2i−1xn−i − i2i−1Tn−i−1(X). (9)

STACS 2019

7:10 Best-Of-Two-Worlds Analysis of Online Search

We will show that the claim holds for i+ 1. Since

xn−i ≤ 3xn−i−1 − Tn−i−2(X), (10)

then

xn ≤ (i+ 2)2i−1(3xn−i−1 − Tn−i−2(X))− i2i−1Tn−i−1(X) (subst. (10) in (9))
= (i+ 2)2i−1(3xn−i−1 − Tn−i−2(X))− i2i−1(Tn−i−2(X) + xn−i−1) (def. Tn−i−1)
= (i+ 3)2ixn−i−1 + (i+ 1)2iTn−i−2(X), (arranging terms)

which completes the proof of the claim. J

Given strategy X and l ∈ R+, definem(X, l) as the number of turns that X has performed
by the time it discovers a total length equal to l. Also define

m∗(l) = inf
X∈Σ9

m(X, l),

that is, m∗(l) is the minimum number of turns that a competitively optimal strategy is
required to perform in order to discover length equal to l. From the constraint x0 ≤ 4,
it follows that clearly m∗(l) = 0, for l ≤ 4. The following corollary to Lemma 9 gives an
expression for m∗(l), for general values of l.

I Corollary 10. For given l > 4, m∗(l) = m(aggressive, l) = min{n ∈ N≥1 : (3n+ 5)2n ≥
l}.

Proof. From Lemma 9, the total length discovered by any X ∈ Σ9 at the turning point
of the n-th iteration cannot exceed x̄n + x̄n−1 for n ≥ 1, which implies that m∗(l) = n, if
l ∈ (x̄n−1 + x̄n−2, x̄n + x̄n−1] for n ≥ 1. In other words,

m∗(l) = min{n ∈ N≥1 : x̄n + x̄n−1 ≥ l}.

From Corollary 8, we have x̄n = (n+ 2)2n+1, for n ≥ 0. Hence,

m∗(l) = min{n ∈ N≥1 : (3n+ 5)2n ≥ l}. J

The following lemma is a central technical result that is instrumental in establishing the
bounds on the discovery ratio. For a given l ∈ R+, define

d∗(l) = inf
X∈Σ9

D(X, l).

In words, d∗(l) is the minimum cost at which a competitively optimal strategy can discover
a length equal to l. Trivially, d∗(l) = l if l ≤ 4. Lemma 11 gives an expression of d∗(l) for
l > 4 in terms of m∗(l); it also shows that there exists a t ∈ (1, 4] such that the strategy Rt
attains this minimum cost.

We first give some motivation behind the purpose of the lemma. When considering
general strategies in Σ, we used a lower bound on the cost for discovering a length l as given
by (4), and which corresponds to a strategy that never turns. However, this lower bound is
very weak when one considers strategies in Σ9. This is because a competitive strategy needs
to turn sufficiently often, which affects considerably the discovery costs.

We also give some intuition about the proof. We show how to model the question by
means of a linear program. Using the constraints of the LP, we first obtain a lower bound on
its objective in terms of the parameters l and m∗(l). In this process, we also obtain a lower
bound on the first segment of the strategy (x0); this is denoted by t in the proof. In the next
step, we show that the strategy Rt has discovery cost that matches the lower bound on the
objective, which suffices to prove the result.

S. Angelopoulos, C. Dürr, and S. Jin 7:11

I Lemma 11. For l > 4, it holds

d∗(l) = D(Rt, l) = l · 6m∗(l) + 4
3m∗(l) + 5 , where t = l · 22−m∗(l)

3m∗(l) + 5 ∈ (1, 4].

Proof. Let X = (x0, x1, . . .) ∈ Σ9 denote the strategy which minimizes the quantity D(X, l).
Then there must exist a smallest n ≥ m∗(l) such that the searcher discovers a total length l
during the n-th iteration. More precisely, suppose that this happens when the searcher is at
branch n mod 2, and at some position p (i.e., distance from O), with p ∈ (xn−2, xn]. Then
we have xn−1 + p = l, and

d∗(l) = D(X, l) = 2
n−1∑
i=0

xi + p = 2
n−1∑
i=0

xi + (l − xn−1) = 2
n−2∑
i=0

xi + xn−1 + l.

Therefore, d∗(l) is the objective of the following linear program.

min 2
n−2∑
i=0

xi + xn−1 + l

subject to xn + xn−1 ≥ l,
1 ≤ x0 ≤ 4,
xi−2 ≤ xi, i ∈ [2, n]

1 ≤ xi ≤ 3xi−1 −
i−2∑
j=0

xj , i ∈ [1, n].

Recall that n ≥ m∗(l) is a fixed integer. Let Obj denote the objective value of the linear
program. We claim that, for 1 ≤ i ≤ n,

xn−i ≥
22−i

3i+ 5 l + 3i− 1
3i+ 5Tn−i−1 and Obj ≥ 6i+ 4

3i+ 5 l + 9 · 2i

3i+ 5Tn−i−1.

The claim provides a lower bound of the objective, since for i = n it implies that

x0 ≥
22−n

3n+ 5 l and Obj ≥ 6n+ 4
3n+ 5 l ≥

6m∗(l) + 4
3m∗(l) + 5 l,

where the last inequality follows from the fact n ≥ m∗(l). We will argue later that this lower
bound is tight.

First, we prove the claim, by induction on i, for all i ≤ n. We first show the base case,
namely i = 1. Since xn ≤ 3xn−1 − Tn−2 and xn + xn−1 ≥ l, it follows that

xn−1 ≥ l − xn ≥ l − (3xn−1 − Tn−2)⇒ xn−1 ≥
l

4 + Tn−2

4 , hence

Obj = l + 2Tn−2 + xn−1 ≥ l + 2Tn−2 + l

4 + Tn−2

4 = 5
4 l + 9

4Tn−2,

thus the base case holds. For the induction step, suppose that

xn−i ≥
22−i

3i+ 5 l + 3i− 1
3i+ 5Tn−i−1 and Obj ≥ 6i+ 4

3i+ 5 l + 9 · 2i

3i+ 5Tn−i−1.

STACS 2019

7:12 Best-Of-Two-Worlds Analysis of Online Search

Then,

3xn−i−1 − Tn−i−2 ≥ xn−i (by LP constraint)

≥ 22−i

3i+ 5 l + 3i− 1
3i+ 5Tn−i−1 (ind. hyp.)

= 22−i

3i+ 5 l + 3i− 1
3i+ 5(Tn−i−2 + xn−i−1) (def. Tn−i−1)

By rearranging terms in the above inequality we obtain

(3− 3i− 1
3i+ 5)xn−i−1 ≥

22−i

3i+ 5 l + (1 + 3i− 1
3i+ 5)Tn−i−2 ⇒

6i+ 16
3i+ 5 xn−i−1 ≥

22−i

3i+ 5 l + 6i+ 4
3i+ 5Tn−i−2 ⇒ xn−i−1 ≥

21−i

3i+ 8 l + 3i+ 2
3i+ 8Tn−i−2,

and

Obj ≥ 6i+ 4
3i+ 5 l + 9 · 2i

3i+ 5Tn−i−1 (ind. hyp.)

= 6i+ 4
3i+ 5 l + 9 · 2i

3i+ 5(Tn−i−2 + xn−i−1) (def. Tn−i−1)

≥ 6i+ 4
3i+ 5 l + 9 · 2i

3i+ 5Tn−i−2 + 9 · 2i

3i+ 5(21−i

3i+ 8 l + 3i+ 2
3i+ 8Tn−i−2) (ind. hyp.)

= 6i+ 10
3i+ 8 l + 9 · 2i+1

3i+ 8 Tn−i−2.

This concludes the proof of the claim, which settles the lower bound on d∗(l). It remains to
show that this bound is tight. Consider the strategy Rt, with t = 22−m∗(l)

3m∗(l)+5 l. In what follows
we will show that Rt is a feasible solution of the LP, and that D(Rt, l) = 6m∗(l)+4

3m∗(l)+5 l.
First, we show that t ∈ (1, 4]. For the upper bound, from Corollary 10, we have

(3m∗(l) + 5)2m∗(l) ≥ l, which implies that

1 ≥ l · 2−m∗(l)

3m∗(l) + 5 ⇒ 4 ≥ l · 22−m∗(l)

3m∗(l) + 5 ⇒ 4 ≥ t.

In order to show that t > 1, consider first the case l ∈ (4, 5]. Then m∗(l) = 1, which implies
that

t = 22−m∗(l)

3m∗(l) + 5 l = l

4 ≥ 1.

Moreover, if l > 5, by Corollary 10, m∗(l) is the smallest integer solution of the inequality
(3n+ 5)2n ≥ l, then (3m∗(l) + 2)2m∗(l)−1 < l, hence

t = 22−m∗(l)

3m∗(l) + 5 l = 4l
(3m∗(l) + 5)2m∗(l)

= 2l
(3m∗(l) + 2)2m∗(l)−1 · 3m∗(l)+5

3m∗(l)+2

>
2l

l · 3m∗(l)+5
3m∗(l)+2

= 6m∗(l) + 4
3m∗(l) + 5 > 1.

The last inequality holds since we have m∗(l) ≥ 1, for l > 5. This concludes that t ∈ (1, 4],
and Rt is a feasible solution of the LP since Rt satisfies all other constraints by its definition.

S. Angelopoulos, C. Dürr, and S. Jin 7:13

It remains thus to show that D(Rt, l) = 6m∗(l)+4
3m∗(l)+5 l. By Lemma 7, we have

xm∗(l) + xm∗(l)−1 = t

(
1 + m∗(l)

2

)
2m
∗(l) + t

(
1 + m∗(l)− 1

2

)
2m
∗(l)−1

= t · 2m
∗(l) · 3m∗(l) + 5

4 = 22−m∗(l)

3m∗(l) + 5 l · 2
m∗(l) · 3m∗(l) + 5

4 = l.

Then Rt has exactly discovered a total length l right before the m∗(l)-th turn. Hence,

D(Rt, l) = 2Tm∗(l)−2 + xm∗(l)−1 + l

= t · (m∗(l)− 1) 2m
∗(l)−1 + t ·

(
1 + m∗(l)− 1

2

)
2m
∗(l)−1 + l (by Lemma 7)

= t · (3m∗(l)− 1)2m∗(l)

4 + l (arranging terms)

= 22−m∗(l)

3m∗(l) + 5 l ·
(3m∗(l)− 1)2m∗(l)

4 + l (substituting t)

=
(

3m∗(l)− 1
3m∗(l) + 5 + 1

)
· l = 6m∗(l) + 4

3m∗(l) + 5 · l. (arranging terms)

This concludes the proof of the lemma. J

We are now ready to prove the main results of this section. Recall that for any two
strategies X,Y , dr(X,Y) is given by (2). Combining with (3), as well as with the fact that
for Y ∈ Σ9, we have that D(Y, l) ≥ d∗(l), (from the definition of d∗), we obtain that

dr(X,Σ9) = sup
i∈N∗

sup
δ∈(0,xi−xi−2]

Fi(X, δ), where Fi(X, δ) =
2
∑i−1
j=0 xj + xi−2 + δ

d∗(xi−1 + xi−2 + δ) . (11)

Recall that for the strategy aggressive ≡ R4 = (x̄0, x̄1, . . .), its segments x̄i are given in
Corollary 8.

I Theorem 12. For the strategy aggressive it holds that dr(aggressive,Σ9) = 8/5.

Proof. We will express the discovery ratio using (11). For i = 1, and δ ∈ (0, x̄1], we have
that

F1(aggressive, δ) = 2x̄0 + δ

d∗(x̄0 + δ) = 8 + δ

d∗(4 + δ) .

From Lemma 11, d∗(4 + δ) = (4 + δ) · 6·1+4
3·1+5 = 5(4+δ)

4 ; this is because 1 ≤ m∗(4 + δ) ≤
m∗(16) = 1. Then,

F1(aggressive, δ) = 8 + δ
5(4+δ)

4

= 32 + 4δ
20 + 5δ , hence sup

δ∈(0,x̄1]
F1(aggressive, δ) = 8

5 . (12)

For given i ≥ 2, and δ ∈ (0, x̄i − x̄i−2], we have

Fi(aggressive, δ) = 2Ti−1 + x̄i−2 + δ

d∗(x̄i−1 + x̄i−2 + δ) ,

where Ti−1 is given by Corollary 8. Moreover, from Lemma 11 we have that

d∗(x̄i−1+x̄i−2+δ) = (x̄i−1+x̄i−2+δ)· 6m
∗(x̄i−1 + x̄i−2 + δ) + 4

3m∗(x̄i−1 + x̄i−2 + δ) + 5 = (x̄i−1+x̄i−2+δ)· 6i+ 4
3i+ 5 ,

STACS 2019

7:14 Best-Of-Two-Worlds Analysis of Online Search

where the last equality follows from the fact that m∗(x̄i−1 + x̄i−2 + δ) = i. This is because

i ≤ m∗(x̄i−1 + x̄i−2 + δ) ≤ m∗(x̄i−1 + x̄i−2 + x̄i − x̄i−2) = m∗(x̄i + x̄i−1) = i.

Substituting with the values of the search segments as well as Ti−1, we obtain that

Fi(aggressive, δ) = i · 2i+2 + i · 2i−1 + δ

((i+ 1)2i + i · 2i−1 + δ) · 6i+4
3i+5

= 9i · 2i−1 + δ

((3i+ 2)2i−1 + δ) · 6i+4
3i+5

.

Since

∂Fi(aggressive, δ)
∂δ

= − 2i+1(3i− 1)(3i+ 5)
(3i+ 2)(2n(3i+ 2) + 2δ)2 ≤ 0,

then Fi(aggressive, δ) is monotone decreasing in δ. Thus

sup
δ∈(0,x̄i−x̄i−2]

Fi(aggressive, δ) = 9i · 2i−1

((3i+ 2)2i−1) · 6i+4
3i+5

= 9i(3i+ 5)
(3i+ 2)(6i+ 4) ,

and then

sup
i∈Ni≥2

sup
δ∈(0,x̄i−x̄i−2]

Fi(aggressive, δ) = (9 · 2)(3 · 2 + 5)
(3 · 2 + 2)(6 · 2 + 4) = 99

64 <
8
5 . (13)

Combining (11), (12) and (13) yields the proof of the theorem. J

The following theorem shows that aggressive has optimal discovery ratio among all
competitively optimal strategies.

I Theorem 13. For every strategy X ∈ Σ9, we have dr(X,Σ9) ≥ 8
5 .

Proof. Let X = (x0, . . .). We will consider two cases, depending on whether x0 < 4 or x0 = 4.
Suppose, first, that x0 < 4. In this case, for sufficiently small ε, we have m∗(x0 + ε) = 0,
which implies that d∗(x0 + ε) = x0 + ε, and therefore.

F1(X, ε) = 2x0 + ε

d∗(x0 + ε) = 2x0 + ε

x0 + ε
,

from which we obtain that

sup
δ∈(0,x1]

F1(X, δ) ≥ F1(X, ε) ≥ 2x0 + ε

x0 + ε
→ 2, as ε→ 0+.

Next, suppose that x0 = 4. In this case, for δ ∈ (0, x1], it readily follows that F1(X, δ) =
F1(aggressive, δ). Therefore, from (12), we have that

sup
δ∈(0,x1]

F1(X, δ) = sup
δ∈(0,x1]

32 + 4δ
20 + 5δ = 8

5 .

The lower bound follows directly from (11). J

Recall that doubling ≡ G2 = (20, 21, 22, . . .). The following theorem shows that within
Σ9, doubling has worse discovery ratio than aggressive. The proof follows along the lines
of the proof of Theorem 12, where instead of using the search segments x̄i of aggressive,
we use the search segment xi = 2i of doubling.

I Theorem 14. We have dr(doubling,Σ9) = 7
3 .

S. Angelopoulos, C. Dürr, and S. Jin 7:15

A natural question arises: Is aggressive the unique strategy of optimal discovery ratio
in Σ9? The following theorem provides evidence that optimal strategies cannot be radically
different than aggressive, in that they must mimic it in the first few iterations.

I Theorem 15. Strategy X = (x0, x1, . . .) ∈ Σ9, has optimal discovery ratio in Σ9 only if
xi = x̄i, for 0 ≤ i ≤ 4.

Proof. Consider a strategy X(x0, x1, . . .) ∈ Σ9. Recall that the discovery ratio of X is given
by Equation (11). We will prove the theorem by induction on i.

We first show the base case, namely i = 0. The base case holds by the argument used in
the proof of Theorem 13 which shows that if x0 < 4, then dr(X,Σ9) ≥ 2. For the induction
step, suppose that, if X has optimal discovery ratio then for j ∈ [0, i], xj = x̄j , with i < 4.
We will show xi+1 = x̄i+1 by contradiction, hence assume xi+1 < x̄i+1. For sufficiently small
ε > 0, we have

m∗(xi+1 + xi + ε) = m∗(xi+1 + x̄i + ε) (by induction hypothesis)
≤ m∗(x̄i+1 + x̄i) (by monotonicity of m∗ and Lemma 9)
= i+ 1, (by definition of m∗)

which implies that, by Lemma 11,

d∗(xi+xi−1+ε) = (xi+xi−1+ε)· 6 ·m
∗(xi+1 + xi + ε) + 4

3 ·m∗(xi+1 + xi + ε) + 5 ≤ (xi+xi−1+ε)· 6 · (i+ 1) + 4
3 · (i+ 1) + 5 .

(14)

Therefore

Fi+2(X, ε) =
2 ·
∑i+1
j=0 xj + xi + ε

d∗(xi+1 + xi + ε)

= 2Ti(aggressive) + 2xi+1 + x̄i + ε

d∗(xi+1 + x̄i + ε) (by ind. hyp.)

≥ 2Ti(aggressive) + 2xi+1 + x̄i + ε

(xi+1 + x̄i + ε) · 6·(i+1)+4
3·(i+1)+5

(Equation (14))

= (i+ 1)2i+3 + (i+ 2)2i+1 + 2xi+1 + ε

(xi+1 + (i+ 2)2i+1 + ε) · 6·(i+1)+4
3·(i+1)+5

(Corollary 8)

≥ (i+ 1)2i+3 + (i+ 2)2i+1 + (i+ 3)2i+3 + ε

(i+ 3)2i+2 + (i+ 2)2i+1 + ε
· 3i+ 8

6i+ 10 . (monoton. on xi+1)

Hence

sup
δ∈(0,xi+2−xi]

Fi+2(X, δ) ≥ (i+ 1)2i+3 + (i+ 2)2i+1 + (i+ 3)2i+3

(i+ 3)2i+2 + (i+ 2)2i+1 · 3i+ 8
6i+ 10 = 9i+ 18

6i+ 10 ,

which is greater than 8
5 if i ≤ 3. We conclude, from (11) that dr(X,Σ9) > 8/5, which is a

contradiction. J

4 Connections between the discovery and the bijective ratios

In this last section we establish a connection between the discovery and the bijective ratios.
Bijective analysis was introduced in [4] in the context of online computation, assuming that
each request is drawn from a discrete, finite set. For instance, in the context of the paging

STACS 2019

7:16 Best-Of-Two-Worlds Analysis of Online Search

problem, each request belongs to the set of all pages. Let In denote the set of all requests
of size n. For a cost-minimization problem Π with discrete, finite requests, let π : In → In
denote a bijection over In. Given two online algorithms A and B for Π, the bijective ratio of
A against B, is defined as

br(A,B) = min
π:In→In

sup
σ∈In

A(σ)
B(π(σ)) , for all n ≥ n0,

where A(σ) denotes the cost of A on request sequence σ.
Assuming In is finite, an equivalent definition of br(A,B) is as follows. Let A(i, n) denote

the i-th least costly request sequence for A among request sequences in In. Then

br(A,B) = sup
n

max
i

A(i, n)
B(i, n) .

Consider in contrast, the linear search problem. Here, there is only one request: the unknown
position of the hider (i.e., n = 1). However, the set of all requests is not only infinite, but
uncountable. Thus, the above definitions do not carry over to our setting, and we need to
seek alternative definitions. One possibility is to discretize the set of all requests (as in [5]).
Namely, we may assume that the hider can hide only at integral distances from the origin.
Then given strategies S1, S2, one could define the bijective ratio of S1 against S2 as supi

S1(i)
S2(i) ,

where S(i) denotes the i-th least costly request (hider position) in strategy S.
While the latter definition may indeed be valid, it is still not a faithful representation of the

continuous setting. For instance, for hiding positions “close” to the origin, the discretization
adds overheads that should not be present, and skews the expressions of the ratios. For this
reason, we need to adapt the definition so as to reflect the continuous nature of the problem.
Specifically, note that while the concept “the cost of the i-th least costly request in S” is not
well-defined in the continuous setting, the related concept of “the cost for discovering a total
length equal to l in S” is, in fact, well defined, and is precisely the value D(S, l). We can
thus define the bijective ratio of S1 against S2 as

br(S1, S2) = sup
l

D(S1, l)
D(S2, l)

,

which is the same as the definition of the discovery ratio (Definition 1).

References
1 S. Alpern and S. Gal. The theory of search games and rendezvous. Kluwer Academic Publishers,

2003.
2 S. Angelopoulos. Further connections between contract-scheduling and ray-searching problems.

In Proceedings of the 24th International Joint Conference on Artificial Intelligence (IJCAI),
pages 1516–1522, 2015.

3 S. Angelopoulos, D. Arsénio, and C. Dürr. Infinite linear programming and online searching
with turn cost. Theoretical Computer Science, 670:11–22, 2017.

4 S. Angelopoulos, R. Dorrigiv, and A. López-Ortiz. On the Separation and Equivalence of
Paging Strategies. In Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 229–237, 2007.

5 S. Angelopoulos, M. Renault, and P. Schweitzer. Stochastic dominance and the bijective ratio
of online algorithms, 2016. arXiv:1607.06132.

6 S. Angelopoulos and P. Schweitzer. Paging and List Update under Bijective Analysis. Journal
of the ACM, 60(2):7:1–7:18, 2013.

http://arxiv.org/abs/1607.06132

S. Angelopoulos, C. Dürr, and S. Jin 7:17

7 R. Baeza-Yates, J. Culberson, and G. Rawlins. Searching in the plane. Information and
Computation, 106:234–244, 1993.

8 A. Beck. On the linear search problem. Naval Research Logistics, 2:221–228, 1964.
9 A. Beck and D.J. Newman. Yet more on the linear search problem. Israel Journal of

Mathematics, 8(4):419–429, 1970.
10 R. Bellman. An optimal search problem. SIAM Review, 5:274, 1963.
11 P. Berman. Online Algorithms: The State of the Art, chapter Online searching and navigation,

pages 232–241. Springer, 1998.
12 D.S. Bernstein, L. Finkelstein, and S. Zilberstein. Contract algorithms and robots on rays:

unifying two scheduling problems. In Proceedings of the 18th International Joint Conference
on Artificial Intelligence (IJCAI), pages 1211–1217, 2003.

13 P. Bose, J. De Carufel, and S. Durocher. Searching on a line: A complete characterization of
the optimal solution. Theoretical Computer Science, 569:24–42, 2015.

14 J. Boyar, S. Irani, and K. S. Larsen. A Comparison of Performance Measures for Online
Algorithms. Algorithmica, 72(4):969–994, 2015.

15 J. Boyar, K.S. Larsen, and A. Maiti. A comparison of performance measures via online search.
Theoretical Computer Science, 532:2–13, 2014.

16 A. Condon, A. Deshpande, L. Hellerstein, and N. Wu. Algorithms for Distributional and
Adversarial Pipelined Filter Ordering Problems. ACM Transactions on Algorithms, 5(2):24:1–
24:34, 2009.

17 J. Czyzowicz, K. Georgiou, E. Kranakis, D. Krizanc, L. Narayanan, J. Opatrny, and S. Shende.
Search on a Line by Byzantine Robots. In Proceedings of the 27th International Symposium
on Algorithms and Computation (ISAAC 2016), pages 27:1–27:12, 2016.

18 E.D. Demaine, S.P. Fekete, and S. Gal. Online searching with turn cost. Theoretical Computer
Science, 361:342–355, 2006.

19 R. Dorrigiv and A. López-Ortiz. A Survey of Performance Measures for On-Line Algorithms.
SIGACT News, 36(3):67–81, 2005.

20 S. Gal. A general search game. Israel Journal of Mathematics, 12:32–45, 1972.
21 S. Gal. Minimax solutions for linear search problems. SIAM Journal on Applied Mathematics,

27:17–30, 1974.
22 S. Gal. Search Games. Academic Press, 1980.
23 C. Hipke, C. Icking, R. Klein, and E. Langetepe. How to find a point in the line within a fixed

distance. Discrete Applied Mathematics, 93:67–73, 1999.
24 P. Jaillet and M. Stafford. Online searching. Operations Research, 49:234–244, 1993.
25 M-Y. Kao and M.L. Littman. Algorithms for informed cows. In Proceedings of the AAAI 1997

Workshop on Online Search, 1997.
26 M-Y. Kao, J.H. Reif, and S.R. Tate. Searching in an unknown environment: an optimal

randomized algorithm for the cow-path problem. Information and Computation, 131(1):63–80,
1996.

27 D. G. Kirkpatrick. Hyperbolic dovetailing. In Proceedings of the 17th Annual European
Symposium on Algorithms (ESA), pages 616–627, 2009.

28 E. Koutsoupias, C.H. Papadimitriou, and M. Yannakakis. Searching a fixed graph. In
Proceedings of the 23rd International Colloquium on Automata, Languages and Programming
(ICALP), pages 280–289, 1996.

29 A. López-Ortiz and S. Schuierer. On-line parallel heuristics, processor scheduling and robot
searching under the competitive framework. Theoretical Computer Science, 310(1–3):527–537,
2004.

30 A. McGregor, K. Onak, and R. Panigrahy. The oil searching problem. In Proceedings of the
17th European Symposium on Algorithms (ESA), pages 504–515, 2009.

31 S. Schuierer. Lower bounds in online geometric searching. Computational Geometry: Theory
and Applications, 18(1):37–53, 2001.

STACS 2019

Bipartite Diameter and Other Measures Under
Translation
Boris Aronov
Department of Computer Science and Engineering, Tandon School of Engineering,
New York University, Brooklyn, NY 11201, USA
boris.aronov@nyu.edu

Omrit Filtser
Department of Computer Science, Ben-Gurion University of the Negev,
Beer-Sheva 84105, Israel
omritna@post.bgu.ac.il

Matthew J. Katz
Department of Computer Science, Ben-Gurion University of the Negev,
Beer-Sheva 84105, Israel
matya@cs.bgu.ac.il

Khadijeh Sheikhan
Department of Computer Science and Engineering, Tandon School of Engineering,
New York University, Brooklyn, NY 11201, USA
khadijeh.sheikhan@gmail.com

Abstract
Let A and B be two sets of points in Rd, where |A| = |B| = n and the distance between them
is defined by some bipartite measure dist(A, B). We study several problems in which the goal is
to translate the set B, so that dist(A, B) is minimized. The main measures that we consider are
(i) the diameter in two and three dimensions, that is diam(A, B) = max{d(a, b) | a ∈ A, b ∈ B},
where d(a, b) is the Euclidean distance between a and b, (ii) the uniformity in the plane, that is
uni(A, B) = diam(A, B)− d(A, B), where d(A, B) = min{d(a, b) | a ∈ A, b ∈ B}, and (iii) the union
width in two and three dimensions, that is union_width(A, B) = width(A ∪B). For each of these
measures we present efficient algorithms for finding a translation of B that minimizes the distance:
For diameter we present near-linear-time algorithms in R2 and R3, for uniformity we describe a
roughly O(n9/4)-time algorithm, and for union width we offer a near-linear-time algorithm in R2

and a quadratic-time one in R3.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Translation-invariant similarity measures, Geometric optimization, Minimum-
width annulus

Digital Object Identifier 10.4230/LIPIcs.STACS.2019.8

Funding Boris Aronov: Work on this paper by Boris Aronov was supported by NSF Grants CCF-
11-17336, CCF-12-18791, and CCF-15-40656, and by grant 2014/170 from the US-Israel Binational
Science Foundation.
Omrit Filtser : Work on this paper by Omrit Filtser was supported by the Israel Ministry of Science,
Technology & Space, and by the Lynn and William Frankel Center.
Matthew J. Katz: Work on this paper by Matthew Katz was supported by grant 1884/16 from the
Israel Science Foundation, and by grant 2014/170 from the US-Israel Binational Science Foundation.
Khadijeh Sheikhan: Work on this paper by Khadijeh Sheikhan was supported by NSF Grant
CCF-12-18791.

Acknowledgements We would like to thank Pankaj K. Agarwal, Mark de Berg, and Timothy Chan
for their assistance in the preparation of this manuscript.

© Boris Aronov, Omrit Filtser, Matthew J. Katz, and Khadijeh Sheikhan;
licensed under Creative Commons License CC-BY

36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019).
Editors: Rolf Niedermeier and Christophe Paul; Article No. 8; pp. 8:1–8:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-3110-4702
mailto:boris.aronov@nyu.edu
mailto:omritna@post.bgu.ac.il
mailto:matya@cs.bgu.ac.il
mailto:khadijeh.sheikhan@gmail.com
https://doi.org/10.4230/LIPIcs.STACS.2019.8
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

8:2 Bipartite Diameter and Other Measures Under Translation

1 Introduction

Determining the similarity between two sets of points in a metric space, and, in general,
determining the value of some measure defined for two sets of points, is a well investigated
problem in computational geometry. Sometimes, however, the answer that is obtained is
meaningless, unless one of the sets undergoes some transformation before performing the
computation. In this paper, we consider a family of problems in which the goal is to compute
a translation which minimizes some bipartite measure. For example, one of the measures that
we consider is the bipartite diameter, which is the distance between the farthest bichromatic
pair, that is the maximum distance between a point from one set and a point from the
other set.

The motivation for studying these problems is twofold. The first, as mentioned, is to find
a translation for which the computed value is most meaningful. The second is when we are
allowed to translate one of the sets in order to minimize some bipartite measure. In general,
problems in which the goal is to find a transformation of a given type that minimizes or
maximizes some measure are fundamental in computational geometry and have been studied
extensively. It is therefore somewhat surprising that the natural versions that we study here
have not been considered before. For example, another measure that we consider is the
bipartite uniformity, which is the difference between the bipartite diameter and the distance
between the closest bichromatic pair. When this difference is small, all bichromatic distances
are similar, which is often a desirable property due to its close connection to the notions of
fairness and balancing. Thus, the optimization problem in this case is to translate one of the
sets to achieve the best possible uniformity.

Formally, let A = {a1, . . . , an} and B = {b1, . . . , bm} be two sets of points in Rd. For
the sake of simplicity, we assume that m = n, and obtain bounds that depend only on n;
however, it is not difficult to adapt our algorithms and bounds to the case where the sets
A and B have different sizes. We are interested in problems of the following kind: Find a
translation t∗ that minimizes some bipartite measure of A and B + t over all translations t,
where B + t denotes B translated by t.1 The main bipartite measures that we consider are
(i) diameter, denoted diam(A,B), and defined as max{d(a, b) | a ∈ A, b ∈ B}, where d(a, b)
is the Euclidean distance between a and b, (ii) uniformity, denoted uni(A,B), and defined as
diam(A,B) − d(A,B), where d(A,B) = min{d(a, b) | a ∈ A, b ∈ B}, and (iii) union width,
denoted union_width(A,B), and defined as width(A∪B), i.e., the width of the union of the
two sets.

Notice that while for the (one-sided) Hausdorff distance (see below) one considers the
distance from each point of A to its closest point in B, for the bipartite diameter measure
one considers the distance from each point of A to its farthest point in B: The former variant
is more relevant when B represents a set of homogeneous facilities, equally acceptable, while
the latter variant is more relevant when B represents a set of unique facilities such that it is
desirable to be close to all of them.

Related work. When comparing two sets of points of the same size, a natural approach is
to find a matching or a mapping of one set to the other, such that the distances between
the matched points are small. For instance, in the problem of congruence testing [6, 17],

1 This class of problems naturally extends to other types of transformations, such as rotations, rigid
motions, homothethies, similarity transformations, etc. In this paper, we will confine ourselves to
translations, unless otherwise stated.

B. Aronov, O. Filtser, M. J. Katz, and K. Sheikhan 8:3

one needs to decide if there exists a geometric transformation (a combination of translation,
rotation, and reflection) that maps a point set A exactly or approximately into a point set B
of the same size. Another example is the well-known RMS distance, where the goal is to
minimize the sum of squares of distances in a perfect matching between A and B [2].

In general, when one of the sets is larger than the other, we can look for a minimum
partial matching, which in some sense corresponds to a copy of the smaller set in the larger
one. This version of the problem (under various geometric transformations) was also widely
investigated for bottleneck matching [8, 15], RMS distance [7], and more [20].

Another way to compare two sets of points of different sizes, is to use some bipartite
distance measure for point sets, such as the well-known Hausdorff distance. The Hausdorff
distance between two sets of points is the maximum of the distances from a point in each of
the sets to the nearest point in the other set (the one-sided version of Hausdorff distance
is a special case of our framework, but we do not consider it here beyond this summary).
Huttenlocher et al. [19] showed that the minimum Hausdorff distance under translation in R2

can be computed in O(mn(m+ n)α(mn) log(mn)) time, where m and n are the sizes of the
two sets. The minimum Hausdorff distance under geometric transformations was widely
investigated in the literature, and we refer to [2] for a survey of the results. A different
example of bipartite measure is the maximum overlap between the convex hulls of the sets
A and B. This measure was considered in [5], where, assuming A and B are point sets of
size n in R3, an algorithm is presented that computes the optimal translation in expected
time O(n3 log4 n).

In this paper, we focus on three bipartite measures under translation: diameter, uniformity,
and width. To our knowledge, all three measures are being considered here for the first time.

The diameter of a set of n points in the plane can be computed in O(n logn) time.
However, in higher dimensions the problem becomes much harder. Clarkson and Shor [13]
gave a randomized algorithm with expected running time O(n logn) for points in R3, which
is not very efficient in practice. Then there was a sequence of attempts to find a (simple)
deterministic algorithm, which led to an optimal O(n logn) deterministic algorithm by
Ramos [22].

The width of a set A of n points in the plane is the smallest distance between a pair of
parallel lines, such that the closed strip between the lines contains A, and it can be easily
computed in time O(n logn) using the rotating calipers method. However, again, in three
dimensions the problem becomes harder, and the best-known algorithm is an O(n3/2+ε)
expected time algorithm, due to Agarwal and Sharir [3].

To compute the uniformity of two point sets under translation, we construct the minimum
enclosing annulus of a set of n points in the plane (with only O(

√
n) extreme points). In [3],

it is shown that the minimum enclosing annulus of n points in the plane (without a constraint
on the number of extreme points) can be computed in O(n3/2+ε) expected time, which is
the current state of the art for this problem.

Our results. Consider the set P = {a − b | a ∈ A, b ∈ B} of all translations that take
a point b ∈ B to a point a ∈ A. We show that the optimal translations in the diameter
and uniformity problems are the centers of the minimum enclosing circle of P and the
minimum-width annulus containing P, respectively. Thus, we could apply the best known
algorithms for computing these objects to obtain solutions to these problems. More precisely,
applying the algorithm of Megiddo [21] for computing the minimum enclosing ball would
yield an O(n2)-time solution for the diameter problem, in any fixed dimension, and applying
the algorithm of Agarwal and Sharir [3] for computing the minimum-width annulus would

STACS 2019

8:4 Bipartite Diameter and Other Measures Under Translation

yield an O(n3+ε)-time solution for the uniformity problem in the plane. However, by making
some additional observations and employing sophisticated known techniques, we are able to
do much better. Specifically, we solve the diameter problem in O(n logn) time in the plane
and in O(n log2 n) expected time in three dimensions, and we solve the uniformity problem in
the plane in O(n9/4+ε) expected time, for any ε > 0. As a by-product of the latter result, we
show that the minimum enclosing annulus of n points in the plane with only O(

√
n) extreme

points can be computed in O(n9/8+ε) expected time (in contrast to O(n3/2+ε) expected time
for the unconstrained case, see above).

For the union width problem under translation, we present an O(n logn)-time solution
in the plane and an O(n2)-time one in three dimensions. Finally, we consider another new
width-based measure, the red-blue width. The directional red-blue width (w.r.t. direction v)
is the maximum red-blue distance after projecting the points onto a line parallel to direction
v. The red-blue width is then defined as the minimum directional red-blue width over all
directions. In other words, it measures the width of A+ (−B), the Minkowski sum of A and
−B. We present solutions for the red-blue width problem under translation that run in time
O(n logn) and O(n2), respectively, in the plane and in three dimensions.

2 Diameter

In the first problem that we consider, the measure is the bipartite diameter. Given two sets
of points A = {a1, . . . , an} and B = {b1, . . . , bn} in Rd, the bipartite diameter of A and B is
diam(A,B) = max{d(a, b) | a ∈ A, b ∈ B}, where d(a, b) is the Euclidean distance between a
and b.

I Problem 1 (Bipartite Diameter under Translation). Find a translation t∗ that minimizes
the bipartite diameter of A and B + t over all translations t. That is, for any translation t,
diam(A,B + t∗) ≤ diam(A,B + t).

Consider the set P = {a − b | a ∈ A, b ∈ B} of all possible translations taking a point
of B to a point of A. Clearly, |P| = O(n2).

B Claim 1. Let t be a translation and let St be the minimum enclosing ball of P centered
at t. Then, the radius rt of St is equal to diam(A,B + t).

Proof. Since rt is the radius of the minimum enclosing ball of P centered at t,

rt = max
a∈A, b∈B

d(a− b, t) = max
a∈A, b∈B

‖(a− b)− t‖

= max
a∈A, b∈B

‖a− (b+ t)‖

= max
a∈A, b∈B

d(a, b+ t) = diam(A,B + t). C

I Corollary 2. The optimal translation t∗ minimizing bipartite diameter coincides with the
center c = c(P) of the minimum enclosing ball S = S(P) of P.

Notice that Corollary 2 implies that the optimal translation t∗ is unique. The minimum
enclosing ball of a set of n points can be computed in linear time or expected linear time
using, e.g., Megiddo’s algorithm [21] or Welzl’s randomized algorithm [24], respectively.
Therefore, by Corollary 2, one can compute the optimal translation by simply finding c in
O(n2) time. In this section we present near-linear-time algorithms for the problem in two
and three dimensions.

B. Aronov, O. Filtser, M. J. Katz, and K. Sheikhan 8:5

Diameter in the plane. Let Q be the set of extreme points of P. Denote by CH(X) the
convex hull of a point set X.

Since P is the Minkowski sum of two sets of size n, it is well known [14] that Q has
size O(n) and can be constructed in linear time from CH(A) and CH(B) using the rotating
calipers method of [18,23].

Once Q is constructed, we compute its minimum enclosing disk S′ = S(Q) = S(P).

I Theorem 3. Let A and B be two sets of points in R2, both of size n. A translation t∗ that
minimizes the bipartite diameter of A and B + t can be found in O(n logn) time.

Diameter in three dimensions. We describe an algorithm for computing the minimum
enclosing ball of P, without computing P (whose size may be Θ(n2)) explicitly. We adapt
Clarkson’s scheme for solving LP-type problems [12] to the problem of computing the
minimum enclosing ball of a set of points; see [1] for a similar-in-spirit adaptation of
Clarkson’s scheme to an entirely different situation.

The high-level algorithm uses an initially empty set X of points. It repeats the following
process until the minimum enclosing ball is found.
1: Pick a random sample R of P of size 4n.
2: Compute the minimum enclosing ball S = S(R∪X).
3: Find the set of violators V , i.e., the set of all points of P that are not in S. If |V | > 2n

(there are too many violators), go to 1.
4: If V = ∅, then return S and stop, else X ← X ∪ V and go to 1.

We call an iteration of the algorithm that reaches line 4 “successful.” Clarkson’s analysis
establishes that in each iteration the expected size of V is n. Therefore, for a random choice
of R, the probability of the number of violators being at most 2n is at least 1

2 , so an iteration
is unsuccessful with probability at most 1

2 . In particular, a constant expected number of
unsuccessful iterations is followed by a successful one.

On the other hand, it is not difficult to check (see Clarkson’s analysis once again) that,
when violators are found, one of the violators must be a point defining the minimum enclosing
ball. Therefore, the number of successful iterations cannot exceed five: each iteration adds
at least one of the points defining the desired ball to X and once all of them are in X,
the optimal ball is discovered in line 2, there are no further violators, and the algorithm
stops. Therefore the total number of iterations is expected to be O(1) and the size of the
set X never grows beyond O(n). Thus in each iteration we invoke a standard minimum-ball
algorithm on O(n) points, requiring O(n) expected time.

Next, we describe how to efficiently implement steps 1 and 3. A random sample of P can
be obtained by repeatedly picking random points a ∈ A and b ∈ B and returning a− b.

The set of violators V can be found by modifying an algorithm by Chazelle et al. [10] for
kth nearest neighbor search. First, consider the following problem:

I Problem 2. Given two sets A and B, each of n points in R3, and a distance r, decide
whether there are two points a ∈ A and b ∈ B with d(a, b) > r.

This problem can be solved in O(n logn) expected time by the following algorithm:
1: Set IA =

⋂
a∈AD(a, r), where D(a, r) is the ball of radius r centered at a, and construct

a corresponding inside/outside point-location data structure. (This structure preprocesses
the set {D(a, r)|a ∈ A} to facilitate point location queries of the form “Given a point
q, is it contained in IA or not?”). IA, together with its corresponding inside/outside
point-location data structure, can be computed using the randomized O(n logn)-time
algorithm of Clarkson and Shor [13], after which queries are answered in O(logn) time.

STACS 2019

8:6 Bipartite Diameter and Other Measures Under Translation

2: If IA = ∅, then clearly there exist two such points. Otherwise, check for each b ∈ B
whether b ∈ IA. This can be done by n point-location queries in total O(n logn) time.
If for some b ∈ B, b /∈ IA, there exists some a ∈ A for which d(a, b) > r.

Now we consider the thresholded reporting version of Problem 2:

I Problem 3. Given two sets A and B, each of n points in R3, a distance r and a parameter k,
report all the pairs of points a ∈ A, b ∈ B with d(a, b) > r, if there are at most k such pairs.
Otherwise, return TOO_MANY without necessarily listing them.

The reporting problem can be solved by building a binary tree of point-location data
structures. The root of the tree corresponds to IA. Next, we arbitrarily divide A into two
subsets A1, A2 of size n/2, and build two new point-location data structures, corresponding
to IA1 and IA2 , respectively. Then we continue recursively for A1 and A2. The total expected
preprocessing time is O(n log2 n).

To report the pairs with distance larger than r, we simply query the nodes of the tree as
in step 2 of the decision algorithm above. Given some b ∈ B, if b ∈ IA, then d(a, b) ≤ r for
all a ∈ A and we can stop the search with b. Else, if b /∈ IA, then there exists some a ∈ A for
which d(a, b) > r. In this case we check IA1 and IA2 recursively. At a leaf, I{a} = D(a, r),
so b /∈ I{a} means d(a, b) > r; in that case, report the pair (a, b). Keep count of the pairs
reported so far. If more than k pairs have been reported, stop and return TOO_MANY. For any
reported pair, we visit O(logn) nodes of the tree, including the ones where no pairs were
reported, and perform a logarithmic-time point-location query at each node. An additional
query is performed for every b ∈ B that is not part of any pair to be reported. Thus the
running time of the reporting phase is no more than O(n logn+ k log2 n).

The expected total running time of the algorithm is O((n+ k) log2 n).

I Observation 4. Let o be the center of the ball S and r its radius. A point a − b ∈ P is
in S if and only if d(a, b+ o) ≤ r.

Proof. The point a− b is in S if and only if d(a− b, o) ≤ r, and d(a− b, o) = ‖(a− b)− o‖ =
‖a− (b+ o)‖ = d(a, b+ o). J

The set of violators V can be found by solving problem 3 with the input A, B + o =
{b+ o | b ∈ B}, the radius of S, and k = 2n. We summarize our result.

I Theorem 5. Let A and B be two sets of points in R3, both of size n. A translation t∗ that
minimizes the bipartite diameter of A and B + t can be found in O(n log2 n) expected time.

3 Uniformity

Define uni(A,B) as the difference between the largest and the smallest distances between
a point of A and a point of B. Formally, we set uni(A,B) = diam(A,B)− d(A,B), where
d(A,B) = min{d(a, b) | a ∈ A, b ∈ B}. The quantity uni(A,B) measures the uniformity of
the red-blue distances. The smaller it is, the more uniform are the distances. One may
consider minimizing the ratio rather than the difference of these quantities, which we leave
for future research. In this section we consider the following problem:

I Problem 4 (Bipartite Uniformity under Translation). Find a translation t∗ that minimizes
the uniformity of A and B + t. That is, for any translation t, uni(A,B + t∗) ≤ uni(A,B + t).

We study this problem in the plane. Notice that in general t∗ may not be unique.

B. Aronov, O. Filtser, M. J. Katz, and K. Sheikhan 8:7

B Claim 6. Let c be the center of a minimum-width enclosing annulus of P. Then, t∗ = c.

Proof. Similarly to the proof of Claim 1, for any translation t, the annulus St centered at
the point t with radii diam(A,B + t) and d(A,B + t) (St’s width is thus uni(A,B + t)),
contains all the points of P. Indeed, given some a− b ∈ P, we have d(a− b, t) = d(a, b+ t)
and d(A,B + t) ≤ d(a, b+ t) ≤ diam(A,B + t). Since c is the center of the minimum-width
enclosing annulus of P, we get uni(A,B + c) ≤ uni(A,B + t) for any translation t. C

We are thus left with the following algorithmic problem.

I Problem 5 (Restricted Minimum-Width Annulus). Given a set P of n2 points in the plane
with only O(n) extreme points, compute the minimum-width annulus covering P.

Note that if we apply a standard quadratic-time algorithm from the textbook [14] to P as
a black box, we would obtain running time O(n4). Instead, we could apply the cutting-edge
algorithm of Agarwal and Sharir [3] to P , again as a black box, to achieve O(n3+ε) expected
running time. But, as we shall see below, we improve these bounds by a more refined use of
these and other tools, for the specific situation presented above.

Let Q ⊂ P be the set of extreme points of P. Let F = FVor(Q) be the farthest-point
Voronoi diagram of Q, and let V = Vor(P) be the closest-point Voronoi diagram of P. We
compute V of size O(n2) in time O(n2 logn) and F of size O(n) in time O(n logn). It is
known (see, for example, [14, Section 7.4]) that the center of the minimum-width annulus
covering P must lie at (i) a vertex of F , (ii) a vertex of V , or (iii) an intersection point
between an edge of F and an edge of V . Cases (i) and (ii) can be handled in O(n2 logn)
time. Indeed, one can preprocess both F and V for point location and then locate vertices
of each diagram in the other, obtaining the identities of the closest and farthest points of P
for each Voronoi vertex and allowing one to compute the width of the annulus centered at it.

Hereafter we focus on case (iii). Its naïve implementation requires Ω(n3) time, as the
number of intersections between edges of F and V might be cubic in the worst case. (Indeed,
an O(n3)-time algorithm exists that simply overlays F and V . The vertices of the overlay
are precisely the points described in cases (i) through (iii) above. We can now process each
point in amortized constant time. See Section 4 of [14] for the routine details.)

Complete bipartite clique decomposition To do better, we start by recalling a variant of
a classical fact, first observed in [11].

I Fact 7. Let C and D be two sets, each consisting of non-crossing line segments in the
plane, with |C| = n, |D| = m, and n < m. Then there exists a collection of pairs {(Ci, Di)}
such that:
(a) Ci ⊂ C and Di ⊂ D.
(b) For every intersecting pair of segments (c, d) ∈ C ×D, there exists a unique i such that

(c, d) ∈ Ci ×Di.
(c) For every i, every segment in Ci intersects every segment in Di and the slopes of all

segments in Ci are larger than the slopes of all segments of Di, or vice versa.
(d) The collection {(Ci, Di)} can be constructed in time O((n+m) log2 n).
(e) The number of pairs in the collection is O(n logn).
(f)

∑
i |Ci| = O(n log2 n) and

∑
i |Di| = O(m log2 n).

We outline the proof here, as the version we need is slightly more general than the most
commonly used one, such as in [1,3] (see [1] for a very similar construction; the distinction is
in item (f), where we need separate bounds on

∑
i |Ci| and

∑
i |Di|); the usual assumption is

that n = m while in the application below we will set m = n2.

STACS 2019

8:8 Bipartite Diameter and Other Measures Under Translation

Proof. Construct a 2-level hereditary segment tree on C: Build a segment tree on the
segments of C so that each segment appears in O(logn) nodes and each node ν corresponds
to a canonical vertical strip Sν and a vertically ordered list Cν of (parts) of segments of
C that completely cross Sν left-to-right. For the second level, store each of the sets Cν in
a separate balanced binary tree Tν in vertical order; each node µ of Tν stores a canonical
subset Cµ of contiguous segments of Cν ; at the node µ we also store a second set Dµ ⊂ D
of segments, initially empty. Now query the structure with each segment d ∈ D. It crosses
O(logn) canonical vertical strips completely and its endpoints land in two leaves of the
primary tree, which correspond to elementary canonical strips.

For each strip Sν completely spanned by d, d crosses a contiguous portion of the segments
of Cν , represented by O(logn) canonical subsets, each corresponding to a node µ in Tν . We
add d to Dµ, for all such choices of ν and µ.

A very similar process handles the endpoints of D.
Having repeated this process for each d ∈ D,2 we output (Cµ, Dµ) for all secondary tree

nodes µ. It is easily verified that a pair of segments (c, d) ∈ C ×D cross if and only if there
is a (unique) µ with d ∈ Cµ and d ∈ Dµ.

The number of nodes µ in the secondary tree of Sν is O(|Cν |) and hence the number
of pairs (Cµ, Dµ) is O(n logn). By construction, each segment c ∈ C appears in O(log2 n)
nodes of the structure and we touch O(log2 n) nodes when searching for d ∈ D. This implies
the bounds on

∑
µ |Cµ| and on

∑
µ |Dµ|. J

Reduction to the minimum-“distance” problem between lines in three dimensions. We
now use a reinterpretation of the problem, first noticed in [4] and most recently used in [3]
to efficiently compute the minimum-width annulus covering a finite point set in the plane.

Lift the points of P to the standard paraboloid z = x2 + y2, obtaining the set P∗ and
the corresponding set Q∗ ⊂ P∗; we will use an asterisk to denote a lifted object. As is well
known, a minimal disk enclosing P in the plane corresponds to an upper tangent plane to
the convex hull CH(P∗) of P∗ (which coincides with the upper convex hull of Q∗), while
a maximal disk empty of points of P corresponds to a lower tangent plane to CH(P∗). In
case (iii) described above, the upper plane passes through an edge q∗1q∗2 of the upper hull
of Q∗ and the lower plane through an edge p∗1p∗2 of the lower hull of CH(P∗). The two
planes are parallel and this event corresponds precisely to the intersection of an edge c of V
separating the regions of p1 and of p2 and an edge d of F separating the regions of q1 and of
q2.

It was observed in [4] that the width of the (minimal) annulus containing P and centered
at c ∩ d corresponds to the “distance” between two parallel planes passing through the lines
supporting edges q∗1q∗2 and p∗1p∗2 in R3; the distance is not measured using the conventional
Euclidean metric, but using a different function that satisfies the properties enumerated
in [3] (another application of their machinery is for computing the three-dimensional width
of a finite point set in R3; in that application the distance is Euclidean, for pairs of edges
that support parallel planes sandwiching the set; see [3] for the details).

In other words, we need to solve the following problem: For all pairs of lines q∗1q∗2 , p∗1p∗2
supporting upper and lower edges of CH(P∗) as above that correspond to a pair of crossing
edges of F and V , find the shortest “distance” between the lines q∗1q∗2 and p∗1p∗2.

2 One needs to repeat the process twice: once for d’s that are “steeper” than segments of C and once
for those “less steep.” More precisely, for each strip Sν , we classify segments d that span Sν into two
classes: Those that cross the left edge of Sν lower than the right edge, relative to the segments of Cν ,
and those that cross the left edge higher than the right edge. This way in the final pair (Cµ, Dµ) either
all segments of Cµ cross those from Dµ “from below,” or all “from above.”

B. Aronov, O. Filtser, M. J. Katz, and K. Sheikhan 8:9

Complete bipartite case. Apply Fact 7 to the two sets of edges (line segments) C and D,
producing a decomposition into pairs {(Ci, Di)} with the described properties. We now focus
on one such pair, (Ci, Di). By construction, each pair of edges (c, d) ∈ Ci ×Di intersect. We
now perform the calculation on the corresponding pair of sets of lifted lines (C∗i , D∗i), using
the “distance” defined above:

I Fact 8 (Agarwal and Sharir [3]). Given a set X of n lines and a set Y of m lines, so that
every line of X lies above every line of Y , the shortest “distance” between a line of X and a
line of Y can be computed in expected time O(n3/4+εm3/4+ε + n1+ε +m1+ε), for any ε > 0.

In particular, the best annulus width corresponding to points c∩d, with (c, d) ∈ (Ci×Di),
corresponds precisely to the shortest “distance” between C∗i , D∗i as above and can be
computed using Fact 8 in time O(n3/4+ε

i m
3/4+ε
i + n1+ε

i + m1+ε
i), where ni = |Ci| and

mi = |Di|.

Putting it all together. Recall that in our case m = n2. Therefore, the total work required
includes O(n2 logn) for cases (i) and (ii), O((n+m) log2 n) = O(n2 log2 n) for constructing
the pairs {(Ci, Di)}, and finally the following for processing every pair (Ci, Di), using Fact 8:∑

i

O(n3/4+ε
i m

3/4+ε
i + n1+ε

i +m1+ε
i),

subject to the constraints described in Fact 7. We bound the above expression by

O(n3ε) ·
∑
i

O(n3/4
i m

3/4
i + ni +mi),

where we have used the facts that ni ≤ n and mi ≤ n2, for all i. Since
∑
i ni = O(n log2 n) =

o(n1+ε) and
∑
imi = O(m log2 n) = o(n2+ε), the last two terms are bounded by o(n2+ε).

We proceed to focus on the larger first term.
Using Hölder’s inequality, we have∑
i

m
3/4
i n

3/4
i =

∑
i

m
3/4
i (n3

i)1/4 ≤ (
∑
i

mi)3/4 · (
∑
i

n3
i)1/4

≤ O(n2 log2 n)3/4(n3 ·O(log2 n))1/4 = O(n9/4 log2 n) = O(n9/4+ε),

where we have used the fact that
∑
imi = O(n2 log2 n),

∑
i ni = O(n log2 n), and ni ≤ n.

Plugging everything together, the expected running time of the entire algorithm is O(n9/4+4ε).
Replacing ε by ε/4 in the above reasoning, we obtain:

I Theorem 9. Given a set P of n2 points in the plane that has O(n) extreme points, the
total expected time required to compute the minimum-width annulus enclosing P is O(n9/4+ε),
for any positive ε.

Returning to our original motivation, we conclude:

I Theorem 10. Let A and B be two sets of points in R2, both of size n. A translation t∗
that minimizes the uniformity of A and B + t can be found in O(n9/4+ε) time.

4 Width

In this section, first we minimize the union width measure. The width of a point set is the
smallest distance between two parallel supporting hyperplanes of the set. Given two sets of
points A = {a1, . . . , an} and B = {b1, . . . , bn} in Rd, the union width of A and B is defined
as the width of their union, namely, union_width(A,B) = width(A ∪B).

STACS 2019

8:10 Bipartite Diameter and Other Measures Under Translation

I Problem 6 (Union Width under Translation). Find a translation t∗ that minimizes the
union width of A and B + t over all translations t. That is, for any translation t, we have
union_width(A,B + t∗) ≤ union_width(A,B + t).

Directional width. The directional width function widthv(X) of a compact set X in Rd
gives, for every direction v, the distance between the two supporting hyperplanes of X that
are orthogonal to v:

widthv(X) = max
x1,x2∈X

(x1 − x2) · v.

In particular, the width of a set corresponds to the minimum of its directional widths. We
define the directional union width of A and B as the directional width of their union:

union_widthv(A,B) = widthv(A ∪B).

I Problem 7 (Directional Union Width under Translation). For a given direction v, find a
translation t∗ that minimizes the directional union width of A and B+t over all translations t.
That is, for any translation t, union_widthv(A,B + t∗) ≤ union_widthv(A,B + t).

B Claim 11. For a given direction v, the minimum directional union width under translation,
union_widthv(A,B + t), is equal to the maximum of widthv(A) and widthv(B).

Proof. To obtain the smallest directional width we translate B so that the slab between the
supporting hyperplanes of the wider set contains the other set, then union_widthv(A,B + t)
will be equal to the directional width of the wider set which means:

union_widthv(A,B + t) = max(widthv(A),widthv(B)). C

This claim reduces Problem 7 to finding the maximum of two directional widths. Now
we return to Problem 6, which now reduces to finding the minimum value of the function
max(widthv(A),widthv(B)) over all directions v. In Sections 4.1 and 4.2, we present an
O(n logn)-time algorithm for the two-dimensional and a quadratic-time algorithm for the
three-dimensional version of the problem. Finally, in Section 4.3, we define a bipartite
measure closely related to width and show that it can be computed using similar methods
with slight modifications.

4.1 Width in the plane
To compare the width of the two sets in different directions and measure the union width, we
first compute the convex hulls of the two sets in O(n logn) time. We use the rotating calipers
method of [18,23] to construct, for both A and B, their directional width functions widthv(A)
and widthv(B). Each of these two functions is a piecewise-algebraic function (with a suitable
choice of parametrization) of low degree with Θ(n) breakpoints. Now consider their pointwise
maximum defined by max(widthv(A),widthv(B)). The global minimum of this function,
according to Claim 11, determines the answer to Problem 7. It can be computed by merging
the two lists of breakpoints and computing the intersections between the function graphs in
each interval; the resulting function still has O(n) breakpoints in total and its minimum can
be computed in linear time which results in the following theorem.

I Theorem 12. The union width of two n-point sets in the plane can be computed in
O(n logn) time.

B. Aronov, O. Filtser, M. J. Katz, and K. Sheikhan 8:11

4.2 Width in three dimensions
To better understand the problem, we first review the tools used to compute the standard
width of a set in R3. Recall that computing the width is equivalent to finding the smallest-
width slab enclosing the set. In their paper [18], Houle and Toussaint showed that two
supporting planes with minimum distance apart pass through either an antipodal vertex-
face (VF) pair or an antipodal edge-edge (EE) pair of the convex hull. To compute and
compare the antipodal pairs, they used the Gauss map (also called the normal diagram). In
this transformation, which was originally introduced to computational geometry by Brown [9],
the convex hull of the point set is mapped to the surface of a unit sphere S2. Every face is
mapped to a point (the direction of its outer normal), every edge is mapped to the great circle
arc connecting its two neighboring faces (the locus of the directions of all planes supporting
the set at the edge), and every vertex is mapped to a region (the locus of the directions of all
supporting planes at the vertex). Then they overlay the upper hemisphere of the Gauss map
on the lower hemisphere and compute the intersections between them. We call the resulting
diagram the antipodal diagram. Each vertex of the overlay corresponds to an antipodal VF
or EE pair, and the width can be determined by computing the distance of the antipodal
pair at these vertices and choosing the one with the smallest such distance.

The antipodal diagram encodes the antipodal pair of features for all directions and can
be viewed as a representation of the directional width function; in particular, it can be used
to compute the directional width for any given direction. As mentioned above, Houle and
Toussaint showed that the minimum can only occur at the vertices of the antipodal diagram,
not in the middle of an edge nor in the interior of a face [18].

To solve Problem 6, we need to represent the antipodal pairs and directional pairs for both
sets together. We create the new combined antipodal diagram by overlaying the antipodal
diagrams for A and for B.

I Observation 13. If the minimum directional union width under translation occurs at
direction v∗, then one of the following must occur (as it holds for the maximum of any two
functions):
1. widthv∗(A) ≥ widthv∗(B) and v∗ is a local minimum for widthv∗(A),
2. widthv∗(B) ≥ widthv∗(A) and v∗ is a local minimum for widthv∗(B), or
3. widthv∗(A) = widthv∗(B) and neither function has a local minimum at v∗.

In cases 1 and 2, the optimal direction is a local optimum of one of the two sets as well
and occurs at a vertex of the antipodal diagram. But what happens in case 3? Is it possible
that the minimum occurs in the middle of an edge or in the interior of a face? In order to
answer these questions we use the following lemma [18]:

I Lemma 14 (Houle and Toussaint [18]). Let `1 and `2 be parallel lines in R3. Let π1 and
π2 be distinct parallel planes containing `1 and `2, respectively. Then there exists a preferred
direction of rotation such that if π1 and π2 are rotated about `1 and `2, respectively, in that
direction to form new parallel planes π′1 and π′2, then d(π′1, π′2) < d(π1, π2).

B Claim 15. The minimum value of max(widthv(A),widthv(B)) cannot occur in the interior
of a face of the antipodal diagram.

Proof. Suppose for the sake of contradiction that the optimal direction v∗ lies in the interior
of a face of the diagram. Being in the interior means each set has an antipodal VV pair
in direction v∗. Since a VV pair cannot be an optimal direction for either of the sets
separately, according to Observation 13 the directional widths of A and B are equal, and we

STACS 2019

8:12 Bipartite Diameter and Other Measures Under Translation

may translate them so that the two corresponding parallel slabs coincide. Therefore, each
supporting plane passes through exactly one vertex from each set. Let π1 and π2 be the
two supporting planes with a1, b1 ∈ π1 and a2, b2 ∈ π2. We can translate B so that b1 is
translated to a1. After translation, let `2 ⊂ π2 be the line through a2 and b2 and let `1 ⊂ π1
be the line through a1 parallel to `1. According to Lemma 14, there is a direction to rotate
the two planes so that they remain supporting for both sets, but the distance between them
is reduced, contradicting v∗ being the optimal direction. C

We proved that minimum union width cannot occur in the interior of a face; however,
unlike the width of a single set, the minimum union width may occur in the interior of an
antipodal diagram edge.

(An example when this happens will be described in the full version of this paper.) Even
though comparing directional width at vertices of the antipodal diagram is not sufficient
anymore, the following theorem proves that the union width still can be computed in quadratic
time.

I Theorem 16. The union width of two n-point sets in three dimensions can be computed
in O(n2) time.

Proof. Each of the four subdivisions used to create the antipodal diagram for the union width
has linear complexity, so their overlay has complexity O(n2) and can be computed in O(n2)
time using convex subdivision overlay algorithm of Guibas and Seidel [16]. Although the
minimum union width can occur at an interior point of a diagram edge, we can still compute
it in O(n2). Directional union width function along each edge has constant complexity and
we can find its minimum value in constant time. Since there are at most O(n2) edges and
vertices in the diagram, we can compute the minimum union width in O(n2) time. J

4.3 Red-blue width
We now present a different interpretation of the width of a set, to motivate the definition of
a new bipartite measure. Directional width of a point set X in a given direction v is the
maximum of all the pairwise distances projected on that direction, maxx1,x2∈X(x1 − x2) · v.
For two sets A and B, we define the directional red-blue width as

rb_widthv(A,B) = max
a∈A,b∈B

(a− b) · v,

and the red-blue width of A and B as the minimum of all the directional red-blue widths:

rb_width(A,B) = min
v

rb_widthv(A,B).

I Problem 8 (Red-blue Width under Translation). Find a translation t∗ that minimizes the
red-blue width of A and B + t over all translations t. That is, for any translation t, we have
rb_width(A,B + t∗) ≤ rb_width(A,B + t).

B Claim 17. For a given direction v, the minimum directional red-blue width under
translation is equal to the average of widthv(A) and widthv(B).

Proof. Since all the distances are projected on a line parallel to v, one can use the projection
of the points to compute the width. The two sets A and B get projected to intervals with
lengths equal to widthv(A) and widthv(B), respectively. A translation of B will translate its
corresponding interval along the line without changing its length. The extreme distances that
define the red-blue width are between the leftmost point of A and the rightmost point of B, and
vice versa. The maximum of these two distances is always at least widthv(A)/2+widthv(B)/2
and is realized when the two interval centers are aligned. C

B. Aronov, O. Filtser, M. J. Katz, and K. Sheikhan 8:13

So to solve Problem 8, we need to minimize the sum of the two directional widths, rather
than their maximum, as in Problem 6. Using the same techniques with slight modifications
we obtain the following result; details are omitted in this version.

I Theorem 18. The red-blue width of two n-point sets A and B under translation can be
computed in O(n logn) time in the plane and O(n2) time in the three-dimensional space.

References
1 Pankaj K. Agarwal, Boris Aronov, Marc van Kreveld, Maarten Löffler, and Rodrigo Silveira.

Computing Correlation between Piecewise-Linear Functions. SIAM J. Comput., 42:1867–1887,
2013.

2 Pankaj K. Agarwal, Sariel Har-Peled, Micha Sharir, and Yusu Wang. Hausdorff distance under
translation for points and balls. In Proc. 19th Ann. Symp. Comput. Geometry, pages 282–291.
ACM, 2003.

3 Pankaj K. Agarwal and Micha Sharir. Efficient randomized algorithms for some geometric
optimization problems. Discr. Comput. Geometry, 16(4):317–337, 1996.

4 Pankaj K. Agarwal, Micha Sharir, and Sivan Toledo. Applications of Parametric Searching in
Geometric Optimization. J. Algorithms, 17(3):292–318, 1994. doi:10.1006/jagm.1994.1038.

5 Hee-Kap Ahn, Peter Brass, and Chan-Su Shin. Maximum overlap and minimum convex hull
of two convex polyhedra under translations. Computational Geometry, 40(2):171–177, 2008.

6 Helmut Alt, Kurt Mehlhorn, Hubert Wagener, and Emo Welzl. Congruence, similarity, and
symmetries of geometric objects. Discr. Comput. Geometry, 3(3):237–256, 1988.

7 Rinat Ben-Avraham, Matthias Henze, Rafel Jaume, Balázs Keszegh, Orit E. Raz, Micha Sharir,
and Igor Tubis. Minimum partial-matching and Hausdorff RMS-distance under translation:
Combinatorics and algorithms. In European Symp. Algorithms, pages 100–111. Springer, 2014.

8 Arijit Bishnu, Sandip Das, Subhas C. Nandy, and Bhargab B. Bhattacharya. Simple algorithms
for partial point set pattern matching under rigid motion. Pattern Recognition, 39(9):1662–1671,
2006.

9 K. Q. Brown. Geometric Transforms for Fast Geometric Algorithms. Ph.D. thesis, Carnegie-
Mellon University, Pittsburgh, PA, 1980.

10 Bernard Chazelle, Richard Cole, Franco P. Preparata, and Chee Yap. New upper bounds for
neighbor searching. Information and Control, 68(1-3):105–124, 1986.

11 Bernard Chazelle, Herbert Edelsbrunner, Leonidas J. Guibas, and Micha Sharir. Algorithms
for bichromatic line segment problems and polyhedral terrains. Algorithmica, 11:116–132,
1994.

12 Kenneth L. Clarkson. Las Vegas algorithms for linear and integer programming when the
dimension is small. J. ACM, 42:488–499, 1995.

13 Kenneth L. Clarkson and Peter W. Shor. Applications of random sampling in computational
geometry, II. Discr. Comput. Geometry, 4(1):387–421, 1989.

14 M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars. Computational Geometry:
Algorithms and Applications. Springer-Verlag, third edition, 2008.

15 Alon Efrat, Alon Itai, and Matthew J. Katz. Geometry helps in bottleneck matching and
related problems. Algorithmica, 31(1):1–28, 2001.

16 Leonidas J. Guibas and Raimund Seidel. Computing convolutions by reciprocal search. Discr.
Comput. Geometry, 2(2):175–193, 1987.

17 Paul J. Heffernan and Stefan Schirra. Approximate decision algorithms for point set congruence.
Computational Geometry, 4(3):137–156, 1994.

18 M. E. Houle and G. T. Toussaint. Computing the width of a set. IEEE Trans. Pattern Anal.
Mach. Intell., PAMI-10(5):761–765, 1988.

19 Daniel P. Huttenlocher, Klara Kedem, and Micha Sharir. The Upper Envelope of Voronoi
Surfaces and Its Applications. Discr. Comput. Geometry, 9:267–291, 1993. doi:10.1007/
BF02189323.

STACS 2019

http://dx.doi.org/10.1006/jagm.1994.1038
http://dx.doi.org/10.1007/BF02189323
http://dx.doi.org/10.1007/BF02189323

8:14 Bipartite Diameter and Other Measures Under Translation

20 Piotr Indyk and Suresh Venkatasubramanian. Approximate congruence in nearly linear time.
Computational Geometry, 24(2):115–128, 2003.

21 Nimrod Megiddo. Linear-time algorithms for linear programming in R3 and related problems.
SIAM J. Comput., 12(4):759–776, 1983.

22 Edgar A. Ramos. Deterministic algorithms for 3-D diameter and some 2-D lower envelopes.
In Proc. 16th Ann. Symp. Comput. Geometry, pages 290–299. ACM, 2000.

23 M. I. Shamos. Computational Geometry. PhD thesis, Yale University, 1978.
24 Emo Welzl. Smallest Enclosing Disks (balls and Ellipsoids). In Results and New Trends in

Computer Science, pages 359–370. Springer-Verlag, 1991.

Solving Simple Stochastic Games with Few
Random Nodes Faster Using Bland’s Rule
David Auger
DAVID laboratory, University of Versailles Saint-Quentin-en-Yvelines, France
david.auger@uvsq.fr

Pierre Coucheney
DAVID laboratory, University of Versailles Saint-Quentin-en-Yvelines, France
pierre.coucheney@uvsq.fr

Yann Strozecki
DAVID laboratory, University of Versailles Saint-Quentin-en-Yvelines, France
yann.strozecki@uvsq.fr

Abstract
The best algorithm so far for solving Simple Stochastic Games is Ludwig’s randomized algorithm [21]
which works in expected 2O(

√
n) time. We first give a simpler iterative variant of this algorithm, using

Bland’s rule from the simplex algorithm, which uses exponentially less random bits than Ludwig’s
version. Then, we show how to adapt this method to the algorithm of Gimbert and Horn [15] whose
worst case complexity is O(k!), where k is the number of random nodes. Our algorithm has an
expected running time of 2O(k), and works for general random nodes with arbitrary outdegree and
probability distribution on outgoing arcs.

2012 ACM Subject Classification Theory of computation → Algorithmic game theory

Keywords and phrases simple stochastic games, randomized algorithm, parametrized complexity,
strategy improvement, Bland’s rule

Digital Object Identifier 10.4230/LIPIcs.STACS.2019.9

Related Version A full version of the paper is available at https://arxiv.org/abs/1901.05316.

1 Introduction

A simple stochastic game, SSG for short, is a two-player zero-sum game, a turn-based version
of stochastic games introduced by Shapley [22]. SSGs were introduced by Condon [11] and
provide a simple framework that allows to study algorithmic complexity issues underlying
reachability objectives. An SSG is played by moving a pebble on a graph. Some nodes
are divided between players min and max: if the pebble reaches a node controlled by a
player then she has to move the pebble along an arc leading to another node. Some other
nodes are ruled by chance, the pebble following one outgoing arc according to some given
probability distribution. Finally, there are sink nodes with a rational value, which is the gain
that max-player achieves when the pebble reaches this sink.

Player max’s objective is, given a starting node for the pebble, to maximize the expectation
of her gain against any strategy of min. One can show that it is enough to consider stationary
deterministic strategies for both players [11]. Though seemingly simple since the number of
stationary deterministic strategies is finite, the task of finding a pair of optimal strategies,
or equivalently, of computing the so-called optimal values of nodes, is in complexity class
PPAD [13] but not known to be in P.

Simple stochastic games are a powerful model since they can simulate many other games
such as parity games, mean or discounted payoff games [2, 7]. However these games are
believed to be simpler than SSGs and better algorithms are known for them; in particular,
parity game is in quasi-polynomial time [5]. Stochastic versions of the previous games

© David Auger, Pierre Coucheney, and Yann Strozecki;
licensed under Creative Commons License CC-BY

36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019).
Editors: Rolf Niedermeier and Christophe Paul; Article No. 9; pp. 9:1–9:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:david.auger@uvsq.fr
mailto:pierre.coucheney@uvsq.fr
mailto:yann.strozecki@uvsq.fr
https://doi.org/10.4230/LIPIcs.STACS.2019.9
https://arxiv.org/abs/1901.05316
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

9:2 Solving SSG with Few Random Nodes Faster Using Bland’s Rule

also exist and are computationally equivalent to SSGs [2]. Interestingly, SSGs have many
application domains, for instance autonomous urban driving [9], smart energy management [8],
model checking of the modal µ-calculus [23], etc.

There are some restrictions for SSGs for which the problem of finding optimal strategies
is tractable. If the game is acyclic, it can be solved in linear time, and in polynomial time for
almost acyclic games (few cycles or small feedback arc sets) [3]. If there is no randomness,
the game can be solved in almost linear time [1]. Furthermore, Gimbert and Horn were the
first to extend this result by giving Fixed Parameter Tractable (FPT) algorithms in the
number of random nodes [15]. They indeed show that optimal strategies depend only on
the ordering of the values of random nodes, and not on their actual values. Using this idea,
they devise two algorithms. The first one exhaustively enumerates these orders until it finds
one that actually corresponds to optimal values. The second one is a strategy improvement
algorithm based on an iterative refinement of the orders. Both have a complexity of k!nO(1),
where k is the number of random nodes. It has been improved to

√
k!nO(1) expected time

in [12], by randomly selecting a good strategy as a starting point for a strategy improvement
algorithm. In fact, as remarked in [6], the distance between the values of two consecutive
strategies in any strategy improvement algorithm depends on the number of random nodes.
Hence any SSG can be solved in time 4knO(1) (in fact

√
6knO(1) using Lemma 1.1 in [3]).

The complexity has been further improved to 2knO(1) in [19], by using a value iteration
algorithm. Here a bit of caution is in order; in some papers, random nodes can have an
arbitrary outdegree and probability distribution on outgoing arcs, and in some other they
must be binary with uniform distribution. In the former case, if we denote by p the bit-size
of the largest probability distribution on a random node, the first two cited algorithms have
a complexity of p · k! and p ·

√
k!. On the other hand, the two algorithms with an exponential

complexity in k have an exponential dependency on p when adapted to this context.
Without the previous restrictions, only algorithms running in exponential time are known.

Most of them are strategy improvement algorithms, which produce a sequence of strategies of
increasing values. These algorithms, such as the classical Hoffman-Karp [18] algorithm, rely
on the switch operation, which by a local best-response, produces a strategy with better value.
Several ways of choosing the nodes that are switched have been proposed [24], which can be
compared to the rules for pivot selection for the simplex algorithm in linear programming.
Though efficient in practice, these algorithms fail to run in polynomial time on a well designed
input [14]. The best algorithm so far, proposed by Ludwig [21, 16], is also a strategy iteration
algorithm using a randomized version of Bland’s rule [4] to choose a switch. It solves any
SSG in expected time 2O(

√
n). The first analysis of this kind of algorithm is due to Kalai [20]

and it has been slightly improved recently [17].

Our contributions

In Section 3, we present an iterative variant of Ludwig’s recursive algorithm which uses
less random bits. In the rest of the paper we adapt the idea of this algorithm to carefully
enumerate orders of random nodes in an SSG. First, in Section 4, we present a pivot
operation yielding a strategy improvement algorithm, which improves the one of [15]. This
pivot operation comes from a randomized dichotomy on all orders that we explain in details
in Section 5, using an auxilliary game similar to the one of [12]. We prove that our algorithm
finds the optimal strategies in expected time polynomial in 2k and p, where k is the number
of random nodes and p is the maximum bit-length of a distribution on a random node,
answering positively a question of Ibsen-Jensen and Miltersen [19].

D. Auger, P. Coucheney, and Y. Strozecki 9:3

2 Definitions and classic results on simple stochastic games

We here review definitions and results related to SSGs. We only sketch what we need and
refer to longer expositions such as [11, 24] for more details.

I Definition 1 (SSG). A simple stochastic game (SSG) is defined by a directed graph
G = (V,A), where V is the set of nodes and A the set of arcs, together with a partition of V
in four parts Vmax, Vmin, Vran and Vsink, whose elements are respectively called max-nodes,
min-nodes, ran-nodes (for random) and sinks. We require that every node x ∈ V has
outdegree at least one, while sink nodes have outdegree exactly 1 consisting of a single loop
on themselves. We also specify for every sink x ∈ Vsink a value Val(x) which is a rational
number, and for every random node x ∈ Vran a rational probability distribution p(x) on the
outneighbours of x.

In the original version of Condon [11], all nodes except sinks have outdegree exactly two,
the probability distribution on every ran-node is (1

2 ,
1
2), and there are only two sinks, one

with value 0 and another with value 1. Here, we allow more than two sinks, with general
rational values, and also allow more than outdegree two for all non-sink nodes, with an
arbitrary probability distribution for ran-nodes. However, for Ludwig’s Algorithm (see
Algorithms 1, 2 and 3 in Section 3) we shall suppose that all max-nodes have outdegree 2
and call such games max-binary.

Strategies and values

We now define strategies, by which we mean stationary and pure strategies. This is enough
for our purpose and it turns out to be sufficient for optimality, see [11]. Such strategies
specify the choice of a neighbour for every node of a given player.

I Definition 2 (Strategy). A strategy for player max is a map σ from Vmax to V such that
∀x ∈ Vmax, (x, σ(x)) ∈ A.

Strategies for player min are defined analogously on min-nodes and are usually denoted
by τ .

I Definition 3 (Play). A play is a sequence of nodes x0, x1, x2, . . . such that for all t ≥ 0,
(xt, xt+1) ∈ A. Such a play is consistent with strategies σ and τ , respectively for player max
and player min, if for all t ≥ 0, xt ∈ Vmax ⇒ xt+1 = σ(xt) and xt ∈ Vmin ⇒ xt+1 = τ(xt).

A couple of strategies σ, τ and an initial node x0 ∈ V define recursively a random
play consistent with σ, τ by setting (i) xt+1 = σ(xt) if xt ∈ Vmax, (ii) xt+1 = τ(xt) if
xt ∈ Vmin, (iii) xt+1 = xt if xt ∈ Vsink, and finally (iv) xt+1 is one of the outneighbours of xt,
randomly chosen independently of everything else according to probability distribution p(x),
if xt ∈ Vran.

Hence, this defines a probability measure Px0
σ,τ on plays consistent with σ, τ . Note that if

a play contains a sink node xs, then at every subsequent time the play stays in xs. Such a
play is said to reach sink xs. To every play x0, x1, . . . we associate a value which is the value
of the sink reached by the play if any, and 0 otherwise. If we denote by X this value, then X
is a random variable once two strategies and an initial node x are fixed. We are interested in
the expected value of this quantity, which we call the value of a node x ∈ V under strategies
σ, τ : Valσ,τ (x) = Exσ,τ (X) where Exσ,τ is the expected value under probability Pxσ,τ .

The goal of player max is to maximize this (expected) value, and the best he can ensure
against a strategy τ is Val∗,τ (x) := maxσ Valσ,τ (x) where the maximum is considered over
all max-strategies (which are in finite number). Similarly, against σ player min can ensure
that the expected value is at most Valσ,∗(x) := minτ Valσ,τ (x).

STACS 2019

9:4 Solving SSG with Few Random Nodes Faster Using Bland’s Rule

Finally, the value of a node x is Val∗,∗(x) := maxσ Valσ,∗(x) = minτ Val∗,τ (x). The fact
that these two quantities are equal is nontrivial, and it can be found for instance in [11]. A
pair of strategies σ∗, τ∗ such that, for all nodes x, Valσ∗,τ∗(x) = Val∗,∗(x) always exists and
these strategies are said to be optimal strategies. It is polynomial-time equivalent to compute
optimal strategies or to compute the values of all nodes in the game.

I Definition 4 (Stopping SSG). An SSG is said to be stopping if for every couple of strategies
almost all plays eventually reach a sink node.

Usually, this condition is required in order to ensure simple optimality conditions (Thm.
5 below). Condon [11] proved that every SSG G can be reduced in polynomial time to a
stopping SSG G′ whose size is quadratic in the size of G, and whose values almost remain
the same. The values of the new game are close enough to recover the values of the original
game. A problem for us is that squaring the size of the game does not behave well relatively
to precise complexity bounds.

However, in our case we need a milder condition. We call a max-strategy σ stopping if,
for any min-strategy τ , the random play consistent with (σ, τ) reaches a sink with probability
one.

I Theorem 5 (Optimality conditions, [11]). Let G be an SSG, σ a stopping max-strategy and
τ a min-strategy. Then (σ, τ) are optimal strategies if and only if

for every x ∈ Vmax, Valσ,τ (x) = max
(x,y)∈A

Valσ,τ (y);

for every x ∈ Vmin, Valσ,τ (x) = min
(x,y)∈A

Valσ,τ (y).

Switches and strategy improvement

Consider the usual partial order on real vectors indexed by V , i.e. for w1, w2 ∈ RV , denote
w1 ≤ w2 if w1(x) ≤ w2(x) for all x ∈ V , and denote w1 < w2 if w1 ≤ w2 and at least one
inequality is strict. For two max-strategies σ, σ′, simply denote σ ≤ σ′ (resp. σ < σ′) if
Valσ,∗ ≤ Valσ′,∗ (resp. Valσ,∗ < Valσ′,∗). Define a similar order on min-strategies.

A switch, given a strategy, is the fact of changing this strategy at a node (or a set of
nodes) in order to obtain a new one.

I Definition 6. Let σ, σ′ be max-strategies. We say that σ′ is a profitable switch of σ if for
all x ∈ Vmax, one has Valσ,∗(σ′(x)) ≥ Valσ,∗(σ(x)) with this condition strict for at least one
max-node (such a node is said to be switchable).

Indeed, the following result states that such a switch actually improves values

I Theorem 7 ([10], [24]). If σ′ is a profitable switch of σ, then σ′ > σ.

Before ending this section, please note that Th. 5 can be restated in terms of nonexistence
of switchable node. Hence, we have the following result:

I Theorem 8. A stopping max-strategy is optimal if and only if it has no switchable nodes.

For the last section, we require another form of switch.

I Theorem 9 ([10], [24]). Let σ, σ′ be stopping max-strategies and τ, τ ′ be min-strategies
such that for all x ∈ Vmax, Valσ,τ (σ′(x)) ≥ Valσ,τ (σ(x)) and for all x ∈ Vmin, Valσ,τ (τ ′(x)) ≥
Valσ,τ (τ(x)) with one of these conditions strict for at least one node. Then Valσ′,τ ′ > Valσ,τ .

D. Auger, P. Coucheney, and Y. Strozecki 9:5

Orders

For k ≥ 1 consider the set of integers [1, k] = {1, 2, · · · , k} and let T (k) denote the set of
total orders on [1, k]. For sake of clarity we view these orders as sets of couples (i, j) ∈ [1, k]2
satisfying reflexivity, transitivity and antisymmetry.

If t ∈ T (k), it can also be described in ascending ordering such as [x1, x2, . . . , xk] where
(xi, xj) ∈ t if and only if i ≤ j. An interval in t is a sequence of consecutive elements in
ascending ordering. The rank of an element x ∈ [1, k] is the number of elements that are
lower of equal to x in t, i.e. it is i if x = xi with notation above.

For lack of a better word, we define a pretotal order as an antisymmetric and reflexive
relation and denote by P(k) the set of pretotal orders on [1, k]. If p ∈ P(k) and (i, j) 6∈ p is
such that p ∪ {(i, j)} is still antisymmetric, we denote simply by p+ (i, j) this new pretotal
order.

If t ∈ T (k) and v1, v2, · · · , vk are real numbers, we say that the vi’s are nondecreasing
along t if (i, j) ∈ t ⇒ vi ≤ vj . Likewise, we say that t is a nondecreasing order for
v1, v2, . . . , vk.

3 Iterative formulation of Ludwig’s algorithm

In this part, we suppose that G is max-binary. Hence, if a node x is switchable there is a
single possibility for changing the strategy’s choice at this node. Let switch(σ, x) denote the
profitable switch obtained from σ by switching σ at node x.

3.1 Bland’s rule version

In [21], Ludwig mentions that his algorithm is a version of Bland’s rule, however he does
not make it explicit and gives a recursive definition. We formulate his algorithm iteratively
(see Algorithm 1), and show that instead of randomly choosing a node at every step, we
can choose a total order on nodes prior to the execution of the algorithm. This version uses
much less random bits : O(n logn) bits instead of 2O(

√
n) in average in Ludwig’s version.

Algorithm 1: Bland’s rule formulation for Ludwig’s Algorithm.
input :G max-binary SSG, initial stopping max-strategy σ.
output : an optimal max-strategy

· Pick randomly and uniformly a total order Θ on max-nodes
while σ is not optimal do
· compute the set of switchable nodes for σ
· let x be the first switchable node in order Θ
· σ ←− switch(σ, x)

return σ

By Theorems 7 and 8 if we proceed by switching Strategy σ until there are no more
switchable nodes, we reach an optimal strategy in a finite number of steps. The number of
steps is at most the number of max-strategies, i.e. 2|Vmax|. However, we have the following:

I Theorem 10. The expected number of strategies considered by Alg. 1 is at most e2
√
|Vmax|.

STACS 2019

9:6 Solving SSG with Few Random Nodes Faster Using Bland’s Rule

3.2 Analysis of Algorithm 1
Our strategy to prove Theorem 10 is to reformulate Alg. 1 as a recursive algorithm (see
Alg. 3), which is close to Ludwig’s algorithm in [21]. The proofs of this section will be
provided in a long version of this article; they are quite similar to Ludwig’s, with a bit of
caution on the moments where random choices are made. In particular, we detail our strategy
in this part since it will be helpful to understand our results in section 4 where the context
is more involved.

Stated as above, it is perhaps unclear how Alg. 1 has a recursive structure. Too see this,
consider an execution of Alg. 1, and let x1 be the last max-node in the order Θ. In the
beginning, the current strategy σ makes an initial choice σ(x1) on x1, which does not change
until the first time when x1 becomes switchable (if this happens). If x1 is switched, then
σ(x1) will then remain unchanged until the end of this algorithm. Hence, once Θ is fixed, we
can think of this execution as two parts, where σ(x1) is fixed in each part. These can then
be decomposed as subparts where σ(x1) and σ(x2) are fixed (where x2 is the second-to-last
max-node in order Θ), and so on.

Generalization to partially fixed strategies
To formalize the discussion above, we give a generalization which can be applied to the case
where σ(x) is fixed for some vertices in a given set F (see Alg. 2).

In the following, if F is a set of max-nodes and σ is a max-strategy, a (σ, F)-compatible
strategy is any max-strategy σ′ such that ∀x ∈ F , σ′(x) = σ(x). For F and σ fixed, there
is always a (σ, F)-strategy that is better than all others. It can be obtained by solving
the game where any x ∈ F is replaced by a random node with a probability 1 to go to
σ(x). We call such a (σ, F)-compatible strategy optimal and we denote it by opt(σ, F). In
particular, an optimal (σ, ∅)-strategy is an optimal strategy for G, whereas σ is the only
(σ, Vmax)-compatible strategy.

Algorithm 2: Iterative formulation for Ludwig’s Algorithm with partial strategies.
input :G max-binary SSG, total order Θ on Vmax, subset F ⊂ Vmax, initial

max-strategy σ = σ0.
output : a (σ, F)-compatible optimal max-strategy opt(σ, F).

while σ is not an optimal (σ0, F)-compatible strategy do
· compute the set of switchable nodes for σ
· let v be the first switchable node in order Θ which is not in F
· σ ←− switch(σ, v)

return σ

Recursive reformulation
Finally, we give a recursive version of Alg. 2 (see Alg. 3) which we use to derive the bound.
The equivalence between these two algorithms should be clear by the previous explanations.

Evaluating the number of switches
Let fΘ(σ, F) be the total number of switches performed by Algorithm 3 on input σ,Θ, F .
We consider for the following lemma an execution of this algorithm.

D. Auger, P. Coucheney, and Y. Strozecki 9:7

Algorithm 3: Recursive formulation for Ludwig’s Algorithm with partial strategies.
input :G max-binary SSG, total order Θ on Vmax, subset F ⊂ Vmax, initial

max-strategy σ0.
output : a (σ, F)-compatible optimal max-strategy opt(σ, F).

if F == Vmax then return σ
else
· Let v0 be the last node not in F according to order Θ
· Recursively compute σ1, an optimal (σ0, F ∪ {v0})-compatible strategy
if σ1 is an optimal (σ0, F)-compatible strategy then return σ1
else
· Let σ2 ←− switch(σ1, v0)
· Recursively compute σ∗, an optimal (σ2, F ∪ {v0})-compatible strategy
return σ∗

I Lemma 11. Let σ0 be the initial strategy and v0 be the last node which is not in F , according
to order Θ. Define B ⊂ Vmax \ F to be the set of nodes v such that opt(σ0, F ∪ {v}) 6>
opt(σ0, F ∪ {v0}). Then fΘ(σ0, F) ≤ fΘ(σ0, F ∪ {v0}) + 1 + fΘ(σ2, F ∪ B}), where σ2 is
opt(σ0, F ∪ {v0}) = σ1, switched at v0.

Now, let us denote Φ(n) = supG,σ EΘ [fΘ
G (σ, ∅)

]
where the supremum is considered over

all SSG G with n max-nodes and all max-strategies σ in G. The average is considered over
all possible prior choices of order Θ, the rest of the algorithm being deterministic.

I Lemma 12. For all n ≥ 1, Φ(n) ≤ Φ(n− 1) + 1 + 1
n

∑n−1
i=0 Φ(i).

In order to conclude and prove Theorem 10, we now just have to infer the bound for
sequences satisfying the conclusion of Lemma 12.

I Lemma 13 (Lemma 9 of [21]). Let Φ(n) be such that Φ(0) = 0 and for all n ≥ 1,
Φ(n) ≤ Φ(n− 1) + 1 + 1

n

∑n−1
i=0 Φ(i). Then for all n ≥ 0, Φ(n) ≤ e2

√
n.

4 Simple stochastic games with few random nodes

The idea that in an SSG, the optimal strategies depend only on the ordering of the values
of ran-nodes, and not on their actual values, has been introduced by Gimbert and Horn
in [15]. Their main idea is that, if one gives an ordering r1r2 · · · rk of ran-nodes such that
Val∗,∗(ri) is nondecreasing with i, then max will try to reach a node ri with i as high as
possible, whereas min will try to minimize this index; this idea is hereafter formalized by the
notion of forcing sets and forcing strategies (Section 4.1). Gimbert and Horn use this fact to
derive an algorithm that will enumerate all possible orders on ran-nodes an will identify one
with the property mentionned above, yiedling the optimal strategies and values for G.

The algorithm that we describe and analyse in the rest of this paper (Alg. 4) uses the
same principle, but iterates through orders in a special way, similarly to the iteration through
strategies made by Ludwig’s algorithms (see Section 3). We will derive a similar bound for
the average number of iterations of this randomized algorithm. Hence, our main algorithm is
still a variation on Bland’s rule for pivot selection. The difficulty here does not lie in the
proof of the bound, but in the description of the technique used to iterate on orders.

In [15], the game remains the same during the execution of the algorithm, but we proceed
differently:

STACS 2019

9:8 Solving SSG with Few Random Nodes Faster Using Bland’s Rule

in Section 4.1, we describe how to associate to every total order t ∈ T (k) a new SSG G[t],
and we show that this game can be solved in polynomial time.
in Section 4.2, we prove that there is an optimal order t∗ ∈ T (k) such that the optimal
values of G[t∗] give directly the optimal values of G; it is also the order that maximises
values of G[t] among all total orders t. If an order t is not optimal, we describe a pivot
operation yielding from t a new order t′ such that the optimal values of G[t′] improve
those of G[t].
the proof of the bound will be derived in Section 5.

4.1 Modified game and forcing strategies
We need to assume that the games we consider enjoy some basic properties in order to
describe our algorithm without considering too many special cases.

I Definition 14. An SSG is in canonical form (CF) if max has a stopping strategy and only
ran-nodes can have an outgoing arc to a sink.

To ensure these conditions, one can first in linear time find and remove all nodes from
which min player can force the game never to reach neither a sink node nor a ran-node (see
e.g. [1, 11]). These nodes have value 0 and can as well be removed from the game. Then, all
probabilities on ran-nodes are modified by giving them a very small probability to go to a
sink. One can prove as in [11] that values remain almost the same. The second condition
ensures that all max and min nodes have to reach a ran-node in order to reach a sink. It
can be done by adding a dummy random node before every sink.

In all that follows we suppose that G is an SSG in CF with random nodes r1, r2, . . . , rk.
Let t ∈ T (k) be a total order on [1, k]. We define a game G[t] as follows (the same construction
is presented in [12]). Start with a copy of G. For every 1 ≤ i ≤ k, add a min-node denoted i
to G[t], which we call control node; add an arc (i, ri); for every arc (x, ri) ∈ A, remove this
arc and add an arc (x, i); finally, for every (i, j) ∈ t, i 6= j, add the arc (i, j) to G[t].

So basically, every control node i ∈ [1, k] intercepts all arcs entering in ri (see Fig. 1),
and has an arc to every other control node j ∈ [1, k] which is greater than i in t. In the game
G[t], the set of sinks, max-nodes and ran-nodes remain the same as in G, whereas the set of
min-nodes will be denoted Vmin ∪ [1, k], where Vmin is the set of min-nodes in G. This allows
us to directly identify max-strategies in G[t] and in G, and to identify projections onto Vmin
of min-strategies in G[t], to min-strategies in G.

Now, suppose we remove first all sinks and random nodes of G[t], and then turn every
control node i into a sink with a value equal to its rank in t. This transformation clearly
turns G[t] into a game G′ without random nodes.

I Definition 15 (Forcing strategy). By identifying strategies in G[t] and G′, we say that any
optimal strategy for max or min in G′ is a t-forcing strategy of G[t].

In t-forcing strategies, the players try to ensure the reaching of a control node as high as
possible for max, and as low as possible for min, in the order t. We refer to [1] and [15] for
more details about how one can compute these optimal strategies in linear time, using the
so-called deterministic attractors.

I Definition 16 (Forcing set). For any control node i ∈ [1, k], define the forcing set for
i, denoted For[t](i), as the set of max and min-nodes that reach i if the game is played
with a couple (σt, τt) of t-forcing strategies (forcing sets are independant of the choice of the
strategies as long as they are t-forcing).

D. Auger, P. Coucheney, and Y. Strozecki 9:9

Vmax ∪ Vmin

Vran

Vsink

Vmax ∪ Vmin

control nodes

Vran

Vsink

Figure 1 On the left, the structure of a game G in canonical form, only random nodes can
directly access sink nodes. On the right, the structure of G[t].

An example of an SSG turned into a modified SSG and of computation of forcing strategies
is presented in Fig. 2.

M m

1 2 3

r1 r2 r3

Val= 0 Val= .5 Val= 1

.09
.01

.9

.01 .09

.9

(a)

M m

1 2 3

r1 r2 r3

Val= 0 Val= .5 Val= 1

.09
.01

.9

.01 .09

.9

(b)

step total order forcing strategy for (M, m) values of ran-nodes values of min-control nodes
0 [r3r1r2] (r2, r3) .1, .5, .18 .1, .5, .1
1 [r1r3r2] (r2, r3) .46, .5, .54 .46, .5, .5
2 [r1r2r3] (r2, M) .46, .5, .54 .46, .5, .54

Figure 2
Fig. (2a): example of an SSG taken from [15] with the additional min-control nodes 1, 2, 3 before
each ran-node. Node m (resp. M) belongs to player min(resp. player max). Note that we add the
dummy ran-node r2 so that the game is in CF.
Fig. (2b): solving game G[t] with total order t = [r3r1r2]. Arcs between control nodes are added
according to t. Forcing strategies for m and M , and optimal strategy for nodes mi are shown with
dashed edge. Hence, the forcing set of 1 is {1}, for 2 it is {2, M}, and {3, m} for 3.
Table: a run of Algorithm 4. The values of the ran-nodes and the min-control nodes are given in
the order from left to right.

STACS 2019

9:10 Solving SSG with Few Random Nodes Faster Using Bland’s Rule

Here are basic properties on G[t] which should explain why we consider this game.

I Lemma 17.
(i) if G has stopping max-strategy, so does G[t];
(ii) optimal values Val∗,∗(i) of control nodes i ∈ [1, k] in G[t] are nondecreasing along t;
(iii) optimal strategies in G[t] coincide with forcing strategies for order t on Vmax ∪ Vmin;
(iv) the game G[t] can be solved in polynomial time.

Proof. To see why (i) is true, just note that since t is an antisymmetric relation, this does
not create new cycles among min-nodes.

Suppose now that (i, j) ∈ t. By optimality for the min player, and since G[t] is stopping,
Val∗,∗(i) is the minimum value of Val∗,∗(x) for all outneighbours x of i (see Th. 5). Since j
is an outneighbour of i in G[t], we have Val∗,∗(i) ≤ Val∗,∗(j). Hence (ii) is true.

Now, consider replacing in G[t] every control node i ∈ [1, k] by a new sink si with value
Val∗,∗(i). Clearly the values of this new game remain the same. But, by construction of G[t],
random nodes have no incoming arcs and they could be as well removed without changing
the optimal values on Vmax ∪ Vmin. By reducing the game in this way, we get a deterministic
game whose optimal values on Vmax ∪ Vmin are the same as those of G[t]. By definition,
optimal strategies of this game are t-forcing strategies, hence (iii) is true.

Finally, to solve G[t] we can choose a couple (σt, τt) of t-forcing strategies and search for
optimal strategies in G[t] that match with (σt, τt) on Vmax ∪ Vmin. Hence, the strategy of all
max-nodes is fixed, and only min-strategies on control nodes are computed by solving a one
player SSG. It can be done in polynomial time by linear programming (see [11]). J

As explained in the proof above, to solve G[t], it is enough to compute t-forcing strategies
on Vmax ∪ Vmin, which can be done in linear time, and then to solve a one player SSG with
only O(k) nodes.

4.2 Value intervals and pivot
In what follows, we write Val[t] for the vector of optimal values of G[t].

I Definition 18 (Constrained control node). We say that a control node i ∈ [1, k] is constrained
in G[t] if Val[t](i) < Val[t](ri).

Constrained control nodes are similar to switchable nodes in SSG. In fact, we can
characterize optimality of an order by the absence of constrained node as follows.

I Lemma 19 (Optimal order). Let t ∈ T (t). The game G[t] does not have any constrained
control nodes if and only if the forcing strategies (σt, τt) are optimal strategies for G. In this
case we say that t is an optimal order for G.

Proof. First note that since G is in CF, σt is always stopping.
If G[t] does not have any constrained control nodes, then optimal strategies are the

forcing strategies (σt, τt) on Vmax ∪Vmin, together with the choice (i, ri) for each control node
i ∈ [1, k]. Then, by merging the control nodes with their associated random node while
removing the unused arcs between the control nodes (hence recovering the initial game G),
the values on the remaining nodes are kept, and so are the optimality conditions of Th. 5.

If (σt, τt) are optimal strategies for G, then the values v1, v2, . . . , vk of the ran-nodes
are nondecreasing along order t. Hence, by turning G into G[t] and extending strategies
(σt, τt) with the choice (i, ri) for each control node i ∈ [1, k], we will obtain values that
satisfy optimality conditions and such that V al[t](i) = V al[t](ri), showing that i is not
constrained. J

D. Auger, P. Coucheney, and Y. Strozecki 9:11

We define the value interval of a control node i ∈ [1, k] as the set of j ∈ [1, k] that share
the same optimal value in G[t], i.e. Val[t](i) = Val[t](j). This set is indeed an interval in
order t by (ii) of Lemma 17, i.e. its elements are consecutive in order t.

I Definition 20. The pivot operation on a control node i ∈ [1, k] for the order t is the
transformation of t into a new order t′ ∈ T (k), obtained by moving i just after the end of its
value interval in t.

Note that if i is the last node of its value interval, then the pivot operation does nothing.
Also note that if i is constrained, it cannot be the last node of its value interval (we shall
only pivot on constrained control nodes).

Example. Let k = 7 and let t be in ascending order [7, 2, 4, 1, 3, 6, 5]. Suppose that the
values of control nodes are, in this order [0.2, 0.2, 0.3, 0.3, 0.3, 0.4, 0.4]. The value intervals
are [7, 2], [4, 1, 3] and [6, 5]. The pivot operation on 4 places 4 after 3, so that the obtained
order would be [7, 2, 1, 3, 4, 6, 5].

The following theorem shows that the pivot operation increases the value vector, which
will enable us to design a strategy improvement algorithm on the forcing strategies (where the
improvement is on Val[t] rather than on values in the original game G). A similar theorem is
proved in [12] to build a different strategy improvement algorithm.

I Theorem 21. Let t ∈ T (t) and i ∈ [1, k] be a constrained control node. If t′ is obtained
from t ∈ T (k) by pivoting on i, then Val[t′] > Val[t].

Proof. Consider a new game G[t+ t′] which is obtained from G like G[t] and G[t′] but with
arcs (i, j) for i 6= j between control nodes for all (i, j) ∈ t ∪ t′. Let (σ, τ) and (σ′, τ ′) be
respective optimal strategies in G[t] and G[t′]. We can interpret these strategies as strategies
in G[t+ t′]. Since the only difference between G[t], G[t′] and G[t+ t′] are the arcs between
control nodes, all strategies (σ, τ) give exactly the same values in G[t] and in G[t+ t′], and a
similar observation can be made for G[t′]. Hence, to prove the result, is is enough to show
that Valσ′,τ ′ > Valσ,τ in G[t + t′]. Note that whereas σ and σ′ are respective stopping
max-strategies of G[t] and G[t′], they could be not stopping in G[t+ t′]. However it is not
difficult to see that conclusion of Th. 9 would still apply. Hence it is sufficient to show in
G[t+ t′] that changing (σ, τ) into (σ′, τ ′) makes a nondecreasing switch on every node, and
is increasing in at least one node.

In the order t, let I = [i, i1, i2, · · · , i`], with ` ≥ 1 be the increasing sequence of consecutive
nodes sharing the same value as i for (σ, τ) (i.e. the value interval of i, starting from i).
Since i is constrained, ` ≥ 1.

The pivot operation transforms this part of t into [i1, i2, · · · , i`, i], hence the only differ-
ences between G[t] and G[t′] are the ` arcs (i, ic) for 1 ≤ c ≤ ` that are inverted into (ic, i).
Hence, if j 6∈ I, it keeps the same position relatively to all other control nodes when we
change the order t into t′, hence For[t](j) = For[t′](j). Hence, when we change (σ, τ) to
(σ′, τ ′), either there is no switch in For[t](j), or it is between nodes of the same values.

For nodes x ∈ For[t](j) with j ∈ I, clearly σ′(x) (resp. τ ′(x)) is in some For[t](j′) with
j′ ∈ I. Since all these nodes also share the same value (by definition of the value interval),
these switches are also between nodes of same values.

Suppose that there is a decreasing switch on a control node, i.e. for a j ∈ [1, k] we have
Val[t](τ ′(j)) < Val[t](j). In this case τ ′(j) should be stricly before j in t since optimal values
are increasing along t. So we could not have (j, σ′(j)) ∈ t but should have (j, σ′(j)) ∈ t′.
The only possibility is σ′(j) = i and j ∈ I. Since these nodes are in the same value interval,
once again this switch is unchanging, a contradiction.

STACS 2019

9:12 Solving SSG with Few Random Nodes Faster Using Bland’s Rule

We showed that no switch from (σ, τ) to (σ′, τ ′) is decreasing. Now consider the case of
i during the pivot operation. Since i is constrained, Val[t](i) < Val[t](ri). Since τ ′(i) can
either be equal to ri or to some j which is striclty after the value interval of i in order t,
hence has a greater value, we see that the switch at i must be increasing. J

4.3 Main algorithm
Algorithm 4 consists in iterating on orders t ∈ T (k), by picking randomly a pivotable element
in t and updating t by a pivot on i, until we reach an optimal order.

Here is the pivot selection rule. First, prior to the execution of the algorithm, we
choose randomly and uniformly an order Θ on the set of all k(k−1)

2 unordered pairs of control
nodes {i, j}, with i, j ∈ [1, k]. Then, at each step of the algorithm, consider the game G[t],
and remove one by one the arcs between control nodes, following order Θ. During this
process, choose as pivot the first constrained control node, if any, which is disconnected from
the following nodes of its value interval. In more detail, for a given order t, compute Val[t]
and then partition the control nodes into value intervals. Each constrained control node i
has d(i) arcs leading to other control nodes from the same value interval, where d(i) is its
distance in t to the last element of this interval. Enumerating Θ in ascending order, the
pivot is the first constrained node i whose d(i) arcs are encountered.

Example. Continued from the previous example with k = 7 and value intervals [7, 2],
[4, 1, 3] and [6, 5]. Suppose that the order Θ starts {2, 5}, {7, 6}, {1, 4}, {2, 7} The first
element that is disconnected from its value interval is 7 which is the one we choose as a pivot
leading to order [2, 7, 4, 1, 3, 6, 5].

Algorithm 4: Iterative version for Bland’s rule on random nodes.
input :G SSG, initial total order t ∈ T (k).
output : optimal max and min-strategies.

· pick randomly and uniformly a total order Θ on all pairs of control nodes {i, j}
· compute values in G[t] (poly. time, see Lemma 17)
while t is not optimal (Lemma 19) do
· choose a pivot i by the pivot selection rule
· update t by pivoting on i as in Def. 20
· compute values in G[t] (poly. time, see Lemma 17)

return a couple of forcing strategies for order t in G.

By Th. 21, no order t ∈ T (k) is repeated during the execution of Algorithm 4; since T (k)
is finite, the algorithm reaches in a finite number of steps an order t∗ ∈ T (k) which has no
constrained node, i.e. which is optimal by Lemma 19. Hence, Algorithm 4 computes optimal
strategies for G in at most k! steps. However, we claim the following result, which will be
proved in the next section.
I Theorem 22. Alg. 4 computes optimal strategies for G in at most e

√
2·k expected steps.

Note that for k large enough we have e
√

2·k < k!, whose growth is roughly equivalent to
2k log k. Moreover, the algorithm uses O(k2 log k) random bits to choose the order Θ on pairs.

5 Analysis of Algorithm 4

In this section we prove Theorem 22. To do this we shall reformulate Algorithm 4 as a
recursive algorithm, but we need additional notions for this. The recursive formulation also

D. Auger, P. Coucheney, and Y. Strozecki 9:13

reveals the nature of the algorithm: it computes an optimal order on control nodes by finding
the right order between each pair of these nodes using dichotomy. This allows the same
analysis as for Ludwig’s Algorithm and its variants.

5.1 Modified game G[p] for a pretotal order p

If p ∈ P(k) is a pretotal order, we define G[p] exactly as was defined G[t] for a total order
t ∈ T (k) in Section 4.1. The only difference is that, since p is not total, a control node
i ∈ [1, k] only has arcs to those j 6= i ∈ [1, k] such that (i, j) ∈ p.

To simplify notation, for any node x in G[p], define Val∗[p](x) := ValG[p]
∗,∗ (x) as the optimal

value of x in G[p]. We can now directly extend some of the observations of Lemma 17 to
pretotal orders.

I Lemma 23. If p ∈ P(k), then optimal values of control nodes i ∈ [1, k] in G[p] are
nondecreasing in order p, i.e. if (i, j) ∈ p then Val∗[p](i) ≤ Val∗[p](j).

In order to solve G[p], the algorithm will recursively compute an optimal total ordering of
control nodes i ∈ [1, k] extending p. Thus, for all total orders t ∈ T (k) extending p ∈ P(k),
we need to assign a value in G[p], which we denote Val[p](t). Here is how we define it.

I Definition 24. Let t ∈ T (k) extending p ∈ P(k). The values Val[p](t) associated to t in
G[p] are the values Valσt,τt

where σt and τt satisfy:
(i) σt and τt are forcing strategies for G[t];
(ii) τt statisfies the min-optimality conditions (Thm. 5) on every control node i ∈ [1, k].

As a summary, Val∗[p] is the vector of optimal values of game G[p] while Val[p](t) is the
vector of optimal values of G[p] when the strategies in Vmin and Vmax are forcing strategies.
It follows that Val[p](t) ≤ Val∗[p]. Recall that Val[t] is the vector of optimal values of G[t].
Then we have Val[t] = Val∗[t] = Valt.

I Definition 25 (Optimal order). Let p ∈ P(k) and t ∈ T (k) extending p (p ⊂ t). We say
that t is an optimal total order for p if Val∗[p] = Val[p](t).

The next lemma proves the existence and gives a characterization of optimal orders.

I Lemma 26. Suppose G is in CF and let p ∈ P(k), t ∈ T (k), p ⊂ t. Then the following
conditions are equivalent:
(i) t is an optimal order for p;
(ii) t is a nondecreasing ordering of the values Val∗[p](i) for i ∈ [1, k];
(iii) Val∗[p] = Val[t].

Proof of Lemma 26. First, note that, by definition, optimality conditions are satisfied at
control nodes in the definition of Val[p](t), so it is always true that values Val[p](t)(i) are
nondecreasing along p.

Suppose now that t is optimal for p, i.e. Val∗[p] = Val[p](t), and suppose that t is not
a nondecreasing ordering of the values Val∗[p](i) for i ∈ [1, k]. Then there must be two
consecutive i, j in order t such that Val∗[p](i) > Val∗[p](j), and we must have (i, j) ∈ t \ p.
Consider the order t′ that we obtain from t by inverting j and i. Clearly, this order also
extends p since the only inversion between t and t′ is (i, j). By an argument similar to
the proof of Theorem 21, it is easy to obtain that Val[p](t′) > Val[p](t), which contradicts
optimality. Hence we proved (i)⇒ (ii).

Now suppose (ii). Let (σ∗, τ∗) be an optimal strategy of G[p]; we show that optimality
conditions are met in G[t]. First note that (σ∗, τ∗) has the same values in G[p] and G[t].
For the nodes in Vmax ∪ Vmin, no new arcs are added so the optimality conditions are still

STACS 2019

9:14 Solving SSG with Few Random Nodes Faster Using Bland’s Rule

satisfied. Now, consider control nodes. An arc (i, j) ∈ t\p cannot lead to a lower value for
i by assumption (ii). Hence the optimality conditions are still satisfied on control nodes,
strategies (σ∗, τ∗) are optimal for G[t], so finally Val∗[p] = Val[t] and we proved (ii)⇒ (iii).

Since t involves more arcs than p between the control min-nodes, we have Val[t] ≤
Val[p](t) ≤ Val∗[p]. Assume (iii), then Val∗[p] = Val[p](t). Hence we proved (iii)⇒ (i). J

5.2 Recursive formulation
We now give Algorithm 5, a recursive formulation of Algorithm 4. We will prove that these
two algorithms compute exactly the same sequence of total orders, and use the recursive
formulation to derive a bound.

Algorithm 5: Recursive version for Bland’s rule on random nodes.
input :G SSG, order Θ on all pairs {i, j} with i 6= j ∈ [1, k], initial total order t0 in

T (k) extending a pretotal order p0 ∈ P(k).
output : optimal total order of G[p0]

if p0 is total (i.e. p0 = t0) then return t0
else
· select according to Θ the last pair {i, j} s.t. (i, j) ∈ t0 \ p0
· let p1 = p0 + (i, j) and p2 = p0 + (j, i)
· recursively solve G[p1] with initial order t0, giving optimal total order t1 for
G[p1]

if t1 is optimal for G[p0] (apply criterium in Lemma 26) then return t1
else
· let t2 be the total order obtained by pivoting in t1 along i
· recursively solve G[p2] with initial order t2, giving optimal order t∗ for G[p1]
return t∗.

I Definition 27. Let p0 ∈ P(k) and {i, j} /∈ p0 such that p1 = p0 + (i, j) is still a pretotal
order. We say that the addition of (i, j) to p0 is constraining, or that (i, j) is constrained, if
Val∗[p1] < Val∗[p0].

When an arc is constrained, it is essential to the min-optimal strategy in G[p1]; in other
words removing this arc would increase optimal values.

I Lemma 28. Suppose G is in CF and let p ∈ P(k), t ∈ T (k), p ⊂ t. Then the following
conditions are equivalent:
(i) t is an optimal ordering for p;
(ii) the addition of every arc (i, j) ∈ t \ p to p is not constraining;

Proof of Lemma 28. Let p1 = p0 + (i, j). Since p ⊂ p1 ⊂ t, we have Val[t] ≤ Val∗[p1] ≤
Val∗[p].

Assume that t is an optimal order for p. If the addition of (i, j) to p is constraining,
then Val∗[t] ≤ Val∗[p1] < Val∗[p] which contradicts Val[t] = Val∗[p] by Lemma 26. Hence we
proved (i)⇒ (ii).

Assume that no arc in t\p is constraining. Then, add sequentially arcs in t\p to G[p]
until we get G[t], hence forming a sequence of games G[p] = G[p0], G[p1], . . . , G[t]. If none of
these arcs is used in G[t] then Val[t] = Val∗[p] and (i) is proved. Otherwise consider the first

D. Auger, P. Coucheney, and Y. Strozecki 9:15

arc (i, j) such that Val∗[p` + (i, j)] < Val∗[p`]. This implies that Val∗[p`](j) < Val∗[p`](i).
But Val∗[p] = Val∗[p`] since no constraining arc has been added until step `. Hence
Val∗[p](j) < Val∗[p](i), and finally (i, j) is constraining for p, a contradiction. J

Consider a run of the recursive algorithm and let t be a total order at any step of the
run. Let us inspect the first time where t is modified. Order t will be optimal for a sequence
of pretotal orders that are obtained from t by removing one by one pairs in order Θ as long
as they are not constrained. This in fact amounts to ascending the recursive call tree. Let
(i, j) be the first constrained pair and p0 the pretotal order obtained once (i, j) is removed.
Then t is turned into t′ by pivoting on node i as we did in iterative Alg. 4. We show now
that control node i is same as the pivot selected by the pivot selection rule.

Note first that, during the process of removing the pairs one by one in order Θ, the value
intervals of G[t] are kept unchanged until the pretotal order p0 + (i, j) is reached. Since
removing (i, j) implies an increase of the optimal values, it means that i and j were in the
same value interval and that i had no other neighbour in that interval. Note here that, as a
consequence, p0 + (j, i) is then guaranteed to be a pretotal order. Clearly, node i is the first
control node in that situation. So the choice of node i exactly obeys the pivot selection rule.

Finally, the following lemma enables us to analyze the complexity of Algorithm 5.

I Lemma 29. Let p0 ∈ P(k) and {i, j} /∈ p0 such that p1 = p0 + (i, j) and p2 = p0 + (j, i)
are pretotal orders and where the addition of (i, j) to p0 is constraining. Let t1 be an optimal
total order for p1, t2 obtained from t1 by pivoting in i, and let t∗2 be an optimal total order
for p2.

Let (i1, j1) such that Val∗[p0 + (i, j)] 6≤ Val∗[p0 + (i1, j1)]. Then for any total order t
obtained by Algorithm 5 between t1 and t∗2 (including those), one has (j1, i1) ∈ t.

Proof. Suppose that (i1, j1) ∈ t. Then t ⊃ p0 + (i1, j1) hence Val[t] ≤ Val∗[p0 + (i1, j1)].
On the other hand, since the pivot operation is increasing values, we have Val∗[p0+(i, j)] =

Val[t1] < Val[t2] ≤ Val[t], so Val∗[p0 + (i, j)] ≤ Val∗[p0 + (i1, j1)], a contradiction. J

Using this result, the proof for the complexity bound is the same as the proof of Theorem
10 using the recursive formulation. Let fΘ(G, p0, t0) be the total number of pivots performed
by Algorithm 5 on input G, p0, t0 for an order Θ on pairs.

Now define Φ(m) = supG,p0,t0 E
Θ [fΘ(G, p0, t0

]
) where the supremum is taken over all

games G, pretotal orders p0 and total orders t0 extending p0 such that t0 \ p0 is of size at
most m. The expectation is taken over all possible uniform choices for Θ.

Then by Lemma 29, Φ(m) will satisfy Lemma 12, hence the claimed bound of Th. 22 by
Lemma 13 since the depth of the recursive tree is at most k(k−1)

2 .

References
1 Daniel Andersson, Kristoffer Arnsfelt Hansen, Peter Bro Miltersen, and Troels Bjerre Sørensen.

Deterministic graphical games revisited. In Conference on Computability in Europe, pages
1–10. Springer, 2008.

2 Daniel Andersson and Peter Bro Miltersen. The complexity of solving stochastic games on
graphs. In International Symposium on Algorithms and Computation, pages 112–121. Springer,
2009.

3 David Auger, Pierre Coucheney, and Yann Strozecki. Finding optimal strategies of almost
acyclic simple stochastic games. In International Conference on Theory and Applications of
Models of Computation, pages 67–85. Springer, 2014.

4 Robert G Bland. New finite pivoting rules for the simplex method. Mathematics of operations
Research, 2(2):103–107, 1977.

STACS 2019

9:16 Solving SSG with Few Random Nodes Faster Using Bland’s Rule

5 Cristian S Calude, Sanjay Jain, Bakhadyr Khoussainov, Wei Li, and Frank Stephan. Deciding
parity games in quasipolynomial time. In Proceedings of the 49th Annual ACM SIGACT
Symposium on Theory of Computing, pages 252–263. ACM, 2017.

6 Krishnendu Chatterjee, Luca de Alfaro, and Thomas A Henzinger. Termination criteria for
solving concurrent safety and reachability games. In Proceedings of the twentieth annual
ACM-SIAM symposium on Discrete algorithms, pages 197–206. SIAM, 2009.

7 Krishnendu Chatterjee and Nathanaël Fijalkow. A reduction from parity games to simple
stochastic games. In GandALF, pages 74–86, 2011.

8 Taolue Chen, Vojtěch Forejt, Marta Kwiatkowska, David Parker, and Aistis Simaitis. Automatic
verification of competitive stochastic systems. Formal Methods in System Design, 43(1):61–92,
2013.

9 Taolue Chen, Marta Kwiatkowska, Aistis Simaitis, and Clemens Wiltsche. Synthesis for multi-
objective stochastic games: An application to autonomous urban driving. In International
Conference on Quantitative Evaluation of Systems, pages 322–337. Springer, 2013.

10 Anne Condon. On Algorithms for Simple Stochastic Games. In Advances in computational
complexity theory, pages 51–72, 1990.

11 Anne Condon. The complexity of stochastic games. Information and Computation, 96(2):203–
224, 1992.

12 Decheng Dai and Rong Ge. New results on simple stochastic games. In International Symposium
on Algorithms and Computation, pages 1014–1023. Springer, 2009.

13 Kousha Etessami and Mihalis Yannakakis. On the complexity of Nash equilibria and other
fixed points. SIAM Journal on Computing, 39(6):2531–2597, 2010.

14 Oliver Friedmann. An exponential lower bound for the parity game strategy improvement
algorithm as we know it. In Logic In Computer Science, 2009. LICS’09. 24th Annual IEEE
Symposium on, pages 145–156. IEEE, 2009.

15 Hugo Gimbert and Florian Horn. Simple stochastic games with few random vertices are
easy to solve. In Foundations of Software Science and Computational Structures, pages 5–19.
Springer, 2008.

16 Nir Halman. Simple stochastic games, parity games, mean payoff games and discounted payoff
games are all LP-type problems. Algorithmica, 49(1):37–50, 2007.

17 Thomas Dueholm Hansen and Uri Zwick. An improved version of the Random-Facet pivoting
rule for the simplex algorithm. In Proceedings of the forty-seventh annual ACM symposium on
Theory of computing, pages 209–218. ACM, 2015.

18 Alan J Hoffman and Richard M Karp. On nonterminating stochastic games. Management
Science, 12(5):359–370, 1966.

19 Rasmus Ibsen-Jensen and Peter Bro Miltersen. Solving simple stochastic games with few coin
toss positions. In European Symposium on Algorithms, pages 636–647. Springer, 2012.

20 Gil Kalai. A subexponential randomized simplex algorithm. In Proceedings of the twenty-fourth
annual ACM symposium on Theory of computing, pages 475–482. ACM, 1992.

21 Walter Ludwig. A subexponential randomized algorithm for the simple stochastic game
problem. Information and computation, 117(1):151–155, 1995.

22 Lloyd S Shapley. Stochastic games. Proceedings of the National Academy of Sciences of the
United States of America, 39(10):1095, 1953.

23 Colin Stirling. Bisimulation, modal logic and model checking games. Logic Journal of IGPL,
7(1):103–124, 1999.

24 Rahul Tripathi, Elena Valkanova, and VS Anil Kumar. On strategy improvement algorithms
for simple stochastic games. Journal of Discrete Algorithms, 9(3):263–278, 2011.

Distributed Coloring of Graphs with an Optimal
Number of Colors
Étienne Bamas
School of Computer and Communication Sciences, École Polytechnique Fédérale de Lausanne,
Switzerland
etienne.bamas@epfl.ch

Louis Esperet
Laboratoire G-SCOP (CNRS, Univ. Grenoble Alpes), Grenoble, France
louis.esperet@grenoble-inp.fr

Abstract
This paper studies sufficient conditions to obtain efficient distributed algorithms coloring graphs
optimally (i.e. with the minimum number of colors) in the LOCAL model of computation. Most
of the work on distributed vertex coloring so far has focused on coloring graphs of maximum
degree ∆ with at most ∆ + 1 colors (or ∆ colors when some simple obstructions are forbidden).
When ∆ is sufficiently large and c ≥ ∆ − k∆ + 1, for some integer k∆ ≈

√
∆ − 2, we give a

distributed algorithm that given a c-colorable graph G of maximum degree ∆, finds a c-coloring
of G in min{O((log ∆)13/12 logn), 2O(log ∆+

√
log logn)} rounds, with high probability. The lower

bound ∆− k∆ + 1 is best possible in the sense that for infinitely many values of ∆, we prove that
when χ(G) ≤ ∆− k∆, finding an optimal coloring of G requires Ω(n) rounds. Our proof is a light
adaptation of a remarkable result of Molloy and Reed, who proved that for ∆ large enough, for
any c ≥ ∆ − k∆ deciding whether χ(G) ≤ c is in P, while Embden-Weinert et al. proved that
for c ≤ ∆ − k∆ − 1, the same problem is NP-complete. Note that the sequential and distributed
thresholds differ by one.

Our first result covers the case where the chromatic number of the graph ranges between ∆−
√

∆
and ∆ + 1. Our second result covers a larger range, but gives a weaker bound on the number of
colors: For any sufficiently large ∆, and Ω(log ∆) ≤ k ≤ ∆/100, we prove that every graph of
maximum degree ∆ and clique number at most ∆− k can be efficiently colored with at most ∆− εk
colors, for some absolute constant ε > 0, with a randomized algorithm running in O(logn/ log logn)
rounds with high probability.

2012 ACM Subject Classification Mathematics of computing → Graph coloring; Mathematics of
computing → Graph algorithms; Theory of computation → Distributed algorithms

Keywords and phrases Graph coloring, distributed algorithm, maximum degree

Digital Object Identifier 10.4230/LIPIcs.STACS.2019.10

Related Version The full version of the paper [1] is available at arXiv:1809.08140.

Funding Louis Esperet: Partially supported by ANR Project GATO (anr-16-ce40-0009-01) and
LabEx PERSYVAL-Lab (anr-11-labx-0025).

Acknowledgements We thank David Harris for pointing out the updated version of [11] and for his
kind remarks on earlier versions of the paper. We also thank two anonymous reviewers for their
detailed comments and suggestions.

1 Introduction

The graph coloring problem plays an important role in distributed computing, since it is
used as a subroutine in distributed algorithms for a large variety of problems (see the recent
survey book of Barenboim and Elkin [2] for more details and further references). The central
problem in distributed coloring is the (∆ + 1)-coloring problem, where a graph of maximum

© Étienne Bamas and Louis Esperet;
licensed under Creative Commons License CC-BY

36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019).
Editors: Rolf Niedermeier and Christophe Paul; Article No. 10; pp. 10:1–10:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:etienne.bamas@epfl.ch
https://orcid.org/0000-0001-6200-0514
mailto:louis.esperet@grenoble-inp.fr
https://doi.org/10.4230/LIPIcs.STACS.2019.10
https://arxiv.org/pdf/1809.08140
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

10:2 Distributed Coloring of Graphs with an Optimal Number of Colors

degree at most ∆ has to be colored with at most ∆ + 1 colors (see [10] and [5] for the
fastest deterministic and randomized algorithms to date and more on the history of the
problem). The bound ∆ + 1 on the number of colors is best possible in general, but it
follows from Brooks’ Theorem that any connected graph of maximum degree ∆ which is
neither an odd cycle nor a complete graph can indeed be colored with ∆ colors, instead of
∆ + 1, and there has been some work to find fast distributed algorithms coloring such graphs
with ∆ colors. The problem was first considered by Panconesi and Srinivasan [18], and it
was recently proved in [12] that the ∆-coloring problem can be solved with a randomized
algorithm running in O(log ∆) + 2O(

√
log logn) rounds when ∆ ≥ 4, or O((log logn)2) rounds

when ∆ is a constant. On the other hand, it was proved in [4] that a randomized algorithm
solving the ∆-coloring problem needs Ω(log logn) rounds. These results, as well as all the
other algorithms mentioned in this paper, are proved in the LOCAL model of computation
(see below for more details).

The main idea of ∆-coloring is that by forbidding some simple obstructions (complete
graphs and odd cycles), we can save one color (compared with the easier (∆ + 1)-coloring
problem) while still having a fast algorithm, whether sequential or distributed. A natural
question is: can we go further? Is there some small set of obstructions (that can be
easily recognized locally, at least when ∆ is sufficiently large), such that if we forbid these
obstructions we can find fast distributed algorithms coloring graphs of maximum degree ∆
with ∆− 1 colors? Or ∆− 2 colors? Or ∆− k colors, for some constant k?

The sequential version of this question turned out to have a very precise answer. For any
∆, let k∆ be the maximum integer k such that (k + 1)(k + 2) ≤ ∆. It can be checked that
k∆ = b

√
∆ + 1/4 − 3/2c and thus

√
∆ − 3 < k∆ <

√
∆ − 1. The following was proved by

Embden-Weinert, Hougardy and Kreuter [8].

I Theorem 1.1 ([8]). For 3 ≤ c ≤ ∆− k∆ − 1, we cannot test for c-colorability of graphs
with maximum degree ∆ in polynomial time unless P = NP.

The following strong converse was then proved by Molloy and Reed [17].

I Theorem 1.2 ([17]). For sufficiently large (but constant) ∆, and every c ≥ ∆− k∆, there
is a linear time deterministic algorithm to test whether graphs of maximum degree ∆ are
c-colorable. Furthermore, there is a polynomial time deterministic algorithm that will produce
a c-coloring whenever one exists.

Our main result will be to prove that a similar dichotomy occurs in the LOCAL model,
with a slightly larger tractability threshold (∆− k∆ + 1 instead of ∆− k∆).

I Theorem 1.3. For sufficiently large ∆, and any c ≥ ∆− k∆ + 1, there is a distributed ran-
domized algorithm running w.h.p. in min{O((log ∆)13/12 logn), 2O(log ∆+

√
log logn)} rounds,

that takes a graph G with maximum degree ∆ as input, and does the following: either some
vertex outputs a certificate that G is not c-colorable, or the algorithm finds a c-coloring of G.

Here, w.h.p. (with high probability) means with probability at least 1 − O(n−α), for
any fixed α > 0. Note that the chromatic number of G can be smaller than the threshold
∆− k∆ + 1, what matters is that the number c of available colors is at least this threshold.
We will prove that the value of ∆− k∆ + 1 is sharp, in the following sense.

I Theorem 1.4. When c ≤ ∆ − k∆ − 1 (for any value of ∆), and when c = ∆ − k∆ (for
infinitely many values of ∆), there exist arbitrarily large graphs G of maximum degree ∆
for which χ(G) = c, and such that any distributed algorithm coloring G with c colors takes
Ω(n/∆) rounds.

É. Bamas and L. Esperet 10:3

In the LOCAL model of computation, if the algorithm runs in r rounds, the color assigned
to a vertex v is based only on the (subgraph induced by the) vertices at distance at most
r from v. The fact that when c ≥ ∆− k∆ + 1, it can be decided whether G is c-colorable
by only looking at each neighborhood was already proved by Molloy and Reed [17] (see
Theorem 4.1). In this paper, we are mostly interested in producing such a coloring in a
distributed way, and it is a priori unclear that it can be done in a small number rounds.
For instance, in the LOCAL model it can be decided in a single round whether a graph has
maximum degree at most two (and is therefore 3-colorable), but finding a 3-coloring of a
path takes an unbounded number of rounds [15].

An interesting difference between Theorems 1.3 and 1.2 (besides the fact that the
sequential and distributed thresholds are not the same), is that in the sequential result it
is important that ∆ is a constant. If ∆ depends on n, then Molloy and Reed [17] proved
that the tractability threshold is around ∆ − Θ(log ∆) colors. On the other hand, in the
distributed setting there is no requirement on ∆.

It should be mentioned that efficient distributed coloring algorithms involving the chro-
matic number are not frequent. A rare example of such an algorithm involving a general
class of graphs (not just paths or cycles, or line-graphs for instance) is the following result of
Schneider and Wattenhofer [20]: when ∆ = Ω(log1+1/ log∗ n n) and χ = O(∆/ log1+1/ log∗ n n),
they find a randomized distributed algorithm coloring graphs of maximum degree ∆ and
chromatic number χ with at most (1 − 1/O(χ))∆ colors w.h.p., and running w.h.p. in
O(logχ + log∗ n) rounds. Two significant differences with our result are the requirement
on ∆ and the fact that the number of colors in the resulting coloring is not best possible.
We also note that in the setting of Theorem 1.2 and Theorem 1.5 below, the chromatic
number is an additive factor away from the maximum degree, while the result of Schneider
and Wattenhofer [20] mentioned above asks for a much larger (multiplicative) gap between χ
and ∆.

Theorem 1.3 covers in particular the situation where χ(G) ≥ ∆−
√

∆ + 1 (and in this
case, gives an efficient algorithm to obtain an optimal coloring of the graph). Recall that
Brooks’ theorem (and its algorithmic variants) colors graphs of maximum degree ∆ ≥ 3
distinct from K∆+1 (or equivalently, with clique number at most ∆) with at most ∆ colors.
Our next result generalizes the algorithmic versions of Brooks’ theorem in the following
direction.

I Theorem 1.5. There exists ∆0 > 0 such that for every ∆ ≥ ∆0 and 259 log ∆ ≤ k ≤ ∆
100 ,

there exists a randomized distributed algorithm that given an n-vertex graph of maximum
degree ∆, does the following: either some vertex outputs a clique of size more than ∆− k if
such a clique exists, or the algorithm finds a coloring with at most ∆− 2−23k colors. The
round complexity is the minimum of O(log∆ n+logk ∆)+2O(

√
log logn) and 2O(log ∆+

√
log logn)

w.h.p., and in particular it is O(logn/ log logn) w.h.p.

We start with some preliminaries on distributed computing, probability, and graph theory
in Section 2. We then prove Theorem 1.5 in Section 3. It turns out that the proof of
Theorem 1.5 contains several ingredients that will be reused in the proof of Theorem 1.3. In
Section 4, we prove Theorem 1.4 and explain how to adapt the proof of Theorem 1.2 in [17]
to prove Theorem 1.3. We conclude with some remarks in Section 5.

STACS 2019

10:4 Distributed Coloring of Graphs with an Optimal Number of Colors

2 Preliminaries

2.1 Distributed computing
We consider the classical LOCAL model of computation, which is a distributed model in
which the network corresponds to the graph under consideration, i.e. each vertex of the graph
corresponds to a processor, with infinite computational power, and vertices can communicate
with their neighbors in synchronous rounds (in this model there is no restriction on the size
of the messages exchanged by two neighboring vertices during each round of communication).
Each vertex knows the number n of vertices and its own id (a distinct integer between 1 and
n). In this paper, the vertices also know the maximum degree ∆ of the graph, and some
number c of colors. Once the communication between the nodes is over, each vertex outputs
a value (in our case, an integer between 1 and c corresponding to its color in a proper coloring
of the graph, or some subset of its neighbors which cannot be colored with c colors). The
complexity of the algorithm is the number of rounds of communication.

2.2 Vertex coloring
A c-coloring of a graph G is an assignment of integers from {1, . . . , c} to the vertices of G
such that any two adjacent vertices receive distinct colors. The chromatic number χ(G) of G
is the least c such that G has a c-coloring.

In this paper it will be convenient to consider a slightly more general scenario, in which
the colors available for each vertex are not necessarily the same. A list-assignment L for G is
a collection of lists L(v) of colors, one for each vertex v of G. Given a list-assignment L, an
L-list-coloring of G is a coloring of G (i.e. any two adjacent vertices receive distinct colors,
as before), with the additional constraint that each vertex v is colored with a color from its
own list L(v). A simple greedy algorithm shows that if for each vertex v, |L(v)| ≥ dG(v) + 1
(where dG(v) denotes the degree of v in G), then G has an L-list-coloring. This is a very
useful generalisation of the fact that any graph of maximum degree ∆ is (∆ + 1)-colorable.

In this paper we will repeatedly use the following two important algorithmic results on
list-coloring. The first result was proved in [3]

I Theorem 2.1 ([3]). Let G be a graph of maximum degree ∆ and let L be a list-assignment
such that for any vertex v, |L(v)| − dG(v) ≥ 1. Then an L-list-coloring of G can be found by
a distributed randomized algorithm running in O(log ∆) + 2O(

√
log logn) rounds, w.h.p.

The following stronger result was then proved in [7].

I Theorem 2.2 ([7]). Let G be a graph of maximum degree ∆ and let L be a list-assignment
such that for any vertex v, |L(v)| − dG(v) ≥ ε∆, for some ε > 0. Then an L-list-coloring of
G can be found by a distributed randomized algorithm running in O(log(1/ε)) + 2O(

√
log logn)

rounds, w.h.p.

Note that Theorem 2.1 can be deduced from Theorem 2.2 by simply setting ε = 1/∆.
The setting in which these two results will be applied is the following. Let G be a graph

of maximum degree ∆ with a subset S of vertices that are colored with at most c colors. We
want to extend the c-coloring of S to a c-coloring of G (i.e. find a c-coloring of G that agrees
with the original coloring on S).

Let U = V (G)− S be the set of uncolored vertices, and for each vertex u ∈ U , let L(u)
be the subset of colors from 1, . . . , c that do not appear among the neighbors of u in S. Note

É. Bamas and L. Esperet 10:5

that extending the c-coloring of S to a c-coloring of G is the same as finding an L-list-coloring
of G[U], the subgraph of G induced by U .

Let us denote the degree of a vertex u ∈ U in G[U] by dU (u). The following simple
observation will be particularly useful in combination with Theorems 2.1 or 2.2.

I Observation 2.3. If u ∈ U has at least ` repeated colors in its neighborhood, then |L(u)| −
dU (u) ≥ c+ `− dG(u) ≥ c+ `−∆.

Note that this observation will sometimes be used without an explicit number of repeated
colors (i.e. ` = 0) and the statement above simply becomes |L(u)| − dU (u) ≥ c− dG(u).

2.3 Probabilistic tools
Consider a set X of independent random variables, and a set B = B1, . . . , Bn of (typically
bad) events, each depending on a subset of the variables from X. Consider the graph H
with vertex-set B, with an edge between two events if the set of variables they depend on
intersect. The graph H is called the event dependency graph. Let d ≥ 2 be the maximum
degree of H, and let p be the maximum probability of an event from B.

We will use the following algorithmic versions of the Lovász Local Lemma [6, 11].

I Theorem 2.4 ([6]). If epd2 < 1, then there is a distributed randomized algorithm, running
in H in O(log1/epd2(n)) rounds w.h.p., that finds a value assignment to the variables of X
such that no event from B holds.

I Theorem 2.5 ([11]). If 215pd8 < 1, then there is a distributed randomized algorithm,
running in H in 2O(log d+

√
log logn) rounds w.h.p., that finds a value assignment to the

variables of X such that no event from B holds.

It should be noted that in each subsequent application of Theorem 2.4 or 2.5, the event
dependency graph H will only be considered implicitly. The reason is that the variables
of X will be associated to the vertices of some other graph G, and the events from B

will correspond to connected subgraphs of G of constant radius. Thus, the outcomes of
Theorems 2.4 and 2.5 will be computed in G directly (the round complexity is then simply
multiplied by a constant, which does not change the asymptotic complexity).

We shall also use the following version of Talagrand’s inequality (see the appendix in [17]).

I Theorem 2.6 (Talagrand’s Inequality). Let X be a non-negative random variable whose
value is determined by n independent trials T1,. . . ,Tn and satisfying the following for some
c,r ≥ 0 :

changing the outcome of any one trial changes the value of X by at most c.
for any s, if X ≥ s then there is a set of at most rs trials whose outcomes certify X ≥ s.

Then for any t ≥ 0,

P
(
|X − E(X)| > t+ 20c

√
rE(X) + 64c2r

)
≤ 4 · exp

(
− t2

8c2r(E(X) + t)

)

2.4 The dense decomposition
The graph decomposition described in this section is due to Reed [19] (see also [16, 17]). A
somewhat similar (although not completely equivalent) decomposition was recently used by
Harris, Schneider, and Su [14] (see also [5]) in the context of distributed (∆ + 1)-coloring
algorithms.

STACS 2019

10:6 Distributed Coloring of Graphs with an Optimal Number of Colors

Consider a graph G = (V,E) of maximum degree ∆. We call a vertex d-dense if its
neighborhood has more than

(∆
2
)
− d∆ edges (note that d might depend on ∆). A vertex v

that is not d-dense is said to be d-sparse.

We say that S,X1, X2, . . . , Xt is a d-dense decomposition of G if each of the following
holds:
1. S,X1, X2, . . . , Xt partition V ;
2. every Xi has between ∆− 8d and ∆ + 4d vertices;
3. there are at most 8d∆ edges between Xi and V −Xi;
4. a vertex is adjacent to at least 3∆

4 vertices of Xi if and only if it is in Xi;
5. every vertex in S is d-sparse.

The sets Xi are called the dense components and S is called the sparse component. Note
that a simple consequence of (4) and (2) is that each dense component has diameter at most
2, provided that d ≤ ∆

8 . The proof of the following result is given in the full version of the
paper [1].

I Lemma 2.7. A d-dense decomposition of G can be constructed in O(1) rounds for every
d ≤ ∆

100 .

3 Graphs with small clique number

In this section we prove Theorem 1.5. We will need the following two results, whose proofs
are inspired from the proofs of Lemmas 10 and 16 in [17] (see also Section 10.3 in [16]).

I Lemma 3.1. Let G be a graph of (sufficiently large) maximum degree ∆ and let ` ≥
254 log ∆. Then there is a distributed randomized algorithm that finds a partial coloring of
G with ∆/2 colors in min{O(log∆ n), 2O(log ∆+

√
log logn)} rounds w.h.p., such that for each

uncolored vertex v with at least `∆ pairs of non-adjacent vertices in N(v), there are more
than 2−18` repeated colors in N(v).

I Lemma 3.2. Let S,X1, . . . , Xt be a 2−4k-dense decomposition of a graph G of maximum
degree ∆ ≥ 30k and clique number at most ∆− k. Then there is a distributed randomized
algorithm that extends any c-coloring of S with c ≥ ∆− k/48 colors to a c-coloring of G in
O(logk ∆) + 2O(

√
log logn) rounds, w.h.p.

We now explain how these two results can be combined to provide a proof of Theorem 1.5.
It should be mentioned that we have made no significant effort to optimize the various
constants appearing throughout the proof, and have chosen instead to focus on making the
proof as simple as possible. The proofs of Lemmas 3.1 and 3.2 can be found in the full
version of the paper [1].

Proof of Theorem 1.5. If G contains a clique on more than ∆− k vertices, it can be found
in O(1) rounds so we may assume in the remainder that G has clique number at most ∆− k.

We start by using Lemma 2.7 to compute a 2−4k-dense decomposition S,X1, X2, . . . , Xt

of G (note that we have 2−4k ≤ 2−4∆/30 ≤ ∆/100, as required). Let T be the vertices of S
with degree at least ∆− 2−5k in S. Since each vertex of v ∈ T is 2−4k-sparse, N(v) contains
at least(

∆− 2−5k

2

)
−
(

∆
2

)
+ 2−4k∆ ≥ 2−5k∆

pairs of non-adjacent vertices in S.

É. Bamas and L. Esperet 10:7

Using Lemma 3.1 with ` = 2−5k, we then obtain a partial coloring of S with at most
∆/2 ≤ ∆− 2−24k colors in min{O(log∆ n), 2O(log ∆+

√
log logn)} rounds w.h.p., such that each

uncolored vertex of T has more than 2−23k repeated colors in its neighborhood. Let U be
the set of uncolored vertices of S, and for each vertex of v ∈ U , let L(v) be the set of colors
from 1, . . . ,∆− 2−24k that do not appear in the neighborhood of v. We claim that

for each v ∈ U , |L(v)| − dU (v) ≥ 2−24k, (1)

where dU (v) denotes the number of neighbors of v in U , or equivalently the degree of v in
G[U].

To see why (1) holds, consider first the case v ∈ U − T . Observe that in this case v
has degree at most ∆− 2−5k in S, and thus (1) follows directly from Observation 2.3 with
c = ∆−2−24k, ` = 0, and dS(v) ≤ ∆−2−5k (which implies c−dS(v) ≥ ∆−2−24k−∆+2−5k ≥
2−24k).

Assume now that v ∈ U ∩ T . Since each uncolored vertex of T has more than 2−23d

repeated colors in its neighborhood, (1) follows directly from Observation 2.3 with c =
∆− 2−24k and ` = 2−23k (which implies c−∆ + ` = ∆− 2−24k−∆ + 2−23k = 2−24k). This
concludes the proof of (1).

It follows from (1) that we can use Theorem 2.2 with ε = 2−24k/∆ to extend the partial
coloring of S to all the vertices of S in O(log(∆/k)) + 2O(

√
log logn) rounds, w.h.p.

It remains to extend the coloring of S to the dense components X1, . . . , Xt. Using
Lemma 3.2, the coloring of S can then be extended to X1, . . . , Xt in O(log(∆/k)) +
2O(
√

log logn) rounds, w.h.p. It follows that the overall round complexity is the minimum
of O(log∆ n + logk ∆) + 2O(

√
log logn) and 2O(log ∆+

√
log logn). In particular, it is w.h.p.

O(logn/ log logn), for any value of ∆, which concludes the proof of Theorem 1.5. J

4 Graphs with chromatic number close to the maximum degree

In this section, we prove the main result of this paper.
We start with a sketch of the proof of Theorem 1.4 (the full proof is given in [1]), and then

explain how Theorem 1.3 can be deduced from appropriate parts of the proof of Theorem 1.2
in [17]. It should be noted that our assumption that c ≥ ∆ − k∆ + 1 makes the proof of
Theorem 1.3 significantly easier than the proof of Theorem 1.2 in [17], where the main
difficulty comes from the case c = ∆− k∆.

4.1 Reducers
A stable set, or independent set, is a set of pairwise non-adjacent vertices. A c-reducer in a
graph G is a subset D of vertices consisting of a clique C with c− 1 vertices and a disjoint
stable set S such that every vertex of C is adjacent to all of S but none of V (G)−D. Given
a graph G with a c-reducer D = (C, S), the graph H obtained from G by removing C and
identifying all the vertices of S into a single vertex is called the reduction of G with respect to
D. Note that G is c-colorable if and only if H is c-colorable, and thus c-reductions preserve
c-colorability and non-c-colorability.

Proof of Theorem 1.4 (Sketch). Let ∆ be an integer, and assume that either (1) c ≤
∆− k∆ − 1, or (2) c = ∆− k∆ and ∆ = (k∆ + 1)(k∆ + 2).

STACS 2019

10:8 Distributed Coloring of Graphs with an Optimal Number of Colors

For i ≥ 1, we define a graph Gi of maximum degree ∆ and a subset Ci of Gi inductively
as follows. G1 is the complete graph on c+ 1 vertices, and C1 is the set of vertices of G1. For
any i ≥ 2, Gi is obtained from Gi−1 by removing an arbitrary vertex vi−1 of Ci−1, adding a
stable set Si of size ∆− c+ 2 and a (c− 1)-clique Ci such that (1) each neighbor of vi−1 in
Gi−1 is adjacent to exactly one vertex of Si, and (2) each vertex of Si is adjacent to all the
vertices of Ci.

In order to make sure that the maximum degree of Gi is at most ∆, while performing
(1) we split as evenly as possible the degree of vi−1 between the vertices of Si (each edge
between vi−1 and some neighbor u in Gi−1 becomes an edge joining u and some vertex of
Si in Gi, and we want the degrees of the vertices of S to be as balanced as possible). Since
|Si| = ∆− c+ 2, each vertex of Ci has degree ∆ in Gi. Each vertex of Si must also have
degree at most ∆ so it can have up to ∆− c+ 1 neighbors in Gi−1. Since vi−1 has degree at
most ∆, and (∆ − c + 2)(∆ − c + 1) ≥ ∆, the edges incident to vi−1 in Gi−1 can be split
among the vertices of Si in such way that each vertex of Si has degree at most ∆ in Gi.

We now make a couple of remarks on Gi. It can be observed that Gi−1 is the reduction of
Gi with respect to some c-reducer, and since G1 is a clique on c+ 1 vertices and reductions
preserve c-non-colorability, Gi is not c-colorable. It is also easy to see that any proper
subgraph of Gi has chromatic number at most c and Gi has diameter at least n

2∆ , where n
denotes the number of vertices of Gi.

Let G be the graph obtained from Gi by deleting a single edge between a vertex of layer
i/2 (i.e. a vertex that was added at step i/2) and a vertex of layer i/2 + 1. As a proper
subgraph of Gi, G has maximum degree at most ∆ and chromatic number at most c, and it
can be checked that any ball of radius less than n

8∆ in Gi is isomorphic to a ball of the same
radius in G. Since Gi is not c-colorable, it follows from a classical observation of Linial [15],
that G cannot be colored optimally (i.e. with c colors) in less than n

8∆ rounds. J

4.2 Overview of the proof of Theorem 1.3
We start by considering the first part of the statement of Theorem 1.3: if G is not c-colorable,
then some vertex is supposed to output a certificate that G is not c-colorable. In order to do
so, we will use the following result of Molloy and Reed (Theorem 5 in [17]).

I Theorem 4.1. For sufficiently large ∆, and for c ≥ ∆− k∆ + 1, if G has maximum degree
at most ∆, and χ(G) > c, then there is some vertex v in G such that the subgraph induced
by {v} ∪N(v) is not c-colorable.

In the LOCAL model of computation, testing the c-colorability of all closed neighborhoods
(i.e. all the balls of radius 1) in G can be done in a constant number of rounds, and any
vertex finding a non c-colorable subgraph in its closed neighborhood can simply output this
subgraph as a certificate of non c-colorability of G. It might be worth pointing that we heavily
use the unbounded computational power of the nodes (and the unbounded bandwidth of
the edges) in the LOCAL model here when ∆� logn. However, when ∆ = O(logn), all the
closed neighborhoods have logarithmic size, so testing their c-colorability takes polynomial
time (in n) in any classical model of computation. Moreover, when ∆ = O(1) the same task
can be performed in constant time in any classical model of computation.

We can now assume that G is c-colorable, and the goal is to find a c-coloring of G in
min{O((log ∆)13/12 logn), 2O(log ∆+

√
log logn)} rounds w.h.p. The high-level description of

the proof is as follows: we set d = 106
√

∆ and start by computing a d-dense decomposition
S,X1, . . . , Xt of G. We then delete all the sets Xi that are c-reducers or such that G[Xi]

É. Bamas and L. Esperet 10:9

has a matching of size at least 100
√

∆. These sets will be colored at the very end, once
the rest of the graph will be colored, using a proof very similar to that of Lemma 3.2, in
O(log ∆) + 2O(

√
log logn) additional rounds (Lemmas 4.2 and 4.3). So we can assume that

no set Xi is a c-reducer or has a large antimatching. Using this assumption, we then find a
specific c-coloring in each set Xi, independently of the other sets Xj , with desirable properties
(Lemma 4.4). Using this coloring of each set Xi, we will construct a new graph F from G

by contracting the color classes from the dense sets into single vertices, and adding suitable
edges at strategic places in the graph (Lemma 4.5). All these contractions and edge additions
can be easily simulated in G, since they involve pairs of vertices at distance at most 4 apart.
The final part will consist in coloring F with c colors, and from this coloring it will be easy
to deduce a c-coloring of G. Note that because of the edge additions and contraction, the
maximum degree of F is not bounded by ∆ anymore, but it remains O(∆). The coloring
of F is then obtained by a very intricate semi-random process. Fortunately, for us it boils
down to repeated applications of the Lovász Local Lemma (more precisely, O((log ∆)13/12)
successive applications), and we just need to make sure that Theorem 2.4 and 2.5 can be
substituted everywhere in the proof (Lemma 4.6). With this high-level view in mind, we
now proceed with the proof.

4.3 Proof of Theorem 1.3
Let d = 106

√
∆. We first compute a d-dense decomposition S,X1, . . . , Xt of G in O(1)

rounds using Lemma 2.7.
A c-reducer D = (C, S′) is said to be deletable if there are fewer than c vertices in G−D

with a neighbor in S. Observe that if D = (C, S′) is a deletable c-reducer in G, then any
c-coloring of G − D can be extended to D (since there is a color which does not appear
in the neighborhood of S′ in G − D). It was observed in [17, Observation 8] that when
c ≥ ∆− k∆ + 1, any c-reducer is deletable. It has the following consequence.

I Lemma 4.2. Let Xr be the union of all the c-reducers Xi. Then there is a distributed
randomized algorithm (running in G) that extends any c-coloring of G−Xr to G in O(log ∆)+
2O(
√

log logn) rounds, w.h.p.

Proof. For each c-reducer Xi = (Ci, Si), perform the reduction of G with respect to Xi (i.e.
delete the clique Ci, and identify all the vertices of Si into a single vertex vi). Let R be the
resulting graph, and let N be the set of newly created vertices in R. Note that the c-coloring
of G−Xr corresponds to a c-coloring of R−N , and our goal is simply to extend this coloring
to R (once this is done, we only have to assign the color of vi to all the vertices of the stable
set Si in G, and to color Ci with the c− 1 colors distinct from that of vi, which can clearly
be done in O(1) rounds). Since each Xi we consider here is deletable, each vertex vi ∈ N has
degree at most c− 1 in R. It follows from Observation 2.3 and Theorem 2.1 (similarly as in
Section 3) that the c-coloring of R−N can be extended to N by a distributed randomized
algorithm running in O(log ∆) + 2O(

√
log logn) rounds w.h.p., as desired. J

We say that a dense set Xi is hollow if G[Xi] (the complement of G[Xi]) contains a
matching of size at least 100

√
∆. We now rephrase Lemma 16 from [17] for our convenience

(the proof of Lemma 4.3 follows the same lines as that of Lemma 3.2).

I Lemma 4.3. Let Xh be the union of the all the hollow sets Xi. Then any c-coloring
of G −Xh can be extended to G by a distributed randomized algorithm running w.h.p. in
O(log ∆) + 2O(

√
log logn) rounds.

STACS 2019

10:10 Distributed Coloring of Graphs with an Optimal Number of Colors

We temporarily delete from G all the Xi that are c-reducers or hollow. These sets of
vertices will be colored at the very end using Lemmas 4.2 and 4.3. Let H be the graph
obtained from G by removing the dense components from Lemmas 4.2 and 4.3. Note that
the restriction of the decomposition S,X1, . . . , Xt to H is still a d-dense decomposition of H,
and for convenience we keep denoting it in this way (even if some sets Xi have disappeared).
It follows from our construction that no dense set Xi in H is a c-reducer or is such that
H[Xi] contains a matching of size at least 100

√
∆.

Given a subset Y of vertices from some dense component Xi, an external neighbor of Y
is a vertex outside of Xi with a neighbor in Y . Recall that a coloring of a graph G partitions
the vertex-set of G into stable sets, which are called the color classes associated to the
coloring. Given a c-coloring of Xi, we define Ci as the set of vertices of Xi whose color class
is a singleton. We say that a c-coloring of Xi is nice if:
(1) Ci is a clique of size at least ∆− 2 · 106

√
∆,

(2) each vertex from any color class of size at least 3 is adjacent to all the vertices of Ci, and
(3) if {x, y} is a color class of size 2, then either there is z ∈ Ci such that x, y are both

adjacent to all the vertices of Ci − {z}, or one of x, y is adjacent to all the vertices of Ci
and the other is adjacent to all but at most ∆

4 + 107
√

∆ vertices of Ci.

Note that the unique c-coloring of a c-reducer is nice. Lemma 4.3 now allows us to use
the following result of [17]. The proof heavily uses the crucial property that no dense set Xi

contains a large antimatching.

I Lemma 4.4 (Lemmas 19, 20, 21, and 25 in [17]). Each dense set Xi of H has a nice
c-coloring such that:
(a) If a color class is not the unique largest colour class in Xi, then it has at most ∆

2 +10
√

∆
external neighbors.

(b) Every color class of Xi has at most c−
√

∆ + 3 external neighbors.
(c) If there is a colour class of Xi with more than c − 108

√
∆ external neighbor, then

|Ci| ≥ c− 2 · 108 and each vertex of Ci has at most 3 · 108 external neighbors.
(d) If there is a colour class of Xi with more than c − 2

√
∆ + 3 external neighbours then

|Ci| = c− 1 and each vertex of Ci has at most 5 external neighbors.
(e) If there is a colour class of Xi with more than c − 2∆3/4 external neighbors then
|Ci| ≥ c− 5∆1/4 and each vertex of Ci has at most 8∆1/4 external neighbors.

We stress that the union of the c-colorings of each of the dense components Xi is not
necessarily a c-coloring of the union of the dense components: there might be some edges
between vertices of different sets Xi having the same color. It should be noted that parts (b)–
(e) of this result, as stated here, look a bit different from their counterparts from Lemma 25
in [17]. Indeed, each of properties (b)–(e) in Lemma 25 from [17] starts by the precondition“If
Xi is not a reducer or a near-reducer”. We assumed earlier that Xi is not a c-reducer, so this
part of the precondition can certainly be omitted in our case. A c-near-reducer is a subgraph
D which is the union of a clique C of size c− 1 and a stable set S′ of size ∆− c+ 1, such
that each vertex of C is adjacent to every vertex of S′ (in particular each vertex of C has at
most one neighbor outside D). Note that each vertex of S′ has at most ∆− c+ 1 neighbors
outside D, and thus S′ has at most (∆− c+ 1)2 neighbors outside D. Since c ≥ ∆− k∆ + 1
and
√

∆− 3 < k∆ =
⌊√

∆ + 1/4− 3/2
⌋
≤
√

∆ + 1/4− 3/2, S′ has at most

(∆− c+ 1)2 ≤ k2
∆ ≤ ∆− 3k∆ − 2 ≤ c− 2k∆ − 3 ≤ c− 2

√
∆ + 3

É. Bamas and L. Esperet 10:11

neighbors outside D. In particular, in our case (i.e. when c ≥ ∆ − k∆ + 1), any dense
set Xi which is a c-near-reducer satisfies Lemma 4.4(a)–(e), so we can indeed remove the
preconditions from Lemma 25 in [17]. Note also that since each dense set Xi has diameter at
most 2, a nice coloring of each Xi with the additional properties of Lemma 4.4 can be found
in O(1) rounds.

Based on the nice c-coloring of each of the dense components Xi resulting from Lemma 4.4,
we now construct (locally) a new graph F from H, which will be easier to color with a semi-
random procedure, and such that any c-coloring of F can be turned (locally and efficiently)
into a c-coloring of H.

I Lemma 4.5 (Lemma 12 as used in the proof of Theorem 43 in [17]). We can construct locally
in H in O(1) rounds a graph F of maximum degree at most 109∆ (such that a c-coloring
of H can be deduced from any c-coloring of F in O(1) rounds) and find a partition of the
vertices of F into S,B,A1, . . . , At such that:
(a) Every Ai is a clique with c− 108

√
∆ ≤ |Ai| ≤ c.

(b) Every vertex of Ai has at most 108
√

∆ neighbors in F −Ai.
(c) There is a set Alli ⊆ B of c− |Ai| vertices which are adjacent to all of Ai. Every other

vertex of F −Ai is adjacent to at most 3
4∆ + 108

√
∆ vertices of Ai.

(d) Every vertex of S either has fewer than ∆− 3
√

∆ neighbors in S or has at least 900∆3/2

non-adjacent pairs of neighbors within S.
(e) Every vertex of B has fewer than c−

√
∆ + 9 neighbors in F −

⋃
j Aj.

(f) If a vertex ∈ B has at least c−∆3/4 neighbors in F −
⋃
j Aj, then there is some i such

that: v has at most c−
√

∆ + 9 neighbors in F −Ai and every vertex of Ai has at most
30∆1/4 neighbors in F −Ai.

(g) For every Ai, every two vertices outside of Ai ∪Alli which have at least 2∆9/10 neighbors
in Ai are joined by an edge of F .

There is one subtlety in the application of Lemma 12 from [17]: the statement of Lemma
12 there start with the precondition “For any minimum counterexample”. Here we avoid this
precondition in the same way Molloy and Reed avoid it in their application of Lemma 12 in
the algorithmic proof of Theorem 43 from [17] (by starting to remove deletable reducers and
hollow sets).

We explain briefly how the graph F is constructed in [17] to stress that the construction
can indeed be performed locally in H (and then in G).

The construction starts by doing the following for each colored dense component Xi.
Recall that Ci was defined above as the set of vertices of Xi whose color class is a singleton,
and it follows from the definition of a nice coloring that Ci is a clique of size at least
∆− 2 · 106

√
∆. Now, each color class of size at least 2 (i.e. each color class which is not a

singleton) in Xi is contracted into a single vertex, and vertices and edges are added inside
Xi to make it into a clique Di of size precisely c. It can be proved using Lemma 4.4 that
the maximum degree does not increase too much and that each clique Di is not much larger
than Ci (see Lemma 29 in [17]).

A significant issue when trying to find a c-coloring of H (or rather the current modification
of H) is that given a clique Di, there might be vertices outside Di that have many neighbors
(say more than 3∆

4) in Ci. Each such vertex must be in Dj − Cj , for some j 6= i. Consider
such a vertex v ∈ Dj −Cj , with many neighbors in Ci. We need to make sure that the color
of v will be used by one of the few non-neighbors of v in Di, and one way to do it is, for
some vertices w ∈ Di, to construct a set Rw of vertices with many neighbors in Ci such that

STACS 2019

10:12 Distributed Coloring of Graphs with an Optimal Number of Colors

{w} ∪Rw is a stable set and every vertex with many neighbors in Ci lies in such a set Rw.
We then contract each set {w}∪Rw into a single vertex (this will force that all these vertices
have the same color at the end), and denote by Ai the set Ci after the removal of the vertices
w for which some set Rw was defined. We also set Alli = Di −Ai. Again it can be proved
that the maximum degree does not increase too much and each Ai is not too small compared
to Ci (see Lemma 30 in [17]).

A second issue (related to the issue described above) is that we need to prevent that many
different external neighbors of Ai are all colored with the same color, and their neighborhoods
cover Ai (this would prevent this color from being used in Ai). The way it is solved in [17]
is by adding an edge between every pair of external neighbors of Ai having at least ∆9/10

neighbors in Ai. It is proved (see Lemma 31 in [17]) that it does not increase the maximum
degree too much and is enough to deduce properties (a)–(g) of Lemma 4.5 (the issue raised
in this paragraph is in particular related to property (g)).

To sum up, F has been obtained from H by identifying (or adding edges between) pairs
of vertices at distance at most 4, since each dense component has diameter at most 2 and any
two vertices that have been identified or joined by an edge have a neighbor in the same dense
component. Moreover, each modification has been carried out independently by each dense
set Xi (even if the modifications had some impact outside of Xi), so F can be simulated by
H (and then by G) with at most a small multiplicative loss on the round complexity. It is
also clear that a c-coloring of H can be obtained from any c-coloring of F in O(1) rounds.

It remains to show how to efficiently color F with c colors.

I Lemma 4.6. The graph F described in Lemma 4.5 can be colored with c colors in
min{O((log ∆)13/12 logn), 2O(log ∆+

√
log logn)} rounds, w.h.p.

We will be rather brief here (the proof of the corresponding sequential statement, Lemma
13 in [17], takes 20 pages). Consider some 1 ≤ i ≤ t. Since Alli ∪Ai forms a clique of size c,
we need to make sure that the colors that do not appear in Alli do not appear either on too
many external neighbors of Ai. A key property of the construction of F (see properties (c)
and (g) in Lemma 4.5) is that for any color x, there is at most one vertex v 6∈ Alli∪Ai having
at least 2∆9/10 neighbors in Ai that is colored x, and moreover v has at most 3

4∆ + o(∆)
neighbors in Ai. The goal will be to maintain this property throughout the whole process,
namely that all of the time, at most 3

4∆ + o(∆) vertices of Ai have a neighbor colored x
outside of Alli ∪Ai (let us call this event E(i, x)).

The starting point will be to color S (the d-sparse vertices, see property (d) of Lemma 4.5)
randomly as in the proof of Lemma 3.1, i.e. with the property that many colors are repeated
in the neighborhoods of the high degree vertices, but also with the additional property that
E(i, x) still holds for any i, x after the coloring.

We then proceed to extend the coloring to B. Recall that by property (e) of Lemma 4.5,
each vertex of B has at most c− Ω(

√
∆) neighbors in F −

⋃
j Aj . It turns out that it is a

bit too high to extend randomly the coloring of S to B while maintaining property E(i, x),
so instead we color the remaining vertices in this order:
1. We first color the set BH of vertices of B with at most c−∆3/4 neighbors in F −

⋃
j Aj

(coloring these vertices will preserve E(i, x)).
2. We then color the sets Ai such that each vertex of Ai has at most 30∆1/4 neighbors

outside of Alli ∪Ai.
3. We color BL = B −BH , using property (f) of Lemma 4.5 (which implies that property

E(i, x) can now be preserved while coloring these vertices).
4. Finally we color the sets Ai that have not been colored yet.

É. Bamas and L. Esperet 10:13

The proofs that desirable properties are maintained during the coloring of the vertices of
S and B and the Ai are fairly similar to the proof of Lemma 3.1 (see the full version of the
paper [1]), in the sense that they boil down to the estimation of the expectation of some
random variables, the proof that these random variables are highly concentrated, and then
some application of the Lovász Local Lemma.

We should note two important differences, though.

The first is that instead of a single random partial coloring, followed by a greedy procedure
completing the coloring, the process for coloring S, BH , and BL here involves multiple
rounds (more specifically, at most O((log ∆)13/12) rounds) of random partial coloring and
a careful study of all the random variables throughout the process.
The second is that while coloring the Ai, the partial random coloring procedure is a bit
different than in the proof of Lemma 3.1. Recall that each Ai is a clique, so assigning each
vertex a color uniformly at random, and then uncoloring pairs of vertices with the same
color would be extremely unpractical. Instead, each Ai is colored with a permutation of
the |Ai| colors not appearing on Alli, taken uniformly at random among all the possible
permutations. A consequence is that instead of using Talagrand’s Inequality to prove the
concentration of random variables around their expectation, McDiarmid’s Inequality has
to be used instead (see [17]), but the resulting bounds are of a similar order of magnitude.

It can be checked that in all the applications of the Lovász Local Lemma in [17], bad
events correspond to subgraphs of H of bounded radius, and the probabilities of the bad
events are smaller than any fixed polynomial function of the maximum degree of the event
dependency graph (these probabilities are typically of order exp(−dα) or exp(−β log2 d),
where α, β > 0 and d is the maximum degree of the event dependency graph), so in particular
Theorem 2.4 and 2.5 can be substituted everywhere in the proof, and since the semi-random
process involves at most O((log ∆)13/12) successive applications of the Lovász Local Lemma1,
the c-coloring of F can be obtained in min{O((log ∆)13/12 logn), 2O(log ∆+

√
log logn)} rounds,

w.h.p.

We find it necessary to insist on a technical (but important) detail here. Theorems 2.4
and 2.5 use the so-called variable setting of the Local Lemma, which covers most applications
of the original Local Lemma but not all of them. In particular we have to be careful here
since the coloring of the Ai involved random permutations of colors assigned to a given set
of vertices, instead of colors chosen uniformly at random for each vertex, and it is not clear
at first sight whether the former can be handled in the variable setting. It turns out that
it can, since in the proof of Lemmas 39 and 40 in [17] the graph under consideration has
one vertex for each uncolored Ai, and an edge between two vertices if the corresponding
sets Ai are adjacent in H (since each set Ai is a clique, this graph can be simulated within
H). The variable associated to each vertex is the random permutation of colors assigned to
the corresponding set Ai, so this is indeed an instance of the variable setting of the Local
Lemma, and we can use Theorems 2.4 and 2.5.

1 In the proof of Molloy and Reed [17] the authors use O(∆λ) successive applications of the Local Lemma
(for any fixed constant λ > 0), but the proof can easily be optimized to work with only O((log ∆)13/12)
applications of the Local Lemma. The bound log13/12 ∆ comes from the proof of the concentration
of Z′

C , page 175 of [17], which dominates the other related bounds on the number of iterations in the
proof of Lemma 34 of [17]. Note that the authors of [17] were aiming at a polynomial complexity, so it
did not make much sense for them to replace the polynomial number of iterations by a polylogarithmic
number of iterations, at the cost of tedious computations.

STACS 2019

10:14 Distributed Coloring of Graphs with an Optimal Number of Colors

Now that F has been colored with c colors, we obtain a c-coloring of H in O(1) rounds
using Lemma 4.5, and it remains to color the dense components Xi that are c-reducers,
or such that G[Xi] contains a matching of size at least 100

√
∆ (recall that these dense

components had been removed from the graph at the beginning of the procedure). It follows
from Lemmas 4.2 and 4.3 that the c-coloring of H can be extended to the remaining dense
components of G w.h.p. in O(log ∆) + 2O(

√
log logn) rounds, which concludes the proof of

Theorem 1.3. J

4.4 Summary of our contributions

We now make a brief summary of our contributions (to make clear what we added and
subtracted from the proof of Molloy and Reed [17]).

In [17], c-reducers are dealt with slightly differently: some are simply removed as we do
here, but some are reduced as in the definition of c-reduction of Section 4.1 (i.e. by removing
the clique and contracting the stable set into a single vertex). This operation can create new
c-reducers, and thus c-reducers have to be reduced sequentially until no c-reducer appears in
the graph (the fact that it has to be done sequentially is essentially the proof of Theorem 1.4).
For c-near-reducers, the situation is slightly more complicated (see Lemma 27 in [17]) but
again inherently sequential. It is fortunate that in our case (i.e. when c ≥ ∆− k∆ + 1), we do
not need to worry about these cases, as explained after Lemma 4.4. So our contribution is
simply to have checked that the initial d-dense decomposition can be computed locally (see
Lemma 2.7), that the construction of F can be performed locally, that all the applications of
the Local Lemma can be also carried out locally in the phase where the c-coloring of F is
obtained, and that the resulting coloring of H can be extended to G locally and efficiently
(see Lemmas 4.2 and 4.3).

5 Concluding remarks

Note that using recent results of Ghaffari et al. [11], the randomized algorithms in The-
orem 1.3 and 1.5 can be replaced by deterministic algorithms with a round complexity of
2O(log ∆+

√
logn). An interesting question is whether the dependency in ∆ can be significantly

reduced (the same question can be asked for Theorem 1.5 and 1.3). It seems to us that
techniques that have been developed so far, such as Theorem 1.8 in [11] or the ad-hoc
techniques from [9], do not work well in our case.

When the maximum degree ∆ is a constant, the list-coloring problem where every
vertex v has a list of at least d(v) + 1 colors can be solved in O(log∗ n) rounds [13, 15],
which is much faster than the round complexity of Theorems 2.1 and 2.2. In this case
it is interesting to use a slightly faster version of Theorem 2.5 from [11], with round
complexity exp(exp(O(

√
log log logn))), or exp(exp(exp(O(

√
log log log logn)))), or more

generally exp(i)(O(
√

log(i+1) n)) for any 1 ≤ i ≤ log∗ n− 2 log∗ log∗ n. It is not difficult to
see that in this case this round complexity dominates the other parts of the algorithms used
in this paper. It follows that the round complexity in Theorem 1.3 and 1.5 in the bounded
degree case can be replaced by exp(i)(O(

√
log(i+1) n)) for any 1 ≤ i ≤ log∗ n− 2 log∗ log∗ n.

Moreover, any improvement on the round complexity of the distributed Lovász Local Lemma
under some criterion would immediately yield an improved complexity in Theorems 1.5
and 1.3 in the case of bounded degree graphs.

É. Bamas and L. Esperet 10:15

References

1 É. Bamas and L. Esperet. Distributed coloring of graphs with an optimal number of colors.
CoRR, abs/1809.08140, 2018. arXiv:1809.08140.

2 L. Barenboim and M. Elkin. Distributed Graph Coloring: Fundamentals and Recent Develop-
ments. Morgan & Claypool, 2013. doi:10.2200/S00520ED1V01Y201307DCT011.

3 L. Barenboim, M. Elkin, S. Pettie, and J. Schneider. The Locality of Distributed Symmetry
Breaking. J. ACM, 63, 2016. Article 20.

4 S. Brandt, O. Fischer, J. Hirvonen, B. Keller, T. Lempiäinen, J. Rybicki, J. Suomela, and
J. Uitto. A lower bound for the distributed Lovász local lemma. In Proceedings of the 48th
ACM Symposium on Theory of Computing (STOC), pages 479—-488, 2016.

5 Y.-J. Chang, W. Li, and S. Pettie. An optimal distributed (∆ + 1)-coloring algorithm? In
Proceedings of the 50th ACM Symposium on Theory of Computing (STOC), 2018.

6 K.-M. Chung, S. Pettie, and H.-H. Su. Distributed Algorithms for the Lovász Local Lemma
and Graph Coloring. Distributed Computing, 30:261–280, 2017.

7 M. Elkin, S. Pettie, and H.-H. Su. (2∆ − 1)-Edge-Coloring is Much Easier than Maximal
Matching in the Distributed Setting. In Proceedings 26th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 355–370, 2015.

8 T. Emden-Weinert, S. Hougardy, and B. Kreuter. Uniquely Colourable Graphs and the
Hardness of Colouring Graphs of Large Girth. Comb. Probab. Comput., 7(4):375–386, December
1998. doi:10.1017/S0963548398003678.

9 M. Fischer and M. Ghaffari. Sublogarithmic Distributed Algorithms for Lovász Local Lemma,
and the Complexity Hierarchy. In 31st International Symposium on Distributed Computing,
DISC 2017, October 16-20, 2017, Vienna, Austria, pages 18:1–18:16, 2017. doi:10.4230/
LIPIcs.DISC.2017.18.

10 P. Fraigniaud, M. Heinrich, and A. Kosowski. Local Conflict Coloring. In IEEE 57th Annual
Symposium on Foundations of Computer Science, FOCS 2016, 9-11 October 2016, Hyatt
Regency, New Brunswick, New Jersey, USA, pages 625–634, 2016. doi:10.1109/FOCS.2016.
73.

11 M. Ghaffari, D.G. Harris, and F. Kuhn. Derandomizing Local Distributed Algorithms. In
IEEE 59th Annual Symposium on Foundations of Computer Science, FOCS 2018, 7-9 October
2018, Paris, France, 2018.

12 M. Ghaffari, J. Hirvonen, F. Kuhn, and Y. Maus. Improved Distributed ∆-Coloring. In
Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing, PODC ’18,
pages 427–436, New York, NY, USA, 2018. ACM. doi:10.1145/3212734.3212764.

13 A. V. Goldberg, S. A. Plotkin, and G. E. Shannon. Parallel Symmetry-Breaking in Sparse
Graphs. SIAM J. Discrete Math., 1(4):434–446, 1988. doi:10.1137/0401044.

14 D.G. Harris, J. Schneider, and H.-H. Su. Distributed (∆ + 1)-Coloring in Sublogarithmic
Rounds. J. ACM, 65(4):19:1–19:21, 2018. doi:10.1145/3178120.

15 N. Linial. Locality in Distributed Graph Algorithms. SIAM J. Comput., 21(1):193–201, 1992.
doi:10.1137/0221015.

16 M. Molloy and B.A. Reed. Graph Colouring and the Probabilistic Method. Algorithms and
Combinatorics. Springer, 2002.

17 M. Molloy and B.A. Reed. Colouring graphs when the number of colours is almost the maximum
degree. J. Comb. Theory, Ser. B, 109:134–195, 2014. doi:10.1016/j.jctb.2014.06.004.

18 A. Panconesi and A. Srinivasan. The Local Nature of ∆-Coloring and its Algorithmic
Applications. Combinatorica, 15(2):255–280, 1995. doi:10.1007/BF01200759.

19 B.A. Reed. ω, ∆, and χ. Journal of Graph Theory, 27(4):177–212, 1998.
20 J. Schneider and R. Wattenhofer. Distributed Coloring Depending on the Chromatic Number

or the Neighborhood Growth. In Structural Information and Communication Complexity -
18th International Colloquium, SIROCCO 2011, Gdansk, Poland, June 26-29, 2011, pages
246–257, 2011. doi:10.1007/978-3-642-22212-2_22.

STACS 2019

http://arxiv.org/abs/1809.08140
http://dx.doi.org/10.2200/S00520ED1V01Y201307DCT011
http://dx.doi.org/10.1017/S0963548398003678
http://dx.doi.org/10.4230/LIPIcs.DISC.2017.18
http://dx.doi.org/10.4230/LIPIcs.DISC.2017.18
http://dx.doi.org/10.1109/FOCS.2016.73
http://dx.doi.org/10.1109/FOCS.2016.73
http://dx.doi.org/10.1145/3212734.3212764
http://dx.doi.org/10.1137/0401044
http://dx.doi.org/10.1145/3178120
http://dx.doi.org/10.1137/0221015
http://dx.doi.org/10.1016/j.jctb.2014.06.004
http://dx.doi.org/10.1007/BF01200759
http://dx.doi.org/10.1007/978-3-642-22212-2_22

On the Descriptive Complexity of Color Coding
Max Bannach
Institute for Theoretical Computer Science, Universität zu Lübeck, Germany
bannach@tcs.uni-luebeck.de

Till Tantau
Institute for Theoretical Computer Science, Universität zu Lübeck, Germany
tantau@tcs.uni-luebeck.de

Abstract
Color coding is an algorithmic technique used in parameterized complexity theory to detect “small”
structures inside graphs. The idea is to derandomize algorithms that first randomly color a graph
and then search for an easily-detectable, small color pattern. We transfer color coding to the world
of descriptive complexity theory by characterizing – purely in terms of the syntactic structure of
describing formulas – when the powerful second-order quantifiers representing a random coloring can
be replaced by equivalent, simple first-order formulas. Building on this result, we identify syntactic
properties of first-order quantifiers that can be eliminated from formulas describing parameterized
problems. The result applies to many packing and embedding problems, but also to the long path
problem. Together with a new result on the parameterized complexity of formula families involving
only a fixed number of variables, we get that many problems lie in fpt just because of the way they
are commonly described using logical formulas.

2012 ACM Subject Classification Theory of computation → Finite Model Theory; Theory of
computation → Fixed parameter tractability

Keywords and phrases color coding, descriptive complexity, fixed-parameter tractability, quantifier
elimination, para-AC0

Digital Object Identifier 10.4230/LIPIcs.STACS.2019.11

Related Version https://arxiv.org/abs/1901.03364

1 Introduction

Descriptive complexity provides a powerful link between logic and complexity theory: We use
a logical formula to describe a problem and can then infer the computational complexity of
the problem just from the syntactic structure of the formula. As a striking example, Fagin’s
Theorem [9] tells us that 3-colorability lies in NP just because its describing formula (“there
exist three colors such that all adjacent vertex pairs have different colors”) is an existential
second-order formula. In the context of fixed-parameter tractability theory, methods from
descriptive complexity are also used a lot – but commonly to show that problems are difficult.
For instance, the A- and W-hierarchies are defined in logical terms [11], but their hard
problems are presumably “beyond” the class FPT of fixed-parameter tractable problems.

The methods of descriptive complexity are only rarely used to show that problems are in
FPT. More precisely, the syntactic structure of the natural logical descriptions of standard
parameterized problems found in textbooks are not known to imply that the problems lie
in FPT – even though this is known to be the case for many of them. To appreciate the
underlying difficulties, consider the following three parameterized problems: p-matching,
p-triangle-packing, and p-clique. In each case, we are given an undirected graph as
input and a number k and we are then asked whether the graph contains k vertex-disjoint
edges (a size-k matching), k vertex-disjoint triangles, or a clique of size k, respectively. The
problems are known to have widely different complexities (maximal matchings can actually
be found in polynomial time, triangle packing lies at least in FPT, while finding cliques is

© Max Bannach and Till Tantau;
licensed under Creative Commons License CC-BY

36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019).
Editors: Rolf Niedermeier and Christophe Paul; Article No. 11; pp. 11:1–11:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:bannach@tcs.uni-luebeck.de
mailto:tantau@tcs.uni-luebeck.de
https://doi.org/10.4230/LIPIcs.STACS.2019.11
https://arxiv.org/abs/1901.03364
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

11:2 On the Descriptive Complexity of Color Coding

W[1]-complete) but very similar logical descriptions:

αk = ∃x1 · · · ∃x2k
(∧

i 6=j xi 6= xj ∧
∧k
i=1 Ex2i−1x2i

)
, (1)

βk = ∃x1 · · · ∃x3k
(∧

i 6=j xi 6= xj ∧
∧k
i=1(Ex3i−2x3i−1 ∧ Ex3i−2x3i ∧ Ex3i−1x3i)

)
, (2)

γk = ∃x1 · · · ∃xk
(∧

i 6=j xi 6= xj ∧
∧
i 6=j Exixj

)
. (3)

The family (αk)k∈N of formulas is clearly a natural “slicewise” description of the matching
problem: A graph G has a size-k matching if, and only if, G |= αk. The families (βk)k∈N and
(γk)k∈N are natural parameterized descriptions of the triangle packing and the clique problems,
respectively. Well-known results on the descriptive complexity of parameterized problems
allow us to infer [11] from the above descriptions that all three problems lie in W[1], but offer
no hint why the first two problems actually lie in the class FPT – syntactically the clique
problem arguably “looks like the easiest one” when in fact it is semantically the most difficult
one. The results of this paper will remedy this: We will show that the syntactic structures
of the formulas αk and βk imply membership of p-matching and p-triangle-packing
in FPT.

The road to deriving the computational complexity of parameterized problems just from
the syntactic properties of slicewise first-order descriptions involves three major steps: First,
a characterization of when the color coding technique is applicable in terms of syntactic
properties of second-order quantifiers. Second, an exploration of how these results on
second-order formulas apply to first-order formulas, leading to the notion of strong and
weak quantifiers and to an elimination theorem for weak quantifiers. Third, we add a new
characterization to the body of known characterizations of how classes like FPT can be
characterized in a slicewise fashion by logical formulas.

Our Contributions I: A Syntactic Characterization of Color Coding. The hard triangle
packing problem from above becomes almost trivial when we just wish to check whether a
vertex-colored graph contains a red triangle, a green triangle, a blue triangle, a yellow triangle,
and so on for k different colors. The ingenious idea behind the color coding technique of Alon,
Yuster, and Zwick [1] is to reduce the original problem to the much simpler colored version
by simply randomly coloring the graph. Of course, even if there are k disjoint triangles, we
will most likely not color them monochromatically and differently, but the probability of
“getting lucky” is nonzero and depends only on the parameter k. Even better, Alon et al.
point out that one can derandomize the coloring easily by using universal hash functions to
color each vertex with its hash value.

Applying this idea in the setting of descriptive complexity was recently pioneered by
Chen et al. [6]. Transferred to the triangle packing problem, their argument would roughly
be: “Testing for each color i whether there is a monochromatic triangle of color i can be done
in first-order logic using something like

∧k
i=1 ∃x∃y∃z(Exy ∧ Eyz ∧ Exz ∧ Cix ∧ Ciy ∧ Ciz).

Next, instead of testing whether x has color i using the formula Cix, we can test whether
x gets hashed to i by a hash function. Finally, since computing appropriate universal
hash functions only involves addition and multiplication, we can express the derandomized
algorithm using an arithmetic first-order formula of low quantifier rank.” Phrased differently,
Chen et al. would argue that

∧k
i=1 ∃x∃y∃z(Exy ∧ Eyz ∧ Exz ∧ Cix ∧ Ciy ∧ Ciz) together

with the requirement that the Ci are pairwise disjoint is (ignoring some details) equivalent
to δk = ∃p∃q

∧k
i=1 ∃x∃y∃z(Exy ∧ Eyz ∧ Exz ∧ hashk(x, p, q) = i ∧ hashk(y, p, q) = i ∧

hashk(z, p, q) = i), where hashk(x, p, q) = i is a formula that is true when “x is hashed to i
by a member of a universal family of hash functions indexed by q and p.”

M. Bannach and T. Tantau 11:3

The family (δk)k∈N may seem rather technical and, indeed, its importance becomes visible
only in conjunction with another result by Chen et al. [6]: They show that a parameterized
problem lies in para-AC0, one of the smallest “sensible” subclasses of FPT, if it can be
described by a family (φk)k∈N of FO[+,×] formulas of bounded quantifier rank such that
the finite models of φk are exactly the elements of the kth slice of the problem. Since the
triangle packing problem can be described in this way via the family (δk)k∈N of formulas, all
of which have a quantifier rank 5 plus the constant number of quantifiers used to express the
arithmetics in the formulas hashk(x, p, q) = i, we get p-triangle-packing ∈ FPT.

Clearly, this beautiful idea cannot work in all situations: If it also worked for the formula
mentioned earlier expressing 3-colorability, 3-colorability would be first-order expressible,
which is known to be impossible. Our first main contribution is a syntactic characterization
of when the color coding technique is applicable, that is, of why color coding works for triangle
packing but not for 3-colorability: For triangle packing, the colors Ci are applied to variables
only inside existential scopes (“∃x∃y∃z”) while for 3-colorability the colors R, G, and B are
also applied to variables inside universal scopes (“for all adjacent vertices”). In general, see
Theorem 3.1 for the details, we show that a second-order quantification over an arbitrary
number of disjoint colors Ci can be replaced by a fixed number of first-order quantifiers
whenever none of the Ci is used in a universal scope.

Our Contributions II: New First-Order Quantifier Elimination Rules. The “purpose” of
the colors Ci in the formulas

∧k
i=1 ∃x∃y∃z(Exy ∧ Eyz ∧ Exz ∧ Cix ∧ Ciy ∧ Ciz) is not that

the three vertices of a triangle get a particular color, but just that they get a color different
from the color of all other triangles. Indeed, our “real” objective in these formulas is to
ensure that the vertices of a triangle are distinct from the vertices in the other triangles –
and giving vertices different colors is “just a means” of ensuring this.

In our second main contribution we explore this idea further: If the main (indeed, the
only) use of colors in the context of color coding is to ensure that certain vertices are different,
let us do away with colors and instead focus on the notion of distinctness. To better explain
this idea, consider the following family, also describing triangle packing, where the only
change is that we now require (a bit superfluously) that even the vertices inside a triangle get
different colors:

∧k
j=1 ∃x∃y∃z(Exy ∧ Eyz ∧ Exz ∧ C3j−2x ∧ C3j−1y ∧ C3jz). Observe that

each Ci is now applied to exactly one variable (x, y, or z in one of the many literals) and
the only “effect” that all these applications have is to ensure that the variables are different.
In particular, the formula is equivalent to

∃x1 · · · ∃x3k
∧
i6=j xi 6= xj ∧

∧k
j=1 ∃x∃y∃z(Exy ∧ Eyz ∧ Exz ∧

x3j−2 = x ∧ x3j−1 = y ∧ x3j = z) (4)

and these formulas are clearly equivalent to the almost identical formulas from (2).
In a sense, in (4) the many existential quantifiers ∃xi and the many xi 6= xj literals

come “for free” from the color coding technique, while ∃x, ∃y, and ∃z have nothing to
do with color coding. Our key observation is a syntactic property that tells us whether a
quantifier comes “for free” in this way (we will call it weak) or not (we will call it strong):
Definition 3.4 states (essentially) that weak quantifiers have the form ∃x(φ) such that x is
not free in any universal scope of φ and x is used in at most one literal that is not of the
form x 6= y. To make weak quantifiers easier to spot, we mark their bound variables with
a dot (note that this is a “syntactic hint” without semantic meaning). Formulas (4) now
read ∃ẋ1 · · · ∃ẋ3k

∧
i 6=j ẋi 6= ẋj ∧

∧k
j=1 ∃x∃y∃z(Exy ∧ Exz ∧ Eyz ∧ ẋ3j−2 = x ∧ ẋ3j−1 = y ∧

ẋ3j = z). Observe that x, y, and z are not weak since each is used in three literals that are
not inequalities.

STACS 2019

11:4 On the Descriptive Complexity of Color Coding

We show in Theorem 3.5 that each φ is equivalent to a φ′ whose quantifier rank depends
only on the strong quantifier rank of φ (meaning that we ignore the weak quantifiers) and
whose number of variables depends only on the number of strong variables in φ′. For instance,
the formulas from (4) all have strong quantifier rank 3 and, thus, the triangle packing problem
can be described by a family of constant (normal) quantifier rank. Applying Chen et al.’s
characterization yields membership in para-AC0.

As a more complex example, let us sketch a “purely syntactic” proof of the result [3, 5]
that the embedding problem for graphs H of tree depth at most d lies in para-AC0 for
each d. Once more, we construct a family (φH) of formulas of constant strong quantifier
rank that describes the problem. For a graph H and a rooted tree T of depth d such that H
is contained in T ’s transitive closure (this is the definition of “H has tree depth d”), let c1
be the root of T and let children(c) be the children of c in T . Then the following formula of
strong quantifier rank d describes that H can be embedded into a structure:

∃ẋ1 · · · ∃ẋ|H|
(∧

i 6=j ẋi 6= ẋj ∧ ∃n1(n1 = ẋc1 ∧
∧
c2∈children(c1) ∃n2(n2 = ẋc2 ∧∧

c3∈children(c2)∃n3(n3 = ẋc3 ∧
∧
c4∈children(c3) ∃n4(n4 = ẋc4 ∧ . . .∧

cd∈children(cd−1)∃nd(nd = ẋcd
∧
∧
i,j∈{1,...,d}:(ci,cj)∈E(H) Eninj) . . .)))

)
.

Our Contributions III: Slicewise Descriptions and Variable Set Sizes. Our third contri-
bution is a new result in the same vein as the already repeatedly mentioned result of Chen
et al. [6]: Theorem 2.3 states that a parameterized problem can be described slicewise by
a family (φk)k∈N of arithmetic first-order formulas that all use only a bounded number of
variables if, and only if, the problem lies in para-AC0↑ – a class that has been encountered
repeatedly in the literature [2, 3, 8, 14], but for which no characterization was known. It
contains all parameterized problems that can be decided by AC-circuits whose depth depends
only on the parameter and whose size is of the form f(k) · nc.

As an example, consider the problem of deciding whether a graph contains a path of
length k (no vertex may be visited twice). It can be described (for odd k) by: ∃s∃t∃x(Esx∧
∃ẋ1(ẋ1 = x ∧ ∃y(Exy ∧ ∃ẋ2(ẋ2 = y ∧ ∃x(Eyx ∧ ∃ẋ3(ẋ3 = x ∧ ∃y(Exy ∧ ∃ẋ4(ẋ4 = y ∧ · · · ∧
∃x(Eyx ∧ x = t ∧ ∃ẋk(ẋk = x ∧

∧
i 6=j ẋi 6= ẋj) . . .)))). Note that, now, the strong quantifier

rank depends on k and, thus, is not constant. However, there are now only four strong
variables, namely s, t, x, and y. By Theorem 3.5 we see that the above formulas are equivalent
to a family of formulas with a bounded number of variables and by Theorem 2.3 we see
that p-long-path ∈ para-AC0↑ ⊆ FPT. These ideas also generalize easily and we give a
purely syntactic proof of the seminal result from the original color coding paper [1] that the
embedding problem for graphs of bounded tree width lies in FPT. The core observation –
which unifies the results for tree width and depth – is that for each graph with a given tree
decomposition, the embedding problem can be described by a formula whose strong nesting
structure mirrors the tree structure and whose strong variables mirror the bag contents.

Related Work. Flum and Grohe [10] were the first to give characterizations of FPT and of
many subclasses in terms of the syntactic properties of formulas describing their members.
Unfortunately, these syntactic properties do not hold for the descriptions of parameterized
problems found in the literature. For instance, they show that FPT contains exactly the
problems that can be described by families of FO[lfp]-formulas of bounded quantifier rank –
but actually describing problems like p-vertex-cover in this way is more or less hopeless
and yields little insights into the structure or complexity of the problem. We believe that
it is no coincidence that no applications of these beautiful characterizations to concrete

M. Bannach and T. Tantau 11:5

problems could be found in the literature – at least prior to very recent work by Chen and
Flum [7], who study slicewise descriptions of problems on structures of bounded tree depth,
and the already cited article of Chen et al. [6], who do present a family of formulas that
describe the vertex cover problem. This family internally uses the color coding technique
and is thus closely related to our results. The crucial difference is, however, that we identify
syntactic properties of logical formulas that imply that the color coding technique can be
applied. It then suffices to find a family describing a given problem that meets the syntactic
properties to establish the complexity of the problem: there is no need to actually construct
the color-coding-based formulas – indeed, there is not even a need to understand how color
coding works in order to decide whether a quantifier is weak or strong.

Organization of this Paper. In Section 2 we first review some of the existing work on the
descriptive complexity of parameterized problems. We add to this work in the form of the
mentioned characterization of the class para-AC0↑ in terms of a bounded number of variables.
Our main technical results are then proved in Section 3, where we establish and prove the
syntactic properties that formulas must have in order for the color coding method to be
applicable. In Section 4 we then apply the findings and show how membership of different
natural problems in para-AC0 and para-AC0↑ (and, thus, in FPT) can be derived entirely
from the syntactic structure of the formulas describing them. Full proofs can be found in the
full version, but we include proof sketches in the text.

2 Describing Parameterized Problems

A happy marriage of parameterized complexity and descriptive complexity was first presented
in [10]. We first review the most important definitions from [10] and then prove a new
characterization, namely of the class para-AC0↑ that contains all problems decidable by
AC-circuits of parameter-dependent depth and “FPT-like” size. Since the results and notions
will be useful later, but do not lie at the paper’s heart, we keep this section brief.

Logical Terminology. We only consider first-order logic and use standard notations, with
the perhaps only deviations being that we write relational atoms briefly as Exy instead of
E(x, y) and that the literal x 6= y is an abbreviation for ¬x = y (recall that a literal is an
atom or a negated atom). Signatures, typically denoted τ , are always finite and may only
contain relation symbols and constant symbols – with one exception: The special unary
function symbol succ may also be present in a signature. Let us write succk for the k-fold
application of succ, so succ3(x) is short for succ(succ(succ(x))). It allows us to specify
any fixed non-negative integer without having to use additional variables. An alternative is
to dynamically add constant symbols for numbers to signatures as done in [6], but we believe
that following [10] and adding the successor function gives a leaner formal framework. Let
arity(τ) be the maximum arity of relation symbols in τ .

We denote by struc[τ] the class of all τ -structures and by |A| the universe of A. As is
often the case in descriptive complexity theory, we only consider ordered structures in which
the ternary predicates add and mult are available and have their natural meaning. Formally,
we say τ is arithmetic if it contains all of the predicates <, add, mult, the function symbol
succ, and the constant symbol 0 (it is included for convenience only). In this case, struc[τ]
contains only those A for which <A is a linear ordering of |A| and the other operations
have their natural meaning relative to <A (with the successor of the maximum element of
the universe being itself and with 0 being the minimum with respect to <A). We write
φ ∈ FO[+,×] when φ is a τ -formula for an arithmetic τ .

STACS 2019

11:6 On the Descriptive Complexity of Color Coding

A τ -problem is a set Q ⊆ struc[τ] closed under isomorphisms. A τ -formula φ describes
a τ -problem Q if Q = {A ∈ struc[τ] | A |= φ} and it describes Q eventually if φ describes a
set Q′ that differs from Q only on structures of a certain maximum size.

I Lemma 2.1. For each φ ∈ FO[+,×] that describes a τ -problem Q eventually, there are
quantifier-free formulas α and β such that (α ∧ φ) ∨ β describes Q.

Proof Sketch. Setup α to test structure size. “Hardwire” into β which “small” structures
lie in Q. Use succ to address the elements of small structures without using quantifiers. J

We write qr(φ) for the quantifier rank of a formula and bound(φ) for the set of its
bound variables. For instance, for φ =

(
∃x∃y(Exz)

)
∨ ∀y(Px) we have qr(φ) = 2, since the

maximum nesting is caused by the two nested existential quantifiers, and bound(φ) = {x, y}.
Let us say that φ is in negation normal form if negations are applied only to atomic

formulas.

Describing Parameterized Problems. When switching from classical complexity theory
to descriptive complexity theory, the basic change is that “words” get replaced by “finite
structures.” The same idea works for parameterized complexity theory and, following Flum
and Grohe [10], let us define parameterized problems as subsets Q ⊆ struc[τ]×N where Q is
closed under isomorphisms. In a pair (A, k) ∈ struc[τ]× N the number k is, of course, the
parameter value of the pair. Flum and Grohe now propose to describe such problems slicewise
using formulas. Since this will be the only way in which we describe problems, we will drop
the “slicewise” in the phrasings and just say that a computable family (φk)k∈N of formulas
describes a problem Q ⊆ struc[τ]×N if for all (A, k) ∈ struc[τ]×N we have (A, k) ∈ Q if,
and only if, A |= φk. One can also define a purely logical notion of reductions between two
problems Q and Q′, but we will need this notion only inside the proof of Theorem 4.2 and
postpone the definition till then.

For a class Φ of computable families (φk)k∈N, let us write XΦ for the class of all parameter-
ized problems that are described by the members of Φ (we chose “X” to represent a “slicewise”
description, which seems to be in good keeping with the usual use of X in other classes such
as XP or XL). For instance, the mentioned characterization of FPT in logical terms by Flum
and Grohe can be written as FPT = X{(φk)k∈N | φk ∈ FO[lfp],maxk qr(φk) <∞}.

We remark that instead of describing parameterized problems using families, a more
standard and at the same time more flexible way is to use reductions to model checking
problems. Clearly, if a family (φk)k∈N of L-formulas describes Q ⊆ struc[τ]×N, then there
is a very simple parameterized reduction from Q to the model checking problem pφ-mc(L),
where the input is a pair (A,num(φ)) and the question is whether both A |= φ and φ ∈ L
hold. (The function num encodes mathematical objects like φ or later tuples like (φ, δ) as
unique natural numbers.) The reduction simply maps a pair (A, k) to (A,num(φk)). Even
more interestingly, without going into any of the technical details, it is also not hard to see
that as long as a reduction is sufficiently simple, the reverse implication holds, that is, we
can replace a reduction to the model checking problem by a family of formulas that describe
the problem. We can, thus, use whatever formalism seems more appropriate for the task at
hand and – as we hope that this paper shows – it is sometimes quite natural to write down a
family that describes a problem.

Parameterized Circuits. For our descriptive setting, we need to slightly adapt the definition
of the circuit classes para-AC0 and para-AC0↑ from [2, 3]: Let us say that a problem
Q ⊆ struc[τ]× N is in para-AC0, if there is a family (Cn,k)n,k∈N of AC-circuits (Boolean

M. Bannach and T. Tantau 11:7

circuits with unbounded fan-in) such that for all (A, k) ∈ struc[τ] × N we have, first,
(A, k) ∈ Q if, and only if, C|x|,k(x) = 1 where x is a binary encoding of A; second, the size of
Cn,k is at most f(k) ·nc for some computable function f ; third, the depth of Cn,k is bounded
by a constant; and, fourth, the circuit family satisfies a dlogtime-uniformity condition. The
class para-AC0↑ is defined the same way, but the depth may be g(k) for some computable g
instead of only O(1). The following fact and theorem show how these two circuit classes are
closely related to descriptions of parameterized problems using formulas:

I Fact 2.2 ([6]). para-AC0 = X
{

(φk)k∈N
∣∣ φk ∈ FO[+,×],maxk qr(φk) <∞

}
.

I Theorem 2.3. para-AC0↑ = X
{

(φk)k∈N
∣∣ φk ∈ FO[+,×],maxk |bound(φk)| <∞

}
.

Proof Sketch. Basically, this follows from the well-known link between circuit depth and
size and the number of variables used in a formula, see for instance [15]: The quantifier rank
of a first-order formula naturally corresponds to the depth of a circuit that solves the model
checking problem for the formula. The number of variables corresponds to the exponent
of the polynomial that bounds the size of the circuit (the paper [13] is actually entitled
“DSPACE[nk] = VAR[k+1]”). A simple new observation (but needed for the theorem – usually
only one formula is considered) is that the length of the formula is linked multiplicatively to
the size of the circuit. J

3 Syntactic Properties Allowing Color Coding

The color coding technique [1] is a powerful method from parameterized complexity theory
for “discovering small objects” in larger structures. Recall the example from the introduction:
While finding k disjoint triangles in a graph is difficult in general, it is easy when the graph
is colored with k colors and the objective is to find for each color one triangle having this
color. The idea behind color coding is to reduce the (hard) uncolored version to the (easy)
colored version by randomly coloring the graph and then “hoping” that the coloring assigns
a different color to each triangle. Since the triangles are “small objects,” the probability that
they do, indeed, get different colors depends only on k. Even more importantly, Alon et al.
noticed that we can derandomize the coloring procedure simply by coloring each vertex by its
hash value with respect to a simple family of universal hash functions that only use addition
and multiplication [1]. This idea is beautiful and works surprisingly well in practice [12], but
using the method inside proofs can be tricky: On the one hand, we need to “keep the set
sizes under control” (they must stay roughly logarithmic in size) and we “need to actually
identify the small set based just on its random coloring.” Especially for more complex proofs
this can lead to rather subtle arguments.

In the present section, we identify syntactic properties of formulas that guarantee that
the color coding technique can be applied. The property is that the colors (the predicates Ci
in the formulas) are not in the scope of a universal quantifier (this restriction is necessary, as
the example of the formula describing 3-colorability shows).

As mentioned already in the introduction, the main “job” of the colors in proofs based
on color coding is to ensure that vertices of a graph are different from other vertices. This
leads us to the idea of focusing entirely on the notion of distinctness in the second half of
this section. This time, there will be syntactic properties of existentially bounded first-order
variables that will allow us to apply color coding to them.

STACS 2019

11:8 On the Descriptive Complexity of Color Coding

3.1 Formulas With Color Predicates

In graph theory, a coloring of a graph can either refer to an arbitrary assignment that maps
each vertex to a color or to such an assignment in which vertices connected by an edge must
get different colors (sometimes called proper colorings). For our purposes, colorings need
not be proper and are thus partitions of the vertex set into color classes. From the logical
point of view, each color class can be represented by a unary predicate. A k-coloring of a
τ -structure A is a structure B over the signature τk-colors = τ ∪ {C1

1 , . . . , C
1
k}, where the Ci

are fresh unary relation symbols, such that A is the τ -restriction of B and such that the sets
CB1 to CBk form a partition of the universe |A| of A.

Let us now formulate and prove the first syntactic version of color coding. An example of
a possible formula φ in the theorem is

∧k
i=1 ∃x∃y∃z(Exy ∧ Eyz ∧ Exz ∧ Cix ∧ Ciy ∧ Ciz),

for which the theorem tells us that there is a formula φ′ of constant quantifier rank that is
true exactly when there are pairwise disjoint sets Ci that make φ true.

I Theorem 3.1. Let τ be an arithmetic signature and let k be a number. For each first-order
τk-colors-sentence φ in negation normal form in which no Ci is inside a universal scope, there
is a τ -sentence φ′ such that:
1. For all A ∈ struc[τ] we have A |= φ′ if, and only if, there is a k-coloring B of A with
B |= φ.

2. qr(φ′) = qr(φ) +O(1).
3. |bound(φ′)| = |bound(φ)|+O(1).
(Let us clarify that O(1) represents a global constant that is independent of τ and k.)

Proof. Let τ , k, and φ be given as stated in the theorem. If necessary, we modify φ to
ensure that there is no literal of the form ¬Cixj , by replacing each such literal by the
equivalent

∨
l 6=i Clxj . After this transformation, the Ci in φ are neither in the scope of

universal quantifiers nor of negations – and this is also true for all subformulas α of φ. We
will now show by structural induction that all these subformulas (and, hence, also φ) have
two semantic properties, which we call the monotonicity property and the small witness
property (with respect to the Ci). Afterwards, we will show that these two properties allow
us to apply the color coding technique.

Establishing the Monotonicity and Small Witness Properties. Some notations will be
useful: Given a τ -structure A with universe A and given sets Ai ⊆ A for i ∈ {1, . . . , k}, let us
write A |= φ(A1, . . . , Ak) to indicate that B is a model of φ where B is the τk-colors-structure
with universe A in which all symbols from τ are interpreted as in A and in which the
symbol Ci is interpreted as Ai, that is, CBi = Ai. Subformulas γ of φ may have free variables
and suppose that x1 to xm are the free variables in γ and let ai ∈ A for i ∈ {1, . . . ,m}. We
write A |= γ(A1, . . . , Ak, a1, . . . , am) to indicate that γ holds in the just-described structure B
when each xi is interpreted as ai.

I Definition 3.2. Let γ be a τk-colors-formula with free variables x1 to xm. We say that
γ has the monotonicity and the small witness properties with respect to the Ci if for all
τ -structures A with universe A and all values a1, . . . , am ∈ A the following holds:
1. Monotonicity property: Let A1, . . . , Ak ⊆ A and B1, . . . , Bk ⊆ A be sets with Ai ⊆ Bi

for all i ∈ {1, . . . , k}. Then A |= γ(A1, . . . , Ak, a1, . . . , am) implies A |= γ(B1, . . . , Bk,

a1, . . . , am).

M. Bannach and T. Tantau 11:9

2. Small witness property: If there are any pairwise disjoint sets B1, . . . , Bk ⊆ A with
A |= γ(B1, . . . , Bk, a1, . . . , am), then there are sets Ai ⊆ Bi whose sizes |Ai| depend only
on γ for i ∈ {1, . . . , k}, such that A |= γ(A1, . . . , Ak, a1, . . . , am).

We now show that φ has these two properties (for m = 0). For monotonicity, just note
that the Ci are not in the scope of any negation and, thus, if some Ai make φ true, so will
all supersets Bi of the Ai.

To see that the small witness property holds, we argue by structural induction: If φ is
any formula that does not involve any Ci, then φ is true or false independently of the Bi
and, in particular, if it is true at all, it is also true for Ai = ∅ for i ∈ {1, . . . , k}. If φ is the
atomic formula Cixj , then setting Ai = {aj} and Ai′ = ∅ for i′ 6= i makes the formula true.

If φ = α ∧ β, then α and β have the small witness property by the induction hypothesis.
Let B1, . . . , Bk ⊆ A make φ hold in A. Then they also make both α and β hold in A.
Let Aα1 , . . . , Aαk ⊆ A with Aαi ⊆ Bi be the witnesses for α and let Aβ1 , . . . , A

β
k ⊆ A be the

witnesses for β. Then by the monotonicity property, Aα1 ∪ A
β
1 , . . . , A

α
k ∪ A

β
k makes both α

and β true, that is

A |= α(Aα1 ∪A
β
1 , . . . , A

α
k ∪A

β
k , a1, . . . , am)

and the same holds for β. Note that Aαi ∪ A
β
i ⊆ Bi still holds and that they have sizes

depending only on α and β and thereby on φ.
For φ = α ∨ β we can argue in exactly the same way as for the logical and.
The last case for the structural induction is φ = ∃xm(α). Consider pairwise dis-

joint B1, . . . , Bk ⊆ A that make φ true. Then there is a value am ∈ A such that
A |= α(B1, . . . , Bk, a1, . . . , am). Now, since α has the small witness property by the
induction hypothesis, we get Ai ⊆ Bi of size depending on α for which we also have
A |= α(A1, . . . , Ak, a1, . . . , am). But then, by the definition of existential quantifiers, these
Ai also witness A |= ∃xmφ(A1, . . . , Ak, a1, . . . , am−1). (Observe that this is the point where
the argument would not work for a universal quantifier: Here, for each possible value of am
we might have a different set of Ai’s as witnesses and their union would then no longer have
small size.)

Applying Color Coding. Our next step in the proof is to use color coding to produce the
partition. First, let us recall the basic lemma on universal hash functions formulated below
in a way equivalent to [11, page 347]:

I Lemma 3.3. There is an n0 ∈ N such that for all n ≥ n0 and all subsets X ⊆ {0, . . . , n−1}
there exist a prime p < |X|2 log2 n and a number q < p such that the function hp,q(m) =
(q ·mmod p) mod |X|2 is injective on X.

As has already been observed by Chen et al. [6], if we set k = |X| we can easily express the
computation underlying hp,q : {0, . . . , n−1} → {0, . . . , k2−1} using a fixed FO[+,×]-formula
ρ(k, p, q, x, y). That is, if we encode the numbers k, p, q, x, y ∈ {0, . . . , n−1} as corresponding
elements of the universe with respect to the ordering of the universe, then ρ(k, p, q, x, y)
holds if, and only if, hp,q(x) = y. Note that the p and q from the lemma could exceed n for
very large X (they can reach up to n2 log2 n ≤ n3), but, first, this situation will not arise
in the following and, second, this could be fixed by using three variables to encode p and
three variables to encode q. Trivially, ρ(k, p, q, x, y) has some constant quantifier rank (the
formula explicitly constructed by Chen et al. has qr(ρ) = 9, assuming k2 < n).

Next, we will need the basic idea or “trick” of Alon et al.’s [1] color coding technique:
While for appropriate p and q the function hp,q will “just” be injective on {0, . . . , k2 − 1},

STACS 2019

11:10 On the Descriptive Complexity of Color Coding

we actually want a function that maps each element x ∈ X to a specific element (“the
color of x”) of {1, . . . , k}. Fortunately, this is easy to achieve by concatenating hp,q with an
appropriate function g : {0, . . . , k2 − 1} → {1, . . . , k}.

In detail, to construct φ′ from the claim of the theorem, we construct a family of formulas
φg(p, q) where p and q are new free variables and the formulas are indexed by all possible
functions g : {0, . . . , k2 − 1} → {1, . . . , k}: In φ, replace every occurrence of Cixj by the
following formula πgi (p, q, xj):∨

y∈{0,...,k2−1},g(y)=i ∃k̂∃ŷ
(
succk(0) = k̂ ∧ succy(0) = ŷ ∧ ρ(k̂, p, q, xj , ŷ)

)
where k̂ and ŷ are fresh variables that we bind to the numbers k and y (if the universe is large
enough). Note that the formula Cixj has xj as a free variable, while πgi (p, q, xj) additionally
has p and q as free variables. As an example, for the formula φ = ∃x(C2x ∨ ∃yC5y)
we would have φg = ∃x(πg2(p, q, x) ∨ ∃yπg5(p, q, y)). Clearly, each φg has the property
qr(φg) = qr(φ) +O(1).

The desired formula φ′ is (almost) simply
∨
g:{0,...,k2−1}→{1,...,k} ∃p∃q(φg(p, q)). The

“almost” is due to the fact that this formula works only for structures with a sufficiently
large universe – but by Lemma 2.1 it suffices to consider only this case. Let us prove that
for every σ-structure A with universe A = {0, . . . , n− 1} and n ≥ c for some to-be-specified
constant c, the following two statements are equivalent:
1. There is a k-coloring B of A with B |= φ.
2. A |=

∨
g:{0,...,k2−1}→{1,...,k} ∃p∃q(φg(p, q)).

Let us start with the implication of item 2 to 1. Suppose there is a function g : {0, . . . ,
k2 − 1} → {1, . . . , k} and elements p, q ∈ {0, . . . , n− 1} such that A |= φg(p, q). We define a
partition A1 ∪̇ · · · ∪̇ Ak = A by Ai = {x ∈ A | g(hp,q(x)) = i}. In other words, Ai contains
all elements of A that are first hashed to an element of {0, . . . , k2 − 1} that is then mapped
to i by the function g. Trivially, the Ai form a partition of the universe A.

Assuming that the universe size is sufficiently large, namely for k2 log2 n < n, inside
φg all uses of ρ(k̂, p, q, x, ŷ) will have the property that A |= ρ(k̂, p, q, x, ŷ) if, and only if,
hp,q(x) = ŷ. Clearly, there is a constant c depending only on k such that for all n > c we
have k2 log2 n < n.

With the property established, we now see that πgi (p, g, xj) holds inside the formula φg
if, and only if, the interpretation of xj is an element of Ai. This means that if we interpret
each Ci by Ai, then we get A |= φ(A1, . . . , Ak) and the Ai form a partition of the universe.
In other words, we get item 1.

Now assume that item 1 holds, that is, there is a partition B1 ∪̇ · · · ∪̇ Bk = A with
A |= φ(B1, . . . , Bk). We must show that there are a g : {0, . . . , k2 − 1} → {1, . . . , k} and
p, q ∈ A such that A |= φg(p, q).

At this point, we use the small witness property that we established earlier for the
partition. By this property there are pairwise disjoint sets Ai ⊆ A such that, first, |Ai|
depends only on φ and, second, A |= φ(A1, . . . , Ak). Let X =

⋃k
i=1 Ai. Then |X| depends

only on φ and let sφ be a φ-dependent upper bound on this size. By the universal hashing
lemma, there are now p and q such that hp,q : {0, . . . , n− 1} → {0, . . . , s2

φ − 1} is injective
on X. But, then, we can set g : {0, . . . , s2

φ − 1} → {1, . . . , k} to g(v) = i if there is an x ∈ Ai
with hp,q(x) = v and setting g(v) arbitrarily otherwise. Note that this is, indeed, a valid
definition of g since hp,q is injective on X.

With these definition, we now define the following sets D1 to Dk: Let Di = {x ∈
A | g(hp,q(x̂)) = i} where x̂ is the index of x in A with respect to the ordering (that is,
x̂ = |{y ∈ A | y <A x}| and for the special case that A = {0, . . . , n − 1} and that <A is

M. Bannach and T. Tantau 11:11

the natural ordering, x̂ = x). Observe that Di ⊇ Ai holds for all Di and that the Di form
a partition of the universe A. By the monotonicity property, A |= φ(A1, . . . , Ak) implies
A |= φ(D1, . . . , Dk). However, by definition of the Di and of the formulas πgi , for a sufficiently
large universe size n (namely s2

φ log2 n < n), we now also have A |= φg(p, q), which in turn
implies A |=

∨
g ∃p∃qφg. J

In the theorem we assumed that φ is a sentence to keep the notation simple, both the
theorem and later theorems still hold when φ(x1, . . . , xn) has free variables x1 to xn. Then
there is a corresponding φ′(x1, . . . , xn) such that first item becomes that for all A ∈ struc[τ]
and all a1, . . . , an ∈ |A| we have A |= φ′(a1, . . . , an) if, and only if, there is a k-coloring B
of A with B |= φ(a1, . . . , an). Note that the syntactic transformations in the theorem do not
add dependencies of universal quantifiers on the free variables.

3.2 Formulas With Weak Quantifiers
If one has a closer look at proofs based on color coding, one cannot help but notice that
the colors are almost exclusively used to ensure that certain vertices in a structure are
distinct from certain other vertices: recall the introductory example

∧k
j=1 ∃x∃y∃z(Exy ∧

Eyz ∧ Exz ∧ C3j−2x ∧ C3j−1y ∧ C3jz), which describes the triangle packing problem when
we require that the Ci form a partition of the universe. Since the Ci are only used to ensure
that the many different x, y, and z are different, we already rewrote the formula in (4) as
∃x1 · · · ∃x3k

∧
i6=j xi 6= xj∧

∧k
j=1 ∃x∃y∃z(Exy∧Eyz∧Exz∧x3j−2 = x∧x3j−1 = y∧x3j = z).

While this rewriting gets rid of the colors and moves us back into the familiar territory of
simple first-order formulas, the quantifier rank and the number of variables in the formula
have now “exploded” (from the constant 3 to the parameter-dependent value 3k+ 3) – which
is exactly what we need to avoid in order to apply Fact 2.2 or Theorem 2.3.

We now define a syntactic property that the xi have that allows us to remove them from
the formula and, thereby, to arrive at a family of formulas of constant quantifier rank. For a
(sub)formula α of the form ∀d(φ) or ∃d(φ), we say that d depends on all free variables in φ (at
the position of α in a larger formula). For instance, in Exy ∧ ∀b(Exb ∧ ∃z(Eyz)) ∧ ∃b(Exx),
the variable b depends on x and y at its first binding (∀b) and on x at the second binding (∃b).

I Definition 3.4. We call the leading quantifier in a formula ∃x(φ) in negation normal form
strong if
1. some universal binding inside φ depends on x or
2. there is a subformula α ∧ β of φ such that both α and β contain x in literals that are not

of the form x 6= y for some variable y.
If neither of the above hold, we call the quantifier weak. The strong quantifier rank
strong-qr(φ) is the quantifier rank of φ, where weak quantifiers are ignored; strong-bound(φ)
contains all variables of φ that are bound by non-weak quantifiers.

(Later on we extend the definition to the dual notion of weak universal quantifiers, but for
the moment let us only call existential quantifiers weak.)

We place a dot on the variables bound by weak quantifiers to make them easier to spot.
For example, in φ = ∃x∃y∃ż(Rxxżż ∧ x 6= y ∧ y 6= ż ∧ Px ∧ ∀wEwyy) the quantifier ∃ż is
weak, but neither are ∃x (since x is used in two literals joined by a conjunction, namely
in Rxxżż and Px) nor ∃y (since w depends on y in ∀wEwyy). We have qr(φ) = 4, but
strong-qr(φ) = 3, and bound(φ) = {x, y, ż}, but strong-bound(φ) = {x, y}.

Admittedly, the definition of weakness is a bit technical, but note that there is a rather
simple sufficient condition for a variable x to be weak: If it not used in universal binding

STACS 2019

11:12 On the Descriptive Complexity of Color Coding

and used in only one literal that is not an inequality, then x is weak. This condition almost
always suffices for identifying the weak variables, although there are of course exceptions like
∃ẋ(Pẋ ∨Qẋ).

I Theorem 3.5. Let τ be an arithmetic signature. Then for every τ -formula φ in negation
normal form there is a τ -formula φ′ such that
1. φ′ is equivalent to φ on finite structures,
2. qr(φ′) = 3 · strong-qr(φ) +O(arity(τ)), and
3. |bound(φ′)| = |strong-bound(φ)|+O(arity(τ)).

Proof Sketch. Using simple transformations, we can ensure that all weak quantifiers follow
in blocks after universal quantifiers. We can also ensure that inequality literals directly
follow the blocks of weak quantifiers and are joined by conjunctions. If the inequality literals
following a block happen to require that all weak variables from the block are different (that
is, if for all pairs ẋi and ẋj of different weak variables there is an inequality ẋi 6= ẋj), then
we can remove the weak quantifiers ∃ẋi and at the (single) place where ẋi is used, we use a
color Ci instead. For instance, if ẋi is used in the literal ẋi = y, we replace the literal by
Ciy. If ẋi is used for instance in ¬Eẋiy, we replace this by ∃x(Cix ∧ ¬Exy). In this way,
for each block we get an equivalent formula to which we can apply Theorem 3.1. A more
complicated situation arises when the inequality literals in a block “do not require complete
distinctness,” but this case can also be handled by considering all possible ways in which the
inequalities can be satisfied in parallel. In result, all weak quantifiers get removed and for
each block a constant number of new quantifiers are introduced. Since each block follows a
different universal quantifier, the new total quantifier rank is at most the strong quantifier
rank times a constant factor; and the new number of variables is only a constant above the
number of original strong variables. J

We already mentioned that the notion of weak existential quantifiers begs a dual: By
Theorem 3.5, for φ = ∃ẋ1 · · · ∃ẋk(ψ) there is an equivalent formula φ′ with qr(φ′) =
O(strong-qr(φ)). Since, trivially, qr(¬φ′) = qr(φ′), the formula ¬φ is also equivalent to
a formula of quantifier rank O(strong-qr(φ)). The normal form of ¬φ starts with ∀x1 · · · ∀xk
to which Theorem 3.5 does not apply “at all” – but the dual of the theorem applies, where
we call the leading quantifier in a (sub)formula ∀x(φ) weak if no existential binding inside φ
depends on x and in all subformulas of φ of the form α ∨ β at most one of α and β may
contain a literal that contains x and is not of the form x = y (note that this is now an
equality). More interestingly, we can even show that both kinds of weak quantifiers may be
present:

I Theorem 3.6. Theorem 3.5 still holds when φ may contain both existential and universal
weak variables, none of which count towards the strong quantifier rank nor count as strong
bound variables.

Proof Sketch. As in the proof of Theorem 3.5, we syntactically transform φ so that the
weak existential quantifiers follow strong universal quantifiers in block and – this is new –
that the weak universal quantifiers follow strong existential quantifiers. The key observation
that makes these transformations possible in the mixed case is that weak existential and
weak universal quantifiers commute: For instance, ∃ẋ(α ∧ ∀ẏ(β)) ≡ ∀ẏ(β ∧ ∃ẋ(α)) since ẋ
and ẏ cannot depend on one another by the core property of weak quantifiers (α cannot
contain ẏ and β cannot contain ẋ). J

M. Bannach and T. Tantau 11:13

4 Syntactic Proofs and Natural Problems

The special allure of descriptive complexity theory lies in the possibility of proving that a
problem has a certain complexity just by describing the problem in the right way. The “right
way” is, of course, a logical description that has a certain syntax (such as having a bounded
strong quantifier rank). In the following we present such descriptions for several natural
problems and thereby bound their complexity “in a purely syntactic way.” First, however,
we present “syntactic tools” for describing problems more easily. These tools are built on
top of the notion of strong and weak quantifiers.

4.1 Syntactic Tools: New Operators
It is common in mathematical logic to distinguish between the core syntax and additional
“shorthands” built on top of the core syntax. For instance, while ¬ and ∨ are typically
considered to be part of the core syntax of propositional logic, the notation a→ b is often
seen as a shorthand for ¬a ∨ b. In a similar way, we now consider the notions of weak
variables and quantifiers introduced in the previous section as our “core syntax” and build
a number of useful shorthands on top of them. Of course, just as a → b has an intended
semantic meaning that the expansion ¬a ∨ b of the shorthand must reflect, the shorthands
we introduce also have an intended semantic meaning, which we specify.

As a first example, consider the common notation ∃≥kx(φ(x)), whose intended semantics
is “there are at least k different elements in the universe that make φ(x) true.” While
this notation is often considered as a shorthand for ∃x1 · · · ∃xk

∧
i6=j xi 6= xj ∧

∧k
i=1 φ(xi)

we will consider it a shorthand for the equivalent, but slightly more complicated formula
∃ẋ1 · · · ∃ẋk

∧
i 6=j ẋi 6= ẋj ∧

∧k
i=1∃x(x = ẋi∧φ(x)). The difference is, of course, that the strong

quantifier rank is now much lower and, hence, by Theorem 3.5 we can replace any occurrence
of ∃≥kx(φ(x)) by a formula of quantifier rank qr(φ) +O(1). In all of the following notations,
k and s are arbitrary values. The indicated strong quantifier rank for the notation is that of
its expansion. The semantics describe which structures A are models of the formula.

I Notation (∃≥kx(φ(x))). Strong-qr: 1 + strong-qr(φ)
Semantics There are k distinct a1, . . . , ak ∈ |A| with A |= φ(ai) for all i.
Expansion ∃ẋ1 · · · ∃ẋk

∧
i 6=j ẋi 6= ẋj ∧

∧k
i=1 ∃x(x = ẋi ∧ φ(x))

I Notation (∃≤kx(φ(x))). Strong-qr: 1 + strong-qr(φ)
Semantics There are at most k distinct a1, . . . , ak ∈ |A| with A |= φ(ai) for all i.
Expansion ∀ẋ1 · · · ∀ẋk+1

∨
i 6=j ẋi = ẋj ∨

∨k+1
i=1 ∀x(x 6= ẋi ∨ ¬φ(x)) (≡ ¬∃≥k+1x(φ(x)))

I Notation (∃=kx(φ(x))). Strong-qr: 1 + strong-qr(φ)
Semantics There are exactly k distinct a1, . . . , ak ∈ |A| with A |= φ(ai) for all i.
Expansion ∃≥kx(φ(x)) ∧ ∃≤kx(φ(x))

The next notation is useful for “binding” a set of vertices to weak or strong variables. The
binding contains the allowed “single use” of the weak variables in the sense of Definition 3.4,
but they can still be used in inequality literals. Let x̊ indicate that x may be weak or strong.

I Notation ({x̊1, . . . , x̊k} = {x | φ(x)}). Strong-qr: 1 + strong-qr(φ)
Semantics Let a1, . . . , ak ∈ |A| be the assignments to the x̊i (note that they need not be

distinct). Then {a1, . . . , ak} =
{
a ∈ |A|

∣∣ A |= φ(a)
}
must hold.

Expansion
∧k
i=1 ∃x

(
x = x̊i ∧ φ(x)

)
∧ // ensure {x̊1, . . . , x̊k} ⊆ {x | φ(x)}∨k

s=1
(
∃=sx(φ(x)) ∧ // bind s to |{x | φ(x)}|∨

I⊆{1,...,k},|I|=s
∧
i,j∈I,i6=j x̊i 6= x̊j

)
. // ensure |{x̊1, . . . , x̊k}| ≥ s

STACS 2019

11:14 On the Descriptive Complexity of Color Coding

The final notation can be thought of as a “generalization of ∃=k” where we not only ask
whether there are exactly k distinct ai with a property φ, but whether these ai then also
have an arbitrary special additional property. Formally, let Q ⊆ struc[τ] be an arbitrary
τ -problem. We write A[I] for the substructure of A induced on a subset I ⊆ |A|.

I Notation (inducedsize=k{x | φ(x)} ∈ Q). Strong-qr: 1 + strong-qr(φ) + arity(τ)
Semantics The set I = {a ∈ |A| | A |= φ(a)} has size exactly k and A[I] ∈ Q.
Expansion Assuming for simplicity that τ contains only E2 as non-arithmetic predicate:

∃=kx(φ(x)) ∧
∨
A∈Q,|A|={1,...,k}

∧
(i,j)∈EA ∃x∃y(πi(x) ∧ πj(y) ∧ Exy) ∧∧
(i,j)/∈EA ∃x∃y(πi(x) ∧ πj(y) ∧ ¬Exy),

where πi(x) is a shorthand for φ(x)∧∃=i−1z(z < x∧ φ(z)), which binds x to the
ith element of the universe with property φ.

I Notation (inducedsize≤k{x | φ(x)} ∈ Q). Strong-qr: 1 + strong-qr(φ) + arity(τ)
Semantics The set I = {a ∈ |A| | A |= φ(a)} has size at most k and A[I] ∈ Q.
Expansion

∨k
s=0 inducedsize=s{x | φ(x)} ∈ Q

4.2 Describing Classical Problems
A vertex cover of a graph G = (V,E) is a subset X ⊆ V with e ∩X 6= ∅ for all e ∈ E. The
problem pk-vertex-set asks whether a graph has a cover X with |X| ≤ k.

I Theorem 4.1 ([2, 6]). p-vertex-cover ∈ para-AC0.

Proof. We describe the problem using a family (φk)k∈N of constant strong quantifier rank
that expresses the well-known Buss kernelization “using logic”: Let high(x) = ∃≥k+1y(Exy)
expresses that x is a high-degree vertex. Buss observed that all high-degree vertices must
be part of a vertex cover of size at most k. Thus, h ≤ k must hold for the unique h with
∃=hx(high(x)). A remaining vertex is interesting if it is connected to at least one non-high-
degree vertex: interesting(x) = ¬high(x) ∧ ∃y(Exy ∧ ¬high(y)). If there are more than
(k − h)(k + 1) ≤ k2 + k interesting vertices, there cannot be a vertex cover – and if there are
less, the graph induced on the interesting vertices must have a vertex cover of size k − h. In
symbols: φk =

∨k
h=0
(
∃=hx(high(x)) ∧ inducedsize≤k2+k{x | interesting(x)} ∈ Qk−h

)
for

Qs = {G | G has a vertex cover of size s}. J

Hitting sets generalize the notion of vertex covers to hypergraphs (V,E). They are still sets
X ⊆ V with e ∩X 6= ∅ for all e ∈ E. The problem pk,d-hitting-set asks whether a hyper-
graph with maxe∈E |e| ≤ d has a hitting set X with |X| ≤ k. Note that p-vertex-cover is
exactly this problem restricted to d = 2.

I Theorem 4.2 ([4]). pk,d-hitting-set ∈ para-AC0.

Proof Sketch. Instead of the Buss kernelization, “using logic” we describe the kernelization
presented by us in [4] for the hitting set problem. While this kernelization is considerably
more complex, it turns out that it can be expressed quite naturally using weak variables. J

Next, we show that the result by Flum and Grohe [10] that the model checking problem
for first-order logic lies in FPT on structures whose Gaifman graph has bounded degree can
be obtained “syntactically.” For simplicity, we only consider graphs and let pψ,δ-mc(FO) ={

(G,num(ψ, δ))
∣∣ G ∈ struc[(E2)], ψ ∈ FO,G |= ψ,max-degree(G) ≤ δ

}
.

M. Bannach and T. Tantau 11:15

I Theorem 4.3 ([2, 10]). pψ,δ-mc(FO) ∈ para-AC0↑.

Proof Sketch. There is a family (φψ,δ)ψ∈FO,δ∈N with a bound on the number of strong
variables that describes pψ,δ-mc(FO): For fixed ψ and δ, using Gaifman’s Theorem, rewrite
ψ as ∃x1 · · · ∃xk

(∧
i 6=j γdist(xi,xj)>2r ∧

∧
i ρ(xi)

)
where ρ is r-local. Because of the bounded

degree, a ball of radius r can have maximum size δr. We can now verify the disjointness of
the balls surrounding the xi by using one weak variable for each element in such a ball. The
second part can then be verified by inducedsize≤δr{x | γdist(x,xi)≤r} ∈ {G | G |= ρ(xi)}. J

In our final example, td(H) is the tree depth of H and tw(H) is the tree width (see
the appendix for detailed definitions). A graph H = (V (H), E(H)) embeds into a graph
G = (V (G), E(G)) if there is an injective mapping ι : V (H) → V (G) such that for all
(u, v) ∈ E(H) we have (ι(u), ι(v)) ∈ E(G). Let p-embtd≤c be {(G,num(H)) | td(H) ≤ c and
H embeds into G} and define p-embtw≤c similarly.

I Theorem 4.4 ([2, 5]). p-embtd≤c ∈ para-AC0 and p-embtw≤c ∈ para-AC0↑ for each c.

Proof Sketch. For each graph H together with a tree decomposition (T,B) of H, we present
a formula φH,T,B with
1. strong-qr(φH,T,B) = O(depth(T)) and
2. |strong-bound(φH,T,B)| = O(width(B)),
such that for all graphs G we have G |= φH,T,B if, and only if, H embeds into G. The
idea is to use |H| distinct weak variables to bind the embedding and width(B) + 1 strong
variables to keep track of the vertices in the bags. Each time a vertex enters the bags for the
first time, bind the corresponding weak variable to one of the strong ones. Recycle strong
variables when a vertex leaves a bag. Build a nested formula whose structure mirrors the
tree decomposition and check for each bag whether the necessary edges are present. J

5 Conclusion

In the present paper, we showed how the color coding technique can be turned into a powerful
tool for parameterized descriptive complexity theory. This tool allows us to show that
important results from parameterized complexity theory – like the fact that the embedding
problem for graphs of bounded tree width lies in FPT – follow just from the syntactic
structure of the formulas that describe the problem.

In all our syntactic characterizations it was important that variables or color predicates
were not allowed to be within a universal scope. The reason was that literals, disjunctions,
conjunctions, and existential quantifiers all have what we called the small witness property,
which universal quantifiers do not have. However, there are other quantifiers, from more
powerful logics that we did not explore, that also have the small witness property. An
example are operators that test whether there is a path of length at most k from one vertex
to another for some fixed k: if such a path exists, its vertices form a “small witness.” Weak
variables may be used inside these operators, leading to broader classes of problems that can
be described by families of bounded strong quantifier rank. On the other hand, we cannot
add the full transitive closure operator tc (for which it is well-known that FO[tc] = NL)
and hope that Theorems 3.1 and 3.5 still hold: If this were the case, we should be able to
turn a formula that uses two colors C1 and C2 to express that there are two vertex-disjoint
paths between two vertices into a FO[tc] formula – thus proving the unlikely result that the
NP-hard disjoint path problem is in NL.

Another line of inquiry into the descriptive complexity of parameterized problems was
already started in the repeatedly cited paper by Chen et al. [6]: They give first syntactic
properties for families of formulas describing weighted model checking problems that imply

STACS 2019

11:16 On the Descriptive Complexity of Color Coding

membership in para-AC0. We believe that it might be possible to base an alternative notion
of weak quantifiers on these syntactic properties. Ideally, we would like to prove a theorem
similar to Theorem 3.5 in which there are just more quantifiers that count as weak and,
hence, even more families have bounded strong quantifier rank. This would allow us to prove
for even more problems that they lie in FPT just because of the syntactic structure of the
natural formula families that describe them.

References
1 Noga Alon, Raphael Yuster, and Uri Zwick. Color-Coding. Journal of the ACM, 42(4):844–856,

1995. doi:10.1145/210332.210337.
2 Max Bannach, Christoph Stockhusen, and Till Tantau. Fast Parallel Fixed-parameter Al-

gorithms via Color Coding. In Proceedings of the Tenth International Symposium on Para-
meterized and Exact Computation (IPEC 2015), pages 224–235, 2015. doi:10.4230/LIPIcs.
IPEC.2015.224.

3 Max Bannach and Till Tantau. Parallel Multivariate Meta-Theorems. In Proceedings of the
Eleventh International Symposium on Parameterized and Exact Computation (IPEC 2016),
pages 4:1–4:17, 2016. doi:10.4230/LIPIcs.IPEC.2016.4.

4 Max Bannach and Till Tantau. Computing Hitting Set Kernels By AC0-Circuits. In Proceedings
of the 35th Symposium on Theoretical Aspects of Computer Science (STACS 2018), pages
9:1–9:14, 2018. doi:10.4230/LIPIcs.STACS.2018.9.

5 Hubie Chen and Moritz Müller. The Fine Classification of Conjunctive Queries and Paramet-
erized Logarithmic Space. ACM Transactions on Computation Theory, 7(2):7:1–7:27, 2015.
doi:10.1145/2751316.

6 Yijia Chen, Jörg Flum, and Xuangui Huang. Slicewise Definability in First-Order Logic with
Bounded Quantifier Rank. In Proceedings of the 26th EACSL Annual Conference on Computer
Science Logic (CSL 2017), pages 19:1–19:16, 2017. doi:10.4230/LIPIcs.CSL.2017.19.

7 Yijia Chen and Jörg Flum. Tree-depth, quantifier elimination, and quantifier rank. In
Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS
2018), pages 225–234. ACM, 2018. doi:10.1145/3209108.3209160.

8 Bireswar Das, Murali Krishna Enduri, and I. Vinod Reddy. On the Parallel Parameterized
Complexity of the Graph Isomorphism Problem. In Proceedings of the Twelfth International
Conference and Workshop on Algorithms and Computation (WALCOM 2018), pages 252–264.
Springer, 2018. doi:10.1007/978-3-319-75172-6_22.

9 Ronald Fagin. Generalized First-Order Spectra and Polynomial-Time Recognizable Sets.
Complexity of Computation, 7:43–74, 1974.

10 Jörg Flum and Martin Grohe. Describing Parameterized Complexity Classes. Information
and Computation, 187(2):291–319, December 2003. doi:10.1016/S0890-5401(03)00161-5.

11 Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Texts in Theoretical
Computer Science. Springer, 2006. doi:10.1007/3-540-29953-X.

12 Falk Hüffner, Sebastian Wernicke, and Thomas Zichner. Algorithm Engineering for Color-
Coding with Applications to Signaling Pathway Detection. Algorithmica, 52(2):114–132, 2008.
doi:10.1007/s00453-007-9008-7.

13 Neil Immerman. DSPACE[nk] = VAR[k + 1]. In Proceedings of the Sixth Annual Structure in
Complexity Theory Conference, pages 334–340, 1991. doi:10.1109/SCT.1991.160278.

14 Michał Pilipczuk, Sebastian Siebertz, and Szymon Toruńczyk. Parameterized circuit complexity
of model-checking on sparse structures. In Proceedings of the 33rd Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS 2018), pages 789–798, 2018. doi:10.1145/
3209108.3209136.

15 Heribert Vollmer. Introduction to Circuit Complexity – A Uniform Approach. Texts in Theoret-
ical Computer Science. An EATCS Series. Springer, 1999. doi:10.1007/978-3-662-03927-4.

http://dx.doi.org/10.1145/210332.210337
http://dx.doi.org/10.4230/LIPIcs.IPEC.2015.224
http://dx.doi.org/10.4230/LIPIcs.IPEC.2015.224
http://dx.doi.org/10.4230/LIPIcs.IPEC.2016.4
http://dx.doi.org/10.4230/LIPIcs.STACS.2018.9
http://dx.doi.org/10.1145/2751316
http://dx.doi.org/10.4230/LIPIcs.CSL.2017.19
http://dx.doi.org/10.1145/3209108.3209160
http://dx.doi.org/10.1007/978-3-319-75172-6_22
http://dx.doi.org/10.1016/S0890-5401(03)00161-5
http://dx.doi.org/10.1007/3-540-29953-X
http://dx.doi.org/10.1007/s00453-007-9008-7
http://dx.doi.org/10.1109/SCT.1991.160278
http://dx.doi.org/10.1145/3209108.3209136
http://dx.doi.org/10.1145/3209108.3209136
http://dx.doi.org/10.1007/978-3-662-03927-4

Bounding Quantum-Classical Separations for
Classes of Nonlocal Games
Tom Bannink
CWI, QuSoft, Science Park 123, 1098 XG Amsterdam, Netherlands
bannink@cwi.nl

Jop Briët
CWI, QuSoft, Science Park 123, 1098 XG Amsterdam, Netherlands
j.briet@cwi.nl

Harry Buhrman
CWI, University of Amsterdam & QuSoft, Science Park 123, 1098 XG Amsterdam, Netherlands
buhrman@cwi.nl

Farrokh Labib
CWI, QuSoft, Science Park 123, 1098 XG Amsterdam, Netherlands
labib@cwi.nl

Troy Lee
Centre for Quantum Software and Information, School of Software, Faculty of Engineering and
Information Technology, University of Technology Sydney, Australia
troyjlee@gmail.com

Abstract
We bound separations between the entangled and classical values for several classes of nonlocal
t-player games. Our motivating question is whether there is a family of t-player XOR games for which
the entangled bias is 1 but for which the classical bias goes down to 0, for fixed t. Answering this
question would have important consequences in the study of multi-party communication complexity,
as a positive answer would imply an unbounded separation between randomized communication
complexity with and without entanglement. Our contribution to answering the question is identifying
several general classes of games for which the classical bias can not go to zero when the entangled
bias stays above a constant threshold. This rules out the possibility of using these games to answer
our motivating question. A previously studied set of XOR games, known not to give a positive
answer to the question, are those for which there is a quantum strategy that attains value 1 using a
so-called Schmidt state. We generalize this class to mod-m games and show that their classical value
is always at least 1

m
+ m−1

m
t1−t. Secondly, for free XOR games, in which the input distribution is

of product form, we show β(G) ≥ β∗(G)2t

where β(G) and β∗(G) are the classical and entangled
biases of the game respectively. We also introduce so-called line games, an example of which is a
slight modification of the Magic Square game, and show that they can not give a positive answer
to the question either. Finally we look at two-player unique games and show that if the entangled
value is 1− ε then the classical value is at least 1−O(

√
ε log k) where k is the number of outputs in

the game. Our proofs use semidefinite-programming techniques, the Gowers inverse theorem and
hypergraph norms.

2012 ACM Subject Classification Theory of computation → Quantum communication complexity

Keywords and phrases Nonlocal games, communication complexity, bounded separations, semidef-
inite programming, pseudorandomness, Gowers norms

Digital Object Identifier 10.4230/LIPIcs.STACS.2019.12

Related Version A full version of this paper is available at https://arxiv.org/abs/1811.11068.

Funding Tom Bannink, Jop Briët, Harry Buhrman and Farrokh Labib are supported by the NWO
Gravitation-grant NETWORKS-024.002.003.
Jop Briët: Supported by a VENI grant.

© Tom Bannink, Jop Briët, Harry Buhrman, Farrokh Labib, and Troy Lee;
licensed under Creative Commons License CC-BY

36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019).
Editors: Rolf Niedermeier and Christophe Paul; Article No. 12; pp. 12:1–12:11

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:bannink@cwi.nl
mailto:j.briet@cwi.nl
mailto:buhrman@cwi.nl
mailto:labib@cwi.nl
mailto:troyjlee@gmail.com
https://doi.org/10.4230/LIPIcs.STACS.2019.12
https://arxiv.org/abs/1811.11068
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

12:2 Bounding Quantum Classical Separations

Harry Buhrman: Supported by the NWO Gravitation-grant QSC-024.003.037, also supported by
EU grant QuantAlgo.
Troy Lee: Part of this work was done while at the School for Physical and Mathematical Sciences,
Nanyang Technological University and the Centre for Quantum Technologies, Singapore, supported
by the Singapore National Research Foundation under NRF RF Award No. NRF-NRFF2013-13.

Acknowledgements We thank Peter Høyer, Serge Massar, and Henry Yuen for useful discussions.
We thank Shravas Rao for providing a proof of one of the lemmas.

1 Introduction

The study of multiplayer games has been extremely fruitful in theoretical computer science
across diverse areas including the study of complexity classes [3], hardness of approximation
[21], and communication complexity [20]. They are also a great framework in which to study
Bell inequalities [2] and analyze the nonlocal properties of entanglement. A particularly
simple kind of multiplayer game is an XOR game. An XOR game G = (f, π) between t-players
is defined by a function f : X1 ×X2 × · · · ×Xt → {0, 1} and a probability distribution π
over X1 × · · · ×Xt. An input (x1, . . . , xt) ∈ X1 × · · · ×Xt is chosen by a referee according
to π, who then gives xi to player i. Without communicating, player i then outputs a bit
ai ∈ {0, 1} with the collective goal of the players being that a1 ⊕ · · · ⊕ at = f(x1, . . . , xt).
In a classical XOR game, the players’ strategies are deterministic. In an XOR game with
entanglement, players are allowed to share a quantum state and make measurements on this
state to inform their outputs.

As players can always win an XOR game with probability at least 1
2 , it is common to

study the bias of an XOR game, the probability of winning minus the probability of losing.
We use β(G) to denote the largest bias achievable by a classical protocol for the game G,
and β∗(G) to denote the best bias achievable by a protocol using shared entanglement for
the game G.

Our motivating question in this paper is:

I Question 1. Is there a family of t-player XOR games (Gn)n∈N such that β∗(Gn) = 1 and
β(Gn)→ 0 as n→∞?

This question has important implications for multi-party communication complexity. For
a function f : X1 × · · ·Xt → {0, 1}, let R(f) denote the t-party randomized communication
complexity of f (in the number-in-the-hand model), and let R∗(f) denote the t-party ran-
domized communication complexity of f where the parties are allowed to share entanglement.
A positive answer to Question 1 gives a family of functions (fn)n∈N with R∗(fn) = O(1) and
R(fn) = ω(1), i.e. an unbounded separation between these two communication models.

In the reverse direction, a family of functions (fn)n∈N with R∗(fn) = O(1) and R(fn) =
ω(1) gives a family of games Gn = (fn, πn) with β∗(Gn) ≥ c for some constant c and
β(Gn)→ 0 as n→∞. Thus there is a very close connection between Question 1 and the
existence of an unbounded separation between randomized communication complexity with
and without entanglement.

For the two-player case, it is known that the answer to Question 1 is negative. It
was observed by Tsirelson [30] that Grothendieck’s inequality [15], a fundamental result
from Banach space theory, is equivalent to the assertion that β∗(G) ≤ KG · β(G), where
KG ≤ 1.78 . . . [24, 6] is Grothendieck’s constant.

Linial and Shraibman [25] and Shi and Zhu [28] realized that the XOR bias of a game
(f, π) can be used to lower bound the communication complexity of f , both in the randomized
setting and the setting with entanglement. Together with Grothendieck’s inequality they

T. Bannink, J. Briët, H. Buhrman, F. Labib, and T. Lee 12:3

used this to show that R(f) = O(22R∗(f)) for any partial two-party function f . Thus in
the two-party case an unbounded communication separation is not possible between the
randomized model with and without entanglement. Raz has given an example of a partial
function f with R(f) = 2Ω(R∗(f)) [27], thus the upper bound of Linial-Shraibman and Shi-Zhu
is essentially optimal.

In the case of three or more parties, Question 1 and the corresponding question of an
unbounded separation between the entangled and non-entangled communication complexity
models remain open. A striking result of Peréz-García et al. [26] shows that there is no
analogue of Grothendieck’s inequality in the three-player setting. In particular, they showed
that there exists an infinite family of three-player XOR games (Gn)n∈N with the property
that the ratio of the entangled and classical biases of Gn goes to infinity with n. This result
was later quantitatively improved by Briët and Vidick [8]. Both results rely crucially on
non-constructive (probabilistic) methods, and in both separating examples the entangled
bias β∗(Gn) also goes to zero with increasing n. These works leave open the question, posed
explicitly in [8], of whether there is such a family of games in which the entangled bias does
not vanish with n, but instead stays above a fixed positive threshold while the classical bias
decays to zero. Crucially, having a separation in XOR bias where β∗(Gn) remains constant is
what is needed to also obtain an unbounded separation between randomized communication
complexity with and without entanglement.

Our contribution to answering Question 1

One approach to Question 1 is to look at different classes of games and identify which ones
could possibly lead to a positive answer.

Peréz-García et al. [26] show that in any XOR game where the entangled strategy uses a
GHZ state, there is a bounded gap between the classical and entangled bias: namely, the bias
with a GHZ state in a t-player XOR game G is at most KG(2

√
2)t−1β(G). This bound is

essentially tight as there are examples of t-player XOR games achieving a ratio between the
GHZ state bias and classical bias of π2

t [32]. Briët et al. [7] later extended the Grothendieck-
type inequality of Peréz-García et al. to a larger class of entangled states called Schmidt
states (see Equation 1). Thus any game where there is a perfect strategy where the players
share a Schmidt state cannot give a positive answer to Question 1.

Watts et al. [31] recently investigated Question 1 and found that a t-player XOR game G
that is symmetric, i.e. invariant under the renaming of players, and where β∗(G) = 1 always
has a perfect entangled strategy where the players share a GHZ state. Thus symmetric
games also cannot give a positive answer to Question 1.

We further study games that have a perfect strategy where players share a GHZ or
Schmidt state. We do this for a generalization of XOR games called mod m games. In a
mod m game the players output an integer between 0 and m− 1 and the goal is for the sum
of the outputs mod m to equal a target value determined by their inputs. We show that the
classical advantage over random guessing is at least m−1

m t1−t in any t player mod m game
that can be won perfectly by sharing a Schmidt state (see Theorem 2).

We show this by introducing angle games, a class of games that can be won perfectly
sharing a GHZ state and are the hardest of all such games. Thus a classical strategy in an
angle game can be used to lower bound the winning probability of any mod m game that
has a perfect Schmidt state strategy.

For small values of t we can directly analyze angle games to give bounds that are
sometimes tight. One interesting consequence of our result is the following. The Mermin
game G is a three-party XOR game where by sharing a GHZ state players can play perfectly,

STACS 2019

12:4 Bounding Quantum Classical Separations

β∗(G) = 1, while classically β(G) = 1
2 . We show that this is the maximal possible separation

of any 3-party XOR game where β∗(G) = 1 via a GHZ state. In particular, this means that
when one looks at the XOR repetition of the Mermin game the classical bias does not go
down at all.

We rule out other types of games that could positively answer Question 1 as well. A
t-player free XOR game G = (f, π) is a game where π is a product distribution. For such
games we show that β(G) ≥ β∗(G)2t , and thus they cannot be used for a positive answer to
Question 1.

Another class of XOR games we consider are line games, where the questions asked
to the players are related by a geometric property. An example of a line game is a slight
modification of the Magic Square game [18]. We show that line games cannot give a positive
answer to Question 1 either.

Finally, we look at extensions of Question 1 beyond XOR games to more general classes
of games like unique games [21], which have been deeply studied because of their application
in hardness of approximation. For unique games we show that in fact if there is strategy
with entanglement that can win a unique game perfectly, then there is a perfect classical
strategy as well. This can be compared with the result of Cleve et al. [10] that if a two-player
game with binary outputs has a perfect strategy with entanglement then it also has a perfect
classical strategy. More generally, we show that if the winning probability with entanglement
is 1− ε in a unique game with k outputs, then there is a classical strategy that wins with
probability 1− C

√
ε log k.

In the next subsections, we discuss our results in more detail.

1.1 Perfect Schmidt strategies for MOD games
A MOD-m game is a generalization of XOR games to non-binary outputs. A nonlocal game
is a MOD-m game if the players are required to answer with integers from 0 to m− 1, and
win if and only if the sum of their answers modulo m equals the target value determined by
their inputs. We denote the optimal winning probability using classical strategies by ω(G),
and we write ω∗(G) for the entangled winning probability. Random play in such a game
ensures that the players can always win with probability at least 1

m . As with XOR games, in
a MOD-m game one often considers the bias given by the maximum amount by which the
value can exceed 1

m , scaled to be in the [0, 1] range. The bias is β(G) = m
m−1 (ω(G)− 1

m), and
similar for the entangled version. This generalizes the definition given for XOR games above.

Define a t-partite Schmidt state as a t-partite quantum state that can be written in
the form

|ψ〉 =
d−1∑
i=0

ci|e(1)
i 〉|e

(2)
i 〉 · · · |e

(t)
i 〉, (1)

where ci > 0 and where the |e(j)
i 〉 (i = 0, 1, ..., d−1) are orthogonal vectors in the j-th system.

For t = 2 any state can be written this way, something commonly known as the Schmidt
decomposition. Note that the well-known GHZ state is a Schmidt state where all the ci are
equal to 1/

√
d. In the context of nonlocal games, define a Schmidt strategy as a quantum

strategy that uses (only) a Schmidt state. We say a strategy is perfect if it achieves winning
probability 1.

We consider t-player MOD-m games for which there is a perfect Schmidt strategy
(“perfect Schmidt games”) and for such games we give lower bounds on the classical winning
probabilities. One particular set of games with this property is described by Boyer [5]. Their

T. Bannink, J. Briët, H. Buhrman, F. Labib, and T. Lee 12:5

entangled value is 1 but their classical value goes to 0 as the number of players goes to infinity.
The authors of [31] define a closely-related class of games called noPREF games. This set
of games is equal to the set of perfect Schmidt games when m = 2 and the distribution on
the inputs is uniform. In [31] it is shown that checking whether a game is in this class can
be done in polynomial time. Furthermore, for symmetric t-player XOR games they show
that a game has entangled value 1 if and only if it falls in this class of perfect Schmidt
games. They also provide an explicit non-symmetric XOR game with entangled value 1
that is not in this class. We introduce a t-player MOD-m game called the uniform angle
game, denoted UAGt,m (defined in the full version of this paper) for which there is a perfect
Schmidt strategy and show a lower bound on the classical winning probability.

I Theorem 2. Any t-player MOD-m game G with perfect Schmidt strategy satisfies ω(G) ≥
ω(UAGt,m). Furthermore we have β(UAGt,m) ≥ t1−t.

For t = 3,m = 2 (3-player XOR games) we have ω(UAG3,2) = 3/4. In the full version we
provide bounds on ω(UAGt,m) for other values of t,m.

Let the inputs to a game come from a set X = X1 × X2 × ... × Xt where Xi is the
set of inputs for the i-th player. We say a game is total when all elements of X have a
non-zero probability of being asked (sometimes also called having full support), similar to
total functions in the setting of communication complexity. On the other hand, we say that
a game has a promise on the inputs when it is not total. For the class of perfect Schmidt
games we show that total games are trivial.

I Lemma 3. When a t-player MOD-m game G with perfect Schmidt strategy is total then
ω(G) = 1.

1.2 Free XOR games

In this subsection we identify two types of games, namely free games and line games, for which
either the ratio of the entangled and classical biases is small, or the entangled bias itself is
small. Thus these games will not be able to give a positive answer to Question 1. Free games
are a general and natural class of games in which the players’ questions are independently
distributed. Line games appear to be less studied (see below for their definition), but turn
out to be relevant in the context of parallel repetition (also see below). The main idea behind
these results is that a large entangled bias implies that the games are in a sense far from
random. This is quantified by the magnitude of certain norms of the game tensors. The
particular norms of interest here are related to norms used in Gowers’ celebrated hypergraph-
and Fourier-analytic proofs of Szemerédi’s Theorem. A crucial fact of these norms is that
they are large if and only if there is “correlation with structure”, the opposite of what one
would expect from randomness. We show that this structure can be turned into good classical
strategies, thus establishing a relationship between the entangled and classical biases.

I Theorem 4 (Polynomial bias relation for free XOR games). For integer t ≥ 2 and any free
t-player XOR game with entangled bias β, the classical bias is at least β2t .

This result may be considered as an analogue of a well-known result on quantum query
algorithms for total functions. It is shown in [1] that the bounded-error quantum and classical
query complexities of total functions are polynomially related.

STACS 2019

12:6 Bounding Quantum Classical Separations

1.3 Line games

Line games are not free, but have a simple geometric structure. For a finite field F of
characteristic at least t and positive integer n, a t-player line game is given by a map
τ : Fn → {0, 1}. In the game, the referee independently samples two uniformly random
points x, y ∈ Fn and sends the point x+ (i− 1)y to the ith player. The players win the game
if and only if the XOR of their answers equals τ(y). In other words, the players’ questions
correspond to consecutive points (or an arithmetic progression) on a random affine line
through Fn and the winning criterion depends only on the direction of the line. Refer to this
as a line games over Fn.

A small example of a line game can be obtained from a slight modification of the three-
player Magic Square game, which was analyzed in [18]. The line game is played over the
plane F2

3 and the predicate is zero only on the horizontal lines (with y ∈ {(1, 0), (2, 0)}. In
the Magic Square game, the referee restricts only to horizontal and vertical lines.1

I Theorem 5. For any ε ∈ (0, 1], integer t ≥ 2 and finite field F of characteristic at least t,
there exists a δ(ε, t,F) ∈ (0, 1] such that the following holds. For any positive integer n and
any t-player line game over Fn with entangled bias ε, the classical bias is at least δ(ε, t,F).

Note that in the above result, the value of the classical bias is independent of the
dimension n of the vector space determining the players’ question sets.

While it is not relevant to Question 1, the proof techniques used for Theorem 5 allow us to
prove a parallel repetition theorem for a class of games that include line games. It is known
that the value of free games and so-called anchored games decays exponentially under parallel
repetition. Dinur et al. [13] identified a general criterion of multi-player games to behave like
this, encompassing free and anchored games. They showed that it is sufficient for a certain
graph that can be obtained from a game to be expanding, a well-known pseudorandom
property that gives a measure of graph connectivity. Line games do not belong to this class,
as their graphs are not even connected. However, we show that if a map τ : Fn → {0, 1}n is
pseudorandom in a different sense, then a line game defined by τ has exponential decaying
value under parallel repetition. More generally, we show that this is the case for a family of
XOR games over an arbitrary finite abelian group Γ. These games are given by a positive
integer m, a family of affine linear maps ψ0, . . . , ψt : Γm → Γ such that no two are multiples
of each other, and a “game map” ρ : Γ→ {0, 1}. In the game, the referee samples a uniform
random element x from Γm and sends the group element ψi(x) to the ith player. The winning
criterion is given by ρ(ψ0(x)). The relevant notion of pseudoranomness is quantified by the
Gowers t-uniformity norm of the map (−1)ρ : x 7→ (−1)ρ(x), denoted ‖(−1)ρ‖Ut .

I Lemma 6. Let m, t be positive integers and let Γ be a finite abelian group. Let ψ0, . . . , ψt :
Γm → Γ be affine linear maps such that no two are multiples of each other and let ρ : Γ→
{0, 1}. Let G be the t-player XOR game given by the system {ψ0, . . . , ψt, ρ}. Then, for every
positive integer k,

ω(Gk) ≤
(1 + ‖(−1)ρ‖Ut

2

)k
.

1 Though this is not the typical description of the game, it is easily seen to be equivalent.

T. Bannink, J. Briët, H. Buhrman, F. Labib, and T. Lee 12:7

1.4 Unique games
We know that the answer to Question 1 is negative in the two-player case, but we can
generalize the question by dropping the XOR restriction. The set of XOR games is part of
a larger class of games called unique games for which we investigate the relation between
classical and entangled values. A two-player nonlocal game is a unique game if for every pair
of questions, for every possible answer of the first player there is exactly one answer of the
second player that lets them win, and vice versa. Stated differently, for every question there
is a matching between the answers of the two players such that only the matching pairs of
answers let the player win.

The Unique Games Conjecture (UGC) of Khot [21] states that for any ε, δ > 0, for any
k > k(ε, δ), it is NP-hard to distinguish instances of unique games with winning probability
at least 1 − ε from those with winning probability at most δ, where k is the number of
possible answers. This conjecture has important consequences because it implies several
hardness of approximation results. For example, for the Max-Cut problem, Khot et al. [22]
showed that the UGC implies that obtaining an approximation ratio better than ≈ 0.878 is
NP-hard. Other results include inapproximability for Vertex Cover [23] and graph coloring
problems [14].

Our results relate the quantum and classical winning probabilities in the regime of
near-perfect play and are based on a result in [9].

I Theorem 7. Let ε ≥ 0. There is an efficient algorithm that, given any two-player unique
game with entangled value 1− ε, outputs a classical strategy with winning probability at least
1− C

√
ε log k, where C is a constant independent of the game.

Note that for ε = 0 this means a perfect quantum strategy implies a perfect classical strategy.
Furthermore, the above result only beats a trivial strategy when ε = O(1/ log k).

Work in a similar direction includes [19]. They show that entangled version of the UGC is
false, by providing an efficient algorithm that gives an explicit quantum strategy with winning
probability at least 1− 6ε when the true entangled value is 1− ε. In the classical case, [9]
gives an algorithm that outputs a classical strategy with winning probability 1−O(

√
ε log k)

when the true classical value is 1− ε. We extend this result by showing that this classical
strategy also does the job when, not the classical, but the entangled value is 1− ε.

2 Techniques

This section provides an overview of the proof techniques that we employed. We give sketches
of the main ideas which are worked out in full detail in later sections.

2.1 Reduction to angle games
To prove Theorem 2 we introduce a new set of t-player MOD-m games that we call angle
games. We define a particular angle game called the uniform angle game, denoted by UAGt,m

and show that it is the hardest of these games. In an angle game, players receive complex
phases eiφ (angles) satisfying a promise, and the winning answer depends only on the product
of the inputs eiφ1 ·eiφ2 · · · eiφt . We prove the theorem by extracting from any perfect Schmidt
strategy a set of complex phases that satisfy such a promise, and thereby reducing any
such game to the UAGt,m game. Let us sketch how this is accomplished. Assume that a
perfect Schmidt strategy exists, and let {P (j,xj)

1 , ..., P
(j,xj)
m } be the projective measurement

STACS 2019

12:8 Bounding Quantum Classical Separations

done by player j on input xj so that P (j,xj)
i corresponds to output i. Now define unitaries

U (j,xj) =
∑
i ω

i
mP

(j,xj)
i , where ωm = e2πi/m is an m-th root of unity. Since the strategy is

perfect we have for every input (x1, ..., xt) that

ωM(x1,...,xt)
m = 〈ψ|U (1,x1) ⊗ U (2,x2) ⊗ ...⊗ U (t,xt)|ψ〉.

Using the definition of a Schmidt state, we show that this equality implies that these unitaries
must be of a simple form and their entries satisfy the promise of an angle game. We prove
Theorem 2 and Lemma 3 in the full version, where we also provide classical strategies for the
uniform angle game and show that these are tight in the case of 3-player XOR games.

2.2 Norming hypergraphs and quasirandomness
Our main tool for proving Theorem 4 is a relation between the entangled and classical biases
and a norm on the set of game tensors. For t-tensors, this norm is given in terms of a certain
t-partite t-uniform hypergraph H. Recall that such a hypergraph consists of t finite and
pairwise disjoint vertex sets V1, . . . , Vt and a collection of t-tuples E(H) ⊆ V1 × · · · × Vt,
referred to as the edge set of H. For a t-tensor T ∈ Rn1×···×nt , the norm has the following
form:

‖T‖H =
(

Eφi:Vi→[ni]

[∏
(v1,...,vt)∈E(H)

T
(
φ1(v1), . . . , φt(vt)

)]) 1
|E(H)|

, (2)

where the expectation taken with respect to the uniform distribution over all t-tuples of
mappings φi from Vi to [ni]. Expressions such as (2) play an important role in the context
of graph homomorphisms [4]. If T is the adjacency matrix of a bipartite graph with left and
right node sets [n1] and [n2] respectively, then each product in (2) is 1 if and only if the
maps φ1 and φ2 preserve edges.

Criteria for H under which (2) defines a norm or a semi-norm were determined by
Hatami [17, 16] and Conlon and Lee [12]. Famous examples of graph norms include the
Schatten-p norms for even p ≥ 4 (in which case H is a p-cycle) and a well-known family
of hypergraph norms are the Gowers octahedral norms. The latter were introduced for
the purpose of quantifying a notion of quasirandomness of hypergraphs as an important
part of Gowers’ graph-theoretic proof of Szemerédi’s theorem on arithmetic progressions.
Having large Gowers norm turns out to imply correlation with structure, as opposed to
quasirandomness. This is true also for the norm relevant for our setting. In particular, it
turns out that the structure with which a game tensor correlates can be turned into a classical
strategy for the game. As such, a large norm of the game tensor implies a large classical
bias of the game itself. At the same time, we show that the entangled bias is bounded from
above by the norm of the game tensor, provided the game is free. Putting these observations
together gives the proof of Theorem 4, which we give in the full version of this paper.

The particular hypergraph norm relevant in our setting was introduced in [11] and can
be obtained recursively as follows. Starting with a t-partite t-uniform hypergraph H with
vertex set V1 ∪ · · · ∪ Vt, write dbi(H) for the t-partite t-uniform hypergraph obtained by
making two vertex-disjoint copies of H and gluing them together so that the vertices in the
two copies of Vi are identified. We obtain our hypergraph by starting with a single edge
e = (v1, . . . , vt) (and vertex sets of size 1), and applying this operation to all parts, forming
the hypergraph db1(db2(. . . dbt(e))) with vertex sets of size 2t−1 and 2t edges. The fact that
this hypergraph defines a norm via (2) was proved in [12].

T. Bannink, J. Briët, H. Buhrman, F. Labib, and T. Lee 12:9

2.3 Line games and Gowers uniformity norms

The proof of Theorem 5 is based on two fundamental results from additive combinatorics:
the generalized von Neumann inequality and the Gowers Inverse Theorem. The former easily
shows that the classical bias of a line game is bounded from above by the Gowers t-uniformity
norm of the game map. We show that in fact the same upper bound holds for the entangled
bias as well. A large entangled bias thus implies a large uniformity norm for the game map.
Analogous to the above-mentioned octahedral norms for tensors, uniformity norms were
introduced to quantify a notion of pseudorandomness for bounded maps over abelian groups
as an important step in Gowers’ other proof of Szemerédi’s Theorem, based on higher-order
Fourier analysis. The highly non-trivial Gowers Inverse Theorem of Tao and Ziegler [29]
establishes that high uniformity norm again implies correlation with structure. Although
structure in this context means something quite different than for tensors, we show that
it still implies a lower bound on the classical bias. The above observations together prove
Theorem 5, details of which can be found in the full version.

2.4 Semidefinite programming relaxation

The proof of Theorem 7 is a small modification of a proof in [9]. They consider a semidefinite
programming (SDP) relaxation of the optimization problem for the classical value and then
give two algorithms for rounding the result of the SDP to a classical strategy. In the SDP
relaxation the objective is to optimize Ex,y

∑k
i=1〈u

(x)
i | v(y)

πxy(i)〉 where u
(x)
i , v

(y)
j ∈ Rd are

vectors corresponding to questions x, y and answers i, j. Furthermore, πxy is the matching
of correct answers on questions x, y. A classical strategy would correspond to the case where
the vectors are integers instead, such that for each x exactly one u(x)

i is equal to 1 and all
other u(x)

i are equal to zero and similar for the v(y)
j . A quantum strategy also gives rise to a

set of vectors, but satisfying different constraints [19]. One of the constraints of the SDP
considered in [9] is 0 ≤ 〈ui | vπxy(i)〉 ≤ |ui|2 which is valid for classical strategies, but in
general not for quantum strategies. For our proof, we consider the same SDP but with this
constraint dropped. In that case it is also a relaxation for the entangled case and with a few
changes one of the rounding algorithms in [9] is also valid when the constraint is dropped.
Note that the result only beats a trivial strategy when ε = O(1/ log k) whereas the other
rounding algorithm in [9] is non-trivial for any ε. However this other algorithm is more
dependent on the extra constraint and it is not clear if it can be dropped there as well.

To get some intuition for the rounding algorithm, we sketch a solution for ε = 0 here. In
this case one can show that for each question pair x, y the set of vectors |u(x)

i 〉 (i = 1, ..., k)
known by the first player is the same set of vectors as the set |v(y)

i 〉 (i = 1, ..., k) known to
the second player. In particular, the vector |u(x)

i 〉 is the same as the matching vector |v(y)
πxy(i)〉

of the other player. Using shared randomness they can sample a random vector |g〉 and
compute the overlaps ξ(x)

i = 〈g|u(x)
i 〉 and ξ

(y)
i = 〈g|v(y)

i 〉 respectively. As they have the same
vectors, the players will have the same values for answers in the matching: ξ(x)

i = ξ
(y)
πxy(i).

Now both players simply output the answer i for which |ξ(x)
i | (and |ξ

(y)
i | for the other player)

has the largest value. With probability one this will yield correct answers. For ε > 0 the sets
of vectors will not be exactly equal and therefore the values ξ(x)

i , ξ
(y)
πxy(i) will be close but not

exactly equal. The discrepancy in these values will be bigger for vectors |u(x)
i 〉 with a small

norm. In the full version we provide the rounding algorithm in full detail and show how this
issue is solved.

STACS 2019

12:10 Bounding Quantum Classical Separations

References
1 Robert Beals, Harry Buhrman, Richard Cleve, Michele Mosca, and Ronald de Wolf. Quantum

Lower Bounds by Polynomials. Journal of the ACM, 48(4):778–797, 2001. Earlier version in
FOCS’98.

2 J.S. Bell. On the Einstein Podolsky Rosen Paradox. Physics, 1(3):195–200, 1964.
3 Michael Ben-Or, Shafi Goldwasser, Joe Kilian, and Avi Wigderson. Multi-prover interactive

proofs: how to remove intractability assumptions. In 20th Annual ACM Symposium on Theory
of Computing (STOC ’88), pages 113–131, 1988.

4 Christian Borgs, Jennifer Chayes, László Lovász, Vera T Sós, and Katalin Vesztergombi.
Counting graph homomorphisms. In Topics in discrete mathematics, pages 315–371. Springer,
2006.

5 Michel Boyer. Extended GHZ n-player games with classical probability of winning tending to
0. arXiv, September 2004. arXiv:quant-ph/0408090.

6 Mark Braverman, Konstantin Makarychev, Yury Makarychev, and Assaf Naor. The Grothen-
dieck constant is strictly smaller than Krivine’s bound. In IEEE 52nd Annual Symposium on
Foundations of Computer Science (FOCS ’11), pages 453–462, 2011.

7 Jop Briët, Harry Buhrman, Troy Lee, and Thomas Vidick. Multipartite entanglement in XOR
games. Quantum Information & Computation, 13(3-4):334–360, 2013.

8 Jop Briët and Thomas Vidick. Explicit lower and upper bounds on the entangled value of
multiplayer XOR games. Communications in Mathematical Physics, 321(1):181–207, 2013.

9 Moses Charikar, Konstantin Makarychev, and Yury Makarychev. Near-optimal Algorithms
for Unique Games. In Proceedings of the Thirty-eighth Annual ACM Symposium on Theory
of Computing, STOC ’06, pages 205–214, New York, NY, USA, 2006. ACM. doi:10.1145/
1132516.1132547.

10 Richard Cleve, Peter Høyer, Benjamin Toner, and John Watrous. Consequences and Limits of
Nonlocal Strategies. In 19th Annual IEEE Conference on Computational Complexity (CCC
2004), 21-24 June 2004, Amherst, MA, USA, pages 236–249, 2004. doi:10.1109/CCC.2004.
1313847.

11 David Conlon, Hiêp Hàn, Yury Person, and Mathias Schacht. Weak quasi-randomness for
uniform hypergraphs. Random Structures & Algorithms, 40(1):1–38, 2012.

12 David Conlon and Joonkyung Lee. Finite reflection groups and graph norms. Advances in
Mathematics, 315:130–165, 2017.

13 Irit Dinur, Prahladh Harsha, Rakesh Venkat, and Henry Yuen. Multiplayer parallel repetition
for expander games. arXiv preprint, 2016. arXiv:1610.08349.

14 Irit Dinur, Elchanan Mossel, and Oded Regev. Conditional Hardness for Approximate Coloring.
SIAM J. Comput., 39(3):843–873, 2009. doi:10.1137/07068062X.

15 Alexander Grothendieck. Résumé de la théorie métrique des produits tensoriels topologiques
(French). Bol. Soc. Mat. São Paulo, 8:1–79, 1953.

16 Hamed Hatami. On generalizations of Gowers norms. PhD thesis, University of Toronto, 2009.
17 Hamed Hatami. Graph norms and Sidorenko’s conjecture. Israel Journal of Mathematics,

175(1):125–150, 2010.
18 Tsuyoshi Ito, Hirotada Kobayashi, Daniel Preda, Xiaoming Sun, and Andrew C. C. Yao.

Generalized Tsirelson Inequalities, Commuting-Operator Provers, and Multi-prover Interactive
Proof Systems. In Proceedings of the 2008 IEEE 23rd Annual Conference on Computational
Complexity, CCC ’08, pages 187–198. IEEE Computer Society, 2008.

19 Julia Kempe, Oded Regev, and Ben Toner. Unique Games with Entangled Provers are Easy.
In 49th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2008, October
25-28, 2008, Philadelphia, PA, USA, pages 457–466, 2008. doi:10.1109/FOCS.2008.9.

20 Iordanis Kerenidis, Sophie Laplante, Virginie Lerays, Jérémie Roland, and David Xiao. Lower
bounds on information complexity via zero-communication protocols and applications. SIAM
J. Comp., 44(5), 2015.

http://arxiv.org/abs/quant-ph/0408090
http://dx.doi.org/10.1145/1132516.1132547
http://dx.doi.org/10.1145/1132516.1132547
http://dx.doi.org/10.1109/CCC.2004.1313847
http://dx.doi.org/10.1109/CCC.2004.1313847
http://arxiv.org/abs/1610.08349
http://dx.doi.org/10.1137/07068062X
http://dx.doi.org/10.1109/FOCS.2008.9

T. Bannink, J. Briët, H. Buhrman, F. Labib, and T. Lee 12:11

21 Subhash Khot. On the Power of Unique 2-prover 1-round Games. In Proceedings of the
Thiry-fourth Annual ACM Symposium on Theory of Computing (STOC ’02), STOC ’02, pages
767–775, New York, NY, USA, 2002. ACM. doi:10.1145/509907.510017.

22 Subhash Khot, Guy Kindler, Elchanan Mossel, and Ryan O’Donnell. Optimal Inapproximability
Results for MAX-CUT and Other 2-Variable CSPs? SIAM J. Comput., 37(1):319–357, 2007.
doi:10.1137/S0097539705447372.

23 Subhash Khot and Oded Regev. Vertex cover might be hard to approximate to within 2-epsilon.
J. Comput. Syst. Sci., 74(3):335–349, 2008. doi:10.1016/j.jcss.2007.06.019.

24 Jean-Louis Krivine. Sur la constante de Grothendieck. C. R. Acad. Sci. Paris Sér. A-B,
284(8):A445–A446, 1977.

25 Nati Linial and Adi Shraibman. Lower bounds in communication complexity based on
factorization norms. Random Structures and Algorithms, 34:368–394, 2009.

26 David Pérez-García, Michael Wolf, Carlos Palazuelos, Ignacio Villanueva, and Marius Junge.
Unbounded violation of tripartite Bell inequalities. Communications in Mathematical Physics,
279:455, 2008.

27 Ran Raz. Exponential separation of quantum and classical communication complexity. In
31st annual ACM symposium on theory of computing, pages 358–367, 1999.

28 Yaoyun Shi and Yufan Zhu. Tensor Norms and the Classical Communication Complexity of
Nonlocal Quantum Measurement. SIAM J. Comput., 38(3):753–766, 2008.

29 Terence Tao and Tamar Ziegler. The inverse conjecture for the Gowers norm over finite fields
in low characteristic. Annals of Combinatorics, 16(1):121–188, 2012.

30 Boris S. Tsirelson. Quantum analogues of the Bell Inequalities. The case of two spatially
separated domains. J. Soviet Math., 36:557–570, 1987.

31 Adam Bene Watts, Aram W Harrow, Gurtej Kanwar, and Anand Natarajan. Algorithms,
Bounds, and Strategies for Entangled XOR Games. arXiv preprint, 2018. arXiv:1801.00821.

32 M. Zukowski. Bell theorem involving all settings of measuring apparatus. Phys. Lett. A,
177(290), 1993.

STACS 2019

http://dx.doi.org/10.1145/509907.510017
http://dx.doi.org/10.1137/S0097539705447372
http://dx.doi.org/10.1016/j.jcss.2007.06.019
http://arxiv.org/abs/1801.00821

Token Sliding on Split Graphs
Rémy Belmonte
University of Electro-Communications, Chofu, Tokyo, 182-8585, Japan
remybelmonte@gmail.com

Eun Jung Kim
Université Paris-Dauphine, PSL University, CNRS, LAMSADE, 75016, Paris, France
eun-jung.kim@dauphine.fr

Michael Lampis
Université Paris-Dauphine, PSL University, CNRS, LAMSADE, 75016, Paris, France
michail.lampis@lamsade.dauphine.fr

Valia Mitsou
Université Paris-Diderot, IRIF, CNRS, 75205, Paris, France
vmitsou@liris.cnrs.fr

Yota Otachi
Kumamoto University, Kumamoto, 860-8555, Japan
otachi@cs.kumamoto-u.ac.jp

Florian Sikora
Université Paris-Dauphine, PSL University, CNRS, LAMSADE, 75016, Paris, France
florian.sikora@dauphine.fr

Abstract
We consider the complexity of the Independent Set Reconfiguration problem under the Token
Sliding rule. In this problem we are given two independent sets of a graph and are asked if we can
transform one to the other by repeatedly exchanging a vertex that is currently in the set with one of
its neighbors, while maintaining the set independent. Our main result is to show that this problem
is PSPACE-complete on split graphs (and hence also on chordal graphs), thus resolving an open
problem in this area.

We then go on to consider the c-Colorable Reconfiguration problem under the same rule,
where the constraint is now to maintain the set c-colorable at all times. As one may expect, a simple
modification of our reduction shows that this more general problem is PSPACE-complete for all
fixed c ≥ 1 on chordal graphs. Somewhat surprisingly, we show that the same cannot be said for
split graphs: we give a polynomial time (nO(c)) algorithm for all fixed values of c, except c = 1,
for which the problem is PSPACE-complete. We complement our algorithm with a lower bound
showing that c-Colorable Reconfiguration is W[2]-hard on split graphs parameterized by c and
the length of the solution, as well as a tight ETH-based lower bound for both parameters.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms; Theory of
computation → Parameterized complexity and exact algorithms

Keywords and phrases reconfiguration, independent set, split graph

Digital Object Identifier 10.4230/LIPIcs.STACS.2019.13

Funding Supported by JSPS and MAEDI under the Japan-France Integrated Action Program
(SAKURA) Project GRAPA 38593YJ, by FMJH program PGMO and EDF via project 2016-
1760H/C16/1507 “Stability versus Optimality in Dynamic Environment Algorithmics” and projects
“ESIGMA” (ANR-17-CE23-0010) and “HOSIGRA” (ANR-17-CE40-0022), and by JSPS KAKENHI
Grant Numbers JP18K11157, JP18K11168, JP18K11169, JP18H04091.

© Rémy Belmonte, Eun Jung Kim, Michael Lampis, Valia Mitsou, Yota Otachi,
and Florian Sikora;
licensed under Creative Commons License CC-BY

36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019).
Editors: Rolf Niedermeier and Christophe Paul; Article No. 13; pp. 13:1–13:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-8043-5343
mailto:remybelmonte@gmail.com
mailto:eun-jung.kim@dauphine.fr
https://orcid.org/0000-0002-5791-0887
mailto:michail.lampis@lamsade.dauphine.fr
mailto:vmitsou@liris.cnrs.fr
https://orcid.org/0000-0002-0087-853X
mailto:otachi@cs.kumamoto-u.ac.jp
mailto:florian.sikora@dauphine.fr
https://doi.org/10.4230/LIPIcs.STACS.2019.13
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

13:2 Token Sliding on Split Graphs

1 Introduction

A reconfiguration problem is a problem of the following type: we are given an instance of a
decision problem, two feasible solutions S, T , and a local modification rule. The question is
whether S can be transformed to T by repeated applications of the modification rule in a
way that maintains the solution feasible at all times. Due to their numerous applications,
reconfiguration problems have attracted much interest in the literature, and reconfiguration
versions of standard problems (such as Satisfiability, Dominating Set, and Independent
Set) have been widely studied (see the surveys [10, 19] and the references therein).

Among reconfiguration problems on graphs, Independent Set Reconfiguration is
certainly the most well-studied. The complexity of this problem depends heavily on the rule
specifying the allowed reconfiguration moves. The main reconfiguration rules that have been
studied for Independent Set Reconfiguration are Token Addition & Removal (TAR)
[16, 18], Token Jumping (TJ) [2, 3, 12, 13, 14], and Token Sliding (TS) [1, 5, 6, 8, 11, 17].
In all rules, we are required to keep the current set independent at all times. TAR allows
us to add or remove any vertex in the current set, as long as the set’s size is always higher
than a predetermined threshold. TJ allows to exchange any vertex in the set with any vertex
outside it (thus keeping the size of the set constant at all times). Finally, under TS, we are
allowed to exchange a vertex in the current independent set with one of its neighbors, that
is, we are allowed to perform a TJ move only if the two involved vertices are adjacent.

The Independent Set Reconfiguration problem has been intensively studied under
all three rules. Because the problem is PSPACE-complete in general for all three rules
[16], this has motivated the study of its complexity in restricted classes of graphs, with an
emphasis on graphs where Independent Set is polynomial-time solvable, such as chordal
graphs and bipartite graphs. By now, many results of this type have been discovered (see
Table 1 for a summary).

Our first, and main, focus of this paper is to concentrate on a case of this problem which
has so far remained elusive, namely, the complexity of Independent Set Reconfiguration
on chordal graphs under the TS rule. This case is of particular interest because it is one of
the few cases where the problem is known to be tractable under both TAR and TJ. Indeed,
Kamiński, Medvedev, and Milanič [16] showed that under these two rules Independent
Set Reconfiguration is polynomial-time solvable on even-hole-free graphs, a class that
contains chordal graphs. In the same paper they explicitly asked as an open question if the
same problem is tractable on even-hole-free graphs under TS ([16, Question 2]).

This question was then taken up by Bonamy and Bousquet [1] who made some progress by
showing that Independent Set Reconfiguration under TS is polynomial-time solvable
on interval graphs, an important subclass of chordal graphs. They also gave some first
evidence that it may be hard to obtain a similarly positive result for chordal graphs by
showing that a related problem, the problem of determining if all independent sets of the
same size can be transformed to each other under TS, is coNP-hard on split graphs, another
subclass of chordal graphs. Note, however, that this is a problem that is clearly distinct from
the more common reconfiguration problem (which asks if two specific sets are reachable from
each other), and that the coNP-hardness is not tight, since the best known upper bound for
this problem is also PSPACE.

The complexity of Independent Set Reconfiguration under TS on split and chordal
graphs has thus remained as an open problem. Our first, and main, contribution in this
paper is to settle this problem by showing that the problem is PSPACE-complete already on
split graphs (Theorem 9), and therefore also on chordal and even-hole-free graphs.

R. Belmonte, E. J. Kim, M. Lampis, V. Mitsou, Y. Otachi, and F. Sikora 13:3

Table 1 Complexity of Independent Set Reconfiguration on some graph classes.

Independent Set Reconfiguration
TS TJ/TAR

perfect PSPACE-complete [16]
even-hole-free PSPACE-complete (Theorem 9) P [16]

chordal PSPACE-complete (Theorem 9) P (even-hole-free)
split PSPACE-complete (Theorem 9) P (even-hole-free)

interval P [1] P (even-hole-free)
bipartite PSPACE-complete [17] NP-complete [17]

c-Colorable Reconfiguration. A natural generalization of Independent Set Reconfig-
uration was recently introduced in [15]: in c-Colorable Reconfiguration we are given
a graph G = (V,E) and two sets S, T ⊆ V , both of which induce a c-colorable graph. The
question is whether S can be transformed to T (under any of the previously mentioned
rules) in a way that maintains a c-colorable graph at all times. Clearly, c = 1 is the case of
Independent Set Reconfiguration. It was shown in [15] that this problem is already
PSPACE-complete on split graphs under all three rules, when c is part of the input. It was
thus posed as an open question what is the complexity of the same problem when c is fixed.
Some first results in this direction were given in the form of an nO(c) (XP) algorithm that
works for split graphs under the TAR and TJ rules (but not TS). Motivated by this work,
the second area of focus of this paper is to investigate how the hardness of 1-Colorable
Reconfiguration for split graphs established in Theorem 9 extends to larger, but fixed c.

Our first contribution in this direction is to show that, for chordal graphs, c-Colorable
Reconfiguration under TS is PSPACE-complete for any fixed c ≥ 1. This is, of course,
not surprising, as the problem is PSPACE-complete for c = 1; indeed, the reduction we
present in Theorem 10 is a tweak of the construction of Theorem 9 that increases c.

What is perhaps more surprising is that we show (under standard assumptions) that,
even though Theorem 9 establishes hardness for c = 1 on split graphs, a similar tweak cannot
establish hardness for higher c on the same class for TS. Indeed, we provide an algorithm
which solves TS c-Colorable Reconfiguration in split graphs in time nO(c) for any
c except c = 1. Thus, Independent Set Reconfiguration turns out to be the only
hard case of c-Colorable Reconfiguration for split graphs under TS. Since the nO(c)

algorithm of [15] for TAR/TJ reconfiguration of split graphs works for all fixed c, it thus
seems that this anomalous behavior is peculiar to the Token Sliding rule.

Finally, we address the natural question of whether one can improve this nO(c) algorithm,
by showing that the problem is W[2]-hard parameterized by c and the length of the solution `
for all three rules. This is in a sense doubly tight, since in addition to our algorithm and the
algorithm of [15] which run in nO(c), it also matches the trivial nO(`) algorithm which tries
out all solutions of length `. More strongly, under the ETH our reduction implies that the
problem cannot be solved in no(c+`) meaning that these algorithms are in a sense “optimal”.

2 Definitions

We use standard graph-theoretic terminology. For a graph G = (V,E) and a set S ⊆ V

we use G[S] to denote the graph induced by S. A graph is chordal if it does not contain
a k-vertex cycle Ck as an induced subgraph for any k > 3. A graph is split if its vertex
set can be partitioned into two sets K, I such that K induces a clique and I induces an

STACS 2019

13:4 Token Sliding on Split Graphs

independent set. It is a well-known fact that split graphs are chordal, and it is easy to see
that both classes are closed under induced subgraphs. We use χ(G), ω(G) to denote the
chromatic number and maximum clique size of a graph G respectively. It is known that,
because chordal graphs are perfect, if G is chordal then χ(G) = ω(G) [21]. We also recall
that a graph G is chordal if and only if every induced subgraph of G contains a simplicial
vertex, where a vertex is simplicial if its neighborhood is a clique.

Let G = (V,E) be a graph and c ≥ 1 an integer. Given two sets S, T ⊆ V such that
χ(G[S]), χ(G[T]) ≤ c, we say that S can be c-transformed into T by one token sliding (TS)
move if |T | = |S| and there exist u, v ∈ V with (u, v) ∈ E such that {u} = T \S, {v} = S \T .
One easy way to think of TS moves is by picturing the elements of the current set S as
tokens placed on the vertices of the graph, and a single move as “sliding” a token along an
edge (hence the name Token Sliding).

We say that S is c-reachable from T , or that S can be c-transformed into T , by a sequence
of TS moves if there exists a sequence of sets I0, I1, . . . , I`, with I0 = S, I` = T and for each
i ∈ {0, . . . , `− 1}, χ(G[Ii]) ≤ c and Ii can be c-transformed into Ii+1 by one TS move. We
will simply say that S can be transformed into T or that S is reachable from T , if S, T are
independent sets and S can be 1-transformed into T . We focus on the following problems.

I Definition 1. In c-Colorable Reconfiguration we are given a graph G = (V,E)
and two sets S, T ⊆ V with |S| = |T | and χ(G[S]), χ(G[T]) ≤ c. We are asked if S can
be c-transformed into T . Independent Set Reconfiguration is the special case of
c-Colorable Reconfiguration where c = 1.

In addition to TS moves we will consider Token Jumping (TJ) and Token Addition &
Removal (TAR) moves. A TJ move is the same as a TS move except that the two vertices
u, v are not required to be adjacent. Two c-colorable sets S, T are reachable with one TAR
move with threshold k if |S|, |T | ≥ k and |(S \ T) ∪ (T \ S)| = 1. We note here that, because
our main focus in this paper is the TS rule, whenever we refer to a transformation without
explicitly specifying under which rule this transformation is performed the reader may assume
that we are referring to the TS rule.

We assume that the reader is familiar with basic complexity notions such as the class
PSPACE [20], as well as basic notions in parameterized complexity, such as the class W[2]
(see e.g. [4]). In Theorem 9 we will perform a reduction from the PSPACE-complete NCL
(non-deterministic constraint logic) reconfiguration problem introduced by Demaine and
Hearn in [8] (see also [7, 9]). Let us recall this problem. In the NCL reconfiguration problem
we are given as input a graph G = (V,E), whose edge set is partitioned into two sets, R (red)
and B (blue). We consider blue edges as edges of weight 2 and red edges as edges of weight 1.
A valid configuration of G is an orientation of all the edges with the property that all vertices
have weighted in-degree at least 2. In the NCL configuration-to-configuration problem we
are given two valid orientations of G, D and D′, and are asked if there is a sequence of valid
orientations D0, D1, . . . , Dt such that D = D0, D

′ = Dt and for all i ∈ {0, . . . , t− 1} we have
that Di, Di+1 agree on all edges except one. We recall the following theorem:

I Theorem 2 (Corollary 6 of [8]). The NCL configuration-to-configuration problem is
PSPACE-complete even if all vertices of G have degree exactly three and, moreover, even if
all vertices belong in one of the following two types: OR vertices, which are vertices incident
on exactly three blue edges and no red edges; and AND vertices which are vertices incident
on two red edges and one blue edge.

R. Belmonte, E. J. Kim, M. Lampis, V. Mitsou, Y. Otachi, and F. Sikora 13:5

3 Token Sliding on Split Graphs is PSPACE-complete

The main result of this section is that Independent Set Reconfiguration is PSPACE-
complete under the TS rule when restricted to split graphs.

Overview of the proof
Our proof is a reduction from the NCL (non-deterministic constraint logic) reconfiguration
problem of Theorem 2. The first step of our proof is a relatively straightforward reduction
from the NCL reconfiguration problem to token sliding on split graphs. Its main idea is
roughly as follows: for each edge e = (u, v) of the original graph we construct two selection
vertices eu, ev in the independent set of our split graph. The idea is that at each point exactly
one of the two will contain a token (i.e. will belong in the current independent set), hence
our independent set will in a natural way represent an orientation of the original graph. In
order to allow a single reconfiguration step to take place we add for each pair of selection
vertices eu, ev one or two “gate” vertices (depending on the color of e), which are common
neighbors of eu, ev and belong in the clique. The idea is that a single re-orientation step
would, for example, take a token from eu, slide it to a gate vertex connected to the pair
eu, ev, and then slide it to ev: this sequence would represent re-orienting e from u to v. In
order to simulate the in-degree constraint we add edges between each selection vertex eu

and gate vertices corresponding to edges incident on the other endpoint of e, since keeping a
token on eu represents an orientation of e towards u, which makes it harder to re-orient the
edges incident on the other endpoint of e.

The above sketch captures the basic idea of our reduction, except for one significant
obstacle. The correspondence between orientations and independent sets is only valid if we
can guarantee that no intermediate independent set will “cheat” by, for example, placing
tokens on both eu and ev. Since we have added edges from eu, ev to gate vertices that
correspond to other edges (in order to simulate the interaction between edges in the NCL
instance), nothing prevents a reconfiguration solution from using these edges to slide a token
from one selection pair to another. The main problem thus becomes enforcing consistency,
or in other words forcing the solution sequence to only use the appropriate gate vertices to
slide tokens as intended. This is handled in the second step of our reduction which, given
the split graph construction sketched above, makes a large number of copies and connects
them appropriately in a way that the only feasible token sliding solutions are indeed those
that correspond to valid orientations of the original graph.

In the remainder of this section we use the following notation: G = (V,E), where
E = R∪B, is the graph supplied with the initial NCL reconfiguration instance and D,D′ are
the initial and target orientations; Gb = (Vb, Eb) is the “basic” split graph of our construction
in the first step and S, T the independent sets of Gb for which we need to decide reachability;
and Gf = (Vf , Ef) is the split graph of our final token sliding instance with Sf , Tf being its
corresponding independent sets.

Before we proceed, let us first slightly edit our given NCL reconfiguration instance. We
will now allow some vertices to have degree two and call these vertices COPY vertices. Using
these we can force the OR vertices to become an independent set.

I Lemma 3. NCL reconfiguration remains PSPACE-complete on graphs where (i) all vertices
are either AND vertices (two incident red edges, one incident blue edge), OR vertices (three
incident blue edges), or COPY vertices (two incident blue edges) (ii) every blue edge is
incident on exactly one COPY vertex.

STACS 2019

13:6 Token Sliding on Split Graphs

Proof. For every blue edge e = (u, v) ∈ B in the original graph we delete this edge from the
graph, introduce a new COPY vertex w, and connect w to u, v with blue edges. It is not
hard to see that this transformation does not change the type of any original vertex or the
answer to the reconfiguration problem. J

First Step of the Construction
We assume (Lemma 3) that in the given graph G we have three types of vertices (AND, OR,
COPY) and that each blue edge is incident on one COPY vertex. Let us now describe the
construction of Gb.

1. For each e = (u, v) ∈ R we construct two selector vertices eu, ev and one gate vertex ge.
2. For each e = (u, v) ∈ B we construct two selector vertices eu, ev and two gate vertices

ge,1, ge,2.
3. For each edge e = (u, v) ∈ R we connect ge to both eu, ev. For each edge e = (u, v) ∈ B

we connect both ge,1, ge,2 to both eu, ev. We call the edges added in this step gate edges.
4. For each AND vertex u, such that e = (u, v1) ∈ B and f = (u, v2) ∈ R, h = (u, v3) ∈ R

we add the following edges: (ev1 , gf), (ev1 , gh), (fv2 , ge,1), (fv2 , ge,2), (hv3 , ge,1), (hv3 , ge,2)
(see Figure 1). In other words, for each edge involved in this part we connect the selector
which represents its other endpoint (not u) to the gate vertices of edges that should be
unmovable if this edge is not oriented towards u.

5. For each OR vertex u such that e = (u, v1), f = (u, v2), h = (u, v3) ∈ B we add
the following edges: (ev1 , gf,1), (ev1 , gh,1), (ev2 , ge,1), (ev2 , gh,2), (ev3 , ge,2), (ev3 , gf,2). In
other words, we connect the selector vertex for each vi to a distinct gate of the edges
(u, vj), (u, vk), for i, j, k distinct. Informally, this makes sure that if two of the edges are
oriented away from u the third edge is stuck, but if at most one is oriented away from u

the other edges have a free gate.
6. For each COPY vertex u such that e = (u, v1), f = (u, v2) ∈ B we add the following

edges: (ev1 , gf,1), (ev1 , gf,2), (fv2 , ge,1), (fv2 , ge2). In other words, we connect the selector
vertex for v1 in a way that blocks the movement of the token from fu, and similarly for
v2.

7. We connect all gate vertices into a clique to obtain a split graph. Note that the remaining
vertices (that is, the selector vertices ev) form an independent set.

We now construct two independent sets S, T of Gb in the natural way: given an orientation
D, for each e = (u, v) we place eu in S if and only if D orients e towards u; we construct T
from D′ in the same way. This completes the basic construction.

Before proceeding, let us make some basic observations regarding the neighborhoods of
gate vertices of the graph Gb. We have the following:

If e = (u, v) ∈ R, let u′, v′ be vertices of G such that f = (u, u′) ∈ B, h = (v, v′) ∈ B
(that is, u′, v′ are the second endpoints of the blue edges incident on u, v). We have that
N(ge) = {eu, ev, fu′ , hv′}.
If e = (u, v) ∈ B, u is a COPY vertex and v is an AND vertex, let f = (u, u′) ∈ B be the
other edge incident on u, and h = (v, v′), ` = (v, v′′) ∈ R be the other two edges incident
on v. Then N(ge,1) = N(ge,2) = {eu, ev, fu′ , hv′ , `v′′}.
If e = (u, v) ∈ B, u is a COPY vertex and v is an OR vertex, let f = (u, u′) ∈ B be the
other edge incident on u, and h = (v, v′), ` = (v, v′′) ∈ B be the other two edges incident
on v. Then one of the vertices ge,1, ge,2 has neighbors {eu, ev, fu′ , hv′} and the other has
neighbors {eu, ev, fu′ , `v′′}.

R. Belmonte, E. J. Kim, M. Lampis, V. Mitsou, Y. Otachi, and F. Sikora 13:7

e

f

h

`

uv1

v2

v3

v4

gf

fufv2

gh

huhv3

ge,1 ge,2

euev1

e

f

h

`

uv1

v2

v3

v4

gf,1 gf,2

fufv2

gh,1 gh,2

huhv3

ge,1 ge,2

euev1

Figure 1 Construction when u is an AND vertex (top) or an OR vertex (bottom). In both cases
v1 is a COPY vertex. The part of the construction corresponding to ` is not drawn: `v4 would be a
common neighbor of ge,1, ge,2 and eu would be a common neighbor of `e,1, `e,2. Edges connecting
selector vertices to their corresponding gates are drawn thinner for readability. On the right, black
(gate) vertices are connected in a clique.

We are now ready to show that if we only consider “consistent” configurations in Gb,
then the new instance simulates the original NCL reconfiguration problem.

I Lemma 4. There is a valid reconfiguration of the NCL instance given by G,D,D′ if and
only if there exists a valid reconfiguration under the TS rule from S to T in Gb such that no
independent set of the reconfiguration sequence contains both eu, ev for any e = (u, v) ∈ E.

Proof. Since Gb is a split graph, any independent set contains at most one vertex from
the clique made up of the gate vertices. We will call an independent set that contains no
gate vertices a “main” configuration. Furthermore, for main configurations that also obey
the restrictions of the lemma (i.e. do not contain both eu, ev for any e ∈ E), we observe
that there is a natural one-to-one correspondence with the set of orientations of G: an edge
e = (u, v) is oriented towards u if and only if eu is in the independent set. (We implicitly use
the fact that the number of tokens is |E|, therefore for each pair eu, ev exactly one vertex
has a token in such a main configuration).

Suppose now that we have two consecutive valid orientations Di, Di+1 in the reconfigura-
tion sequence of G such that Di, Di+1 differ only on the edge e = (u, v), which Di orients
towards u. We want to show that the sets Ii, Ii+1 obtained using the correspondence above
from Di, Di+1 can be obtained from each other with a pair of sliding token moves. Indeed,
the sets Ii, Ii+1 are identical except that {eu} = Ii \ Ii+1 and {ev} = Ii+1 \ Ii. We would
like to slide the token from eu to ev using a gate vertex adjacent to both vertices.

First, assume that e ∈ R, so there exists a single gate vertex ge. Furthermore, u, v are
both AND vertices. Since both Di, Di+1 are valid configurations, in both configurations the
blue edges incident on u, v are oriented towards these two vertices. As a result ge has no
neighbor in Ii.

Second, suppose e = (u, v) ∈ B and one of u, v is a COPY vertex. If e is incident on an
AND vertex, because both Di, Di+1 are valid and agree on all edges except e we have that
both red edges incident on the AND vertex are oriented towards it in both configurations.
Similarly, the second blue edge incident on the COPY endpoint of e is oriented towards it
in both configurations. We therefore observe that neither ge,1, nor ge,2 has a neighbor in Ii

except eu, so we can safely slide eu → ge,1 → ev.

STACS 2019

13:8 Token Sliding on Split Graphs

Similarly, for the last case, suppose that e = (u, v) ∈ B and one of the endpoints of e is
an OR vertex, while the other is a COPY vertex. Again, because Di, Di+1 are both valid and
only disagree on e, at least one of the blue edges incident on the OR vertex (other than e) is
oriented towards it in both configurations. As before, the second blue edge incident on the
COPY vertex is oriented towards it in both configurations. Therefore, one of ge,1, ge,2 has
no neighbor in Ii except eu, so we can safely slide the token from eu to ev with two moves.

To complete the proof, we need to show that if we have a valid token sliding reconfiguration
sequence, this gives a valid reorientation sequence for G. The main observation now is that
in a shortest token sliding solution that obeys the properties of the lemma, a token that
slides out of eu must necessarily in the next move slide into ev, where e = (u, v) ∈ E. To
see this, observe that because of the requirement that the set does not contain both selector
vertices of any edge, the tokens found on other selector vertices dominate all gate vertices
except those corresponding to e. Since we can neither repeat configurations, nor add a second
token to the clique made up of gate vertices, the next move must slide the token to the other
selector vertex.

To see that the orientation sequence obtained through the natural translation of main
configurations is valid, consider two consecutive main configurations Ii, Ii+1 in the token
sliding solution, such that the corresponding orientations are Di, Di+1, and Di is valid. We
will show that Di+1 is also valid. Suppose that Di+1 differs from Di in the edge e = (u, v)
which is oriented towards u in Di (it is not hard to see that Di, Di+1 cannot differ in more
than one edge). Thus, Ii is transformable in two moves to Ii+1 by sliding eu to a gate
corresponding to e and then to ev. If e is a red edge, this means that in Di both blue edges
incident on u, v are directed towards u, v, so the reorientation is valid. If e is blue, we first
assume that u is a COPY vertex. Since a gate corresponding to u is free, the other blue edge
incident on u is oriented towards u in Di and we have a valid move. Finally, if e is blue and
u is an OR vertex, we conclude that, since at least one gate from ge,1, ge,2 is available in Ii,
at least one of the two other blue edges incident on u is directed towards u in Di and we
have a valid move. J

Second Step: Enforcing Consistency
We will now construct a graph Gf that will function in a way similar to the graph we have
already constructed but in a way that enforces consistency. Let Gb = (Vb, Eb) be the graph
constructed in the first step of our reduction, and let Eg ⊆ Eb be the set of gate edges, that
is, the set of edges that connect the selector vertices for an edge e to the corresponding
gate(s).

Let m := |E| and C := m+ 4. We first take C disjoint copies of Gb = (Vb, Eb) and for a
vertex v ∈ Vb we will use the notation vi, where 1 ≤ i ≤ C to denote the vertex corresponding
to v in the i-th copy. Then, for every edge (u, v) ∈ Eb \ Eg (every non-gate edge) and for all
i 6= j ∈ {1, . . . , C} we add the edge (ui, vj). This completes the construction of Gf and it is
not hard to see that the graph is split, as the C copies of the clique of Gb form a larger clique.
To complete our instance let us explain how to translate an independent set of Gb that
contains no vertices of the clique to an independent set of Gf : we do this in the natural way
by including in the new independent set all C copies of vertices of the original independent
set. Since both the initial and final independent sets in our first construction use no vertices
in the clique, we have in this way two independent sets of size mC in the new graph, and
thus a valid Token Sliding instance. Let S, T be the two independent sets of Gb we are asked
to transform and Sf , Tf the corresponding independent sets of Gf .

R. Belmonte, E. J. Kim, M. Lampis, V. Mitsou, Y. Otachi, and F. Sikora 13:9

We first show that if we have a solution for reconfiguration in Gb then we have a solution
for reconfiguring the sets in the new graph.

I Lemma 5. Let I1, I2 be two independent sets of Gb of size m that use no vertices of the
clique, respect the conditions of Lemma 4, and can be transformed to one another by two
sliding moves. Then the independent sets I ′1, I ′2 which are obtained in Gf by including all
copies of vertices of I1, I2 respectively can be transformed into one another by a sequence of
2C TS moves.

Proof. Each of I1, I2 uses exactly one of the vertices eu, ev, for each edge e = (u, v) ∈ E,
because of their size, the fact that they contain no vertex of the clique, and the fact that
neither contains both eu, ev for any edge e = (u, v) ∈ E (this is the condition of Lemma 4).
If I1 can be transformed into I2 with two sliding moves, the first move takes a token from an
independent set vertex, say eu and moves it to the clique and the second moves the same
token to ev. Since I1 contains a token on each pair of selector vertices, the only vertex of the
clique on which the token can be moved is a gate vertex corresponding to e, say ge (if e is
red) or ge,1 (if e is blue). We now observe that if ge (or similarly ge,1) is available in I1 (that
is, it has no neighbors in I1 besides eu), then the same is true for gi

e for all i ∈ {1, . . . , C}
in I ′1. To see this, note that the neighbors of gi

e are, ei
u, e

i
v, and, for each v ∈ N(ge) all the

vertices vj for j ∈ {1, . . . , C}. Since none of the neighbors of ge is in I1, gi
e is available. We

therefore slide, one by one, a token from ei
u to gi

e and then to ei
v, for all i ∈ {1, . . . , C}. J

Now, for the more involved direction of the reduction we first observe that it is impossible
for a reconfiguration to arrive at a situation where the solution is highly irregular, in the
sense that, for an edge e = (u, v) we have multiple tokens on copies of both eu and ev.

I Lemma 6. Let Sf be the initial independent set constructed in our instance and S′ be an
independent set which for some e = (u, v) ∈ E and for some i, j ∈ {1, . . . , C} with i 6= j has
ei

u, e
i
v, e

j
u, e

j
v ∈ S′. Then S′ is not reachable with TS moves from Sf .

Proof. Let S′ be an independent set that satisfies the conditions of the lemma but is
reachable from Sf with the minimum number of token sliding moves. Consider a sequence
that transforms Sf to S′, and let S′′ be the independent set immediately before S′ in this
sequence. S′′ contains exactly three of the vertices ei

u, e
i
v, e

j
u, e

j
v. Without loss of generality

say ej
v 6∈ S′′. Therefore, the move that transforms S′′ to S′ slides a token into ej

v from one of
the neighbors of this vertex. We now observe that N(ej

v) contains C copies of each neighbor
of ev in Gb, plus the gate vertices corresponding to e in the j-th copy of Gb. However, the C
copies of the neighbors of ev are also neighbors of ei

v, hence a token cannot slide through
these vertices. Furthermore, the gate vertices of e are also neighbors of ej

u. We therefore
have a contradiction. J

We now use Lemma 6 to show that for each original edge, the graph Gf contains some
non-trivial number of tokens on the selector vertices of that edge.

I Lemma 7. Let Sf be the initial independent set constructed in our instance and S′ be an
independent set which for some e = (u, v) ∈ E has |S′ ∩ ({ei

u | 1 ≤ i ≤ C} ∪ {ei
v | 1 ≤ i ≤

C})| < 4. Then S′ is unreachable from Sf .

Proof. Suppose S′ is reachable. Then by Lemma 6, for each edge e = (u, v) ∈ E we have
|S′ ∩ ({ei

u | 1 ≤ i ≤ C}∪ {ei
v | 1 ≤ i ≤ C})| ≤ C + 1, because otherwise there would exist (by

pigeonhole principle) ei
u, e

i
v, e

j
u, e

j
v ∈ S′. We now use a simple counting argument. The total

number of tokens is mC, while for any edge f ∈ E we have
∑

e∈E\{f} |S′ ∩ ({ei
u | 1 ≤ i ≤

STACS 2019

13:10 Token Sliding on Split Graphs

C}∪{ei
v | 1 ≤ i ≤ C})| ≤ (m−1)(C+1). However, (m−1)(C+1) = mC+m−C−1 = mC−5,

where we use the fact that C = m+ 4. As a result |S′ ∩ ({ei
u | 1 ≤ i ≤ C} ∪ {ei

v | 1 ≤ i ≤
C})| ≥ 4 for any edge e ∈ E, as the independent set S′ uses at most one vertex from the
clique. J

We are now ready to establish the final lemma that gives a mapping from a sliding token
reconfiguration in Gf to one in Gb.

I Lemma 8. If there exists a reconfiguration from Sf to Tf in Gf under the TS rule then
there exists a reconfiguration from S to T in Gb under the TS rule which for each edge
e = (u, v) ∈ E contains at most one of the vertices eu, ev in every independent set in the
sequence.

Proof. Take a configuration I of Gf , that is an independent set in the supposed sequence from
Sf to Tf . We map this independent set to an independent set I ′ of Gb as follows: for each edge
e = (u, v) ∈ E, we set eu ∈ I ′ if and only if |I ∩ {ei

u | 1 ≤ i ≤ C}| ≥ |I ∩ {ei
v | 1 ≤ i ≤ C}|.

Informally, this means that we take the majority setting from Gf . We note that this
always gives an independent set I ′ that contains exactly one vertex from {eu, ev} for each
e = (u, v) ∈ E.

Our main argument now is to show that if I1, I2 are two consecutive independent sets
of the solution for Gf , then the sets I ′1, I ′2 which are obtained in the way described above
in Gb are either identical or can be obtained from one another with two sliding moves. If
I ′1, I

′
2 are not identical, they may differ in at most two vertices corresponding to an edge

e = (u, v) ∈ E, say {eu} = I ′1 \ I ′2 and {ev} = I ′2 \ I ′1. This is not hard to see, since I2 is
obtained from I1 with one sliding move, and this move can only affect the majority opinion
for at most one edge.

Now we would like to argue that it is possible to slide eu to a gate vertex associated to e
and then to ev in Gb. Consider the transition from I1 to I2. This move either slides a token
from some ei

u to the clique, or slides a token from the clique to some ej
v (because the majority

opinion changed from eu to ev). Because of Lemma 7, both I1 and I2 contain at least four
vertices in some copies of eu, ev. Hence, since at least half of these vertices are in copies of eu

in I1, there exists some ei
u ∈ I1 ∩ I2. Similarly, there exists some ej

v ∈ I1 ∩ I2. Consider now
a gate vertex g in the clique of Gb such that g is not associated with e. If g has an edge to
{eu, ev} in Gb, then all copies of g in Gf have an edge to I1 ∩ I2, therefore cannot belong in
either set. As a result, the clique vertex that is used in the transition from I1 to I2 is a copy
of a gate vertex associated with e (either ge, or one of ge,1, ge,2, depending on the color of e).
This gate vertex copy therefore has no neighbor in I1 ∩ I2. From this we conclude that the
same gate vertex in Gb also has no neighbor in I ′1 ∩ I ′2, as the majority opinion only changed
for e. It is therefore legal to slide from eu to this gate vertex and then to ev. J

I Theorem 9. Sliding Token Reconfiguration is PSPACE-complete for split graphs.

Proof. We begin with an instance of the PSPACE-complete NCL reconfiguration problem,
as given in Lemma 3. We construct the instance Gf , Sf , Tf of Sliding Token Reconfiguration
on split graphs as described (it’s clear that this can be done in polynomial time). If the
NCL reconfiguration instance is a YES instance, then by Lemma 4 there exists a sliding
token reconfiguration of Gb, and by repeated applications of Lemma 5 to independent sets
that do not contain clique vertices in the reconfiguration of Gb there exists a sliding token
reconfiguration of Gf . If on the other hand there exists a sliding token reconfiguration on
Gf , then by Lemma 8 there exists a reconfiguration that satisfies the condition of Lemma 4
on Gb, hence the original NCL instance is a YES instance. J

R. Belmonte, E. J. Kim, M. Lampis, V. Mitsou, Y. Otachi, and F. Sikora 13:11

4 PSPACE-completeness for Chordal Graphs for c ≥ 2

In this section, we build upon the PSPACE-completeness result from Section 3 to show that
c-Colorable Set Reconfiguration is PSPACE-complete, for every c ≥ 2, when the
input graph is restricted to be chordal.

I Theorem 10. For every c ≥ 2, the c-Colorable Set Reconfiguration problem under
the TS rule is PSPACE-complete, even when the input graph is restricted to be chordal.

Proof. We provide a reduction from Independent Set Reconfiguration where the input
graph G is restricted to be a split graph, which we proved to be PSPACE-complete in Theorem
9. Let G = (V,E) be an input split graph for Independent Set Reconfiguration. We
construct a chordal graph G′ as follows, starting from a graph isomorphic to G and two
non-empty independents set S, T of the same size. For every edge uv ∈ E(G), we add
|V (G)| sets of c− 1 new vertices W 1

uv, . . . ,W
|V (G)|
uv , such that W i

uv induces a clique for every
1 ≤ i ≤ |V (G)|, and every vertex of W i

uv is made adjacent to both u and v, for every
1 ≤ i ≤ |V (G)|. In addition, we create a new set S′ = S ∪

⋃
uv∈E(G),1≤i≤|V (G)|W

i
uv and a

set T ′ = T ∪
⋃

uv∈E(G),1≤i≤|V (G)|W
i
uv. In other words, we append |V (G)| disjoint cliques of

size c− 1 to every edge of G, and add all those newly created vertices to S and to T . The
chordality of G′ follows from the fact that the new vertices of the sets W i

uv are all simplicial
in G′, hence G′ is chordal if and only if G is chordal as well (and G is split).

We now claim the following: given in independent set T of G, the instance (G,S, T)
of Independent Set Reconfiguration is a YES-instance if and only if the instance
(G′, S′, T ′) of c-Colorable Set Reconfiguration is a YES-instance as well. Observe
that, by the construction, S′ and T ′ are c-colorable because the maximum clique in G′[S′]
contains at most one vertex of S and at most the c− 1 vertices of a clique W i

uv.
The forward direction of the previous claim follows easily: performing the same moves as

those of a reconfiguration sequence from S to T in G′, starting from S′, yields a reconfiguration
sequence where every step preserves c-colorability, and produces the desired set T ′.

For the backwards direction, we claim that, for any c-colorable set R′ reachable from
S′, it holds that the vertices of R′ ∩ V (G) are pairwise non-adjacent. In other words, the
tokens placed on original vertices of G form an independent set. Indeed, observe that the
number of vertices of G′ that do not belong to R′ satisfies |V (G′) \ R′| = |V (G) \ S| <
|V (G)|. This immediately implies that for any set R′ and edge uv ∈ E(G), we have
|R′ ∩

⋃
1≤i≤|V (G)|W

i
uv| ≥ (c− 2)|V (G)|+ 1, and therefore G[R′ ∩

⋃
1≤i≤|V (G)|W

i
uv] contains

a clique of size c− 1 as an induced subgraph, i.e., one of the sets W i
uv is completely contained

in R′. This implies that, for every edge uv of G, we have |R′ ∩ {u, v}| ≤ 1, i.e., the vertices
of R′ ∩ V (G) are pairwise non-adjacent, as desired. J

5 XP-time Algorithm on Split Graphs for fixed c ≥ 2

In this section we present an nO(c) algorithm for c-Colorable Reconfiguration under
the TS rule, on split graphs, for c > 1. Recall that a split graph G = (V,E) is a graph whose
vertex set V is partitioned into a clique K and an independent set I. An input instance
consists of a split graph G, and two c-colorable sets S, T ⊆ V .

Before proceeding, let us give some high-level ideas as well as some intuition why this
problem, which is PSPACE-complete for c = 1 (Theorem 9), admits such an algorithm for
larger c. Our algorithm consists of two parts: a rigid and a non-rigid reconfiguration part.
In the rigid reconfiguration part the algorithm decides if two sets are reachable by using

STACS 2019

13:12 Token Sliding on Split Graphs

moves that never slide tokens into or out of I. Because of this restriction and the fact that
the sets are c-colorable, the total number of possible configurations is nO(c), so this part can
be solved with exhaustive search (this is similar to the algorithm of [15] for TJ/TAR). In the
non-rigid part we assume we are given two sets S, T which, in addition to being c-colorable,
have |S ∩K|, |T ∩K| ≤ c− 1. The main insight is now that any two such sets are reachable
via TS moves (Lemma 11 below). Informally, the algorithm guesses a partition of the optimal
reconfiguration into a rigid prefix, a rigid suffix, and a non-rigid middle, and uses the two
parts to calculate each independently.

The intuitive reason that our algorithm cannot work for c = 1 is the non-rigid part.
The crucial Lemma 11 on which this part is based fails for c = 1: for instance, if G is a
star with three leaves and S, T are two distinct sets each containing two leaves, then S, T
satisfy all the conditions for c = 1, but are not reachable from each other with TS moves.
Such counterexamples do not, however, exist for higher c, because for sets that satisfy the
conditions of Lemma 11 we know we can always freely move tokens around inside the clique
(and without loss of generality, such tokens exist). Note also, that this difficulty is specific to
the TS rule: the algorithm of [15] implicitly uses the fact that any two sets with c− 1 tokens
in the clique are always reachable, as this is an almost trivial fact if one is allowed to use TJ
moves. Thus, Lemma 11 is the main new ingredient that makes our algorithm work.

Let us now proceed with a detailed description of the algorithm. First, let us fix some
notation. For a vertex set R ⊆ V , we write the subsets R ∩K and R ∩ I as RK and RI

respectively.
Throughout this section, we assume that input graph G = (K ∪ I, E) is connected (and

thus each vertex in I has a neighbor in K); otherwise we can consider instances induced by
each component separately.

I Lemma 11. Let G be a split graph, c ≥ 2, and S, T ⊆ V be two c-colorable sets such that
|SK |, |TK | ≤ c− 1. Then T is c-reachable from S. Furthermore, a reconfiguration sequence
from S to T can be produced in polynomial time.

Proof. We first observe that if SI = TI , then there is an easy optimal c-transformation. By
making one TS move from u ∈ SK \ TK to v ∈ TK \ SK , one can c-transform S to T with
|S \ T | sliding moves (thus yielding an optimal reconfiguration sequence). It is clear that
all the sets resulting from these TS moves are c-colorable because each of them has at most
c− 1 vertices in K.

Therefore, it suffices to show that there is always a c-transformation of T which decrease
|SI \ TI | as long as S 6= T . Note that we can assume that there exists v ∈ SI \ TI (otherwise
we exchange the roles of S and T). In the case when TK = ∅, one can transform T to T ′ with
TS moves from a vertex of TI \ SI to v. Trivially this is a c-transformation, and it holds that
|T ′K | = ∅. (Note that this argument would not be valid if c = 1). If TK 6= ∅, then one can
make at most two TS moves from a vertex of TK to v. Because T has at most c− 1 vertices
and these TS moves maintain at most c− 1 vertices in K, c-colorability of T is preserved.
Moreover, the new set has at most c− 1 vertices in K while its intersection with S in I is
strictly larger. This completes the proof of the first statement. The proof is constructive and
easily translates to a polynomial-time algorithm. J

Let us now introduce a notion that will be useful in our algorithm. For two c-colorable
sets S, T with SI = TI we say that S has a rigid c-transformation to T if there exists a
valid c-transformation from S to T with TS moves which also has the property that every
c-colorable set R of the transformation has RI = SI .

R. Belmonte, E. J. Kim, M. Lampis, V. Mitsou, Y. Otachi, and F. Sikora 13:13

I Lemma 12. Given a split graph G = (V,E), with V = K ∪ I, and two c-colorable
sets S, T ⊆ V with SI = TI , there is an algorithm that decides if there exists a rigid
c-transformation of S to T in time nO(c).

Proof. The main observation is that since all intermediate sets must have RI = SI , we are
only allowed to slide tokens inside K. However, SK contains at most c vertices (as it is
c-colorable), therefore, there are at most nc potentially reachable sets: one for each collection
of |SK | vertices of the clique.

We now construct a secondary graph with a node for each subset of V that contains |SK |
vertices of K and the vertices of SI , and connect two such nodes if their corresponding sets
are reachable with a single TS move in G. In this graph we check if there is a path from the
node that represents S to the one that represents T and if yes output the sets corresponding
to the nodes of the path as our rigid reconfiguration sequence. J

I Theorem 13. There is an algorithm that decides c-Colorable Reconfiguration on
split graphs under the TS rule in time nO(c), for c ≥ 2.

Proof. We distinguish the following cases: (i) |SK |, |TK | ≤ c−1, (ii) |SK | = c and |TK | = c−1,
(iii) |SK | = |TK | = c. This covers all cases since S, T are c-colorable and we can assume
without loss of generality that |SK | ≥ |TK |.

For case (i) we invoke Lemma 11. The answer is always Yes, and the algorithm of the
lemma produces a feasible reconfiguration sequence.

For case (ii), suppose there exists a reconfiguration sequence from S to T , call it T0 =
S, T1, . . . , T` = T . Let i be the smallest index such that |Ti ∩K| ≤ c− 1. Clearly such an
index exists, since |TK | ≤ c− 1. We now guess the configuration Ti−1 and the configuration
Ti (that is, we branch into all possibilities). Observe that there are at most nc choices for
Ti−1 as we have Ti−1 ∩ I = SI and |Ti−1 ∩K| = c. Furthermore, once we have selected a
Ti−1, there are nO(1) possibilities for Ti, as Ti is reachable from Ti−1 with one TS move.

We observe that if we guessed correctly, then there exists a rigid c-transformation from
S to Ti−1 (by the minimality of i and the fact that |SK | = c); we use the algorithm of
Lemma 12 to check this. Furthermore, the configuration Ti is always transformable to T
by Lemma 11. Therefore, if the algorithm of Lemma 12 returns a solution, then we have a
c-transformation from S to T . Conversely, if a c-transformation from S to T exists, since we
tried all possibilities for Ti−1, one of the branches will find it.

Finally, for case (iii), if SI = TI we first use Lemma 12 to check if there is a rigid
c-transformation from S to T . If one is found, we are done. If not, or if SI 6= TI we observe
that, similarly to case (ii), in any feasible transformation T0 = S, T1, . . . , T` = T , there exists
an i such that |Ti ∩ K| ≤ c − 1 (otherwise the transformation would be rigid). Pick the
minimum such i. We now guess the configurations Ti−1, Ti (as before, there are nc+O(1)

possibilities) and use Lemma 12 to verify that Ti−1 is reachable from S. If Ti−1 is reachable
from S, we need to verify that T is reachable from Ti. However, we observe that this reduces
to case (ii), because |Ti ∩K| ≤ c − 1, so we proceed as above. If the algorithm returns a
valid sequence we accept, while we know that if a valid sequence exists, then there exists a
correct guess for Ti−1, Ti that we consider. J

6 W-hardness for Split Graphs

In this section we show that c-Colorable Reconfiguration on split graphs is W[2]-
hard parameterized by c and the length ` of the reconfiguration sequence under all three
reconfiguration rules (TAR, TJ, and TS). In this sense, this section complements Section 5 by

STACS 2019

13:14 Token Sliding on Split Graphs

showing that the nO(c) algorithm that we presented for c-Colorable Reconfiguration
on split graphs cannot be significantly improved under standard assumptions.

We will rely on known results on the hardness of Dominating Set Reconfiguration.
We recall that in this problem we are given a graph G = (V,E), two dominating sets S, T ⊆ V
of size at most k and are asked if we can transform S into T by a series of TAR operations
while keeping the size of the current set at most k at all times. More formally, we are asked if
there exists a sequence T0 = S, T1, . . . , T` = T such that for each i ∈ {0, . . . , `− 1}, |Ti| ≤ k,
Ti is a dominating set of G, and |(Ti \ Ti+1) ∪ (Ti+1 \ Ti)| = 1.

I Theorem 14 ([18]). Dominating Set Reconfiguration is W[2]-hard parameterized by
the maximum size of the allowed dominating sets k and the length ` of the reconfiguration
sequence under the TAR rule.

Before proceeding, let us make two remarks on Theorem 14: first, because the reduction
of [18] is linear in the parameters, it is not hard to see that it also implies a tight ETH-based
lower bound based on known results for Dominating Set; second, using an argument similar
to that of Theorem 1 of [16], the same hardness can be obtained for the TJ rule.

I Corollary 15. Dominating Set Reconfiguration is W[2]-hard parameterized by the
maximum size of the allowed dominating sets k and the length ` of the reconfiguration sequence
under the TAR, or TJ rule. Furthermore, the problem does not admit an algorithm running
in no(c+`) under the ETH for any of the two rules.

Proof. To obtain hardness under the TJ rule we use an argument similar to that of Theorem
1 of [16]. Suppose we are given an instance of k-Dominating Set Reconfiguration
G = (V,E) and S, T ⊆ V where k is the maximum size of any dominating set allowed and
we use the TAR rule, that is, an instance produced by the reduction establishing Theorem
14. We recall that in the instances produced for this reduction we have k = Θ(`) and that
S can be transformed into T with ` TAR moves if and only if S can be transformed into
T with some number of TAR moves (in other words, if ` moves are not sufficient, then S
and T are in fact unreachable). This observation will be useful because it means that in
the reduction that follows we do not have to preserve ` exactly but only guarantee that it
increases by at most a constant factor.

We can assume without loss of generality that |S| = |T | = k − 1: if |S| < k − 1 we
can add to S arbitrary vertices to make its size k − 1, while if |S| = k then S cannot be a
minimal dominating set (otherwise it would be impossible to transform it to any other set
and we would have an obvious NO instance) so there is a vertex that we can remove from S

without affecting the answer. In both cases we appropriately increase ` by the number of
modifications we made to S, T to preserve reachability. We want to show that the instance
is now equivalent under the TJ rule. In particular, there exists a TAR reconfiguration with
2` moves if there exists a TJ reconfiguration with ` moves.

First, if there exists a TJ reconfiguration from S to T then there exists a TAR reconfigu-
ration from S to T : for each move that exchanges u ∈ S with v 6∈ S we first add v to S and
then remove u.

For the converse direction, suppose that there is a TAR reconfiguration of S to T . If
moves alternate in this reconfiguration, that is, if all intermediate sets have size between k−2
and k, then it is not hard to see how to perform the same reconfiguration with TJ moves.
Suppose then that the reconfiguration performs two consecutive vertex removal moves, so
we have the dominating sets Ti, Ti+1, Ti+2 appearing consecutively in the reconfiguration
sequence, with |Ti| = |Ti+1|+ 1 = |Ti+2|+ 2. Let j be the smallest index with j > i+ 2 such

R. Belmonte, E. J. Kim, M. Lampis, V. Mitsou, Y. Otachi, and F. Sikora 13:15

that |Tj | > |Tj−1| (i.e. j signifies the first time we added a vertex after the i-th move). Let
Ti \ Ti+1 = {u} and Tj \ Tj−1 = {v}. Then, if u = v we can add u to all sets Ti+1, . . . , Tj−1
and obtain a shorter reconfiguration sequence (since now Ti = Ti+1 and Tj = Tj−1). Similarly,
if u 6= v and v ∈ Ti+1 we add v to all sets Ti+2, . . . , Tj−1 to which it doesn’t appear and we
have a shorter reconfiguration sequence. Finally, if u 6= v and v 6∈ Ti+1, we insert after Ti+1
the set Ti+1 ∪ {v} and then add v to all sets Ti+2, . . . , Tj−1. We now have Tj−1 = Tj , so we
have a valid TAR reconfiguration of the same length but with one less pair of consecutive
vertex removals. Repeating this argument produces a TAR reconfiguration which can be
performed with TJ moves.

For the ETH-based lower bound it suffices to recall that, under the ETH t-Dominating
Set does not admit an no(t) algorithm [4], and that the reduction establishing Theorem 14
in [18] is a reduction from t-Dominating Set that sets k, ` = O(t). J

I Theorem 16. The c-Colorable Reconfiguration problem is W[2]-hard parameterized
by c and the reconfiguration length ` when restricted to split graphs under any of the three
reconfiguration rules (TAR, TJ, TS). Furthermore, under the ETH, the same problem does
not admit an no(c+`) algorithm.

Proof. We use a reduction from Dominating Set Reconfiguration similar to the one
used in [15] to prove that our problem is PSPACE-complete if c is part of the input. Let
G = (V,E) be an input graph for Dominating Set Reconfiguration. We construct a
split graph G′ as follows: we take two copies of V , call them V1, V2; we turn V1 into a clique;
for each u ∈ V1 and v ∈ V2 we add the edge (u, v) if and only if u 6∈ N [v] in G. In other
words, we connect each vertex from V1 with all the vertices of V2 which it does not dominate
in G.

We assume now that we have started with k-Dominating Set Reconfiguration
instance under the TJ rule, which is W[2]-hard according to Corollary 15 parameterized
by k + `. We will first show hardness of c-Colorable Reconfiguration for TJ and TS
parameterized by c+ `.

We construct a one-to-one correspondence between size k dominating sets of G and
k-colorable sets of vertices of G′ of size n+ k, where n = |V |: for each such set S ⊆ V we
define its image φ(S) in G′ as {u ∈ V1 | u ∈ S}∪V2. In other words, we select all the vertices
of S from V1 and all of V2. It is not hard to see that φ(S) is indeed k-colorable: if not, there
exists a clique of size k + 1 in G′[S′] (since split graphs are perfect), which must consist of
the k vertices of S from V1, plus a vertex v from V2. But v must be dominated by a vertex
u ∈ S in G, which means that v and the copy of u in V1 are not connected.

Let us also observe that for every k-colorable set S′ of size n + k in G′ we have that
S′ = φ(S) for some dominating set S of size k in G. To see this, observe that S′ must contain
exactly k vertices of V1 (since it is k-colorable, V1 is a clique, and |V2| = n). These vertices
must be a dominating set of G as otherwise there would exist a vertex v that is not in any
of their closed neighborhoods, and the copy of v in V2 together with S′ ∩ V1 would form a
clique of size k + 1, contradicting the k-colorability of S′.

Given the above correspondence it is not hard to complete the reduction: if we are
given two dominating sets S, T ⊆ V with the initial instance we set φ(S), φ(T) as the two
k-colorable graphs of the new instance. We observe that any valid TJ move that transforms a
dominating set Ti to a dominating set Ti+1 in G, corresponds to a TJ move that transforms
φ(Ti) to φ(Ti+1) in G′. Crucially, such a move is also a TS move, as the symmetric difference
of Ti and Ti+1 is contained in the clique. Hence, there is also a one-to-one correspondence

STACS 2019

13:16 Token Sliding on Split Graphs

between TJ k-dominating set reconfigurations in G and TS k-colorable subgraph (of size
n + k) reconfiguration in G′. We therefore set the length of the desired reconfiguration
sequence in G′ to `.

Finally, to obtain hardness of the new instance under the TAR rule we set the lower
bound on the size of any intermediate set to n+ k − 1. Since |φ(S)| = |φ(T)| = n+ k this
means that any TJ c-colorable reconfiguration can also be performed with at most 2` TAR
moves. For the converse direction we observe that in any TAR reconfiguration we never have
a set of size n+ k + 1 or more, since such a set would necessarily induce a graph that needs
k + 1 colors. Hence, such a reconfiguration must consist of alternating vertex removal and
addition moves, which can be performed with ` TJ moves.

The ETH-based lower bounds follow from Corollary 15 and the fact that the reduction
we performed is at most linear in all parameters. J

References
1 Marthe Bonamy and Nicolas Bousquet. Token Sliding on Chordal Graphs. In WG 2017,

volume 10520 of Lecture Notes in Computer Science, pages 127–139, 2017. doi:10.1007/
978-3-319-68705-6_10.

2 Paul S. Bonsma, Marcin Kaminski, and Marcin Wrochna. Reconfiguring Independent Sets
in Claw-Free Graphs. In SWAT, volume 8503 of Lecture Notes in Computer Science, pages
86–97. Springer, 2014.

3 Nicolas Bousquet, Arnaud Mary, and Aline Parreau. Token Jumping in Minor-Closed Classes.
In FCT, volume 10472 of Lecture Notes in Computer Science, pages 136–149. Springer, 2017.

4 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.

5 Erik D. Demaine, Martin L. Demaine, Eli Fox-Epstein, Duc A. Hoang, Takehiro Ito, Hirotaka
Ono, Yota Otachi, Ryuhei Uehara, and Takeshi Yamada. Linear-time algorithm for sliding
tokens on trees. Theor. Comput. Sci., 600:132–142, 2015. doi:10.1016/j.tcs.2015.07.037.

6 Eli Fox-Epstein, Duc A. Hoang, Yota Otachi, and Ryuhei Uehara. Sliding Token on Bipartite
Permutation Graphs. In ISAAC, volume 9472 of Lecture Notes in Computer Science, pages
237–247. Springer, 2015.

7 Robert A. Hearn. Games, puzzles, and computation. PhD thesis, Massachusetts Institute of
Technology, Cambridge, MA, USA, 2006. URL: http://hdl.handle.net/1721.1/37913.

8 Robert A. Hearn and Erik D. Demaine. PSPACE-completeness of sliding-block puzzles and
other problems through the nondeterministic constraint logic model of computation. Theor.
Comput. Sci., 343(1-2):72–96, 2005. doi:10.1016/j.tcs.2005.05.008.

9 Robert A. Hearn and Erik D. Demaine. Games, puzzles and computation. A K Peters, 2009.
10 Jan van den Heuvel. The complexity of change. In Simon R. Blackburn, Stefanie Gerke, and

Mark Wildon, editors, Surveys in Combinatorics 2013, volume 409 of London Mathematical
Society Lecture Note Series, pages 127–160. Cambridge University Press, 2013. doi:10.1017/
CBO9781139506748.005.

11 Duc A. Hoang and Ryuhei Uehara. Sliding Tokens on a Cactus. In ISAAC, volume 64 of
LIPIcs, pages 37:1–37:26. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016.

12 Takehiro Ito, Erik D. Demaine, Nicholas J. A. Harvey, Christos H. Papadimitriou, Martha
Sideri, Ryuhei Uehara, and Yushi Uno. On the complexity of reconfiguration problems. Theor.
Comput. Sci., 412(12–14):1054–1065, 2011. doi:10.1016/j.tcs.2010.12.005.

13 Takehiro Ito, Marcin Kaminski, Hirotaka Ono, Akira Suzuki, Ryuhei Uehara, and Katsuhisa
Yamanaka. On the Parameterized Complexity for Token Jumping on Graphs. In TAMC,
volume 8402 of Lecture Notes in Computer Science, pages 341–351. Springer, 2014.

14 Takehiro Ito, Marcin Jakub Kaminski, and Hirotaka Ono. Fixed-Parameter Tractability of
Token Jumping on Planar Graphs. In ISAAC, volume 8889 of Lecture Notes in Computer
Science, pages 208–219. Springer, 2014.

http://dx.doi.org/10.1007/978-3-319-68705-6_10
http://dx.doi.org/10.1007/978-3-319-68705-6_10
http://dx.doi.org/10.1016/j.tcs.2015.07.037
http://hdl.handle.net/1721.1/37913
http://dx.doi.org/10.1016/j.tcs.2005.05.008
http://dx.doi.org/10.1017/CBO9781139506748.005
http://dx.doi.org/10.1017/CBO9781139506748.005
http://dx.doi.org/10.1016/j.tcs.2010.12.005

R. Belmonte, E. J. Kim, M. Lampis, V. Mitsou, Y. Otachi, and F. Sikora 13:17

15 Takehiro Ito and Yota Otachi. Reconfiguration of Colorable Sets in Classes of Perfect Graphs.
In SWAT, volume 101 of LIPIcs, pages 27:1–27:13. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, 2018.

16 Marcin Kamiński, Paul Medvedev, and Martin Milanič. Complexity of independent set
reconfigurability problems. Theor. Comput. Sci., 439:9–15, 2012. doi:10.1016/j.tcs.2012.
03.004.

17 Daniel Lokshtanov and Amer E. Mouawad. The complexity of independent set reconfiguration
on bipartite graphs. In SODA 2018, pages 185–195, 2018. doi:10.1137/1.9781611975031.13.

18 Amer E. Mouawad, Naomi Nishimura, Venkatesh Raman, Narges Simjour, and Akira Suzuki.
On the Parameterized Complexity of Reconfiguration Problems. Algorithmica, 78(1):274–297,
2017.

19 Naomi Nishimura. Introduction to Reconfiguration. Algorithms, 11(4):52, 2018. doi:10.3390/
a11040052.

20 Christos H. Papadimitriou. Computational complexity. Addison-Wesley, 1994.
21 Douglas B. West. Introduction to graph theory. Prentice Hall, Upper Saddle River, 2nd edition,

2001.

STACS 2019

http://dx.doi.org/10.1016/j.tcs.2012.03.004
http://dx.doi.org/10.1016/j.tcs.2012.03.004
http://dx.doi.org/10.1137/1.9781611975031.13
http://dx.doi.org/10.3390/a11040052
http://dx.doi.org/10.3390/a11040052

Building Strategies into QBF Proofs
Olaf Beyersdorff
Institut für Informatik, Friedrich-Schiller-Universität Jena, Germany
olaf.beyersdorff@uni-jena.de

Joshua Blinkhorn
Institut für Informatik, Friedrich-Schiller-Universität Jena, Germany
joshua.blinkhorn@uni-jena.de

Meena Mahajan
The Institute of Mathematical Sciences, HBNI, Chennai, India
meena@imsc.res.in

Abstract
Strategy extraction is of paramount importance for quantified Boolean formulas (QBF), both in
solving and proof complexity. It extracts (counter)models for a QBF from a run of the solver resp.
the proof of the QBF, thereby allowing to certify the solver’s answer resp. establish soundness of the
system. So far in the QBF literature, strategy extraction has been algorithmically performed from
proofs. Here we devise the first QBF system where (partial) strategies are built into the proof and
are piecewise constructed by simple operations along with the derivation.

This has several advantages: (1) lines of our calculus have a clear semantic meaning as they are
accompanied by semantic objects; (2) partial strategies are represented succinctly (in contrast to
some previous approaches); (3) our calculus has strategy extraction by design; and (4) the partial
strategies allow new sound inference steps which are disallowed in previous central QBF calculi such
as Q-Resolution and long-distance Q-Resolution.

The last item (4) allows us to show an exponential separation between our new system and
the previously studied reductionless long-distance resolution calculus, introduced to model QCDCL
solving.

Our approach also naturally lifts to dependency QBFs (DQBF), where it yields the first sound
and complete CDCL-type calculus for DQBF, thus opening future avenues into DQBF CDCL solving.

2012 ACM Subject Classification Theory of computation → Proof complexity

Keywords and phrases QBF, DQBF, resolution, proof complexity

Digital Object Identifier 10.4230/LIPIcs.STACS.2019.14

Funding Supported by the EU Marie Curie IRSES grant CORCON, and grant no. 60842 from the
John Templeton Foundation.

1 Introduction

Proof complexity investigates the resources for proving logical theorems, focussing foremost
on the minimal size of proofs needed in a particular calculus. Since its inception the field
has enjoyed strong connections to computational complexity (cf. [14,17]) and to first-order
logic [16,25]).

During the past decade, proof complexity has emerged as a key tool to model and
analyse advances in the algorithmic handling of hard problems such as SAT and beyond.
While traditionally perceived as a computationally hard problem, SAT solvers have been
enormously successful in tackling huge industrial instances [28,38] and hard combinatorial
problems [21]. As each run of a solver on an unsatisfiable formula can be understood as a
proof of unsatisfiability, each solver implicitly defines a proof system. This connection turns

© Olaf Beyersdorff, Joshua Blinkhorn, and Meena Mahajan;
licensed under Creative Commons License CC-BY

36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019).
Editors: Rolf Niedermeier and Christophe Paul; Article No. 14; pp. 14:1–14:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:olaf.beyersdorff@uni-jena.de
mailto:joshua.blinkhorn@uni-jena.de
mailto:meena@imsc.res.in
https://doi.org/10.4230/LIPIcs.STACS.2019.14
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

14:2 Building Strategies into QBF Proofs

proof complexity into the main theoretical approach towards understanding the power and
limitations of solving, with bounds on proof size directly corresponding to bounds on solver
running time [14,29].

The algorithmic success story of solving has not stopped at SAT, but is currently extending
to even more computationally complex problems such as quantified Boolean formulas (QBF),
which is PSPACE complete, and dependency QBFs (DQBF), which is even NEXP complete.
While quantification does not increase expressivity, (D)QBFs can encode many problems
far more succinctly, including application domains such as automated planning [15, 18],
verification [5, 27], synthesis [20,26] and ontologies [24].

The past 15 years have seen huge advances in QBF solving, which currently reaches
the point of industrial applicability. While some of the main innovations in SAT solving,
including the development of conflict-driven clause learning (CDCL), revolutionised SAT in
the late 1990s [36], this development in QBF is happening now. Consequently, QBF proof
complexity has received considerable attention in recent years. Compared with QBF, solving
in DQBF is at its very beginnings, both in implementations (2018 was the first year that
saw a DQBF track in the QBF competition [1]) as well as in its accompanying theory [35].

Strategy extraction is one of the distinctive features of QBF and DQBF, manifest in both
solving and proof complexity. For solving it guarantees that together with the true/false
answer the (D)QBF solver can produce a model (resp. countermodel) of the (D)QBF, thus
certifying the correctness of the answer. On the proof complexity side, this implies that
proof calculi modelling QBF solving should allow strategy extraction in the sense that
from a refutation of false QBF, a countermodel of the QBF can be efficiently constructed.
This feature – without analogue in the propositional domain – enables strong lower bound
techniques in QBF proof complexity [8, 9, 11], exploiting the fact that formulas requiring
hard strategies cannot have short proofs in calculi with efficient strategy extraction.

As in SAT versus propositional proof complexity, one of the prime challenges in QBF
and DQBF is to create compelling proof-theoretic models that capture central features of
(D)QBF solving and at the same time remain amenable to a proof-theoretic analysis. While
there exist several orthogonal approaches in QBF solving with quite different associated
proof calculi, we will focus here on the paradigm of conflict-driven clause learning in QBF
(QCDCL) [39]. Proof-theoretically its most basic model is Q-Resolution [22], which as in
propositional resolution operates on clauses (of prenex QBFs).

Q-Resolution (Q-Res) uses the resolution rule of propositional resolution and augments
this with a universal reduction rule that allows to eliminate universal variables from clauses.
Combining these two rules requires some technical care: without any side-conditions the two
rules result in an unsound system. Typically this is circumvented by prohibiting the derivation
of universal tautologies. It was noted early on that in solving this is needlessly prohibitive [39],
and universal tautologies can be permitted under certain side-conditions. Later formalised as
the proof system long-distance Q-Resolution (LD-Q-Res) [3], it was even shown that LD-Q-Res
exponentially shortens proofs in comparison to Q-Res [19], thus demonstrating the appeal
of the approach for solving. In fact, when enabling long-distance steps in QBF solving,
universal reduction is not strictly needed and this reductionless approach was adopted in the
QBF solver GhostQ [23]. To model this solving paradigm, Bjørner, Janota, and Klieber [13]
introduced the calculus of reductionless LD-Q-Res.

The interplay between long-distance resolution and universal reduction steps becomes
even more intriguing in DQBF. In [2] it was shown that lifting Q-Res (using the rules of
resolution and universal reduction) to DQBF results in an incomplete proof system, whereas
lifting LD-Q-Res (using long-distance resolution steps together with universal reduction)
becomes unsound [12].

O. Beyersdorff, J. Blinkhorn, and M. Mahajan 14:3

Naturally, the intriguing question of why and how deriving “universal tautologies” in
long-distance steps might help solving has attracted attention among theoreticians and
practitioners alike. Instead of a universal tautology u ∨ ū, most formalisations of long-
distance resolution actually use the concept of a “merged” literal u∗. While it is clear (and
implicit in the literature) that merged literals u∗ correspond to partial strategies for u rather
than universal tautologies, a formal semantic account of long-distance steps (and stronger
calculi using merging [10]) was only recently given by Suda and Gleiss [37], where partial
strategies are constructed for each individual proof inference. However, as already noted
in [37], the models considered in [37] fail to have efficient strategy extraction in the sense
that the constructed (partial) strategies may need exponential-size representations.

Our contributions
A. The new calculus of Merge Resolution. Starting from the reductionless LD-Q-Res
system of [13] and its role of modelling QCDCL solving, we develop a new calculus that we
call Merge Resolution (M-Res). Like reductionless LD-Q-Res, the system M-Res only uses
a resolution rule and does not permit universal reduction steps. Reductionless LD-Q-Res
and M-Res are therefore both refutational calculi that finish as soon as they derive a purely
universal clause.

As the prime novel feature of M-Res we build partial strategies into proofs. We achieve this
by computing explicit representations of strategies in a variant of binary decision diagrams
(called merge maps here), which are updated and refined at each proof step by simple
operations. These merge maps are part of the proof. As a consequence, M-Res has efficient
strategy extraction by design.

This is in contrast to all previous existing QBF calculi in the literature, where strategies
are algorithmically constructed from proofs. In particular, this also applies to the approaches
taken in [19, 37] for LD-Q-Res and in [13] for reductionless LD-Q-Res. But also the choice of
our representation as merge maps matters: as [13,37] both represent (partial) strategies as
trees, the constructed strategies may grow exponentially in the proof size, thus losing the
desirable property of efficient strategy extraction. In contrast, in our model merge maps are
always linear in the size of the clause derivations.

B. Exponential separation of M-Res from reductionless LD-Q-Res. Including merge maps
explicitly into proofs also has another far-reaching advantage: it allows resolution steps not
only forbidden in Q-Res, but even disallowed in LD-Q-Res. In a nutshell, LD-Q-Res allows
resolution steps only when universal variables quantified left of the pivot have constant
and equal strategies in both parent clauses. In M-Res we have explicit representations of
strategies and thus can allow resolution steps as long as the strategies in both parent clauses
are isomorphic to each other, a property that we can check efficiently for merge maps.

This manifests in shorter proofs. We show this by explicitly giving an example of a family
of QBFs that admit linear-size proofs in M-Res (Theorem 21), but require exponential size in
reductionless LD-Q-Res (Theorem 20). The separating formulas are a variant of the equality
formulas introduced in [8]. While the original formulas from [8] are hard for Q-Res, but easy
in LD-Q-Res, we here consider a “squared” version, for which we naturally use resolution
steps for clauses with associated non-constant winning strategies, allowed in M-Res, but
forbidden in LD-Q-Res.

This shows that M-Res is exponentially stronger than reductionless LD-Q-Res, thus also
pointing towards potential improvements in QCDCL solving. While the simulation of
reductionless LD-Q-Res by M-Res is almost immediate and also the upper bound in M-Res is

STACS 2019

14:4 Building Strategies into QBF Proofs

comparatively straightforward, the lower bound is a technically involved argument specifically
tailored towards the squared equality formulas.

C. A sound and complete CDCL calculus for DQBF. As our final contribution we show
that the new QBF system of M-Res naturally lifts to a sound and complete calculus for
DQBF. As shown in [2], the lifting of Q-Res to DQBF is incomplete, whereas the combination
of universal reduction and long-distance steps presents soundness issues, both in DQBF [12]
as well as in the related framework of dependency schemes [6, 7].

Here we show that M-Res overcomes both these soundness and completeness issues and
therefore has exactly the right strength for a natural DQBF resolution calculus. In fact, it is
the first DQBF CDCL-type system in the literature1 and as such paves the way towards
CDCL solving in DQBF. Again, by design our DQBF system has efficient strategy extraction.

2 Preliminaries

Propositional logic. Let Z be a countable set of Boolean variables. A literal is a Boolean
variable z ∈ Z or its negation z̄, a clause is a set of literals, and a CNF is a set of
clauses. For a literal l, we define var(l) := z if l = z or l = z̄; for a clause C, we define
vars(C) := {var(l) : l ∈ C}; for a CNF φ we define vars(φ) := ∪C∈φvars(C). An assignment
to a set Z ⊆ Z of Boolean variables is a function ρ : Z → {0, 1}, conventionally represented
as a set of literals in which z (resp. z̄) represents the assignment z 7→ 1 (resp. z 7→ 0). The
set of all assignments to Z is denoted 〈Z〉. Given a subset Z ′ ⊆ Z, ρ�Z′ is the restriction
of ρ to Z ′. The CNF φ[ρ] is obtained from φ by removing any clause containing a literal
in ρ, and removing the negated literals {l̄ : l ∈ ρ} from the remaining clauses. We say that
ρ falsifies φ if φ[ρ] contains the empty clause, and that φ is unsatisfiable if it is falsified by
each ρ ∈ 〈Z〉.

Given two clauses R1 and R2 and a literal l such that l ∈ R1 and l̄ ∈ R2, we define the
resolvent res(R1, R2, l) := (R1 \ {l}) ∪ (R2 \ {l̄}). (Note that res(R1, R2, l) = res(R2, R1, l̄).)
A resolution refutation of a CNF φ is a sequence C1, . . . , Ck of clauses in which Ck is the
empty clause and, for each i ∈ [k], either (a) Ci ∈ φ or (b) Ci = res(Ca, Cb, z) for some
a, b < i and z ∈ vars(φ).

Quantified Boolean formulas. A quantified Boolean formula (QBF) in prenex conjunctive
normal form (PCNF) is denoted Φ := Q · φ, where (a) Q := Q1Z1 · · · QnZn is the quantifier
prefix, in which the Zi ⊂ Z are pairwise disjoint finite sets of Boolean variables, Qi ∈ {∃,∀}
for each i ∈ [n], and Qi 6= Qi+1 for each i ∈ [n − 1], and (b) the matrix φ is a CNF over
vars(Φ) :=

⋃n
i=1 Zi.

The existential (resp. universal) variables of Φ, typically denoted X (resp. U), is the
set obtained as the union of the Zi for which Qi = ∃ (resp. Qi = ∀). The prefix Q defines
a binary relation <Q on vars(Φ), such that z <Q z′ holds iff z ∈ Zi, z′ ∈ Zj , and i < j,
in which case we say that z′ is right of z and z is left of z′. For each u ∈ U , we define
LQ(u) := {x ∈ X : x <Q u}, i.e. the existential variables left of u.

A strategy h for a QBF Φ is a set {hu : u ∈ U} of functions hu : 〈LQ(u)〉 → {u, ū}.
Additionally h is winning if, for each α ∈ 〈X〉, the restriction of φ by α∪{hu(α�LQ(u)) : u ∈ U}
contains the empty clause. We use the terms “winning strategy” and “countermodel”
interchangeably. A QBF is called false if it has a countermodel, and true if it does not.

1 Previous DQBF resolution systems either use expansion [12] or extension variables [33].

O. Beyersdorff, J. Blinkhorn, and M. Mahajan 14:5

QBF proof systems. We deal with line-based refutational QBF systems that typically
employ axioms and inference rules to prove the falsity of QBFs. We say that P is complete if
there exists a P refutation of every false QBF, sound if there exists no P refutation of any
true QBF. We call P a proof system if it is sound, complete, and polynomial-time checkable.
Given two QBF proof systems P1 and P2, P1 p-simulates P2 if there exists a polynomial-time
procedure that takes a P2-refutation and outputs a P1-refutation of the same QBF [17].

3 Reductionless long-distance Q-Resolution

In this section we recall the definition of reductionless LD-Q-Res, prove that it is refutationally
complete, and demonstrate that it does not have polynomial-time strategy extraction in
either of the computational models of [13, 37]. The system appeared first in [13, Fig. 1],
where it was referred to as Qw-resolution.

I Definition 1 (reductionless LD-Q-Res [13]). A reductionless LD-Q-Res derivation from a
QBF Φ := Q · φ is a sequence π := C1, . . . , Ck of clauses in which at least one of (a) or (b)
holds for each i ∈ [k]:

(a) Axiom. Ci is a clause from the matrix φ;

(b) Long-distance resolution. There exist integers a, b < i and an existential pivot x ∈ X
such that Ci = res(Ca, Cb, x) and, for each u ∈ vars∀(Ca) ∩ vars∀(Cb), if u <Q x, then
{u, ū} * Ci.

The final clause Ck is the conclusion of π, and π is a refutation of Φ iff Ck contains no
existential variables.

A pair of complementary universal literals {u, ū} appearing in a clause is referred to
singly as a merged literal. It is clear from a wealth of literature2 that merged literals are
“placeholders” for partial strategies, the exact representation left implicit in the structure of
the derivation.

We illustrate the rules of the calculus by showing that the equality formulas [8] have
linear-size refutations.

I Definition 2 (equality formulas [8]). The equality family is the QBF family whose nth

instance has prefix ∃{x1, . . . , xn}∀{u1, . . . , un}∃{t1, . . . , tn} and matrix consisting of the
clauses {xi, ui, ti}, {x̄i, ūi, ti} for i ∈ [n], and {t̄1, . . . , t̄n}.

I Example 3. We construct linear-size reductionless LD-Q-Res refutations in two stages. First,
resolve each pair {xi, ui, ti}, {x̄i, ūi, ti} of clauses over pivot xi to obtain Ci := {ui, ūi, ti}.
Note that it is allowed to introduce the merged literal {ui, ūi} since variable ui is right of the
pivot xi. Second, resolve the Ci successively against the long clause {t̄1, . . . , t̄n} over pivot
ti, to obtain a full set of merged literals C := {ui, ūi : i ∈ [n]}. Here, even though ui is left
of the pivot ti, the appearance of the merged literal {ui, ūi} in the resolvent is allowed, since
variable ui is absent from one of the antecedents. The derivation is a refutation since the
conclusion C contains no existential literals.

Given a false QBF Φ with a countermodel h, we construct a canonical reductionless
LD-Q-Res refutation based on the “full binary tree” representation of a countermodel [34].

2 The notion is evident to a greater or lesser degree in all of the papers [4, 7, 19,30,32,37].

STACS 2019

14:6 Building Strategies into QBF Proofs

For each α ∈ 〈X〉, there exists some Cα in the matrix falsified by α ∪ h(α). The set of all
such Cα may be successively resolved over existential pivots in reverse prefix order, finally
producing a clause containing no existentials. Merged literals never block resolution steps in
this construction, as they only ever appear to the right of the pivot variable.

I Lemma 4. Every false QBF has a reductionless LD-Q-Res refutation.

Soundness and polynomial-time checkability of reductionless LD-Q-Res are immediate,
as the system uses a subset of the rules of the classical long-distance Q-resolution proof
system [3].

The computational model of Bjørner et al. [13]. In tandem with reductionless LD-Q-Res,
the authors of [13] introduced a computational model based on tree-like branching programs.
The model is used to explicitly construct the partial strategies represented implicitly by
merged literals. It can be demonstrated that tree-like branching programs constructed in this
way cannot represent strategies efficiently; that is, the system does not have polynomial-time
strategy extraction in the associated model.

The computational model of Suda and Gleiss [37]. The authors of [37] proposed a model
of partial strategies based on so-called policies. They noted that the equality formulas have
linear-size refutations in the strong QBF system IRM-calc [10], whereas policies witnessing
their falsity must be exponentially large, therefore IRM-calc does not admit polynomial-time
strategy in policies. The same is true for reductionless LD-Q-Res, since Example 3 shows
that the equality formulas also have linear-size refutations there.

That neither model is suitable for efficient strategy extraction shows that using either
inside the derivation would result in an artificial, exponential size blow-up. The root of the
issue is tree-like models versus DAG-like proofs. The DAG-like computational model that we
introduce in the following section is tightly knitted to the refutation, yielding linear-time
strategy extraction for free.

4 Merge Resolution

In this section we introduce Merge Resolution (M-Res, Subsection 4.2), and prove that it is
sound and complete for QBF (Subsection 4.3). The salient feature of M-Res is the built-in
partial strategies, represented as merge maps. Given the problems with the computational
models of [13, 37], the principal technical challenge is to find a suitable way to define and
combine partial strategies devoid of an artifical proof-size inflation.

4.1 Merge maps
Our computational model. A merge map is a branching program that queries a set of
existential variables and outputs an assignment to some universal variable, i.e. a literal in
{u, ū, ∗}, where ∗ stands for “no assignment”. As we intend to tie the DAG structure of
the merge maps to the DAG structure of the proof, we will label query nodes with natural
numbers based on the proof line indexing (we elaborate on this later). Hence, from a technical
standpoint it makes sense to define a merge map as a function from the index set of its nodes.

I Definition 5 (merge map). A merge map M for a Boolean variable u over a finite set X
of Boolean variables is a function from a finite set N of natural numbers satisfying, for each
i ∈ N , either M(i) ∈ {u, ū, ∗} or M(i) ∈ X ×N<i ×N<i, where N<i := {i′ ∈ N : i′ < i}.

O. Beyersdorff, J. Blinkhorn, and M. Mahajan 14:7

A triple of the form (x, a, b) ∈ X ×N<i ×N<i represents the instruction “if x = 0 then
goto a else goto b”, whereas the literals {u, ū, ∗} represent output values.

We depict merge maps pictorially as DAGs. The nodes are the domain elements, and the
leaf nodes as well as the directed edges are labelled by literals. In a merge map M , if M(i)
is a literal l, then node i is labeled l. If M(i) = (x, a, b), then the DAG has the edge i→ a

labeled x̄ and the edge i→ b labeled x. As shown in Figure 1, the DAG naturally describes
a deterministic branching program computing a Boolean function.

M : 1 7→ u

2 7→ ū

3 7→ (w, 1, 2)
4 7→ ∗
5 7→ (w, 4, 2)
6 7→ (v, 5, 3) 6

5 3

4 2 1
∗ ū u

v̄ v

w̄ w w w̄

Figure 1 Function and branching program representations of a merge map M .

Relations. Merge Resolution uses two relations to determine preconditions for the binary
operations. Firstly, we give M-Res the power to identify merge maps with equivalent
representations, up to indexing. We term equivalent representations “isomorphic”.

I Definition 6 (isomorphism). Two merge maps M1 and M2 for u over X with domains N1
and N2 are isomorphic (written M1 'M2) iff there exists a bijection f : N1 → N2 such that
the following hold for each i ∈ N1:
(a) if M1(i) is a literal in {u, ū, ∗} then M2(f(i)) = M1(i);
(b) if M1(i) is the triple (x, a, b) then M2(f(i)) = (x, f(a), f(b)).
Our second relation, consistency, simply identifies whether or not two merge maps agree on
the intersection of their domains.

I Definition 7 (consistency). Two merge maps M1 and M2 for u over X with domains N1
and N2 are consistent (written M1 ./ M2) iff M1(i) = M2(i) for each i ∈ N1 ∩N2.

Operations. M-Res uses two binary operations to build merge maps for the resolvent based
on those of the antecedents. The select operation identifies equivalent merge maps by means
of the isomorphism relation. It also allows a trivial merge map to be discarded; we call a
merge map trivial iff it is isomorphic to 1 7→ ∗. (The operation is undefined if the merge
maps are neither isomorphic nor do they contain a trivial map.)

I Definition 8 (select). Let M1 and M2 be merge maps for which M1 ' M2 or one of
M1,M2 is trivial. Then select(M1,M2) := M2 if M1 is trivial, and select(M1,M2) := M1
otherwise.

The merge operation allows two consistent merge maps to be combined as the children of
a fresh query node. Antecedent maps are only ever merged for universal variables right of
the pivot x. The inclusion of a natural number n allows the new query node to be identified
with the resolvent, via its index in the proof sequence. In this way, query nodes are shared
between later merge maps, rather than being duplicated; the result is a DAG-like structure
which faithfully follows that of the derivation.

STACS 2019

14:8 Building Strategies into QBF Proofs

I Definition 9 (merge). Let M1 and M2 be consistent merge maps for u over X with
domains N1 and N2, let n > max(N1 ∪ N2) be a natural number, and let x ∈ X. Then
merge(M1,M2, n, x) is the function from N1 ∪N2 ∪ {n} defined by

merge(M1,M2, n, x)(i) :=

(x,max(N1),max(N2)) if i = n,
M1(i) if i ∈ N1,
M2(i) if i ∈ N2 \N1.

I Example 10. For the merge maps depicted in Figure 2, isomorphism and consistency
(or lack thereof) are as given in the table below. Furthermore, note that select(A,B) =
select(A,C) = A and merge(D,B, 6, v) gives the merge map from Figure 1.

relation isomorphic not isomorphic
consistent A ./ C; A ' C B ./ D; B 6' D

not consistent A 6./ B; A ' B C 6./ D; C 6' D

4

1 3
ūu

w̄ w

(a) Merge map A

3

1 2
ūu

w̄ w

(b) Merge map B

5

1 2
ūu

w̄ w

(c) Merge map C

5

4 2
ū∗

w̄ w

(d) Merge map D

Figure 2 Relations and operations on merge maps.

4.2 Definition of M-Res
We are now ready to put down the rules of Merge Resolution. Given a non-tautological
clause C and a Boolean variable u, the falsifying u-literal for C is l̄ if there is a literal l ∈ C
with var(l) = u, and ∗ otherwise.

I Definition 11 (merge resolution). Let Φ := Q·φ be a QBF with existential variables X and
universal variables U . A merge resolution (M-Res) derivation of Lk from Φ is a sequence
π := L1, . . . , Lk of lines Li := (Ci, {Mu

i : u ∈ U}) in which at least one of the following holds
for each i ∈ [k]:
(a) Axiom. There exists a clause in C ∈ φ such that Ci is the existential subclause of C,

and, for each u ∈ U , Mu
i is the merge map for u over LQ(u) with domain {i} mapping i

to the falsifying u-literal for C;
(b) Resolution. There exist integers a, b < i and an existential pivot x ∈ X such that

Ci = res(Ca, Cb, x) and, for each u ∈ U , either (i) Mu
i = select(Mu

a ,M
u
b), or (ii) x <Q u

and Mu
i = merge(Mu

a ,M
u
b , i, x).

The final line Lk is the conclusion of π, and π is a refutation of Φ iff Ck = ∅. The size of π
is |π| = k.

I Example 12. Consider the following M-Res refutation of the QBF with prefix ∃x∀u∃t and
matrix consisting of the clauses {x, u, t}, {x̄, ū, t}, {x, u, t̄} and {x̄, ū, t̄}.

O. Beyersdorff, J. Blinkhorn, and M. Mahajan 14:9

Line Rule Ci Mi Query
L1 axiom {x, t} 1 7→ ū

L2 axiom {x̄, t} 2 7→ u

L3 res(L1, L2, x) {t} merge(M1, M2, 3, x) 3 7→ (x, 1, 2)
L4 axiom {x, t̄} 4 7→ ū

L5 axiom {x̄, t̄} 5 7→ u

L6 res(L4, L5, x) {t} merge(M4, M5, 6, x) 6 7→ (x, 4, 5)
L7 res(L3, L6, t) {} select(M3, M6) = M3

As shown in Figure 3, M3 and M6 are isomorphic, so select(M3,M6) is defined and equal
to M3. For this reason, the resolution of antecedents L3 and L6 into L7 is allowed, and the
final merge map M7 is simply a copy of M3. The analogous resolution would be disallowed in
reductionless LD-Q-Res because the pivot t is right of u, and the non-constant merge maps
M3 and M6 would appear as merged literals {u, ū} in the antecedent clauses.

M3

1 7→ ū

2 7→ u

3 7→ (x, 1, 2)

M6

4 7→ ū

5 7→ u

6 7→ (x, 4, 5)

1 2

3

4 5

6

ū u ū u

x̄ x x̄ x

Figure 3 Functions and branching programs for merge maps M3 and M6 from Example 12.

Regarding M-Res proof size, observe that the domain of the merge map at line i is a
subset of [i]. This means that merge maps grow linearly in the size of the derivation, and the
size blow-up associated with the previous models [13,37] is sidestepped. Moreover, number
of lines is justifiably the correct size measure for M-Res.

4.3 Soundness and completeness of M-Res
The soundness of M-Res comes down to the fact that the merge maps at a given line form a
partial strategy for the input QBF, in the technical sense of [37]. This means that any total
existential assignment that falsifies the clause Ci will falsify the matrix when extended by
the output of the merge maps Mu

i . Soundness is proved by induction on the proof structure
with exactly this invariant. At the conclusion, all existential assignments falsify the empty
clause Ck, and hence the Mu

k compute a countermodel.

I Lemma 13. Let (∅, {Mu : u ∈ U}) be the conclusion of an M-Res refutation of a QBF Φ.
Then the functions computed by {Mu : u ∈ U} are a countermodel for Φ.

Completeness of M-Res is shown via the p-simulation of reductionless LD-Q-Res. The
simulation copies precisely the structure of the reductionless LD-Q-Res refutation, while
replacing merged literals by merge maps in the natural way.

I Theorem 14. M-Res p-simulates reductionless LD-Q-Res.

It is easy to see that M-Res refutations can be checked in polynomial time, since the
isomorphism and consistency relations are computable in linear time.

I Theorem 15. M-Res is a QBF proof system.

STACS 2019

14:10 Building Strategies into QBF Proofs

5 Proof complexity: Merge Resolution vs Reductionless LD-Q-Res

In this section we exponentially separate M-Res from reductionless LD-Q-Res. The separating
formulas are a kind of “squaring” of the equality formulas from Definition 2.

I Definition 16 (squared equality formulas). The squared equality family is the QBF family
whose nth instance EQ2(n) := Q(n) · eq2(n) has prefix

Q(n) := ∃{x1, y1, . . . , xn, yn}∀{u1, v1, . . . , un, vn}∃{ti,j : i, j ∈ [n]},

and CNF matrix eq2(n) consisting of the clauses

{xi, yj , ui, vj , ti,j}, {xi, ȳj , ui, v̄j , ti,j}, for i, j ∈ [n],

{x̄i, yj , ūi, vj , ti,j}, {x̄i, ȳj , ūi, v̄j , ti,j}, for i, j ∈ [n],

{t̄i,j : i, j ∈ [n]}.

The only winning strategy for the universal player is to set ui = xi and vj = yj for each
i, j ∈ [n]. At the final block, the existential player is faced with the full set of {ti,j} unit
clauses, and to satisfy all of them is to falsify the square clause {t̄i,j : i, j ∈ [n]}. No other
strategy can be winning, as it would fail to produce all n2 unit clauses.

5.1 EQ2(n) lower bound for reductionless LD-Q-Res
We first give a formal definition of a refutation path; that is, a sequence of consecutive
resolvents beginning with an axiom and ending at the conclusion.

I Definition 17 (path). Let π be a reductionless LD-Q-Res refutation. A path from a clause
C in π is a subsequence C1, . . . , Ck of π in which:

C = C1 is an axiom of π;
Ck is the conclusion of π;
for each i ∈ [k − 1], there exists a literal pi and a clause Ri occurring before Ci+1 in π
such that Ci+1 = res(Ci, Ri, pi).

The lower-bound proof is based upon two facts: (1) every total existential assignment
corresponds to a path, all of whose clauses are consistent with the assignment (Lemma 18);
(2) every path from the square clause contains a “wide” clause containing either all the xi or
all the yj variables (Lemma 19). It is then possible to deduce the existence of exponentially
many wide clauses, i.e. by considering the set of assignments for which each xi = yi and each
ti,j = 0, all of whose corresponding paths begin at the square clause (proof of Theorem 20).

I Lemma 18. Let π be a reductionless LD-Q-Res refutation of a QBF Φ, and let A be a
clause with vars(A) = vars∃(Φ). Then there exists a path in π in which no existential literal
outside of A occurs.

Proof. We describe a procedure that constructs a sequence P := Ck, . . . , C1 of clauses in
reverse order as follows: To begin with, let the “current clause” C1 be the conclusion of π. As
soon as the current clause Ci is in an axiom, the procedure terminates. Whenever necessary,
obtain Ci+1 as follows: find clauses R1 and R2 occurring before Ci in π and a literal p ∈ A
such that Ci is res(R1, R2, p), and set Ci+1 := R1 as the current clause. P is clearly a path
in π by construction. By induction one shows that the existential subclause of Ci is a subset
of A, for each i ∈ [n]: The base case i = 1 holds trivially since there are no existential literals
in the conclusion C1 of π. For the inductive step, observe that Ci+1 = C ′ ∪ {p}, for some
subset C ′ ⊆ Ci and literal p ∈ A. J

O. Beyersdorff, J. Blinkhorn, and M. Mahajan 14:11

The second lemma is more technical, and its proof more involved. The proof works
directly on the definition of path, the rules of reductionless LD-Q-Res, and the syntax of the
squared equality formulas, to show the existence of the wide clause.

I Lemma 19. Let n ≥ 2, and let π be a reductionless LD-Q-Res refutation of EQ2(n). On
each path from {t̄i,j : i, j ∈ [n]} in π, there occurs a clause C for which either {x1, . . . , xn} ⊆
vars(C) or {y1, . . . , yn} ⊆ vars(C).

Proof. Put X := {x1, . . . , xn} and Y := {y1, . . . , yn}. Call a clause R in π a p-resolvent if
there exist earlier clauses R1 and R2 such that R = res(R1, R2, p).

Let P := C1, . . . , Ck be a path from {t̄i,j : i, j ∈ [n]} in π. With each Cl we associate an
n× n matrix Ml in which Ml[i, j] := 1 if t̄i,j ∈ Ci and Ml[i, j] := 0 otherwise. Let l be the
least integer such that Ml has either a 0 in each row or a 0 in each column. Note that l ≥ 2
since M1 has no zeros.

We prove the lemma by showing that either X ⊆ vars(Cl) or Y ⊆ vars(Cl) must hold.
We make use of the following claims, which hold for all i, j ∈ [n]:
(1) for each clause C on P , if t̄i,j ∈ C then {ui, ūi} * C;
(2) each xi-resolvent in π contains {ui, ūi} as a subset;
(3) for each ti,j-resolvent R in π, if xi /∈ vars(R) then {ui, ūi} ⊆ R.

Now, suppose that Ml has a 0 in each row. We proceed to show that every row in Ml

also has at least one 1. To see this, suppose on the contrary that Ml contains a full 0 row r

(this implies that l ≥ 2, and hence that Ml−1 exists). Note that by definition of resolution
there can be at most one element that changes from 1 in Ml−1 to 0 in Ml. Since Ml−1 does
not have a 0 in every column, it does not contain a full zero row. Hence it must be the case
that the unique element that went from 1 in Ml−1 to 0 in Ml is in row r. Since n ≥ 2, we
deduce that Ml−1 has a 0 in each row, contradicting the minimality of l.

Let i ∈ [n]. Since the ith row in Ml contains a 1, there is some j ∈ [n] for which t̄i,j ∈ Cl.
From claim (1) it follows that {ui, ūi} * Cl. Moreover, as universal literals accumulate along
the path, this means that {ui, ūi} * Cm for each m ≤ l. Since the ith row in Ml contains
a 0, there exists j′ ∈ [n] such that t̄i,j′ /∈ Cl. As t̄i,j′ ∈ C1, there must be a ti,j′-resolvent
Cl′ on P with l′ ≤ l. Then we have xi ∈ vars(Cl′) by claim (3). Also, for each m ≤ l, Cm
is not an xi-resolvent by claim (2). It follows that xi ∈ vars(Cl). Since i ∈ [n] was chosen
arbitrarily, we have X ⊆ vars(Cl).

Suppose on the other hand that Ml does not contain a 0 in each row. Then Ml contains
a 0 in each column. A symmetrical argument then shows that Y ⊆ vars(Cl).

It remains to prove the three claims.

(1) Observe that each clause in π containing the positive literal ti,j also contains the variable
ui (this holds for every axiom and universal literals are never removed). Let C be a
clause on the path P for which t̄i,j ∈ C, and, for the sake of contradiction, suppose that
{ui, ūi} ⊆ C. Since ui <Q(n) ti,j , there cannot be ti,j-resolvent on P following C, as
such a resolution step is explicitly forbidden in the rules of reductionless LD-Q-Res. This
means that t̄i,j occurs in Ck, the final clause of P . This is a contradiction, since Ck is
the conclusion of π, which contains no existential literals. Therefore {ui, ūi} * C.

(2) Observe that each clause in π containing xi (resp. x̄i) also contains ui (resp. ūi) (again,
this holds for every axiom and universal literals are never removed). Let R be an
xi-resolvent of R1 and R2 in π. Since xi ∈ R1 and x̄i ∈ R2, we must have ui ∈ R1 and
ūi ∈ R2. It follows immediately that {ui, ūi} ⊆ R.

STACS 2019

14:12 Building Strategies into QBF Proofs

(3) Observe that each axiom in π containing the positive literal ti,j contains variable xi.
Hence, any clause in π that contains literal ti,j but not variable xi must appear after an xi-
resolvent on some path, and therefore contains {ui, ūi} by Claim (2). Now, let R be a ti,j-
resolvent of R1 and R2 in π. Suppose that xi /∈ vars(R), which implies that xi /∈ vars(R1).
Since ti,j ∈ R1, we have {ui, ūi} ⊆ R1, and it follows that {ui, ūi} ⊆ R. J

It remains to prove the lower bound formally from the preceding lemmata.

I Theorem 20. The squared equality family requires exponential-size reductionless LD-Q-Res
refutations.

Proof. Let n ∈ N, and let π be a reductionless LD-Q-Res refutation of EQ2(n). We show
that |π| ≥ 2n−1. The size bound is trivially true for n = 1, so we assume n ≥ 2. Put
X := {x1, . . . , xn} and Y := {y1, . . . , yn}, and let L := {t̄i,j : i, j ∈ [n]} be the long clause
from eq2(n). We call a non-tautological clause S symmetrical iff vars(S) = X ∪ Y and
xi ∈ S ⇔ yi ∈ S for each i ∈ [n]. (A symmetrical clause represents a total assignment to
X ∪ Y). Note that there are 2n distinct symmetrical clauses.

By Lemma 18, for each symmetrical clause S, there exists a path PS in π in which all
existential literals are contained in S ∪ L. Moreover, each PS begins at clause L, since every
other clause in eq2(n) contains some positive ti,j literal that does not occur in S ∪ L. By
Lemma 19, on each path P from L in π there exists a clause C for which either X ⊆ vars(C)
or Y ⊆ vars(C). It follows that we can define a function f that maps each symmetrical
assignment S to a clause f(S) in π for which either proj(S,X) ⊆ f(S) or proj(S, Y) ⊆ f(S).
Moreover, since distinct symmetrical clauses S1 and S2 satisfy proj(S1, X) 6= proj(S2, X)
and proj(S1, Y) 6= proj(S2, Y), each f(S) is the image of at most two distinct symmetrical
clauses. Hence, π contains at least 2n−1 clauses. J

Close inspection of the lower-bound proof reveals that particular resolution steps are
blocked due to the appearance of merged literals in the antecedents (see the proof of claim (1)
of Lemma 19). As we noted in Example 12, such steps remain blocked even if both merged
literals implicitly represent the same (non-constant) function, in which case the resolution
step is actually perfectly sound. As we will see, the M-Res upper-bound construction makes
crucial use of the isomorphism of non-constant merge maps.

5.2 Short M-Res refutations of EQ2(n)

Here we construct short M-Res refutations of the squared equality formulas. The approach
is as follows. First, for each i, j ∈ [n], obtain a line ({ti,j},Mi,j) by resolving the axioms
for the four clauses in eq(n)2 that contain {ti,j}. By the natural application of the merge
and select operations, one obtains merge maps Mi,j in which the merge map for ui outputs
xi with a single query, the merge map for vj outputs yj with a single query, and all other
maps are trivial. Notice that all the non-trivial merge maps for a given universal variable are
isomorphic, so these n2 unit clauses can all be resolved against the square clause, utilising
the select operation. It is precisely this final step which is blocked in reductionless LD-Q-Res.

I Theorem 21. The squared equality family has O(n2)-size M-Res refutations.

The separation follows immediately from Theorems 20 and 21.

I Theorem 22. LD-Q-Res does not p-simulate M-Res on QBF.

O. Beyersdorff, J. Blinkhorn, and M. Mahajan 14:13

6 Extending Merge Resolution to DQBF

In this section, we show that M-Res extends naturally to a DQBF proof system with the
addition of a single weakening rule.

An H-form dependency quantified Boolean formula (DQBF) is denoted Φ := Q·φ. Similarly
to QBF, the matrix φ is a CNF, but the quantifier prefix Q has a more general specification
that allows variable dependencies to be written explicitly. Formally, Q := (X,U,LQ), in
which X ⊂ Z and U ⊂ Z are finite sets called the existential and universal variables of Φ,
and LQ : U → ℘(X) is the support set function.

This is not the conventional notation for DQBF (cf. [2]), but it coincides conveniently
with our QBF notation. In particular, our definition of “countermodel” need not change,
and we call a DQBF false if it has a countermodel, and true if it does not. We redefine <Q
as a binary relation on X × U such that x <Q u holds iff x ∈ X, u ∈ U and x ∈ LQ(u).

To lift M-Res to DQBF, we take Φ to be a DQBF in Definition 11 and add an extra case:
(c) Weakening. There exists an integer a < i such that Ci is an existential superclause of

Ca and, for each u ∈ U , either (i) Mu
i = Mu

a , or (ii) Mu
a is trivial and Mu

i := i 7→ l for
some literal l ∈ {u, ū}.

By “existential superclause” it is meant that vars(Ci) ⊆ X and Ca ⊆ Ci.
Weakening is, in a clear sense, the simplest rule with which one extends M-Res to DQBF.

Its function is merely to represent exactly the paths of the countermodel on which the
canonical completeness construction is based. In general, the countermodel needs to be
represented in full since merge maps must be isomorphic in order to apply the select operation.

Soundness and Completeness
Soundness of M-Res for DQBF is proved in the same way as for QBF, i.e. by showing that the
concluding merge maps compute a countermodel. Lemma 13 lifts straightforwardly to DQBF,
so we need only show that weakening preserves the induction invariant (see the paragraph
preceding Lemma 13). This turns out to be rather straightforward, since a weakened clause
is falsified by fewer existential assignments, and the weakening of a merge map always
instantiates an undetermined assignment.

I Lemma 23. Let (∅, {Mu : u ∈ U}) be the conclusion of an M-Res refutation of a DQBF Φ.
Then the functions computed by {Mu : u ∈ U} form a countermodel for Φ.

Completeness, on the other hand, cannot be established with an analogue of Theorem 14;
DQBF is strictly larger than QBF, and hence simulation of reductionless LD-Q-Res does not
guarantee completeness. Our proof rather extends the method by which completeness of
reductionless LD-Q-Res was proved in Lemma 4; namely, the construction of a “full binary
tree” of resolution steps based on the countermodel, following the prefix order of existential
variables.

We give an overview of the construction. Let Φ := (X,U,LQ) · φ be a false DQBF with
a countermodel h. For each α ∈ 〈X〉, the assignment α ∪ h(α) falsifies some clause Cα ∈ φ
by definition of countermodel. Now, consider the M-Res line whose clause is the largest
existential clause falsified by α and whose merge maps are constant functions computing h(α).
Each such line can be derived in two M-Res steps, by weakening the axiom corresponding to
Cα. Moreover, the clauses {Cα : α ∈ 〈X〉} form the leaves of a full binary tree resolution
refutation which can be completed using an arbitrary order of the existential pivots X. The
merge maps are constructed by merging over the pivot x iff x ∈ LQ(u); otherwise the select
operation takes the merge map from either antecedent, since the full binary tree structure
guarantees that they are isomorphic.

STACS 2019

14:14 Building Strategies into QBF Proofs

As merge maps essentially represent the structure of resolution steps in the subderivation,
it is no surprise that the merge maps in our construction also have a full binary tree structure.
This structure is captured by the following definition.

I Definition 24 (binary tree merge map). A binary tree merge map for a variable u over a
sequence of variables x1, . . . , xn is a function M with domain [2n+1 − 1] and rule

M(i) :=
{

(xblog ic+1, 2i, 2i+ 1) if 1 ≤ i < 2n ,
li if 2n ≤ i < 2n+1 ,

where each li ∈ {u, ū}.

At the technical level, we must define existential restrictions for DQBFs and DQBF
countermodels. Let Φ := (X,U,LQ) · φ be a DQBF with a countermodel h and let l be a
literal with var(l) = x ∈ X. The restriction of Φ by l is Φ[l] := (X \ {x}, U, L′Q) · φ[l], where
L′Q maps each u ∈ U to LQ(u) \ {x}. The restriction of h by l is h[l] := {hu[l] : u ∈ U},
where the functions hu[l] : 〈L′Q(u)〉 → {u, ū} are defined by hu[l](α) := hu((α ∪ {l})�LQ(u)).

The construction itself is defined recursively in the completeness proof, combining full
binary tree refutations for Φ[x] and Φ[x̄] for some x ∈ X with a single resolution step. We
use the fact that restrictions preserve countermodels in the following sense.

I Proposition 25. Let h be a countermodel for a DQBF Φ := (X,U,LQ) · φ and let l be a
literal with var(l) ∈ X. Then h[l] is a countermodel for Φ[l].

As the final precursor to the completeness proof, we show that a derivation of the negated
literal l̄ and the restricted countermodel h[l] can be obtained easily from a refutation of the
restricted DQBF Φ[l].

I Proposition 26. Let Φ := (X,U,LQ) ·φ be a false DQBF, let l be a literal with var(l) ∈ X,
and let (∅, {Mu : u ∈ U}) be the conclusion of be an M-Res refutation of Φ[l]. Then there
exists an M-Res derivation of ({l̄}, {Mu : u ∈ U}) from Φ.

Proof. Let π be the refutation with the given conclusion. The desired derivation may be
obtained from π simply by adding the literal {l̄} to each clause, applying weakening where
necessary, and adjusting the indexing of the merge maps to account for the extra weakening
steps. J

I Lemma 27. Every false H-form DQBF has an M-Res refutation.

Proof. Let Φ := (X,U,LQ) · φ be a false DQBF, and let X := {x1, . . . , xn} where the xi
are pairwise distinct. For any M-Res refutation π with conclusion (Ck, {Mu

k : u ∈ U}), let
{hu : u ∈ U} be the concluding countermodel for π, where the hu are the functions computed
by the concluding merge maps Mu

k . A merge map for u ∈ U over LQ(u) is said to be complete
if it is isomorphic to a binary tree merge map for u over the sequence

xσ(1), . . . xσ(|LQ(u)|) ,

which enumerates LQ(u) in increasing index order; that is, σ : [|LQ(u)|]→ [n] is the unique
function satisfying {xσ(i) : i ∈ [|LQ(u)|]} = LQ(u) and i < j ⇔ σ(i) < σ(j) for each
i, j ∈ [|LQ(u)|]. By induction on the number n of existential variables, we show that, for
each countermodel h for Φ, there exists an M-Res refutation whose concluding countermodel
is h and whose concluding merge maps are complete. To that end, let h := {hu : u ∈ U} be
an arbitrary countermodel for Φ.

O. Beyersdorff, J. Blinkhorn, and M. Mahajan 14:15

For the base case |X| = 0, observe that each hu is a constant function with some
singleton codomain {lu}. By definition of countermodel, there exists a clause C ∈ φ such
that C = {l̄u : u ∈ vars(C)}. Applying the axiom rule to C, one obtains a derivation of the
line (∅, {Mu : u ∈ U}) in which Mu computes the constant function hu if u ∈ vars(C), and
is trivial otherwise. With a single weakening step, each trivial Mu can be swapped for a
merge map isomorphic to 1 7→ lu. Then each Mu is trivially complete and computes the
constant function hu.

For the inductive step, let n ∈ N. Combining Propositions 25 and 26 with the inductive
hypothesis, we deduce that there exist M-Res derivations π and π′ of the lines ({x̄n}, {Mu :
u ∈ U}) and ({xn}, {M ′u : u ∈ U}) from Φ in which the Mu and M ′u are complete merge
maps computing hu[xn] and hu[x̄n]. Assume that the lines of π are indexed from 1 to |π| and
that those of π′ are indexed from |π|+ 1 to |π|+ |π′|. For each u ∈ U , the domains of Mu

and M ′u are disjoint, so Mu ./ M
′
u. If xn /∈ LQ(u), then hu[xn] = hu[x̄n], and we must have

Mu 'M ′u since complete merge maps computing the same function must be isomorphic. It
follows that the line (∅, {M ′′u : u ∈ U}) can be derived from Φ, where

M ′′u :=
{
merge(Mu,M

′
u, |π|+ |π′|+ 1, xi) if xi ∈ LQ(u),

Mu if xi /∈ LQ(u).

It is easy to see that the M ′′u are complete merge maps computing the hu. J

The weakening rule is clearly polynomial-time checkable. Thus the following is immediate
from Lemmata 23 and 27.

I Theorem 28. M-Res is a proof system for H-form DQBF.

It is natural to consider whether the weakening rule is necessary for completeness. This is
indeed the case; there exist false DQBFs that cannot be refuted by M-Res without weakening.

For example, consider the DQBF Φ := (X,U,LQ)·φ in whichX := {x1, x2}, U := {u1, u2},
the support set function is given by LQ(u1) = {x1}, LQ(u2) = {x2}, and the matrix φ consists
of the clauses

{x̄1, x̄2, ū1, ū2}, {x̄1, x2, ū1, u2}, {x1, x̄2, u1, ū2}, {x1, x2, u1} .

It is readily verified that the only countermodel for this DQBF sets u1 = x1 and u2 = x2.
However, the absence of variable u2 in the clause {x1, x2, u1} means that the corresponding
M-Res axiom has a merge map for u2 isomorphic to 1 7→ ∗. Since an M-Res refutation of Φ
needs a full binary tree of resolution steps, this particular merge map must be instantiated
at some point with a concrete literal ū2 or u2. To see this, observe that a resolution over x1
must take place in which, among the antecedents, at least one merge map for u2 (descended
from axioms containing the negative literal x̄1) does not contain ∗ in its range; and since x1
is not in LQ(u2), the antecedents’ merge maps for u2 must be isomorphic.

7 Conclusions

We argue that building strategies into proofs is the natural way to deal with incompleteness
for DQBF CDCL-systems [2]. The other approach, known as Fork Resolution [33], uses
extension variables, and is not known to correspond to an existing implementation [35].

We also suggest that H-form (rather than S-form) DQBFs may be more suitable for CDCL-
style solving, since associated proof systems “prove the existence of Herbrand functions”.
In the QBF realm, this is of course equivalent to proving the non-existence of Skolem

STACS 2019

14:16 Building Strategies into QBF Proofs

functions, but that does not carry over to DQBF (in a precise technical sense [2]). From
this standpoint, it is natural to refute H-form DQBFs by finding the Herbrand functions
that certify falsity. Moreover, it is unnatural to refute S-form DQBFs – which amounts to
proving the non-existence of Skolem functions – by looking for Herbrand functions that may
exist even if the formula is true. We suggest that this notion is the source of the soundness
issues [12] associated with CDCL systems for DQBF.

Explicit representations may also be relevant for QBF solving. In dependency learning [31],
variable dependencies are ignored until clause learning is blocked by an illegal merge. Our
work demonstrates that many “illegal” merges are perfectly sound inferences; moreover,
Merge Resolution provides a mechanism for identifying such cases based on isomorphism.

Particular implementations may want to fine-tune the details. Isomorphism is an easy
way to determine the equivalence of two Boolean functions, but in general it seems unlikely
that two equivalent functions will have identical representations. This points towards efficient
(approximate) equivalence testing as the key to a successful implementation of M-Res.

References
1 QBFEVAL homepage. http://www.qbflib.org/index_eval.php. Accessed: 2018-09-26.
2 Valeriy Balabanov, Hui-Ju Katherine Chiang, and Jie-Hong R. Jiang. Henkin quantifiers

and Boolean formulae: A certification perspective of DQBF. Theoretical Computer Science,
523:86–100, 2014.

3 Valeriy Balabanov and Jie-Hong R. Jiang. Unified QBF Certification and its Applications.
Formal Methods in System Design, 41(1):45–65, 2012.

4 Valeriy Balabanov, Jie-Hong Roland Jiang, Mikolás̆ Janota, and Magdalena Widl. Efficient
Extraction of QBF (Counter)models from Long-Distance Resolution Proofs. In Blai Bonet and
Sven Koenig, editors, Conference on Artificial Intelligence (AAAI), pages 3694–3701. AAAI
Press, 2015.

5 Marco Benedetti and Hratch Mangassarian. QBF-based formal verification: Experience
and perspectives. Journal on Satisfiability, Boolean Modeling and Computation (JSAT),
5(1-4):133–191, 2008.

6 Olaf Beyerdorff, Joshua Blinkhorn, Leroy Chew, Renate Schmidt, and Martin Suda. Rein-
terpreting Dependency Schemes: Soundness Meets Incompleteness in DQBF. Journal of
Automated Reasoning (in press), 2018.

7 Olaf Beyersdorff and Joshua Blinkhorn. Dependency Schemes in QBF Calculi: Semantics
and Soundness. In Michel Rueher, editor, Principles and Practice of Constraint Programming
(CP), volume 9892 of Lecture Notes in Computer Science, pages 96–112. Springer, 2016.

8 Olaf Beyersdorff, Joshua Blinkhorn, and Luke Hinde. Size, Cost and Capacity: A Semantic
Technique for Hard Random QBFs. In Anna R. Karlin, editor, ACM Conference on Innovations
in Theoretical Computer Science (ITCS), volume 94 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 9:1–9:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.

9 Olaf Beyersdorff, Ilario Bonacina, and Leroy Chew. Lower Bounds: From Circuits to QBF
Proof Systems. In Madhu Sudan, editor, ACM Conference on Innovations in Theoretical
Computer Science (ITCS), pages 249–260. ACM, 2016.

10 Olaf Beyersdorff, Leroy Chew, and Mikolás̆ Janota. On Unification of QBF Resolution-
Based Calculi. In Erzsébet Csuhaj-Varjú, Martin Dietzfelbinger, and Zoltán Ésik, editors,
International Symposium on Mathematical Foundations of Computer Science (MFCS), volume
8635 of Lecture Notes in Computer Science, pages 81–93. Springer, 2014.

11 Olaf Beyersdorff, Leroy Chew, and Mikolás̆ Janota. Proof Complexity of Resolution-based
QBF Calculi. In Ernst W. Mayr and Nicolas Ollinger, editors, International Symposium
on Theoretical Aspects of Computer Science (STACS), volume 30 of Leibniz International

http://www.qbflib.org/index_eval.php

O. Beyersdorff, J. Blinkhorn, and M. Mahajan 14:17

Proceedings in Informatics (LIPIcs), pages 76–89. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2015.

12 Olaf Beyersdorff, Leroy Chew, Renate A. Schmidt, and Martin Suda. Lifting QBF Resolution
Calculi to DQBF. In Nadia Creignou and Daniel Le Berre, editors, International Conference
on Theory and Applications of Satisfiability Testing (SAT), volume 9710 of Lecture Notes in
Computer Science, pages 490–499. Springer, 2016.

13 Nikolaj Bjørner, Mikolás Janota, and William Klieber. On Conflicts and Strategies in
QBF. In Ansgar Fehnker, Annabelle McIver, Geoff Sutcliffe, and Andrei Voronkov, editors,
International Conference on Logic for Programming, Artificial Intelligence and Reasoning -
Short Presentations (LPAR), volume 35 of EPiC Series in Computing, pages 28–41. EasyChair,
2015.

14 Samuel R. Buss. Towards NP-P via proof complexity and search. Annals of Pure and Applied
Logic, 163(7):906–917, 2012.

15 Michael Cashmore, Maria Fox, and Enrico Giunchiglia. Partially Grounded Planning as
Quantified Boolean Formula. In Daniel Borrajo, Subbarao Kambhampati, Angelo Oddi, and
Simone Fratini, editors, International Conference on Automated Planning and Scheduling
(ICAPS). AAAI, 2013.

16 Stephen A. Cook and Phuong Nguyen. Logical Foundations of Proof Complexity. Cambridge
University Press, Cambridge, 2010.

17 Stephen A. Cook and Robert A. Reckhow. The Relative Efficiency of Propositional Proof
Systems. Journal of Symbolic Logic, 44(1):36–50, 1979.

18 Uwe Egly, Martin Kronegger, Florian Lonsing, and Andreas Pfandler. Conformant planning
as a case study of incremental QBF solving. Annals of Mathematics and Artificial Intelligence,
80(1):21–45, 2017.

19 Uwe Egly, Florian Lonsing, and Magdalena Widl. Long-Distance Resolution: Proof Generation
and Strategy Extraction in Search-Based QBF Solving. In Kenneth L. McMillan, Aart
Middeldorp, and Andrei Voronkov, editors, International Conference on Logic for Programming,
Artificial Intelligence and Reasoning (LPAR), volume 8312 of Lecture Notes in Computer
Science, pages 291–308. Springer, 2013.

20 Peter Faymonville, Bernd Finkbeiner, Markus N. Rabe, and Leander Tentrup. Encodings of
Bounded Synthesis. In Axel Legay and Tiziana Margaria, editors, International Conference on
Tools and Algorithms for the Construction and Analysis of Systems (TACAS), volume 10205
of Lecture Notes in Computer Science, pages 354–370, 2017.

21 Marijn J. H. Heule and Oliver Kullmann. The science of brute force. Communications of the
ACM, 60(8):70–79, 2017.

22 Hans Kleine Büning, Marek Karpinski, and Andreas Flögel. Resolution for Quantified Boolean
Formulas. Information and Computation, 117(1):12–18, 1995.

23 William Klieber, Samir Sapra, Sicun Gao, and Edmund M. Clarke. A Non-prenex, Non-
clausal QBF Solver with Game-State Learning. In Ofer Strichman and Stefan Szeider, editors,
Interenational Conference on Theory and Applications of Satisfiability Testing (SAT), volume
6175 of Lecture Notes in Computer Science, pages 128–142. Springer, 2010.

24 Roman Kontchakov, Luca Pulina, Ulrike Sattler, Thomas Schneider, Petra Selmer, Frank
Wolter, and Michael Zakharyaschev. Minimal Module Extraction from DL-Lite Ontologies
Using QBF Solvers. In Craig Boutilier, editor, International Joint Conference on Artificial
Intelligence (IJCAI), pages 836–841. AAAI Press, 2009.

25 Jan Krajíček. Bounded Arithmetic, Propositional Logic, and Complexity Theory, volume 60 of
Encyclopedia of Mathematics and Its Applications. Cambridge University Press, Cambridge,
1995.

26 Andrew C. Ling, Deshanand P. Singh, and Stephen Dean Brown. FPGA logic synthesis using
quantified boolean satisfiability. In Fahiem Bacchus and Toby Walsh, editors, International
Conference on Theory and Applications of Satisfiability Testing (SAT), volume 3569 of Lecture
Notes in Computer Science, pages 444–450. Springer, 2005.

STACS 2019

14:18 Building Strategies into QBF Proofs

27 Hratch Mangassarian, Andreas G. Veneris, and Marco Benedetti. Robust QBF Encodings for
Sequential Circuits with Applications to Verification, Debug, and Test. IEEE Transactions on
Computers, 59(7):981–994, 2010.

28 Joao Marques-Silva and Sharad Malik. Propositional SAT Solving. In Edmund M. Clarke,
Thomas A. Henzinger, Helmut Veith, and Roderick Bloem, editors, Handbook of Model
Checking, pages 247–275. Springer, 2018.

29 Jakob Nordström. On the interplay between proof complexity and SAT solving. SIGLOG
News, 2(3):19–44, 2015.

30 Tomás Peitl, Friedrich Slivovsky, and Stefan Szeider. Long Distance Q-Resolution with
Dependency Schemes. In Nadia Creignou and Daniel Le Berre, editors, International Conference
on Theory and Applications of Satisfiability Testing (SAT), volume 9710 of Lecture Notes in
Computer Science, pages 500–518. Springer, 2016.

31 Tomás Peitl, Friedrich Slivovsky, and Stefan Szeider. Dependency Learning for QBF. In
Serge Gaspers and Toby Walsh, editors, International Conference on Theory and Practice
of Satisfiability Testing (SAT), volume 10491 of Lecture Notes in Computer Science, pages
298–313. Springer, 2017.

32 Tomás Peitl, Friedrich Slivovsky, and Stefan Szeider. Polynomial-Time Validation of QCDCL
Certificates. In Olaf Beyersdorff and Christoph M. Wintersteiger, editors, International
Conference on Theory and Practice of Satisfiability Testing (SAT), volume 10929 of Lecture
Notes in Computer Science, pages 253–269. Springer, 2018.

33 Markus N. Rabe. A Resolution-Style Proof System for DQBF. In Serge Gaspers and Toby
Walsh, editors, International Conference on Theory and Practice of Satisfiability Testing
(SAT), volume 10491 of Lecture Notes in Computer Science, pages 314–325. Springer, 2017.

34 Horst Samulowitz, Jessica Davies, and Fahiem Bacchus. Preprocessing QBF. In Frédéric
Benhamou, editor, International Conference on Principles and Practice of Constraint Pro-
gramming (CP), volume 4204 of Lecture Notes in Computer Science, pages 514–529. Springer,
2006.

35 Christoph Scholl and Ralf Wimmer. Dependency Quantified Boolean Formulas: An Overview of
Solution Methods and Applications - Extended Abstract. In Olaf Beyersdorff and Christoph M.
Wintersteiger, editors, International Conference on Theory and Practice of Satisfiability Testing
(SAT), volume 10929 of Lecture Notes in Computer Science, pages 3–16. Springer, 2018.

36 João P. Marques Silva, Inês Lynce, and Sharad Malik. Conflict-Driven Clause Learning SAT
Solvers. In Handbook of Satisfiability, pages 131–153. IOS Press, 2009.

37 Martin Suda and Bernhard Gleiss. Local Soundness for QBF Calculi. In Olaf Beyersdorff
and Christoph M. Wintersteiger, editors, International Conference on Theory and Practice
of Satisfiability Testing (SAT), volume 10929 of Lecture Notes in Computer Science, pages
217–234. Springer, 2018.

38 Moshe Y. Vardi. Boolean satisfiability: Theory and engineering. Communications of the ACM,
57(3):5, 2014.

39 Lintao Zhang and Sharad Malik. Conflict driven learning in a quantified Boolean Satisfiability
solver. In International Conference on Computer-aided Design (ICCAD), pages 442–449, 2002.

Tight Analysis of the Smartstart Algorithm for
Online Dial-a-Ride on the Line
Alexander Birx
Institute of Mathematics and Graduate School CE, TU Darmstadt, Germany
birx@gsc.tu-darmstadt.de

Yann Disser
Institute of Mathematics and Graduate School CE, TU Darmstadt, Germany
disser@mathematik.tu-darmstadt.de

Abstract
The online Dial-a-Ride problem is a fundamental online problem in a metric space, where trans-
portation requests appear over time and may be served in any order by a single server with unit
speed. Restricted to the real line, online Dial-a-Ride captures natural problems like controlling a
personal elevator. Tight results in terms of competitive ratios are known for the general setting and
for online TSP on the line (where source and target of each request coincide). In contrast, online
Dial-a-Ride on the line has resisted tight analysis so far, even though it is a very natural online
problem.

We conduct a tight competitive analysis of the Smartstart algorithm that gave the best known
results for the general, metric case. In particular, our analysis yields a new upper bound of 2.94 for
open, non-preemptive online Dial-a-Ride on the line, which improves the previous bound of 3.41
[Krumke’00]. The best known lower bound remains 2.04 [SODA’17]. We also show that the known
upper bound of 2 [STACS’00] regarding Smartstart’s competitive ratio for closed, non-preemptive
online Dial-a-Ride is tight on the line.

2012 ACM Subject Classification Theory of computation → Online algorithms; Mathematics of
computing → Combinatorial optimization

Keywords and phrases dial-a-ride on the line, elevator problem, online algorithms, competitive
analysis, smartstart, competitive ratio

Digital Object Identifier 10.4230/LIPIcs.STACS.2019.15

Related Version http://arxiv.org/abs/1901.04272

Funding This work was supported by the “Excellence Initiative” of the German Federal and State
Governments and the Graduate School CE at TU Darmstadt.

1 Introduction

Online optimization deals with settings where algorithmic decisions have to be made over
time without knowledge of the future. A typical introductory example is the problem of
controlling an elevator/conveyor system, where requests to transport passengers/goods arrive
over time and the elevator needs to decide online how to adapt its trajectory along the real
line. In terms of competitive analysis, the central question in this context is how much longer
our trajectory will be in the worst-case, relative to an optimum offline solution that knows
all requests ahead of time, i.e., we ask for solutions with good competitive ratio.

While the elevator problem is a natural online problem, even simplified versions of it have
long resisted tight analysis. Online TSP on the line is such a simplification, where a single
server on the real line needs to serve requests that appear over time at arbitrary positions by
visiting their location, i.e., requests do not need to be transported. We distinguish the closed
and open variants of this problem, depending on whether the server needs to eventually
return to the origin or not. Determining the exact competitive ratios for either variant

© Alexander Birx and Yann Disser;
licensed under Creative Commons License CC-BY

36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019).
Editors: Rolf Niedermeier and Christophe Paul; Article No. 15; pp. 15:1–15:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:birx@gsc.tu-darmstadt.de
mailto:disser@mathematik.tu-darmstadt.de
https://doi.org/10.4230/LIPIcs.STACS.2019.15
http://arxiv.org/abs/1901.04272
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

15:2 Tight Analysis of the Smartstart Algorithm

had been an open problem for more than two decades [3, 5, 12, 13, 15, 16], when Bjelde et
al. [4] were finally able to conduct a tight analysis that established competitive ratios of
roughly 1.64 for the closed case and 2.04 for the open case.

The next step towards formally capturing the intuitive elevator problem is to allow
transportation requests that appear over time; and to fix a capacity c ∈ N ∪ {∞} of the
server that limits the number of transportation requests that can be served simultaneously.
The resulting online Dial-a-Ride problem on the line has received considerable attention in
the past [1, 4, 8, 13, 14, 16], but still resists tight analysis. The best known (non-preemptive)
bounds put the competitive ratio in the range [1.75, 2] for the closed variant (see [4, 1]). For
the open variant the best known (non-preemptive) bounds put the competitiv ratio in the
range [2.04, 3] for c = 1 and in the range [2.04, 3.41] for c > 1 (see [4, 13]). In this paper, we
show an improved upper bound of (roughly) 2.94 for open online Dial-a-Ride on the line
for arbitrary capacity c ∈ N ∪ {∞}.

A straight-forward algorithm for online Dial-a-Ride on the line is the algorithm
Ignore [1]: Whenever the server is idle and unserved requests Rt are present at the
current time t, compute an optimum schedule to serve these requests from the current
location, and follow this schedule while ignoring newly incoming requests. Ignore has
a competitive ratio of exactly 4.† This competitive ratio can be improved by potentially
waiting before starting the optimum schedule, in order to protect against requests that come
in right after we decide to start. Ascheuer et al. [1] proposed the algorithm Smartstart
(see Algorithm 1) that delays the execution of the optimum schedule until a certain time t
relative to the length L(t, p, Rt) of this schedule (formal definitions below).

Smartstart is parameterized by a factor Θ > 1 that scales this waiting period. In
this paper, we conduct a tight analysis of the best competitive ratio of Smartstart for
open/closed online Dial-a-Ride on the line, over all parameter values Θ > 1.

Results and techniques. The Smartstart algorithm is of particular importance for online
Dial-a-Ride, since, on arbirary metric spaces, it achieves the best possible competitive
ratio of 2 for the closed variant [1, 3], and the best known competitive ratio of 2 +

√
2 ≈ 3.41

for the open variant [13]. We provide a conclusive treatment of this algorithm for online
Dial-a-Ride on the line in terms of competitive analysis, both for the open and the closed
variant.

Regarding the open case, we show that Smartstart attains a competitive ratio of
ρ∗ ≈ 2.94 for parameter value Θ∗ ≈ 2.05 (Section 3). To show this, we derive two separate
upper bounds depending on Θ (cf. Figure 1): an upper bound f1(Θ) for the case that
Smartstart has a waiting period before starting its last schedule (Proposition 3.3), and
an upper bound f2(Θ) for the case that Smartstart begins its final schedule immediately
(Proposition 3.4). The resulting general upper bound of max{f1(Θ), f2(Θ)} has its minimum
precisely at the intersection point (Θ∗, ρ∗) of f1 and f2.

On the other hand, we show that for Θ ∈ (2, 3) there are instances where Smartstart
waits before starting its final schedule and has competitive ratio at least f1(Θ) (Proposi-
tion 4.2). Similarly, we show that for Θ ∈ [2, 2.303] there are instances where Smartstart
does not wait before starting its final schedule and has competitive ratio at least f2(Θ)
(Proposition 4.3). Together, this implies that the general upper bound of max{f1(Θ), f2(Θ)}
is tight for Θ ∈ (2, 2.303], and thus for Θ = Θ∗ (cf. Figure 1).

† The full proof can be found at http://arxiv.org/abs/1901.04272.

http://arxiv.org/abs/1901.04272

A. Birx and Y. Disser 15:3

To complete our analysis of Smartstart, we give lower bound constructions for different
domains of Θ (g1 through g4 in Figure 1) that establish that Θ∗ is indeed the best parameter
choice for Smartstart in the worst-case (Lemma 4.4). The key ingredient to all our lower
bounds is a way to lure Smartstart away from the origin (Lemma 4.1).

1 2 3 4
2

3

4

f1 f2

g1

g2

g3

g4

Θ∗ ≈ 2.05

ρ∗ ≈ 2.94

Θ

ρ

Figure 1 Overview over our bounds for Smartstart. The functions f1 (green) / f2 (red) are
upper bounds for the cases where Smartstart waits / does not wait before starting the final
schedule, respectively. The upper bounds are drawn solid in the domains where they are tight for
their corresponding case. The functions g1 through g4 (blue) are general lower bounds; dashed
continuations indicate how far these bounds could be extended.

Finally, for the closed variant of the problem, we provide a lower bound of 2 on the best-
possible competitive ratio of Smartstart over all possible choices of the parameter Θ > 1
(Section 5). This tightly matches the known upper bound for general metric spaces [1].

Significance. The main contribution of this paper is a conclusive treatment of the algorithm
Smartstart for online Dial-a-Ride on the line in terms of competitive analysis. Addition-
ally, our analysis yields an improved upper bound of (roughly) 2.94 for non-preemptive, open
online Dial-a-Ride on the line. This is the first bound below 3 and narrows the gap for
the competitive ratio to [2.04, 2.94]. Our work is likely to serve as a starting point towards
devising better algorithms (preemptive or non-preemptive) that narrow the gaps for both
the open and closed setting by avoiding critical “mistakes” of Smartstart, as evidenced by
our lower bound constructions

Further related work. In this paper, we focus on the non-preemptive variant of online
Dial-a-Ride on the line, where requests cannot be unloaded on the way in reaction to
the arrival of new requests. For the case where preemption is allowed, the best known
bounds for the closed version are [1.64, 2] (see [3, 1]), which is slightly worse than the gap
of [1.75, 2] in the non-preemptive case. On the other hand, the best bounds for the open,
preemptive variant are [2.04, 2.41] (see [4]), which is better than the gap of [2.04, 2.94] in the
non-preemptive case. In particular, the preemptive and non-preemptive cases can currently
not be separated in terms of competitive ratios.

STACS 2019

15:4 Tight Analysis of the Smartstart Algorithm

A variant of the online Dial-a-Ride problem where the objective is to minimize the
maximal flow time, instead of the makespan, has been studied by Krumke et al. [14, 15].
They established that in many metric spaces no online algorithm can be competitive with
respect to this objective. Hauptmeier et al. [11] showed that a competitive algorithm is
possible if we restrict ourselves to instances with “reasonable” load, which roughly means
that requests that appear over a sufficiently large time period T can always be served in time
at most T .

Lipmann et al. [17] studied a natural variant of closed, online Dial-a-Ride where
the destinations of requests are only revealed upon collection by the server. For general
metric spaces and server capacity c, they showed a tight competitive ratio of 3 in the
preemptive setting, and lower/upper bounds of max{3.12, c} and 2c+ 2, respectively, in the
non-preemptive setting.

Yi and Tian [18] considered the online Dial-a-Ride problem with deadlines, with
the objective of serving the maximum number of requests. They provided bounds on the
competitive ratio depending on the diameter of the metric space. In [19] they further studied
this setting when the destination of requests are only revealed upon collection by the server.

The offline version of Dial-a-Ride on the line has been studied in various settings, for
an overview see [7]. For the closed, non-preemptive case without release times, Gilmore and
Gomory [9] and Atallah and Kosaraju [2] gave a polynomial time algorithm for a server with
unit capacity c = 1, and Guan [10] showed that the problem is hard for c = 2. Bjelde et
al. [4] extended this result to any finite c ≥ 2 and both the open and closed case. They
further showed that with release times the problem is already hard for finite c ≥ 1. On the
other hand, the complexity of the case c = ∞ has not yet been established. The closed,
preemptive case without release times was shown to be polynomial time solvable for c = 1 by
Atallah and Kosaraju [2], and for c ≥ 2 by Guan [10].

For the closed, non-preemptive case with finite capacity, Krumke [13] provided a 3-approxi-
mation algorithm. Finally, Charikar and Raghavachari [6] gave approximation algorithms
for the closed case without release times, both preemptive and non-preemptive, on general
metric spaces. They also claimed to have a 2-approximation for the line, but this result
appears to be incorrect (personal communication).

2 Preliminaries

Formally, an instance of Dial-a-Ride on the line is given by a set of requests denoted by
σ = {(a1, b1; r1), (a2, b2; r2), . . . , (an, bn; rn)} that need to be served by a single server with
capacity c ∈ N ∪ {∞}, travelling with unit speed and starting at the origin on the real
line. Request σi appears at time ri > 0 at position ai ∈ R of the real line and needs to be
transported to position bi ∈ R. The objective of the Dial-a-Ride problem on the line is to
find a shortest schedule for the server to transport all requests without carrying more than c
requests at once, where the length of a schedule is the length of the resulting trajectory. In
the closed version of the problem, the server eventually needs to return to the origin, in the
open version it does not. In the online Dial-a-Ride problem on the line, each request σi is
revealed only at time ri, and n is only revealed implicitly by the fact that no more requests
appear. In contrast, in the offline problem, all requests are known ahead of time (but release
times still need to be respected).

We define L(t, p, R) to be the length of a shortest schedule that starts at position p at
time t and serves all requests in R ⊆ σ after they appeared (i.e., the schedule must respect

A. Birx and Y. Disser 15:5

release times). Observe that, for all 0 ≤ t ≤ t′, p, p′ ∈ R, and R ⊆ σ, we have

L(t, p, R) ≥ L(t′, p, R), (1)
L(t, p, R) ≤ |p− p′|+ L(t, p′, R). (2)

By x− := min{0,mini=1,...,n{ai},mini=1,...,n{bi}} we denote the leftmost and by x+ :=
max{0,maxi=1,...,n{ai},maxi=1,...,n{bi}} the rightmost position that needs to be visited by
the server. Here and throughout, we orient the real line from left to right. Obviously, there
is an optimum trajectory that only visits points in [x−, x+], and we let Opt be such a
trajectory and Opt(σ) := L(0, 0, σ) be its length.

Algorithm 1: Smartstart.
p1 ← 0
for j = 1, 2, . . . do

while t ≤ L(t, pj , Rt)/(Θ− 1) do
wait

tj ← t

Sj ← optimal offline schedule serving Rt starting from pj
execute Sj
pj+1 ← current position

For the description of online algorithms, we denote by t the current time and by Rt the
set of requests that have appeared until time t but have not been served yet. The algorithm
Smartstart is given in Algorithm 1. Essentially, Smartstart waits before starting an
optimal schedule to serve all available requests at time

min
t′≥t

{
t′ ≥ L(t′, p, Rt′)

Θ− 1

}
, (3)

where p is the current position of the server and Θ > 1 is a parameter of the algorithm
that scales the waiting time. Importantly, Smartstart ignores incoming requests while
executing a schedule. Whenever we need to distinguish the behavior of Smartstart for
different values of Θ > 1, we write SmartstartΘ to make the choice of Θ explicit. The
length of Smartstart’s trajectory is denoted by Smartstart(σ). Note that the schedules
used by Smartstart are NP-hard to compute for 1 < c <∞, see [4].

We let N ∈ N be the number of schedules needed by Smartstart to serve σ. The j-th
schedule is denoted by Sj , its starting time by tj , its starting point by pj , its ending point
by pj+1 (cf. Algorithm 1), and the set of requests served in Sj by σSj

. For convenience, we
set t0 = p0 = 0. Finally, we denote by ySj

− the leftmost and by ySj

+ the rightmost position
that occurs in the requests σSj

. Note that ySj

− and ySj

+ need not lie on different sides of the
origin, in contrast to x−/+.

3 Upper Bound for the Open Version

In this section, we give an upper bound on the completion time

Smartstart(σ) = tN + L(tN , pN , σSN
) (4)

of Smartstart, relative to Opt(σ). To do this, we consider two cases, depending on
whether or not Smartstart waits after finishing schedule SN−1 and before starting the final

STACS 2019

15:6 Tight Analysis of the Smartstart Algorithm

schedule SN . If Smartstart waits, the starting time of schedule SN is given by

tN = 1
Θ− 1L(tN , pN , σSN

), (5)

otherwise, we have

tN = tN−1 + L(tN−1, pN−1, σSN−1). (6)

We start by giving a lower bound on the starting time of a schedule.†

I Lemma 3.1. Algorithm Smartstart does not start schedule Sj earlier than time |pj+1|
Θ ,

i.e., we have tj ≥ |pj+1|
Θ .

Proof sketch. Since Smartstart at least has to move from pj to pj+1, we have

L(tj , pj , σSj) ≥ |pj − pj+1|.

Note however that Smartstart needs at least time |pj | to reach pj . Therefore, we have

tj ≥ min{t ≥ |pj | : t+ |pj − pj+1| ≤ Θt}

= min
{
t ≥ |pj | :

|pj − pj+1|
Θ− 1 ≤ t

}
= max

{
|pj |,

|pj − pj+1|
Θ− 1

}
.

The claims now follows by showing max
{
|pj |, |pj−pj+1|

Θ−1

}
≥ |pj+1|

Θ . J

The following bound on the length of Smartstart’s schedules is an essential ingredient
in our upper bounds.

I Lemma 3.2. For every schedule Sj of Smartstart, we have

L(tj , pj , σSj) ≤
(

1 + Θ
Θ + 2

)
Opt(σ).

Proof. First, we notice that by the triangle inequality we have

L(tj , pj , σSj) ≤ |pj |+ L(tj , 0, σSj) ≤ Opt(σ) + |pj |. (7)

Now, let σOpt
Sj

be the first request of σSj
that is picked up by Opt and let aOpt

j be its starting
point and rOpt

j be its release time. We have

L(tj , pj , σSj
) ≤ |aOpt

j − pj |+ L(tj , aOpt
j , σSj

), (8)

again by the triangle inequality. Since Opt serves all requests of σSj
starting at position

aOpt
j no earlier than time rOpt

j , we have

L(tj , aOpt
j , σSj)

rOpt
j ≤tj
≤ L(rOpt

j , aOpt
j , σSj) ≤ Opt(σ)− rOpt

j , (9)

which yields

L(tj , pj , σSj)
(8)
≤ |aOpt

j − pj |+ L(tj , aOpt
j , σSj)

(9)
≤ Opt(σ) + |aOpt

j − pj | − rOpt
j

tj−1 < rOpt
j

< Opt(σ) + |aOpt
j − pj | − tj−1. (10)

A. Birx and Y. Disser 15:7

Since pj is the destination of a request, Opt needs to visit it. In the case that Opt visits pj
before collecting σOpt

Sj
, Opt still has to collect and serve every request of σSj

after it has
visited position pj the first time, which directly implies(

1 + Θ
Θ + 2

)
Opt(σ) > Opt(σ) ≥ L(|pj |, pj , σSj

)
|pj |≤tj
≥ L(tj , pj , σSj

).

On the other hand, if Opt collects σOpt
Sj

before visiting the position pj , we have

tj−1 + |aOpt
j − pj |

tj−1<r
Opt
j

< rOpt
j + |aOpt

j − pj | ≤ Opt(σ), (11)

since Opt cannot collect σOpt
Sj

before time rOpt
j and then still has to visit position pj . Thus,

we have

L(tj , pj , σSj)
(10)
< Opt(σ) + |aOpt

j − pj | − tj−1

(11)
≤ 2Opt(σ)− 2tj−1

Lem 3.1
≤ 2Opt(σ)− 2 |pj |Θ . (12)

This implies

L(tj , pj , σSj
)

(7),(12)
≤ min

{
Opt(σ) + |pj |, 2Opt(σ)− 2

Θ |pj |
}
≤
(

1 + Θ
Θ + 2

)
Opt(σ),

since the minimum above is largest for |pj | = Θ
Θ+2Opt(σ). J

The following proposition uses Lemma 3.2 to provide an upper bound for the competitive
ratio of Smartstart, in the case, where Smartstart does have a waiting period before
starting the final schedule.

I Proposition 3.3. In the case that Smartstart waits before executing SN , we have

Smartstart(σ)
Opt(σ) ≤ f1(Θ) := 2Θ2 + 2Θ

Θ2 + Θ− 2 .

Proof. Assume Smartstart waits before starting the final schedule. Then we have

tN + L(tN , pN , σSN
) = ΘtN (13)

by definition of Smartstart. This implies

Smartstart(σ) (4)= tN + L(tN , pN , σSN
) (13)= ΘtN

(5)= Θ
Θ− 1L(tN , pN , σSN

).

Lemma 3.2 thus yields the claimed bound:

Smartstart(σ) = Θ
Θ− 1L(tN , pN , σSN

)

Lem 3.2
≤ Θ

Θ− 1

(
1 + Θ

Θ + 2

)
Opt(σ)

= 2Θ2 + 2Θ
Θ2 + Θ− 2Opt(σ). J

STACS 2019

15:8 Tight Analysis of the Smartstart Algorithm

It remains to examine the case, where the algorithm Smartstart has no waiting period
before starting the final schedule.†

I Proposition 3.4. If Smartstart does not wait before executing SN , we have

Smartstart(σ)
Opt(σ) ≤ f2(Θ) :=

(
Θ + 1− Θ− 1

3Θ + 3

)
.

Proof sketch. If Smartstart starts SN without waiting, its completion time is given by

Smartstart(σ) (6)= tN−1 + L(tN−1, pN−1, σSN−1) + L(tN , pN , σSN
). (14)

Let σOpt
SN

be the first request of σSN
that is picked up by Opt and let aOpt

N be its starting
point and rOpt

N be its release time. Then we have

Opt(σ) ≥ rOpt
N + L(rOpt

N , aOpt
N , σSN

). (15)

Using the triangle inequality as well as the definition of Smartstart, we obtain

Smartstart(σ) (14)= tN−1 + L(tN−1, pN−1, σSN−1) + L(tOpt
N , pN , σSN

)
(3)
≤ ΘtN−1 + L(tOpt

N , pN , σSN
)

(1)
≤ ΘtN−1 + |pN − aOpt

N |+ L(tOpt
N , aOpt

N , σSN
)

(15)
≤ ΘtN−1 + |pN − aOpt

N |+ Opt(σ)− rOpt
N

rOpt
N > tN−1

< (Θ− 1)rOpt
N + |pN − aOpt

N |+ Opt(σ).

Clearly, Opt(σ) ≥ rOpt
N since σOpt

SN
cannot be served before this time, and Opt(σ) ≥

|pN − aOpt
N | since pN must be the source or destination of a request (or the origin if N = 1)

and must thus be visited by Opt. It follows from the above that Smartstart(σ) ≤
(Θ + 1)Opt(σ). To get a better bound, we use that not both inequalities for Opt(σ) can
be tight simultaneously: From Opt(σ) = rOpt

N it follows that Opt finishes at position aOpt
N .

Assume that Opt(σ) = |pN − aOpt
N | holds as well. Since Opt finishes at position aOpt

N , this
is only possible if pN = 0 and Opt(σ) = |aOpt

N |. Without loss of generality, there is no
request (0, 0; 0), hence Smartstart always waits before starting its first schedule, and thus
a schedule SN−1 must exist. Because of pN = 0, this schedule must end in the origin, which
implies that there is some request that needs to be delivered to the origin after time 0. But
this contradicts Opt(σ) = |aOpt

N |, since Opt needs to deliver this request, too. The bound
of the proposition is now obtained by carefully balancing rOpt

N and |pN − aOpt
N |. J

We combine the results of Proposition 3.3 and Proposition 3.4 to obtain the main result
of this section.

I Theorem 3.5. Let Θ∗ be the only positive, real solution of f1(Θ) = f2(Θ), i.e.,

Θ∗ + 1− Θ∗ − 1
3Θ∗ + 3 = 2Θ∗2 + 2Θ∗

Θ∗2 + Θ∗ − 2 .

Then, SmartstartΘ∗ is ρ∗-competitive with ρ∗ := f1(Θ∗) = f2(Θ∗) ≈ 2.93768.

A. Birx and Y. Disser 15:9

Proof. For the case, where Smartstart does wait before starting the final schedule, we
have established the upper bound

Smartstart(σ)
Opt(σ) ≤ 2Θ2 + 2Θ

Θ2 + Θ− 2 = f1(Θ)

in Proposition 3.3 and for the case, where Smartstart starts the final schedule immediately
after the second to final one, we have established the upper bound

Smartstart(σ)
Opt(σ) ≤ Θ + 1− Θ− 1

3Θ + 3 = f2(Θ)

in Proposition 3.4. Therefore the parameter for Smartstart with the smallest upper
bound is

Θ∗ = argmin
Θ>1

{max{f1(Θ), f2(Θ)}} .

We note that f1 is strictly decreasing for Θ > 1 and that f2 is strictly increasing for Θ > 1.
Therefore the minimum above lies at the intersection point of f1 and f2 that is larger than 1,
i.e., Θ∗ is the only positive, real solution of

Θ + 1− Θ− 1
3Θ + 3 = 2Θ2 + 2Θ

Θ2 + Θ− 2 .

The resulting upper bound for the competitive ratio is

ρ∗ = f1(Θ∗) = f2(Θ∗) ≈ 2.93768. J

4 Lower Bound for the Open Version

In this section, we explicitly construct instances that demonstrate that the upper bounds
given in the previous section are tight for certain ranges of Θ > 1, in particular for Θ = Θ∗ (as
in Theorem 3.5). Further, we show that choices of Θ > 1 different from Θ∗ yield competitive
ratios worse than ρ∗ ≈ 2.94. Together, this implies that ρ∗ is exactly the best possible
competitive ratio for Smartstart.

All our lower bounds rely on the following lemma that gives a way to lure Smartstart
away from the origin, with almost no time overhead. More specifically, the lemma provides a
way to make Smartstart move to any position p > 0 within time p + µ, where µ > 0 is
arbitrarily small.

I Lemma 4.1. Let the capacity c ∈ N ∪ {∞} of the server be arbitrary but fixed, p > 0 be
any position on the real line and µ > 0 be any positive number. Furthermore, let δ > 0 be
such that p

δΘ = n ∈ N and δ < (Θ− 1)µ. Algorithm Smartstart finishes serving the set of
requests σ = {σ1, . . . , σn+1} with

σ1 = (δ, δ; 0),

σi =
(
iδ, iδ; 1

Θ− 1δ + (i− 1)δ
)

for i ∈ {2, . . . , n}

σn+1 = (p, p;µ+ nδ)

and reaches the position p at time p+ µ, provided that no additional requests appear until
time p

Θ + µ.

STACS 2019

15:10 Tight Analysis of the Smartstart Algorithm

Proof. We show via induction that every request σi with i ∈ {1, . . . , n} is served in a separate
schedule Si with starting position pi = (i− 1)δ and starting time

ti = 1
Θ− 1δ + (i− 1)δ.

This is clear for i = 1: By definition, Smartstart starts from p1 = 0. The schedule S1 to
serve σ1 is started at time

t1 = min
{
t ≥ 0

∣∣∣∣ L(t, 0, {σ1})
Θ− 1 ≤ t

}
= 1

Θ− 1δ,

and reaches position δ at time 1
Θ−1δ + δ = Θ

Θ−1δ. Note that the release time of every
request σi is larger than t1, ensuring that S1 indeed only serves σ1.

We assume the claim is true for some k ∈ {1, . . . , n−1}. Consider i = k+1. By reduction,
the server finishes schedule Sk at position pk+1 = kδ at time 1

Θ−1δ + kδ. Therefore, we have

tk+1 ≥
1

Θ− 1δ + kδ.

On the other hand, we have

L
(

δ
Θ−1 + kδ, kδ, {σk+1}

)
Θ− 1 = δ

Θ− 1 <
1

Θ− 1δ + kδ.

Since there are no other unserved requests at time 1
Θ−1δ + kδ, the schedule Sk+1 is started

at time tk+1 = 1
Θ−1δ + kδ and only serves σk+1 as claimed. It remains to examine the final

request σn+1. The above shows that in the schedule Sn is finished at time

tn + L(tn, pn, {σn}) = 1
Θ− 1δ + (n− 1)δ + δ = 1

Θ− 1δ + nδ < µ+ nδ

at position nδ = p
Θ , i.e., before the request σn+1 is released at time µ+ nδ. On the other

hand, we have

L
(
µ+ nδ, pΘ , {σn+1}

)
Θ− 1 =

Θ−1
Θ p

Θ− 1 = p

Θ = nδ < µ+ nδ.

Therefore the final schedule Sn+1 is started at time tn+1 = µ+ nδ = µ+ p
Θ , and we get

Smartstart((σi)i∈{1,...,n+1}) = tn+1 + L(tn+1, pn+1, {σn+1})

= µ+ p

Θ + Θ− 1
Θ p

= µ+ p.

Note that for every request the starting point is identical to the ending point. Thus, our
construction remains valid for every capacity c ∈ N ∪ {∞}. Furthermore, there is no
interference with requests that are released after time tn+1 = µ+ p

Θ . J

Equipped with this strategy to lure Smartstart away from the origin, we now move on
to establish lower bounds matching Propositions 3.3 and 3.4.†

I Proposition 4.2. Let the capacity c ∈ N ∪ {∞} of the server be arbitrary but fixed and
let 2 < Θ < 3. For every sufficiently small ε > 0, there is a set of requests σ such that
Smartstart waits before starting the final schedule and such that the inequality

Smartstart(σ)
Opt(σ) ≥ 2Θ2 + 2Θ

Θ2 + Θ− 2 − ε

holds, i.e., the upper bound established in Proposition 3.3 is tight for Θ ∈ (2, 3).

A. Birx and Y. Disser 15:11

Proof sketch. We start by luring Smartstart to position 1 via Lemma 4.1. This can be
done such that the schedule ending in 1 starts at time µ+ 1

Θ for some sufficiently small µ > 0
Immediately after the start of this schedule, we add a series of non-overlapping requests that
require the server to move to position − 1

Θ and afterwards to position 1. We can show that
Opt serves the resulting set of requests simply by moving to − 1

Θ and then straight to 1. On
the other hand, independent of the capacity, Smartstart needs to cross the space between
the origin and point 1 two more times. A quantitative analysis of this setting yields the
claimed bound. J

I Proposition 4.3. Let the capacity c ∈ N ∪ {∞} of the server be arbitrary but fixed and let
2 ≤ Θ ≤ 1

2 (1 +
√

13). For every sufficiently small ε > 0 there is a set of requests σ such that
Smartstart immediately starts SN after SN−1 and such that

Smartstart(σ)
Opt(σ) ≥ Θ + 1− Θ− 1

3Θ + 3 − ε,

i.e., the upper bound established in Proposition 3.4 is tight for Θ ∈ [2, 1
2 (1+

√
13)] ≈ [2, 2.303].

Proof. Let ε > 0 with ε < 1
5Θ

3Θ2−Θ
3Θ+3 and ε′ = 3Θ+3

3Θ2−Θε. We apply Lemma 4.1 with p = 1
and µ = ε′

2 . For convenience, we start the enumeration of the schedules with the first schedule
after the application of Lemma 4.1. Algorithm Smartstart reaches position p1 = 1 at
time 1 + ε′

2 . Now let the requests

σ
(1)
1 =

(
2 + 1

Θ − ε
′, 2 + 1

Θ − ε
′; 1

Θ + ε′
)
,

σ
(2)
1 =

(
− 1

Θ ,− 1
Θ; 1

Θ + ε′
)

appear. Note that both requests are released after time 1
Θ + ε′

2 and, therefore, do not interfere
with the application of Lemma 4.1. If Smartstart serves σ(2)

1 before serving σ(1)
1 the time

it needs is at least∣∣∣∣1− (− 1
Θ

)∣∣∣∣+
∣∣∣∣(− 1

Θ

)
−
(

2 + 1
Θ − ε

′
)∣∣∣∣ = 1 + 1

Θ + 2 + 2
Θ − ε

′ = 3 + 3
Θ − ε

′.

The best schedule that serves σ(2)
1 after serving σ(1)

1 needs time∣∣∣∣1− (2 + 1
Θ − ε

′
)∣∣∣∣+ ∣∣∣∣(2 + 1

Θ − ε
′
)
−
(
− 1

Θ

)∣∣∣∣ = 1 + 1
Θ − ε

′+ 2 + 2
Θ − ε

′ = 3 + 3
Θ − 2ε′.

Thus, Smartstart serves σ(2)
1 after serving σ(1)

1 , and, for all t ≥ 1 + ε′

2 , we obtain

L
(
t, p1, {σ(1)

1 , σ
(2)
1 }

)
= L

(
t, 1, {σ(1)

1 , σ
(2)
1 }

)
= 3 + 3

Θ − 2ε′.

By assumption, we have Θ ≤ 1
2 (1 +

√
13) and ε < 1

5Θ
3Θ2−Θ
3Θ+3 , i.e., ε′ < 1

5Θ < 1, which implies

STACS 2019

15:12 Tight Analysis of the Smartstart Algorithm

that for the time 1 + ε′

2 , when Smartstart reaches position p1 = 1, the inequality

L
(

1 + ε′

2 , p1, {σ(1)
1 , σ

(2)
1 }

)
Θ− 1 =

3 + 3
Θ − 2ε′

Θ− 1

= 3− 2ε′

Θ− 1 + 3
Θ(Θ− 1)

1 < Θ ≤ 1
2 (1 +

√
13)

≥ 3− 2ε′
1
2 (
√

13− 1)
+ 3

1
4 (
√

13− 1)(1 +
√

13)

= 3− 2ε′
1
2 (
√

13− 1)
+ 1

1
2 (
√

13− 1) < 2
> 1 + ε′

2
holds. Thus, Smartstart has a waiting period and starts schedule S1 at time

t1 = min
{
t ≥ 1 + ε′

2

∣∣∣∣∣ L(t, p1, {σ(1)
1 , σ

(2)
1 })

Θ− 1 ≤ t

}

= min
{
t ≥ 1 + ε′

2

∣∣∣∣ 3 + 3
Θ − 2ε′

Θ− 1 ≤ t
}

=
3 + 3

Θ − 2ε′

Θ− 1

= 3Θ + 3
Θ(Θ− 1) −

2ε′

Θ− 1 .

Next, we let the final request

σ2 =
(

3Θ + 3
Θ(Θ− 1) −

2
Θ − ε

′,
3Θ + 3

Θ(Θ− 1) −
2
Θ − ε

′; 3Θ + 3
Θ(Θ− 1)

)
appear. Smartstart finishes schedule S1 at time

t1 + L(t1, p1, {σ(1)
1 , σ

(2)
1 }) = 3Θ + 3

Θ(Θ− 1) −
2ε′

Θ− 1 + 3 + 3
Θ − 2ε′ = 3Θ + 3

Θ− 1 −
2Θε′

Θ− 1

at position p2 = − 1
Θ . For all t ≥ 3Θ+3

Θ−1 −
2Θ

Θ−1ε
′, we obtain

L

(
t,− 1

Θ , {σ2}
)

= 3Θ + 3
Θ(Θ− 1) −

1
Θ − ε

′.

By assumption, we have 2 ≤ Θ ≤ 1
2 (1 +

√
13) < 3 and ε < 1

5Θ
3Θ2−Θ
3Θ+3 , i.e., ε′ < 1

5Θ , which
implies that, for the finishing time 3Θ+3

Θ−1 −
2Θε′
Θ−1 of schedule S1, the inequality

L
(

3Θ+3
Θ−1 −

2Θε′
Θ−1 ,−

1
Θ , {σ2}

)
Θ− 1 = 3Θ + 3

Θ(Θ− 1)2 −
1 + Θε′

Θ(Θ− 1)
Θ ≥ 2
<

3Θ + 3
Θ− 1 −

1 + Θε′

Θ(Θ− 1)
1 > 5Θε′
<

3Θ + 3
Θ− 1 −

6ε′

Θ− 1
Θ < 3
<

3Θ + 3
Θ− 1 −

2Θε′

Θ− 1 (16)

A. Birx and Y. Disser 15:13

holds. (Note that inequality (16) still holds for slightly smaller Θ if we let ε→ 0.) Because
of inequality (16), the final schedule S2 is started at time

t2 = 3Θ + 3
Θ− 1 −

2Θε′

Θ− 1

without waiting. To sum it up, we have

Smartstart(σ) = t2 + L(t2, p2, {σ2})

= 3Θ + 3
Θ− 1 −

2Θε′

Θ− 1 + 3Θ + 3
Θ(Θ− 1) −

1
Θ − ε

′

= 3Θ + 3
Θ− 1 + 3Θ + 3

Θ(Θ− 1) −
1
Θ −

3Θ− 1
Θ− 1 ε

′.

On the other hand, Opt goes from the origin straight to position − 1
Θ serving request σ(2)

1 at
time 1

Θ + ε′ (i.e., it has to wait for ε′ units of time after it reaches position − 1
Θ) and returns

to the origin at time 2
Θ + ε′. Let q > 0 be the position of a request that has occurred by the

application of Lemma 4.1 at the beginning of this proof. Then this request is released earlier
than time q + ε′

2 . Since Opt reaches position q not earlier than time 2
Θ + ε′ + q > q + ε′

2 ,
Opt can go straight from the origin to the right and can serve all remaining requests without
waiting. Note that the position 3Θ+3

Θ(Θ−1) −
2
Θ − ε

′ of σ2 is equal to or to right of the position
2 + 1

Θ − ε
′ of σ(2)

1 because of Θ ≤ 1
2 (1+

√
13). Thus, Opt finishes at position 3Θ+3

Θ(Θ−1)−
2
Θ−ε

′

and we have

Opt(σ) =
∣∣∣∣0− (− 1

Θ

)∣∣∣∣+ ε′ +
∣∣∣∣− 1

Θ −
(

3Θ + 3
Θ(Θ− 1) −

2
Θ − ε

′
)∣∣∣∣

= 1
Θ + ε′ + 1

Θ + 3Θ + 3
Θ(Θ− 1) −

2
Θ − ε

′

= 3Θ + 3
Θ(Θ− 1) .

Note that Opt can do this even if c = 1 since for all requests the starting point is equal to
the destination. Since we have ε′ = 3Θ+3

3Θ2−Θε, we finally obtain

Smartstart(σ)
Opt(σ) =

3Θ+3
Θ−1 + 3Θ+3

Θ(Θ−1) −
1
Θ −

3Θ−1
Θ−1 ε

′

3Θ+3
Θ(Θ−1)

= Θ + 1− Θ− 1
3Θ + 3 −

3Θ2 −Θ
3Θ + 3 ε′

= Θ + 1− Θ− 1
3Θ + 3 − ε,

as claimed. J

Recall that the optimal parameter Θ∗ established in Theorem 3.5 is the only positive,
real solution of the equation

Θ + 1− Θ− 1
3Θ + 3 = 2Θ2 + 2Θ

Θ2 + Θ− 2 ,

which is Θ∗ ≈ 2.0526. Therefore, according to Proposition 4.2 and Proposition 4.3 the
parameter Θ∗ lies in the ranges where the upper bounds of Propositions 3.3 and 3.4 are both
tight. It remains to make sure that for all Θ that lie outside of this range the competitive
ratio of SmartstartΘ is larger than ρ∗ ≈ 2.93768.†

STACS 2019

15:14 Tight Analysis of the Smartstart Algorithm

I Lemma 4.4. Let

I1 = (1, 2], I2 = (1
2 (1 +

√
13), 1 +

√
2], I3 = (1 +

√
2, 3), I4 = [3,∞)

be intervals. For every i ∈ {1, 2, 3, 4} there is a set of requests σ, such that, for all Θ ∈ Ii,

Smartstart(σ)
Opt(σ) > ρ∗ ≈ 2.93768.

Our main theorem now follows from Theorem 3.5 combined with Propositions 4.2 and 4.3,
as well as Lemma 4.4.

I Theorem 4.5. The competitive ratio of SmartstartΘ∗ is exactly

ρ∗ = f1(Θ∗) = f2(Θ∗) ≈ 2.93768.

For every other Θ > 1 with Θ 6= Θ∗ the competitive ratio of SmartstartΘ is larger than ρ∗.

Proof. We have shown in Proposition 4.2 that the upper bound

Smartstart(σ)
Opt(σ) ≤ f1(Θ) = 2Θ2 + 2Θ

Θ2 + Θ− 2

established in Proposition 3.3 for the case, where Smartstart waits before starting the
final schedule, is tight for all Θ ∈ (2, 3). Furthermore, we have shown in Proposition 4.3 that
the upper bound

Smartstart(σ)
Opt(σ) ≤ f2(Θ) =

(
Θ + 1− Θ− 1

3Θ + 3

)
established in Proposition 3.4 for the case, where Smartstart does not wait before starting
the final schedule, is tight for all Θ ∈ (2, 1

2 (1 +
√

13)]. Since Θ∗ ≈ 2.0526 lies in those ranges,
the competitive ratio of SmartstartΘ∗ is indeed exactly ρ∗.

It remains to show that for every Θ > 1 with Θ 6= Θ∗ the competitive ratio is larger. First,
according to Lemma 4.4, the competitive ratio of Smartstart with parameter Θ ∈ (1, 2] or
Θ ∈ (1

2 (1 +
√

13),∞) is larger than ρ∗. By monotonicity of f1, every function value in (2,Θ∗)
is larger than f1(Θ∗) = ρ∗. Thus, the competitive ratio of Smartstart with parameter
Θ ∈ (2,Θ∗) is larger than ρ∗, since f1 is tight on (2,Θ∗) by Proposition 4.2. Similarly, by
monotonicity of f2, every function value in (Θ∗, 1

2 (1 +
√

13)] is larger than f2(Θ∗) = ρ∗.
Thus, the competitive ratio of Smartstart with parameter Θ ∈ (Θ∗, 1

2 (1 +
√

13)] is larger
than ρ∗, since f1 is tight on (Θ∗, 1

2 (1 +
√

13)] by Proposition 4.3. J

5 Lower Bound for the Closed Version

We provide a lower bound for Smartstart for closed online Dial-a-Ride on the line that
matches the upper bound given in [1] for arbitrary metric spaces. Note that in this setting,
by definition, every schedule of Smartstart is a closed walk that returns to the origin.

I Theorem 5.1. The competitive ratio of Smartstart for closed online Dial-a-Ride on
the line with Θ = 2 is exactly 2. For every other Θ > 1 with Θ 6= 2 the competitive ratio of
SmartstartΘ is larger than 2.

A. Birx and Y. Disser 15:15

Proof. We show that the competitive ratio of Smartstart2 is at least 2 and that the
competitive ratio of SmartstartΘ is larger than 2 for all Θ 6= 2. From the fact that
Smartstart is 2-competitive even for general metric spaces [1, Thm. 6], it follows that
Smartstart2 has competitive ratio exactly 2 on the line.

Let Θ ≤ 2 and consider the set of requests {σ1} with σ1 = (0.5, 0.5; 0). Obviously, Opt
can serve this request and return to the origin in time Opt({σ1}) = 1. Thus, for all t ≥ 0,
we have L(t, 0, {σ1}) = 1. On the other hand, Smartstart waits until time

t1 = L(t1, 0, {σ1})
Θ− 1 = 1

Θ− 1

to start its only schedule and finishes at time Θ
Θ−1 . To sum it up, we have

Smartstart({σ1})
Opt({σ1})

= Θ
Θ− 1

with Θ
Θ−1 > 2 for all Θ < 2 and Θ

Θ−1 = 2 for Θ = 2. Now let 2 < Θ ≤ 3 and ε ∈
(0,min{1− 1

Θ−1 ,
Θ−2

2(Θ−1)}), and consider the set of requests {σ1, σ2} with

σ1 = (0.5, 0.5; 0) and σ2 =
(

1− 1
Θ− 1 − ε, 1−

1
Θ− 1 − ε;

1
Θ− 1 + ε

)
.

By assumption, we have Θ > 2 and ε < 1− 1
Θ−1 , which implies

0
ε<1− 1

Θ−1
< 1− 1

Θ− 1 − ε
Θ≤3
< 0.5,

i.e., the position of request σ2 lies between 0 and 0.5. If Opt moves to position 0.5 and then
returns to the origin, it is at position

a2 = 0.5−
∣∣∣∣(1

Θ− 1 + ε

)
︸ ︷︷ ︸

>0.5

−0.5
∣∣∣∣= 1− 1

Θ− 1 − ε

at time r2 = 1
Θ−1 + ε. Thus, Opt can serve σ2 on the way and we have Opt({σ1, σ2}) = 1.

For all t ≥ 0, we have L(t, 0, {σ1}) = 1. Therefore, Smartstart waits until time

t1 = L(t1, 0, {σ1})
Θ− 1 = 1

Θ− 1 .

before starting its first schedule. Since we have 1
Θ−1 <

1
Θ−1 + ε, Smartstart starts to serve

σ1 at time t1 and returns to the origin at time Θ
Θ−1 . For all t ≥ 0, we have

L(t, 0, {σ2}) = 2− 2
Θ− 1 − 2ε,

thus Smartstart does not start the second and final schedule before time 2− 2
Θ−1−2ε
Θ−1 . By

assumption, we have Θ > 2, which implies Θ
Θ−1 >

2− 2
Θ−1−2ε
Θ−1 . Thus, the second schedule is

started at time t2 = Θ
Θ−1 and finished at time

Smartstart({σ1, σ2}) = Θ
Θ− 1 + 2− 2

Θ− 1 − 2ε.

STACS 2019

15:16 Tight Analysis of the Smartstart Algorithm

To sum it up, we have

Smartstart({σ1, σ2})
Opt({σ1, σ2})

= Θ
Θ− 1 + 2− 2

Θ− 1 − 2ε

ε < Θ−2
2(Θ−1)
>

3Θ− 4
Θ− 1 − 2 Θ− 2

2(Θ− 1)
= 2.

Now let Θ > 3 and ε ∈ (0, 0.5− 1
Θ−1), and consider the set of requests {σ1, σ2} with

σ1 = (0.5, 0.5; 0) and σ2 =
(

0.5, 0.5; 1
Θ− 1 + ε

)
.

By assumption, we have ε < 0.5 − 1
Θ−1 , which implies 1

Θ−1 + ε < 0.5, i.e., σ2 is released
before position 0.5 is reachable. If Opt moves to position 0.5 and then returns to the origin,
it can serve both requests without additional waiting time and we have Opt({σ1, σ2}) = 1.
For all t ≥ 0, we have L(t, 0, {σ1}) = 1. Therefore, Smartstart waits until time

t1 = L(t1, 0, {σ1})
Θ− 1 = 1

Θ− 1 .

before starting its first schedule. Since we have 1
Θ−1 <

1
Θ−1 + ε, Smartstart starts to serve

σ1 at time t1 and returns to the origin at time Θ
Θ−1 . For all t ≥ 0, we have

L(t, 0, {σ2}) = 1,

thus Smartstart does not start the second and final schedule before time 1
Θ−1 . By

assumption, we have Θ > 3, which implies Θ
Θ−1 >

1
Θ−1 . Thus, the second schedule is started

at time t2 = Θ
Θ−1 and finished at time

Smartstart({σ1, σ2}) = Θ
Θ− 1 + 1.

To sum it up, we have

Smartstart({σ1, σ2})
Opt({σ1, σ2})

= Θ
Θ− 1 + 1 > 2. J

References
1 Norbert Ascheuer, Sven Oliver Krumke, and Jörg Rambau. Online Dial-a-Ride Problems:

Minimizing the Completion Time. In Proceedings of the 17th Annual Symposium on Theoretical
Aspects of Computer Science (STACS), pages 639–650, 2000.

2 Mikhail J. Atallah and S. Rao Kosaraju. Efficient Solutions to Some Transportation Problems
with Applications to Minimizing Robot Arm Travel. SIAM Journal on Computing, 17(5),
1988.

3 G. Ausiello, E. Feuerstein, S. Leonardi, L. Stougie, and M. Talamo. Algorithms for the On-Line
Travelling Salesman. Algorithmica, 29(4):560–581, 2001.

4 Antje Bjelde, Yann Disser, Jan Hackfeld, Christoph Hansknecht, Maarten Lipmann, Julie
Meißner, Kevin Schewior, Miriam Schlöter, and Leen Stougie. Tight Bounds for Online TSP
on the Line. In Proceedings of the 28th Annual Symposium on Discrete Algorithms (SODA),
pages 994–1005, 2017.

5 Michiel Blom, Sven O. Krumke, Willem E. de Paepe, and Leen Stougie. The Online TSP
Against Fair Adversaries. INFORMS Journal on Computing, 13(2):138–148, 2001.

A. Birx and Y. Disser 15:17

6 Moses Charikar and Balaji Raghavachari. The Finite Capacity Dial-A-Ride Problem. In
Proceedings of the 39th Annual Symposium on Foundations of Computer Science (FOCS),
pages 458–467, 1998.

7 Willem E. de Paepe, Jan Karel Lenstra, Jiri Sgall, René A. Sitters, and Leen Stougie. Computer-
Aided Complexity Classification of Dial-a-Ride Problems. INFORMS Journal on Computing,
16(2):120–132, 2004.

8 Esteban Feuerstein and Leen Stougie. On-line Single-server Dial-a-ride Problems. Theoretical
Computer Science, 268(1):91–105, 2001.

9 Paul C. Gilmore and Ralph E. Gomory. Sequencing a One State-Variable Machine: A Solvable
Case of the Traveling Salesman Problem. Operations Research, 12(5):655–679, 1964.

10 D. J. Guan. Routing a Vehicle of Capacity Greater Than One. Discrete Applied Mathematics,
81(1-3):41–57, 1998.

11 Dietrich Hauptmeier, Sven Oliver Krumke, and Jörg Rambau. The Online Dial-a-Ride Problem
Under Reasonable Load. In Proceedings of the 4th Italian Conference on Algorithms and
Complexity (CIAC), pages 125–136, 2000.

12 Patrick Jaillet and Michael R. Wagner. Generalized Online Routing: New Competitive Ratios,
Resource Augmentation, and Asymptotic Analyses. Operations Research, 56(3):745–757, 2008.

13 Sven O. Krumke. Online Optimization Competitive Analysis and Beyond, 2001. Habilitation
thesis.

14 Sven O. Krumke, Willem E. de Paepe, Diana Poensgen, Maarten Lipmann, Alberto Marchetti-
Spaccamela, and Leen Stougie. On Minimizing the Maximum Flow Time in the Online
Dial-a-ride Problem. In Proceedings of the Third International Conference on Approximation
and Online Algorithms (WAOA), pages 258–269, 2006.

15 Sven O. Krumke, Luigi Laura, Maarten Lipmann, Alberto Marchetti-Spaccamela, Willem
de Paepe, Diana Poensgen, and Leen Stougie. Non-abusiveness Helps: An O(1)-Competitive
Algorithm for Minimizing the Maximum Flow Time in the Online Traveling Salesman Prob-
lem. In Proceedings of the 5th International Workshop on Approximation Algorithms for
Combinatorial Optimization (APPROX), pages 200–214, 2002.

16 Maarten Lipmann. On-Line Routing. PhD thesis, Technical University Eindhoven, 2003.
17 Maarten Lipmann, Xiwen Lu, Willem E. de Paepe, Rene A. Sitters, and Leen Stougie. On-Line

Dial-a-Ride Problems Under a Restricted Information Model. Algorithmica, 40(4):319–329,
2004.

18 Fanglei Yi and Lei Tian. On the Online Dial-a-ride Problem with Time-windows. In Proceedings
of the 1st International Conference on Algorithmic Applications in Management (AAIM),
pages 85–94, 2005.

19 Fanglei Yi, Yinfeng Xu, and Chunlin Xin. Online Dial-a-ride Problem with Time-windows
Under a Restricted Information Model. In Proceedings of the 2nd International Conference on
Algorithmic Aspects in Information and Management (AAIM), pages 22–31, 2006.

STACS 2019

Enumerating Minimal Dominating Sets in
Triangle-Free Graphs
Marthe Bonamy
CNRS, Université de Bordeaux, France
marthe.bonamy@u-bordeaux.fr

Oscar Defrain
LIMOS, Université Clermont Auvergne, France
oscar.defrain@uca.fr

Marc Heinrich
LIRIS, Université Claude-Bernard, Lyon, France
marc.heinrich@univ-lyon1.fr

Jean-Florent Raymond
LaS team, Technische Universität Berlin, Germany
raymond@tu-berlin.de

Abstract
It is a long-standing open problem whether the minimal dominating sets of a graph can be enumerated
in output-polynomial time. In this paper we prove that this is the case in triangle-free graphs. This
answers a question of Kanté et al. Additionally, we show that deciding if a set of vertices of a
bipartite graph can be completed into a minimal dominating set is a NP-complete problem.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms; Theory of
computation → Design and analysis of algorithms

Keywords and phrases Enumeration algorithms, output-polynomial algorithms, minimal dominating
set, triangle-free graphs, split graphs

Digital Object Identifier 10.4230/LIPIcs.STACS.2019.16

Related Version https://arxiv.org/abs/1810.00789

Funding Oscar Defrain: Supported by ANR project GraphEn ANR-15-CE40-0009.
Jean-Florent Raymond: Supported by ERC consolidator grant Distruct-648527.

Acknowledgements The authors wish to thank Paul Ouvrard for extensive discussions on the topic
of this paper. We also gratefully acknowledge support from Nicolas Bonichon and the Simon family
for the organization of the 3rd Pessac Graph Workshop, where this research was done. Last but not
least, we thank Peppie for her unwavering support during the work sessions.

1 Introduction

Countless algorithmic problems in graph theory require to detect a structure with prescribed
properties in an input graph. Rather than finding one such object, it is sometimes more
desirable to generate all of them. This is for instance useful in certain applications to
database search [29], network analysis [13], bioinformatics [22, 5], and cheminformatics [2].
Enumeration algorithms for graph problems seem to have been first mentioned in the early
70’s with the pioneer works of Tiernen [27] and Tarjan [26] on cycles in directed graphs and
of Akkoyunlu [1]. However, they already appeared in disguise in earlier works [24, 21]. To
this date, several intriguing questions on the topic remain unsolved. We refer the reader to
[23] for a more in-depth introduction to enumeration algorithms and to [28] for a listing of
enumeration algorithms and problems.

© Marthe Bonamy, Oscar Defrain, Marc Heinrich, and Jean-Florent Raymond;
licensed under Creative Commons License CC-BY

36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019).
Editors: Rolf Niedermeier and Christophe Paul; Article No. 16; pp. 16:1–16:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:marthe.bonamy@u-bordeaux.fr
mailto:oscar.defrain@uca.fr
mailto:marc.heinrich@univ-lyon1.fr
https://orcid.org/0000-0003-4646-7602
mailto:raymond@tu-berlin.de
https://doi.org/10.4230/LIPIcs.STACS.2019.16
https://arxiv.org/abs/1810.00789
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

16:2 Enumerating Minimal Dominating Sets in Triangle-Free Graphs

The objects we wish to enumerate in this paper are the (inclusion-wise) minimal domin-
ating sets of a given graph. In general, the number of these objects may grow exponentially
with the order n of the input graph. Therefore, in stark contrast to decision or optimization
problems, looking for a running time polynomially bounded by n is not a reasonable, let alone
meaningful, efficiency criterion. Rather, we aim here for algorithms whose running time is
polynomially bounded by the size of both the input and output data, called output-polynomial
algorithms.

Because dominating sets are among the most studied objects in graph theory and
algorithms, their enumeration (and counting) have attracted an increasing attention over the
past 10 years. The problem of enumerating minimal dominating sets (hereafter referred to
as Dom-Enum) has a notable feature: it is equivalent to the extensively studied hypergraph
problem Trans-Enum. In Trans-Enum, one is given a hypergraph H (i.e. a collection
of sets, called hyperedges) and is asked to enumerate all the minimal transversals of H
(i.e. the inclusion-minimal sets of elements that meet every hyperedge). It is not hard to see
that Dom-Enum is a particular case of Trans-Enum: the minimal dominating sets of a
graph G are exactly the minimal transversals of the hypergraph of closed neighborhoods of
G. Conversely, Kanté, Limouzy, Mary, and Nourine proved that every instance of Trans-
Enum can be reduced to a co-bipartite1 instance of Dom-Enum [17]. Currently, the best
output-sensitive algorithm for Trans-Enum is due to Fredman and Khachiyan and runs in
quasi-polynomial time [9]. It is a long-standing open problem whether this complexity bound
can be improved (see for instance the surveys [6, 8]). Therefore, the equivalence between the
two problems is an additional motivation to study Dom-Enum, with the hope that techniques
from graph theory will be used to obtain new results on the Trans-Enum problem. So
far, output-polynomial algorithms have been obtained for Dom-Enum in several classes of
graphs, including planar graphs and degenerate graphs [7], classes of graphs of bounded
tree-width, clique-width [4], or mim-width [10], path graphs and line graphs [16], interval
graphs and permutation graphs [18], split graphs [19], graphs of girth at least 7 [12], chordal
graphs [19], and chordal bipartite graphs [11]. A succinct survey of results on Dom-Enum
can be found in [20]. The authors of [19] state as an open problem the question to design an
output-polynomial algorithm for bipartite graphs (the problem also appeared in [20, 11]).
We address this problem with the following result.

I Theorem 1. There is an output-polynomial time algorithm enumerating minimal domin-
ating sets in triangle-free graphs.

In particular, the result holds for enumerating minimal dominating sets in bipartite
graphs.

Our algorithm decomposes the graph by iteratively removing closed neighborhoods in the
fashion of [7], then constructs partial minimal dominating sets by adding the neighborhoods
back one after the other. It relies on the crucial property that in triangle-free graphs,
the generation of all potential extensions of a partial minimal dominating set to a new
neighborhood is closely related to the enumeration of minimal dominating sets in split graphs,
for which tools have already been developed [17]. We note that triangle-free graphs already
received attention in the context of enumeration of other objects, for instance maximal
independent sets [14, 3], using different techniques.

A natural technique to enumerate valid solutions to a given problem (for instance, sets
of vertices satisfying a given property) is to build them element by element. If during the
construction one detects that the current partial solution cannot be extended into a valid

1 The complement of a bipartite graph.

M. Bonamy, O. Defrain, M. Heinrich, and J.-F. Raymond 16:3

one, then it can be discarded along with all the other partial solutions that contain it. Note
that in order to apply this technique, one should be able to decide whether a given partial
solution can be completed into a valid one. It turns out that for minimal dominating sets,
this problem (that we will denote by Dcs) is NP-complete [15], even when restricted to split
graphs [19]. We show that it remains NP-complete in bipartite graphs.

I Theorem 2. Dcs restricted to bipartite graphs is NP-complete.

This implies that Dcs is NP-complete in triangle-free graphs. This suggests that the
aforementioned technique is unlikely to be used to improve Theorem 1.

The paper is organized as follows. In Section 2 we give the necessary definitions. We
prove Theorems 1 and 2 in Sections 3 and 4, respectively. We conclude with possible future
research directions in Section 5.

2 Preliminaries

Graphs. All graphs in this paper are finite, undirected, simple, and loopless. If G is a graph,
then V (G) is its set of vertices and E(G) ⊆ V (G)2 is its set of edges. Edges are denoted by
xy (or yx) instead of {x, y}. We assume that vertices are assigned distinct indices; these will
be used to choose vertices in a deterministic way, typically selecting the vertex of smallest
index. A clique (respectively an independent set) in a graph G is a set of pairwise adjacent
(respectively non-adjacent) vertices. The subgraph of G induced by X ⊆ V (G), denoted by
G[X], is the graph (X, E(G) ∩ (X ×X)); G \X is the graph G[V (G) \X].

If the vertex set of a graph G can be partitioned into one part inducing a clique and
one part inducing an independent set (respectively two independent sets, two cliques), we
say that G is a split (respectively bipartite, co-bipartite) graph. Graphs where every cycle
is of length at least 4 are referred to as triangle-free graphs. If f is a function, we write
f(n) = poly n when there is a constant c ∈ N such that f(n) = O(nc).

Neighbors and domination. Let G be a graph and x ∈ V (G). We note N(x) the set of
neighbors of x in G defined by N(x) = {y ∈ V (G) | xy ∈ E(G)}; N [x] is the set of closed
neighbors defined by N [x] = N(x) ∪ {x}. For a given X ⊆ V (G), we respectively denote by
N [X] and N(X) the sets defined by

⋃
x∈X N [x] and N [X] \X. Let D be a set of vertices of

G. We say that D is dominating a subset S ⊆ V (G) if S ⊆ N [D]. It is minimally dominating
S if no proper subset of D dominates S. The set D is a (minimal) dominating set of G if it
(minimally) dominates V (G). The set of all minimal dominating sets of G is denoted by D(G)
and the problem of enumerating D(G) given G is denoted by Dom-Enum. Let S ⊆ V (G). A
vertex y ∈ V (G) is said to be a private neighbor of some x ∈ S if y 6∈ N [S \ {x}]. Intuitively,
this means that y is not dominated by any other vertex of S. Note that x can be its own
private neighbor. The set of private neighbors of x ∈ S in G is denoted by PrivG(S, x) and
we drop the subscript when it can be inferred from the context. Observe that S is a minimal
dominating set of G if and only if V (G) ⊆ N [S] and for every x ∈ S, Priv(S, x) 6= ∅.

Enumeration. The aim of graph enumeration algorithms is to generate a set of objects
X (G) related to a graph G. We say that an algorithm enumerating X (G) with input an
n-vertex graph G is output-polynomial if its running time is polynomially bounded by the size
of the input and output data, i.e. n + |X (G)|. If an algorithm enumerates X (G) by spending
poly(n)-time (respectively O(n)-time) before it outputs the first element, between two output
elements, and after it outputs the last element, then we say that it runs with polynomial delay

STACS 2019

16:4 Enumerating Minimal Dominating Sets in Triangle-Free Graphs

(respectively linear delay). It is easy to see that every polynomial delay algorithm is also
output-polynomial. Note however that some problems have output-polynomial algorithms
but no polynomial delay ones, unless P=NP [25]. When discussing the space used by an
enumeration algorithm, we ignore the space where the solutions are output.

3 Minimal domination in triangle-free graphs

In this section, we give an output-polynomial time algorithm to enumerate minimal dominat-
ing sets in triangle-free graphs. The algorithm is inspired by the one of [7] and constructs
dominating sets one neighborhood at a time.

A peeling of a graph G is a sequence (V0, . . . , Vp) such that Vp = V (G), V0 = ∅, and for
every i ∈ {1, . . . , p},

Vi−1 = Vi \N [vi]

for some vi ∈ Vi. We call (v1, . . . , vp) the vertex sequence of the peeling; note that p is only
known after peeling the whole graph.

In the following, we consider a triangle-free graph G and a fixed peeling (V0, . . . , Vp)
with vertex sequence (v1, . . . , vp). For every i ∈ {0, . . . , p}, we denote by D(G, i) the set of
minimal dominating sets of Vi in G. Recall that these sets may contain vertices of G− Vi,
which is a crucial point. Then D(G, p) = D(G).

I Definition 3. Let i ∈ {0, . . . , p− 1} and D ∈ D(G, i + 1). We denote by Parent(D, i + 1)
the pair (D∗, i) where D∗ is obtained from D by successively removing the vertex x of smaller
index in D satisfying Priv(D, x) ∩ Vi = ∅, until no such vertex exists.

Clearly, there is a unique way to build Parent(D, i + 1) given D and i. By construction,
the obtained set D∗ is a minimal dominating set of Vi. Hence every set in D(G, i + 1) can
be obtained by completing some D∗ in D(G, i); we develop this point below.

I Proposition 4. Let i ∈ {0, . . . , p− 1} and D∗ ∈ D(G, i).
If D∗ dominates Vi+1 then D∗ ∈ D(G, i + 1) and Parent(D∗, i + 1) = (D∗, i).
Otherwise, D∗ ∪ {vi+1} ∈ D(G, i + 1) and Parent(D∗ ∪ {vi+1}, i + 1) = (D∗, i).

Proof. First note that since D∗ ∈ D(G, i), Priv(D∗, x) ∩ Vi 6= ∅ for all x ∈ D∗. Hence
Parent(D∗, i + 1) = (D∗, i) whenever D∗ dominates Vi+1. If D∗ does not dominate Vi+1 then
D = D∗ ∪ {vi+1} does. Moreover, Priv(D, vi+1) ∩ Vi+1 6= ∅. Since vi+1 is not connected
to any vertex in Vi, it cannot steal any private neighbors to the elements of D∗. Hence
Priv(D, x) ∩ Vi+1 6= ∅ for all x ∈ D. Now, remark that since vi+1 does not steal private
neighbors to the elements of D∗, it is indeed itself the only node with no privates in Vi and
is removed by the parent function. Hence Parent(D∗ ∪ {vi+1}, i + 1) = (D∗, i). J

The Parent relation as introduced in Definition 3 defines a tree on vertex set

{(D, i) | i ∈ {1, . . . , p} , D ∈ D(G, i)},

with leaves {(D, p) | D ∈ D(G)}, and root (∅, 0) (the empty set being the only dominating
set of the empty vertex set V0). Our algorithm will search this tree in order to enumerate
every minimal dominating set of G. Proposition 4 guarantees that for every i < p and every
D∗ ∈ D(G, i), the pair (D∗, i) is the parent of some (D, i + 1) with D ∈ D(G, i + 1) (possibly
D = D∗). Consequently, every branch of the tree leads to a different minimal dominating set
of G. In particular, for every i < p, we have |D(G, i)| ≤ |D(G, i + 1)|.

M. Bonamy, O. Defrain, M. Heinrich, and J.-F. Raymond 16:5

Given a set D∗ ∈ D(G, i), we now focus on the enumeration of every D ∈ D(G, i+1) such
that (D, i + 1) has (D∗, i) for parent. From Proposition 4, we know that either (D∗, i + 1) or
(D∗ ∪ {vi+1}, i + 1) has (D∗, i) for parent. Consequently, we refer to X = ∅ and X = {vi+1}
as the trivial extensions of (D∗, i), and focus on the non-trivial ones.

We call candidate extension of (D∗, i) any (inclusion-wise) minimal set X ⊆ V (G) such
that D∗ ∪X dominates Vi+1 in G, avoiding the trivial cases where X ∈ {∅, {vi+1}}. Then,
X is a candidate extension of (D∗, i) if and only if X 6∈ {∅, {vi+1}}, Vi+1 ⊆ N [D∗ ∪X] and,
for every x ∈ X, Priv(D∗ ∪X, x)∩ Vi+1 6= ∅. Note that possibly not all candidate extensions
of (D∗, i) form with D∗ a minimal dominating set of Vi+1. In fact, there is no guarantee
that any candidate extension forms a minimal dominating set of Vi+1: it might be that
(D∗, i) has a unique child, given by its trivial extension. We denote by C(D∗, i) the set of
candidate extensions of (D∗, i). We point out that by the minimality assumption, the vertex
vi+1 appears in no element of C(D∗, i), as vi+1 itself is a trivial extension.

I Lemma 5. Let i ∈ {0, . . . , p− 1} and D∗ ∈ D(G, i). Then |C(D∗, i)| ≤ |D(G)|.

Proof. We argue that for every X ∈ C(D∗, i) there is an element of D(G, i + 1) whose
intersection with V (G) \D∗ is precisely X. This will prove |C(D∗, i)| ≤ |D(G, i + 1)|, hence
|C(D∗, i)| ≤ |D(G)| as desired.

Let X ∈ C(D∗, i). We consider the set X ∪D∗, which dominates Vi+1. By definition of
C(D∗, i), we have Priv(X ∪D∗, x) ∩ Vi+1 6= ∅ for every x ∈ X. Therefore, every subset of
X ∪D∗ that dominates Vi+1 contains X. Consider an inclusion-wise minimal subset D′ of
X ∪D∗ that dominates Vi+1. We have X ⊆ D′, hence the conclusion. J

Lemma 5 above ensures that C(D∗, i) is bounded by D(G). Hence, it is reasonable to
test each of the candidate extensions even though D∗ might be the parent of only one set in
D(G, i + 1). It now suffices to explain how to efficiently enumerate C(D∗, i) to complete the
algorithm (formally described in Theorem 12).

Let i ∈ {0, . . . , p− 1} and D∗ ∈ D(G, i). We define S = N(vi+1) ∩ Vi+1 \ N [D∗]
and C = N(S) \ {vi+1}. As G is triangle-free and S is included in the neighborhood of
vi+1, S is an independent set. Let Zi

D∗ be the split graph obtained from G[C ∪ S] where
C is completed into a clique; note that the independent set S is maximal in Zi

D∗ since
C ⊆ N(S). For any X ⊆ V (Zi

D∗), we define XC = X ∩ C and XS = X ∩ S. We set
DS=∅(Zi

D∗) = {D ∈ D(Zi
D∗) | DS = ∅}. The following result is implicit in [17].

I Proposition 6. Let H be a split graph with maximal stable set S and clique C. Let
X ⊆ V (H). Then, X ∈ D(H) if and only if S ⊆ N [X] and Priv(X, x)∩S 6= ∅ for all x ∈ X.

Proof. Let us assume that S ⊆ N [X] and Priv(X, x) ∩ S 6= ∅ for all x ∈ X. Then, either
X ∩C 6= ∅ or X ∩C = ∅. In the first case, X dominates C. In the other case, X = S because
S ⊆ N [X] and V (H) = C ∪ S. Remark that C ⊆ N(S) as S is assumed maximal. Hence, X

also dominates C. The minimality of X follows from our first assumption. Hence X ∈ D(H).
Conversely, let X ∈ D(H). Clearly N [X] ⊇ S, so we suppose by contradiction that

Priv(X, x) ∩ S = ∅ for some x ∈ X. By minimality of X, we have Priv(X, x) 6= ∅, which
implies Priv(X, x) ⊆ C. Consequently, we must have X ∩ C = {x}, or else x ∈ S but is not
its own private, in which case it must have a neighbor in C which contradicts Priv(X, x) 6= ∅.
As C ⊆ N(S), there exists some vertex y ∈ S∩N(x). Since y 6∈ Priv(X, x) and X ∩C = {x},
we have y ∈ X. However, in this case N [y] ⊆ N [x] and so Priv(X, y) = ∅, which contradicts
the minimality of X. J

STACS 2019

16:6 Enumerating Minimal Dominating Sets in Triangle-Free Graphs

We now characterize C(D∗, i) depending on whether vi+1 has to be dominated by the
extension or not. The condition D∗ ∈ D(G, i) \ D(G, i + 1) in the statement below prevents
(D∗, i) from having the trivial extension ∅ –in which case it is the only one.

I Lemma 7. Let i ∈ {0, . . . , p− 1}, D∗ ∈ D(G, i) \ D(G, i + 1) and Z = Zi
D∗ . Then

either D∗ ∩N(vi+1) 6= ∅ and C(D∗, i) = D(Z),
or D∗ ∩N(vi+1) = ∅ and

C(D∗, i) = (D(Z) \ DS=∅(Z))∪

Q ∪ {u}

∣∣∣∣∣∣
Q ∈ DS=∅(Z),
u ∈ N(vi+1), and
∀x ∈ Q, Priv(Q ∪ {u}, x) ∩ Vi+1 6= ∅

 .

Proof. Let us first consider the case D∗ ∩ N(vi+1) 6= ∅. Let X ∈ C(D∗, i). Since vi+1 is
dominated by any vertex of D∗∩N(vi+1), only the stable set S of Z is to be dominated by X.
In other words X minimally dominates S: S ⊆ N [X] and Priv(X, x) ∩ S 6= ∅ for all x ∈ X.
By Proposition 6, X ∈ D(Z), which proves the inclusion C(D∗, i) ⊆ D(Z). Conversely, let
X ∈ D(Z). By Proposition 6, S ⊆ N [X] and Priv(X, x) ∩ S 6= ∅ for all x ∈ X. Since vi+1 is
already dominated by D∗, X ∈ C(D∗, i). Hence C(D∗, i) = D(Z), as desired.

From now on and until the end of the proof we assume that D∗ ∩N(vi+1) = ∅. Let C

denote the vertex set of the clique of Z. Let X ∈ C(D∗, i). We know that X must be a
dominating set of Z. Indeed, by definition of C(D∗, i), X dominates S, and either X ∩C 6= ∅,
in which case X also dominates C, or X = S and X also dominates C since C ⊆ N(S).
There are two cases to consider.

If X is a minimal dominating set of Z, then since X has to dominate vi+1, we have
X ∩ S 6= ∅ and consequently X ∈ D(Z) \ DS=∅(Z).

Otherwise, X is not a minimal dominating set of Z. This implies that it has a vertex u with
no private neighbor in Z. By definition of C(D∗, i), this means that Priv(D∗ ∪X, u)∩Vi+1 =
{vi+1}. Therefore there is exactly one such vertex. Then, if we write Q = X \ {u}, Q is a
minimal dominating set of Z. Since vi+1 is a private neighbor of u, we must have Q ∩ S = ∅,
and consequently Q ∈ DS=∅(Z). Finally, by definition of C(D∗, i), for any x ∈ Q ⊂ X, we
have Priv(X, x) ∩ Vi+1 6= ∅. This shows that we have

X ∈

Q ∪ {u}

∣∣∣∣∣∣
Q ∈ DS=∅(Z),
u ∈ N(vi+1), and
∀x ∈ Q, Priv(Q ∪ {u}, x) ∩ Vi+1 6= ∅

 , (1)

and proves the following inclusion:

C(D∗, i) ⊆ (D(Z) \ DS=∅(Z)) ∪

Q ∪ {u}

∣∣∣∣∣∣
Q ∈ DS=∅(Z),
u ∈ N(vi+1), and
∀x ∈ Q, Priv(Q ∪ {u}, x) ∩ Vi+1 6= ∅

 .

To prove the reverse inclusion, we first consider X ∈ D(Z) \ DS=∅(Z). By Proposition 6,
S ⊆ N [X] and Priv(X, x) ∩ S 6= ∅ for all x ∈ X. Since X ∩ S 6= ∅, S ∪ {vi+1} ⊆ N [X].
Thus X ∈ C(D∗, i). Now we consider a set X of the form Q ∪ {u}, for some Q ∈ DS=∅(Z)
and u ∈ N(vi+1) such that ∀x ∈ Q, Priv(Q ∪ {u}, x) ∩ Vi+1 6= ∅. By Proposition 6,
Priv(Q, x) ∩ S 6= ∅ for all x ∈ Q. Since Priv(Q ∪ {u}, x) ∩ Vi+1 6= ∅ for all x ∈ Q

and vi+1 ∈ Priv(X, u), Priv(X, x) ∩ Vi+1 6= ∅ for all x ∈ X. Since S ∪ {vi+1} ⊆ N [X],
X ∈ C(D∗, i). This proves the reverse inclusion and concludes the proof. J

In [17], authors give a polynomial delay algorithm to enumerate minimal dominating sets
in split graphs.

M. Bonamy, O. Defrain, M. Heinrich, and J.-F. Raymond 16:7

I Theorem 8 ([17]). There is an algorithm that, given a split graph H with n vertices and m

edges, outputs with O(n + m) delay every minimal dominating set of H, using O(n2) space.

The above algorithm relies on the observation that for every split graph H, the set DC(H) =
{DC | D ∈ D(H)} is in bijection with D(H) and it forms an independence system. A family
of sets S is an independence system if S ∈ S implies that S \ {s} ∈ S for all s ∈ S. We show
that there is a polynomial delay algorithm to enumerate C(D∗, i) given i ∈ {1, . . . , p− 1}
and D∗ ∈ D(G, i) using the same observations.

I Proposition 9 ([17]). Let H be a split graph with maximal stable set S and clique C and
let D be a minimal dominating set of H. Then DS = S \N(DC).

I Proposition 10 ([17]). Let H be a split graph with maximal stable S and clique C. Then:
1. DC(H) = {A ⊆ C | ∀x ∈ A, Priv(A, x) 6= ∅},
2. DC(H) and D(H) are in bijection,
3. DC(H) is an independence system.

I Lemma 11. There is an algorithm that, given i ∈ {0, . . . , p− 1} and D∗ ∈ D(G, i),
enumerates C(D∗, i) in output-polynomial time O(poly(n) · |C(D∗, i)|) and using at most
poly(|V (G)|) space.

Proof. Lemma 7 allows us to consider two cases depending on whether vi+1 has a neighbor
in D∗ or not. Let Z = Zi

D∗ . As usual we denote by S and C the maximal stable set and the
clique of Z, respectively.

If D∗ ∩ N(vi+1) 6= ∅, then by Lemma 7 C(D∗, i) = D(Z), and we can enumerate the
elements of C(D∗, i) with polynomial delay using the algorithm of Theorem 8 on D(Z).

In the case where D∗ ∩ N(vi+1) = ∅, we start enumerating DC(Z). This can be done
with polynomial delay and space as in the proof of Theorem 8, using the fact that DC(Z)
is an independence system and that testing if an arbitrary set A belongs to DC(Z) can be
done in polynomial time using Lemma 10. That is, we construct elements of DC(Z) from
the empty set to every inclusion-wise maximal A ∈ DC(Z). Repetitions are avoided using a
linear ordering on vertices of C; see [17] for details. Then, for every set A ∈ DC(Z) output
by the above algorithm, we check in polynomial time if it dominates Z. If it does not, then
we extend A into its unique corresponding minimal dominating set D ∈ D(Z) such that
D ∩ C = A (i.e. D = A ∪ S \N(A)), and output D. Otherwise, for every u ∈ N(vi+1) such
that for all x ∈ A, Priv(A ∪ {u}, x) ∩ Vi+1 6= ∅ (which can be tested in time polynomial in
the order of Z), we output A ∪ {u}. Lemma 7 guarantees that the above algorithm indeed
outputs C(D∗, i).

Note that the only elements D ∈ D(Z) which do not lead to an element of C(D∗, i) are
the D ∈ DS=∅(Z) for which no vertex u ∈ N(vi+1) satisfies the desired conditions. However,
we will show that |DS=∅(Z)| ≤ n|D(Z) \ DS=∅(Z)|. Indeed, consider the map f that, given
D ∈ DS=∅(Z) removes one arbitrary vertex from D, and completes the dominating set by
adding the vertices in the independent set which are no longer dominated. Then, f maps
elements of DS=∅(Z), to the set D(Z) \ DS=∅(Z). Moreover, every element in this second
set is the image of at most |C| ≤ n elements by f . This implies the desired bound.

Consequently, this means that while enumerating D(Z), we might throw out a fraction
at most n

n+1 of all the solutions we found which do not lead to elements in C(D∗, i). This
shows that the algorithm has output-polynomial time. J

We are now ready to prove Theorem 1, that we restate here in a more accurate form.

STACS 2019

16:8 Enumerating Minimal Dominating Sets in Triangle-Free Graphs

I Theorem 12. There is an algorithm that, given a triangle-free graph G on n vertices,
outputs D(G) in total time poly(n) · |D(G)|2 and using at most poly n space.

Proof. We first arbitrarily choose a peeling (V0, . . . , Vp) of our input graph G with vertex
sequence (v1, . . . , vp). This takes time poly n.

Recall that the Parent relation defines a tree T on vertex set

{(D, i) | i ∈ {1, . . . , p} , D ∈ D(G, i)},

with leaves {(D, p) | D ∈ D(G)} and root (∅, 0). Let us describe how to enumerate the
children in T of (D∗, i) for every given vertex D∗ ∈ D(G, i). If D∗ dominates Vi+1, then
(D∗, i + 1) is the only pair whose parent is (D∗, i). Otherwise, we proceed as follows:

1. output the trivial child D∗ ∪ {vi+1};
2. start (or resume, if it had already been started) the algorithm of Lemma 11 and pause it

after one element X of C(D∗, i) has been output;
3. if D∗∪X is not a minimal dominating set of Vi+1 in G, or if it is but Parent(D∗∪X, i+1) 6=

(D∗, i), discard X and loop to (2);
4. output D∗ ∪X and loop to (2).
The algorithm terminates when the algorithm of Lemma 11 in step (2) completes the
enumeration of C(D∗, i). The correctness of the algorithm is a consequence of the following
inclusions:

{D ∈ D(G, i + 1) | Parent(D, i + 1) = (D∗, i)} ⊆{D ∈ D(G, i + 1) | D∗ ⊆ D}
⊆{D∗ ∪X | X ∈ C(D∗, i)}

∪ {D∗ ∪ {vi+1}}
∪ {D∗}

Notice that it uses at most poly n space, since we only store the data of the algorithm of
Lemma 11, of size at most poly n, and the data to perform step (3), which is clearly also
polynomial in n.

In order to enumerate D(G), i.e. the set of leaves of T , we perform a DFS and output
each visited leaf. For each vertex of T , enumerating its children can be done in at most
poly(n) · |D(G)| steps with the above algorithm, according to Lemmas 5 and 11. Besides,
the number of vertices of T at distance i from the root is at most its number of leaves, hence
T has at most O(n · |D(G)|) vertices. Therefore we can enumerate D(G) in poly(n) · |D(G)|2
steps. Regarding the space, we observe that whenever we visit a vertex, we do not need to
compute the whole set of its children. Instead, it is enough in order to continue the DFS to
compute the next unvisited child only, which can be done using the algorithm above (and
pausing it afterward). Therefore, when we visit some (D, i) ∈ V (T), we only need to store
the data of the i− 1 (paused) algorithms enumerating the children of the ancestors of (D, i)
and the data of the algorithm enumerating the children of D, i.e. i · poly n space. Therefore
the described algorithm uses polynomial space, as claimed. J

4 The extension problem is hard in bipartite graphs

We recall that Dcs denotes the problem of deciding, given a graph G and a set A ⊆ V (G),
whether there exists a minimal dominating set D of G such that A ⊆ D. This problem is
known to be NP-complete for general graphs [15]. It has later been proved that the variant
where we search for a minimal dominating set containing A, and avoiding a given vertex

M. Bonamy, O. Defrain, M. Heinrich, and J.-F. Raymond 16:9

x1

¬x1

xn

¬xn

x2

¬x2

negx1

negxn

negx2

. . .

yC1

yCm

yC2

. . .

u v

zw
. . .

Figure 1 A bipartite graph G and a set A ⊆ V (G) constructed from an instance of SAT with
variables x1, . . . , xn and clauses C1, . . . , Cm. Black vertices constitute the set A. Then A can be
extended into a minimal dominating set D of G if and only if there is a truth assignment of the
variable satisfying all the clauses.

set B remains intractable even on split graphs [19]. We show that Dcs is still hard for
bipartite graphs and thus triangle-free graphs. As a consequence, one cannot expect to
improve Theorem 1 by testing if subsets of V (G) can be extended into minimal dominating
sets of G. The following is a restatement of Theorem 2.

I Theorem 13. Dcs restricted to bipartite graphs is NP-complete.

Proof. Since Dcs is NP-complete in the general case, it is clear that Dcs is in NP even
when restricted to bipartite graphs. Let us now present a reduction from SAT.

Given an instance I of SAT with variables x1, . . . , xn and clauses C1, . . . , Cm, we construct
a bipartite graph G and a set A ⊆ V (G) such that there exists a minimal dominating set
containing A if and only if there exists a truth assignment that satisfies all the clauses. The
graph G has vertex partition (X, Y), defined as follows.

The first part X contains two special vertices u and w, and for every variable xi, one vertex
for each of the literals xi and ¬xi. The second part Y contains one vertex yCj per clause Cj ,
one vertex negxi

per variable xi, and two special vertices v and z. For every i ∈ {1, . . . , n} we
make negxi adjacent to the two literals xi and ¬xi and for every j ∈ {1, . . . , m} we make yCj

adjacent to u and to every literal Cj contains. Finally, we add edges to form the path uvwz

and set A = {negx1 , . . . , negxn , v, w}. Clearly this graph can be constructed in polynomial
time from I. The construction is illustrated in Figure 1.

Let us show that A can be extended into a minimal dominating set of G if and only if I
has a truth assignment that satisfies all the clauses. The proof is split into two claims. A
partial assignment of I is a truth assignment of a subset of the variables x1, . . . , xn. Observe
that a partial assignment may satisfy all the clauses (i.e. the values of the non-assigned
variables do not matter). A partial assignment that satisfies all the clauses is called a minimal
assignment if no proper subset of the assigned variables admits such a partial assignment.

B Claim 14. Let S ⊆ {x1,¬x1, . . . , xn,¬xn} be a set containing at most one literal for each
variable. Then S minimally dominates {yC1 , . . . , yCm

} if and only if its elements form a
minimal assignment of I.

Proof of Claim 14. Let S be as above and let j ∈ {1, . . . , m}. Since yCj
/∈ S, the set S

contains a neighbor x of yCj
. By construction, x is a literal appearing in Cj . Hence a partial

assignment of the variables of I satisfying all its clauses is given by the literals present in S.
Moreover, x has a private neighbor yCj′ , by minimality of S. The assignment given by S

is hence minimal: not specifying the value of the variable of x would leave the clause Cj′

unsatisfied. C

STACS 2019

16:10 Enumerating Minimal Dominating Sets in Triangle-Free Graphs

B Claim 15. If D is a minimal dominating set of G containing A, then D \A ⊆ {x1,¬x1, . . . ,

xn,¬xn} and it contains at most one literal for each variable.

Proof of Claim 15. Notice that Priv(A, v) = {u}. If yCj
belongs to D for some j ∈ {1, . . . , m},

then Priv(D, v) = ∅, a contradiction to the minimality of D. For similar reasons u, z /∈ D.
Hence D ∩ {u, z, yC1 , . . . , yCm

} = ∅. Besides, for every i ∈ {1, . . . , m}, D contains at most
one of xi and ¬xi, as otherwise Priv(D, negxi

) would be empty, again contradicting the
minimality of D. This proves the claim. C

If A can be extended into a minimal dominating set D of G, then by combining the two
claims above, we deduce that I has truth assignment that satisfies all clauses. Conversely,
if I has such a truth assignment, then there is a set S as in the statement of Claim 14. In
S ∪ A, every element of S has a private neighbor, as a consequence of the minimality of
S and the fact that no element of A has a neighbor among the clause variables. Besides,
each of negx1 , . . . , negxn

has a private neighbor (because S contains at most one of the two
literals for each variable) and it is easy to see that the same holds for v and w. Hence S ∪A

is a minimal dominating set of G.
Given an instance I of SAT, we constructed in polynomial time an instance (G, A) of

Dcs that is equivalent to I. This proves that Dcs is NP-hard. J

5 Conclusion

In this paper, we proved that the set of minimal dominating sets of a triangle-free graph,
hence bipartite graph, can be enumerated in output-polynomial time. It remains open
whether a polynomial delay algorithm exists for these classes.

The most general open problem on the topic discussed in this paper is whether the
minimal dominating sets of a co-bipartite graph can be enumerated in output-polynomial
time. Indeed, as noted in the introduction this would imply that such an algorithm also
exists for the general case. Other classes where no output-polynomial time algorithms are
known include unit disk graphs and graphs of bounded expansion, according to [20, 11].

References
1 Eralp Abdurrahim Akkoyunlu. The enumeration of maximal cliques of large graphs. SIAM

Journal on Computing, 2(1):1–6, 1973.
2 John M. Barnard. Substructure searching methods: Old and new. Journal of Chemical

Information and Computer Sciences, 33(4):532–538, 1993.
3 Jesper Makholm Byskov. Enumerating maximal independent sets with applications to graph

colouring. Operations Research Letters, 32(6):547–556, 2004.
4 Bruno Courcelle. Linear delay enumeration and monadic second-order logic. Discrete Applied

Mathematics, 157(12):2675–2700, 2009.
5 Peter Damaschke. Parameterized Enumeration, Transversals, and Imperfect Phylogeny Recon-

struction. In Rod Downey, Michael Fellows, and Frank Dehne, editors, Parameterized and
Exact Computation, pages 1–12, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

6 Thomas Eiter and Georg Gottlob. Hypergraph transversal computation and related problems
in logic and AI. In European Workshop on Logics in Artificial Intelligence, pages 549–564.
Springer, 2002.

7 Thomas Eiter, Georg Gottlob, and Kazuhisa Makino. New results on monotone dualization
and generating hypergraph transversals. SIAM Journal on Computing, 32(2):514–537, 2003.
arxiv:cs/0204009.

https://arxiv.org/abs/cs/0204009

M. Bonamy, O. Defrain, M. Heinrich, and J.-F. Raymond 16:11

8 Thomas Eiter, Kazuhisa Makino, and Georg Gottlob. Computational aspects of monotone
dualization: A brief survey. Discrete Applied Mathematics, 156(11):2035–2049, 2008.

9 Michael L. Fredman and Leonid Khachiyan. On the complexity of dualization of monotone
disjunctive normal forms. Journal of Algorithms, 21(3):618–628, 1996.

10 Petr A. Golovach, Pinar Heggernes, Mamadou Moustapha Kanté, Dieter Kratsch, Sigve H.
Sæther, and Yngve Villanger. Output-Polynomial Enumeration on Graphs of Bounded
(Local) Linear MIM-Width. Algorithmica, 80(2):714–741, February 2018. arxiv:1509.03753.
doi:10.1007/s00453-017-0289-1.

11 Petr A. Golovach, Pinar Heggernes, Mamadou M. Kanté, Dieter Kratsch, and Yngve Villanger.
Enumerating minimal dominating sets in chordal bipartite graphs. Discrete Applied Mathem-
atics, 199:30–36, 2016. Special Issue: Sixth Workshop on Graph Classes, Optimization, and
Width Parameters 2013. doi:10.1016/j.dam.2014.12.010.

12 Petr A. Golovach, Pinar Heggernes, Dieter Kratsch, and Yngve Villanger. An Incremental
Polynomial Time Algorithm to Enumerate All Minimal Edge Dominating Sets. Algorithmica,
72(3):836–859, July 2015. doi:10.1007/s00453-014-9875-7.

13 Joshua A. Grochow and Manolis Kellis. Network motif discovery using subgraph enumeration
and symmetry-breaking. In Annual International Conference on Research in Computational
Molecular Biology, pages 92–106. Springer, 2007.

14 Mihály Hujtera and Zsolt Tuza. The Number of Maximal Independent Sets in Triangle-Free
Graphs. SIAM Journal on Discrete Mathematics, 6(2):284–288, 1993. doi:10.1137/0406022.

15 Mamadou Moustapha Kanté, Vincent Limouzy, Arnaud Mary, and Lhouari Nourine. Enumer-
ation of minimal dominating sets and variants. In International Symposium on Fundamentals
of Computation Theory, pages 298–309. Springer, 2011. arxiv:1407.2053.

16 Mamadou Moustapha Kanté, Vincent Limouzy, Arnaud Mary, and Lhouari Nourine. On the
neighbourhood helly of some graph classes and applications to the enumeration of minimal
dominating sets. In International Symposium on Algorithms and Computation, pages 289–298.
Springer, 2012.

17 Mamadou Moustapha Kanté, Vincent Limouzy, Arnaud Mary, and Lhouari Nourine. On the
Enumeration of Minimal Dominating Sets and Related Notions. SIAM Journal on Discrete
Mathematics, 28(4):1916–1929, 2014. arxiv:1407.2053.

18 Mamadou Moustapha Kanté, Vincent Limouzy, Arnaud Mary, Lhouari Nourine, and Takeaki
Uno. On the enumeration and counting of minimal dominating sets in interval and permutation
graphs. In International Symposium on Algorithms and Computation, pages 339–349. Springer,
2013.

19 Mamadou Moustapha Kanté, Vincent Limouzy, Arnaud Mary, Lhouari Nourine, and Takeaki
Uno. A polynomial delay algorithm for enumerating minimal dominating sets in chordal
graphs. In International Workshop on Graph-Theoretic Concepts in Computer Science, pages
138–153. Springer, 2015. arxiv:1407.2036.

20 Mamadou Moustapha Kanté and Lhouari Nourine. Minimal Dominating Set Enumeration. In
Ming-Yang Kao, editor, Encyclopedia of Algorithms, pages 1–5. Springer US, Boston, MA,
2014. doi:10.1007/978-3-642-27848-8_721-1.

21 M. P. Marcus. Derivation of Maximal Compatibles Using Boolean Algebra. IBM Journal of
Research and Development, 8(5):537–538, November 1964. doi:10.1147/rd.85.0537.

22 Andrea Marino. An Application: Biological Graph Analysis. In Analysis and Enumeration:
Algorithms for Biological Graphs, pages 37–44. Atlantis Press, Paris, 2015. doi:10.2991/
978-94-6239-097-3_3.

23 Andrea Marino. Enumeration Algorithms. In Analysis and Enumeration: Algorithms for
Biological Graphs, pages 13–35. Atlantis Press, Paris, 2015. doi:10.2991/978-94-6239-097-3_
2.

24 M. C. Paull and S. H. Unger. Minimizing the Number of States in Incompletely Specified
Sequential Switching Functions. IRE Transactions on Electronic Computers, EC-8(3):356–367,
September 1959. doi:10.1109/TEC.1959.5222697.

STACS 2019

https://arxiv.org/abs/1509.03753
http://dx.doi.org/10.1007/s00453-017-0289-1
http://dx.doi.org/10.1016/j.dam.2014.12.010
http://dx.doi.org/10.1007/s00453-014-9875-7
http://dx.doi.org/10.1137/0406022
https://arxiv.org/abs/1407.2053
https://arxiv.org/abs/1407.2053
https://arxiv.org/abs/1407.2036
http://dx.doi.org/10.1007/978-3-642-27848-8_721-1
http://dx.doi.org/10.1147/rd.85.0537
http://dx.doi.org/10.2991/978-94-6239-097-3_3
http://dx.doi.org/10.2991/978-94-6239-097-3_3
http://dx.doi.org/10.2991/978-94-6239-097-3_2
http://dx.doi.org/10.2991/978-94-6239-097-3_2
http://dx.doi.org/10.1109/TEC.1959.5222697

16:12 Enumerating Minimal Dominating Sets in Triangle-Free Graphs

25 Yann Strozecki. Enumeration complexity and matroid decomposition. PhD thesis, Paris 7,
2010.

26 Robert Tarjan. Enumeration of the elementary circuits of a directed graph. SIAM Journal on
Computing, 2(3):211–216, 1973.

27 James C. Tiernan. An efficient search algorithm to find the elementary circuits of a graph.
Communications of the ACM, 13(12):722–726, 1970.

28 Kunihiro Wasa. Enumeration of enumeration algorithms. Preprint arxiv:1605.05102, 2016.
See also https://kunihirowasa.github.io/enum/index (accessed on September 2018).

29 Xifeng Yan, Philip S. Yu, and Jiawei Han. Substructure similarity search in graph databases.
In Proceedings of the 2005 ACM SIGMOD international conference on Management of data,
pages 766–777. ACM, 2005.

https://arxiv.org/abs/1605.05102
https://kunihirowasa.github.io/enum/index

Sparsification of Binary CSPs
Silvia Butti
Department of Information and Communication Technologies, Universitat Pompeu Fabra,
Barcelona, Spain
silvia.butti@upf.edu

Stanislav Živný
Department of Computer Science, University of Oxford, UK
standa.zivny@cs.ox.ac.uk

Abstract
A cut ε-sparsifier of a weighted graph G is a re-weighted subgraph of G of (quasi)linear size that
preserves the size of all cuts up to a multiplicative factor of ε. Since their introduction by Benczúr and
Karger [STOC’96], cut sparsifiers have proved extremely influential and found various applications.
Going beyond cut sparsifiers, Filtser and Krauthgamer [SIDMA’17] gave a precise classification of
which binary Boolean CSPs are sparsifiable. In this paper, we extend their result to binary CSPs on
arbitrary finite domains.

2012 ACM Subject Classification Theory of Computation → Graph algorithms analysis

Keywords and phrases constraint satisfaction problems, minimum cuts, sparsification

Digital Object Identifier 10.4230/LIPIcs.STACS.2019.17

Funding This project has received funding from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme (grant agreement No 714532).
The paper reflects only the authors’ views and not the views of the ERC or the European Commission.
The European Union is not liable for any use that may be made of the information contained therein.
Silvia Butti: Work mostly done while at the University of Oxford.
Stanislav Živný: Stanislav Živný was supported by a Royal Society University Research Fellowship.

1 Introduction

The pioneering work of Benczúr and Karger [4] showed that every edge-weighted undirected
graph G = (V,E,w) admits a cut-sparsifier. In particular, assuming that the edge weights are
positive, for every 0 < ε < 1 there exists (and in fact can be found efficiently) a re-weighted
subgraph Gε = (V,Eε ⊆ E,wε) of G with |Eε| = O(ε−2n logn) edges such that

∀S ⊆ V, CutGε(S) ∈ (1± ε)CutG(S),

where n = |V | and CutG(S) denotes the total weight of edges in G with exactly one endpoint
in S. The bound on the number of edges was later improved to O(ε−2n) by Batson, Spielman,
and Srivastava [3]. Moreover, the bound O(ε−2n) is known to be tight by the work of Andoni,
Chen, Krauthgamer, Qin, Woodruff, and Zhang [2].

The original motivation for cut sparsification was to speed up algorithms for cut problems
and graph problems more generally. The idea turned out to be very influential, with several
generalisations and extensions, including, for instance, sketching [1, 2], sparsifiers for cuts in
hypergraphs [9, 11], and spectral sparsification [15, 14, 13, 8, 12].

Filtser and Krauthgamer [7] considered the following natural question: which binary
Boolean CSPs are sparsifiable? In order to state their results as well as our new results, we
will now define binary constraint satisfaction problems.

© Silvia Butti and Stanislav Živný;
licensed under Creative Commons License CC-BY

36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019).
Editors: Rolf Niedermeier and Christophe Paul; Article No. 17; pp. 17:1–17:8

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-0171-2021
mailto:silvia.butti@upf.edu
https://orcid.org/0000-0002-0263-159X
mailto:standa.zivny@cs.ox.ac.uk
https://doi.org/10.4230/LIPIcs.STACS.2019.17
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

17:2 Sparsification of Binary CSPs

An instance of the binary1 constraint satisfaction problem (CSP) is a quadruple I =
(V,D,Π, w), where V is a set of variables, D is a finite set called the domain,2 Π is a set
of constraints, and w : Π → R+ are positive weights for the constraints. Each constraint
π ∈ Π is a pair ((u, v), P), where (u, v) ∈ V 2, called the constraint scope, is a pair of distinct
variables from V , and P : D2 → {0, 1} is a binary predicate. A CSP instance is called
Boolean if |D| = 2, i.e., if the domain is of size two.3

For a fixed binary predicate P , we denote by CSP(P) the class of CSP instances in which
all constraints use the predicate P . Note that if we take D = {0, 1} and P defined on D2 by
P (x, y) = 1 iff x 6= y then CSP(P) corresponds to the cut problem.

We say that a constraint π = ((u, v), P) is satisfied by an assignment A : V → D

if P (A(u), A(v)) = 1. The value of an instance I = (V,D,Π, w) under an assignment
A : V → D is defined to be the total weight of satisfied constraints:

ValI(A) =
∑

π=((u,v),P)∈Π

w(π)P (A(u), A(v)).

For 0 < ε < 1, an ε-sparsifier of I = (V,D,Π, w) is a re-weighted subinstance Iε = (V,D,Πε ⊆
Π, wε) of I such that

∀A : V → D, ValIε(A) ∈ (1± ε) ValI(A).

The goal is to obtain a sparsifier with the minimum number of constraints, i.e., |Πε|.
A binary predicate P is called sparsifiable if for every instance I ∈ CSP(P) on n = |V |

variables and for every 0 < ε < 1 there is an ε-sparsifier for I with O(ε−2n) constraints.
We call a (not necessarily Boolean or binary) predicate P a singleton if |P−1(1)| = 1.
Filtser and Krauthgamer showed, among other results, the following classification. Let P

be a binary Boolean predicate. Then, P is sparsifiable if and only if P is not a singleton.4 In
other words, the only predicates that are not sparsifiable are those with support of size one.

Contributions. As our main contribution, we identify in Theorem 2 the precise borderline
of sparsifiability for binary predicates on arbitrary finite domains, thus extending the work
from [7] on Boolean predicates. Let P be a binary predicate defined on an arbitrary
finite domain D. Then, P is sparsifiable if and only if P does not “contain” a singleton
subpredicate. More precisely, we say that P “contains” a singleton subpredicate if there
are two (not necessarily disjoint) subdomains B,C ⊆ D with |B| = |C| = 2 such that the
restriction of P onto B × C is a singleton predicate.

The crux of Theorem 2 is the sparsifiability part, which is established by a reduction
to cut sparsifiers. Unlike in the classification of binary Boolean predicates from [7], we do
not rely on a case analysis that differs for different sparsifiable predicates but instead give a
simpler argument for all sparsifiable predicates. The idea is to reduce (the graph of) any
CSP instance, as was done in [7], via the so-called bipartite double cover [5]. However, there
is no natural assignment in the reduced graph (as it was in the Boolean case in [7]). In
order to overcome this, we define a graph GP whose edges correspond to the support of the

1 Some papers use the term two-variable.
2 Some papers use the term alphabet.
3 Some papers use the term binary to mean domains of size two. In this paper, Boolean always refers to a

domain of size two and binary always refers to the arity of the constraint(s).
4 Filtser and Krauthgamer use the term valued CSPs for what we defined as CSPs. We prefer CSPs in

order to distinguish them from the much more general framework of valued CSPs studied in [10].

S. Butti and S. Živný 17:3

predicate P . Using a simple combinatorial argument, we show (in Proposition 7) that, under
the assumption that P does not “contain” a singleton subpredicate, the bipartite complement
of GP is a collection of bipartite cliques. This special structure allows us to find a good
assignment in the reduced graph.

In view of Filtser and Krauthgamer’s work [7], one might conjecture that P is sparsifiable
if and only if P is not a singleton. While it is easy to show that if a (possibly non-binary
and non-Boolean) predicate P is a singleton then P is not sparsifiable, our results show
that the borderline of sparsifiability lies elsewhere. In particular, by Theorem 2, there are
binary non-Boolean predicates that are not sparsifiable but are not singletons. Also, there
are non-binary Boolean predicates that are not sparsifiable but are not singletons.

We remark that the term “sparsification” is also used in an unrelated line of work in which
the goal is, given a CSP instance, to reduce the number of constraints without changing
satisfiability of the instance; see, e.g., [6].

2 Classification of Binary Predicates

Throughout the paper we denote by n = |V | the number of variables of a given CSP instance.
The following classification of binary Boolean predicates is from [7].

I Theorem 1 ([7, Theorem 3.7]). Let P : {0, 1}2 → {0, 1} be a binary Boolean predicate. Let
0 < ε < 1.
1. If P is a singleton then there exists an instance I of CSP(P) such that every ε-sparsifier

of I has Ω(n2) constraints.
2. Otherwise, for every instance I of CSP(P) there exists an ε-sparsifier of I with O(ε−2n)

constraints.

We denote by
(
D
2
)

= {B ⊆ D : |B| = 2} the set of two-element subsets of D. For a binary
predicate P : D2 → {0, 1} and B,C ∈

(
D
2
)
, P |B×C denotes the restriction of P onto B × C.

The following is our main result, generalising Theorem 1 to arbitrary finite domains.

I Theorem 2 (Main). Let P : D2 → {0, 1} be a binary predicate, where D is a finite set
with |D| ≥ 2. Let 0 < ε < 1.
1. If there exist B,C ∈

(
D
2
)
such that P |B×C is a singleton then there exists an instance I

of CSP(P) such that every ε-sparsifier of I has Ω(n2) constraints.
2. Otherwise, for every instance I of CSP(P) there exists an ε-sparsifier of I with O(ε−2n)

constraints.

The rest of this section is devoted to proving Theorem 2.
First we introduce some useful notation. We set [r] = {0, 1, . . . , r − 1}. We denote by

X t Y the disjoint union of X and Y . For any r ≥ 2, we define r-Cut : [r]2 → {0, 1} by
r-Cut(x, y) = 1 if and only if x 6= y.

Given an instance I = (V,D,Π, w) ∈ CSP(P), we denote by GI the corresponding graph
of I; that is, GI = (V,E,w) is a weighted directed graph with E = {(u, v) : ((u, v), P) ∈ Π}
and w(u, v) = w((u, v), P). Conversely, given a weighted directed graph G = (V,E,w) and
a predicate P : D2 → {0, 1}, the corresponding CSP(P) instance is IG,P = (V,D,Π, w),
where Π = {(e, P) : e ∈ E} and w(e, P) = w(e). Hence, we can equivalently talk about
instances of CSP(P) or (weighted directed) graphs. Thus, an ε-P -sparsifier of a graph
G = (V,E,w) is a subgraph Gε = (V,Eε ⊆ E,wε) whose corresponding CSP(P) instance
IGε,P is an ε-sparsifier of the corresponding CSP(P) instance IG,P of G.

Case (1) of Theorem 2 is established by the following result.

STACS 2019

17:4 Sparsification of Binary CSPs

I Theorem 3. Let P : D2 → {0, 1} be a binary predicate. Assume that there exist B,C ∈
(
D
2
)

such that P |B×C is a singleton. For any n there is a CSP(P) instance I with 2n variables
and n2 constraints such that for any 0 < ε < 1 it holds that any ε-sparsifier of I has n2

constraints.

Proof. Suppose B = {b, b′}, C = {c, c′} and assume without loss of generality that
P |B×C

−1(1) = {(b, c)}; that is, the support of P |B×C is equal to {(b, c)}. Consider a
CSP(P) instance I = (V,D,Π, w), where

V = X t Y , X = {x1, . . . , xn}, and Y = {y1, . . . , yn};
Π = {πij = ((xi, yj), P) : 1 ≤ i, j ≤ n};
w are arbitrary positive weights.

We have |Π| = n2. We note that B and C may not be disjoint. We consider the family of
assignments Aij : V → B ∪ C for 1 ≤ i, j ≤ n such that Aij(xi) = b, Aij(x) = b′ for every
x ∈ X \ {xi}, Aij(yj) = c, and Aij(y) = c′ for every y ∈ Y \ {yj}. Then, we have

P (Aij(u, v)) =

P (b, c) = 1 if u = xi, v = yj ,

P (b, c′) = 0 if u = xi, v ∈ Y \ {yj},
P (b′, c) = 0 if u ∈ X \ {xi}, v = yj ,

P (b′, c′) = 0 if u ∈ X \ {xi}, v ∈ Y \ {yj}.

Therefore,

ValI(Aij) =
∑
π∈Π

w(π)P (Aij(π)) = w(πij) > 0.

Hence, if Iε = (V,D,Πε, wε) is an ε-sparsifier of I, we must have that πij ∈ Πε for every
1 ≤ i, j ≤ n, as otherwise we would have

ValIε(Aij) =
∑
π∈Πε

wε(π)P (Aij(π)) = 0 /∈ (1± ε) ValI(Aij).

Therefore, we have Πε = Π and hence |Πε| = |Π| = n2. J

The main tool used in the proof of Theorem 1 (2) from [7] is a graph transformation
known as the bipartite double cover [5], which allows for a reduction to cut sparsifiers [3].

I Definition 4. For a weighted directed graph G = (V,E,w), the bipartite double cover of
G is the weighted directed graph γ(G) = (V γ , Eγ , wγ), where

V γ = {v(0), v(1) : v ∈ V };
Eγ = {(u(0), v(1)) : (u, v) ∈ E};
wγ(u(0), v(1)) = w(u, v).

Given an assignment A : V → [r], we let A = (A0, . . . , Ar−1) be the induced r-partition
of V , where Aj = A−1(j). For a binary predicate P : [r]2 → {0, 1} and an instance
I = (V, [r],Π, w) ∈ CSP(P), we define ValI(A) = ValI(A). Moreover, for a weighted directed
graph G and a binary predicate P , we define ValG,P (A) = ValIG,P (A). We denote the set of
all r-partitions of V by Partr(V).

For any r-partition A = (A0, . . . , Ar−1) of the vertices of V , let A(j)
i = {v(j) : v ∈ Ai}.

Thus Aγ = (A(0)
0 , A

(1)
0 , . . . , A

(0)
r−1, A

(1)
r−1) is a 2r-partition of the vertices of V γ .

We use an argument from the proof of Theorem 1 (2) from [7] and apply it to non-Boolean
predicates.

S. Butti and S. Živný 17:5

I Proposition 5. Let P : [r]2 → {0, 1} and P ′ : [r′]2 → {0, 1} be binary predicates. Suppose
that there is a function fP : Partr(V) → Partr′(V γ) such that for any weighted directed
graph G on V and for any r-partition A ∈ Partr(V) it holds that

ValG,P (A) = Valγ(G),P ′(fP (A)),

where γ(G) = (V γ , Eγ , wγ) is the bipartite double cover of G. If there is an ε-P ′-sparsifier
of γ(G) of size g(n) then there is an ε-P -sparsifier of G of size O(g(n)).

Proof. Given G = (V,E,w), let γ(G)ε = (V,Eγε , wγε) be an ε-P ′-sparsifier of the bipartite
double cover γ(G) of G. Define a subgraph Gε = (V,Eε, wε) of G by Eε = {(u, v) :
(u(0), v(1)) ∈ Eγε } and wε(u, v) = wγε (u(0), v(1)). Notice that γ(Gε) = γ(G)ε, Eε ⊆ E, and
Eγ = O(|E|).

Then, we have

ValGε,P (A) = Valγ(Gε),P ′(fP (A))
= Valγ(G)ε,P ′(fP (A)) ∈ (1± ε) Valγ(G),P ′(fP (A)) = (1± ε) ValG,P (A)

and

|Eε| ≤ |Eγε | = O
(|V γ |
ε2

)
= O

(|V |
ε2

)
,

implying that Gε is also an ε-P -sparsifier of G.
Moreover, |Eε| ≤ |Eγε | = g(n) implies |Eε| = O(g(n)). J

We now focus on proving Case (2) of Theorem 2. Assume that for any B,C ∈
(
D
2
)
,

P |B×C is not a singleton. Our strategy is to show that in this case the value of a CSP(P)
instance under any assignment can be expressed as the value of a corresponding CSP(`-Cut)
instance (for some ` ≤ 2|D|) under the same assignment.

For an undirected graph G = (V,E) and a subset U ⊆ V , we denote the vertex-induced
subgraph on U by G[U] and its edge set by E[U]. For a possibly disconnected undirected
graph G, we denote the connected component containing a vertex v by Gv = (V (Gv), E(Gv)).
Finally, we denote the degree of vertex v in graph G by dG(v).

IDefinition 6. Let G = (UtV,E) be an undirected bipartite graph. The bipartite complement
G = (U t V,E) of G has the following edge set:

E = {{u, v} : u ∈ U, v ∈ V, {u, v} /∈ E}.

The following property of bipartite graphs will be crucial in the proof of Theorem 8.

I Proposition 7. Let G = (U tV,E) be a bipartite graph with |U | = |V | = r, r ≥ 2. Assume
that for any u, u′ ∈ U and v, v′ ∈ V we have |E[{u, u′, v, v′}]| 6= 1. Then, for any v ∈ U t V
with dG(v) > 0, Gv is a complete bipartite graph with partition classes {U ∩ V (Gv)} and
{V ∩ V (Gv)}.

Proof. For contradiction, assume that there are u ∈ U and v ∈ V such that {u, v} 6∈ E but
u and v belong to the same connected component of G. Choose u and v with the shortest
possible distance between them. Let u = u0, u1, . . . , uk = v be a shortest path between u and
v in G, where k ≥ 3 is odd. We will show that |E[{u0, u1, uk−1, uk}]| = 3, which contradicts
the assumption that |E[{u0, u1, uk−1, uk}]| 6= 1.

If k = 3 then the claim holds since we assumed that {u0, u1}, {u1, u2}, {u2, u3} ∈ E and
{u0, u3} 6∈ E.

STACS 2019

17:6 Sparsification of Binary CSPs

Let k ≥ 5. We will be done if we show that {u1, uk−1} ∈ E, as by our assumptions
{u0, u1}, {uk−1, uk} ∈ E and {u0, uk} 6∈ E. To this end, note that {u0, uk−2} ∈ E as
otherwise u0 and uk−2 would be a pair of vertices with the required properties but of distance
k− 2, contradicting our choice of u and v. Thus, {u1, uk−1} ∈ E as otherwise we would have
|E[{u0, u1, uk−2, uk−1}]| = 3, which contradicts |E[{u0, u1, uk−2, uk−1}]| 6= 1. J

Case (2) of Theorem 2 is established by the following result.

I Theorem 8. Let P : D2 → {0, 1} be a binary predicate such that for any B,C ∈
(
D
2
)
we

have that P |B×C is not a singleton. Then, for every 0 < ε < 1 and every instance I of
CSP(P) there is a sparsifier of I with O(ε−2n) constraints.

Proof. Let I = (V,D,Π, w) be an instance of CSP(P) with r = |D|. Without loss of
generality, we assume that D = [r]. Let G = GI = (V,E,w) be the corresponding (weighted
directed) graph of I, and let γ(G) = (V γ , Eγ , wγ) be the bipartite double cover of G. Recall
that for an assignment A : V → [r], we denote Ai = A−1(i). Thus, A = (A0, . . . , Ar−1)
forms an r-partition of V .

Our goal is to show the existence of a function fP : Partr(V) → Part`(V γ) (for some
fixed ` ≤ 2r) such that

∀A : V → [r], ValG,P (A) = Valγ(G),`-Cut(fP (A)). (1)

Assuming the existence of fP , we can finish the proof as follows. Batson, Spielman,
and Srivastava established the existence of a sparsifier of size O(ε−2n) for any instance of
CSP(2-Cut) [3]. By [7, Section 6.2], this implies the existence of a sparsifier of size O(ε−2n)
for any instance of CSP(`-Cut). Consequently, by Proposition 5 and (1), there is a sparsifier
of size O(ε−2n) for the instance IG,P = I.

It remains to show the existence of fP satisfying (1).
In the proof of Theorem 1 (2) in [7], such functions are given for a binary Boolean predicate

P with support size |P−1(1)| ∈ {0, 2, 4}. In what follows we give a construction of fP for an
arbitrary binary predicate P : [r]2 → {0, 1} with r ≥ 2 from the statement of the theorem.

Although the bipartite double cover is commonly defined as a directed graph, in this
proof we will consider the undirected bipartite double cover γ(G) of G.5 We also define an
auxiliary graph GP = (V P , EP), where

V P = {v0, v
′
0, . . . , vr−1, v

′
r−1},

EP = {{vi, v′j} : P (i, j) = 1}.

Let ` be the number of connected components of GP , the bipartite complement of GP .
By definition, ` ≤ |V P | = 2r.

We need to find a function fP : Partr(V) → Part`(V γ) that satisfies (1) for all A ∈
Partr(V). Such a function corresponds to a map c : V P → [`] on the vertices of GP with
the following property:

∀i, j ∈ [r]
{
{vi, v′j} ∈ EP =⇒ c(vi) 6= c(v′j)
{vi, v′j} /∈ EP =⇒ c(vi) = c(v′j).

5 We had defined the bipartite double cover as a directed graph. However, here it is easier to deal with
undirected graphs, as since `-Cut is a symmetric predicate, the direction of the edges makes no difference.
Furthermore, notice that by the way the bipartite double cover is constructed, removing the direction
does not turn the graph into a multigraph.

S. Butti and S. Živný 17:7

We call such maps colourings. Indeed, the colouring c induces, for A, an assignment
Aγ : V γ → [`] of the vertices of γ(G) which satisfies

Aγ(u) = c(vA(u)) and Aγ(u′) = c(v′A(u))

and which, in turn, induces a partition {Ui}`−1
i=0 of V γ with Ui = (Aγ)−1(i). We define

fP (A) = (U0, . . . , U`−1). Now for any u, v ∈ V and for any assignment A : V → [r], we have

P (A(u), A(v)) = 1 ⇐⇒ {vA(u), v
′
A(v)} ∈ E

P

⇐⇒ c(vA(u)) 6= c(v′A(v))

⇐⇒ Aγ(u) 6= Aγ(v′)
⇐⇒ `-Cut(Aγ(u), Aγ(v′)) = 1.

Moreover, by the definition of the graph bipartite double cover, we have w(u, v) = wγ(u, v′)
for all u, v ∈ V , implying that

ValG,P (A) = ValG,P (A0, . . . , Ar−1) =
∑

(u,v)∈E

w(u, v)P (A(u), A(v))

=
∑

(u,v′)∈Eγ
wγ(u, v′)`-Cut(Aγ(u), Aγ(v′)) = Valγ(G),`-Cut(Aγ)

= Valγ(G),`-Cut(U0, . . . , U`−1) = Valγ(G),`-Cut(fP (A))

as required.
While a colouring does not exist for an arbitrary bipartite graph, we now argue that a

colouring does exist if the auxiliary graph GP arises from a predicate P from the statement
of the theorem. Since for any B,C ∈

([r]
2
)
we have |P |B×C

−1(1)| 6= 1, GP satisfies the
assumptions of Proposition 7. Therefore, the ` separate connected components which form
its bipartite complement GP are complete bipartite graphs. We can assign one of the `
colours to each connected component to get a colouring for the graph GP . J

3 Conclusion

For simplicity, we have only presented our main result on binary CSPs over a single domain.
However, it is not difficult to extend our result to the so-called multisorted binary CSPs, in
which different variables come with possibly different domains.

We have classified binary CSPs (on finite domains) but much more work seems required
for a full classification of non-binary CSPs. We have made some initial steps.

For any k ≥ 3, the k-ary Boolean “not-all-equal” predicate k-NAE : {0, 1}k → {0, 1} is
defined by k-NAE−1(0) = {(0, . . . , 0), (1, . . . , 1)}. Kogan and Krauthgamer showed that the
k-NAE predicates, which correspond to hypergraph cuts, are sparsifiable [9, Theorem 3.1]. By
extending bipartite double covers for graphs in a natural way to k-partite k-fold covers, we
obtain sparsifiability for the class of k-ary predicates that can be rewritten in terms of k-NAE.
On the other hand, we identify a whole class of predicates that are not sparsifiable, namely
those k-ary predicates that contain a singleton `-cube for some ` ≤ k. However, there are
predicates which do not fall in either of these two categories; that is, predicates that cannot
be proved sparsifiable via k-partite k-fold covers but also cannot be proved non-sparsifiable
via the current techniques. An example of such predicates are the “parity” predicates.

STACS 2019

17:8 Sparsification of Binary CSPs

References
1 Kook Jin Ahn and Sudipto Guha. Graph Sparsification in the Semi-streaming Model. In

Proceedings of the 36th International Colloquium on Automata, Languages and Programming
(ICALP’09), Part II, volume 5556 of Lecture Notes in Computer Science, pages 328–338.
Springer, 2009. doi:10.1007/978-3-642-02930-1_27.

2 Alexandr Andoni, Jiecao Chen, Robert Krauthgamer, Bo Qin, David P. Woodruff, and
Qin Zhang. On Sketching Quadratic Forms. In Proceedings of the 2016 ACM Conference
on Innovations in Theoretical Computer Science (ITCS’16), pages 311–319, 2016. doi:
10.1145/2840728.2840753.

3 Joshua D. Batson, Daniel A. Spielman, and Nikhil Srivastava. Twice-Ramanujan Sparsifiers.
SIAM Journal on Computing, 41(6):1704–1721, 2012. doi:10.1137/090772873.

4 András A. Benczúr and David R. Karger. Approximating s-t Minimum Cuts in Õ(n2) Time.
In Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing
(STOC’96), pages 47–55, 1996. doi:10.1145/237814.237827.

5 Richard A. Brualdi, Frank Harary, and Zevi Miller. Bigraphs versus digraphs via matrices.
Journal of Graph Theory, 4(1):51–73, 1980. doi:10.1002/jgt.3190040107.

6 Hubie Chen, Bart M. P. Jansen, and Astrid Pieterse. Best-case and Worst-case Sparsifiability
of Boolean CSPs. In Proceedings of the 13th International Symposium on Parameterized and
Exact Computation (IPEC’18), 2018. arXiv:1809.06171.

7 Arnold Filtser and Robert Krauthgamer. Sparsification of Two-Variable Valued Constraint
Satisfaction Problems. SIAM Journal on Discrete Mathematics, 31(2):1263–1276, 2017.
doi:10.1137/15M1046186.

8 Wai Shing Fung, Ramesh Hariharan, Nicholas J. A. Harvey, and Debmalya Panigrahi. A
general framework for graph sparsification. In Proceedings of the 43rd ACM Symposium on
Theory of Computing (STOC’11), pages 71–80. ACM, 2011. doi:10.1145/1993636.1993647.

9 Dmitry Kogan and Robert Krauthgamer. Sketching Cuts in Graphs and Hypergraphs. In
Proceedings of the 2015 Conference on Innovations in Theoretical Computer Science (ITCS’15),
pages 367–376, 2015. doi:10.1145/2688073.2688093.

10 Vladimir Kolmogorov, Andrei A. Krokhin, and Michal Rolínek. The Complexity of General-
Valued CSPs. SIAM Journal on Computing, 46(3):1087–1110, 2017. doi:10.1137/16M1091836.

11 Ilan Newman and Yuri Rabinovich. On Multiplicative Lambda-Approximations and Some
Geometric Applications. SIAM Journal on Computing, 42(3):855–883, 2013. doi:10.1137/
100801809.

12 Tasuko Soma and Yuichi Yoshida. Spectral Sparsification of Hypergraphs. In Proceedings of
the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’19), 2019.

13 Daniel A. Spielman and Nikhil Srivastava. Graph Sparsification by Effective Resistances.
SIAM Journal on Computing, 40(6):1913–1926, 2011. doi:10.1137/080734029.

14 Daniel A. Spielman and Shang-Hua Teng. Nearly-linear time algorithms for graph partitioning,
graph sparsification, and solving linear systems. In Proceedings of the 36th Annual ACM
Symposium on Theory of Computing (STOC’04), pages 81–90. ACM, 2004. doi:10.1145/
1007352.1007372.

15 Daniel A. Spielman and Shang-Hua Teng. Spectral Sparsification of Graphs. SIAM Journal
on Computing, 40(4):981–1025, 2011. doi:10.1137/08074489X.

http://dx.doi.org/10.1007/978-3-642-02930-1_27
http://dx.doi.org/10.1145/2840728.2840753
http://dx.doi.org/10.1145/2840728.2840753
http://dx.doi.org/10.1137/090772873
http://dx.doi.org/10.1145/237814.237827
http://dx.doi.org/10.1002/jgt.3190040107
http://arxiv.org/abs/1809.06171
http://dx.doi.org/10.1137/15M1046186
http://dx.doi.org/10.1145/1993636.1993647
http://dx.doi.org/10.1145/2688073.2688093
http://dx.doi.org/10.1137/16M1091836
http://dx.doi.org/10.1137/100801809
http://dx.doi.org/10.1137/100801809
http://dx.doi.org/10.1137/080734029
http://dx.doi.org/10.1145/1007352.1007372
http://dx.doi.org/10.1145/1007352.1007372
http://dx.doi.org/10.1137/08074489X

Tractable QBF by Knowledge Compilation
Florent Capelli
Université de Lille, Inria, UMR 9189 – CRIStAL – Centre de Recherche en Informatique Signal et
Automatique de Lille, F-59000 Lille, France
florent.capelli@univ-lille.fr

Stefan Mengel
CNRS, CRIL UMR 8188, Lens, France
mengel@cril.fr

Abstract
We generalize several tractability results concerning the tractability of Quantified Boolean Formulas
(QBF) with restricted underlying structure. To this end, we introduce a notion of width for structured
DNNF which are a class of Boolean circuits heavily studied in knowledge compilation, a subarea
of artificial intelligence. We then show that structured DNNF allow quantifier elimination with a
size blow-up depending only on the width of the DNNF and not its size. Using known algorithms
transforming restricted CNF-formulas into deterministic DNNF, we apply this result to generalize
several results for counting and decision on QBF. We also complement these results with lower
bounds that show that our definitions and results are essentially optimal in several senses.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases QBF, knowledge compilation, parameterized algorithms

Digital Object Identifier 10.4230/LIPIcs.STACS.2019.18

Related Version A full version of the paper is available at [7], https://arxiv.org/abs/1807.04263.

Funding This work was partially supported by the French Agence Nationale de la Recherche,
AGGREG project reference ANR-14-CE25-0017-01.

Acknowledgements The authors would like to thank Mikaël Monet for helpful comments on an
early version of this paper.

1 Introduction

It is well known that restricting the interaction between variables and clauses in CNF-formulas
makes several hard problems on them tractable. For example, the propositional satisfiability
problem SAT and its counting version #SAT can be solved in time 2O(k)|F | when F is a CNF
formula whose primal graph is of treewidth k [27, 24]. Many extensions of this result have
been shown these last ten years for more general graph measures such as modular treewidth
or cliquewidth [15, 19, 26, 23]. We here generalize in a different direction by considering
decision and counting for quantified Boolean formulas (QBF) with a bounded number of
quantifier alternations, i.e., we consider problems higher up in the polynomial hierarchy than
SAT, resp. higher in the counting hierarchy than #SAT. It is already known that QBF as
well as projected model counting, i.e., model counting for QBF with free variables and one
block of existentially quantified variables, are both fixed-parameter tractable parameterized
by treewidth [8, 14]. Here we generalize both these results by showing that counting the
models of QBF with free variables is fixed-parameter tractable parameterized by treewidth
for any bounded number of quantifier alternations. Moreover, the same is true for the strictly
more general parameter of signed cliquewidth [15].

Our approach to showing these results is completely different from those used so far in
the literature for treewidth restrictions of problems harder than the NP, resp. #P: we do
not perform dynamic programming as e.g. in [8, 14, 12, 1]. Instead, we encode all models

© Florent Capelli and Stefan Mengel;
licensed under Creative Commons License CC-BY

36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019).
Editors: Rolf Niedermeier and Christophe Paul; Article No. 18; pp. 18:1–18:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:florent.capelli@univ-lille.fr
mailto:mengel@cril.fr
https://doi.org/10.4230/LIPIcs.STACS.2019.18
https://arxiv.org/abs/1807.04263
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

18:2 Tractable QBF by Knowledge Compilation

Structured CNF F with
parameter k

d-DNNF D0:
– D0 ≡ F
– width w0 = f(k)
– size w0 · |F |

d-DNNF Dt:
– Dt ≡ QtXt . . . Q1X1.F
– width wt = 2wt−1 =

2·
··
2w0

– size wt · |F |

Solve #SAT on Dt

Compilation [3, 9]

Quantification by Q1X1 (Theorem 5)

Iterate quantification
Query

Figure 1 The overall scheme for proving tractability results on structured quantified CNF.

of the underlying CNF-formula of the given QBF into a data structure called complete
structured d-DNNF [21], a class of circuits originating from knowledge compilation, a subarea
of artificial intelligence [11]. Afterwards, we perform quantifier elimination on this data
structure. When all quantifiers are eliminated, we can answer the query on the input QBF
by standard algorithms for d-DNNF. Figure 1 illustrates the overall strategy.

One crucial advantage of our approach is that the first step, the transformation into
d-DNNF also called compilation, is essentially already solved in the literature: in [3], Bova et
al. recently showed that the traces of most known algorithms for structural restrictions of
#SAT are essentially d-DNNF. Thus we can take these algorithms as building blocks and get
the compiled representations for free without doing any additional dynamic programming.

It thus only remains to eliminate quantifiers on d-DNNF. Unfortunately, there are
unconditional, exponential lower bounds showing that in general quantifier elimination on
d-DNNF is impossible without blowing up the size of the representation [22]. We avoid this
problem by identifying a notion of width for complete structured d-DNNF that is modeled
after the classical width of complete OBDD. We go on to show that the size explosion during
the quantifier elimination is in fact not in the size of the input but only in its width by giving
a relatively simple algorithm inspired by determinization of finite automata. Since several of
the compilation algorithms mentioned above yield d-DNNF whose width is independent of
the input size, we get an algorithm for several restricted classes of QBF.

The resulting algorithm can be used to show that the number of models of a partially
quantified CNF-formula F of treewidth k with t blocks of quantifiers can be computed

in time 2··
·2

O(k)

|F | with t + 1 exponentiations. This generalizes the result of [8] where
the fixed-parameter tractability of QBF on such formulas was shown with a comparable
complexity. Moreover, it generalizes the very recent result of [14] on model counting in the
presence of a single existential variable block. Finally, our algorithm also applies to the more
general notions of incidence treewidth and signed cliquewidth.

We complement our algorithm with lower bounds that show that our construction is
essentially optimal in several respects.

The paper is organized as follows: Section 2 introduces the necessary preliminaries.
Section 3 showcases our approach in a simple setting by proving that quantifier elimination
can be efficiently done on small width complete OBDD. Section 4 first introduces our
width notion on complete structured d-DNNF, shows some of its basic properties and then
generalizes the result of Section 3 in this setting, giving our main result. The rest of the
paper is dedicated to corollaries of this result proven in Section 4 and explores the limits

F. Capelli and S. Mengel 18:3

and optimality of our approach. Section 5 is dedicated to proving parameterized tractability
results for QBF. Section 6 contains several results showing that our definition of bounded
width d-DNNF cannot be weakened in several directions while still supporting efficient
quantifier elimination. Finally, we close with a conclusion.

2 Preliminaries

By exp`(p) we denote the iterated exponentiation function that is defined by exp0(p) := p

and exp`+1(p) := 2exp`(p).

CNF and QBF. We assume that the reader is familiar with the basics of Boolean logic and
fix some notation. For a Boolean function F and a partial assignment τ to the variables of
F , denote by F [τ] the function we get from F by fixing the variables of τ according to τ .
For two assignments τ, σ on disjoint sets of variables we write τ ∪ σ for the assignment on all
variables of τ and σ that extends both of the assignments. A literal is a Boolean variable or
its negation. A clause is a disjunction of literals and finally a formula in conjunctive normal
form (short CNF formula) is a conjunction of clauses. We define the size |C| of a clause
C as the number of literals appearing in it. The size |F | of a formula F is then defined as∑

C |C| where the sum is over the clauses in F .
A Quantified Boolean Formula (short QBF) F = Q1X1Q2X2 . . . Q`X` F

′ is a CNF
formula F ′ together with a quantified prefix Q1X1Q2X2 . . . ∃X` where X1, . . . , X` are disjoint
subsets of variables of F ′, Qi is either ∃ or ∀ and Qi+1 6= Qi. The number of blocks ` is
called the quantifier alternation. W.l.o.g, we assume that Q`, the most nested quantifier,
is always an ∃-quantifier. The quantified variables of F are defined as

⋃`
i=1Xi and the free

variables of F are the variables of F that are not quantified. A quantified CNF naturally
induces a Boolean function on its free variables.

Representations of Boolean functions. We present several representations studied in the
area of knowledge compilation in a rather succinct fashion. For more details and discussion,
the interested reader is referred to [11, 21].

A Boolean circuit C is defined to be in negation normal form (short an NNF) if ¬-gates
appear in it only directly above the inputs. We assume that in all circuits we consider all
∧-gates have exactly two inputs while all ∨-gates have an arbitrary positive number of inputs.
An ∧-gate in an NNF is called decomposable if, for its inputs g1, g2 the subcircuits rooted
in g1 and g2 are on disjoint variable sets. A circuit in decomposable negation normal form
(short a DNNF) is an NNF in which all gates are decomposable [9]. An ∨-gate g in an NNF
is called deterministic if there is no assignment to the variables of the circuit that makes two
children of g true. A DNNF is said to be deterministic (short a d-DNNF) if all its ∨-gates
are deterministic.

A binary decision diagram (short BDD) is a directed acyclic graph with the following
properties: there is one source and two sinks, one of each labeled with 0 and 1. The non-sink
nodes are labeled with Boolean variables and have two outgoing edges each, one labeled with
0 the other with 1. A BDD B computes a function as follows: for every assignment a to the
variables of B, one constructs a source-sink path by starting in the source and in every node
labeled with a Boolean variable X following the edge labeled with a(X). The label of the
sink reached this way is then the value computed by B on a.

A BDD is called a free BDD (short FBDD) if on every source-sink path every variable
appears at most once. If on every path the variables are seen in a fixed order π, then the
FBDD is called an ordered BDD (short OBDD).

STACS 2019

18:4 Tractable QBF by Knowledge Compilation

An FBDD is called complete if on every source-sink path every variable appears exactly
once. This notion also applies to OBDD in the obvious way. A layer of a variable X in a
complete OBDD B is the set of all nodes labeled with X. The width of B is the maximum
size of its layers. Note that for every OBDD one can construct a complete OBDD computing
the same function in polynomial time, but it is known that it is in general unavoidable
to increase the number of nodes labeled by a variable by a factor linear in the number of
variables [2].

For any representation D of a Boolean function in one of the above forms, we denote by
var(D) the set of variables appearing in D.

Graphs of CNF formulas. There are two graphs commonly assigned to CNF formulas: the
primal graph of a CNF formula F is the graph that has as its vertices the variables of F
and there is an edge between two vertices x, y if and only if there is clause in F where both
variables x and y appear. The incidence graph of F has as vertices the variables and the
clauses of F and there is an edge between two nodes x and C if and only if x is a variable, C
is a clause, and x appears in C.

We will consider several width measures on graphs like treewidth and pathwidth. Since
we do not actually need the definitions of these measures but only depend on known results
on them, we spare the readers these rather technical definitions and give pointers to the
literature in the respective places.

3 Warm-up: Quantification on OBDD

In this section, we will illustrate the main ideas of our approach on the simpler case of OBDD.
To this end, fix an OBDD G in variables x1, . . . , xn in that order. Now let Z be a set of
variables. We want to compute an OBDD that encodes ∃Z G, i.e., we want to forget the
variables in Z.

Note that it is well-known that OBDD do not allow arbitrary forgetting of variables
without an exponential blow-up, see [11]. Here we make the observation that this exponential
blow-up is in fact not in the size of the considered OBDD but in the width which for many
interesting cases is far lower.

I Lemma 1. Let G be a complete OBDD of width w and Z be a subset of its variables. Then
there is an OBDD of width at most 2w that computes the function of ∃Z G.

Proof. The technique is essentially the power set construction used in the determinization
of finite automata. Let Vx for a variable x denotes the set of nodes labeled by x. For every
x not in Z, our new OBDD G′ will have a node NS labeled by x for every subset S ⊆ Vx.
The invariant during the construction will be that a partial assignment a to the variables
in var(G) \ Z that come before x in G leads to NS if and only if S is the set of nodes in
Vx which can be reached from the source by an extension of a on the variables of Z. We
make the same construction for the 0- and 1-sink of G: G′ gets three sinks 0, 1 and 01 which
encode which sinks of G can be reached with extensions of an assignment a. Note that if we
can construct such a G′, we are done by merging the sinks 1 and 01.

The construction of G′ is fairly straightforward: consider a variable x not in Z and let
x′ be the next variable not in Z. For every node N ∈ Vx, we compute the set of nodes N+

labeled with x′ that we can reach by following the 1-edge of N and the set of N− nodes
labeled with x′ that we can reach by following the 0-edge of N . Then, for every S ⊆ Vx

we define the 1-successor of NS as NS′ where S′ =
⋃

N∈S N
+. The 0-successors are defined

analogously. J

F. Capelli and S. Mengel 18:5

We remark that in [13] a related result is shown: for a CNF-formula F of pathwidth
k and every subset Z of variables, one can construct an OBDD of size 22k |F | computing
∃Z F . This result follows easily from Lemma 1 by noting that for a CNF F of pathwidth
k one can construct a complete OBDD of width 2k. We note that our approach is more
flexible than the result in [13] because we can iteratively add more quantifier blocks since
∀Z D ≡ ¬(∃Z¬D) and negation in OBDD can be easily performed without size increase.
For example, one directly gets the following corollary.

I Corollary 2. There is an algorithm that, given a QBF restricted to ` quantifier alternations
and of pathwidth k, decides if F is true in time O(exp`(p)|F |).

Note that Corollary 2 is already known as it is a special case of the corresponding result
for treewidth in [8]. However, we will show that a similar approach to that of Lemma 1
can be used to derive several generalizations of the result of [8]: we show that we can
add quantification to bounded width structured d-DNNF, a generalization of OBDD (see
Section 4). Since several classes of CNF formulas are known to yield bounded width structured
d-DNNF [3], this directly yields QBF algorithms for these classes, see Section 5 for details.

4 Bounded width complete structured DNNF

Before formulating and proving our main result, we first introduce our central data structure
called complete structured DNNF as a generalization of OBDD and a restriction of the
structured DNNF from [21]. We introduce a width notion for it and show how to deal
with constants in the setting. After these preparations, we then show our main result on
eliminating quantifiers in Section 4.4.

4.1 Complete structured DNNF
A vtree T for a set of variables X is a rooted tree where every non-leaf node has exactly two
children and the leaves of T are in one-to-one correspondence with X. A complete structured
DNNF (D,T, λ) is a DNNF D together with a vtree T for var(D) and a labeling λ of the
nodes of T with sets of gates of D such that:

If t is a leaf of T labeled with variable x ∈ X then λ(t) contains only input gates of D
labeled with either x, ¬x.
For every gate u of D, there exists a unique node tu of T such that u ∈ λ(tu).
There is no non-leaf node t of T such that λ(t) contains an input gate of D.
For every ∧-gate u with inputs v1, v2, we have tv1 6= tv2 .
For every edge (u, v) of D:

Either v is an ∧-gate, u is an ∨-gate or an input gate and tu is the child of tv.
Or v is an ∨-gate, u is an ∧-gate and tu = tv.

Intuitively, T can be seen as a coarse structure of D, as depicted on Figure 2: We structure
the gates of D into blocks λ(t) that are associated to nodes t of T . Every such λ(t) computes
a 2DNF where every term has one input from λ(t1) and λ(t2), respectively, where t1, t2 are
the children of t. In the following, when we do not directly deal with vtree and its labeling,
we may refer to a complete structured DNNF (D,T, λ) by only mentioning the circuit D. It
is then always understood that T and λ with the desired properties exist.

We note that there is a syntactic transformation of complete OBDD into complete
structured d-DNNF. It proceeds iteratively from the sinks to the source introducing a gate
gv for every node v: for every sink, gv is an input gate with the same label as the sink. For
every other node v with label x, a 0-edge to u and a 1-edge to u′, we introduce a subcircuit

STACS 2019

18:6 Tractable QBF by Knowledge Compilation

v

u′

wz

u

yx

∨

∧∧

∨

∧

∨

∧

∨

∧∧

x ¬x y ¬y z ¬z w ¬w

Figure 2 A vtree T and a complete structured DNNF (D,T, λ), where λ for the nodes v, u, w is
represented with colors and dashed arrows.

computing (gu ∧ ¬x) ∨ (gu′ ∧ x). It is easy to check that the resulting circuit is a structured
complete d-DNNF computing the right function and whose vtree consists of a tree in which
for every internal node one of the children is a leaf1.

4.2 Width
We define the width of a complete structured DNNF (D,T, λ) as maxt∈V (T) |{v ∈ λ(t) |
v is an ∨-gate}|. For example, the DNNF pictured on Figure 2 has width 2 since λ(u)
contains 2 ∨-gates and λ(u′) and λ(v) contain less ∨-gates.

Note that for the width we do not take into account ∧-gates. This is for several reasons:
first, only considering ∨-gates simplifies some of the arguments later on and gives cleaner
results and proofs. Moreover, it is not hard to see that when rewriting OBDD as DNNF
as sketched above, the width of the original OBDD is exactly the width of the resulting
circuit. The same is also true for the width of SDD [5], another important representation
of Boolean functions [10]. Thus, width defined only on ∨-gates allows a tighter connection
to the literature. Finally, the following observation shows that the number of ∧-gates in a
complete structured DNNF as we define it is highly connected to the width.

I Observation 3. Let (D,T, λ) be a complete structured DNNF of width w ≥ 2. We can in
linear time in |D| compute a complete structured DNNF (D′, T, λ′) of width w and equivalent
to D such for every node t of T , we have |λ′(t)| ≤ (w2 +w). Moreover, D′ is of size at most
2(w + w2)|var(D)|.

Proof. For the first statement, note that by definition there are at most w ∨-gates in λ(t).
Now, the inputs of every ∧-gate of λ(t) are either ∨-gates or input gates in λ(t1) and λ(t2)
where t1, t2 are the children of t in T . Thus, there are at most w2 possible ways of connecting
these ∧-gates to their inputs. So if we eliminate ∧-gates that have identical inputs and keep
for every combination at most one of them, we get D′ with the desired size bound on λ′(t).
However, we can neither naively compare the children of all ∧-gates nor order the ∧-gates by
their children to eliminate ∧-gates with identical inputs since both approaches would violate
the linear time requirement.

1 Note that strictly speaking the constructed circuit is not a complete structured d-DNNF as defined
above because it contains constants as input gates. This slight complication will be taken care of in
Lemma 4 below.

F. Capelli and S. Mengel 18:7

To avoid this slight complication, we proceed as follows: in a first step, we count the
∧-gates in λ(t). If there are at most w2 of them, we satisfy the required upper bound, so we
do nothing. Otherwise, we create an array of size w2 indexed by the pairs of potential inputs
of ∧-gates in λ(t). We initialize all cells to some null-value. Now we iterate over the ∧-gates
in λ(t) and do the following for every such gate u: if the cell indexed by the children of u
is empty, we store u in that cell and continue. If there is already a gate u′ in the cell, we
connect all gates that u feeds into to u′ and delete u afterwards. It is easy to see that the
resulting algorithm runs in linear time, computes a D′ equivalent to D and satisfies the size
bounds on λ(t).

Since T is a tree where every node but the leaves has exactly 2 children, the number
of nodes in T is at most 2|var(D)|. Now, because of |λ′(t)| ≤ w2 + w for every t in T , the
bound on |D′| follows directly. J

We remark that complete structured DNNF as defined above are more restrictive than
structured DNNF as defined in [21]. The definition of [21] only gives a condition on the way
decomposable ∧-gates can partition variables, following the vtree. However, it is possible to
to extend the classical construction to turn any OBBD into a complete one to transform any
structured DNNF in the sense of [21] into the form we define above with only a polynomial
increase in size. However, even for OBDD this rewriting may increase the width arbitrarily
at least when not changing the order [2]. Moreover, the construction for structured DNNF is
rather tedious and complicated, so we will not follow this direction here.

4.3 Eliminating Constants
Our definition of complete structured DNNF does not allow constant inputs. This is in general
not a problem as constants can be propagated in the circuits and thus eliminated. However,
it is not directly clear how this propagation affects the width in our setting. Moreover, most
of our algorithms are easier to describe by allowing constants. So let us spend some time
to deal with constants in our setting. To this end, we introduce the notion of extended
vtrees. An extended vtree T on a variable set X is defined as a vtree in which we allow some
leaves to be unlabeled. Every variable of X must be the label of exactly one leaf still. A
complete structured DNNF (D,T, λ) is defined as for an extended vtree with the additional
requirement that for every unlabeled leaf ` of T , λ(`) is a set of constant inputs of D.

We now show that we can remove the unlabeled leaves without increasing the width.

I Lemma 4. There is a linear time algorithm that, given a complete structured DNNF
(resp. d-DNNF) (D,T, λ) of width w where T is an extended vtree, computes a complete
structured DNNF (resp. d-DNNF) (D′, T ′, λ′) of width w that is equivalent to D where T ′ is
non-extended.

Proof. Given an extended vtree T and a leaf `, let T \ ` be the vtree obtained by removing
the leaf ` of T and by merging the father and the sibling of ` in T . We first show that there
is an algorithm that, given a complete structured DNNF (resp. d-DNNF) (D,T, λ) of width
w and a non-labeled leaf ` of T , computes in linear time in |λ(t)| an equivalent complete
structured DNNF (D′, T \ `, λ′) of width at most w. Iterating the construction and observing
that every λ(t) is treated only once, we get the claim of the lemma.

Let t be the father and ts the sibling of ` in T . We let t′ be the vertex of T \ ` obtained
by merging t and ts (see Figure 3). The idea of the transformation is depicted on Figures 4.

By definition, all gates of λ(t) that are connected to gates in λ(`) are ∧-gates. We remove
every ∧-gate of λ(t) connected to constant 0 as they are equivalent to 0 and are connected

STACS 2019

18:8 Tractable QBF by Knowledge Compilation

. . .

t

ts `

. . .

t′

Figure 3 The trees T and T \ ` with notations.

to ∨-gates of λ(t). We next deal with the ∧-gates of λ(t) connected to the constant 1. For
every such gate v, we connect its other input to all outputs of v which by definition are all
∨-gates in λ(t). This does not change the functions computed by the outputs of v and does
not affect the determinism of the DNNF.

If ts is not a leaf of T , then ∨-gates of λ(t) are connected to ∨-gates of λ(ts). Without
changing the function computed nor determinism, we can connect the ∨-gates of λ(t) directly
to the input of its inputs and thus remove every ∨-gate of λ(ts). Now the circuit has the
following form: ∨-gates of λ(t) are connected to ∧-gates of λ(ts). We thus define λ′(t′) as
the remaining ∨-gates of λ(t) and ∧-gates of λ(ts) and get a complete structured DNNF for
T \ `. The number of ∨-gates in λ(t′) is less than in λ(t) so the width has not increased.

If ts is a leaf labeled by a variable x, then every ∨-gate g in λ(t) is connected to input
gates in x and thus they compute either x, or ¬x or ¬x ∨ x. In the former two cases, we
simply substitute g by x or ¬x respectively. If g computes ¬x ∨ x, then do for every ∧-gate
g′ that has g as an input the following: create a clone g′′ of g′, i.e., a new ∧-gate that has
the same inputs and outputs as g′. Then substitute the input g of g′ by ¬x and by x for
g′′. Since all gates that have g′ as an input are ∨-gates, this does not change the function
computed in these values. Finally, delete g. Doing this for all g, we delete all ∧-gates in λ(t).
Now setting λ′(t) to contain the newly introduced input gates completes the construction.
Obviously, the number of ∨-gates in λ′(t∗) is never bigger than that in λ(t∗).

Finally, if ts is an unlabeled leaf, then all ∨-gates in λ(t) compute constants. Substituting
them by those constants and defining λ′(T ′) in the obvious way, completes the the proof. J

4.4 Existential quantification on bounded width d-DNNF
In this section, we give an algorithm that allows us to quantify variables in d-DNNF. The
main result is the following.

I Theorem 5. There is an algorithm that, given a complete structured DNNF (D,T, λ)
of width w and Z ⊆ var(D), computes in time 2O(w)|D| a complete structured d-DNNF
(D′, T ′, λ′) of width at most 2w having a designated gate computing ∃Z D and another
designated gate computing ¬∃Z D.

In the rest of this section, we will prove Theorem 5. Let (D,T, λ) be a complete structured
DNNF. Let X = var(D), the variables Z ⊆ X those that we will quantify and w the width
of D.

Given a node t of T , let var(t) be the set of variables which are at the leaves of the subtree
of T rooted in t. We define forgot(t) := Z ∩ var(t) and kept(t) := var(t) \ forgot(t). Intuitively,
forgot(t) contains the set of variables that are quantified away below t while kept(t) contains
the remaining variables under t. Let Dv for a gate v denote the sub-DNNF of D rooted in v.

F. Capelli and S. Mengel 18:9

∨

∧∧∧

t

∨

∧

∨

∧

ts

∨

∧

∨

∧

∨

∧

.
1 1 0

`

(a) Original circuit.

∨

∧∧

t

∨

∧

∨

∧

ts

.

(b) Propagating constants. The
rightmost part evaluates to 0
and disappears.

∨

∧ ∧

t′

.

(c) Merging ts and t
and cleaning discon-
nected gates.

Figure 4 Illustration of the transformation of Lemma 4. The constants are propagated in the
first step to remove gates in bag `. Then the bags of ts and t are merged without changing the
computed function.

Shapes. A key notion for our algorithm will be what we call shapes. Let t be a node of
T and let Ot be the set of ∨-gates of D labeling t. An assignment τ : kept(t)→ {0, 1} is of
shape S ⊆ Ot if and only if

S = {s ∈ Ot | ∃σ : forgot(t)→ {0, 1}, τ ∪ σ |= Ds}.

We denote by Shapet ⊆ 2Ot the set of shapes of a node t. Observe that |Shapet| ≤ 2|Ot| ≤
2w since |Ot| ≤ w by definition.

The key observation is that Shapet can be inductively computed. Indeed, let t be a node
of T with children t1, t2 and let S1 ∈ Shapet1 , S2 ∈ Shapet2 . We define S1 ./ S2 ⊆ Ot to be
the set of gates s ∈ Ot that evaluate to 1 once we replace every gate in S1 and S2 by 1 and
every gate in Ot1 \ S1 and Ot2 \ S2 by 0.

I Lemma 6. Let t be node of T with children t1, t2. Let τ1 : kept(t1)→ {0, 1} be of shape
S1 and τ2 : kept(t2)→ {0, 1} be of shape S2. Then τ = τ1 ∪ τ2 is of shape S1 ./ S2.

Proof. Let S be the shape of τ . We first prove S ⊆ S1 ./ S2. So let s ∈ S. Since τ is of
shape S, there exists σ : forgot(t)→ {0, 1} such that τ ∪ σ satisfies Ds. Since s is an ∨-gate,
there must be an input gate s′ of s such that τ ∪ σ satisfies s′. By definition, s′ is an ∧-gate
with two children s1 ∈ Ot1 and s2 ∈ Ot2 . Thus Ds1 is satisfied by (τ ∪σ)|var(t1) = τ1∪σ|var(t1).
Consequently, s1 ∈ S1 since S1 is the shape of τ1. Similarly s2 ∈ S2. Thus, in the construction
of S1 ./ S2, both s1 and s2 are replaced by 1, so s evaluates to 1, that is, s ∈ S1 ./ S2.

We now show that S1 ./ S2 ⊆ S. So let s ∈ S1 ./ S2. Then, in the construction of
S1 ./ S2, there must be an input s′ of s that is satisfied. Then s′ is an ∧-gate with children
s1 ∈ Ot1 , s2 ∈ Ot2 evaluating to 1. It follows that s1 and s2 have been replaced by 1 in
the construction of S1 ./ S2. Now by definition of S1, there exists σ1 : forgot(t1) → {0, 1}
such that τ1 ∪ σ1 satisfies Ds1 and σ2 : forgot(t2) → {0, 1} such that τ2 ∪ σ2 satisfies Ds2 .
Thus, (τ1 ∪ σ1) ∪ (τ2 ∪ σ2) = τ ∪ (σ1 ∪ σ2) is well-defined because σ1 and σ2 do not share
any variables because s′ is decomposable. Moreover, τ ∪ (σ1 ∪ σ2) satisfies Ds and thus we
have s ∈ S. J

STACS 2019

18:10 Tractable QBF by Knowledge Compilation

Constructing the projected d-DNNF. We now inductively construct a d-DNNF D′ com-
puting ∃Z D and of width at most 2w. The extended vtree T ′ for D′ is obtained from T

by removing the labels of the leaves corresponding to variables in Z. One can then apply
Lemma 4 to obtain a vtree. We inductively construct for every node t of T and S ∈ Shapet,
an ∨-gate vt(S) in D′ such that D′vt(S) accepts exactly the assignments of shape S and we
will define λ′(t) =

⋃
S∈Shapet

vt(S).
If t is a leaf of T , then kept(t) has at most one variable, thus we have at most two

assignments of the form kept(t) → {0, 1}. We can thus try all possible assignments to
compute Shapet explicitly and vt(S) will either be a literal or a constant for each S ∈ Shapet.
We put vt(S) in λ′(t′) where t′ is the leaf of T ′ corresponding to t. It is clear that if t′ is
labeled with variable x then vt(S) is a literal labeled by x or by ¬x. If t′ is unlabeled, then
it corresponds to a leaf t of T labeled with a variable of Z. Thus vt(S) is a constant input so
the conditions of structuredness are respected.

Now let t be a node of T with children t1, t2 and assume that we have constructed vt1(S1)
for every S1 ∈ Shapet1 and vt2(S2) for every S2 ∈ Shapet2 . We define vt(S) as:∨

S1,S2:S=S1./S2

vt1(S1) ∧ vt2(S2)

where S1, S2 run over Shapet1 and Shapet2 respectively.
First of all, observe that the ∧-gates above are decomposable since D′vt1 (S1) is on variables

kept(t1) which is disjoint from kept(t2), the variables of D′vt2 (S2).
Moreover, observe that the disjunction is deterministic. Indeed, by induction, τ satisfies

the term vt1(S1) ∧ vt2(S2) if and only if τ |var(t1) is of shape S1 and τ |var(t2) is of shape S2.
Since an assignment has exactly one shape, we know that τ cannot satisfy another term of
the disjunction.

Finally, we have to show that vt(S) indeed computes the assignments of shape S. This is
a consequence of Lemma 6. Indeed, if τ is of shape S then let S1, S2 be the shapes of τ |var(t1)
and τ |var(t2) respectively. By Lemma 6, S = S1 ./ S2 and then τ |= vt1(S1) ∧ vt2(S2), and
then, τ |= vt(S).

Now, if τ |= vt1(S1) ∧ vt2(S2) for some S1 and S2 in the disjunction, then we have by
induction that τ |var(t1) and τ |var(t2) are of shape S1 and S2 respectively. By Lemma 6, τ is of
shape S1 ./ S2 = S.

Let t′ be the node of T ′ corresponding to t. We put all gates needed to compute vt(S)
in λ′(t′) for every S. This has the desired form: a level of ∨-gate, followed by a level of
∧-gate connected to ∨-gates in λ′(t′1) and λ′(t′2). By construction, the width of the d-DNNF
constructed so far is maxt |Shapet| ≤ 2w.

Now assume that we have a d-DNNFD0 with a gate vt(S) for every t and every S ∈ Shapet

computing the assignments of shape τ . Let r be the root of T . We assume w.l.o.g. that the
root of D is a single ∨-gate ro connected to every ∧-gate labeled by r. Then vr({ro}) accepts
exactly ∃ZD and vr(∅) accepts ¬∃Z D.

5 Algorithms for graph width measures

In this section, we will show how we can use the result of Section 4 in combination with
known compilation algorithms to show tractability results for QBF with restricted underlying
graph structure and bounded quantifier alternation. This generalizes the results of [8, 13, 14].

We use the following result which can be verified by careful analysis of the construction
in [9, Section 3]; for the convenience of the reader we give an independent proof in the long
version of this paper [7].

F. Capelli and S. Mengel 18:11

I Theorem 7. There is an algorithm that, given a CNF F of primal treewidth k, computes
in time 2O(k)|F | a complete structured d-DNNF D of width 2O(k) equivalent to F .

We lift Theorem 7 to incidence treewidth by using the following result from [17].

I Proposition 8. There is an algorithm that, given a CNF-formula F of incidence treewidth k,
computes in time O(2k|F |) a 3CNF-formula F ′ of primal treewidth O(k) and a subset Z of
variables such that F ≡ ∃ZF ′.

I Corollary 9. There is an algorithm that, given a CNF F formula of incidence treewidth k,
computes in time 2O(k)|F | a complete structured d-DNNF D of width 2O(k) and a subset Z
of variables such that F ≡ ∃ZD.

Note that in [3] there is another algorithm that compiles bounded incidence treewidth
into d-DNNF without introducing new variables that have to be projected away to get the
original function. The disadvantage of this algorithm though is that the time to compile is
quadratic in the size of F . Since we are mostly interested in QBF in which the last quantifier
block is existential, adding some more existential variables does not hurt our approach, so
we opted for the linear time algorithm we get from Corollary 9.

Now using Theorem 5 iteratively, we directly get the following result.

I Theorem 10. There is an algorithm that, given a QBF F with free variables, ` quantifier
blocks and of incidence treewidth k, computes in time exp`+1(O(k))|F | a complete structured
d-DNNF of width exp`+1(O(k)) accepting exactly the models of F .

Proof. Let F = Q1X1 . . . ∃X`G. We use Corollary 9 to construct a structured DNNF D of
width 2O(k) such that G ≡ ∃ZD, that is F ≡ Q1X1 . . . ∃(X`∪Z)D. Assume first that Q1 = ∀.
Then using the fact that for every formula F ′ we have ∀XF ′ ≡ ¬∃¬F ′, we can rewrite this
into F ≡ ¬∃X1(¬∃X2(¬ . . . (¬∃(X` ∪ Z)G) . . .)). We now use Theorem 5 to iteratively from
the right eliminate all blocks ¬∃Xi. The result is a complete structured d-DNNF accepting
exactly the models of F . If Q1 = ∃, we apply essentially the same construction with the
only difference that there is no negation in front of the formula which can be also dealt with
using Theorem 5. Each application of Theorem 5 blows the width of the circuit by a single
exponential, resulting in the stated complexity. J

As an application of Theorem 10, we give a result on model counting.

I Corollary 11. There is an algorithm that, given a QBF F with free variables, ` quantifier
blocks and of incidence treewidth k, computes in time exp`+1(O(k))|F | the number of models
of F .

We remark that Corollary 11 generalizes several results from the literature. On the one
hand, it generalizes the main result of [8] from decision to counting, from primal treewidth
to incidence treewidth and gives more concrete runtime bounds2. On the other hand, it
generalizes the counting result of [14] from projected model counting, i.e., QBF formulas with
free variables and just one existential quantifier block, to any constant number of quantifier
alternations. Moreover, our runtime is linear in |F | in contrast to the runtime of [14] which
is quadratic.

As a generalization of Theorem 10, let us remark that there are compilation algorithms for
graph measures beyond treewidth. For example, it is known that CNF formulas of bounded
signed cliquewidth [15] can be compiled efficiently [3]. More exactly, there is an algorithm

2 We remark that the latter two points have already been made recently in [17].

STACS 2019

18:12 Tractable QBF by Knowledge Compilation

that compiles a CNF formula F of signed incidence cliquewidth k in time 2O(k)|F |2 into
a structured d-DNNF of size 2O(k)|F |. We will not formally introduce signed incidence
cliquewidth here but refer the reader to [15, 6]. Inspecting the proof of [3], one can observe
that the algorithm construct a complete structured d-DNNF of width at most 2O(k) which
as above yields the following result.

I Theorem 12. There is an algorithm that, given a QBF F with free variables, with `

quantifier blocks and of signed incidence cliquewidth k, computes in time exp`+1(O(k))|F |+
2O(k)|F |2 a complete structured d-DNNF of width exp`+1(O(k)) accepting exactly the models
of F .

With Theorem 12 it is now an easy exercise to derive generalizations of [8, 14, 15].
In the light of the above positive results one may wonder if our approach can be pushed

to more general graph width measures that have been studied for propositional satisfiability
like for example modular treewidth [20] or (unsigned) cliquewidth [26]. Using the results
of [18], we can answer this question negatively in two different ways: on the one hand, QBF
of bounded modular cliquewidth and bounded incidence cliquewidth with one quantifier
alternation is NP-hard, so under standard assumptions there is no version of Theorem 10
and thus also not of Corollary 9 for cliquewidth. On the other hand, analyzing the proofs
of [18], one sees that in fact there it is shown that for every CNF formula F there is a
bounded modular treewidth and bounded incidence cliquewidth formula F ′ and a set Z of
variables such that F ≡ ∃ZF ′. Since it is known that there are CNF formulas that do not
have subexponential size DNNF [4], it follows that there are such formulas F ′ such that
every DNNF representation of ∃ZF ′ has exponential width. This unconditionally rules out a
version of Corollary 9 and Theorem 12 for modular treewidth or cliquewidth.

6 Lower Bounds

In this section, we will show that all restrictions we put onto the DNNF in Theorem 5 are
necessary.

6.1 The definition of width
Width of an OBDD is usually defined on complete OBDD. There is however another way of
defining width for OBDD by just counting the number of nodes that are labeled with the
same variable which for a non-complete OBDD might be far smaller. Let us call this notion
weak width. We will show that width in Theorem 5 cannot be substituted by weak width.

I Lemma 13. For every n there is an OBDD Dn in O(n) variables of weak width 3 and a
set Z ⊆ var(Dn) such that ¬∃Z Dn does not have an DNNF of size 2o(n).

Proof. Let Si for i ∈ N denote the term ¬zi ∧
(∧

j∈[i−1] zj

)
. For a CNF F = C1 ∧ . . . ∧ Cm

we then define the function

F ′ =
m∨

i=1
Si ∧ Ci.

It is easy to see that by testing z1, . . . , zm successively and branching a small OBDD for Ci

at each 0-output of the decision node testing zi as depicted on Figure 5, one can construct
an OBDD of size O(|F |) computing F ′. If every variable appears in at most three clauses of
F , then this OBDD has weak width 3 since a variable x is only tested for clauses where it
appears.

F. Capelli and S. Mengel 18:13

z1 z2 . . . zm
1 1 1

C1 C2 Cm

0 0 0

Figure 5 Structure of an OBDD for F ′.

Note that ∀Z F ′ ≡ F . Since there are CNF formulas in which every variable appears in
at most three clauses which do not have subexponential size DNNF [4]. It follows that for
such F the function ∀Z F ′ has exponential size. Now remarking that ∀Z F ′ ≡ ¬∃Z (¬F ′)
and that ¬F ′ has an OBDD of weak width 3 as well, completes the proof. J

6.2 Structuredness
One of the properties required for Theorem 5 is that we need the input to be structured.
Since structuredness is quite restrictive, see e.g. [22], it would be preferable to get rid of it to
show similar results. Unfortunately, there is no such result as the following lemma shows.

To formulate our results, we need a definition of width for FBDD. This is because width
as we have defined it before depends on the vtree of the DNNF which we do not have in
the case without structuredness. To define width for the unstructured case, we consider
layered FBDD: an FBDD F is called layered if the nodes of F can be partitioned into sets
L1, . . . , Ls such that for every edge uv in F there is an i ∈ [s] such that u ∈ Li and v ∈ Li+1.
The width of F is then defined as max{|Li| | i ∈ [s]}.

I Lemma 14. For every n there is a function fn in O(n2) variables with an FBDD repres-
entation of size O(n2) and width O(1) such that there is a variable x of fn such that every
deterministic DNNF for ∃x fn has size 2Ω(n).

Proof. We use a function introduced by Sauerhoff [25]: let g : {0, 1}n → {0, 1} be the
function that evaluates to 1 if and only if the sum of its inputs is divisible by 3. For a
n× n-matrix X with inputs xij ∈ {0, 1}, we define

Rn(X) :=
n⊕

i=1
g(xi1, xi2, . . . , xin)

where ⊕ denotes addition modulo 2 and define Cn(X) := Rn(XT) where XT is the transpose
of X. Then Sn(X) := Rn(X) ∨ Cn(X).

Note that, ordering the variables of X by rows, resp. columns, Rn and Cn both have
OBDD of width O(1) and size O(n2). Now let S′n = (x ∧Rn) ∨ (¬x ∧ Cn). Then S′n clearly
has an FBDD of size O(n2) and width O(1): decide on x first and then depending on its
value follow the OBDD for Rn or Cn.

But ∃xS′n(X) = Sn(X) which completes the proof since Sn is known to require size 2Ω(n)

for deterministic DNNF [4]. J

7 Conclusion

We have introduced a new notion of width of complete structured d-DNNF and shown
that using it, in combination with a rather simple quantifier elimination result and known
compilation results, one can show several new tractability results around QBF. In contrast

STACS 2019

18:14 Tractable QBF by Knowledge Compilation

to earlier results that solved similar problems in one pass of dynamic programming [8, 14],
our approach is iterative and only considers one quantifier block at the same time which in
our opinion greatly simplifies the argument. Moreover, factoring out the initial compilation
phase allowed us to generalize known results for treewidth to signed cliquewidth essentially
for free.

We feel that the notion of width we introduced for complete structured d-DNNF is an
interesting notion, independent of the results on quantifier elimination here, and deserves
closer examination. In the long version of this paper [7] we initiate this by giving results on
standard transformation that are generally considered in knowledge compilation. We are
certain that beyond this our width notion will have more uses in the future.

It might be interesting to apply our approach to non-monotone reasoning problems from
artificial intelligence. There is a wealth of such problems that have been considered under
treewidth reductions, see e.g. the problems in [16], but for more general width measures far
less is known, some exceptions being [12, 1]. Proving more such results might be possible by
reductions to QBF as in [17] but it would be necessary to understand if those reductions
maintain the considered width measure. Alternatively, one could try to mimic our approach
of compiling and then refining the solution space iteratively for the individual problems
which might be easier than performing direct dynamic programming.

References

1 Bernhard Bliem, Sebastian Ordyniak, and Stefan Woltran. Clique-Width and Directed Width
Measures for Answer-Set Programming. In Gal A. Kaminka, Maria Fox, Paolo Bouquet, Eyke
Hüllermeier, Virginia Dignum, Frank Dignum, and Frank van Harmelen, editors, ECAI 2016 -
22nd European Conference on Artificial Intelligence, 29 August-2 September 2016, The Hague,
The Netherlands - Including Prestigious Applications of Artificial Intelligence (PAIS 2016),
volume 285 of Frontiers in Artificial Intelligence and Applications, pages 1105–1113. IOS Press,
2016. doi:10.3233/978-1-61499-672-9-1105.

2 Beate Bollig and Ingo Wegener. Asymptotically Optimal Bounds for OBDDs and the Solution
of Some Basic OBDD Problems. J. Comput. Syst. Sci., 61(3):558–579, 2000. doi:10.1006/
jcss.2000.1733.

3 Simone Bova, Florent Capelli, Stefan Mengel, and Friedrich Slivovsky. On Compiling CNFs
into Structured Deterministic DNNFs. In Theory and Applications of Satisfiability Testing -
SAT 2015 - 18th International Conference, volume 9340 of Lecture Notes in Computer Science,
pages 199–214. Springer, 2015.

4 Simone Bova, Florent Capelli, Stefan Mengel, and Friedrich Slivovsky. Knowledge Compilation
Meets Communication Complexity. In Subbarao Kambhampati, editor, Proceedings of the
Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI 2016, New
York, NY, USA, 9-15 July 2016, pages 1008–1014. IJCAI/AAAI Press, 2016. URL: http:
//www.ijcai.org/Abstract/16/147.

5 Simone Bova and Stefan Szeider. Circuit Treewidth, Sentential Decision, and Query Com-
pilation. In Emanuel Sallinger, Jan Van den Bussche, and Floris Geerts, editors, Pro-
ceedings of the 36th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database
Systems, PODS 2017, Chicago, IL, USA, May 14-19, 2017, pages 233–246. ACM, 2017.
doi:10.1145/3034786.3034787.

6 Johann Brault-Baron, Florent Capelli, and Stefan Mengel. Understanding Model Counting
for beta-acyclic CNF-formulas. In 32nd International Symposium on Theoretical Aspects of
Computer Science, pages 143–156, 2015.

7 Florent Capelli and Stefan Mengel. Knowledge Compilation, Width and Quantification. CoRR,
abs/1807.04263, 2018. arXiv:1807.04263.

http://dx.doi.org/10.3233/978-1-61499-672-9-1105
http://dx.doi.org/10.1006/jcss.2000.1733
http://dx.doi.org/10.1006/jcss.2000.1733
http://www.ijcai.org/Abstract/16/147
http://www.ijcai.org/Abstract/16/147
http://dx.doi.org/10.1145/3034786.3034787
http://arxiv.org/abs/1807.04263

F. Capelli and S. Mengel 18:15

8 Hubie Chen. Quantified Constraint Satisfaction and Bounded Treewidth. In Ramon López
de Mántaras and Lorenza Saitta, editors, Proceedings of the 16th Eureopean Conference on
Artificial Intelligence, ECAI’2004, pages 161–165, 2004.

9 Adnan Darwiche. Decomposable negation normal form. J. ACM, 48(4):608–647, 2001.
doi:10.1145/502090.502091.

10 Adnan Darwiche. SDD: A new canonical representation of propositional knowledge bases.
In Toby Walsh, editor, IJCAI 2011, Proceedings of the 22nd International Joint Conference
on Artificial Intelligence, Barcelona, Catalonia, Spain, July 16-22, 2011, pages 819–826.
IJCAI/AAAI, 2011. doi:10.5591/978-1-57735-516-8/IJCAI11-143.

11 Adnan Darwiche and Pierre Marquis. A Knowledge Compilation Map. J. Artif. Intell. Res.,
17:229–264, 2002. doi:10.1613/jair.989.

12 Wolfgang Dvorák, Stefan Szeider, and Stefan Woltran. Reasoning in Argumentation Frame-
works of Bounded Clique-Width. In Pietro Baroni, Federico Cerutti, Massimiliano Giac-
omin, and Guillermo Ricardo Simari, editors, Computational Models of Argument: Pro-
ceedings of COMMA 2010, Desenzano del Garda, Italy, September 8-10, 2010., volume
216 of Frontiers in Artificial Intelligence and Applications, pages 219–230. IOS Press, 2010.
doi:10.3233/978-1-60750-619-5-219.

13 Andrea Ferrara, Guoqiang Pan, and Moshe Y. Vardi. Treewidth in Verification: Local vs.
Global. In Geoff Sutcliffe and Andrei Voronkov, editors, Logic for Programming, Artificial In-
telligence, and Reasoning, 12th International Conference, LPAR 2005, Montego Bay, Jamaica,
December 2-6, 2005, Proceedings, volume 3835 of Lecture Notes in Computer Science, pages
489–503. Springer, 2005. doi:10.1007/11591191_34.

14 Johannes Klaus Fichte, Markus Hecher, Michael Morak, and Stefan Woltran. Exploiting
Treewidth for Projected Model Counting and Its Limits. In Olaf Beyersdorff and Christoph M.
Wintersteiger, editors, Theory and Applications of Satisfiability Testing - SAT 2018 - 21st
International Conference, SAT 2018, Held as Part of the Federated Logic Conference, FloC
2018, Oxford, UK, July 9-12, 2018, Proceedings, volume 10929 of Lecture Notes in Computer
Science, pages 165–184. Springer, 2018. doi:10.1007/978-3-319-94144-8_11.

15 Eldar Fischer, Johann A. Makowsky, and Elena V. Ravve. Counting truth assignments of
formulas of bounded tree-width or clique-width. Discrete Applied Mathematics, 156(4):511–529,
2008. doi:10.1016/j.dam.2006.06.020.

16 Georg Gottlob, Reinhard Pichler, and Fang Wei. Bounded treewidth as a key to tractability
of knowledge representation and reasoning. Artif. Intell., 174(1):105–132, 2010. doi:10.1016/
j.artint.2009.10.003.

17 Michael Lampis, Stefan Mengel, and Valia Mitsou. QBF as an alternative to courcelle’s
theorem. CoRR, abs/1805.08456, 2018. accepted for SAT’18. arXiv:1805.08456.

18 Michael Lampis and Valia Mitsou. Treewidth with a Quantifier Alternation Revisited. In Daniel
Lokshtanov and Naomi Nishimura, editors, 12th International Symposium on Parameterized
and Exact Computation, IPEC 2017, September 6-8, 2017, Vienna, Austria, volume 89 of
LIPIcs, pages 26:1–26:12. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017. doi:
10.4230/LIPIcs.IPEC.2017.26.

19 Daniël Paulusma, Friedrich Slivovsky, and Stefan Szeider. Model Counting for CNF Formulas
of Bounded Modular Treewidth. Algorithmica, 76(1):168–194, 2016.

20 Daniël Paulusma, Friedrich Slivovsky, and Stefan Szeider. Model Counting for CNF For-
mulas of Bounded Modular Treewidth. Algorithmica, 76(1):168–194, 2016. doi:10.1007/
s00453-015-0030-x.

21 Knot Pipatsrisawat and Adnan Darwiche. New Compilation Languages Based on Structured
Decomposability. In Dieter Fox and Carla P. Gomes, editors, Proceedings of the Twenty-Third
AAAI Conference on Artificial Intelligence, AAAI 2008, Chicago, Illinois, USA, July 13-17,
2008, pages 517–522. AAAI Press, 2008. URL: http://www.aaai.org/Library/AAAI/2008/
aaai08-082.php.

STACS 2019

http://dx.doi.org/10.1145/502090.502091
http://dx.doi.org/10.5591/978-1-57735-516-8/IJCAI11-143
http://dx.doi.org/10.1613/jair.989
http://dx.doi.org/10.3233/978-1-60750-619-5-219
http://dx.doi.org/10.1007/11591191_34
http://dx.doi.org/10.1007/978-3-319-94144-8_11
http://dx.doi.org/10.1016/j.dam.2006.06.020
http://dx.doi.org/10.1016/j.artint.2009.10.003
http://dx.doi.org/10.1016/j.artint.2009.10.003
http://arxiv.org/abs/1805.08456
http://dx.doi.org/10.4230/LIPIcs.IPEC.2017.26
http://dx.doi.org/10.4230/LIPIcs.IPEC.2017.26
http://dx.doi.org/10.1007/s00453-015-0030-x
http://dx.doi.org/10.1007/s00453-015-0030-x
http://www.aaai.org/Library/AAAI/2008/aaai08-082.php
http://www.aaai.org/Library/AAAI/2008/aaai08-082.php

18:16 Tractable QBF by Knowledge Compilation

22 Thammanit Pipatsrisawat and Adnan Darwiche. A Lower Bound on the Size of Decomposable
Negation Normal Form. In Maria Fox and David Poole, editors, Proceedings of the Twenty-
Fourth AAAI Conference on Artificial Intelligence, AAAI 2010, Atlanta, Georgia, USA, July
11-15, 2010. AAAI Press, 2010. URL: http://www.aaai.org/ocs/index.php/AAAI/AAAI10/
paper/view/1856.

23 S. Hortemo Sæther, J.A. Telle, and M. Vatshelle. Solving MaxSAT and #SAT on Structured
CNF Formulas. In Theory and Applications of Satisfiability Testing, pages 16–31, 2014.

24 M. Samer and S. Szeider. Algorithms for propositional model counting. Journal of Discrete
Algorithms, 8(1):50–64, 2010.

25 Martin Sauerhoff. Approximation of boolean functions by combinatorial rectangles. Theor.
Comput. Sci., 1-3(301):45–78, 2003. doi:10.1016/S0304-3975(02)00568-6.

26 Friedrich Slivovsky and Stefan Szeider. Model Counting for Formulas of Bounded Clique-Width.
In Leizhen Cai, Siu-Wing Cheng, and Tak Wah Lam, editors, Algorithms and Computation
- 24th International Symposium, ISAAC 2013, Hong Kong, China, December 16-18, 2013,
Proceedings, volume 8283 of Lecture Notes in Computer Science, pages 677–687. Springer,
2013. doi:10.1007/978-3-642-45030-3_63.

27 Stefan Szeider. On fixed-parameter tractable parameterizations of SAT. In Enrico Giunchiglia
and Armando Tacchella, editors, Theory and Applications of Satisfiability, 6th International
Conference, volume 2919 of LNCS, pages 188–202. Springer, 2004.

http://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/view/1856
http://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/view/1856
http://dx.doi.org/10.1016/S0304-3975(02)00568-6
http://dx.doi.org/10.1007/978-3-642-45030-3_63

A Tight Extremal Bound on the Lovász Cactus
Number in Planar Graphs
Parinya Chalermsook
Aalto University, Espoo, Finland
parinya.chalermsook@aalto.fi

Andreas Schmid
Max Planck Institute for Informatics, Saarbrücken, Germany
aschmid@mpi-inf.mpg.de

Sumedha Uniyal
Aalto University, Espoo, Finland
sumedha.uniyal@aalto.fi

Abstract
A cactus graph is a graph in which any two cycles are edge-disjoint. We present a constructive
proof of the fact that any plane graph G contains a cactus subgraph C where C contains at least
a 1

6 fraction of the triangular faces of G. We also show that this ratio cannot be improved by
showing a tight lower bound. Together with an algorithm for linear matroid parity, our bound
implies two approximation algorithms for computing “dense planar structures” inside any graph: (i)
A 1

6 approximation algorithm for, given any graph G, finding a planar subgraph with a maximum
number of triangular faces; this improves upon the previous 1

11 -approximation; (ii) An alternate (and
arguably more illustrative) proof of the 4

9 approximation algorithm for finding a planar subgraph
with a maximum number of edges.

Our bound is obtained by analyzing a natural local search strategy and heavily exploiting the
exchange arguments. Therefore, this suggests the power of local search in handling problems of this
kind.

2012 ACM Subject Classification Mathematics of computing → Graph theory

Keywords and phrases Graph Drawing, Matroid Matching, Maximum Planar Subgraph, Local
Search Algorithms

Digital Object Identifier 10.4230/LIPIcs.STACS.2019.19

Related Version Full Version: https://arxiv.org/abs/1804.03485.

Funding Parinya Chalermsook: Part of this work was done while PC and AS were visiting the
Simons Institute for the Theory of Computing. It was partially supported by the DIMACS/Simons
Collaboration on Bridging Continuous and Discrete Optimization through NSF grant #CCF-1740425.
Parinya has been supported by the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (grant agreement No 759557) and by Academy of
Finland Research Fellows, under grant number 310415 and 314284.
Sumedha Uniyal: Partially supported by Academy of Finland under the grant agreement number
314284.

1 Introduction

Linear matroid parity (introduced in various equivalent forms [21, 18, 15]) is a key concept in
combinatorial optimization that includes many important optimization problems as special
cases; probably the most well-known example is the maximum matching problem. The
polynomial-time computability of linear matroid parity made it a popular choice as an
algorithmic tool for handling both theoretical and practical optimization problems. An

© Parinya Chalermsook, Andreas Schmid, and Sumedha Uniyal;
licensed under Creative Commons License CC-BY

36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019).
Editors: Rolf Niedermeier and Christophe Paul; Article No. 19; pp. 19:1–19:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:parinya.chalermsook@aalto.fi
mailto:aschmid@mpi-inf.mpg.de
mailto:sumedha.uniyal@aalto.fi
https://doi.org/10.4230/LIPIcs.STACS.2019.19
https://arxiv.org/abs/1804.03485
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

19:2 A Tight Extremal Bound on the Lovász Cactus Number in Planar Graphs

important special case of linear matroid parity, the graphic matroid parity problem, is often
explained in the language of cacti (see e.g. [9]), a graph in which any two cycles must be
edge-disjoint. In 1980, Lovász [21] initiated the study of β(G) (sometimes referred to as the
cactus number of G), the maximum value of the number of triangles in a cactus subgraph of
G, and showed that it generalizes maximum matching and can be reduced to linear matroid
parity, therefore implying that β(G) is polynomial-time computable12.

Cactus graphs arise naturally in many applications3; perhaps the most relevant example
in the context of approximation algorithms is the Maximum Planar Subgraph (MPS) problem:
Given an input graph, find a planar subgraph with a maximum number of edges. Notice that,
since any planar graph with n vertices has at most 3n− 6 edges, outputting a spanning tree
with n− 1 edges immediately gives a 1

3 -approximation algorithm. Generalizing the idea of
finding spanning trees, one would like to look for a planar graph H, denser than a spanning
tree, and at the same time efficiently computable. Calinescu et al. [3] showed that a cactus
subgraph with a maximum number of triangles (which is efficiently computable via matroid
parity algorithms) could be used to construct a 4

9 -approximation for MPS.
The 4

9 -approximation for MPS was achieved through an extremal bound of β(G) when G
is a plane graph. In particular, it was proven that β(G) ≥ 1

3 (n− 2− t(G)), where n = |V (G)|
and t(G) = (3n− 6)− |E(G)| (i.e. the number of edges missing for G to be a triangulated
plane graph).

1.1 Our Results
In this work, we are interested in further studying the extremal properties of β(G) and
exhibit stronger algorithmic implications. Our main result is summarized in the following
theorem.

I Theorem 1. Let G be a plane graph. Then β(G) ≥ 1
6f3(G) where f3(G) denotes the

number of triangular faces in G. Moreover, a natural local search 2-swap algorithm achieves
this bound.

It is not hard to see that f3(G) ≥ 2n− 4− 2t(G) where t(G) denotes the number of edges
missing for G to be a triangulated plane graph. Therefore, we obtain the main result of [3]
immediately.

I Corollary 2. β(G) ≥ 1
3 (n − 2 − t(G)). Hence, the matroid parity algorithm gives a

4
9 -approximation for MPS.

Besides implying the MPS result, we exhibit further implications of our bound. Recently
in [7], the authors introduced Maximum Planar Triangles (MPT), where the goal is to
find a plane subgraph with a maximum number of triangular faces. It was shown that
an approximation algorithm for MPT naturally translates into one for MPS, where a 1

6
approximate MPT solution could be turned into a 4

9 approximate MPS solution. However,
the authors only managed to show a 1

11 approximation for MPT.
Although the only change from MPS to MPT lies in the objective of maximizing the

number of triangular faces instead of edges, the MPT objective seems much harder to handle,
for instance, the extremal bound provided in [3] is not sufficient to derive any approximation
algorithm for MPT.

1 There are many efficient algorithms for matroid parity (both randomized and deterministic), e.g. [9, 22,
24, 12].

2 When we study β(G), notice that a cactus subgraph that achieves the maximum value of β(G) would
only need to have cycles of length three (triangles). Such cacti are called triangular cacti.

3 See for instance the wikipedia page https://en.wikipedia.org/wiki/Cactus_graph.

https://en.wikipedia.org/wiki/Cactus_graph

P. Chalermsook, A. Schmid, and S. Uniyal 19:3

Theorem 1 therefore implies the following result for MPT.

I Corollary 3. A matroid parity algorithm gives a 1
6 approximation algorithm for MPT.

Our conceptual contributions are the following:
1. Our result further highlights the extremal role of the cactus number in finding a dense

planar structure, as illustrated by the fact that our bound on β(G) is more “robust” to the
change of objectives from MPS to MPT. It allows us to reach the limit of approximation
algorithms that matroid parity provides for both MPS and MPT.

2. Our work implies that local search arguments alone are sufficient to “almost” reach the
best known approximation results for both MPS and MPT in the following sense: Matroid
parity admits a PTAS via local search [19, 2]. Therefore, combining this with our bound
implies that local search arguments are sufficient to get us to a 4

9 + ε approximation for
MPS and 1

6 + ε approximation for MPT. Therefore, this suggests that local search might
be a promising candidate for such problems.

3. Finally, in some ways, our work can be seen as an effort to open up all the black boxes
used in MPS algorithms with the hope of learning algorithmic insights that are crucial
for making progress on this kind of problems. In more detail, there are two main “black
boxes” hidden in the MPS result: (i) The use of Lovász min-max cactus formula in
deriving the bound β(G) ≥ 1

3 (n−2− t(G)), and (ii) the use of a matroid parity algorithm
as a blackbox in computing β(G). Our bound for β(G) is now purely combinatorial (and
even constructive) and manages to by-pass (i).

Related work. On the hardness of approximation side, MPS is known to be APX-hard [3],
while MPT is only known to be NP-hard [7]. In combinatorial optimization, there are a
number of problems closely related to MPS and MPT. For instance, finding a maximum
series-parallel subgraph [5] or a maximum outer-planar graph [3], as well as the weighted
variant of these problems [4]; these are the problems whose objectives are to maximize the
number of edges.

Perhaps the most famous extremal bound in the context of cactus is the min-max formula
of Lovász [21] and a follow-up formula that is more illustrative in the context of cactus [25].
All these formulas generalize the Tutte-Berge formula [1, 26] that has been used extensively
both in research and curriculum.

Another related set of problems has the objectives of maximizing the number of vertices,
instead of edges. In particular, in the maximum induced planar subgraph (i.e. given graph G,
one aims at finding a set of nodes S ⊆ V (G) such that G[S] is planar, while maximizing |S|.)
This variant has been studied under a more generic name, called maximum subgraph with
hereditary property [23, 20, 13]. This variant is unfortunately much harder to approximate:
Ω̃(|V (G)|)4 hard to approximate [14, 17]; in fact, the problems in this family do not even
admit any FPT approximation algorithm [6], assuming the gap exponential time hypothesis
(Gap-ETH).

1.2 Overview of Techniques
We give a high-level overview of our techniques. The description in this section assumes
certain familiarity with how standard local search analysis is often done.

4 The term Ω̃ hides asymptotically smaller factors.

STACS 2019

19:4 A Tight Extremal Bound on the Lovász Cactus Number in Planar Graphs

Our algorithm works as follows. Let G be an input plane graph, and let C be a cactus
subgraph of G whose triangles correspond to triangular faces of G. The local search operation,
t-swap, is done as follows: As long as there is a collection X ⊆ C of ` : ` ≤ t edge-disjoint
triangles and Y such that (C \X) ∪ Y contains more triangular faces of G than C and it
remains a cactus, we perform such an improvement step. A cactus subgraph is called locally
t-swap optimal, if it can not be improved by a t-swap operation. Remark that the triangles
chosen by our local search are only those which are triangular faces in the input graph G
(we assume that the drawing of G is fixed.)

Our analysis is highly technical, although the basic idea is very simple and intuitive. We
give a high-level overview of the analysis. We remark that this description is overly simplified,
but it sufficiently captures the crux of our arguments. Let C be the solution obtained by
the local search 2-swap algorithm. We argue that the number of triangles in C is at least
f3(G)/6. We remark that the 2-swap is required, as we are aware of a bad example H for
which the 1-swap local search only achieves a bound of (1

7 + o(1))f3(H). For simplicity, let
us assume that C has only one non-singleton component. Let S ⊆ V (G) be the vertices in
such a connected component.

Let t be a triangle in C. Notice that removing the three edges of t from C breaks the
cactus into at most three components, say C1 ∪ C2 ∪ C3 that are pairwise vertex-disjoint, i.e.
sets Sj = V (Cj) are pairwise vertex-disjoint. Recall at this point that we would like to upper
bound the number of triangles in G by six times ∆, where ∆ is the number of triangles in the
cactus C. Notice that f3(G) is comprised of f3(G[S1]) + f3(G[S2]) + f3(G[S3]) + q′, where
q′ is the number of triangles in G “across” the components Sj (i.e. those triangles whose
vertices intersect with at least two sets Si, Sj , where i 6= j. Therefore, if we could somehow
give a nice upper bound on q′, e.g. if q′ ≤ 6, then we could inductively use f3(G[Sj]) ≤ 6∆j

where ∆j is the number of triangles in Cj , and that therefore

f3(G) ≤ 6(∆1 + ∆2 + ∆3) + 6 ≤ 6(∆− 1) + 6 = 6∆

and we would be done. However, it is not possible to give a nice upper bound on q′ that
holds in general for all situations. We observe that such a bound can be proven for some
suitable choice of t: Roughly speaking, removing such a triangle t from C would create a
small “interaction” between components Cj (i.e. small q′). We say that such a triangle t
is a light triangle; otherwise, we say that it is heavy. Let C′ be the current cactus we are
considering. As long as there is a light triangle left in C′, we would remove it (thus breaking
C′ into C′1, C′2, C′3) and inductively use the bound for each C′j . Therefore, we have reduced
the problem to that of analyzing the base case of a cactus in which all triangles are heavy.
Handling the base case of the inductive proof is the main challenge of our result.

We sketch here the two key ideas. Let S = V (C). The first key idea is the way we exploit
the locally optimal solution in certain parts of the graph G[S]. We want to point out; the fact
that all triangles in C are heavy is exploited crucially in this step. Recall that, each heavy
triangle is such that its removal creates three components C1, C2, C3 with many “interactions”
(i.e. many triangles across components) between them. This large amount of interaction is
the main reason why we could not use induction before. However, intuitively, these triangles
across components could serve as candidates for making local improvements. So the fact
that there are many interactions would become our advantage in the local search analysis.

We briefly illustrate how we take advantage of heavy triangles. Let T be the set of
triangular faces in G that are not contained in

⋃
iG[Si], so each triangle in T has vertices in

at least two subsets Sj , Si where j 6= i. The local search argument would allow us to say
that all triangles in T have one vertex in Si, one in Sj and one outside of S1 ∪ S2 ∪ S3. This
idea is illustrated in Figure 1a.

P. Chalermsook, A. Schmid, and S. Uniyal 19:5

t

t1

t2

t1

t2

(a) A 1-swap operation. If there were two tri-
angles t′1, t′2 in T between two different pairs
of components Sj , Si (where j 6= i), we could
remove t from C and add t′1, t′2 to get a better
cactus.

t1 t2

t3

t1

t2

t1

t2

t3

(b) A 2-swap operation. Let t1 and t2 be two adjacent
triangles in our cactus. If there was an edge between
t1 and t2, then there would exists a local improvement
by removing t1 and t2 from C and adding t′1, t′2 and
t3.

Figure 1 Two examples for the swap operations.

Moreover, we will argue that there are not too many triangular faces in G[S], and we
give a rough idea of how the exchange argument can be used in Figure 1b.

Finally, the ideas illustrated in both figures are only applied locally in a certain “region”
inside the input planar graph G, so globally it is still unclear what would happen. Our final
ingredient is a way to decompose the regions inside a plane graph into various “atomic” types.
For each such atomic type, the local exchange argument is sufficient to argue optimally about
the number of triangles in G in that region compared to that in the cactus. Combining
the bounds on these atomic types gives us the desired result. This is the most technically
involved part of the paper, and we present it gradually by first showing the analysis that
gives β(G) ≥ 1

7f3(G). For this, we need to classify the regions into five atomic types. To
prove the main theorem, that β(G) ≥ 1

6f3(G), we need a more complicated classification into
thirteen atomic types.

Organization of the paper. In Section 2, we give a detailed overview for the proof of our
main result. As the proof in full detail would be to long to fit in this extended abstract, we
refer the interested reader to a full version on arXiv [8]. In Section 3, we present how to
construct a planar graph for which the bound proven in Theorem 1 is tight. In addition we
show how it implies the extremal bound provided in [3]. In Section 4, we point out possible
directions for future research and extensions of our work.

2 Overview of the Proof

In this section, we give a formal overview of the structure of the proof of Theorem 1. Let our
input G be a plane graph (a planar graph with a fixed drawing). Let C be a locally optimal
triangular cactus solution for the natural local search algorithm that uses 2-swap operations,
as described in the previous section. Let ∆(C) denote the number of triangular faces of C
which correspond to the triangular faces of G. We will show ∆(C) ≥ f3(G)/6. In general, we
will use the function ∆ : G→ N to denote the number of triangular faces in any plane graph
G.

We partition the vertices in G into subsets based on the connected components of C, i.e.
V (G) =

⋃
i Si where C[Si] is a connected cactus subgraph of C. For each i, where |Si| ≥ 1,

let q(Si) denote the number of triangular faces in G with at least two nodes in Si. The
following proposition holds by the 2-swap optimality of C which implies f3(G) =

∑
i q(Si).

STACS 2019

19:6 A Tight Extremal Bound on the Lovász Cactus Number in Planar Graphs

I Proposition 4. If ∆(Ci) ≥ 1
6q(Si) for all i, then ∆(C) ≥ 1

6f3(G).

Therefore, it is sufficient to analyze any arbitrary component Si where C[Si] contains
at least one triangle of C (if the component does not contain such a triangle it is just a
singleton vertex) and show that ∆(Ci) ≥ 1

6q(Si). Thus, from now on, we fix such an arbitrary
component Si and denote Si simply by S, q(Si) by q(S), and ∆(C[Si]) by p. We will show
that q ≤ 6p through several steps.

Step 1: Reduction to Heavy Cactus

In the first step, we will show that the general case can be reduced to the case where all
triangles in C are heavy (to be defined below). We refer to different types of vertices, edges
and triangles in the graph G as follows:

Cactus. All edges/vertices/triangles in the cactus C[S] are called cactus edges/ver-
tices/triangles respectively.
Cross. Edges with exactly one end-point in S are called cross edges. Triangles that use
one vertex outside of S are cross triangles. Notice that each cross triangle has exactly
one edge in G[S], that edge is called a supporting edge of the cross triangle. Similarly, we
say that an edge e ∈ E(G[S]) supports a cross triangle; such a cross triangle t contains
exactly one vertex v in some component Si 6= S. The component Si is called the landing
component of t. Similarly the vertex v is called the landing vertex of t.
type-[i] edges. An edge in G[S] that is not a cactus edge and does not support a cross
triangle is called a type-[0] edge. An edge in G[S] that is not a cactus edge and supports
i cross triangle(s) is called a type-[i] edge.

Therefore, each edge in G[S] is a cactus, type-0, type-1 or type-2 edge. The introduced
naming convention makes it easier to make important observations like the following (see
Figure 2 for an illustration of our naming convention).

t

t1

t2

y

x

t
u

w
v

Landing vertices

Cactus vertices

Cactus edges

Cross edges

Type-[0] edges

Type-[1] or

Type-[2] edges

Figure 2 Various types of edges, vertices and triangles. Here the cross triangles t′′ and t1 have
the same landing component.

I Observation 5. Triangles that contribute to the value of q are of the following types: (i)
the cactus triangles; (ii) the cross triangles; and (iii) the “remaining” triangles that connect
three cactus vertices using at least one type-0, type-1 or type-2 edge, and do not have a cross
triangle drawn inside.

P. Chalermsook, A. Schmid, and S. Uniyal 19:7

Types of cactus triangles and Split cacti. Consider a (cactus) triangle t in C. For i ∈
{0, 1, 2, 3}, we say that t is of type-i if exactly i of its edges support a cross triangle. Let pi
denote the number of type-i cactus triangles, so we have that p0 + p1 + p2 + p3 = p.

We denote the operation of deleting the edges of t from a connected cactus C[S] by
splitting C[S] at t. The resulting three smaller triangular cacti (denoted by {Ctv}v∈V (t)) are
referred to as the split cacti of t. For each v ∈ V (t), let Stv := V (Ctv) be the split component
containing v. Let u, v ∈ V (t) : u 6= v. Denote by Btuv the set of type-1 or type-2 edges having
one endpoint in Stu and the other in Stv. Now we are ready to define the concept of heavy
and light cactus triangles, which will be crucially used in our analysis.

Heavy and light cactus triangles. We say that a cactus triangle t is heavy if either there
are at least four cross triangles supported by E(t) ∪

⋃
uv∈E(t) B

t
uv or there are at least three

cross triangles supported by the edges in one set Btuv ∪ uv for some uv ∈ E(t) and no cross
triangle supported by the rest of the sets Btww′ ∪ ww′for each ww′ ∈ E(t). Otherwise, the
triangle is light. Intuitively, the notion of a light cactus triangle t captures the fact that,
after removing t, there is only a small amount of “interaction” between the split components.

We will abuse the notations a bit by using S instead of V [S]. Recall, that we denote by
q(S) the total number of triangular faces in G with exactly two vertices in S. We denote by
p(S) the total number of triangles in the cactus C[S].

Function ϕ. Consider a set S ⊆ V (G) and a drawing of G[S] (since we are talking about a
fixed drawing of the plane graph G, this is well-defined). Denote by `(S) the length of the
outer-face fS of the graph G[S]. We define ϕ(S) as the number of edges on the outer-face
that do not support any cross triangle drawn on the outer-face, so we have 0 ≤ ϕ(S) ≤ `(S).

The main ingredients of Step 1 are encapsulated in the following theorem.

I Theorem 6 (Reduction to heavy triangles). Let γ ≥ 6 be a real number, and ϕ be as
described above. If q(S) ≤ γp(S)− ϕ(S) for all S for which C[S] is a connected cactus that
contains no light triangle, then q(S) ≤ γp(S)− ϕ(S) for all S.

Therefore, if we manage to show the bound q(S) ≤ γp(S)− ϕ(S) for the heavy cactus, it
will follow that q ≤ γp in general (due to non-negativity of function ϕ). In other words, this
gives a reduction from the general case to the case when all cactus triangles are heavy. We
end the description of Step 1 by presenting the description of ϕ.

Step 2: Skeleton and Surviving Triangles

Now, we focus on the case when there are only heavy triangles in the given cactus, and we
will give a formal overview of the key idea we use to derive the bound q(S) ≤ 6p(S)− ϕ(S),
which in combination with Theorem 6, gives our main Theorem 1. For convenience, we refer
to the terms p(S) and q(S) as simply p and q respectively.

Structures of heavy triangles. Using local search’s swap operations, the light and heavy
triangles behave in a very well structured manner. The following proposition summarizes
these structures for heavy triangles.

I Proposition 7. Let t be a cactus triangle in cactus C[S].
If t is heavy, then t is either type-0 or type-1.

STACS 2019

19:8 A Tight Extremal Bound on the Lovász Cactus Number in Planar Graphs

If t is a heavy type-1 triangle and the edge uv ∈ E(t) supports the cross triangle supported
by t, then Btww′ = ∅ for all ww′ ∈ E(t) \ {uv} and the total number of cross triangles
supported by edges in Btuv is greater than or equal to two.
If t is a heavy type-0 triangle, then there is an edge uv ∈ E(t) such that Btww′ = ∅ for all
ww′ ∈ E(t) \ {uv} and the total number of cross triangles supported by edges in Btuv is
greater than or equal to three.

By Proposition 7 we can only have type-0 and type-1 cactus triangles in C. Moreover, for
each such heavy triangle t, the type-1 or type-2 edges in G[S] only connect vertices of two
split components of t.

Let ai be the number of edges of type-i. Notice that the number of non-cactus edges in
G[S] is

∑
i ai = |E(G[S])| − 3p.

Skeleton graph H. Let A be the set of all type-0 edges in G[S] and H := H[S] := G[S]\A.
Thus H[S] contains only cactus or type-1 or type-2 edges.

Each face f of H possibly contains several faces of G, so we will refer to such a face as
a super-face. At high-level, our plan is to analyze each super-face f , providing an upper
bound on the number of triangular faces of G drawn inside f , and then sum over all such
f to retrieve the final result. We call H a skeleton graph of G, whose goal is to provide
a decomposition of the faces of G into structured super-faces. Denote by F the set of all
super-faces (except for the p faces corresponding to cactus triangles).

Let f be a super-face. Denote by survive(f) the number of triangular faces of G drawn
inside f that do not contain any cross triangles. Now we do a simple counting argument
for q using the skeleton H as follows: (i) There are p cactus triangles in H, (ii) There are
p1 +a1 +2a2 cross triangles supported by edges in G[S], and (iii) There are

∑
f∈F survive(f)

triangular faces in G that were not counted in (i) or (ii). Combining this, we obtain:

q ≤ p+ (p1 + a1 + 2a2) +
∑
f∈F

survive(f) (1)

The first and second terms are expressed nicely as functions of p’s and a’s, so the key is to
achieve the best upper bound on the third term in terms of the same parameters. Roughly
speaking, the intuition is the following: When a2 or a1 is high (there are many edges in G[S]
supporting cross triangles), the second term becomes higher. However, each cross triangle
would need to be drawn inside some face in G[S], therefore decreasing the value of the term∑

f∈F survive(f). Similar arguments can be made for p1. Therefore, the key to a tight
analysis is to understand this trade-off.

The structure of super-faces. Let f ∈ F be a super-face. Recall that an edge in the
boundary of f is either a type-1 or type-2 edge, or a cactus edge. We aim for a better
understanding of the value of survive(f). In general, this value can be as high as |E(f)| − 2,
e.g. if G[V (f)] is a triangulation of the region bounded by the super-face f using type-0
edges. However, if some edge in the boundary of f supports a cross triangle whose landing
component is drawn inside of f in G, this would decrease the value of survive(f), by killing
the triangular face adjacent to it, hence the term survive.

The following observation is crucial in our analysis:

I Observation 8. Consider each edge e ∈ E(f). There are two possible cases:
Edge e is a type-1 or type-2 or cactus edge and supports a cross triangle drawn in f .
Edge e is a type-1 or type-2 or cactus edge and does not support any cross triangle drawn
in f .

P. Chalermsook, A. Schmid, and S. Uniyal 19:9

Edges lying in the first case are called occupied edges (the set of such edges in E(f) is
denoted by Occ(f)), while the others are called free edges in f (the set of free edges in E(f)
is denoted by Free(f)). The length of f can be written as |E(f)| = |Occ(f)|+ |Free(f)|.

A very important quantity for our analysis is µ(f) = 1
2 · |Occ(f)| + |Free(f)|, roughly

bounding the value of survive(f) (within some small constant additives terms.)
We will assume without loss of generality that survive(f) is the maximum possible value

of surviving triangles that can be obtained by drawing type-0 edges in f , so µ(f) is a function
that depends only on the bounding edges in f . We define gain(f) = µ(f) − survive(f),
which is again a function that only depends on bounding edges of f . Intuitively, the higher
the term gain(f), the better for us (since this would lower the value of survive(f)), and in
fact, it will later become clear that gain(f) roughly captures the “effectiveness” of a local
exchange argument on the super-face f . Hence, it suffices to show that

∑
f∈F gain(f) is

sufficiently large. The following proposition makes this precise:

I Proposition 9.
∑
f∈F survive(f) = (3p− 0.5p1 + 1.5a1 + a2)−

∑
f∈F gain(f)

Proof. Notice that
∑
f∈F µ(f) can be analyzed as follows:

Each cactus triangle is counted three times (once for each of its edges), and for a type-1
triangle, one of the three edges contribute only one half. Therefore, this accounts for the
term 3p− 0.5p1.
Each type-1 or type-2 edge is counted two times (once per super-face containing it in its
boundary). For a type-2 edge, the contribution is always half (since it always is accounted
in Occ(f)). For a type-1 edge, the contribution is half on the occupied case, and full on
the free case. Therefore, this accounts for the term 1.5a1 + a2.

Overall we get,
∑
f∈F µ(f) = 3p− 0.5p1 + 1.5a1 + a2, which finishes the proof. J

Combining this proposition with Equation 1, we get:

q ≤ 4p+ 0.5p1 + 2.5a1 + 3a2 −
∑
f∈F

gain(f) (2)

A warm-up: Using the gains to prove a weaker bound. To recap, after Step 1 and Step
2, we have reduced the analysis to the question of lower bounding

∑
f∈F gain(f). We first

illustrate that we could get a weaker (but non-trivial) result compared to our main result
by using a generic upper bound on the gains. In Step 3, we will show how to substantially
improve this bound, achieving the ratio of our main Theorem 1 which is tight.

I Lemma 10. For any super-face (except for the outer-face) in F , we have gain(f) ≥ 1.5.

As the outer (super-)face f0 of H[S] is special, we can achieve a lower bound on the
quantity gain(f0) that depends on ϕ(S). This is captured by the following lemma.

I Lemma 11. For the outer-face f0, we have that gain(f) ≥ ϕ(S)− 1.

∑
f∈F

gain(f) ≥ ϕ(S)− 1 + 1.5(|F| − 1) = ϕ(S) + 1.5|F| − 0.5 (3)

The following lemma upper bounds the number of skeleton faces (i.e. super-faces of the
skeleton.)

I Lemma 12. |F| = a1 + a2 + 1 ≤ 2p− 2.

STACS 2019

19:10 A Tight Extremal Bound on the Lovász Cactus Number in Planar Graphs

t

Sw

u v

w

W v
Su SvSu Sv

t

tt t

t

t

Figure 3 An example of the contraction transformation.

Proof. Proposition 7 allows us to modify the graph H into another simple planar graph H̃
such that the claimed upper bound on |F| will follow simply from Euler’s formula.

Let t be a cactus triangle where V (t) = {u, v, w} and uw ∈ E(t) be such that the edge
set Btuw is empty, as guaranteed in Proposition 7. For every cactus triangle t we contract the
edge uw into one new vertex W . Note that this operation creates two parallel edges with
endpoints W and v in the resulting graph. To avoid multi-edges in the resulting graph H̃ we
remove one of them (see Figure 3 for an illustration of this operation). Since Btuw is empty
this operation cannot create any other multi-edges in H̃. In addition the contraction of an
edge maintains planarity, hence after each such transformation the graph remains simple and
planar. As a result of applying the above operation to all cactus triangles, the graph H̃ has
p+ 1 vertices and p edges corresponding to the contracted triangles. By Euler’s formula the
number of edges in H̃ is at most 3(p+ 1)− 6 = 3p− 3, which implies that a1 + a2 ≤ 2p− 3,
and as |F| = a1 + a2 + 1 we get that |F| ≤ 2p− 2. J

Combining the trivial gains (i.e. Inequality 3) with Inequality 2, we get

q ≤ (4p+0.5p1+2.5a1+3a2)−(ϕ(S)+1.5(a1+a2+1)−2.5) = 4p+0.5p1+a1+1.5a2−ϕ(S)+1

Now, using Lemma 12 and the trivial bound that p1 ≤ p, we get q(S) ≤ 4.5p+ 1.5(a1 + a2)−
ϕ(S) + 1 ≤ 7.5p(S)− ϕ(S), therefore implying a factor 7.5 upper bound.

Step 3: Upper Bounding Gains via Super-Face Classification

In this final step, we show another crucial idea that allows us to reach a factor 6. Intuitively,
the most difficult part of lower bounding the total gain is the fact that the value of gain(f) is
different for each type of super-face, and one cannot expect a strong “universal” upper bound
that holds for all of them. For instance, Figure 4 shows a super-face with gain(f) = 1.5, so
strictly speaking, we cannot improve the generic bound of 1.5.

Figure 4 A super-face f ∈ F having gain(f) = 1.5; µ(f) = 1.5 and survive(f) = 0.

P. Chalermsook, A. Schmid, and S. Uniyal 19:11

This is where we introduce our final ingredient, that we call classification scheme. Roughly,
we would like to “classify” the super-faces in F into several types, each of which has the same
gain. Analyzing super-faces with similar gains together allows us to achieve a better result.

Super-face classification scheme. We are interested in coming up with a set of rules Φ
that classifies F into several types. We say that the rule Φ is a d-type classification if the
rules classifies F into d sets F =

⋃d
j=1 F [j]. Let ~χ be a vector such that ~χ[i] = |F [i]|. We

would like to prove a good lower bound on the gain for each such set. We define the gain
vector by −−→gain where −−→gain[i] = minf∈F [i] gain(f). The total gain can be rewritten as:∑

f∈F

gain(f) = −−→gain · ~χ

Notice that, the total gain value −−→gain · ~χ would be written in terms of the ~χ[j] variables,
so we would need another ingredient to lower bound this in terms of variables p’s and a’s.
Therefore, another component of the classification scheme is a set of valid linear inequalities
Ψ of the form

∑d
j=1 Cj~χ[j] ≤

∑
j∈{0,1} djpj +

∑
j∈{1,2} d

′
jaj . This set of inequalities will

allow us to map the formula in terms of ~χ[j] into one in terms of only p’s and a’s.
A classification scheme is defined as a pair (Φ,Ψ). We say that such a scheme certifies the

proof of factor γ if it can be used to derive q(S) ≤ γp(S)− ϕ(S). Given a fixed classification
scheme and a gain vector, we can check whether it certifies a factor γ by using an LP solver
(although in our proof, we would show this derivation.)

Our main result is a scheme that certifies a factor 6. Since the proof is complicated, we
also provide a simpler, more intuitive proof that certifies a factor 7 first.

I Theorem 13. There is a 5-type classification scheme that gives a factor 7.

We remark that the analysis of factor 7 only requires a cactus that is locally optimal for
1-swap.

I Theorem 14. There is a 13-type classification scheme that gives a factor 6.

Intuition. The classification scheme would intuitively set the rules to separate the super-
faces that would benefit from local search’s exchange argument from those that would not.
Therefore, for the good cases, we would obtain a much better gain, e.g., in one of our
classification type, gain(f) is as high as 4.5. In the bad cases that there is no such benefit,
we would still use the lower bound of 1.5 that holds in general for any super-face.

3 On the Strength of Our Result

3.1 Our Bound is Almost Tight
In this section, we show that there exists a graph G for which β(G) ≤ (1

6 + o(1))f3(G). We
show this indirectly using a family of graphs presented in [7], as stated in the following
lemma.

I Lemma 15 ([7]). There is a family of n-vertex planar graphs {Hn}n∈Z for which there
exist a maximal cactus subgraph Cn of Hn such that f3(Cn)

f3(Hn) ≤
1

12 + on(1).

In [7], this family of graphs is used to show that a maximal cactus (not maximum) is not
sufficient to improve over the best known greedy strategies when approximating MPT. In
the context of this paper we use Cn to compare it to a maximum cactus for Hn to prove the
following.

STACS 2019

19:12 A Tight Extremal Bound on the Lovász Cactus Number in Planar Graphs

I Theorem 16. Let Hn be the graph family as in Lemma 15. Then, β(Hn)
f3(Hn) ≤

1
6 + on(1).

Proof. By Lemma 15, it suffices to argue that f3(Cn) ≥ β(Hn)
2 . Let C∗n be an optimal cactus

with β(Hn) triangles. Notice that for any triangle t in Cn, E(t) intersects at most two other
triangles in C∗n. If all three edges of t were to be used by three different triangles in C∗n, this
would contradict the cactus property. Moreover, if t does not intersect any triangle in C∗n
this would imply that one of its edges would complete a cycle if added to C∗n. By these two
observations we can use a simple counting scheme to upper-bound the number of triangles in
C∗n depending on the number of triangles in Cn. We iteratively add triangles of Cn to C∗n
and count in every step how many triangles in C∗n need to be removed to maintain the cactus
property. For every triangle in Cn that intersects C∗n in one or two edges, we have to remove
at most two triangles from C∗n. For every triangle in Cn, that does not intersect C∗n in any
edge, we have to break a cycle in the resulting C∗n by deleting one other triangle from it. In
each iteration we therefore destroy at most two triangles from the original C∗n and therefore
get f3(C∗n) ≤ 2f3(Cn). This concludes the proof as f3(Cn) ≥ f3(C∗n)/2 = β(Hn)/2. J

3.2 Comparison to the Previous Bound
One integral part to derive the improved approximation ration for MPS in [3] was to show
that for any given planar graph G = (V,E) with n = |V | vertices and |E| = 3n− 6− t(G)
edges, we have:

I Theorem 17 ([3]). Let G be as above, then β(G) ≥ 1
3 (n− t(G)− 2).

As removing one edge from a triangulated planar graph merges exactly two faces, we can
easily derive a lower bound that depends on t(G), for the number of triangular faces in G:

f3(G) ≥ 2n− 2t(G)− 4

By Theorem 1, we have that β(G) ≥ 1
6f3(G). Combining these two facts implies

Theorem 17.

A triangulation on

n/2 vertices.

The remaining n/2 vertices

Figure 5 Bad example which shows that a extremal bound like the one in in [3] for MPS does
not necessarily imply a similarly strong result to MPT.

We end this section by showing that the bound in [3] alone is not sufficient for ap-
proximating MPT. To this end we construct a graph in which 1

3 (n − t(G) − 2) ≤ 0, even
though f3(G) = Θ(n), Let G be a planar graph with n vertices, where n

2 vertices form
a triangulated planar subgraph. Let v be a vertex on the outer-face of this triangulated
structure. The remaining n

2 vertices are embedded in the outer-face and are incident to
exactly one edge each, with the other endpoint being v (see Figure 5 for an illustration

P. Chalermsook, A. Schmid, and S. Uniyal 19:13

of this construction). Therefore by Euler’s formula, the number of edges in this graph is
equal to 3(n2)− 6 + n

2 = 2n− 6 and thus t(G) = n, while the number of triangular faces is
f3(G) = 2(n2)− 4− 1 = n− 5.

4 Conclusions and Open Problems

Our work implies that a natural local search algorithm gives a (4
9 + ε)-approximation for

MPS and a 1
6 + ε approximation for MPT. To be more precise, when given any graph G, we

follow the t-swap local search strategy for t = O(1/ε): Start from any cactus subgraph H.
Try to improve it by removing t triangles and adding (t+ 1) triangles in a way that ensures
that the graph remains a cactus subgraph. A local optimal solution will always be a (4

9 + ε)
approximation for MPS and a (1

6 + ε) approximation for MPT.
Knowing this fact, there is an obvious candidate algorithm for improving over the long-

standing best approximation factor for MPS. We call a graph H a diamond-cactus if every
block in H is either a diamond5 or a triangle. Start from any diamond-cactus subgraph
H of G and then try to improve it by removing t triangles from H and adding (t + 1)
triangles, maintaining the fact that H is a diamond-cactus subgraph. We conjectured that
this algorithm gives a better than 4

9 -approximation for MPS, but we suspect that the analysis
will require substantially new ideas.

Another interesting direction is to see whether there is a general principle that captures a
denser planar structure than cactus subgraphs by going above matroid parity in the hierarchy
of efficiently computable problems. For instance, are diamond-cactus subgraphs captured by
matroid parity? Or can it be formulated as an even more abstract structure than matroids
(e.g. commutative rank [2]) that can still be computed efficiently? We believe that studying
this direction will lead to a better understanding of algebraic techniques for finding dense
planar structures.

Finally, the absence of LP-based techniques in this problem domain seems rather unfortu-
nate. There have been some experimental studies recently, but the theoretical understanding
of what can be proven formally in the context of power of relaxation is certainly lacking
[16, 10, 11]. Is there a convex relaxation that allows us to find a relatively dense planar
subgraph (e.g. (3− ε)-approximation for MPS using LP-based techniques)?

References
1 Claude Berge. La theorie des graphes. Paris, France, 1958.
2 Markus Bläser, Gorav Jindal, and Anurag Pandey. Greedy Strikes Again: A Deterministic

PTAS for Commutative Rank of Matrix Spaces. In 32nd Computational Complexity Conference,
CCC 2017, July 6-9, 2017, Riga, Latvia, pages 33:1–33:16, 2017.

3 Gruia Călinescu, Cristina G Fernandes, Ulrich Finkler, and Howard Karloff. A better ap-
proximation algorithm for finding planar subgraphs. Journal of Algorithms, 27(2):269–302,
1998.

4 Gruia Calinescu, Cristina G Fernandes, Howard Karloff, and Alexander Zelikovsky. A new
approximation algorithm for finding heavy planar subgraphs. Algorithmica, 36(2):179–205,
2003.

5 Gruia Călinescu, Cristina G Fernandes, Hemanshu Kaul, and Alexander Zelikovsky. Maximum
series-parallel subgraph. Algorithmica, 63(1-2):137–157, 2012.

5 A diamond subgraph is a graph that is isomorphic to the graph resulting from deleting any single edge
from a K4.

STACS 2019

19:14 A Tight Extremal Bound on the Lovász Cactus Number in Planar Graphs

6 Parinya Chalermsook, Marek Cygan, Guy Kortsarz, Bundit Laekhanukit, Pasin Manurangsi,
Danupon Nanongkai, and Luca Trevisan. From gap-ETH to FPT-inapproximability: Clique,
dominating set, and more. In Foundations of Computer Science (FOCS), 2017 IEEE 58th
Annual Symposium on, pages 743–754. IEEE, 2017.

7 Parinya Chalermsook and Andreas Schmid. Finding Triangles for Maximum Planar Subgraphs.
In WALCOM: Algorithms and Computation, 11th International Conference and Workshops,
(WALCOM’17), Proceedings., pages 373–384, 2017.

8 Parinya Chalermsook, Andreas Schmid, and Sumedha Uniyal. A Tight Extremal Bound on the
Lovász Cactus Number in Planar Graphs. CoRR, abs/1804.03485, 2018. arXiv:1804.03485.

9 Ho Yee Cheung, Lap Chi Lau, and Kai Man Leung. Algebraic algorithms for linear matroid
parity problems. ACM Transactions on Algorithms (TALG), 10(3):10, 2014.

10 Markus Chimani, Ivo Hedtke, and Tilo Wiedera. Exact Algorithms for the Maximum Planar
Subgraph Problem: New Models and Experiments. In 17th International Symposium on
Experimental Algorithms, SEA 2018, June 27-29, 2018, L’Aquila, Italy, pages 22:1–22:15, 2018.
doi:10.4230/LIPIcs.SEA.2018.22.

11 Markus Chimani and Tilo Wiedera. Cycles to the Rescue! Novel Constraints to Compute
Maximum Planar Subgraphs Fast. In Yossi Azar, Hannah Bast, and Grzegorz Herman,
editors, 26th Annual European Symposium on Algorithms (ESA 2018), volume 112 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 19:1–19:14, Dagstuhl, Germany, 2018.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.ESA.2018.19.

12 Harold N Gabow and Matthias Stallmann. An augmenting path algorithm for linear matroid
parity. Combinatorica, 6(2):123–150, 1986.

13 Magnús M Halldórsson. Approximations of weighted independent set and hereditary subset
problems. In Graph Algorithms And Applications 2, pages 3–18. World Scientific, 2004.

14 Johan Håstad. Clique is hard to approximate withinn 1- ε. Acta Mathematica, 182(1):105–142,
1999.

15 T.A. Jenkyns. Matchoids : a Generalization of Matchings and Matroids. Thesis (Ph.D.)–
University of Waterloo, 1974.

16 M. Jünger and P. Mutzel. Maximum planar subgraphs and nice embeddings: Practical layout
tools. Algorithmica, 16(1):33–59, July 1996. doi:10.1007/BF02086607.

17 Subhash Khot and Ashok Kumar Ponnuswami. Better inapproximability results for maxclique,
chromatic number and min-3lin-deletion. In International Colloquium on Automata, Languages,
and Programming, pages 226–237. Springer, 2006.

18 Eugene L Lawler. Combinatorial optimization: networks and matroids. Courier Corporation,
1976.

19 Jon Lee, Maxim Sviridenko, and Jan Vondrák. Matroid matching: the power of local search.
SIAM Journal on Computing, 42(1):357–379, 2013.

20 John M Lewis and Mihalis Yannakakis. The node-deletion problem for hereditary properties
is NP-complete. Journal of Computer and System Sciences, 20(2):219–230, 1980.

21 László Lovász. Matroid matching and some applications. Journal of Combinatorial Theory,
Series B, 28(2):208–236, 1980.

22 László Lovász and Michael D Plummer. Matching theory, volume 367. American Mathematical
Soc., 2009.

23 Carsten Lund and Mihalis Yannakakis. The approximation of maximum subgraph problems. In
International Colloquium on Automata, Languages, and Programming, pages 40–51. Springer,
1993.

24 James B Orlin. A fast, simpler algorithm for the matroid parity problem. In International
Conference on Integer Programming and Combinatorial Optimization, pages 240–258. Springer,
2008.

25 Zoltán Szigeti. On a min-max theorem of cacti. In International Conference on Integer
Programming and Combinatorial Optimization, pages 84–95. Springer, 1998.

26 William T Tutte. The factorization of linear graphs. Journal of the London Mathematical
Society, 1(2):107–111, 1947.

http://arxiv.org/abs/1804.03485
http://dx.doi.org/10.4230/LIPIcs.SEA.2018.22
http://dx.doi.org/10.4230/LIPIcs.ESA.2018.19
http://dx.doi.org/10.1007/BF02086607

Average-Case Completeness in Tag Systems
Matthew Cook
University of Zürich, Switzerland
ETH Zürich, Switzerland
cook@ini.ethz.ch

Turlough Neary
University of Zürich, Switzerland
ETH Zürich, Switzerland
tneary@ini.ethz.ch

Abstract
To prove average-case NP-completeness for a problem, we must choose a known average-case complete
problem and reduce it to that problem. Unfortunately, the set of options to choose from is far
smaller than for standard (worst-case) NP-completeness. In an effort to help remedy this we focus on
tag systems, which due to their extreme simplicity have been a target for other types of reductions
for many problems including the matrix mortality problem, the Post correspondence problem, the
universality of cellular automaton Rule 110, and all of the smallest universal single-tape Turing
machines. Here we show that a tag system can efficiently simulate a Turing machine even when
the input is provided in an extremely simple encoding which adds just logn carefully set bits to
encode an arbitrary Turing machine input of length n. As a result we show that the bounded halting
problem for nondeterministic tag systems is average-case NP-complete. This result is unexpected
when one considers that in the current state of the art for simple universal systems it had appeared
that there was a trade-off whereby simpler systems required more complicated input encodings. In
other words, although simple systems can compute interesting things, they had appeared to require
very carefully encoded inputs in order to do so. Our result surprisingly goes in the opposite direction
by giving the first average-case completeness result for such a simple model of computation. In
ongoing work we have already found applications of our result having used it to give average-case
NP-completeness results for a 2D generalization of the Collatz function, a nondeterministic version of
the 2D elementary functions studied by Koiran and Moore, 3D piecewise affine maps, and bounded
Post correspondence problem instances that use simpler word pairs than previous results.

2012 ACM Subject Classification Theory of computation → Problems, reductions and completeness

Keywords and phrases average-case NP-completeness, encoding complexity, tag system, bounded
halting problem

Digital Object Identifier 10.4230/LIPIcs.STACS.2019.20

Funding Turlough Neary: Supported by Swiss National Science Foundation grant numbers 200021-
153295 and 200021-166231.

1 Introduction

Given the massive interest in worst-case NP-completeness, the literature devoted to proving
the stronger result of average-case NP-completeness can be considered quite limited. This is
surprising when one considers the practical importance of determining whether or not we are
likely to encounter intractable instances in problems we wish to solve. One reason for the
smaller number of results is that it is more difficult to prove the stricter form of reduction
required to show average-case NP-completeness [11, 25]. A first step towards overcoming
this difficulty is to give new average-case completeness results for problems whose simplicity
allows for easier average-case reductions to other systems.

© Matthew Cook and Turlough Neary;
licensed under Creative Commons License CC-BY

36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019).
Editors: Rolf Niedermeier and Christophe Paul; Article No. 20; pp. 20:1–20:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:cook@ini.ethz.ch
mailto:tneary@ini.ethz.ch
https://doi.org/10.4230/LIPIcs.STACS.2019.20
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

20:2 Average-Case Completeness in Tag Systems

Of all the simple models in the literature where a new average-case completeness result
would have applications to a wide range of problems, perhaps the most compelling case can
be made for tag systems, a very simple form of rewriting system introduced by Post [18].
The simplicity of the context free rewrite rule employed by tag systems has made them
a favored target of simulation by many other systems. For this reason, tag systems have
been used either through individual reductions or via chains of reductions to prove many
undecidability and hardness results (e.g. [4, 9, 12, 21, 22, 23, 24, 26]). Reductions to tag
systems have also yielded significant improvements in lower bounds for a number of well
studied problems [14, 16, 19, 20]. So proving that the bounded halting problem for tag
systems is average-case NP-complete could lead to other new average-case NP-completeness
results and even improved lower bounds for existing results. In fact we [5] have already
used 2-tag systems to give an average-case NP-completeness result for Post correspondence
problem instances that use shorter word pairs than those found in [8, 25]. In ongoing work [6]
we have already begun using 2-tag systems as the starting point for chains of simulations that
prove average-case NP-completeness. We have used 2-tag systems to prove the average-case
NP-completeness of a bounded reachability problem for a generalized 2D1 version of the
Collatz function that is nondeterministic [6]. As a corollary of our result we find that a
nondeterministic version of the 2D elementary functions of Koiran and Moore [10] also have
a bounded reachability problem that is average-case NP-complete. In addition we simulate
tag systems to prove an average-case NP-completeness result for bounded reachability in 3D
piecewise affine maps that are nondeterministic [6].

It is worth noting that the applications of tag systems given in the references above
are not where the applications end; they propagate to other results through further chains
of reductions. The results in [16] are an example where binary tag systems were used to
significantly improve the undecidability bounds for both the Post correspondence problem
and the matrix mortality problem. The new bounds for the matrix mortality problem
also give improved undecidability bounds for the problem in [2] of reaching the origin with
piecewise linear systems and for the quantum measurements problem in [7]. The results
in the present paper are a first step towards proving average case completeness results for
bounded versions of these problems.

There are some obvious reasons to think an attempt to prove an average-case completeness
result for a system as simple as a tag systems is doomed to fail. It seems natural to expect that
the simplest systems require unwieldy encodings to compute, or suffer from an exponential
trade-off when it comes to time efficiency, and for a long time the literature seemed to bear
this out. However, in [17, 26] Neary and Woods showed that many of the simplest known
models of computation [4, 12, 14, 19, 20, 22] actually simulate Turing machines in polynomial
time, an exponential improvement over the previous simulations. It follows that many simple
systems now have a P-complete prediction problem, which means that there is no known
way to predict the long term behavior of these systems significantly faster than by explicit
step by step simulation.

Despite these improvements in efficiency it remained the case that the simplest universal
systems utilized complicated input encodings [4, 12, 13, 14, 16, 19, 20]. So it seemed
reasonable to expect that as programs get shorter or the form of rules get simpler, extra
complexity gets forced into the input encoding. This observation was expressed nicely by
Yedidia and Aaronson in [27]:

1 It is an open problem as to whether or not generalized 1D Collatz functions can simulate Turing
machines in polynomial time [10] and so proving an NP-completeness result for a nondeterministic
generalization of 1D Collatz functions would most likely require some radically new encoding technique.

M. Cook and T. Neary 20:3

“the known small universal Turing machines achieve their small size only at the
cost of an extremely complicated description format for the input machine. That is,
most of the complexity gets “shunted” from the Turing machine itself to the input
encoding format.”

The complexity of the input encodings used by the simplest known universal systems means
that their input encodings have a very low chance of occurring when sampled from a uniform
distribution over the input alphabet. So while many of the simplest systems are now known to
have P -complete prediction problems based on carefully encoded inputs, it could nonetheless
be the case that the behavior of the simplest universal systems is easy to predict on average.

Here we give a first result indicating that this is not the case. Specifically, we show
that tag systems can efficiently simulate the computation of binary Turing machines when
provided with an extremely simple encoding which adds just logn carefully set bits to encode
an arbitrary input of length n. As a result we find that the bounded halting problem for
nondeterministic tag systems is average-case NP-complete.

2 Preliminaries

The length of a word w is denoted by |w|. We let ε denote the empty word. Given a natural
number i we let 〈i〉 be its binary digit representation.

2.1 2-Tag Systems
I Definition 1. A 2-tag system consists of a finite alphabet of symbols Σ and a finite set of
rules R : Σ→ Σ∗.

The computation of a 2-tag system acts on a word w = σ0σ1 . . . σl which we call the dataword.
The entire configuration is given by w. In a computation step, the two symbols σ0σ1 are
deleted and we apply a rule for the first symbol σ0, i.e., a rule of the form σ0 → σl+1 . . . σl+c,
by appending the word σl+1 . . . σl+c. A dataword (configuration) w2 is obtained from w1 via
a single computation step as follows:

σ0σ1σ2 . . . σl ` σ2 . . . σlσl+1 . . . σl+c

where σ0 → σl+1 . . . σl+c ∈ R. A 2-tag system halts if |w| < 2 or if there is no rule defined
for the leftmost symbol σ0 . A round is the b |w|2 c or d

|w|
2 e computation steps that traverse

the word w exactly once. We say a symbol σi of w is read if and only if at the start of some
computation step it is the leftmost symbol (i.e. i is even, so the rule σi → σk+1 . . . σk+c will
be applied). In this work we consider tag systems that are nondeterministic, that is they are
permitted to have more than one rule for each σi ∈ Σ.

In [26] it was shown that 2-tag systems efficiently simulate deterministic binary Turing
machines in time O(t4(log t)2) where t is the running time of the Turing machine. This time
overhead was later improved in Chapter 5 of [15] to give Theorem 2.

I Theorem 2 (Woods and Neary [26, 15]). Given a single tape deterministic Turing machine
M that computes in time t then there is a 2-tag system TM that simulates the computation
of M and computes in time O(t2 log t).

In [15] given a binary input word w = x1x2 . . . xn for Turing machine M it is encoded as
the TM input dataword

x̄1 ˙̄x1 x2ẋ2 x3ẋ3 . . . xnẋn (aa)2dlog2 ne+c

(1)

STACS 2019

20:4 Average-Case Completeness in Tag Systems

While the results in [26, 15] offer a polynomial time simulation of Turing machines using this
input encoding, this does not allow us to prove an average-case NP-completeness result, as
the probability of choosing a word that encodes some w (via Equation (1)) is exponentially
smaller than the probability of choosing w. In Lemma 11 we will show how 2-tag systems
can compute the encoding in Equation (1) when provided with a more compact encoding
of M ’s input word. Our compact binary encoding requires only n+ logn encoding bits to
encode M ’s input word (the remaining n+ logn bits in our length 2(n+ logn) encoding are
arbitrary padding bits). This gives an input encoding that is only polynomially less likely to
occur than the input to M and so using Lemma 11 and the results in [26] we can prove that
the bounded halting problem for tag systems is average-case NP-complete.

2.2 Average-Case Complexity
When we speak of the average-case complexity of a decision problem we are considering the
expected time to solve that problem with respect to some distribution over instances of the
problem. This leads to the notion of a distributional problem [1, 8, 11, 25]. A distributional
problem is a pair (D,µ) where D is a decision problem and µ is a distribution over instances
of D. In this work instances of D are given as binary words and we let LD be the set of
instances for which the answer to the problem D is positive.

The definitions in this section are adapted from [1, 8, 11, 25]. For the distributional
problems in this work we take the uniform probability distribution [8, 11] for binary words
w ∈ {0, 1}∗ which is proportional to µ(w) = |w|−22−|w|. The probability of choosing a word
of length n is proportional to 1/n2. We denote the distribution over all words of length n
with µn and so we have µn(w) = 2−n. We let Pf(w1, w2, . . . , wm) ∈ {0, 1}∗ be the prefix free

code for the binary words w1, w2, . . . , wm where |Pf(u1, . . . , um)| = 2m+
m∑
i=1
|wi|+2 log2 |wi|

(see [3]).

I Definition 3 (Average polynomial function). A function f that maps words to natural
numbers is polynomial on average with respect to a distribution µ if there exists an ε > 0
such that for all n∑
|w|=n

µn(w)(f(w))ε = O(n)

where w ∈ {0, 1}n.

I Definition 4 (Average polynomial time). An algorithm runs in average polynomial time with
respect to a distribution µ if its running time is bounded by an average polynomial function
with respect to µ.

Average-case reductions insist that when reducing a distributional problem (D,µ) to
another distributional problem (D′, µ′), instances x ∈ D should be at most polynomially
more likely than the instances they reduce to. This property is enforced by condition 2 of
Definition 5. Previous 2-tag system simulations of Turing machine used input encodings that
do not satisfy this condition. In Lemma 11 and Corollary 12 we show that 2-tag system with
a concise input encoding can simulate Turing machines efficiently, and then in Theorem 13
we show that this new input encoding satisfies condition 2 of Definition 5.

I Definition 5 (Ptime reduction between distributional problems). A distributional problem
(D,µ) Ptime reduces to a distributional problem (D′, µ′) if there exists a polynomial time
computable function g(w) = y, where w ∈ D and y ∈ D′, and a polynomial p(|w|) such that
the following two conditions hold:

M. Cook and T. Neary 20:5

1. g(w) ∈ LD′ if and only if w ∈ LD
2.

∑
g(w)=y

µ(w) 6 p(|w|)µ′(y)

I Definition 6 (Dilation of a distributional problem). A dilation ∆ of a distributional problem
(D,µ) is a distributional problem (D∆, µ∆) where instances of D∆ include extra padding.
The dilation ∆ maps each instance w of D to a set given by {Pf(w, sw)|sw ∈ Sw} where
Sw is a finite set of binary words. The set D∆ is given by the union of all sets produced by
applying ∆ to the instances of D (i.e. D∆ =

⋃
w∈D
{Pf(w, sw)|sw ∈ Sw}). For each instance

Pf(w, sw) of D∆, Pf(w, sw) ∈ LD∆ if and only if w ∈ LD. The probability distribution is

given by µ∆(Pf(w, sw)) = µ(w)2−|sw|∑
r′∈Sw

2−|r
′| .

We say a dilation is a Ptime dilation if it is computed by a randomized algorithm A that
runs in polynomial time, that is on input w A outputs an element from {Pf(w, sw)|sw ∈ Sw}
in time polynomial in |w|. We think of sw as the sequence of coin flips made by A.

I Definition 7 (Nonrare dilation). A dilation ∆ (as defined in Definition 3) is nonrare if R∆
(given in Equation (2)) is polynomial on average with respect to the distribution µ′.

R∆(w) = 1∑
s∈Sw

2−|s|
(2)

I Definition 8 (Ptime randomized reduction between distributional problems). A distributional
problem (D,µ) randomly reduces to a distributional problem (D′, µ′) if (D,µ) has a nonrare
Ptime dilation (D∆, µ∆) such that (D∆, µ∆) Ptime reduces to (D′, µ′) (see Definition 5).

Let M1,M2,M3, . . . be an enumeration of nondeterministic binary Turing machines and
let T1, T2, T3, . . . be an enumeration of nondeterministic 2-tag systems.

The problem in Definition 9 is known to be average-case NP-complete and it will be used
in our reduction at the end of the next section to prove that the problem for tag systems
given in Definition 10 is average-case NP-complete.

I Definition 9 (Distributional bounded halting problem for nondeterministic Turing machines).
Problem: Given a nondeterministic Turing machine Mi, a binary word w, and a natural
number t, determine whether or not M halts in t steps when given w as input.

Instance: A binary word Pf(〈i〉, w, 1t)
Distribution: Proportional to µ(〈i〉, w, t) = 2−(|〈i〉|+|w|)|〈i〉|−2|w|−2t−2.

I Definition 10 (Distributional bounded halting problem for nondeterministic 2-tag systems).
Problem: Given a nondeterministic 2-tag system Ti, a binary word w, and a natural number
t, determine whether or not T halts in t steps when given w as input.

Instance: A binary word Pf(〈i〉, w, 1t)
Distribution: Proportional to µ(〈i〉, w, t) = 2−(|〈i〉|+|w|)|〈i〉|−2|w|−2t−2.

3 New Concise Input Encoding for 2-Tag Systems

In Equation (3), we define an encoding function f : Σn×Σn+dlog2 ne+c → {0, 1}∗ where c = 1
if 2dlog2 ne < n+ dlog2 ne otherwise c = 0. The encoding function takes w = x1x2 . . . xn an
arbitrary binary Turing machine input and s = z1z2 . . . zn+dlog2 ne+c an arbitrary padding

STACS 2019

20:6 Average-Case Completeness in Tag Systems

1z1 000z2 111z3 0z4 111z5 1z6 1z7 0z8 111z9 1z10 0z11

aȧ 11̇ 0/0̇/ aȧ 11̇ 0/0̇/ aȧ 11̇ 1/1̇/ aȧ 11̇ 0/0̇/ aȧ 11̇ 1/1̇/ aȧ 00̇

(aȧ)3 11̇ 0/0̇/ 1/1̇/ 0/\0̇/\ (aȧ)3 11̇ 1/1̇/ 1/1̇/ 0/\0̇/\ (aȧ)3 11̇ 1/1̇/ 0/0̇/

(aȧ)7 11̇ 0/0̇/ 1/1̇/ 0/\0̇/\ 1/1̇/ 1/\1̇/\ 1/\1̇/\ 0/\0̇/\ (aȧ)7 11̇ 1/1̇/ 0/0̇/

(aȧ)15 11̇ 0/0̇/ 1/1̇/ 0/\0̇/\ 1/1̇/ 1/\1̇/\ 1/\1̇/\ 0/\0̇/\ 1/1̇/ 1/\1̇/\ 0/\0̇/\

1̄ ˙̄1 00̇ 11̇ 11̇ 00̇ 11̇ 00̇ (aȧ)16

Figure 1 Six datawords giving an overview of the tag system algorithm in Lemma 11. The
dataword at the top is the input to the tag system and is the encoding of the word 1011010 via
Function (3). The extra parity bits inserted are highlighted in the top row in bold. The extra
white space between pairs of symbols and the vertical alignment of symbols are for readability. The
zi ∈ {0, 1} are arbitrary padding symbols that are not read by the tag system so the first round
eliminates them. The second line from top gives the dataword after one iteration (three rounds)
of our algorithm on the input dataword, the third line from the top gives the dataword after two
iterations of our algorithm on the input dataword and so on until the fifth dataword where one
further round produces the output of the algorithm on the last line. Each iteration of our algorithm
involves three rounds of the dataword. A detailed view of the 2 other rounds not shown here is given
in Datawords (7) and (8).

word (where xi, zj ∈ {0, 1}) and maps the pair to a 2-tag system input word. The value of
f(w, s) is obtained by taking x1x2 . . . xn and inserting either dlog2 ne or dlog2 ne+ 1 extra
parity bits and then adding a padding bit (zj) after each bit in the resulting word. An
example of the application of f appears in Figure 1.

f(w, s) = u
1 1z1 u1 2z2 . . . u

1 n+dlog2 ne+c zn+dlog2 ne+c

zi ∈ {0, 1} (unread bits)
u
1 i

= xi−dlog2 ie if ∀k i 6= 2k + 1

u
1 2k+1 = h(w, k) (parity bits)

(3)

where h(w, k) is given by Equation (4), w2k+1 = u
1 3·2k+1 u1 5·2k+1 u1 7·2k+1 . . . u1m·2

k+1 is a
binary word of certain input bits with m = 2y + 1, y, k ∈ N, 0 6 k < dlog2 ne + c, and
m(2k) + 1 6 n+ dlog2 ne+ c < (m+ 2)2k + 1. Note that each w2k+1 word (there is one for
each k) is formed from a set of bits, and these sets are disjoint from each other and from the
set of parity bits, but the union of these sets and the set of parity bits is the entire input
word (apart from the throw-away zi bits). The function h indicates how word w2k+1 is used
to set parity bit u

1 2k+1.

h(w, k) =

0 if |w2k+1| > 0 and number of 1 symbols in w2k+1 is even
1 if |w2k+1| > 0 and number of 1 symbols in w2k+1 is odd
1 if |w2k+1| = 0

(4)

I Lemma 11. Let w = x1x2 . . . xn and s = z1z2 . . . zn+dlog2 ne+c be binary words where
xi, zj ∈ {0, 1}. There is a 2-tag system T that takes a binary word of the form

f(w, s) = u
1 1z1 u1 2z2 . . . u

1 n+dlog2 ne+c zn+dlog2 ne+c (5)

M. Cook and T. Neary 20:7

as input and produces a word of the form

x̄
4 1 ˙̄x

4 1 x4 2ẋ4 2 . . . x
4 n
ẋ
4 n

(a
4
ȧ
4
)2dlog2 ne+c

(6)

in time O(n log2 n).

Proof. We prove the existence of such a tag system T by exhibiting one and showing why it
works, which will take the next few pages.

To produce Dataword (5) from Dataword (6) there are three tasks to be carried out:
(a) append (a

2
ȧ
2
)2dlog2 ne+c to the right end of the word, (b) change the first pair of symbols

be uniquely in the form x̄
4

˙̄x
4
and (c) delete the parity symbols (i.e. u2k+1u̇2k+1 pairs in

Equation (3)). We give an overview of how the algorithm achieves these tasks concurrently
and then we give the rules for the tag system and explain how they implement this algorithm.

Tasks (a) and (b)

To append a subword of the form (aȧ)2dlog2 ne+c one could append a single aȧ pair at the
end of the dataword and then iterate a process where on each iteration each aȧ pair is
mapped to aȧ aȧ so that after dlog2 ne+ c iterations the initial aȧ pair has grown to become

(aȧ)2dlog2 ne+c . Unfortunately there is no unique pair in the initial dataword that can be used
to append a single aȧ pair and so we must append aȧ pairs throughout the dataword which
gives aȧ subwords that grow in multiple locations throughout the dataword. Half of these
growing aȧ subwords are deleted on each of the dlog2 ne+ c iterations so that after the last

iteration only one subword of the form (aȧ)2dlog2 ne+c remains.
We now explain how our algorithm knows when it has carried out the dlog2 ne+c iterations

needed to grow the (aȧ)2dlog2 ne+c word.
Each iteration involves 3 rounds of the dataword and marks every second unmarked

uu̇ pair by mapping it to u/u̇/. See for example Figure 1 where on the first iteration pairs
2, 4, 6, 8 and 10 are marked, on the second iteration pairs 3, 7 and 11 are marked,
and so on. Using the dlog2 ne + c parity pairs we can determine when we have com-
pleted dlog2 ne + c iterations of this marking process. On iteration k we mark the pairs
u2k+1u̇2k+1, u3(2k)+1u̇3(2k)+1, u5(2k)+1u̇5(2k)+1 . . . um(2k)+1u̇m(2k)+1 and so on each iteration
exactly one parity pair (u2k+1u̇2k+1) is marked. To see that this is the case it is sufficient to
note that if at the start of iteration i the unmarked pairs are

u1u̇1, u2i+1u̇2i+1, u2(2i)+1u̇2(2i)+1, u3(2i)+1u̇3(2i)+1, . . . us1(2i)+1u̇s1(2i)+1

then at the start of iteration i+ 1 the unmarked pairs are

u1u̇1, u2i+1+1u̇2i+1+1, u2(2i+1)+1u̇2(2i+1)+1, u3(2i+1)+1u̇3(2i+1)+1, . . . us2(2k+1)+1u̇s2(2k+1)+1

and so pairs of the form u2k+1u̇2k+1, u3(2k)+1u̇3(2k)+1, u5(2k)+1u̇5(2k)+1 . . . um(2k)+1u̇m(2k)+1

are marked on iteration k for k = i and k = i + 1. The value of each u2k+1u̇2k+1 pair is

set via Equation (4) so that an even number of 11̇ pairs are marked during each of the

STACS 2019

20:8 Average-Case Completeness in Tag Systems

first dlog2 ne+ c− 1 iterations, and on iteration number dlog2 ne+ c an odd number of 11̇

pairs are marked. So by checking whether the number of uu̇ = 11̇ pairs marked during each

iteration is odd or even our algorithm can determine when exactly dlog2 ne+ c iterations
have been completed.

Now we can explain how we append (aȧ)2dlog2 ne+c during the dlog2 ne + c iterations
described above. On the first iteration a single aȧ pair is appended to the left of each uu̇
pair that remains unmarked by applying a rule of the form u → aȧ uu̇. On each subsequent
iteration each aȧ pair is replaced with two aȧ pairs if the uu̇ pair immediately to the right
remains unmarked and each aȧ pair is deleted by mapping it to the empty word if the uu̇
pair immediately to the right is marked on that iteration. In addition on each iteration each
unmarked uu̇ pair adds another aȧ pair. So immediately to the left of each unmarked uu̇
pair we have a single aȧ pair after the first iteration, 3 aȧ pairs after the second iteration, 7

aȧ pairs after the third iteration, and 2k − 1 aȧ pairs after the kth iteration (see Figure 1).

Thus after dlog2 ne+ c iterations we have (aȧ)2dlog2 ne+c−1 to the left of the only unmarked

pair (u1u1). Then in one final round each aȧ in (aȧ)2dlog2 ne+c−1 is mapped to aȧ, and this

lone remaining u1u1 pair appends one further aȧ to give (aȧ)2dlog2 ne+c at the right end of

the dataword, while also producing the ū ˙̄u to simultaneously achieve Tasks (a) and (b).

Task (c)

From Equation (3) the parity pairs that appear in the dataword have the form u2k+1u̇2k+1

and before we can delete these pairs we must first distinguish them from all other uiu̇i pairs
in the dataword. Recall from Task (a) that on iteration k we mark the pairs u2k+1u̇2k+1,
u3(2k)+1u̇3(2k)+1, u5(2k)+1u̇5(2k)+1, . . . um(2k)+1u̇m(2k)+1. Note that u2k+1u̇2k+1 is the left-
most pair marked during iteration k, and since every second unmarked uu̇ pair is marked
during iteration k there must be a single unmarked pair to the left of u2k+1u̇2k+1, and this
unmarked pair must be u1u̇1 since u1u̇1 is never marked which also means that in all iterations

following iteration k there is exactly one unmarked pair to the left of u/2k+1u̇/2k+1. It is also
the case that immediately following iteration k there must be at least l > 2 unmarked pairs
to left of each pair of the form u/j(2k)+1u̇/j(2k)+1 where j > 3. It follows that after a further r

iterations (iteration k + r) when we have continued marking every second unmarked pair
there will be dle2r unmarked pairs to the left of u/j(2k)+1u̇/j(2k)+1. Since l > 2 and our algorithm

iterates until there is only one unmarked pair there is an iteration k + r where dle2r = 1 and
dle

2r−1 = 2. It follows that for all pairs of the form u/j(2k)+1u̇/j(2k)+1 where j > 3 there is at

least one iteration where the number of unmarked pairs to the left of u/j(2k)+1u̇/j(2k)+1 is
even at the beginning of the iteration. If at the beginning of an iteration the number of
unmarked pairs to the left of a u/u̇/ pair is even then we apply the rule u/ → u/\u̇/\ (see for example

Figure 1). It follows that pairs of the form u/j(2k)+1u̇/j(2k)+1 where j > 3 will be changed

M. Cook and T. Neary 20:9

Table 1 Tag system rules where u ∈ {0, 1}. The left column specifies when the rules are used
during the algorithm: during round 1, 2 or 3 of each iteration, or during the final round on the
dataword.

round 1 u
1

→ u
2
u̇
2
ü
2
, a

1
→ a

2
ȧ
2
, u/

1
→ u/

2
u̇/
2
, u/\

1
→ u/\

2
u̇/\
2
,

round 2 u
2

→ a
3
ȧ
3
u
3
u̇
3
ü
3
, 1̇

2
→ 1/

3
1̇/
3
, 0̇

2
→ 0/

3
0̇/
3
0̈/
3
, ü

2
→ ε, a

2
→ a

3
ȧ
3
a
3
ȧ
3
, ȧ

2
→ ε,

u/
2

→ u/\
3
u̇/\
3
, u̇/

2
→ u/

3
u̇/
3
, u/\

2
→ u/\

3
u̇/\
3
, u̇/\

2
→ u/\

3
u̇/\
3
,

round 3 u
3

→ u
1
u̇
1
, u̇

3
→ u

1
u̇
1
, ü

3
→ ε, a

3
→ a

1
ȧ
1
, ȧ

3
→ a

1
ȧ
1
,

u/
3

→ u/
1
u̇/
1
, u̇/

3
→ u/

1
u̇/
1
, u/\

3
→ u/\

1
u̇/\
1
, u̇/\

3
→ u/\

1
u̇/\
1

Final round u̇
1

→ a
∗
ȧ
∗
d ū

4
˙̄u
4
, ȧ

1
→ a
∗
ȧ
∗
, u̇/

1
→ ε, u̇/\

1
→ u

4
u̇
4
, d → ε, ȧ

∗
→ a

4
ȧ
4

to u/\j(2k)+1u̇/\j(2k)+1 and pairs of the form u/2k+1u̇/2k+1 (parity pairs) will not be changed. So

applying a rule to delete u/u̇/ pairs after iteration dlog2 ne+ c deletes all parity pairs from the

dataword without deleting the uiu̇i = xiẋi pairs that appear in Equation (6).

Algorithm Details

From the lemma statement we begin with a word of the form

u
1 1z1 u1 2z2 u1 3z3 u1 4z4 . . . u

1 n+dlog2 ne+c zn+dlog2 ne+c (7)

Rules of the form u
1
→ u

2
u̇
2
ü
2
are applied to Dataword (7) which after one round gives

u
2 1u̇2 1ü2 1 u

2 2u̇2 2ü2 2 u
2 3u̇2 3ü2 3 u

2 4u̇2 4ü2 4 . . . u
2 n+dlog2 ne+c u̇2 n+dlog2 ne+c ü2 n+dlog2 ne+c (8)

The next round on the dataword uses the rules {u
2
→ a

3
ȧ
3
u
3
u̇
3
ü
3
, 0̇

2
→ 0/

3
0̇/
3
0̈/
3
, 1̇

2
→ 1/

3
1̇/
3
, ü

2
→ ε} to

mark every second u
2
u̇
2
ü
2
triple in Dataword (8). Because 2-tag systems only read every second

symbol, when i = 1 mod 2, symbols u
2 i

and ü
2 i

are read applying the rules u
2
→ a

3
ȧ
3
u
3
u̇
3
ü
3
and

ü
2
→ ε to append a

3
ȧ
3
u
3 i
u̇
3 i
ü
3 i

(ε is the empty word), and when i = 0 mod 2, symbol u̇
2 i

is read

applying either the rule 0̇
2
→ 0/

3
0̇/
3
0̈/
3
or the rule 1̇

2
→ 1/

3
1̇/
3
to append u/

3
iu̇/
3
i(ü/

3
i) (the ü/

3
i symbol in

brackets is present only if ui = 0). So the above rules mark every second uu̇ü triple to give
a dataword of one of the following two forms

a
3
ȧ
3
u
3 1u̇3 1ü3 1 u/

3
2u̇/

3
2(ü/

3
2) a

3
ȧ
3
u
3 3u̇3 3ü3 3 u/

3
4u̇/

3
4(ü/

3
4) . . . u/

3
n+dlog2 ne+c u̇/

3
n+dlog2 ne+c (ü/

3
n+dlog2 ne+c)

(9)

ȧ
3
u
3 1u̇3 1ü3 1 u/

3
2u̇/

3
2(ü/

3
2) a

3
ȧ
3
u
3 3u̇3 3ü3 3 u/

3
4u̇/

3
4(ü/

3
4) . . . a

3
ȧ
3
u
3 n+dlog2 ne+c u̇3 n+dlog2 ne+c ü3 n+dlog2 ne+c

(10)

We get a dataword of the form given in (9) if n+ dlog2 ne+ c is even and we get a dataword
of the form given in (10) if n + dlog2 ne + c is odd. To see this recall from the previous
paragraph that if n + dlog2 ne + c is odd we read ü

0 n+dlog2 ne+c, and when it is read it is
deleted along with a

3 1 which is why a
3 1 does not appear at the left end of Dataword (10).

STACS 2019

20:10 Average-Case Completeness in Tag Systems

For the next round the rules {u
3
→ u

1
u̇
1
, u̇

3
→ u

1
u̇
1
, ü

3
→ ε, u/

3
→ u/

1
u̇/
1
, u̇/

3
→ u

1
u̇
1
, ü/

3
→ ε, a

3
→

a
1
ȧ
1
, ȧ

3
→ a

1
ȧ
1
, } are applied to Datawords (9) and (10) to give Datawords (11) and (12),

respectively. Note that to produce datawords of the form given in (11) and (12), where the
leftmost symbol is a

1
instead of ȧ

1
, Datawords (9) and (10) must have even length. The parity

of Datawords (9) and (10) depends on the number of 11̇1̈ triples that are marked when

reading Dataword (8), as a 11̇1̈ triple is marked by replacing with a 1/
3
1̇/
3
pair. So if we mark

an even number of 11̇1̈ triples, Dataword (9) will have the same parity as Dataword (8),

and Dataword (10) will have a different parity from Dataword (8) (since Dataword (10) is
missing the leftmost a

3 1). So because Dataword (9) is only produced if Dataword (8) is even
and Dataword (10) is only produced if Dataword (8) is odd, Dataword (9) and (10) are both
even. From the description of Task (a) we know that the number of 1

2
1̇
2
1̈
2
triples marked is

even for the first dlog2 ne+ c iterations of our algorithm and so it follows that the length
of Datawords (9) and (10) are even. For this reason the leftmost symbol in Datawords (11)
and (12) is a

1
and so undotted symbols are read during the next round.

a
1
ȧ
1
u
1 1u̇1 1 u/

1
2u̇/

1
2 a

1
ȧ
1
u
1 3u̇1 3 u/

1
4u̇/

1
4 . . . u/

1
n+dlog2 ne+c u̇/

1
n+dlog2 ne+c if n+ dlog2 ne+ c is even

(11)

a
1
ȧ
1
u
1 1u̇1 1 u/

1
2u̇/

1
2 a

1
ȧ
1
u
1 3u̇1 3 u/

1
4u̇/

1
4 . . . a

1
ȧ
1
u
1 n+dlog2 ne+c u̇1 n+dlog2 ne+c if n+ dlog2 ne+ c is odd

(12)

In Datawords (11) and (12) the 2-tag system is ready to repeat the process of marking every
second unmarked symbol. The cases for Datawords (11) and (12) proceed in a similar manner
so we will continue only with the case for Dataword (11). Applying the rules u

1
→ u

2
u̇
2
ü
2
,

u/
1
→ u/

2
u̇/
2
and a

1
→ a

2
ȧ
2
to Dataword (11) gives

a
2
ȧ
2
u
2 1u̇2 1ü2 1 u/

2
2u̇/

2
2 a

2
ȧ
2
u
2 3u̇2 3ü2 3 u/

2
4u̇/

2
4 a

2
ȧ
2
u
2 5u̇2 5ü2 5 . . . u/

2
n+dlog2 ne+c u̇/

2
n+dlog2 ne+c (13)

Continuing the computation, the rules used in the first iteration are used again here to mark
every second u

2
u̇
2
ü
2
triple but on this iteration we also apply the rules {u/

2
→ u/\

3
u̇/\
3
, u̇/

2
→ u/

3
u̇/
3
, a

2
→

a
3
ȧ
3
a
3
ȧ
3
, ȧ

2
→ ε} to Dataword (13) to produce Dataword (14). When reading Dataword (13)

each triple u
2
u̇
2
ü
2
causes a shift in the reading frame where if we read the symbols with a single

dot before a triple we will read the symbols with no dots after that triple. This means that
if there is a even number of u

2
u̇
2
ü
2
triples to the left of a u/

2
u̇/
2
pair we read u/

2
and apply the rule

u/
2
→ u/\

3
u̇/\
3
, and if there is an odd number we read u̇/

2
and apply the rule u̇/

2
→ u/

3
u̇/
3
. This allows us

to distinguish the parity pairs from all other pairs by changing as described in the paragraph
on Task (c), since only the marked parity pairs have the form u/u̇/ after the final iteration with

all other marked pairs having the from u/\u̇/\. Next we consider the change in the number of aȧ

pairs when Dataword (13) is read to produce Dataword (14). If we read u̇
2
in a u

2 i
u̇
2 i
ü
2 i

triple

M. Cook and T. Neary 20:11

it follows that we read ȧ
2
symbols in the run of a

2
ȧ
2
pairs immediately to the left of that triple,

and so when we mark a triple by applying the rule u̇
2
→ u/

3
2u̇/

3
2(ü/

3
2) the a

2
ȧ
2
pairs are deleted

because we apply the rule ȧ
2
→ ε giving the behavior described in the third paragraph of Task

(a). Alternatively, when we read u
2
the u

3
u̇
3
ü
3
triple remains unmarked and we read a

2
symbols

in the run of a
2
ȧ
2
pairs immediately to the left which applies the rule a

2
→ a

3
ȧ
3
a
3
ȧ
3
giving the

described in the third paragraph of Task (a). Since we have covered the difference between
reading even and odd numbers of unmarked symbols during the previous iteration, here we
cover only the case where there is an even number of unmarked symbols in Dataword (13).
So following a round on Dataword (13) we get a Dataword of the form given in (14).

(a
3
ȧ
3
)3 u

3 1u̇3 1ü3 1 u/
3

2u̇/
3

2 u/
3

3u̇/
3

3(ü/
3

3) u/\
3

4u̇/\
3

4 (a
3
ȧ
3
)3 u

3 5u̇3 5ü3 5 . . . u/
3
n+dlog2 ne+c u̇/

3
n+dlog2 ne+c (14)

From our explanation at the end of the previous iteration we know that a single round on
Dataword (14) gives a dataword of the form

(a
1
ȧ
1
)3 u

1 1u̇1 1 u/
1

2u̇/
1

2 u/
1

3u̇/
1

3 u/\
1

4u̇/\
1

4 (a
1
ȧ
1
)3 u

1 5u̇1 5 . . . u/
1
n+dlog2 ne+c u̇/

1
n+dlog2 ne+c (15)

Each subsequent iteration carries on as described above until we come to iteration dlog2 ne+c.
From Task (a) we know that during iteration dlog2 ne+ c we mark an odd number of 1

2
1̇
2
1̈
2

triples and so from the paragraph preceding Dataword (9) this means that the leftmost a
1
gets

deleted at the end of iteration dlog2 ne+ c to give a Dataword of the form (16). From the
description of Task (a) we know that after dlog2 ne+ c iterations u

1 1u̇1 1 is the only unmarked
pair in the dataword and that the only aȧ pairs to be found are immediately to the left of

u
1 1u̇1 1 in a word of the form (a

1
ȧ
1
)2n+dlog2 ne+c−1 as shown in Dataword (16).

ȧ
1
(a

1
ȧ
1
)2n+dlog2 ne+c−2 u

1 1u̇1 1 u/
1

2u̇/
1

2 u/
1

3u̇/
1

3 u/\
1

4u̇/\
1

4 u/
1

5u̇/
1

5 . . . u/\
1
n+dlog2 ne+c u̇/\

1
n+dlog2 ne+c (16)

In Dataword (16) following dlog2 ne+ c iterations we read the dotted symbol for pairs with
underscript 1 for the first time and we apply the rules {u̇

1
→ a
∗
ȧ
∗
d ū

4
˙̄u
4
, ȧ

1
→ a
∗
ȧ
∗
, u̇/

3
→ ε, u̇/\

3
→

u
4
u̇
4
, d→ ε} to give Dataword (17). From the description of Task (c) we know that rule u̇/

3
→ ε

deletes all pairs of the form u/
4

2k+1u̇/
4

2k+1 and so from Equation (3) Datawords (17) and (6)
are identical.

ū
4 1 ˙̄u

4 1 u
4 4u̇4 4 u

4 6u̇4 6 u
4 7u̇4 7 u

4 8u̇4 8 u
4 10u̇4 10 . . . u

4 n+dlog2 ne+c u̇4 n+dlog2 ne+c (a
4
ȧ
4
)2n+dlog2 ne+c

(17)

J

We can now use Lemma 11 to prove Corollary 12 which will be used in the reduction in
our main theorem. In this reduction our tag systems simulate a particular type of Turing
machine where the halting time is bounded by what is known as a longevity guard. A
longevity guard [8] for a Turing machine M is a function l : Σ∗ → N where on input w either
M halts in 6 l(w) steps or it runs forever.

I Corollary 12. Let M be an arbitrary nondeterministic Turing machine with a single binary
tape and a longevity guard l, let f be the function given by Equation (3), and let s be an
arbitrary binary word of length |w|+ dlog2 |w|e+ c where c = 1 if 2dlog2 |w|e < n+ dlog2 |w|e
otherwise c = 0. There is a nondeterministic 2-tag system that takes words of the form
f(w, s), and halts in time O(l(w)2 log l(w)) if and only if M halts on input w in time l(w).

STACS 2019

20:12 Average-Case Completeness in Tag Systems

Proof. The deterministic tag system algorithm in [15] simulates a Turing machine transition
rule qy, x1, x2, d, qz (with current state qy, read symbol x1, write symbol x2, move direction
d ∈ {L,R} , and next state qz) using a rule of the form x

y
1ẋ

y
1 → x/

0
2ẋ/

0
2s

2z if d = R, and a rule

of the form x
y

1ẋ
y

1 → s2z

x
0 2ẋ0 2 if d = L. In our nondeterministic 2-tag system there is a rule

of one of the two forms given above for each transition rule in the nondeterministic Turing
machine M . Such a nondeterministic 2-tag system uses the same algorithm as the tag system
in [15] and so simulates t steps of M in time O(l(w)2 log l(w)) (see Theorem 2) halting if
and only if M halts. Adding the 2-tag system from Lemma 11 as a subroutine to such a
nondeterministic 2-tag system allows it to simulate M in time O(l(w)2 log l(w)) when given
f(w, s) as input. J

To see that the longevity guard is necessary in Corollary 12 consider what happens if we
replace l(w) with an arbitrary running time t: Our 2-tag system still halts in time O(t2 log t)
if M halts in time t, however it is also possible that our tag system halts in time O(t2 log t)
when M does not halt in time t but does halt at some later time > t. This is because
the asymptotic bound O(t2 log t) does not bound precisely the number of simulated Turing
machine steps at t. So without the longevity guard we get the “if” but not the “only if”.

I Theorem 13. The distributional bounded halting problem for nondeterministic 2-tag
systems is complete for average-case NP under Ptime randomized reductions.

Proof. We show that for every distributional problem (D,µ) in NP, there is a Ptime random-
ized reduction from (D,µ) to the distributional bounded halting problem for nondeterministic
2-tag systems that satisfies Definition 8.

In [8] Gurevich shows that for each NP distributional problem (D,µ) there exists a
nondeterministic binary Turing machine Mi that has a polynomial longevity guard l such
that (D,µ) Ptime reduces to the halting problem for Mi. Given a binary input word w that
encodes an instance v of D, Mi halts in 6 l(w) steps if and only if v ∈ LD. From Definition 9
a Ptime function g that reduces instances of D to instances of the bounded halting problem
for Mi is given by

g(v) = Pf(〈i〉, w, 1l(w)) (18)

Let ∆ be a dilation of (D,µ) to (D∆, µ∆) where each instance v ∈ D is mapped to a set
of the form {Pf(v, sv)|sv ∈ {0, 1}|w|+dlog2 |w|e+c}, with c = 1 if 2dlog2 |w|e < |w|+ dlog2 |w|e
otherwise c = 0. Since g is Ptime computable we know from Equation (18) that given v the
value |w|+ dlog2 |w|e+ c can be computed in polynomial time and so there is a randomized
algorithm that computes ∆ giving a Ptime dilation. In addition ∆ is also nonrare as R∆ = 1
(see Definition 7). So from Definition 8 we can show that (D,µ) Ptime randomly reduces to
the bounded halting problem for 2-tag systems by showing that its nonrare Ptime dilation
(D∆, µ∆) Ptime reduces to the bounded halting problem for 2-tag systems.

From Definition 6 and the paragraph before Equation (18) we see that for all Pf(v, sw) ∈
D∆ we have Pf(v, sw) ∈ LD∆ if and only if Mi halts in time l(w) on input w. It follows
from Corollary 12 that there is a tag system Tj such that for all Pf(v, sw) ∈ D∆, Tj halts
in time O(l(w)2 log l(w)) on input f(v, sw) if and only if Pf(v, sw) ∈ D∆. So there is a
reduction g′ that reduces instance of D∆ to instances of the bounded halting problem for
Tj (Definition 10). The reduction g′ which is given in Equation (19) satisfies condition 1 of
Definition 5.

g′(Pf(v, sw)) = Pf(〈j〉, f(w, sw), 1O(l(w)2 log l(w))) (19)

M. Cook and T. Neary 20:13

Since g(v) in Equation (18) is Ptime computable so too is g′(Pf(v, sw)). Now to complete
our proof it only remains to show that the reduction g′ given in Equation (19) satisfies
condition 2 of Definition 5.

We already know that the reduction g given in Equation (18) Ptime reduces the dis-
tributional problem (D,µ) to the bounded halting problem for Mi, and so it follows from
condition 2 of Definition 5 and the probability distribution in Definition 9 that there is a
polynomial p1, such that

µ(v) < p1(|v|)2−(|〈i〉|+|w|)|〈i〉|−2|w|−2l(w)−2 (20)

For simplicity we rewrite Equation (21) as

µ(v) < p1(v)2−|w| (21)

From Equation (3) we get |f(w, sw)| = 2|w| + 2 log2 |w| and so from Definition 10 the
probability of getting an instance Pf(〈j〉, f(w, sw), 1O(l(w)2 log l(w))) is proportional to

µ(〈j〉, f(w, sw), O(l(w)2 log l(w))) =

2−(|〈j〉|+2|w|+2 log2 |w|)|〈j〉|−2(2|w|+ 2 log2 |w|)−2(l(w)2 log l(w))−2 (22)

The value |〈j〉| is a constant independent of |v| and the values |w| and l(w) are polynomial
in |v| and so there is a polynomial p2 such that p2(|v|)−1 < 2(−(|〈j〉|+2 log2 |w|)|〈j〉|−2(2|w|+
2 log2 |w|)−2(l(w)2 log l(w))−2 which substitutes into Equation (22) to give

µ(〈j〉, f(w, sw), O(l(w)2 log l(w))) > p2(v)−12−2|w| (23)

Recall that |ws| = |w|+log2 |w| and so from Definition 6 an instance of D∆ given by Pf(v, ws)
has a probability proportional to

µ∆(Pf(v, ws)) = µ(v)2−(|w|+log2 |w|) (24)

From Equations (21), (23) and (24) we get Equation (25) which shows that the polynomial
p1(|v|)p2(|v|) satisfies condition 2 of Definition 5 for the reduction g′ in Equation (19).

µ∆(Pf(v, ws)) < p1(|v|)p2(v)µ(〈j〉, f(w, sw), O(l(w)2 log l(w))) (25)

J

4 An example of the decoding process, with paired notation

In this section we show a diagram of an example of the decoding process, using paired
notation.

Each letter X in paired notation represents a pair of letters X0X1 in the tag system, of
which only one will be read on the next round. Which one? That depends on the parity of
the reading frame when it gets read. Often this parity is not known when the pair X0X1 is
written.

Sometimes a third symbol λ is written to the tape, just for the purpose of changing the
parity. If read, its rule appends an empty appendant. So it doesn’t matter if it gets read or
not.

In our paired notation, such a parity-changer is written as as in Figure 2.
The parity with which a pair is read is indicated by a thick line either over or under the

symbol, as in Figure 2. So the vertical parts of the thick line are written by the previous
line, while the horizontal parts simply alternate between the top and the bottom whenever
there is a vertical part. They continue at the top (or bottom) from one line to the next.

STACS 2019

20:14 Average-Case Completeness in Tag Systems

A1 A1 A0 A1 A1 A1 A1 A0 A1 A1 A0 A0 A1 A0 A1

B1 B1 B0 B1 B1 B1 B1 B0 B1 B1 B0 B0 B1 B0 B1

.C1 c′
1 .C0 c′

1 .C1 c′
1 .C1 c′

0 .C1 c′
1 .C0 c′

0 .C1 c′
0 .C1

;A1 a′
1 ;A0 a′

1 ;A1 a′
1 ;A1 a′

0 ;A1 a′
1 ;A0 a′

0 ;A1 a′
0 ;A1

, B1 b′
1 , B0 b′

1 , B1 b′
1 , B1 b′

0 , B1 b′
1 , B0 b′

0 , B1 b′
0 , B1

...C1 c′
1 c′

0 c1 ...C1 c′
1 c′

1 c0 ...C1 c′
1 c′

0 c0 ...C1 c′
0 c′

1

; ; ;A1 a′
1 a′

0 a1 ; ; ;A1 a′
1 a′

1 a0 ; ; ;A1 a′
1 a′

0 a0 ; ; ;A1 a′
0 a′

1

, , , B1 b′
1 b′

0 b1 , , , B1 b′
1 b′

1 b0 , , , B1 b′
1 b′

0 b0 , , , B1 b′
0 b′

1

.......C1 c′
1 c′

0 c1 c′
1 c1 c1 c0C1 c′

1 c′
0 c0 c′

1 c0 c1

; ; ; ; ; ; ;A1 a′
1 a′

0 a1 a′
1 a1 a1 a0 ; ; ; ; ; ; ;A1 a′

1 a′
0 a0 a′

1 a0 a1

, , , , , , , B1 b′
1 b′

0 b1 b′
1 b1 b1 b0 , , , , , , , B1 b′

1 b′
0 b0 b′

1 b0 b1

...............C1 c′
1 c′

0 c1 c′
1 c1 c1 c0 c′

1 c1 c0 c0 c1 c0 c1

; ; ; ; ; ; ; ; ; ; ; ; ; ; ;A1 a′
1 a′

0 a1 a′
1 a1 a1 a0 a′

1 a1 a0 a0 a1 a0 a1

iiiiiiiiiiiiiiii D1 d1 d1 d1 d0 d1 d0 d0 d1 d0 d1

Figure 2 Diagram of an example of the decoding process. Each symbol here represents two
symbols on the tag system tape, and the line passing over or under the symbols indicates the reading
frame parity. The colored lines indicate how the symbols are transformed on each round. The bits
marked with primes and eliminated in the final round are (if you trace them back to the initial row)
exactly the extra bits used for the encoding. An additional partial round (not shown) over just the i
symbols will yield the form guaranteed by Lemma 11: A row of bits, the first of which is uniquely
marked, followed by a “counter” whose length is a power of two and which is at least as large as the
row of bits, all being read in “plain” parity.

M. Cook and T. Neary 20:15

Table 2 The complete rules for the tag system. Paired notation is shown on the left; traditional
notation is shown on the right. The initial tape would use either 0

1
or 1

1
as the second symbol in

each Ai pair (not necessarily even matching the first symbol of the pair), but ever after the first
round the second symbols of the Ai pairs will be as shown here. Since these input symbols will not
be read, they make no difference. At the end, after a final partial round over just the a

∗
ȧ
∗
symbols,

the correspondence of symbols in the final tape is D0 = 0̄
4

˙̄0
4
, D1 = 1̄

4
˙̄1
4
, d0 = 0

4
0̇
4
, d1 = 1

4
1̇
4
, and e = a

4
ȧ
4
,

and the tape is exactly the target dataword specified by Lemma 11.

symbol in
diagram

rule for
plain parity

rule for
flipped parity

corresponding original
symbols and rules

A0 A0 −→ B0 A0 −→ i D0 0
1
0̇
1

0
1
→ 0

2
0̇
2
0̈
2

0̇
1
→ a
∗
ȧ
∗
d 0̄

4

˙̄0
4

A1 A1 −→ B1 A1 −→ i D1 1
1
1̇
1

1
1
→ 1

2
1̇
2
1̈
2

1̇
1
→ a
∗
ȧ
∗
d 1̄

4

˙̄1
4

a′0 a′0 −→ b′0 a′0 −→ 0/
1
0̇/
1

0/
1
→ 0/

2
0̇/
2

0̇/
1
→

a′1 a′1 −→ b′1 a′1 −→ 1/
1
1̇/
1

1/
1
→ 1/

2
1̇/
2

1̇/
1
→

a0 a0 −→ b0 a0 −→ d0 0/\
1
0̇/\
1

0/\
1
→ 0/\

2
0̇/\
2

0̇/\
1
→ 0

4
0̇
4

a1 a1 −→ b1 a1 −→ d1 1/\
1
1̇/\
1

1/\
1
→ 1/\

2
1̇/\
2

1̇/\
1
→ 1

4
1̇
4

; ; −→ , ; −→ i a
1
ȧ
1

a
1
→ a
∗
ȧ
∗

ȧ
1
→ a
∗
ȧ
∗

B0 B0 −→ .C0 B0 −→ c′
0 0

2
0̇
2

0
2
→ a

3
ȧ
3
0
3
0̇
3
0̈
3

0̇
2
→ 0/

3
0̇/
3
0̈/
3

B1 B1 −→ .C1 B1 −→ c′1 1
2
1̇
2

1
2
→ a

3
ȧ
3
1
3
1̇
3
1̈
3

1̇
2
→ 1/

3
1̇/
3

b′0 b′0 −→ c0 b′0 −→ c′0 0/
2
0̇/
2

0/
2
→ 0/\

3
0̇/\
3

0̇/
2
→ 0/

3
0̇/
3

b′1 b′1 −→ c1 b′1 −→ c′1 1/
2
1̇/
2

1/
2
→ 1/\

3
1̇/\
3

1̇/
2
→ 1/

3
1̇/
3

b0 b0 −→ c0 b0 −→ c0 0/\
2
0̇/\
2

0/\
2
→ 0/\

3
0̇/\
3

0̇/\
2
→ 0/\

3
0̇/\
3

b1 b1 −→ c1 b1 −→ c1 1/\
2
1̇/\
2

1/\
2
→ 1/\

3
1̇/\
3

1̇/\
2
→ 1/\

3
1̇/\
3

, , −→ .. , −→ a
2
ȧ
2

a
2
→ a

3
ȧ
3
a
3
ȧ
3

ȧ
2
→

C0 C0 −→ A0 C0 −→ A0 0
3
0̇
3

0
3
→ 0

1
0̇
1

0̇
3
→ 0

1
0̇
1

C1 C1 −→ A1 C1 −→ A1 1
3
1̇
3

1
3
→ 1

1
1̇
1

1̇
3
→ 1

1
1̇
1

c′0 c′0 −→ a′0 c′0 −→ a′0 0/
3
0̇/
3

0/
3
→ 0/

1
0̇/
1

0̇/
3
→ 0/

1
0̇/
1

c′1 c′1 −→ a′1 c′1 −→ a′1 1/
3
1̇/
3

1/
3
→ 1/

1
1̇/
1

1̇/
3
→ 1/

1
1̇/
1

c0 c0 −→ a0 c0 −→ a0 0/\
3
0̇/\
3

0/\
3
→ 0/\

1
0̇/\
1

0̇/\
3
→ 0/\

1
0̇/\
1

c1 c1 −→ a1 c1 −→ a1 1/\
3
1̇/\
3

1/\
3
→ 1/\

1
1̇/\
1

1̇/\
3
→ 1/\

1
1̇/\
1

. . −→ ; . −→ ; a
3
ȧ
3

a
3
→ a

1
ȧ
1

ȧ
3
→ a

1
ȧ
1

i i −→ e i −→ e a
∗
ȧ
∗

a
∗
→ a

4
ȧ
4

ȧ
∗
→ a

4
ȧ
4

STACS 2019

20:16 Average-Case Completeness in Tag Systems

The production rules in this notation therefore need to include the thick line either over
or under the symbol on the left hand side, but on the right hand side only vertical thick lines
can appear, no horizontal ones.

The correspondence between the symbols used in Figure 2 (which are compressed due to
space constraints in the figure) and the symbols used in the paper is given in Table 2.

References
1 Andreas Blass and Yuri Gurevich. Matrix Transformation Is Complete for the Average Case.

SIAM Journal on Computing, 24(1):3–29, 1995. doi:10.1137/S0097539792232070.
2 Vincent D Blondel and John N Tsitsiklis. A survey of computational complexity results in

systems and control. Automatica, 36:1249–1274, 2000. doi:10.1016/S0005-1098(00)00050-9.
3 Andrej Bogdanov and Luca Trevisan. Average-Case Complexity. CoRR, abs/cs/0606037, 2006.

arXiv:cs/0606037.
4 Matthew Cook. Universality in elementary cellular automata. Complex Systems, 15(1):1–40,

2004. URL: http://www.complex-systems.com/abstracts/v15_i01_a01.html.
5 Matthew Cook and Turlough Neary. A New Proof of Average Case NP-Completeness for the

Post Correspondence Problem. In preparation.
6 Matthew Cook and Turlough Neary. Universality and Average-Case NP-Completeness in 2D

Collatz Functions and Piecewise Affine Functions. In preparation.
7 Jens Eisert, Markus P Müller, and Christian Gogolin. Quantum measurement occurrence is

undecidable. Physical Review Letters, 108(26):260501, 2012. doi:10.1103/PhysRevLett.108.
260501.

8 Yuri Gurevich. Average case completeness. Journal of Computer and System Sciences,
42:346–398, 1991. doi:10.1016/0022-0000(91)90007-R.

9 Tero Harju and Maurice Margenstern. Splicing systems for universal Turing machines. In DNA
Computing, 10th International Workshop on DNA Computing(2004), volume 3384 of Lecture
Notes in Computer Science, pages 149–158. Springer, 2005. doi:10.1007/11493785_13.

10 Pascal Koiran and Cristopher Moore. Closed-form analytic maps in one and two Dimensions
can simulate universal Turing machines. Theoretical Computer Science, 210(1):217–223, 1999.
doi:10.1016/S0304-3975(98)00117-0.

11 Leonid Levin. Average case complete problems. SIAM Journal on Computing, 15(1):285–1286,
1986. doi:10.1137/0215020.

12 Kristian Lindgren and Mats G. Nordahl. Universal Computation in Simple One-
Dimensional Cellular Automata. Complex Systems, 4(3):299–318, 1990. URL: http:
//www.complex-systems.com/abstracts/v04_i03_a04.html.

13 Yuri Matiyasevich and Géraud Sénizergues. Decision problems for semi-Thue systems with a few
rules. Theoretical Computer Science, 330(2):145–169, 2005. doi:10.1016/j.tcs.2004.09.016.

14 Marvin Minsky. Size and structure of universal Turing machines using tag systems. In Recursive
Function Theory, Symposium in Pure Mathematics, volume 5, pages 229–238, Provelence,
1962. AMS.

15 Turlough Neary. Small universal Turing machines. PhD thesis, Department of Computer
Science, National University of Ireland, Maynooth, 2008.

16 Turlough Neary. Undecidability in Binary Tag Systems and the Post Correspondence Problem
for Five Pairs of Words. In 32nd International Symposium on Theoretical Aspects of Computer
Science, STACS, volume 30 of LIPIcs, pages 649–661, 2015. doi:10.4230/LIPIcs.STACS.
2015.649.

17 Turlough Neary and Damien Woods. ¶-completeness of cellular automaton Rule 110. In
International Colloquium on Automata, Languages and Programming 2006, (ICALP) Part
I, volume 4051 of Lecture Notes in Computer Science, pages 132–143. Springer, 2006. doi:
10.1007/11786986_13.

http://dx.doi.org/10.1137/S0097539792232070
http://dx.doi.org/10.1016/S0005-1098(00)00050-9
http://arxiv.org/abs/cs/0606037
http://www.complex-systems.com/abstracts/v15_i01_a01.html
http://dx.doi.org/10.1103/PhysRevLett.108.260501
http://dx.doi.org/10.1103/PhysRevLett.108.260501
http://dx.doi.org/10.1016/0022-0000(91)90007-R
http://dx.doi.org/10.1007/11493785_13
http://dx.doi.org/10.1016/S0304-3975(98)00117-0
http://dx.doi.org/10.1137/0215020
http://www.complex-systems.com/abstracts/v04_i03_a04.html
http://www.complex-systems.com/abstracts/v04_i03_a04.html
http://dx.doi.org/10.1016/j.tcs.2004.09.016
http://dx.doi.org/10.4230/LIPIcs.STACS.2015.649
http://dx.doi.org/10.4230/LIPIcs.STACS.2015.649
http://dx.doi.org/10.1007/11786986_13
http://dx.doi.org/10.1007/11786986_13

M. Cook and T. Neary 20:17

18 Emil Post. Formal reductions of the general combinatorial decision problem. American Journal
of Mathematics, 65(2):197–215, 1943. doi:10.2307/2371809.

19 Raphael Robinson. Undecidability and nonperiodicity for tilings of the plane. Inventiones
Mathematicae, 12(3):177–209, 1971. doi:10.1007/BF01418780.

20 Yurii Rogozhin. Small universal Turing machines. Theoretical Computer Science, 168(2):215–
240, 1996. doi:10.1016/S0304-3975(96)00077-1.

21 Yurii Rogozhin and Sergey Verlan. On the rule complexity of universal tissue P systems. In
Sixth international Workshop on Membrane Computing(2005), volume 3850 of Lecture Notes
in Computer Science, pages 356–362. Springer, 2006. doi:10.1007/11603047_24.

22 Paul Rothemund. A DNA and restriction enzyme implementation of Turing Machines. In
DNA Based Computers: Proceeding of a DIMACS Workshop, volume 2055, pages 75–119.
AMS, 1996. URL: https://authors.library.caltech.edu/27384/.

23 Hava Siegelmann and Maurice Margenstern. Nine switch-affine neurons suffice for Turing
universality. Neural Networks, 12:593–600, 1999. doi:10.1016/S0893-6080(99)00025-8.

24 Hava Siegelmann and Eduardo Sontag. On the computational power of neural nets. Journal
of Computer and System Sciences, 50(1):132–150, 1995. doi:10.1006/jcss.1995.1013.

25 Jie Wang. Average-case computational complexity theory. In Lane A Hemaspaandra and
Alan L Selman, editors, Complexity theory retrospective II, pages 295–328. Springer-Verlag,
1998.

26 Damien Woods and Turlough Neary. On the time complexity of 2-tag systems and small
universal Turing machines. In In 47th Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pages 132–143, Berkeley, California, October 2006. IEEE. doi:10.1109/
FOCS.2006.58.

27 Adam Yedidia and Scott Aaronson. A Relatively Small Turing Machine Whose Behavior
Is Independent of Set Theory. Complex Systems, 25(4):297–237, 2016. URL: http://www.
complex-systems.com/abstracts/v25_i04_a04.html.

STACS 2019

http://dx.doi.org/10.2307/2371809
http://dx.doi.org/10.1007/BF01418780
http://dx.doi.org/10.1016/S0304-3975(96)00077-1
http://dx.doi.org/10.1007/11603047_24
https://authors.library.caltech.edu/27384/
http://dx.doi.org/10.1016/S0893-6080(99)00025-8
http://dx.doi.org/10.1006/jcss.1995.1013
http://dx.doi.org/10.1109/FOCS.2006.58
http://dx.doi.org/10.1109/FOCS.2006.58
http://www.complex-systems.com/abstracts/v25_i04_a04.html
http://www.complex-systems.com/abstracts/v25_i04_a04.html

Pairwise Preferences in the Stable Marriage
Problem
Ágnes Cseh
Institute of Economics, Centre for Economic and Regional Studies, Hungarian Academy of Sciences,
1097 Budapest, Tóth Kálmán u. 4., Hungary
cseh.agnes@krtk.mta.hu

Attila Juhos
Department of Computer Science and Information Theory, Budapest University of Technology and
Economics, 1117 Budapest, Magyar Tudósok krt. 2., Hungary
juhosattila@cs.bme.hu

Abstract
We study the classical, two-sided stable marriage problem under pairwise preferences. In the most
general setting, agents are allowed to express their preferences as comparisons of any two of their
edges and they also have the right to declare a draw or even withdraw from such a comparison.
This freedom is then gradually restricted as we specify six stages of orderedness in the preferences,
ending with the classical case of strictly ordered lists. We study all cases occurring when combining
the three known notions of stability – weak, strong and super-stability – under the assumption that
each side of the bipartite market obtains one of the six degrees of orderedness. By designing three
polynomial algorithms and two NP-completeness proofs we determine the complexity of all cases not
yet known, and thus give an exact boundary in terms of preference structure between tractable and
intractable cases.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis

Keywords and phrases stable marriage, intransitivity, acyclic preferences, poset, weakly stable
matching, strongly stable matching, super stable matching

Digital Object Identifier 10.4230/LIPIcs.STACS.2019.21

Related Version All missing proofs can be found in the full version of the paper [9], https://arxiv.
org/abs/1810.00392.

Funding This work was supported by the Cooperation of Excellences Grant (KEP-6/2018), by the
Ministry of Human Resources under its New National Excellence Programme (ÚNKP-18-4-BME-331
and ÚNKP-18-1-I-BME-309), the Hungarian Academy of Sciences under its Momentum Programme
(LP2016-3/2016), its János Bolyai Research Fellowship, and OTKA grant K128611.

Acknowledgements The authors thank Tamás Fleiner, David Manlove, and Dávid Szeszlér for
fruitful discussions on the topic.

1 Introduction

In the 2016 USA Presidential Elections, polls unequivocally reported Democratic presidential
nominee Bernie Sanders to be more popular than Republican candidate Donald Trump [33, 34].
However, Sanders was beaten by Clinton in their own party’s primary election cycle, thus
the 2016 Democratic National Convention endorsed Hillary Clinton to be the Democrat’s
candidate. In the Presidential Elections, Trump defeated Clinton. This recent example
demonstrates well how inconsistent pairwise preferences can be.

Preferences play an essential role in the stable marriage problem and its extensions. In
the classical setting [13], each man and woman expresses their preferences on the members
of the opposite gender by providing a strictly ordered list. A set of marriages is stable if no

© Ágnes Cseh and Attila Juhos;
licensed under Creative Commons License CC-BY

36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019).
Editors: Rolf Niedermeier and Christophe Paul; Article No. 21; pp. 21:1–21:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-4991-2599
mailto:cseh.agnes@krtk.mta.hu
mailto:juhosattila@cs.bme.hu
https://doi.org/10.4230/LIPIcs.STACS.2019.21
https://arxiv.org/abs/1810.00392
https://arxiv.org/abs/1810.00392
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

21:2 Pairwise Preferences in the Stable Marriage Problem

pair of agents blocks it. A man and a woman form a blocking pair if they mutually prefer
one another to their respective spouses.

Requiring strict preference orders in the stable marriage problem is a strong assumption,
which rarely suits real world scenarios [4]. The study of less restrictive preference structures
has been flourishing [3, 10, 18, 22, 24, 27] for decades. As soon as one allows for ties in
preference lists, the definition of a blocking edge needs to be revisited. In the literature,
three intuitive definitions are used, each of which defines weakly, strongly and super stable
matchings. According to weak stability, a matching is blocked by an edge uw if agents u and
w both strictly prefer one another to their partners in the matching. A strongly blocking
edge is preferred strictly by one end vertex, whereas it is not strictly worse than the matching
edge at the other end vertex. A blocking edge is at least as good as the matching edge for
both end vertices in the super stable case. Super stable matchings are strongly stable and
strongly stable matchings are weakly stable by definition.

Weak stability is an intuitive notion that is most aligned with the classical blocking edge
definition in the model defined by Gale and Shapley [13]. However, reaching strong stability
is the goal to achieve in many applications, such as college admission programs. In most
countries, students need to submit a strict ordering in the application procedure, but colleges
are not able to rank all applicants strictly, hence large ties occur in their lists. According to
the equal treatment policy used in Chile and Hungary for example, it may not occur that a
student is rejected from a college preferred by him, even though other students with the same
score are admitted [5, 30]. Other countries, such as Ireland [7], break ties with lottery, which
gives way to a weakly stable solution. Super stable matchings are admittedly less relevant in
applications, however, they represent worst-case scenarios if uncertain information is given
about the agents’ preferences. If two edges are incomparable to each other due to incomplete
information derived from the agent, then it is exactly the notion of a super stable matching
that guarantees stability, no matter what the agent’s true preferences are.

The goal of our present work is to investigate the three cases of stability in the presence
of more general preference structures than ties.

1.1 Related work
It is an empirical fact that cyclic and intransitive preferences often emerge in the broad topic
of voting and representation, if the set of voters differs for some pairwise comparisons [2], such
as in our earlier example with the polls on the Clinton–Sanders–Trump battle. Preference
aggregation is another field that often yields intransitive group preferences, as the famous
Condorcet-paradox [8] also states.

It might be less known that nontrivial preference structures naturally emerge in the pref-
erences of individuals as well. The study of cyclic and intransitive preferences of a person has
been triggering scientists from a wide range of fields for decades. Blavatsky [6] demonstrated
that in choice situations under risk, the overwhelming majority of individuals expresses
intransitive choice and violation of standard consistency requirements. Humphrey [16] found
that cyclic preferences persist even when the choice triple is repeated for the second time.
Using MRI scanners, neuroscientists identified brain regions encoding ‘local desirability’,
which led to clear, systematic and predictable intransitive choices of the participants of
the experiment [23]. Cyclic and intransitive preferences occur naturally in multi-attribute
comparisons [11, 29]. May [29] studied the choice on a prospective partner and found that
a significant portion of the participants expressed the same cyclic preference relations if
candidates lacking exactly one of the three properties intelligence, looks, and wealth were
offered at pairwise comparisons. In this paper, we investigate the stable marriage problem

Á. Cseh and A. Juhos 21:3

equipped with the ubiquitous and well-studied preference structures of pairwise preferences
that might be intransitive or cyclic.

Regarding the stable marriage problem, all three notions of stability have been thoroughly
investigated if preferences are given in the form of a partially ordered set, a list with ties or
a strict list [13, 18, 22, 24, 27, 28]. Weakly stable matchings always exist and can be found
in polynomial time [27], and a super stable matching or a proof for its non-existence can also
be produced in polynomial time [18, 28]. The most sophisticated ideas are needed in the case
of strong stability, which turned out to be solvable in polynomial time if both sides have tied
preferences [18]. Irving [18] remarked that “Algorithms that we have described can easily
be extended to the more general problem in which each person’s preferences are expressed
as a partial order. This merely involves interpreting the ‘head’ of each person’s (current)
poset as the set of source nodes, and the ‘tail’ as the set of sink nodes, in the corresponding
directed acyclic graph.” Together with his coauthors, he refuted this statement for strongly
stable matchings and shows that exchanging ties for posets actually makes the strongly stable
marriage problem NP-complete [22]. We show it in this paper that the intermediate case,
namely when one side has ties preferences, while the other side has posets, is solvable in
polynomial time.

Beyond posets, studies on the stable marriage problem with general preferences occur
sporadically. These we include in Table 1 to give a structured overview on them. Intransitive,
acyclic preference lists were permitted by Abraham [1], who connects the stable roommates
problem with the maximum size weakly stable marriage problem with intransitive, acyclic
preference lists in order to derive a structural perspective. Aziz et al. [3] discussed the stable
marriage problem under uncertain pairwise preferences. They also considered the case of
certain, but cyclic preferences and show that deciding whether a weakly stable matching
exists is NP-complete if both sides can have cycles in their preferences. Strongly and super
stable matchings were discussed by Farczadi et al. [10]. Throughout their paper they assumed
that one side has strict preferences, and show that finding a strongly or a super stable
matching (or proving that none exists) can be done in polynomial time if the other side has
cyclic lists, where cycles of length at least 3 are permitted to occur, but the problems become
NP-complete as soon as cycles of length 2 are also allowed.

1.2 Our contribution
This paper aims to provide a coherent framework for the complexity of the stable marriage
problem under various preference structures. We consider the three known notions of stability:
weak, strong and super. In our analysis we distinguish six stages of entropy in the preference
lists; strict lists, lists with ties, posets, acyclic pairwise preferences, asymmetric pairwise
preferences and arbitrary pairwise preferences. All of these have been defined in earlier
papers, along with some results on them. Here we collect and organize these known results in
all three notions of stability, considering six cases of orderedness for each side of the bipartite
graph. Table 1 summarizes these results. Rows and columns distinguish between preference
relations considered on the two sides of the graph. The cell itself shows the complexity class
of determining whether the specified problem admits a stable matching. All of our positive
results also deliver a stable matching or a proof for its nonexistence. For sake of conciseness,
NP-completeness is shortened to NP.

Each of the three tables contained empty cells, i.e. cases with unknown complexity so
far. These are denoted by color in Table 1. We fill all gaps, providing two NP-completeness
proofs and three polynomial time algorithms. Interestingly, the three tables have the border
between polynomial time and NP-complete cases at very different places.

STACS 2019

21:4 Pairwise Preferences in the Stable Marriage Problem

Table 1 The complexity tables for weak, strong and super-stability.

WEAK strict ties poset acyclic asymmetric or arbitrary
strict O(m) [13] O(m) [18] O(m) [27] O(m) NP
ties O(m) [18] O(m) [27] O(m) NP
poset O(m) [27] O(m) NP
acyclic O(m) NP
asymmetric or arbitrary NP [3]

STRONG strict ties poset acyclic asymmetric arbitrary
strict O(m) [13] O(nm) [18, 24] pol [10] pol [10] pol [10] NP [10]
ties O(nm) [18, 24] O

(
mn2 +m2)

O
(
mn2 +m2)

O
(
mn2 +m2)

NP [10]
poset NP [22] NP [22] NP [22] NP [22]
acyclic NP [22] NP [22] NP [22]
asymmetric NP [22] NP [22]
arbitrary NP [22]

SUPER strict ties poset acyclic asymm. arbitrary
strict O(m) [13] O(m) [18] O(m) [18, 28] O(m) [10] O(m) [10] NP [10]
ties O(m) [18] O(m) [18, 28] O

(
n2m

)
O

(
n2m

)
NP [10]

poset O(m) [18, 28] O
(
n2m

)
O

(
n2m

)
NP [10]

acyclic NP NP NP [10]
asymmetric NP NP [10]
arbitrary NP [10]

Structure of the paper. We define the problem variants formally in Section 2. Weak,
strong and super stable matchings are then discussed in Sections 3, 4 and 5, respectively.

2 Preliminaries

In the stable marriage problem, we are given a not necessarily complete bipartite graph
G = (U ∪W,E), where vertices in U represent men, vertices in W represent women, and
edges mark the acceptable relationships between them. Each person v ∈ U ∪W specifies
a set Rv of pairwise comparisons on the vertices adjacent to them. These comparisons as
ordered pairs define four possible relations between two vertices a and b in the neighborhood
of v.

a is preferred to b, while b is not preferred to a by v: a ≺v b;
a is not preferred to b, while b is preferred to a by v: a �v b;
a is not preferred to b, neither is b preferred to a by v: a ∼v b;
a is preferred to b, so is b preferred to a by v: a||vb.

In words, the first two relationships express that an agent v prefers one agent strictly to
the other. The third option is interpreted as incomparability, or a not yet known relation
between the two agents. The last relation tells that v knows for sure that the two options
are equally good. For example, if v is a sports sponsor considering to offer a contract to
exactly one of players a and b, then v’s preferences are described by these four relations in
the following scenarios: a beats b, b beats a, a and b have not played against each other yet,
and finally, a and b played a draw.

We say that edge va dominates edge vb if a ≺v b. If a ≺v b or a ∼v b, then b is not
preferred to a. Sticking to our previous example with players a and b, this relation delivers

Á. Cseh and A. Juhos 21:5

the information that either a has beaten b or they have not played yet. With this amount of
somewhat uncertain information, the sports sponsor has no reason to choose b, and choosing
a is also risky, because it might be the case that the two players have not played against
each other yet. For two out of the three notions of stability, we will define blocking based on
this risk. Another choice would be to replace a ∼v b by a||vb in the definition above. While
it would lead to an equally correct model, we chose incomparability consciously. Some early
papers [18, 19] do not distinguish between two agents being incomparable and equally good,
while some others in the more recent literature [3, 10] motivate strong and super-stability
with uncertain information. Our definition fits the more recent framework.

The partner of vertex v in matching M is denoted by M(v). The neighborhood of v in
graph G is denoted by NG(v) and it consists of all vertices that are adjacent to v in G. To
ease notation, we introduce the empty set as a possible partner to each vertex, symbolizing
the vertex remaining unmatched in a matching M (M(v) = ∅). As usual, being matched to
any acceptable vertex is preferred to not being matched at all: a ≺v ∅ for every a ∈ N (v).
Edges to unacceptable partners do not exist, thus these are not in any pairwise relation to
each other or to edges incident to v.

We differentiate six degrees of preference orderedness in our study.
1. The strictest, classical two-sided model [13] requires each vertex to rank all of its neighbors

in a strict order of preference. For each vertex, this translates to a transitive and complete
set of pairwise relations on all adjacent vertices.

2. This model has been relaxed very early to lists admitting ties [18]. The pairwise preferences
of vertex v form a preference list with ties if the neighbors of v can be clustered into some
sets N1, N2, . . . , Nk so that vertices in the same set are incomparable, while for any two
vertices in different sets, the vertex in the set with the lower index is strictly preferred to
the other one.

3. Following the traditions [12, 19, 22, 27], the third degree of orderedness we define is when
preferences are expressed as posets. Any set of antisymmetric and transitive pairwise
preferences by definition forms a partially ordered set.

4. By dropping transitivity but still keeping the structure cycle-free, we arrive to acyclic
preferences [1]. This category allows for example a ∼v c , if a ≺v b ≺v c, but it excludes
a||vc and a �v c.

5. Asymmetric preferences [10] may contain cycles of length at least 3. This is equivalent to
dropping acyclicity from the previous cluster, but still prohibiting the indifference relation
a||vb, which is essentially a 2-cycle in the form a is preferred to b, and b is preferred to a.

6. Finally, an arbitrary set of pairwise preferences can also be allowed [3, 10].

A matching is stable if it admits no blocking edge. For strict preferences, a blocking edge
was defined in the seminal paper of Gale and Shapley [13]: an edge uv /∈M blocks matching
M if both u and v prefer each other to their partner in M or they are unmatched. Already
when extending this notion to preference lists with ties, one needs to specify how to deal with
incomparability. Irving [18] defined three notions of stability. We extend them to pairwise
preferences in the coming three sections. We omit the adjectives weakly, strongly, and super
wherever there is no ambiguity about the type of stability in question. All missing proofs
can be found in the full version of the paper [9].

3 Weak stability

In weak stability, an edge outside of M blocks M if it is strictly preferred to the matching
edge by both of its end vertices. From this definition follows that w||uw′ and w ∼u w′

STACS 2019

21:6 Pairwise Preferences in the Stable Marriage Problem

are exchangeable in weak stability, because blocking occurs only if the non-matching edge
dominates the matching edges at both end vertices. Therefore, an instance with arbitrary
pairwise preferences can be assumed to be asymmetric.

I Definition 1 (blocking edge for weak stability). Edge uw blocks M , if
1. uw /∈M ;
2. w ≺u M(u);
3. u ≺w M(w).

For weak stability, preference structures up to posets have been investigated, see Table 1.
A stable solution is guaranteed to exist in these cases [18, 27]. Here we extend this result to
acyclic lists, and complement it with a hardness proof for all cases where asymmetric lists
appear, even if they do so on one side only.

I Theorem 2. Any instance of the stable marriage problem with acyclic pairwise preferences
for all vertices admits a weakly stable matching, and there is a polynomial time algorithm to
determine such a matching.

Proof. We utilize a widely used argument [18] to show this. For acyclic relations Rv, a linear
extension R′

v of Rv exists. The extended instance with linear preferences is guaranteed to
admit a stable matching [13]. Compared to Rv, relations in R′

v impose more constraints on
stability, therefore, they can only restrict the original set of weakly stable solutions. If both
sides have acyclic lists, a stable matching is thus guaranteed to exist and a single run of the
Gale-Shapley algorithm on the extended instance delivers one. J

Stable matchings are not guaranteed to exist as soon as a cycle appears in the preferences,
as Example 3 demonstrates. Theorem 4 shows that the decision problem is in fact hard from
that point on.

I Example 3. No stable matching can be found in the following instance with strict lists on
one side and asymmetric lists on the other side. There are three men u1, u2, u3 adjacent to
one woman w. The woman’s pairwise preferences are cyclic: u1 ≺ u2, u2 ≺ u3, u3 ≺ u1. Any
stable matching M must consist of a single edge. Since the men’s preferences are identical,
we can assume that u1w ∈M without loss of generality. Then u3w blocks M .

I Theorem 4. If one side has strict lists, while the other side has asymmetric pairwise
preferences, then determining whether a weakly stable matching exists is NP-complete, even
if each agent finds at most four other agents acceptable.

4 Strong stability

In strong stability, an edge outside of M blocks M if it is strictly preferred to the matching
edge by one of its end vertices, while the other end vertex does not prefer its matching edge
to it.

I Definition 5 (blocking edge for strong stability). Edge uw blocks M , if
1. uw /∈M ;
2. w ≺u M(u) or w ∼u M(u);
3. u ≺w M(w),

or
1. uw /∈M ;
2. w ≺u M(u);
3. u ≺w M(w) or u ∼w M(w).

Á. Cseh and A. Juhos 21:7

The largest set of relevant publications has appeared on strong stability, yet gaps were
present in the complexity table, see Table 1. In this section we present a polynomial algorithm
that is valid in all cases not solved yet. We assume men to have preference lists with ties,
and women to have asymmetric relations. Our algorithm returns a strongly stable matching
or a proof for its nonexistence. It can be seen as an extended version of Irving’s algorithm
for strongly stable matchings in instances with ties on both sides [18]. Our contribution is
a sophisticated rejection routine, which is necessary here, because of the intransitivity of
preferences on the women’s side. The algorithm in [10] solves the problem for strict lists on
the men’s side, and it is much simpler than ours. It was designed for super stable matchings,
but strong and super stability do not differ if one side has strict lists. For this reason, that
algorithm is not suitable for an extension in strong stability.

Roughly speaking, our algorithm alternates between two phases, both of which iteratively
eliminate edges that cannot occur in a strongly stable matching. In the first phase, Gale-
Shapley proposals and rejections happen, while the second phase focuses on finding a vertex
set violating the Hall condition in a specified subgraph. Finally, if no edge can be eliminated
any more, then we show that an arbitrary maximum matching is either stable or it is a proof
for the non-existence of stable matchings. Algorithms 1 and 2 below provide a pseudocode.
The time complexity analysis has been shifted to the full version of the paper [9].

The second phase of the algorithm relies on the notion of the critical set in a bipartite
graph, also utilized in [18], which we sketch here. For an exhaustive description we refer the
reader to [26]. The well-known Hall-condition [15] states that there is a matching covering
the entire vertex set U if and only if for each X ⊆ U , |N (X)| ≥ |X|. Informally speaking,
the reason for no matching being able to cover all the vertices in U is that a subset X of
them has too few neighbors in W to cover their needs. The difference δ(X) = |X| − |N (X)|
is called the deficiency of X. It is straightforward that for any X ⊆ U , at least δ(X) vertices
in X cannot be covered by any matching in G, if δ(X) > 0. Let δ(G) denote the maximum
deficiency over all subsets of U . Since δ(∅) = 0, we know that δ(G) ≥ 0. Moreover, it can be
shown the size of maximum matching is ν(G) = |U | − δ(G). If we let Z1, Z2 be two arbitrary
subsets of U realizing the maximum deficiency, then Z1 ∩Z2 has maximum deficiency as well.
Therefore, the intersection of all maximum-deficiency subsets of U is the unique set with
maximum deficiency with the following properties: it has the lowest number of elements and
it is contained in all other subsets with maximum deficiency. This set is called the critical
set of G. Last but not least, it is computationally easy to determine the critical set, since for
any maximum matching M in G, the critical set consists of vertices in U not covered by M
and vertices in U reachable from the uncovered ones via an alternating path.

I Theorem 6. If one side has tied preferences, while the other side has asymmetric pairwise
preferences, then deciding whether the instance admits a strongly stable matching can be done
in O(mn2 +m2) time.

Initialization. For the clarity of our proofs, we add a dummy partner wu to the bottom
of the list of each man u, where wu is not acceptable to any other man (line 1). We call
the modified instance I ′. This standard technical modification is to ensure that all men are
matched in all stable matchings. At start, all edges are inactive (line 2). The possible states
of an edge and the transitions between them are illustrated in Figure 1.

First phase. The first phase of our algorithm (lines 3-9) imitates the classical Gale-Shapley
deferred acceptance procedure. In the first round, each unmatched man simultaneously

STACS 2019

21:8 Pairwise Preferences in the Stable Marriage Problem

Algorithm 1 Strongly stable matching with ties and asymmetric relations.
Input: I = (U,W,E,RU ,RW); RU : lists with ties, RW : asymmetric.
INITIALIZATION
1: for each u ∈ U add an extra woman wu at the end of his list; wu is only acceptable for u
2: set all edges to be inactive

PHASE 1
3: while there exists a man with no active edge do
4: propose along all edges of each such man u in the next tie on his list
5: for each new proposal edge uw do
6: reject all edges u′w such that u ≺w u′

7: end for
8: STRONG_REJECT()
9: end while

PHASE 2
10: let GA be the graph of active edges with V (GA) = U ∪W
11: let U ′ ⊆ U be the critical set of men with respect to GA

12: if U ′ 6= ∅ then
13: all active edges of each u ∈ U ′ are rejected
14: STRONG_REJECT()
15: goto PHASE 1
16: end if

OUTPUT
17: let M be a maximum matching in GA

18: if M covers all women who have ever had an active edge then
19: STOP, OUTPUT M ∩ E and “There is a strongly stable matching.”
20: else
21: STOP, OUTPUT “There is no strongly stable matching.”
22: end if

Algorithm 2 STRONG_REJECT().
23: let R = U

24: while R 6= ∅ do
25: let u be an element of R
26: if u has exactly one active edge uw then
27: reject all u′w such that u′ ∼w u

28: if u′w was active, then let R := R ∪ {u′}
29: else if u has no active edge then
30: reject all u′w such that w is in the proposal tie of u and u′ ∼w u

31: if u′w was active, then let R := R ∪ {u′}
32: end if
33: let R := R \ {u}
34: end while

Á. Cseh and A. Juhos 21:9

proposes to all women in his top tie (line 4). The so far inactive edges that now carry a
proposal are called active proposal edges, or just active edges. Active edges stay active if they
are accepted by the woman, and they become rejected proposal edges as soon as they are
rejected by the woman they run to. The tie that a man has just proposed along is called
the man’s proposal tie. If all edges in the proposal tie are rejected (or more precisely, they
become rejected proposal edges), then the man steps down on his list and proposes along all
edges in the next tie (lines 3-4).

Proposals cause two types of rejections in the graph (lines 5-8), based on the rules
below. Notice that these rules are more sophisticated than in the Gale-Shapley or Irving
algorithms [13, 18]. The most striking difference may be that rejected edges are not deleted
from the graph, since they can very well carry a proposal later. To be fully accurate, inactive
edges that are rejected become rejected inactive edges (see Figure 1). Upon carrying a
proposal later, they convert to a rejected proposal edge. This latter is the same state an edge
ends up in if it is first proposed along and then rejected.

Edges that carry a proposal in this round, but have not carried a proposal in earlier
rounds, i.e. edges in the proposal tie of men, are called new proposal edges (for instance,
see line 5). Once again notice that these edges might or might not be active, depending on
whether they have been rejected earlier.

For each new proposal edge uw, w rejects all edges to which uw is strictly preferred
(lines 5-7). Note again that uw might have been rejected earlier than being proposed
along, in which case uw is a proposal edge without being active.
The second kind of rejections are detailed in Algorithm 2. We search for a man in the
set R of men to be investigated, whose set of active edges has cardinality at most 1
(lines 23-25). If any such man has exactly one active edge uw (line 26), then all other
edges that are incident to w and incomparable to uw are rejected (line 27). If man u′

has lost an active edge in the previous operation, then u′ is added back to the set R of
men to be investigated in later rounds (line 28). The other case is when a man u has no
active edge at all (line 29). In this case, all edges that are incident to any neighbor w
of u in his – now fully rejected – proposal tie and incomparable to uw at w are rejected
(line 30). The set R is again supplemented by those men who lost active edges during the
previous operation (line 31). Finally, the man u chosen at the beginning of this rejection
round is excluded from R.

As mentioned earlier, men without any active edge proceed to propose along the next tie in
their list. These operations are executed until there is no more edge to propose along or to
reject, which marks the end of the first phase.

Second phase. In the second phase, the set of active edges induce the graph GA, on which
we examine the critical set U ′ (lines 10-11). If U ′ is not empty, then all active edges of
each u ∈ U ′ are rejected (line 13). These rejections might trigger more rejections, which
are handled by calling Algorithm 2 as a subroutine (line 14). The mass rejections in line 13
generate a new proposal tie for at least one man, returning to the first phase (line 15). Note
that an empty critical set leads to producing the output, which is described just below.

Output. In the final set of active edges, an arbitrary maximum matching M is calculated
(line 17). If M covers all women who have ever had an active edge, then we send it to the
output (lines 18-19), otherwise we report that no stable matching exists (lines 20-21).

We prove Theorem 6 via a number of claims, building up the proof as follows. The
first three claims provide the technical footing for the last two claims. Claim 7 is a rather

STACS 2019

21:10 Pairwise Preferences in the Stable Marriage Problem

inactive

active proposal edge
(active)

rejected inactive edge

rejected proposal edge

u proposes

w rejects u proposes

w rejects

Figure 1 The possible states of an edge uw in Algorithm 1. The solid gray edges between the
states symbolize proposals, while the dotted black edges mark the rejections of vertex w.

technical observation about the righteousness of the input initialization. An edge appearing
in any stable matching is called a stable edge. Claim 8 shows that no stable edge is ever
rejected. Claim 9 proves that all stable matchings must cover all women who have ever
received an offer. Then, Claim 10 proves that if the algorithm outputs a matching, then it
must be stable, and Claim 11 along with Corollary 12 conclude the opposite direction: if
stable matchings exist, then one is outputted by our algorithm.

B Claim 7. A matching in I ′ is stable if and only if its restriction to I is stable and it covers
all men in I ′.

Proof. If a matching in I ′ leaves a man u unmatched, then uwu blocks the matching. Thus all
stable matchings in I ′ cover all men. Furthermore, the restriction to I of a stable matching
in I ′ cannot be blocked by any edge in I, because this blocking edge also exists in I ′.

A stable matching in I, supplemented by the dummy edges for all unmatched men cannot
be blocked by any edge in I ′, because dummy edges are last-choice edges and regular edges
block in both instances simultaneously. C

B Claim 8. No stable edge is ever rejected in the algorithm.

Proof. Let us suppose that uw is the first rejected stable edge and the corresponding stable
matching is M . There are four rejection calls, in lines 6, 13, 27, and 30. In all cases we
derive a contradiction. Our arguments are illustrated in Figure 2.

Line 6: uw was rejected because w received a proposal from a man u′ such that u′ ≺w u.
Since M is stable, u′ must have a partner w′ in M such that w′ ≺u′ w. We also
know that u′ has reached w with its proposal ties, thus, due to the monotonicity of
proposals, u′w′ ∈M must have been rejected before uw was rejected. This contradicts
our assumption that uw was the first rejected stable edge.
Lines 27 and 30: rejection was caused by a man u′ such that u′ ∼w u.
Either the whole proposal tie of u′ was rejected or u′w was the only active edge within
this tie. Since M is stable, u′ must have a partner w′ in M . Since u′w′ is a stable edge,
it cannot have been rejected previously. Consequently, w ≺u′ w′. Thus, u′w blocks M ,
which contradicts its stability.

Á. Cseh and A. Juhos 21:11

Line 13: uw was rejected as an active edge incident to the critical set U ′ in GA.
Let W ′ = NGA

(U ′), U ′′ = {u ∈ U ′ : M(u) ∈W ′}, and W ′′ = {w ∈W ′ : M(w) ∈ U ′}. In
words, W ′ is the neighborhood of U ′, while U ′′ and W ′′ represent the men and women in
U ′ and W ′ who are paired up in M . Due to our assumption, u ∈ U ′′ and w ∈W ′′.
We claim that |U ′ \ U ′′| < |U ′| and δ(U ′ \ U ′′) ≥ δ(U ′), which contradicts the fact that
U ′ is critical. Since U ′′ 6= ∅, the first part holds. Note that |U ′′| = |W ′′|, so it suffices to
show that NGA

(U ′ \ U ′′) ⊆W ′ \W ′′, because in that case

δ(U ′ \ U ′′) = |U ′ \ U ′′| − |NGA
(U ′ \ U ′′)| ≥ |U ′ \ U ′′| − |W ′ \W ′′| =

= (|U ′| − |W ′|)− (|U ′′| − |W ′′|) =
= |U ′| − |W ′| = δ(U ′),

which would prove the second part of our claim.
What remains to show is that NGA

(U ′ \ U ′′) ⊆W ′ \W ′′. Suppose the contrary, i.e. that
there exists an edge ab in GA from U ′ \ U ′′ to W ′′. See the third graph in Figure 2. We
know that b ∈W ′′ by our indirect assumption, hence a′ = M(b) ∈ U ′′ by the definition
of U ′′, and a′ 6= a, because a /∈ U ′′. Moreover, ab and a′b are edges in GA, thus both of
them are active. Therefore, a ∼b a

′, for otherwise b would have rejected one of them. In
order to keep M stable, a must be paired up in M with some woman b′. Since no stable
edge has been rejected so far and ab does not block M , we know that b′ ∼a b, thus b′ is
in a’s proposal tie. Edge ab′ is stable and no stable edge has been rejected yet, thus ab′

is active along with ab. Therefore, ab′ ∈ E(GA) and b′ ∈W ′. Moreover, ab′ ∈M , hence
a ∈ U ′′ and b′ ∈W ′′ by the definition of U ′′ and W ′′, which contradicts the assumption
that a /∈ U ′′. C

u u′

w w′

u u′

w w′

aa′

b′b

U ′′

W ′′

U ′

W ′

Figure 2 The three cases in Claim 8. Gray edges are in M . The arrows point to the strictly
preferred edges.

B Claim 9. Women who have ever had an active edge must be matched in all stable
matchings.

Proof. Claim 8 shows that stable matchings allocate each man u a partner not better than
his final proposal tie. If a man u proposed to woman w and yet w is unmatched in the stable
matching M , then uw blocks M , which contradicts the stability of M . C

B Claim 10. If our algorithm outputs a matching, then it is stable.

Proof. We need to show that any maximum matching M in GA is stable, if it covers all
women who have ever held a proposal. Let M be such a matching. Due to the exit criteria
of the second phase (lines 11 and 12), M covers all men. By contradiction, let us assume
that M is blocked by an edge uw. This can occur in three cases.

STACS 2019

21:12 Pairwise Preferences in the Stable Marriage Problem

While w is unmatched, u does not prefer M(u) to w.
Since uw carried a proposal at the same time or before uM(u) ∈ E(GA) was activated, w
is a woman who has held an offer during the course of the algorithm. We assumed that
all these women are matched in M .
While w ≺u M(u), w does not prefer M(w) to u.
The full tie at u containing uw must have been rejected in the algorithm, otherwise uM(u)
would not be an active edge. We know that either u ≺w M(w) or u ∼w M(w) holds. If
u ≺w M(w), then wM(w) had to be rejected when u proposed to w, which contradicts
our assumption that wM(w) ∈ E(GA). Hence, u ∼w M(w). Thus, when uw and its full
tie was rejected at u, M(w)w also should have been rejected in a STRONG_REJECT
procedure, which leads to the same contradiction with wM(w) ∈ E(GA).
While u ≺w M(w), u does not prefer M(u) to w.
Since uM(u) is an active edge, uw has carried a proposal, because M(u) is not preferred
to w by u. When uw was proposed along, w should have rejected M(w)w, to which uw
is strictly preferred. This contradicts our assumption that wM(w) ∈ E(GA). C

B Claim 11. If I ′ admits a stable matching M ′, then any maximum matching M in the
final GA covers all women who have ever held a proposal.

Proof. From Claims 7 and 9 we know thatM ′ covers all women who have ever held a proposal
and all men. It is also obvious that matching M found in line 17 covers all men, for otherwise
U ′ could not have been the empty set in line 12 and the execution would have returned to
the first phase. This means that |M | = |M ′|. On the other hand, all women covered by
M ⊆ E(GA) are fit with active edges in GA. Therefore, women covered by M represent only
a subset of women who have ever had an active edge, i.e. the women covered by M ′. In order
to M and M ′ have the same cardinality, they must cover exactly the same women. Thus, M
covers all women who have ever received a proposal. C

I Corollary 12. If I admits a stable matching then our algorithm outputs one.

Proof. Since the edges between men and their dummy partners cannot be rejected, the
algorithm will proceed to line 17. Courtesy of Claim 11, the output M covers all women
who have ever received a proposal. According to Claim 10, this matching is stable, and thus
we output a stable matching of I. J

5 Super-stability

In super-stability, an edge outside of M blocks M if neither of its end vertices prefer their
matching edge to it.

I Definition 13 (blocking edge for super-stability). Edge uw blocks M , if
1. uw /∈M ;
2. w ≺u M(u) or w ∼u M(u);
3. u ≺w M(w) or u ∼w M(w).

The set of already investigated problems is remarkable for super-stability, see Table 1.
Up to posets on both sides, a polynomial algorithm is known to decide whether a stable
solution exists [18, 28]. Even though it is not explicitly written there, a blocking edge in the
super stable sense is identical to the definition of a blocking edge given in [10]. It is shown
there that if one vertex class has strictly ordered preference lists and the other vertex class

Á. Cseh and A. Juhos 21:13

has arbitrary relations, then determining whether a stable solution exists is NP-complete,
but if the second class has asymmetric lists, then the problem becomes tractable.

We first show that a polynomial algorithm exists up to partially ordered relations on one
side and asymmetric relations on the other side. Our algorithm can be seen as an extension
of the one in [10]. Our added contributions are a more sophisticated proposal routine and
the condition on stability in the output. These are necessary as men are allowed to have
acyclic preferences instead of strictly ordered lists, as in [10]. Finally, we prove that acyclic
relations on both sides make the problem hard.

I Theorem 14. If one side has posets as preferences, while the other side has asymmetric
pairwise preferences, then deciding whether the instance admits a super stable matching can
be done in O

(
n2m

)
time.

We prove this theorem by designing an algorithm that produces a stable matching or a
proof for its nonexistence, see Algorithm 3. We assume men to have posets as preferences
and women to have asymmetric relations. We remark that non-empty posets always have a
non-empty set of maximal elements: these are the ones that are not dominated by any other
element. Women in the set of maximal elements are called maximal women.

At start, an arbitrary man proposes to one of his maximal women. An offer from u

is temporarily accepted by w if and only if u ≺w u′ for every man u′ 6= u who has ever
proposed to w. This rule forces each woman to reproof her current match every time a new
proposal arrives. Accepted offers are called engagements. The proposal edges or engagements
not meeting the above requirement are immediately deleted from the graph. Each man
then reexamines the poset of women still on his list. If any of the maximal women is not
holding an offer from him, then he proposes to her. The process terminates and the output
is generated when no man has maximal women he has not proposed to. Notice that while
women hold at most one proposal at a time, men might have several engagements in the
output.

Algorithm 3 Super stable matching with posets and asymmetric relations.
Input: I = (U,W,E,RU ,RW); RU : posets, RW : asymmetric.
35: while there is a man u who has not proposed to a maximal woman w do
36: u proposes to w
37: if u ≺w u′ for all u′ ∈ U who has ever proposed to w then
38: w accepts the proposal of u, uw becomes an engagement
39: else
40: w rejects the proposal and deletes uw
41: end if
42: if w had a previous engagement to u′ and u ≺w u′ or u ∼w u′ then
43: w breaks the engagement to u′ and deletes u′w

44: end if
45: end while

46: let M be the set of engagements
47: if M is a matching that covers all women who have ever received a proposal then
48: STOP, OUTPUT M and “M is a super stable matching.”
49: else
50: STOP, OUTPUT “There is no super stable matching.”
51: end if

STACS 2019

21:14 Pairwise Preferences in the Stable Marriage Problem

The correctness and time complexity of our algorithm is shown in the full version of the
paper [9], where we prove that the set of engagements M is a matching that covers all women
who ever received a proposal if and only if the instance admits a stable matching.

I Theorem 15. If both sides have acyclic pairwise preferences, then determining whether
a super stable matching exists is NP-complete, even if each agent finds at most four other
agents acceptable.

6 Conclusion and open questions

We completed the complexity study of the stable marriage problem with pairwise preferences.
Despite of the integrity of this work, our approach opens the way to new research problems.

The six degrees of orderedness can be interpreted in the non-bipartite stable roommates
problem as well. For strictly ordered preferences, all three notions of stability reduce to the
classical stable roommates problem, which can be solved in O(m) time [17]. The weakly
stable variant becomes NP-complete already if ties are present [31], while the strongly stable
version can be solved with ties in polynomial time, but it is NP-complete for posets. The
complexity analysis of these cases is thus complete. Not so for super-stability, for which
there is an O(m) time algorithm for preferences ordered as posets [19], while the case with
asymmetric preferences was shown here to be NP-complete for bipartite instances as well.
We conjecture that the intermediate case of acyclic preferences is also polynomially solvable
and the algorithm of Irving and Manlove can be extended to it.

The Rural Hospitals Theorem [14] states that the set of matched vertices is identical in all
stable matchings. It has been shown to hold for strongly and super stable matchings [20, 27]
and fail for weak stability, if preferences contain ties – even for non-bipartite instances. We
remark that these results carry over even to the most general pairwise preference setting.
To see this, one only needs to sketch the usual alternating path argument: assume that
there is a vertex v that is covered by a stable matching M1, but left uncovered by another
stable matching M2. Then, M1(v) must strictly prefer its partner in M2 to v, otherwise edge
vM1(v) blocks M2. Iterating this argument, we derive that such a v cannot exist. The Rural
Hospitals Theorem might indicate a rich underlying structure of the set of stable matchings.
Such results were shown in the case of preferences with ties. Strongly stable matchings are
known to form a distributive lattice [27], and there is a partial order with O(m) elements
representing all strongly stable matchings [25]. However, once posets are allowed in the
preferences, the lattice structure falls apart [27]. The set of super stable matchings has been
shown to form a distributive lattice if preferences are expressed in the form of posets [27, 32].
The questions arise naturally: does this distributive lattice structure carry over to more
advanced preference structures in the super stable case? Also, even if no distributive lattice
exists on the set of strongly stable matchings, is there any other structure and if so, how far
does it extend in terms of orderedness of preferences?

References
1 D. J. Abraham. Algorithmics of two-sided matching problems. Master’s thesis, University of

Glasgow, Department of Computing Science, 2003.
2 Alberto Alesina and Howard Rosenthal. A Theory of Divided Government. Econometrica,

64(6):1311–1341, 1996. URL: http://www.jstor.org/stable/2171833.
3 Haris Aziz, Péter Biró, Tamás Fleiner, Serge Gaspers, Ronald de Haan, Nicholas Mattei, and

Baharak Rastegari. Stable Matching with Uncertain Pairwise Preferences. In Proceedings of the

http://www.jstor.org/stable/2171833

Á. Cseh and A. Juhos 21:15

16th Conference on Autonomous Agents and MultiAgent Systems, pages 344–352. International
Foundation for Autonomous Agents and Multiagent Systems, 2017.

4 Péter Biró. Applications of Matching Models under Preferences. Trends in Computational
Social Choice, page 345, 2017.

5 Péter Biró and Sofya Kiselgof. College admissions with stable score-limits. Central European
Journal of Operations Research, 23(4):727–741, 2015.

6 P Blavatsky. Content-dependent preferences in choice under risk: heuristic of relative proba-
bility comparisons. IIASA Interim Report, IR-03-031, 2003.

7 Li Chen. University admission practices – Ireland, MiP Country Profile 8. http://www.
matching-in-practice.eu/higher-education-in-ireland/, 2012.

8 M.-J.-A.-N. de C. (Marquis de) Condorcet. Essai sur l’application de l’analyse à la probabilité
des décisions rendues à la pluralité des voix. L’Imprimerie Royale, 1785.

9 Ágnes Cseh and Attila Juhos. Pairwise preferences in the stable marriage problem. CoRR,
2018. arXiv:1810.00392.

10 Linda Farczadi, Konstantinos Georgiou, and Jochen Könemann. Stable marriage with general
preferences. Theory of Computing Systems, 59(4):683–699, 2016.

11 P. Fishburn. Preference structures and their numerical representations. Theoretical Computer
Science, 217:359–383, 1999.

12 T. Fleiner, R. W. Irving, and D. F. Manlove. Efficient Algorithms for Generalised Stable
Marriage and Roommates Problems. Theoretical Computer Science, 381:162–176, 2007.

13 D. Gale and L. S. Shapley. College admissions and the stability of marriage. American
Mathematical Monthly, 69:9–15, 1962.

14 D. Gale and M. Sotomayor. Some remarks on the stable matching problem. Discrete Applied
Mathematics, 11:223–232, 1985.

15 P. Hall. On representatives of subsets. Journal of the London Mathematical Society, 10:26–30,
1935.

16 Steven Humphrey. Non-transitive Choice: Event-Splitting Effects or Framing Effects? Eco-
nomica, 68(269):77–96, 2001.

17 R. W. Irving. An efficient algorithm for the “stable roommates” problem. Journal of Algorithms,
6:577–595, 1985.

18 R. W. Irving. Stable marriage and indifference. Discrete Applied Mathematics, 48:261–272,
1994.

19 R. W. Irving and D. F. Manlove. The stable roommates problem with ties. Journal of
Algorithms, 43:85–105, 2002.

20 R. W. Irving, D. F. Manlove, and S. Scott. The Hospitals / Residents problem with ties. In
Magnús M. Halldórsson, editor, Proceedings of SWAT ’00: the 7th Scandinavian Workshop
on Algorithm Theory, volume 1851 of Lecture Notes in Computer Science, pages 259–271.
Springer, 2000.

21 R. W. Irving, D. F. Manlove, and S. Scott. Strong stability in the Hospitals / Residents
problem. Technical Report TR-2002-123, University of Glasgow, Department of Computing
Science, 2002. Revised May 2005.

22 R. W. Irving, D. F. Manlove, and S. Scott. Strong stability in the Hospitals / Residents
problem. In Proceedings of STACS ’03: the 20th Annual Symposium on Theoretical Aspects
of Computer Science, volume 2607 of Lecture Notes in Computer Science, pages 439–450.
Springer, 2003. Full version available as [21].

23 Tobias Kalenscher, Philippe N Tobler, Willem Huijbers, Sander M Daselaar, and Cyriel MA
Pennartz. Neural signatures of intransitive preferences. Frontiers in Human Neuroscience,
4:49, 2010.

24 Telikepalli Kavitha, Kurt Mehlhorn, Dimitrios Michail, and Katarzyna E Paluch. Strongly
stable matchings in time O(nm) and extension to the hospitals-residents problem. ACM
Transactions on Algorithms, 3(2):15, 2007.

STACS 2019

http://www.matching-in-practice.eu/higher-education-in-ireland/
http://www.matching-in-practice.eu/higher-education-in-ireland/
http://arxiv.org/abs/1810.00392

21:16 Pairwise Preferences in the Stable Marriage Problem

25 Adam Kunysz, Katarzyna Paluch, and Pratik Ghosal. Characterisation of strongly stable
matchings. In Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 107–119. Society for Industrial and Applied Mathematics, 2016.

26 László Lovász and Michael D Plummer. Matching theory, volume 367. American Mathematical
Soc., 2009.

27 D. F. Manlove. The structure of stable marriage with indifference. Discrete Applied Mathe-
matics, 122(1-3):167–181, 2002.

28 D. F. Manlove. Algorithmics of Matching Under Preferences. World Scientific, 2013.
29 Kenneth O. May. Intransitivity, Utility, and the Aggregation of Preference Patterns. Econo-

metrica, 22(1):1–13, 1954.
30 Ignacio Ríos, Tomás Larroucau, Giorgiogiulio Parra, and Roberto Cominetti. College Admis-

sions Problem with Ties and Flexible Quotas. Technical report, SSRN, 2014.
31 E. Ronn. On the complexity of stable matchings with and without ties. PhD thesis, Yale

University, 1986.
32 B. Spieker. The set of super-stable marriages forms a distributive lattice. Discrete Applied

Mathematics, 58:79–84, 1995.
33 Huffington Post 2016 General Election: Trump vs. Sanders. https://elections.

huffingtonpost.com/pollster/2016-general-election-trump-vs-sanders. Accessed 3
September 2018.

34 RealClearPolitics website. General Election: Trump vs. Sanders. https://www.
realclearpolitics.com/epolls/2016/president/us/general_election_trump_vs_
sanders-5565.html. Accessed 3 September 2018.

https://elections.huffingtonpost.com/pollster/2016-general-election-trump-vs-sanders
https://elections.huffingtonpost.com/pollster/2016-general-election-trump-vs-sanders
https://www.realclearpolitics.com/epolls/2016/president/us/general_election_trump_vs_sanders-5565.html
https://www.realclearpolitics.com/epolls/2016/president/us/general_election_trump_vs_sanders-5565.html
https://www.realclearpolitics.com/epolls/2016/president/us/general_election_trump_vs_sanders-5565.html

Closure Properties of Synchronized Relations
María Emilia Descotte
LaBRI, Université de Bordeaux, France

Diego Figueira
CNRS & LaBRI, Université de Bordeaux, France

Santiago Figueira
CONICET & Universidad de Buenos Aires, Argentina

Abstract
A standard approach to define k-ary word relations over a finite alphabet A is through k-tape finite
state automata that recognize regular languages L over {1, . . . , k} × A, where (i, a) is interpreted as
reading letter a from tape i. Accordingly, a word w ∈ L denotes the tuple (u1, . . . , uk) ∈ (A∗)k in
which ui is the projection of w onto i-labelled letters. While this formalism defines the well-studied
class of rational relations, enforcing restrictions on the reading regime from the tapes, which we
call synchronization, yields various sub-classes of relations. Such synchronization restrictions are
imposed through regular properties on the projection of the language L onto {1, . . . , k}. In this way,
for each regular language C ⊆ {1, . . . , k}∗, one obtains a class Rel(C) of relations. Synchronous,
Recognizable, and Length-preserving rational relations are all examples of classes that can be defined
in this way.

We study basic properties of these classes of relations, in terms of closure under intersection,
complement, concatenation, Kleene star and projection. We characterize the classes with each
closure property. For the binary case (k = 2) this yields effective procedures.

2012 ACM Subject Classification Theory of computation→ Formal languages and automata theory

Keywords and phrases synchronized word relations, rational, closure, characterization, intersection,
complement, Kleene star, concatenation

Digital Object Identifier 10.4230/LIPIcs.STACS.2019.22

Acknowledgements Work supported by ANR project DELTA, grant ANR-16-CE40-0007, grant
PICT-2016-0215, and LIA INFINIS.

1 Introduction

We study relations of finite words, that is, sets R ⊆ (A∗)k for a finite alphabet A and k ∈ N,
where (A∗)k is the cartesian product of k copies of A∗. The study of these relations dates
back to the works of Büchi, Elgot, Mezei, and Nivat in the 1960s [11, 15, 24], with much
subsequent work done later (e.g., [7, 13]). Most of the investigations focused on extending
the standard notion of regularity from languages to relations. This effort has followed the
long-standing tradition of using equational, operational, and descriptive formalisms – that
is, finite monoids, automata, and regular expressions – for describing relations, and gave
rise to three different classes of relations: Recognizable, Automatic (a.k.a. Regular [7] or
Synchronous [20, 13]), and Rational.

The above classes of relations can be seen as three particular examples of a much larger
(in fact infinite) range of possibilities, where relations are described by special languages
over extended alphabets, called synchronizing languages [18]. Intuitively, the idea is to
describe a k-ary relation by means of a k-tape automaton with k heads, one for each tape,
which can move independently of one another. In the basic framework of synchronized
relations, one lets each head of the automaton either move right or stay in the same
position. In addition, one can constrain the possible sequences of head motions by a suitable

© María Emilia Descotte, Diego Figueira, and Santiago Figueira;
licensed under Creative Commons License CC-BY

36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019).
Editors: Rolf Niedermeier and Christophe Paul; Article No. 22; pp. 22:1–22:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.STACS.2019.22
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

22:2 Closure Properties of Synchronized Relations

regular language C ⊆ {1, . . . , k}∗. In this way, each regular language C ⊆ {1, . . . , k}∗
induces a class of k-ary relations, denoted Rel(C), which is contained in the class Rational
(due to Nivat’s Theorem [24]). For example, on binary relations, the classes Recognizable,
Automatic, and Rational are captured, respectively, by the languages CRec = {1}∗ · {2}∗,
CAut = {12}∗ ·{1}∗ ∪{12}∗ ·{2}∗, and CRat = {1, 2}∗. Roughly speaking, any other class that
can be defined through the ‘tape behavior’ of a multi-tape automaton will be also captured
by this framework. Other examples include length-preserving, or α-synchronous relations
[12]. However, it should be noted that other well-known subclasses of rational relations, such
as deterministic or functional relations, are not captured by the notion of synchronization.
In general, the correspondence between a language C ⊆ {1, . . . , k}∗ and the induced class
Rel(C) of synchronized relations is not one-to-one: it may happen that different languages
C,D induce the same class of synchronized relations. The problem of when two classes of
synchronized relations coincide, and when one is contained in the other has been only recently
solved for the case of binary relations [14], while the case for arbitrary k-ary relations remains
open. In this work we identify, among the infinitely many synchronized classes of relations,
which are those with good closure properties, in terms of paradigmatic operations such as
intersection, complement, concatenation, projection, or Kleene star.

Motivation

The motivation for identifying and studying well-behaved classes of word relations, besides
its intrinsic interest within formal language theory, stems from various areas. One motivation
comes from verification of safety and liveness properties of parameterized systems, where
relations describe transitions [1, 10, 22, 26]. Another one arises from the study of Automatic
Structures [8], where word languages and relations are used to describe infinite structures, and
good closure properties are necessary to obtain effective model checking of logics. Another
example is the study of formal models underlying IBM’s tools for text extraction into a
relational model [16]; where several classes of relations emerge (some outside Rational) with
differing closure properties. Yet another comes from graph databases, which are actively
studied as a suitable model for RDF data, social networks data, and others [2]. Paths in graph
databases are described by their labels and hence they are abstracted as finite words. These
paths need to be compared, for instance, for their degree of similarity, edit distance, or other
relations [3, 5, 23]. As a concrete link with the present work we consider CRPQs – a basic
query language for graph-structured data. As it was shown in [4], allowing rational relations
in CRPQs turns the query evaluation problem undecidable. There have therefore been efforts
towards finding subclasses of Rational relations that preserve decidability for CRPQs (e.g.
[5, 17, 6]), often exploiting an effective closure under intersection on the underlying subclass
of relations. Part of our motivation for studying closure under intersection stems from our
ambition, as future work, to characterize all synchronized classes of relations that can be
added to CRPQs while preserving decidability.

Contribution

Our main contribution is a characterization for each of the studied closure properties, the
main results can be summarized as follows.

I Theorem. For every regular C ⊆ 2
∗, it is decidable whether Rel(C) is closed under

intersection, complement, concatenation, Kleene star and projection.

M.E. Descotte, D. Figueira, and S. Figueira 22:3

While some of the characterizations we give are for arbitrary arity relations, we were only
able to show decidability for binary arity. Indeed, the decidability of these characterizations
relies, crucially, on the decidability of testing for inclusion between synchronized classes,
which has only been shown for binary relations [14].

We do not include closure under union since it can be easily seen that all classes defined
in this way are closed under union. The most involved result is closure under intersection.
The main property we will prove is that Rel(C) is closed under intersection if, and only
if, Rel(C) ⊆ Rel(D) for some D whose Parikh-image is injective (i.e., there are no two
distinct words of D with the same Parikh-image). Further, we show that this can be tested,
and such a language D can be effectively constructed, whenever possible. In the same vein,
we obtain that Rel(C) is closed under complement if, and only if, Rel(C) = Rel(D) for
some D with a bijective Parikh-image. (Observe that closure under complement implies
closure under intersection in view of the fact that all classes are closed under union.)

Related work

The formalization of the framework to describe synchronized classes of relations has been
introduced only recently [18]. As mentioned, the problem of containment between classes of
relations has been addressed in [14] for the binary case. The formalism of synchronizations
has been also extended beyond rational relations by means of semi-linear constraints [17] in
the context of querying graph databases.

The paper [9] studies relations with origin information, as induced by non-deterministic
(one-way) finite state transducers. Origin information can be seen as a way to describe
a synchronization between input and output words – somehow in the same spirit of our
synchronization languages – and was exploited to recover decidability of the equivalence
problem for transducers. The paper [19] pursues further this principle by studying “distortions”
of the origin information, called resynchronizations. The paper [27] studies the uniformization
problem for synchronized relations.

Organization

After a preliminary Section 2, we show the main result characterizing closure under intersection
in Section 3. In Section 4 we study closure under complement and another variant that
we call “relativized complement”. In Section 5 we give characterizations for closure under
concatenation, Kleene star and projection. We conclude with Section 6.

2 Preliminaries

We denote by N the set of non-negative integers. A,B denote arbitrary finite alphabets and
for k ∈ N, k ≥ 1, k denotes the k-letter alphabet {1, . . . , k}. For a word w ∈ A∗, |w| is its
length, and |w|a is the number of occurrences of symbol a in w.

Regular languages

We use standard notation for regular expressions without complement, namely, for expressions
built up from the empty set, the empty word ε and the symbols a ∈ A, using the operations
·, ∪, and ()∗. For economy of space and clarity we use the abbreviated notation ()n, ()<n,
()≥n, ()n∗, and ()∗n – the last two being shorthands for (()n)∗ and (()∗)n respectively. We
abuse the notation ()k to also denote the cartesian product of k copies of the same set
(typically (A∗)k) when there is no risk of confusion. We also identify regular expressions with

STACS 2019

22:4 Closure Properties of Synchronized Relations

the defined languages; for example, we may write abbc ∈ a · b≥2 · (c ∪ d)∗, b(ab)∗ = (ba)∗b
and {a, b}∗ · c = (a ∪ b)∗ · c. The star-height of a regular expression is the maximum number
of nested Kleene stars ()∗. Given u = a1 · · · an ∈ A∗ and v = b1 · · · bn ∈ B∗, we write u⊗ v
for the word (a1, b1) · · · (an, bn) ∈ (A × B)∗. Similarly, given U ⊆ A∗, V ⊆ B∗, we write
U ⊗V ⊆ (A×B)∗ for the set {u⊗ v : u ∈ U, v ∈ V, |u| = |v|}. Given two languages L,L′ over
A, we write L ⊆reg L

′ to denote that L is a regular subset of L′.
A regular expression C ⊆ 2

∗ is concat-star, if it is of the form

C = C∗1u1C
∗
2u2 · · ·C∗nun, (?)

for n ∈ N, words u1, . . . , un, and regular expressions C1, . . . , Cn where none of the Ci’s
describes the empty language. The C∗i ’s from (?) are called components of the concat-star. A
concat-star expression like (?) is smooth if either n ≤ 2 or there are no `, s ∈ 2 and 1 ≤ i < n

such that Ci ⊆ `∗, Ci+1 ⊆ s∗. We say that a regular language L is concat-star (resp. smooth)
if it admits a concat-star (resp. smooth) expression.

Parikh-images and linear sets

The Parikh-image of w ∈ 2
∗ is the pair associating each symbol of 2 to its number of

occurrences in w, i.e. π(w) = (|w|1, |w|2). We naturally extend this to languages L ⊆ 2
∗

by letting π(L) def= {π(w) : w ∈ L} (⊆ N2). A language C ⊆ 2
∗ is Parikh-injective if for

every u, v ∈ C, if π(u) = π(v) then u = v; it is Parikh-surjective if π(C) = N2; and it is
Parikh-bijective if it is both Parikh-injective and -surjective. We will use the product order
(≤,N2), defined by (n,m) ≤ (n′,m′) iff n ≤ n′ and m ≤ m′. Given a vector x̄ ∈ N2 and
a set X = {x̄1, . . . , x̄n} ⊆ N2 (in our case, the Parikh-image of words from 2

∗), we define
the linear set generated by X and x̄ as 〈x̄, X〉 = {x̄ + α1 · x̄1 + · · · + αnx̄n : αi ∈ N}. For
economy of space we write 〈X〉 as short for 〈0̄, X〉, where 0̄ = (0, 0). Note that, in particular,
〈∅〉 = {0̄}. A semi-linear set is a finite union of linear sets. The following fact will be useful
in the next section.

I Lemma 1. For every semi-linear set V ⊆ N2 there exists a Parikh-injective language
C ⊆reg 2

∗ such that π(C) = V .

Two sets of vectors X,Y ⊆ N2 are independent if 0̄ 6∈ X ∪ Y and 〈X〉 ∩ 〈Y 〉 = {0̄};
otherwise they are dependent. We say that two languages over 2 are Parikh-independent
(resp. Parikh-dependent) if their Parikh-images are. We abuse notation and say that x̄ and ȳ
are (in)dependent whenever {x̄} and {ȳ} are (in)dependent, and likewise for words. We will
need the following simple observation later.

I Observation 2. If u and v are Parikh-independent, for every s, t, s′, t′ ∈ N, if π(usvs′) =
π(vtut′), then s′ = t and t′ = s.

Indeed, we have that s · π(u) + s′ · π(v) = t′ · π(u) + t · π(v). Let us assume that s′ ≤ t (the
case in which is ≥ is similar). Then t′ ≤ s and so we have (s− t′) ·π(u) = (t− s′) ·π(v) which
implies s− t′ = 0 = t− s′ since u and v are Parikh-independent. Then s′ = t and t′ = s.

2.1 Synchronized relations
A synchronization of a tuple (w1, . . . , wk) of words over A is a word over k× A such that
the projection onto A of positions labeled by i is exactly wi, for i = 1, . . . , k. For example,
the words (1, a)(1, b)(2, a) and (1, a)(2, a)(1, b) are two possible synchronizations of the same
pair (ab, a). Every word w ∈ (k × A)∗ is a synchronization of a unique tuple (w1, . . . , wk)

M.E. Descotte, D. Figueira, and S. Figueira 22:5

of words over A, where for all i ∈ {1, . . . , k}, i|wi|⊗wi is the projection of w onto the
alphabet {i} × A. We denote such tuple (w1, . . . , wk) by JwKk and extend the notation to
languages L ⊆ (k×A)∗ by denoting the unique k-ary relation synchronized by L as JLKk

def=
{JwKk : w ∈ L}. In our previous example, J(1, a)(1, b)(2, a)K2 = J(1, a)(2, a)(1, b)K2 = (ab, a),
and J{(1, a)(2, a), (1, a)(2, b), (1, b)(2, a), (1, b)(2, b)}∗K2 is the equal-length relation on the
alphabet {a, b}.

In this setup, we define classes of relations by restricting the set of admitted synchroniza-
tions. One way of doing so is to fix a language C ⊆reg k

∗, called control language, and let L
vary over all regular languages over k× A whose projections onto k are in C. Thus, given
k ∈ N and C ⊆reg k

∗, we define the class of k-ary C-controlled relations as

Relk(C) def=
{

(JLKk,A) : L ⊆reg C ⊗A∗,A is a finite alphabet
}
.

Whenever k is clear from the context, we write JwK, JLK and Rel(C). For economy
of space, we write C =Rel D as short for Rel(C) = Rel(D), and we say that C is Rel-
equivalent to D. Similarly, we write C ⊆Rel D as short for Rel(C) ⊆ Rel(D) and we say
that C is Rel-contained in D. The definition makes explicit the alphabet used for each
relation, in contrast to previous definitions of synchronized classes [18, 14]. The reason for
this is that in particular we study closure under complement, which requires the alphabet
to be specified. However, we observe that synchronized classes are closed under taking
super-alphabets, and thus the alphabet can be often disregarded. We then write R ∈ Rel(C)
to denote (R,A) ∈ Rel(C) for some A.

I Observation 3. If (R,A) ∈ Rel(C) then (R,A′) ∈ Rel(C) for every A ⊆ A′. If
(R,A) ∈ Rel(C) then (R,AR) ∈ Rel(C), where AR ⊆ A is the set of symbols present
in R.

Clearly, C ⊆reg D ⊆reg k
∗ implies C ⊆Rel D, but the converse does not hold: Rel2(CRec)

= Recognizable (Automatic = Rel2(CAut), but CRec 6⊆ CAut. Moreover, different control
languages may induce the same class of synchronized relations. For any two regular C,D ⊆reg
k
∗ it is decidable to test whether C ⊆Rel D in the case k = 2 [14], but for arbitrary k-ary

relations the decidability of the class containment problem is open. Henceforward, Rational
will denote the class Rel(2∗) of rational relations.

We restate some properties from [14] that we will use throughout (the proofs in [14] are
for the case k = 2 but they can be easily generalized to arbitrary k). We will use the notation
R · S to denote the usual concatenation of relations, more specifically, given R,S ⊆ (A∗)k,
R · S = {(u · u′, v · v′) : (u, v) ∈ R and (u′, v′) ∈ S}.

I Lemma 4 (Lemma 2 of [14]). For every C,D,C ′, D′ ⊆reg k
∗,

1. if R ∈ Rel(C ·D), there are R1, . . . , Rn ∈ Rel(C), R′1, . . . , R′n ∈ Rel(D) such that
R =

⋃
iRi ·R′i;

2. if R ∈ Rel(C∗), there are R1, . . . , Rn ∈ Rel(C) and I ⊆reg {1, . . . , n}∗ such that
R =

⋃
w∈I Rw[1] · · ·Rw[|w|];

3. For every R ∈ Rel(C ∪D), there are R1 ∈ Rel(C), R2 ∈ Rel(D) such that R = R1∪R2.
4. if C ⊆ D, then C ⊆Rel D;
5. if C ⊆Rel D and C ′ ⊆Rel D

′, then C · C ′ ⊆Rel D ·D′ and C ∪ C ′ ⊆Rel D ∪D′;
6. if C ⊆Rel D, then C∗ ⊆Rel D

∗;
7. for every partition I, J of {1, . . . , k} such that C ⊆ I∗ and D ⊆ J∗, we have C ·D =Rel

D · C;
8. if C is finite, then C ·D =Rel D · C;
9. if C ⊆Rel D then π(C) ⊆ π(D); moreover, if C is finite, the converse also holds.

STACS 2019

22:6 Closure Properties of Synchronized Relations

The following decomposition lemma, which is an immediate consequence of [14, Proposi-
tion 3 plus Lemma 2 P7] and basic properties from Lemma 4, will be used throughout.

I Lemma 5. Every C ⊆reg 2
∗ is effectively Rel-equivalent to a finite union of smooth

languages, i.e. given C ⊆reg 2
∗, one can compute a finite set of smooth languages such that

C is Rel-equivalent to their union.

In addition to these, our characterization results make use of the following easy properties
of relations controlled by Parikh-injective and Parikh-bijective languages.

I Lemma 6. For any C ⊆reg k
∗ and L,M ⊆reg C ⊗A∗,

1. if C is Parikh-injective, and w,w′ ∈ C ⊗A∗, then JwK = Jw′K implies w = w′;
2. JLK ∪ JMK = JL ∪MK;
3. if C is Parikh-injective then JLK ∩ JMK = JL ∩MK and JLK \ JMK = JL \MK;
4. if C is Parikh-bijective then (A∗)k \ JLK = J(C ⊗A∗) \ LK;
5. if C is Parikh-surjective then 1∗ · · · k∗ ⊆Rel C.

Proof. The first two items follow immediately from definitions.
3. JL ∩MK ⊆ JLK ∩ JMK is always true. For the other containment, let (w1, . . . , wk) ∈

JLK∩ JMK, then there exist w ∈ L,w′ ∈M such that JwK = Jw′K = (w1, . . . , wk). Since C
is Parikh-injective, by item 1, w = w′ ∈ L∩M synchronizes (w1, . . . , wk) which concludes
the proof.
JLK \ JMK ⊆ JL \MK is always true. For the other containment, let w ∈ L \M . Then
JwK ∈ JLK. By way of contradiction, suppose that JwK ∈ JMK. In this case, there exists
w′ ∈M such that JwK = Jw′K. Since C is Parikh-injective, by item 1, M 63 w = w′ ∈M
which is a contradiction.

4. For ⊆, note that, since C is Parikh-surjective, (A∗)k = JC ⊗A∗K, and so the result follows
from the previous item.

5. We make use of closure under componentwise letter-to-letter relations (cf. Lemma 8 of
Section 2.2). Suppose C ⊆reg k

∗ is Parikh-surjective, and let R ∈ Rel(1∗ · · · k∗). As an
immediate consequence of Mezei’s theorem, we have the following:

B Claim 7. For every k, Rel(1∗ · · · k∗) = {
⋃
i∈I Li,1×· · ·×Li,k : I is finite and Li,j ⊆reg

A∗ for some finite alphabet A}.

Then R =
⋃
i∈I Li,1 × · · · × Li,k for a finite I and regular languages Li,j . For any i ∈ I

and j ∈ k consider Ti,j as the letter-to-letter relation Ti,j = {(u, v) : |u| = |v| and v ∈
Li,j} ∈ Rel((12)∗). Note that, by Parikh-surjectivity, U = (A∗)k = JC ⊗A∗K ∈ Rel(C)
and therefore U ◦ (Ti,1, . . . , Ti,k) = Li,1 × · · · × Li,k. Then, by closure under union
and componentwise letter-to-letter relations (Lemma 8), it follows that R =

⋃
i∈I U ◦

(Ti,1, . . . , Ti,k) ∈ Rel(C). J

2.2 Universal closure properties
There are some closure properties which are shared by all classes of synchronized relations,
that is, by every Rel(C) with C ⊆reg k

∗. We highlight the most salient ones.
An alphabetic morphism between two finite alphabets A,B is a morphism h : A∗ → B∗

between the free monoids such that h(a) ∈ B for every a ∈ A. Its application is extended to any
relation R ⊆ (A∗)k as follows h(R) = {(h(u1), . . . , h(uk)) : (u1, . . . , uk) ∈ R} ⊆ (B∗)k; and its
inverse is applied to S ⊆ (B∗)k as h−1(S) = {(u1, . . . , uk) : (h(u1), . . . , h(uk)) ∈ S} ⊆ (A∗)k.
A letter-to-letter relation is one from Rel((12)∗).

We define the following closure properties over classes C of k-ary relations.

M.E. Descotte, D. Figueira, and S. Figueira 22:7

C is closed under union if for all (R,A), (S,A) ∈ C, (R ∪ S,A) ∈ C;
C is closed under (inverse) alphabetic morphisms if for all (R,A) ∈ C and h : A∗ → B∗
(resp. g : B∗ → A∗) an alphabetic morphism, (h(R),B) ∈ C (resp. (g−1(R),B) ∈ C);
C is closed under componentwise letter-to-letter relations if for every (R,A) ∈ C and
(T1,A), . . . , (Tk,A) ∈ Rel((12)∗) the following relation over the alphabet A is also in C:
R ◦ (T1, . . . , Tk) def= {(u1, . . . , uk) : there is (v1, . . . , vk) ∈ R s.t. (vi, ui) ∈ Ti for every i}.
C is closed under recognizable projections if for all (R,A) ∈ C and (S,A) ∈ Rel(1∗ · · · k∗),
(R ∩ S,A) ∈ C.

I Lemma 8. For every k ∈ N and C ⊆reg k
∗, Rel(C) is closed under union, alphabetic

morphisms, inverse alphabetic morphisms, componentwise letter-to-letter relations, and
recognizable projections .

Proof. Closure under union follows from the fact that if L,L′ ⊆reg C ⊗A∗, then L ∪ L′ ⊆reg
C ⊗A∗ and JLK ∪ JL′K = JL ∪ L′K (Lemma 6). Closure under letter-to-letter relations
follows from the fact that, given L ⊆reg C ⊗A∗ and k letter-to-letter relations T1, . . . , Tk
over A, there exists L′ ⊆reg C ⊗A∗ such that JL′K = JLK ◦ (T1, . . . , Tk) (one can build
an automaton recognizing such language from the automata for L, T1, . . . , Tk). Since any
(inverse) alphabetic morphism can be implemented as a letter-to-letter relation, it follows that
Rel(C) is closed under (inverse) alphabetic morphisms. Finally, closure under recognizable
projections follows from closure under letter-to-letter relations and closure under union, since
for every R ∈ Rel(C) and S =

⋃
i∈I Li,1 × · · · × Li,k ∈ Rel(1∗ · · · k∗) (recall Claim 7) we

have that R ∩ S =
⋃
i∈I R ◦ (Ti,1, . . . , Ti,k) for Ti,j = {(w,w) : w ∈ Li,j}. J

3 Closure under intersection

We say that a class C of k-ary relations is closed under intersection if for all (R,A), (S,A) ∈ C,
(R∩S,A) ∈ C. In this section we show a decidable characterization of the languages C ⊆reg 2

∗

for which Rel(C) is closed under intersection. Further, for C ⊆reg 2
∗, if Rel(C) is closed

under intersection, it is effectively closed, that is, for every R,S ∈ Rel(C) over an alphabet
A, one can compute R ∩ S as a synchronized relation, that is, as some L ⊆reg (2× A)∗ so
that JLK = R ∩ S. The main result is the following.

I Theorem 9. For every C ⊆reg 2
∗, Rel(C) is closed under intersection if, and only if,

C ⊆Rel D for some Parikh-injective D ⊆reg 2
∗.

At the end of this section we give an effective procedure to decide, given C ⊆reg 2
∗,

whether Rel(C) is closed under intersection. Decidability can be seen as the fact that the
set of languages C ⊆reg 2

∗ for which there is a Parikh-injective language D ⊆reg 2
∗ such

that C ⊆Rel D is both computably enumerable and co-computably enumerable. While
showing that it is c.e. is straightforward, proving co-c.e. involves all the developments of
this section. Concretely, we define some bad conditions that characterize all languages C
such that Rel(C) is not closed under intersection, and in this way we obtain that the set of
languages C ⊆reg 2

∗ which satisfy any of the bad conditions is c.e.

We will start by giving a sufficient condition for Rel(C) to be closed under intersection.
The following simple lemma (which was already proved in [18]) follows from Lemma 6.

I Lemma 10. If C ⊆reg 2
∗ is Parikh-injective, then Rel(C) is closed under intersection.

STACS 2019

22:8 Closure Properties of Synchronized Relations

This lemma implies that any language which is Rel-equivalent to a Parikh-injective one
gives rise to a closed under intersection class. A natural question is whether the converse
holds but it doesn’t seem to. For instance, if C = 1∗2∗ ∪ (12)∗, Rel(C) is closed under
intersection but it seems unlikely that C is Rel-equivalent to a Parikh-injective language.

Another sufficient condition for Rel(C) to be closed under intersection is that C =Rel
D ∪ X for some Parikh-injective D,X ⊆reg 2

∗ such that X ⊆Rel 1∗2∗ (in fact, it can be
seen that injectivity of X is not really necessary). We will prove that this condition is also
necessary, and thus we will have another characterization of closure under intersection. This
is not obvious and we will prove a stronger statement, which we present below (Theorem 12).
Also, in particular, we will show that if Rel(C) is closed under intersection, we can compute
a Parikh-injective D ⊆reg 2

∗ such that C ⊆Rel D, which allows us in turn to compute the
intersection of two relations in Rel(C) as a synchronized relation.

For C ⊆reg 2
∗, we denote by Rel(C)∩ the closure under intersection of Rel(C), i.e.,

the smallest class of relations containing Rel(C) and being closed under intersection. We
present three properties on C ⊆reg 2

∗ that we call the bad conditions, which will characterize
the languages such that Rel(C) is not closed under intersection.

Bad conditions

For C ⊆reg 2
∗, consider the following properties:

(A) There exist u1, u2, v, z ∈ 2∗ such that

1. ui and v are Parikh-independent for i = 1, 2,
2. π(ui) ≥ (1, 1) for some i,
3. {u1, u2} and {v} are Parikh-dependent,
4. u∗1u∗2z ⊆Rel C and v∗z ⊆Rel C.

(B) There exist u, v, z ∈ 2∗ such that

1. u and v are Parikh-independent,
2. π(u) ≥ (1, 1) or π(v) ≥ (1, 1),
3. u∗v∗z ⊆Rel C and v∗u∗z ⊆Rel C.

(C) There exist u, v, w, z ∈ 2∗ such that

1. u ∈ 1∗ \ {ε}, w ∈ 2∗ \ {ε},
2. π(v) ≥ (1, 1),
3. u∗v∗w∗z ⊆Rel C or w∗v∗u∗z ⊆Rel C.

For example, 1∗(12)∗(122)∗ satisfies A for u1 = 1, u2 = 122, v = 12, z = ε; 1∗(12)∗1∗ satisfies
B for u = 1, v = 12, z = ε; and 1∗(12)∗2∗ satisfies C for u = 1, v = 12, w = 2, z = ε.

I Observation 11. The bad conditions are ⊆Rel-upward closed: If C ⊆Rel D and C satisfies
property A (resp. B, C), then D also satisfies property A (resp. B, C).

We can now present the characterization theorem.

I Theorem 12. For C ⊆reg 2
∗, the following are equivalent:

1. Rel(C) is closed under intersection (i.e. Rel(C)∩ = Rel(C));
2. Rel(C)∩ is definable (i.e. there exists D ⊆reg 2

∗ such that Rel(C)∩ = Rel(D));
3. Rel(C)∩ ⊆ Rational;

M.E. Descotte, D. Figueira, and S. Figueira 22:9

4. for all R,S ∈ Rel(C), R ∩ S ∈ Rational;
5. C does not satisfy any of the bad conditions;
6. there exist D,X ⊆reg 2

∗ Parikh-injective such that C =Rel D ∪X and X ⊆Rel 1∗2∗;
7. there exists D ⊆reg 2

∗ Parikh-injective such that C ⊆Rel D.

From 1⇔ 7 and transitivity of ⊆Rel, closure under intersection is ⊆Rel-downward closed:

I Corollary 13. For C,D ⊆reg 2
∗, if C ⊆Rel D and Rel(D) is closed under intersection,

then Rel(C) is closed under intersection.

We first explain the main proof strategy for obtaining Theorem 12, and present the three
key technical results we will need to prove (Propositions 14, 16 and 17).

Proof idea of Theorem 12

The proof strategy is by showing 1 ⇒ 2 ⇒ 3 ⇒ 4 ⇒ 5 ⇒ 6 ⇒ 1 on the one hand, and 6 ⇒ 7
⇒ 3 on the other hand. First observe that 1 ⇒ 2 ⇒ 3 ⇒ 4 are trivial. We next prove 6 ⇒ 1,
7 ⇒ 3 and 6 ⇒ 7.

For 6⇒ 1, suppose that C =Rel D∪X for some Parikh-injective languages D,X such that
X ⊆Rel 1∗2∗. Let R,S ∈ Rel(C). Then, by item 3 of Lemma 4, there exist R1, S1 ∈ Rel(D),
R2, S2 ∈ Rel(X) such that R = R1 ∪R2 and S = S1 ∪ S2. Note that:

R1 ∩ S1 ∈ Rel(D) ⊆ Rel(C) by Lemma 10 applied to D;
R2 ∩ S2 ∈ Rel(X) ⊆ Rel(C) by Lemma 10 applied to X; and
R1 ∩ S2, R2 ∩ S1 ∈ Rel(D) by closure under recognizable projections (Lemma 8).

It only remains to observe that R ∩ S = (R1 ∩ S1) ∪ (R1 ∩ S2) ∪ (R2 ∩ S1) ∪ (R2 ∩ S2) and
obtain that R ∩ S ∈ Rel(C) due to closure under union (Lemma 8).

On the other hand, 7 ⇒ 3 can be derived from 1 ⇒ 3. Indeed, suppose that C ⊆Rel D

for some Parikh-injective language D. By Lemma 10, Rel(D) is closed under intersection
and so, by 1 ⇒ 3, Rel(C)∩ ⊆ Rel(D)∩ ⊆ Rational.

For 6 ⇒ 7, suppose that C =Rel D ∪ X for some Parikh-injective languages D,X
such that X ⊆Rel 1∗2∗. By Lemma 1, closure under complement of semi-linear sets and
Parikh’s Theorem [25], it follows that there exists D̂ ⊆reg 2

∗ Parikh-injective such that
π(D̂) = N2 \ π(D). Note that D ∪ D̂ is Parikh-bijective. Since D ∪ D̂ is Parikh-surjective, by
Lemma 6, item 5, X ⊆Rel 1∗2∗ ⊆Rel D ∪ D̂ and so, by Lemma 4, item 3 plus closure under
union of D ∪ D̂, we have C =Rel D ∪X ⊆Rel D ∪ D̂.

The main difficulty will lie on the proofs of 4 ⇒ 5 and 5 ⇒ 6. For 4 ⇒ 5, we will prove
the contrapositive statement:

I Proposition 14. If C ⊆reg 2
∗ satisfies any of the bad conditions, then there exist R,S ∈

Rel(C) such that R ∩ S 6∈ Rational.

To prove 5⇒ 6, we define some basic regular languages over 2 that we call basic injective.
A language C ⊆ 2

∗ is basic injective if it can be expressed as u∗v∗z for u, v, z ∈ 2∗ such that
if u, v 6= ε, then u and v are Parikh-independent. In particular this implies the following.

I Lemma 15. Every basic injective language is Parikh-injective.

Proof. Let C = u∗v∗z be basic injective. The cases in which u and/or v are empty are
straightforward. We will then assume that u and v are Parikh-independent. Suppose then
that π(urvsz) = π(ur′

vs
′
z) for some r, s, r′, s′ ∈ N. By Observation 2, r = r′ or s = s′ which

concludes the proof. J

STACS 2019

22:10 Closure Properties of Synchronized Relations

Note that singleton sets and languages of the form u∗z for u an arbitrary word are basic
injective. The interest of basic injective languages stems from the fact that we can prove the
following two results, from which it is not hard to get 5 ⇒ 6.

I Proposition 16. If C ⊆reg 2
∗ does not satisfy any of the bad conditions, then C is

Rel-equivalent to a finite union of basic injective languages.

I Proposition 17. If C is a finite union of basic injective languages that are not Rel-
contained in 1∗2∗ and C does not satisfy any of the bad conditions, then C is Rel-equivalent
to a Parikh-injective regular language.

To show 5⇒ 6 from the two statements above, suppose that C does not satisfy any of the
bad conditions. By Proposition 16, C =Rel X

′ ∪D′, for X ′ =
⋃
i∈I Xi and D′ =

⋃
j∈J Dj ,

where I, J are finite, for every i ∈ I, Xi is basic injective and Xi ⊆Rel 1∗2∗, and for every
j ∈ J , Dj is basic injective and Dj 6⊆Rel 1∗2∗. Note that, from the definition of basic injective
plus [14, Proposition 7] plus basic properties from Lemma 4, it follows readily that for each
i ∈ I, there exist `, s, `′, s′ ∈ N such that Xi is Rel-equivalent to 1`∗1`′2s∗2s′ . Therefore X ′
is Rel-equivalent to a Parikh-injective language X such that X ⊆Rel 1∗2∗. On the other
hand, by Observation 11, since D′ ⊆Rel C and C does not satisfy any of the bad condition,
neither does D′. Hence, by Proposition 17, D′ is Rel-equivalent to a Parikh-injective regular
language D. Thus C =Rel X ∪D which concludes the proof.

We dedicate the rest of the section to prove Propositions 14, 16 and 17.

Proof idea of Proposition 14

We show the proof idea for condition A. The other two conditions follow a similar proof
strategy. Suppose that condition A holds, and consider the 3-letter alphabet A = {a1, a2, c}.
Let R,S be the following relations in (A∗)2:

R = J(u∗1⊗ a∗1) · (u∗2⊗ a∗2) · z⊗ c∗K, S = J(v∗⊗{a1, a2}∗) · z⊗ c∗K,

note that R,S ∈ Rel(C) by condition A.4. It is not hard to show that |R ∩ S| = ∞ due
to condition A.3. We show that R ∩ S 6∈ Rational. By means of contradiction, suppose
there is an automaton over the alphabet 2× A such that the language recognized by this
automaton synchronizes R ∩ S. Since the language is infinite, there is a non-trivial cycle
q0

w1−−→ q
w2−−→ q

w3−−→ qf inside some accepting run. By a pumping argument, it can be
seen that: 1) Jw2K is necessarily of the form (asi , ati) for some i, s, t partly due to A.2; 2)
(s, t) ∈ 〈{π(uj)}〉 for some j; and 3) (s, t) ∈ 〈{π(v)}〉. Since 2) plus 3) are in contradiction
with A.1, it follows that R ∩ S 6∈ Rational. J

Proof idea of Proposition 16

It can be seen that one can reduce to the case in which C is of the form w∗1 · · ·w∗nz with wi
and wi+1 Parikh-independent for all i = 1, . . . , n − 1. For this kind of languages, if n ≤ 2
the result follows trivially since they are already basic injective. A straightforward case
inspection shows that if n ≥ 3 then at least one of the bad conditions holds. J

Proof idea of Proposition 17

In order to prove Proposition 17 we show the following stronger statement, which gives a
characterization of closure under intersection based on the decomposition into basic injective
languages. We denote the commutative closure of a language C ⊆reg 2

∗ by [C]π = {w ∈ 2∗ :
π(w) ∈ π(C)}.

M.E. Descotte, D. Figueira, and S. Figueira 22:11

I Lemma 18. Given a finite set of basic injective languages {Bi} that are not Rel-contained
in 1∗2∗, the following are equivalent:
1. Rel(

⋃
iBi) is closed under intersection;

2. for all R,S ∈ Rel(
⋃
iBi), R ∩ S ∈ Rational;

3.
⋃
iBi does not satisfy any of the bad conditions;

4. for every i, j Bi ∪Bj does not satisfy any of the bad conditions;
5. for every i, j, Bi ∩ [Bj]π is regular and Bi ∩ [Bj]π ⊆Rel Bj;
6.
⋃
iBi =Rel C for some Parikh-injective C ⊆reg 2

∗.

Proposition 17 follows from Lemma 18 since it is its implication 3 ⇒ 6. In order to give
a proof for Lemma 18, we first define the following property, which is at the core of the next
lemmas. A pair of languages B1, B2, is said to verify the dichotomy property if either

B1 ∪B2 satisfies one of the bad conditions; or
B1 ∩ [B2]π is regular and B1 ∩ [B2]π ⊆Rel B2.

Note that B1∩ [B2]π may not be regular in general, for example if B1 = 1∗2∗ and B2 = (12)∗.
The main ingredient to prove Lemma 18 is given by the following statement.

I Lemma 19. Every pair of basic injective languages B1, B2 such that B1, B2 6⊆Rel 1∗2∗
satisfies the dichotomy property.

Proof of Lemma 18. 1⇒ 2 is trivial; 2⇒ 3 follows from the contrapositive of Proposition 14;
3 ⇒ 4 holds by Observation 11; and 4 ⇒ 5 follows from Lemma 19. For 5 ⇒ 6, we proceed
by induction on the number of basic injective languages in {Bi}. The base case is the
empty language, which is (vacuously) Parikh-injective. For the inductive step, consider a
union B ∪

⋃
iBi. First observe that, by Lemma 15, B is Parikh-injective. By inductive

hypothesis, there exists D ⊆reg 2
∗ Parikh-injective such that

⋃
iBi =Rel D. Also, since

B ∩ [
⋃
iBi]π =

⋃
iB ∩ [Bi]π, by hypothesis both B ∩ [

⋃
iBi]π and B \ [

⋃
iBi]π are regular,

and B ∩ [
⋃
iBi]π ⊆Rel

⋃
iBi. Now it only remains to observe that (B \ [

⋃
iBi]π) ∪ D is

Parikh-injective and Rel-equivalent to B∪
⋃
iBi. Finally, 6⇒ 1 follows from Lemma 10. J

Decidability

We finally discuss briefly the decidability procedure to test whether a class Rel(C) is closed
under intersection.

I Proposition 20. It is decidable wether a given C ⊆reg 2
∗ is such that Rel(C) is closed

under intersection.

Proof idea. It follows by the equivalence 1 ⇔ 5 ⇔ 7 of Theorem 12, together with the fact
that the set of languages C ⊆reg 2

∗ for which there is a Parikh-injective language D ⊆reg 2
∗

such that C ⊆Rel D is computably enumerable; and the fact that the set of languages
C ⊆reg 2

∗ which satisfy any of the bad conditions is computably enumerable. J

Note that whenever Rel(C) is closed under intersection, it is effectively so: given
L1, L2 ⊆reg C ⊗A∗ it is possible to compute L ⊆reg (2×A)∗ with JLK = JL1K∩ JL2K. Indeed,
by the previous proposition we can compute some Parikh-injective D such that C ⊆Rel D.
By the results of [14], one can compute L′1, L′2 ⊆reg D⊗A∗ such that JL′1K = JL1K and
JL′2K = JL2K; and thus L = L′1 ∩ L′2 is such that JLK = JL1K ∩ JL2K due to injectivity of D
and Lemma 6.

STACS 2019

22:12 Closure Properties of Synchronized Relations

4 Closure under complement

We say that a class C of k-ary relations is closed under complement if for every (R,A) ∈ C,
((A∗)k \ R,A) ∈ C. For every Relk(C) and alphabet A, note that there is a unique
largest relation (U,A) ∈ Relk(C) that contains all relations (R,A) ∈ Relk(C); this is
U = JC ⊗A∗Kk. Thus, a natural alternative definition for complement could take U , instead
of (A∗)k, as the universe. We say that Relk(C) is closed under relativized complement if
for all (R,A) ∈ Relk(C) we have (JC ⊗A∗Kk \ R,A) ∈ Relk(C). In this section, we give
effective characterizations of the languages C ⊆reg 2

∗ for which Rel(C) is closed under
complement and relativized complement.

Relativized complement

We show that closure under relativized complement, perhaps surprisingly, is equivalent to
closure under intersection, and therefore it is decidable whether Rel(C) is closed under
relativized complement for a given C ⊆reg 2

∗.

I Proposition 21. For C ⊆reg 2
∗, Rel(C) is closed under relativized complement if, and

only if, Rel(C) is closed under intersection.

Proof. For the left-to-right direction, let (R,A), (S,A) ∈ Rel(C). Recall that Rel(C) is
always closed under union and note that R∩S = JC ⊗A∗K\ ((JC ⊗A∗K\R)∪ (JC ⊗A∗K\S)),
and therefore (R ∩ S,A) ∈ Rel(C). For the right-to-left direction, let L ⊆reg C ⊗A∗. We
want to check that JC ⊗A∗K \ JLK ∈ Rel(C). By the characterization of the previous section
(Theorem 12, implication 1 ⇒ 6) we can assume that C = D ∪X, for X ⊆Rel 1∗2∗ and X,D
Parikh-injective. Then,

JC ⊗A∗K \ JLK = J(D ∪X)⊗A∗K \ JLK = (J(D⊗A∗) ∪ (X ⊗A∗)K) \ JLK

= (JD⊗A∗K ∪ JX ⊗A∗K) \ JLK = (JD⊗A∗K \ JLK) ∪ (JX ⊗A∗K \ JLK)
= J(D⊗A∗) \ LK︸ ︷︷ ︸

R

∪ JX ⊗A∗ \ LK︸ ︷︷ ︸
S

. (by Lemma 6, item 3)

Since R,S ∈ Rel(C), by Lemma 8, R∪S ∈ Rel(C), and thus JC ⊗A∗K\ JLK ∈ Rel(C). J

Note that if C ⊆ 2
∗ is Parikh-surjective, then JC ⊗A∗K = (A∗)2, and hence closure under

relativized complement and closure under complement coincide. Thus, by Proposition 21:

I Observation 22. If C ⊆ 2
∗ is Parikh-surjective, then Rel(C) is closed under complement

if, and only if, Rel(C) is closed under intersection.

Complement

Let Rel(C)c be the closure under complement of Rel(C), i.e., the smallest class closed
under complement containing Rel(C). The following lemma gives sufficient conditions for
our characterization.

I Lemma 23. For any C ⊆reg 2
∗,

1. if C is Parikh-bijective, then Rel(C) is closed under complement;
2. if Rel(C) is closed under complement, then C is Parikh-surjective.

Proof. For item 1, let L ⊆reg C ⊗A∗. By item 4 of Lemma 6, (A∗)2 \ JLK = JC ⊗A∗ \ LK ∈
Rel(C) which concludes the proof.

M.E. Descotte, D. Figueira, and S. Figueira 22:13

For item 2, let L = C ⊗{a}∗. Then (({a}∗)2 \ JLK, {a}) ∈ Rel(C) and so there exists
L′ ⊆reg C ⊗{a}∗ such that JL′K = ({a}∗)2 \ JLK. Then JL ∪ L′K = JLK ∪ JL′K = ({a}∗)2.
Therefore, the Parikh-image of the projection of L ∪L′ onto the first component must be Nk
and so C is Parikh-surjective since both L and L′ (and hence L ∪ L′) are ⊆reg C ⊗{a}∗. J

From Lemma 23 plus Observation 22, we have that Rel(C) is closed under complement
if, and only if, Rel(C) is closed under intersection and C is Parikh-surjective. At the end of
this section, we will use this to prove that closure under complement is a decidable property.

We now give a characterization for closure under complement without referring to closure
under intersection.

I Theorem 24. For C ⊆reg 2
∗, the following are equivalent:

1. there exists D ⊆reg 2
∗ Parikh-bijective such that C =Rel D;

2. Rel(C) is closed under complement (i.e. Rel(C)c = Rel(C));
3. Rel(C)c is definable (i.e. there is D ⊆reg 2

∗ such that Rel(C)c = Rel(D)).

Before proving the above theorem, we observe that we cannot obtain the third and fourth
equivalent statements that we have in Theorem 12.

I Lemma 25. There is C ⊆reg 2
∗ with Rel(C)c ⊆ Rational but Rel(C)c not definable.

Proof. Consider any language which is Parikh-injective but not Parikh-surjective, e.g. C =
(12)∗. Then, by item 2 of Lemma 23, plus Theorem 24, we have that Rel(C)c is not definable.
The result is then an immediate consequence of the following:

B Claim. If C ⊆reg 2
∗ is Parikh-injective, then Rel(C)c ⊆ Rational.

Indeed, by Parikh’s Theorem [25], π(C) is a semi-linear set and then so is N2 \ π(C) (see for
example [21]). By Lemma 1, N2 \ π(C) = π(D) for some Parikh-injective language D. It
follows then that C ∪D is Parikh-bijective and so, by Lemma 23, item 1, Rel(C ∪D) is
closed under complement. Then Rel(C)c ⊆ Rel(C ∪D) ⊆ Rational. J

Proof of Theorem 24. 1 ⇒ 2 follows from item 1 of Lemma 23; and 2 ⇒ 3 is trivial.
2 ⇒ 1: Suppose that Rel(C) is closed under complement. By Lemma 8, Rel(C)

is also closed under union and so under intersection. Therefore, by Theorem 12, there
exist Parikh-injective languages D,X ⊆reg 2

∗ such that X ⊆Rel 1∗2∗ and C =Rel D ∪X.
It follows then that JD⊗A∗K ∈ Rel(C) and so R = (A∗)2 \ JD⊗A∗K ∈ Rel(C). Let
L ⊆reg (D ∪X)⊗A∗ be such that JLK = R. By definition of R, we get that L ⊆reg X ⊗A∗
and so X ′ = {u : ∃v such that u⊗ v ∈ L} ⊆reg X. Besides, also by definition of R, π(X ′) =
N2 \ π(D) and so D ∪X ′ is Parikh-bijective. It only remains to observe that C =Rel D ∪X ′:
⊇ is trivial and ⊆ follows from the fact that 1∗2∗ is Rel-contained in any Parikh-surjective
language (Lemma 6, item 5) and so X ⊆Rel D ∪X ′.

3 ⇒ 2: Let D ⊆reg 2
∗ such that Rel(C)c = Rel(D). Since Rel(D) is closed under

complement, by 2 ⇒ 1, we can assume wlog that D is Parikh-bijective. By means of contra-
diction, suppose that Rel(C) is not closed under complement. Therefore, by Observation 22,
either C is not Parikh-surjective or Rel(C) is not closed under intersection. We show that
in both cases we arrive to a contradiction. If Rel(C) is not closed under intersection, by
Theorem 12 (implication ¬1 ⇒ ¬4), there are R,S ∈ Rel(C) such that R ∩ S 6∈ Rational;
but since R ∩ S = (A∗)2 \ ((A∗)2 \ R ∪ (A∗)2 \ S) ∈ Rel(C)c = Rel(D) ⊆ Rational
(recall that Rel(D) is closed under union by Lemma 8), we have a contradiction. On
the other hand, if C is not Parikh-surjective, there exists x ∈ π(D) \ π(C). Let u ∈ D

STACS 2019

22:14 Closure Properties of Synchronized Relations

be such that π(u) = x and let us consider the singleton relation R = {Ju⊗ a|u|K}. It is
clear that (R, {a, b}) ∈ Rel(D) = Rel(C)c. Then, either (R, {a, b}) or its complement
(({a, b}∗)2 \R, {a, b}) should be in Rel(C). But it is easy to see that both relations contain
a tuple with Parikh-image x̄: Ju⊗ a|u|K ∈ R and Ju⊗ b|u|K ∈ ({a, b}∗)2 \R. Since x̄ 6∈ π(C),
none of the relations is in Rel(C), which is a contradiction. J

Decidability

From Observation 22 and item 2 of Lemma 23, decidability of closure under complement
follows immediately: Rel(C) is closed under complement if, and only if, Rel(C) is closed
under intersection and C is Parikh-surjective. The former is decidable due to Proposition 20,
and the latter is decidable through Parikh’s Theorem, since universality for semi-linear sets
is decidable (see, e.g., [21]).

I Proposition 26. Given C ⊆reg 2
∗, testing whether Rel(C) is closed under complement is

decidable.

5 Closure under concatenation, Kleene star, and projection

In this section, we characterize languages C ⊆reg k
∗ such that Rel(C) is closed under

concatenation, Kleene star, and projection.
C is closed under concatenation if for all R,S ∈ C, R ·S ∈ C, where · is the component-wise
concatenation operation (e.g., {(a, ab), (b, a)} · {(b, c)} = {(ab, abc), (bb, ac)});
C is closed under Kleene star if for all R ∈ C, R∗ ∈ C for R∗ =

⋃
i∈NR

(i), where
R(0) = {(ε, . . . , ε)}, and R(i+1) = R ·R(i);
C is closed under projection if for all (R,A) ∈ C and K ⊆ k, (R|K ,A) ∈ C, where
R|K ⊆ A∗k is the projection of R onto the components in K (with ε in the other
components). For example, for R = {(aa, ab, b), (a, bbb, aab), (aa, ab, ba)} and K = {1, 2}
we have R|K = {(aa, ab, ε), (a, bbb, ε)}.

We now give characterizations for closure under concatenation and Kleene star. As we show,
closure under concatenation is in fact a necessary condition for closure under Kleene star.

I Proposition 27. For every C,C1, C2, C3 ⊆reg k
∗,

1. C1 · C2 ⊆Rel C3 iff for every R1 ∈ Rel(C1), R2 ∈ Rel(C2) we have R1 ·R2 ∈ Rel(C3);
2. Rel(C) is closed under concatenation iff C · C ⊆Rel C;
3. if Rel(C) is closed under Kleene star, then it is closed under concatenation; and
4. Rel(C) is closed under Kleene star iff C∗ ⊆Rel C.

Proof sketch. For the left-to-right direction of item 1, let L1 ⊆reg C1⊗A∗ and L2 ⊆reg
C2⊗A∗. Then we only have to observe that JL1K·JL2K = JL1 ·L2K ∈ Rel(C1 · C2) ⊆ Rel(C3)
as we wanted. The right-to-left direction follows from Lemma 8 together with property 1 of
Lemma 4. Note that item 2 is a particular case of item 1.

We now turn to item 3. For simplicity assume k = 2. Suppose Rel(C) is closed under
Kleene star, and take arbitrary R1, R2 ∈ Rel(C) over an alphabet A. Define R′i over
the alphabet A × {lsti, lsti} as the result of replacing every pair (a1 · · · an, b1 · · · bm) ∈ Ri
with ((a1, lsti) · · · (an−1, lsti)(an, lsti), (b1, lsti) · · · (bm−1, lsti)(bm, lsti)). Intuitively, lsti marks
the last symbols of tuples from Ri. It is easy to see that R′1, R′2 ∈ Rel(C) using closure
under componentwise letter-to-letter relations. Observe that R′1 · R′2 ⊆ (R′1 ∪ R′2)∗ and,
by closure under union and Kleene star, that (R′1 ∪ R′2)∗ ∈ Rel(C). Let L ⊆reg C ⊗ (A ×

M.E. Descotte, D. Figueira, and S. Figueira 22:15

{lst1, lst1, lst2, lst2})∗ such that JLK = (R′1∪R′2)∗. It is easy to see that there is L′ ⊆reg L such
that JL′K = R′1 ·R′2, and thus that R′1 ·R′2 ∈ Rel(C). Again by closure under component-wise
letter-to-letter relations we obtain that R1 ·R2 ∈ Rel(C), this time using the relation that
projects onto the first component.

Finally, we prove item 4. For the right-to-left direction, let R ∈ Rel(C) and take
L ⊆reg C ⊗A∗ such that JLK = R. Therefore R∗ = JLK∗ = JL∗K ∈ Rel(C∗) ⊆ Rel(C) as
wanted. For the converse, first observe that Rel(C) is also closed under concatenation due
to item 3. Let R ∈ Rel(C∗). By item 2 of Lemma 4, we have the following:

there are R1, . . . , Rn ∈ Rel(C) and I ⊆reg {1, . . . , n}∗ such that R =
⋃
w∈I Rw[1] · · ·Rw[|w|].

Consider any regular expression E denoting the language I above, and replace each occurence
of i ∈ {1, . . . , n} with Ri, in such a way that the resulting expression E′ denotes R. Then,
by finite application of closure under Kleene star, concatenation and union as given by E′,
we obtain that R ∈ Rel(C). J

For C ⊆reg k
∗ and K ⊆ k, let C|K be the projection of C onto the alphabet K (which is

also regular). We give the following characterization of closure under projection.

I Lemma 28. For every k ∈ N and C ⊆reg k
∗, Relk(C) is closed under projection iff

Relk(C|K) ⊆ Relk(C) for every K ⊆ k.

Decidability

For the binary case, by previous results [14], it is decidable to test whether a synchronized
class is included in another, and thus the characterizations for Kleene star and concatenation
are decidable. We leave the general case as an open question.

6 Concluding remarks and future work

We discuss the decidability of paradigmatic problems within Rel(C). First, note that the
emptiness problem for relations reduces to the emptiness problem for automata: JLK = ∅ if,
and only if, L = ∅ – and thus the emptiness problem is always decidable. Further, by the
results we have shown together with Lemma 6 we obtain the following.

I Lemma 29. For C ⊆reg 2
∗, if Rel(C) is closed under...

...intersection, then equivalence and containment problems within Rel(C) are decidable;

...complement, then the universality problem within Rel(C) is decidable;

...Op, then the Op operation within Rel(C) is computable, for Op ∈ {intersection,
complement, concatenation, Kleene star, projection}.

Proof of Lemma 29. Given L,M ⊆reg C ⊗A∗, the containment problem between JLK and
JMK amounts to checking if JLK \ JMK is empty. Since Rel(C) is closed under intersection,
by Theorem 12, there exists a Parikh-injective language D such that C ⊆Rel D. Moreover,
our decidability proof, shows that we can effectively compute such language D. Therefore,
by the results on [14], we can effectively construct L′,M ′ ⊆reg D⊗A∗ such that JLK = JL′K,
and JMK = JM ′K. Then, by Lemma 6, item 3, JLK \ JMK = JL′K \ JM ′K = JL′ \M ′K and so
the containment problem within Rel(C) reduces to the emptiness problem within Rel(D).
The equivalence problem obviously reduces to the containment problem.

The universality problem for (JLK,A) amounts to checking whether (A∗)k \ JLK is empty.
Since Rel(C) is closed under complement, by Theorem 24, there exists a Parikh-bijective
language D such that C =Rel D. As before, we can effectively compute such language D,

STACS 2019

22:16 Closure Properties of Synchronized Relations

and therefore, by the results on [14], we can effectively construct L′ ⊆reg D⊗A∗ such that
JL′K = JLK. By Lemma 6, item 4, we thus obtain (A∗)k \ JLK = (A∗)k \ JL′K = J(D⊗A∗)\L′K
and so the containment problem within Rel(C) reduces to the emptiness problem within
Rel(D).

We prove the last item only for intersection; similar (or simpler) arguments can be used
for all the other operations. Given L,M ⊆reg C ⊗A∗, with a similar argument than the one
used in the previous item, we can effectively construct a Parikh-injective language D and
L′,M ′ ⊆reg D⊗A∗ such that JLK = JL′K, and JMK = JM ′K. Then, by Lemma 6, item 3,
JLK ∩ JMK = JL′K ∩ JM ′K = JL′ ∩M ′K and the result follows. J

One can then conclude that classes of synchronized binary relations are generally “well-
behaved”: a) it is decidable to test whether a class is closed under Boolean connectives; b)
every synchronized class closed under intersection (resp. complement, etc.), is effectively
closed under intersection (resp. complement, etc.); c) every synchronized class which is closed
under Boolean connectives has decidable paradigmatic problems (in the sense of Lemma 29);
d) at least for the binary case, the characterizations for Kleene star and concatenation are
decidable.

We leave as future work the question of whether it is decidable to test if Rel(C) is closed
under Kleene star, concatenation and projection when C ⊆reg k. We also leave open the
characterization for closure under complement and intersection for k-ary relations. Although
it is conceivable that the same characterization for closure under intersection holds for
arbitrary arity relations, we were not able to show it – the main issue is that it is not clear
how to generalize the bad conditions to a k-ary alphabet, nor what would be the analog of
item 6 in Theorem 12.

I Conjecture 30. For every k ∈ N and C ⊆reg k
∗, Rel(C) is closed under intersection if,

and only if, C ⊆Rel D for some Parikh-injective D ⊆reg k
∗.

References
1 Parosh Aziz Abdulla, Bengt Jonnson, Marcus Nilsson, and Mayank Saksena. A survey of

regular model checking. In International Conference on Concurrency Theory (CONCUR),
pages 35–48, 2003.

2 Renzo Angles and Claudio Gutiérrez. Survey of graph database models. ACM Comput. Surv.,
40(1), 2008. doi:10.1145/1322432.1322433.

3 Kemafor Anyanwu and Amit Sheth. ρ-Queries: enabling querying for semantic associations
on the semantic web. In 12th International World Wide Web Conference (WWW’03), pages
690–699, 2003.

4 Pablo Barceló, Diego Figueira, and Leonid Libkin. Graph Logics with Rational Relations.
Logical Methods in Computer Science (LMCS), 9(3:01), 2013. doi:10.2168/LMCS-9(3:1)2013.

5 Pablo Barceló, Leonid Libkin, Anthony Widjaja Lin, and Peter T. Wood. Expressive Languages
for Path Queries over Graph-Structured Data. ACM Trans. Database Syst., 37(4):31, 2012.
doi:10.1145/2389241.2389250.

6 Pablo Barceló and Pablo Muñoz. Graph Logics with Rational Relations: The Role of Word
Combinatorics. ACM Trans. Comput. Log., 18(2):10:1–10:41, 2017. doi:10.1145/3070822.

7 Jean Berstel. Transductions and Context-Free Languages. B. G. Teubner, 1979.
8 Achim Blumensath and Erich Grädel. Automatic Structures. In Annual IEEE Symposium

on Logic in Computer Science (LICS), pages 51–62. IEEE Computer Society Press, 2000.
doi:10.1109/LICS.2000.855755.

9 Mikołaj Bojańczyk. Transducers with origin information. In International Colloquium on
Automata, Languages and Programming (ICALP), volume 8573 of Lecture Notes in Computer
Science, pages 26–37. Springer, 2014. doi:10.1007/978-3-662-43951-7.

http://dx.doi.org/10.1145/1322432.1322433
http://dx.doi.org/10.2168/LMCS-9(3:1)2013
http://dx.doi.org/10.1145/2389241.2389250
http://dx.doi.org/10.1145/3070822
http://dx.doi.org/10.1109/LICS.2000.855755
http://dx.doi.org/10.1007/978-3-662-43951-7

M.E. Descotte, D. Figueira, and S. Figueira 22:17

10 Ahmed Bouajjani, Bengt Jonsson, Marcus Nilsson, and Tayssir Touili. Regular Model Checking.
In International Conference on Computer Aided Verification (CAV), pages 403–418, London,
UK, 2000. Springer-Verlag.

11 Julius Richard Büchi. Weak Second-order Arithmetic and Finite Automata. Mathematical
Logic Quarterly, 6(1-6):66–92, 1960.

12 Olivier Carton. The growth ratio of synchronous rational relations is unique. Theor. Comput.
Sci., 376(1-2):52–59, 2007. doi:10.1016/j.tcs.2007.01.012.

13 Christian Choffrut. Relations over Words and Logic: A Chronology. Bulletin of the EATCS,
89:159–163, 2006.

14 María Emilia Descotte, Diego Figueira, and Gabriele Puppis. Resynchronizing Classes of Word
Relations. In International Colloquium on Automata, Languages and Programming (ICALP),
Leibniz International Proceedings in Informatics (LIPIcs), pages 381:1–381:13. Leibniz-Zentrum
für Informatik, 2018. doi:10.4230/LIPIcs.ICALP.2018.381.

15 Calvin C. Elgot and Jorge E. Mezei. On relations defined by generalized finite automata. IBM
Journal of Research and Development, 9(1):47–68, 1965. doi:10.1147/rd.91.0047.

16 Ronald Fagin, Benny Kimelfeld, Frederick Reiss, and Stijn Vansummeren. Document Spanners:
A Formal Approach to Information Extraction. Journal of the ACM, 62(2):12:1–12:51, 2015.
doi:10.1145/2699442.

17 Diego Figueira and Leonid Libkin. Path Logics for Querying Graphs: Combining Expressiveness
and Efficiency. In Annual IEEE Symposium on Logic in Computer Science (LICS), pages
329–340. IEEE Computer Society Press, 2015. doi:10.1109/LICS.2015.39.

18 Diego Figueira and Leonid Libkin. Synchronizing Relations on Words. Theory of Computing
Systems, 57(2):287–318, 2015. doi:10.1007/s00224-014-9584-2.

19 Emmanuel Filiot, Ismaël Jecker, Christof Löding, and Sarah Winter. On Equivalence and
Uniformisation Problems for Finite Transducers. In International Colloquium on Automata,
Languages and Programming (ICALP), volume 55 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 125:1–125:14. Leibniz-Zentrum für Informatik, 2016. doi:10.
4230/LIPIcs.ICALP.2016.125.

20 Christiane Frougny and Jacques Sakarovitch. Synchronized Rational Relations of Finite and In-
finite Words. Theoretical Computer Science, 108(1):45–82, 1993. doi:10.1016/0304-3975(93)
90230-Q.

21 Seymour Ginsburg and Edwin Spanier. Semigroups, Presburger formulas, and languages.
Pacific Journal of Mathematics, 16(2):285–296, 1966.

22 Bengt Jonsson and Marcus Nilsson. Transitive Closures of Regular Relations for Verify-
ing Infinite-State Systems. In International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS), pages 220–234. Springer, 2000.

23 R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon. Network motifs:
simple building blocks of complex networks. Science, 298(5594):824–827, 2002.

24 Maurice Nivat. Transduction des langages de Chomsky. Annales de l’Institut Fourier, 18:339–
455, 1968.

25 Rohit Parikh. On Context-Free Languages. Journal of the ACM, 13(4):570–581, 1966.
doi:10.1145/321356.321364.

26 Anthony Widjaja To and Leonid Libkin. Algorithmic Metatheorems for Decidable LTL Model
Checking over Infinite Systems. In International Conference on Foundations of Software
Science and Computational Structures (FOSSACS), pages 221–236, 2010. doi:10.1007/
978-3-642-12032-9_16.

27 Sarah Winter. Uniformization Problems for Synchronizations of Automatic Relations on
Words. In International Colloquium on Automata, Languages and Programming (ICALP),
Leibniz International Proceedings in Informatics (LIPIcs). Leibniz-Zentrum für Informatik,
2018. URL: http://arxiv.org/abs/1805.02444.

STACS 2019

http://dx.doi.org/10.1016/j.tcs.2007.01.012
http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.381
http://dx.doi.org/10.1147/rd.91.0047
http://dx.doi.org/10.1145/2699442
http://dx.doi.org/10.1109/LICS.2015.39
http://dx.doi.org/10.1007/s00224-014-9584-2
http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.125
http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.125
http://dx.doi.org/10.1016/0304-3975(93)90230-Q
http://dx.doi.org/10.1016/0304-3975(93)90230-Q
http://dx.doi.org/10.1145/321356.321364
http://dx.doi.org/10.1007/978-3-642-12032-9_16
http://dx.doi.org/10.1007/978-3-642-12032-9_16
http://arxiv.org/abs/1805.02444

Resource-Bounded Kolmogorov Complexity
Provides an Obstacle to Soficness of
Multidimensional Shifts
Julien Destombes
LIRMM, University of Montpellier, Montpellier, France
julien.destombes@lirmm.fr

Andrei Romashchenko
LIRMM, University of Montpellier, CNRS, Montpellier, France
andrei.romashchenko@lirmm.fr

Abstract
We suggest necessary conditions of soficness of multidimensional shifts formulated in terms of
resource-bounded Kolmogorov complexity. Using this technique we provide examples of effective and
non-sofic shifts on Z2 with very low block complexity: the number of globally admissible patterns of
size n× n grows only as a polynomial in n.

2012 ACM Subject Classification Mathematics of computing → Information theory; Mathematics
of computing → Combinatorics

Keywords and phrases Sofic shifts, Block complexity, Kolmogorov complexity

Digital Object Identifier 10.4230/LIPIcs.STACS.2019.23

Related Version A full version of the paper is available at https://arxiv.org/abs/1805.03929.

Funding projet ANR-15-CE40-0016 RaCAF

Acknowledgements We are indebted to Bruno Durand, Alexander Shen, and Ilkka Törmä for fruitful
discussions. We are grateful to Pierre Guillon and Emmanuel Jeandel for motivating comments. We
also thank the anonymous referees of STACS 2019 for many valuable comments.

1 Introduction

Symbolic dynamics originally appeared in mathematics as a branch of the theory of dynamical
systems that studies smooth or topological dynamical systems by discretizing the underlying
space. Since the late 1930s, symbolic dynamics became an independent field of research,
see [9, 10]. A classical dynamical system is a space (of states) S with a function F acting
on this space; this function represents the “evolution rule,” i.e., the time dependence of
a configuration in the space. The central notion of the theory of dynamical systems is a
trajectory – a sequence of configurations obtained by iterating the evolution rules,

x, F (x), F (F (x)), . . . , F (n)(x), . . .

In symbolic dynamics the space of states reduces to a finite set (an alphabet). The
trajectories are represented by infinite (or bi-infinite) sequences of letters over this alphabet,
and the “evolution rule” is the shift operator acting on these sequences. Symbolic dynamics
focuses on the shift spaces – the sets of bi-infinite sequences of letters (over a finite alphabet)
that are defined by a shift-invariant constraint on the factors of finite length. More precisely,
a shift over an alphabet Σ is a subset of bi-infinite sequences over Σ that is translation
invariant and closed in the natural topology of the Cantor space. Every shift can be defined in

© Julien Destombes and Andrei Romashchenko;
licensed under Creative Commons License CC-BY

36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019).
Editors: Rolf Niedermeier and Christophe Paul; Article No. 23; pp. 23:1–23:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:julien.destombes@lirmm.fr
https://orcid.org/0000-0001-7723-7880
mailto:andrei.romashchenko@lirmm.fr
https://doi.org/10.4230/LIPIcs.STACS.2019.23
https://arxiv.org/abs/1805.03929
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 An Obstacle to Soficness

terms of forbidden finite patterns: we fix a set of (finite) words F and say that a configuration
(a bi-infinite sequence) belongs to the corresponding shift SF if and only if it does not contain
any factor from F .

Obviously, the properties of shifts heavily depend on the corresponding set of forbidden
patterns. The following three large classes of shifts play an important role in symbolic
dynamics and computability theory:

shifts of finite type (SFT), which are defined by a finite set of forbidden finite patterns;
sofic shifts (introduced in [16]), where the set of forbidden finite patterns is a regular
language;
effective (or effectively closed) shifts, which are defined by a computable set of forbidden
finite patterns.

These three classes are different: [the SFTs] $ [the sofic shifts] $ [the effective shifts].
The sofic shifts can be equivalently defined as the coordinate-wise projections of configur-

ations from an SFT:

I Definition 1. A shift S over an alphabet Σ is sofic if there is an SFT S ′ over an alphabet
Σ′ and a mapping π : Σ′ → Σ, such that S consists of the coordinate-wise projections

(. . . π(y−1)π(y0)π(y1)π(y2) . . .)

of all configurations (. . . y−1y0y1y2 . . .) from S ′.

There is a simple characterization of soficness. Let us say that two words w1, w2 are equivalent
in a shift S, if exactly the same half-infinite configurations occur in S immediately to the
right of w1 and to the right of w2. A shift is sofic if and only if the finite patterns in this shift
are subdivided in a finite number of equivalence classes (see [8, Theorem 3.2.10]). Loosely
speaking, when we read a configuration from the left to the right and verify that it belongs
to a sofic shift, we need to keep in mind only a finite information.

The SFTs and even the sofic shifts are rather restrictive classes of shifts with several
very special properties. Not surprisingly, many important examples of effective shifts are not
sofic. Non-soficness of a shift is usually proved with some version of the pumping lemma
from automata theory.

Multidimensional shifts

The formalism of shifts can be naturally extended to the grids Zd for d > 1. A shift on Zd
(over a finite alphabet Σ) is defined as a set of d-dimensional configurations f : Zd → Σ that
are (i) translation-invariant (under translations in all directions) and (ii) closed in Cantor’s
topology. Similar to the one-dimensional case, the shifts can be defined in terms of forbidden
finite patterns.

The definitions of the effective shifts (the set of forbidden patterns is computable) and of
the SFTs (the set of forbidden patterns is finite) apply to the multidimensional shift spaces
directly, without any revision. The sofic shifts on Zd are defined as in Definition 1 above (as
the coordinate-wise projections of SFTs).

For multidimensional shifts spaces, the classes of the effective shifts, the sofic shifts, and
the SFTs remain distinct, though the difference between these classes is more elusive than in
the one-dimensional case. In this paper we discuss the tools that help to reveal the reasons
why one or another effective multidimensional shift is not sofic.

The class of sofic shifts in dimension d ≥ 2 is surprisingly wide. Besides many simple and
natural examples, there are shifts whose soficness follow from rather subtle considerations. For
instance, S. Mozes showed that the shift generated by (a natural class of) non deterministic

J. Destombes and A. Romashchenko 23:3

multidimensional substitutions systems are sofic [11]. L. B. Westrick proved that the two-
dimensional shift on the alphabet {0, 1} whose configurations consist of squares of 1s of
pairwise different sizes on a background of 0s, is sofic; moreover, any effectively closed subshift
of this shift is also sofic [17].

On the other hand, there are several examples of effective multidimensional shifts that
are known to be non-sofic. In what follows we briefly discuss two of them.

I Example 2 (the mirror shift). One of the standard examples of a non-sofic shift is the shift of
mirror-symmetric configurations on Z2. Let Σ be the alphabet with three letters (e.g., black,
white, and red), and the configurations of the shift are all black-and-white configurations
(without any red cell) and the configurations with an infinite horizontal line of red cells and
symmetric black-and-white half-planes above and below this line, see Fig. 1.

It is easy to see that this shift is effective (the forbidden patterns are those where the red
cells are not aligned, and those where the areas above and below the horizontal red line are
not symmetric). At the same time, this shift is not sofic. The intuitive explanation of this
fact is as follows. Let us focus on a pair of symmetric patterns of size n× n in black and
white, above and below the horizontal red line (see the blue squares in Fig. 1). To make sure
that the configuration belongs to the shift, we must “compare” these two patterns with each
other. To this end, we need to transmit the information about a pattern of size n2 through
its border line (of length O(n)). However, in a sofic shift, the “information flow” across a
contour of length O(n) is bounded by O(n) bits, and this contradiction implies non-soficness.
For a more formal argument see, e.g. [1] and [4], or a similar example [5, Example 2.4].

I Example 3 (the high complexity shift). Let S be the set of all binary configurations on
Z2 where for each n× n pattern P its Kolmogorov complexity is quadratic, C(P) = Ω(n2).
Technically, this means that no globally admissible pattern can be produced by a program of
size below cn2, for some factor c > 0 (see the formal definition of Kolmogorov complexity
below).

This shift is obviously effective: we can algorithmically enumerate the patterns whose
Kolmogorov complexity is below the specified threshold. However, this shift is not sofic. This
follows from two facts (proven in [2]):
(i) For some c < 1, the shift defined above is not empty.
(ii) In every non-empty sofic shift on Z2, there is a configuration where the Kolmogorov

complexity of each n× n pattern is bounded by O(n).

Figure 1 A configuration with mirror symmetry with respect to the horizontal red line. The blue
squares select two symmetric black-and-white patterns.

STACS 2019

23:4 An Obstacle to Soficness

Note that the non-sofic shifts in the two examples above have positive entropy (the
number of globally admissible patterns of size n× n grows as 2Ω(n2)). This is not surprising:
the proofs of non-soficness of these shifts use the intuition about the information flows
(super-linear amount of information cannot flow through a linear contour). This type of
argument can be adapted for several shifts where the number of globally admissible patterns
of size n×n grows slower than 2Ω(n2) but still faster than 2O(n) (see, e.g. [15, Proposition 15]).
As it was noticed in [17], “all examples known to the author of effectively closed shifts which
are not sofic were obtained by in some sense allowing elements to pack too much important
information into a small area.”

This type of argument was formalized as rather general sufficient conditions of non-
soficness in [13] and [5]. The theorems by Kass and Madden ([8, Theorem 3.2.10]) and Pavlov
([13, Theorem 1.1]) apply only to the two-dimensional shifts where the number of globally
admissible n× n patterns is greater than 2O(n). However, there is no reason to think that
this condition is necessary for non-soficness (see, e.g. the discussion in [4, Section 1.2.2]). It
is instructive to observe that non-effective non-sofic shifts can have very low block complexity
[5, 12].

In this paper we extend the usual approach to the proof of non-soficness. We show that a
shift cannot be sofic if the essential information contained in an n × n pattern cannot be
compressed to the size O(n) in bounded time.

The intuition behind our argument is similar to those used in [2] and [5] but with the
idea of compression with bounded computational resources. This approach applies to several
shifts with very low block complexity: we cannot “communicate” the essential information
across a contour not because this information is too large, but since we do not have enough
time and space to compress it. In particular, we provide examples of non-sofic effective shifts
with only polynomial block complexity (and thus zero entropy).

I Remark 4. A standard and straightforward approach to the measure of the “information
flow through the border line of a pattern” uses the notion of extender. Let S be a shift and
P be a globally admissible pattern for this shift. The extender of P in S is the set of all
configurations Q completing P to a valid configuration of S (in particular, the support of Q
should be the complement of the support of P).

Let S be a shift on Z2; denote by Nk the number of different extenders for the patterns
with a support of size k × k. (Several patterns can share one and the same extender, so the
number of extenders might be much less than the number of globally admissible patterns of
this size). It seems natural to interpret logNk as “the information flowing going through the
border line” of a k × k pattern.

However, this interpretation is deceptive. In a sofic shift the value of logNk can grow
much faster the length of the border line of the pattern ([5] attributes this observation to
unpublished works of C. Hoffman, A. Quas, and R. Pavlov). In fact, for a sofic shift on
Z2, the value of logNk can grow even as Ω(k2). Therefore, we cannot use the asymptotic
of logNk to prove non-soficness of a multi-dimensional shift. This why we need a subtler
implementation of the intuition of “information flows” in the sofic shifts.

The rest of the paper is organized as follows. After recalling the main definitions of the
theory of Kolmogorov in the second section, we prove in the third one our main result. In
the last section we elaborate our technique to a more general setting; in particular, we show
that an argument from [5] (a proof of non-soficness with the method of union-increasing
sequences of extenders) can be explained in the language of Kolmogorov complexity.

J. Destombes and A. Romashchenko 23:5

2 Preliminaries

Kolmogorov complexity

In this section we recall the main definitions of the theory of Kolmogorov complexity. Let
U be a (partial) computable function. The complexity of x with respect to the description
method U is defined as CU (x) := min{ |p| : U(p) = x }.

If there is no p such that U(p) = x, we assume that CU (x) =∞. Here U is understood
as a programming language; p is a program that prints x; the complexity of x is the length
of (one of) the shortest programs p that generate x (on the empty input).

The obvious problem with this definition is its dependence on U . The theory of Kolmogorov
complexity becomes possible due to the invariance theorem:

I Theorem 5 (Kolmogorov [6]). There exists a computable function U such that for any
other computable function V there is a constant c such that CU (x) ≤ CV (x) + c for all x.

This U is called an optimal description method. We fix an optimal U and in what follows
omit the subscript in CU (x). The value C(x) is called the (plain) Kolmogorov complexity
of x.

In a similar way, we define Kolmogorov complexity in terms of programs with bounded
resources (the time of computation). Let U be a Turing machine; we define the Kolmogorov
complexity Ct

U (x) as the length of the shortest p such that U(p) produces x in at most t
steps. There exists an optimal description method U in the following sense: for every Turing
machine V we have Cpoly(t)

U (x) ≤ CtV (x) +O(1).
For multi-tape Turing machines a slightly stronger statement can be proven:

I Theorem 6 (see [7]; the proof uses the simulation technique from [3]). There exists an
optimal description method (multi-tape Turing machine) U in the following sense: for every
multi-tape Turing machine V there exists a constant c such that Cct log t

U (x) ≤ CtV (x) + c for
all strings x.

We fix such a machine U , and in the sequel use for the resource-bounded version of Kolmogorov
complexity the notation Ct(x) instead of CtU (x). Without loss of generality we may assume
that C(x) ≤ Ct(x) for all x and for all t.

We fix a computable enumeration of finite patterns (over a finite alphabet) that assigns a
binary string (a code) to each pattern in dimension two. In the sequel we take the liberty
of talking about Kolmogorov complexity of finite patterns in dimension two (assuming the
Kolmogorov complexity of the codes of these patterns).

Shift spaces

In this paper we focus on two-dimensional shifts, though all arguments can be extended to
the shifts on Zd for all d ≥ 2. A (finite) pattern on Z2 over a finite alphabet Σ is a mapping
from a (finite) subset of Z2 to Σ; the domain of this mapping is the support of the pattern.
Sometimes a pattern P with a support A is called a coloring of A (the “colors” are letter
from Σ).

For a shift S, we say that a pattern P is globally admissible, if P is a restriction of a
configuration from S to some finite support. For a shift of finite type determined by a set of
forbidden patterns F , we say that a pattern is locally admissible if it contains no forbidden
patterns from F .

The block complexity of a shift is a function that gives for each integer n > 0 the number
of globally admissible patterns of size n× n (patterns with support {1, . . . , n}2) in this shift.

STACS 2019

23:6 An Obstacle to Soficness

If a sofic shift S is a coordinate-wise projection of configurations from Ŝ, we say that Ŝ is
a covering of S. Every sofic shift has a covering SFT such that the supports of all forbidden
patterns in this SFT are pairs of neighboring cells (see, e.g. [8]).

3 High resource-bounded Kolmogorov complexity is compatible with
low block complexity

The following theorem was proven implicitly in [2]:

I Theorem 7. In every non-empty sofic shift S there exists a configuration x such that for
all n× n-patterns P in x, we have CT (n)(P) = O(n) for a time threshold T (n) = 2O(n2).

In [2] a weaker version of this theorem is stated: it is claimed only that the plain complexity
of n× n patterns is O(n). However, the argument from [2] implies a bound for a resource-
bounded version of Kolmogorov complexity. For the sake of self-containedness, we provide a
proof of this theorem in the full version of this paper.

I Theorem 8. For every ε > 0 and for every computable T (n) there exists an effective shift
on Z2 such that for every n and for every globally admissible pattern P of size n × n, we
have that
(i) C(P) = O(logn), and
(ii) CT (n)(P) = Ω(n2−ε).

Theorem 8 is proven is the full version of the paper. In what follows we prove a slightly
weaker version of this theorem, which is nevertheless strong enough for our main applications:

I Theorem 8′. For every computable T (n) there exists an effective shift on Z2 such that
(i) for every n and for every globally admissible pattern P of size n× n, we have C(P) =

O(logn), and
(ii) for infinitely many n and for every globally admissible pattern P of size n× n, we have

that CT (n)(P) = Ω(n1.5).

From Theorem 7 and Theorem 8′ we deduce the following corollary:

I Corollary 9. There exists an effective non-sofic shift on Z2 with block complexity poly(n),
i.e., with ≤ poly(n) globally admissible blocks of size n× n.

Proof. We take the shift from Theorem 8′ assuming that the threshold T (n) is much greater
than 2Ω(n2) (e.g., we can let T (n) = 2n3). On the one hand, property (ii) of Theorem 8′
and Theorem 7 guarantee that this shift is not sofic. On the other hand, property (i) of
Theorem 8′ implies that the number of globally admissible blocks of size n× n is not greater
than 2O(logn). J

I Remark 10. Our proof of Theorem 8 implies a stronger bound than property (i). In fact,
instead of the bound C(P) = O(logn) we can prove that for every globally admissible n× n
pattern P in this shift,

CT̂ (n)(P) ≤ λ logn, (1)

where λ is a (large enough) constant and T̂ (n) is a (large enough) computable function of n.
The constant λ and the threshold T̂ (n) can be defined quite explicitly given T (n) and ε.

When T̂ (n) (compatible with given ε and T (n)) is chosen, we can define another shift
ST,ε that consists of the configurations where all n×n patterns P satisfy (1). The shift from

J. Destombes and A. Romashchenko 23:7

Theorem 8 is a proper subshift of ST,ε. Besides all configurations from Theorem 8, the shift
ST,ε contains also configurations with patterns of very low time bounded complexity (e.g.,
the configuration with all 0s and the configuration with all 1s). In the next section we use
this shift ST,ε to construct some other examples of effective non-sofic shifts.

Proof of Theorem 8′. In this proof we construct the required shift explicitly. Let us fix a
sequence (ni) where n0 is a large enough integer number, and

ni+1 := (n0 · . . . · ni)c for i = 0, 1, 2, . . . , (2)

where c ≥ 3 is a constant. We set Ni := n0 · . . . · ni. In what follows we construct for each i
a pair of standard binary patterns Q0

i and Q1
i of size Ni ×Ni such that

the plain Kolmogorov complexities of the standard patterns C(Q0
i) and C(Q1

i) are not
greater than O(logNi), and
the resource-bounded Kolmogorov complexities CT (Ni)(Q0

i) and CT (Ni)(Q1
i) are not less

than Ω(N1.5
i).

The construction is hierarchical: both Q0
i and Q1

i are defined as ni × ni matrices composed
of patterns Q0

i−1 and Q1
i−1; for each i the blocks Q0

i and Q1
i are bitwise inversions of each

other.
When the standard patterns Q0

i and Q1
i are constructed for all i, we define the shift as

the closure of these patterns: we say that a finite pattern is globally admissible if and only if
it appears in some standard pattern Qji or at least in a 2× 2-block composed of Q0

i and Q1
i

(for some i).
I Remark 11. Due to the hierarchical structure of the standard patterns, we can guarantee
that every globally admissible pattern P of size Ni ×Ni appears in a 2× 2-block composed
of Q0

i and Q1
i (no need to try the blocks Qjs for s > i).

Since the construction of Qji is explicit, the resulting shift is effective. Properties (i) and (ii)
of the theorem will follow from the properties of the standard patterns.

In what follows we explain an inductive construction of Q0
i and Q1

i . Let Q0
0 and Q0

1 be
the squares composed of only 0s and only 1s respectively. Further, for every i we take the
lexicographically first binary matrix Ri of size ni × ni such that

Cti(Ri) ≥ n2
i (3)

(the time bound ti is fixed in the sequel). We claim that such a matrix exists. Indeed, there
exists a matrix of size ni × ni that is incompressible in the sense of the plain Kolmogorov
complexity. The resource-bounded Kolmogorov complexity of a matrix can be only greater
than the plain complexity. Therefore, there exists at least one matrix satisfying (3). If ti is a
computable function of i, then given i we can find Ri algorithmically.

Now we substitute in Ri instead of each zero and one entry the copies of Q0
i−1 and Q1

i−1
respectively, e.g.,

Ri =

0 0 0 0 1
0 1 0 0 1
1 1 1 1 0
0 1 1 0 0
0 1 0 1 0

 =⇒ Q0
i :=

Q0
i−1 Q0

i−1 Q0
i−1 Q0

i−1 Q1
i−1

Q0
i−1 Q1

i−1 Q0
i−1 Q0

i−1 Q1
i−1

Q1
i−1 Q1

i−1 Q1
i−1 Q1

i−1 Q0
i−1

Q0
i−1 Q1

i−1 Q1
i−1 Q0

i−1 Q0
i−1

Q0
i−1 Q1

i−1 Q0
i−1 Q1

i−1 Q0
i−1

The resulting matrix (of size Ni ×Ni) is denoted Q0

i . Matrix Q1
i is defined as the bitwise

inversion of Q0
i .

STACS 2019

23:8 An Obstacle to Soficness

(a) (b)

Figure 2 A pattern of size Nk×Nk (shown in gray in fig. (a)) covered by a quadruple of standard
blocks of the same size contains enough information to reconstruct a standard pattern (fig. (b)).

B Claim 12. Assuming that t′i � ti (in what follows we discuss the choice of t′i in more
detail) we have

Ct
′
i(Q0

i) = Ω(N1.5
i) and Ct

′
i(Q1

i) = Ω(N1.5
i).

Proof of Claim 12. Given Qji (for j = 0, 1) we can retrieve the matrix Ri (this retrieval can
be implemented in polynomial time). Therefore, for every time bound t

Ct+poly(Ni)(Ri) ≤ Ct(Qji) +O(1).

Therefore, if ti > t′i + poly(Ni) then

n2
i ≤ Cti(Ri) ≤ Ct

′
i(Qji).

It remains to observe that our choice of parameters in (2) with c ≥ 3 implies n1/2
i ≥

(n0 · . . . · ni−1)3/2, and therefore

n2
i ≥ (n0 · . . . · ni)1.5 = (Ni)1.5.

Thus, we obtain Ct′i(Qji) ≥ (Ni)1.5 −O(1), and the claim is proven. C

I Remark 13. By choosing a larger constant c in (2), we can achieve a lower bound Ct′i(Qji) =
Ω(n2−ε) for any ε > 0.

B Claim 14. For every globally admissible pattern P of size Ni ×Ni (and not only for the
standard patterns, as it was in Claim 1) its time-bounded Kolmogorov complexity CT (Ni)(P)
is Ω(n1.5) (assuming that T (Ni)� t′i).

Proof of Claim 14. If a pattern P of size Ni ×Ni is globally admissible then it is covered by
a quadruple of standard patterns of rank i, see Remark 11 on p 7 above. Then P can be
divided into four rectangles which are “corners” of standard patterns of rank i, see Fig. 2 (a).
Since the standard blocks Q0

i and Q1
i are the inversions of each other, these four “corners”

(with a bitwise inversion if necessary) form together the entire standard pattern, as shown in
Fig. 2 (b). Therefore, we can reconstruct Qji from P given (a) the position of P with respect
to the grid of standard blocks (this involves O(logNi) bits) and (b) the four bits identifying
the standard blocks covering P (we need to know which of them is a copy of Q0

i and which
one is a copy of Q1

i).

J. Destombes and A. Romashchenko 23:9

The retrieval of Qji from P requires only poly(Ni) steps of computation (in addition to the
time we need to produce P). Now the claim follows from the bound for the resource-bounded
Kolmogorov complexity of the standard patterns Q0

i and Q1
i . C

B Claim 15. For every k × k-pattern in Q0
i or Q1

i , its plain Kolmogorov complexity is at
most O(log k).

Proof of Claim 15. First of all, we observe that the standard patterns Q0
i or Q1

i can be
computed given i. Therefore, C(Q0

i) = O(log i) and C(Q1
i) = O(log i).

Every globally admissible k × k-pattern is covered by at most four standard patterns Q0
i

or Q1
i with

Ni−1 < k ≤ Ni,

see Remark 11 on p. 7. Therefore, to obtain a globally admissible pattern P of size k × k we
need to produce a quadruple of standard patterns of size Ni ×Ni and then to specify the
position of P with respect to the grid of standard blocks. This description consists of only
O(logNi) bits, and we conclude that C(P) = O(log k). C

Given a computable threshold T (Ni), we choose a suitable t′i � T (Ni) and then a suitable
ti � t′i. The theorem follows from Claim 14 and Claim 15. J

I Remark 16. For all large enough i, the incompressible pattern Ri constructed in the proof
of Theorem 8′ contains copies of all 24 binary patterns of size 2 × 2. Therefore, we can
guarantee that every standard block Qji contains all globally admissible patterns of size
Ni−1 × Ni−1. It follows that the shift constructed in Theorem 8′ is transitive and even
minimal.

There exists a non-empty effective shift on Z2 where the Kolmogorov complexity of all
n × n patterns is Ω(n2) (see [2] and [14]). So a natural question arises: can we improve
Theorem 8 and strengthen condition (ii) to CT (n)(P) = Ω(n2)? The answer is negative: we
cannot achieve the resource bounded complexity Ω(n2), even with a much weaker version of
property (i) for the plain complexity:

I Proposition 17. For all large enough time bounds T (n), there is no shift on Z2 such that
(i) for every globally admissible pattern P of size n× n, we have that C(P) = o(n2), and
(ii) for infinitely many n and for every globally admissible pattern P of size n× n, we have

that CT (n)(P) = Ω(n2).

Proof. Assume for the sake of contradiction that such a shift exists. For every k, the number
of globally admissible k × k patterns in this shift is not greater than

Lk ≤ 2o(k
2) � 2k

2
.

Therefore, for any N , every globally admissible pattern P of size (Nk)× (Nk) can be
specified by

the list of all globally admissible patterns of size k × k (which requires Lk · k2 bits),
by an array of N ×N indices of k×k blocks that constitute P (which requires N2 · logLk
bits).

Clearly, P can be reconstructed from such a description in polynomial time. It follows that

Cpoly(Nk)(P) ≤ 2o(k
2) · k2 +N2 · o(k2).

For N � 2o(k2) this bound contradicts the condition CT (Nk)(P) = Ω
(
(Nk)2). J

STACS 2019

23:10 An Obstacle to Soficness

4 Epitomes

The technique from Section 3 does not apply to the shifts that contain very simple configur-
ations (with low resource-bounded Kolmogorov complexity of all patterns). In particular,
it does not apply to Example 2 from Introduction. In this section we propose a different
technique (also based on resource-bounded Kolmogorov complexity) that helps to handle
these examples. The intuitive idea behind this technique is as follows: we try to capture the
“essential” information in each pattern (discarding irrelevant data) and then measure the
resource-bounded Kolmogorov complexity of an “epitome” of this essential information.

Let us fix some notation. We denote by Bn the set {0, . . . , n− 1}2 ⊂ Z2 and by Fn its
complement, Fn := Z2 \Bn. We say that two patterns with disjoint supports are compatible
(for a shift S) if the union of these patterns is globally admissible in S. In particular, a finite
pattern P with support Bn and an infinite pattern R with support Fn are compatible, if the
union of these patterns is a valid configuration of the shift.

4.1 Plain epitomes
I Definition 18. We say that a family of functions

En : [pattern of size n× n] 7→ [binary string]

is a family of epitomes for a shift S, if for every globally admissible pattern P with support
Bn there exists a pattern R on Fn compatible with P such that for all patterns P ′ with
support Bn compatible with R, we have

En(P ′) = En(P)

(i.e., the pattern R on the complement of Bn determines the En-epitome of the pattern on
Bn). We say that a family of epitomes is uniformly computable if there is an algorithm (one
algorithm for all n) that computes the mappings En. If, in addition, En are computable in
time 2O(n2), we say that this family of epitomes is exp-time computable.

I Proposition 19. For every sofic shift with an exp-time computable family of epitomes En,
for every globally admissible pattern P of size n× n, we have CT (n)(En(P)) = O(n) for a
time threshold T (n) = 2O(n2).

I Remark 20. If patterns P1, . . . , Pm with support Bn have pairwise distinct epitomes, then
these patterns have a union-increasing sequence of extenders in the sense of [5]. Thus, a
version of Proposition 19 with the plain (non time bounded) Kolmogorov complexity is a
special case of [5, Theorem 2.3].

Proof. Assume S is a sofic shift with a covering SFT Ŝ (S is a coordinate-wise π-projection
of Ŝ). Let P be a pattern with support Bn in S and R be the pattern on the complement of
Bn that enforces the value of the En-epitome of P (as specified in Definition 18). Denote by
y a configuration in Ŝ whose π-projection gives the union of P and R. Let Q be a pattern of
size n× n in y such that P is a coordinate-wise projection of Q, see Fig. 3. Denote by ∂Q
the border of Q.

We assume that the local constraints in Ŝ involve only pairs of neighboring nodes in Z2.
Then, every locally admissible pattern Q′ of size n× n that is compatible with the border
∂Q, must be compatible with the rest of configuration y. Therefore, the π-projections of
these Q′ are compatible with R. Thus, the En-epitomes of the projections of these Q′ must
be equal to the En-epitome of P .

J. Destombes and A. Romashchenko 23:11

pattern Q
border of Q

π

pattern P

a configuration in an SFT

a configuration in a sofic shift

Figure 3 Projection of an n× n pattern from an SFT onto a sofic shift.

It follows that En(P) can be computed in time 2O(n2) given only the coloring of the border
line ∂Q: we use the brute-force search to find one Q′ computable with this border, apply
projection π, and then compute the epitome. Observe that the computed projection π(Q′)
may be different from P , but the epitome must coincide with the epitome of P . Since the
size of ∂Q is linear in n, we conclude that C2O(n2)(P) = O(n). J

Proposition 19 gives a necessary condition for soficness. To prove that a shift is not sofic,
we need to provide an exp-time computable family of epitomes with high resource-bounded
Kolmogorov complexities. In what follows we discuss a simple application of this technique.

Example 2 revisited

Let S be the shift from Example 2 in the Introduction (the mirror-symmetric configurations).
For this example we can define epitome functions En as follows:

if an n × n pattern P contains only black and white letters, then En(P) maps it to a
binary string of length n2 that identifies P uniquely (roughly speaking, En does not
compress the patterns in black and white);
all patterns with red letters are mapped to the empty string.

It is not hard to see that En is an exp-time computable family of epitomes for this shift (since
a configuration below the red line determines all black-and-white patterns above this line).
Since for some patterns of size n× n we have C(P) ≥ n2 (i.e., even the plain Kolmogorov
complexity of P is super-linear), we can apply Proposition 19 and conclude that the shift is
not sofic.

Example 2 with low plain Kolmogorov complexity

Let us consider a subshift of S: we still admit only symmetric configurations, but we now
allow only those n× n patterns P in black and white that are globally admissible for the
shift ST,ε defined in Remark 10 on p. 6, assuming T (n) = 2n3 . (We have chosen the time
threshold so that T (n)� 2O(n2).) A typical configuration of this shift looks as follows: there
is an infinite horizontal line in red, and the symmetric half-planes above and below this line
are areas in black and white, with n× n patterns P such that CT̂ (n)(P) = O(logn).

The new shift is effective, and the number of globally admissible patterns is 2O(logn) =
poly(n). Due to Theorem 8 know that some n× n patterns in this shift satisfy the condition
C2n3

(P) = Ω(n2−ε).

STACS 2019

23:12 An Obstacle to Soficness

We cannot apply Theorem 8 directly and conclude that the new shift is non-sofic. Indeed,
this shift also admits patterns with very low time-bounded complexity. For example, the
shift admits the configuration with an infinite horizontal line in red and only white cells
above and below this line.

Note that the functions En defined above provide for this shift an exp-time computable
family of epitomes. Since for some (though not for all) n× n patterns P we have

C2n3

(En(P)) = Ω(n2−ε),

it follows from Proposition 19 that the shift is not sofic.

4.2 Ordered epitomes
The argument based on Definition 18 does not apply to [5, Example 2.5] and similar examples.
To handle this class of (non-sofic) shifts we introduce a slightly more general version for
epitomes:

I Definition 21. Let En be a finite set with a partial order ≤n on it, and

En : [pattern of size n× n] 7→ [element of En]

be a partial function, for each integer n > 0. We say that (En,≤n) is a family of ordered
epitomes for a shift S, if for every globally admissible pattern P with support Bn such that
En(P) is defined, there exists a pattern R on Fn such that
(i) R is compatible with P , i.e., the union of P and R forms a valid configuration in S,

and
(ii) for every pattern P ′ on support Bn compatible with R, if En(P ′) is defined then

En(P ′) ≤n En(P)

(i.e., this configuration R on the complement of Bn determines the maximum of the En-
epitomes over all valid P ′).

We say that a family of ordered epitomes is uniformly computable if there is an algorithm
(one algorithm for all n) that computes the relations ≤n and the mappings En. If, moreover,
En and ≤n are computable in time 2O(n2), we say that this family of ordered epitomes is
exp-time computable.

I Remark 22. When we say that a partial function is computable (or computable in bounded
time), we assume that its domain is decidable (respectively, decidable in bounded time).
Thus, for an exp-time computable family of epitomes we can decide effectively whether En(x)
is defined.

Definition 18 can be viewed as a special case of Definition 21. If En is a family of
exp-time computable epitomes in the sense of Definition 18 and ≤n is an arbitrary effectively
computable order on the En-epitomes, then (En,≤n) is an exp-time computable family of
ordered epitomes in the sense of Definition 21 (in Definition 18, the neighborhood R enforces
the exact value of En(P ′) over all P ′ compatible with R, while in Definition 21 we need to
enforce only the maximum of En(P ′)).

I Proposition 23. For every sofic shift with an exp-time computable ordered family of
epitomes (En,≤n), for every globally admissible pattern P of size n×n, CT (n)(En(P)) = O(n)
for a time threshold T (n) = 2O(n2).

J. Destombes and A. Romashchenko 23:13

Proof. The proof is similar to the proof of Proposition 19, except for the last part. In the
previous proof, we use brute-force search to find one pattern Q′ compatible with the given
border line ∂Q, apply projection π, and then compute the epitome. Now we should find all
patterns Q′ compatible with ∂Q, apply to each of them the projection π, try to compute
their epitomes (En is partial), and then take the maximum of the obtained results. It remains
to notice that for an exp-time computable ordered family of epitomes this exhaustive search
runs in time 2O(n2). J

(a) Forbidden pat-
tern: a square with
a red top and a black
bottom.

(b) A pattern for which the epitome
En is defined: each row starts with a
few black cells on the left followed by
white cells on the right.

(c) A pair of incomparable patterns.

Figure 4

I Example 24 (the shift with no hidden red-black squares). Now we discuss an example
proposed by Kass and Madden in [5, Example 2.5], and reformulate the argument given in
[5] in the language of Kolmogorov complexity, in terms of ordered epitomes.

Let Σ be the alphabet with three letters (e.g., black, white, and red), and the forbidden
patterns be all squares (of all sizes) where the top side consists of red cells, and the bottom
one consists of black cells (hidden red-black squares), as shown in Fig. 4a.

I Proposition 25 ([5]). The shift on Z2 defined by the set of forbidden patterns specified
above is not sofic.

In [5] this proposition was proven with the technique of union-increasing sequence of extenders.
In what follows we propose a similar argument, but explain it in terms of ordered epitomes.

Proof of Proposition 25. We define for this shift a family of ordered epitomes. First of all,
we define a class of simple patterns: the simple patterns are all square patterns that (i) consist
of only black and white letters (with no red letters), where (ii) every row starts with a few
successive black letters followed by a sequence of white letters, as show in Fig. 4b. Every
simple pattern of size n× n can be specified by its profile – a tuple of integers (k1, . . . , kn),
where ki is the number of black cells in the i-th row of the pattern. (Thus, a simple pattern
with the profile (k1, . . . , kn) is an n×n square where each i-th row starts with ki black letters
followed by (n− ki) white letters.)

Let epitome En assign to each simple pattern its profile, and be undefined for all other
patterns. For example, for the pattern P show in Fig. 4b we have E8(P) = (4, 3, 8, 5, 4, 2, 4, 6).

We introduce the natural order ≤n on the profiles of simple patterns of size n× n; we say
that the profile of P1 is not greater than the profile of P2, if the first profile is coordinate-wise
not greater than the second profile. For example, the profiles of the two patterns shown in
Fig. 4c are not greater than the profile of the pattern in Fig. 4b (and incomparable with
each other).

The introduced En and ≤n are obviously computable, even in polynomial time. Some
work is required to show that En and ≤n satisfy Definition 21:

STACS 2019

23:14 An Obstacle to Soficness

due to the bar of red cells on the top
this row of the 8× 8 frame can start
with at most 5 black cells

we control max of En for this n× n frame

line 1
line 2
line 3

.

.

.

line n

line 2n + 1
line 2n + 2

.

.

.

line 3n

3n

3n− 1

Figure 5 An n× n pattern P with a neighborhood that enforces the desired maximum of En.

I Lemma 26. The defined above (En,≤n) provide a family of exp-time computable ordered
epitomes for the shift under consideration.

This lemma is proven implicitly in [5]. In what follows, for the sake of self-containedness, we
sketch this proof.

Proof of Lemma 26. For every simple pattern P of size n× n we should construct a config-
uration R on the complement of Bn, so that
(i) P and R are compatible,
(ii) for every other simple pattern P ′ compatible with R we have En(P ′) ≤n En(P).

We build R by following the construction from [5]. By definition, each row of P consists of a
contiguous sequence of black cells followed by a contiguous sequence of white cells, as shown
in Fig. 4b. The pattern R will consist of a finite number of black and red cells (the other
cells will be white).

Black cells in R. To construct R, we extend each stripes of black cells in P to the left, so
that in the first line we get a contiguous sequence of (3n− 1) black cells (including those
black cells that belong to P), in the second line a contiguous sequence of (3n− 3) black cells,
in the third line a contiguous sequence of (3n− 5) black cells, etc. In the n-th line we obtain
a contiguous sequence of (n+ 1) black cell, see Fig. 5.

Red cells in R. Similarly, we put in R stripes of red cells: 3n contiguous red cells in
line 3n, (3n− 2) contiguous red cells in line 3n− 1, . . . , (n+ 2) contiguous red cells in line
(2n + 1). We place these stripes of red cells so that for each i = 1, . . . , n the leftmost red
cell in the line (3n− i+ 1) is vertically aligned with the leftmost black cell in the line i, as
shown in Fig. 5.

All other cells outside Bn are made white.

B Claim 27. The constructed R is compatible with P .

Proof of Claim 27. This fact is easy to verify: we have chosen the lengths of black and red
stripes so that they cannot form a forbidden pattern (as in Fig. 4a), regardless the horizontal
placement of each stripes. Indeed, on the one hand, the black cells of the i-th line cannot

J. Destombes and A. Romashchenko 23:15

interfere with the red stripes in lines 3n, 3n−1, . . . , 3n−i, since this black stripe is too short to
form a forbidden pattern together with any of these red stripes; on the other hand, the black
cells of the i-th line cannot interfere with the red stripes in lines 3n−i−1, 3n−i−2, . . . , 2n+1,
since those red stripes are too short. C

B Claim 28. The constructed pattern R is compatible only with simple patterns P ′ such
that En(P ′) ≤n En(P).

Proof of Claim 28. If R is compatible with an n × n pattern P ′, the profile of P ′ is not
determined uniquely. In fact, R can be compatible with simple patterns P ′ whose profiles
are strictly less than the profile of P (in each row of P ′ the number of black cells must be
not greater than the number of black cells in the corresponding row of P), see Fig. 6 below.
On the other hand, if at least one row of P ′ contains more black cells that the same row in
P , than P ′ and R are incompatible, i.e., the joint of P ′ and R contains a forbidden pattern,
as shown in Fig. 7. C

The lemma follows from Claim 27 and Claim 28. For a more detailed argument we refer
the reader to [5]. J

I Remark 29. In the construction discussed above, pattern R does not determine uniquely
the epitomes of P ′ compatible with R (these epitomes can be different, though they must
be not greater than the epitome of the initial pattern P). This is why we cannot apply
Proposition 19, and we have to employ the extended definition of partial epitomes.

To prove the proposition, it remains to observe that for every n there are (n+ 1)n simple
patterns of size n× n (in each row of a simple pattern the frontier between black and white
areas varies between 0 and n). Therefore, for some simple patterns P of size n × n the
Kolmogorov complexity of their profile is greater than n log(n + 1), i.e., even the plain
Kolmogorov complexity C(P) is super-linear. We apply Proposition 23 and conclude that
the shift is not sofic. J

this n× n pattern P ′ is compatible with the neighborhood

Figure 6 A pattern P ′ with En(P ′) ≤n En(P) matches the neighborhood.

I Open Problem 1. Is there any sufficient condition of soficness for effective shifts that can
be formulated in terms of resource-bounded Kolmogorov complexity?

STACS 2019

23:16 An Obstacle to Soficness

by adding one supplementary
black cell we get a forbidden
pattern

this n× n pattern P ′′ is incompatible with the neighborhood

Figure 7 A pattern P ′′ with En(P ′′) 6≤n En(P) does not match the neighborhood.

I Open Problem 2. The shift in Example 24 has positive entropy, and in the argument
discussed above we could employ the definition of uniformly computable (but not exp-time
computable) ordered epitomes. It would be interesting to suggest a natural example of an
effective (but non-sofic) shift where the technique of exp-time computable ordered epitomes is
valid while uniformly computable but not exp-time computable ordered epitomes do not apply.

References
1 N. Aubrun, S. Barbieri, and E. Jeandel. About the Domino Problem for Subshifts on Groups.

Sequences, Groups, and Number Theory. Birkhäuser, Cham, pages 331–389, 2018.
2 B. Durand, L. Levin, and A. Shen. Complex tilings. The Journal of Symbolic Logic, 73:2:593–

613, 2008.
3 F.C. Hennie and R.E. Stearns. Two-tape simulation of multitape Turing machines. Journal of

the ACM, 13(4):533–546, 1966.
4 E. Jeandel. Propriétés structurelles et calculatoires des pavages. Habilitation thesis, Université

Montpellier 2, 2011.
5 S. Kass and K. Madden. A sufficient condition for non-soficness of higher-dimensional subshifts.

Proceedings of the American Mathematical Society, 141:11:3803–3816, 2013.
6 A. N. Kolmogorov. Three approaches to the quantitative definition of information. Problems

of information transmission, 1:1:1–7, 1965.
7 M. Li and P. Vitányi. An introduction to Kolmogorov complexity and its applications. 3rd ed.

Springer, New York, 2008.
8 D. Lind and B. Marcus. An Introduction to Symbolic Dynamics and Coding. Cambridge

University Press, 1995.
9 M.Morse and G.A. Hedlund. Symbolic dynamics. Amer. J. Math., 60:815–866, 1938.

10 M. Morse and G. A. Hedlund. Symbolic dynamics II: Sturmian trajectories. Amer. J. Math.,
62:1–42, 1940.

11 S. Mozes. Tilings, substitution systems and dynamical systems generated by them. Journal
d’analyse mathématique (Jerusalem), 53:139–186, 1989.

12 N. Ormes and R. Pavlov. Extender sets and multidimensional subshifts. Ergodic Theory and
Dynamical Systems, 36:3:908–923, 2016.

13 R. Pavlov. A class of nonsofic multidimensional shift spaces. Proceedings of the American
Mathematical Society, 141:3:987–996, 2013.

J. Destombes and A. Romashchenko 23:17

14 A. Rumyantsev and M. Ushakov. Forbidden substrings, Kolmogorov complexity and almost
periodic sequences. In Proc. Annual Symposium on Theoretical Aspects of Computer Science,
pages 396–407, 2006.

15 V. Salo. Subshifts with sparse projective subdynamics. arXiv preprint, arXiv:1605.09623,
2016.

16 B. Weiss. Subshifts of finite type and sofic systems. Monatsh. Math., 77:462–474, 1973.
17 L.B. Westrick. Seas of squares with sizes from a Π0

1 set. Israel Journal of Mathematics, 22:1,
2017.

STACS 2019

Constant-Time Retrieval with O(logm) Extra Bits
Martin Dietzfelbinger
Technische Universität Ilmenau, Germany
martin.dietzfelbinger@tu-ilmenau.de

Stefan Walzer
Technische Universität Ilmenau, Germany
stefan.walzer@tu-ilmenau.de

Abstract
For a set U (the universe), retrieval is the following problem. Given a finite subset S ⊆ U of size m
and f : S → {0, 1}r for a small constant r, build a data structure Df with the property that for a
suitable query algorithm query we have query(Df , x) = f(x) for all x ∈ S. For x ∈ U \ S the value
query(Df , x) is arbitrary in {0, 1}r. The number of bits needed for Df should be (1 + ε)rm with
overhead ε = ε(m) ≥ 0 as small as possible, while the query time should be small. Of course, the
time for constructing Df is relevant as well.

We assume fully random hash functions on U with constant evaluation time are available. It is
known that with ε ≈ 0.09 one can achieve linear construction time and constant query time, and
with overhead εk ≈ e−k it is possible to have O(k) query time and O(m1+α) construction time,
for arbitrary α > 0. Furthermore, a theoretical construction with ε = O((log logm)/

√
logm) gives

constant query time and linear construction time. Known constructions avoiding all overhead, except
for a seed value of size O(log logm), require logarithmic query time.

In this paper, we present a method for treating the retrieval problem with overhead ε =
O((logm)/m), which corresponds to O(1) extra memory words (O(logm) bits), and an extremely
simple, constant-time query operation. The price to pay is a construction time of O(m2). We employ
the usual framework for retrieval data structures, where construction is effected by solving a sparse
linear system of equations over the 2-element field F2 and a query is effected by a dot product
calculation. Our main technical contribution is the design and analysis of a new and natural family
of sparse random linear systems with m equations and (1 + ε)m variables, which combines good
locality properties with high probability of having full rank.

Paying a larger overhead of ε = O((logm)/mα), the construction time can be reduced to
O(m1+α) for arbitrary constant 0 < α < 1. In combination with an adaptation of known techniques
for solving sparse linear systems of equations, our approach leads to a highly practical algorithm for
retrieval. In a particular benchmark with m = 107 we achieve an order-of-magnitude improvement
over previous techniques with ε = 0.24% instead of the previously best result of ε ≈ 3%, with better
query time and no significant sacrifices in construction time.

2012 ACM Subject Classification Theory of computation → Data structures design and analysis

Keywords and phrases Retrieval, Hashing, Succinct Data Structure, Randomised Data Structure,
Structured Gaussian Elimination, Method of Four Russians

Digital Object Identifier 10.4230/LIPIcs.STACS.2019.24

1 Introduction

A retrieval data structure for a universe U (a set) and r-bit values represents a function from
U to R = {0, 1}r with prescribed values on a set S ⊆ U of size m. We need an algorithm
construct that builds the data structure and an operation query. The input for construct is a
function f : S → R (given as a list of argument-value pairs), the result is a data structure
Df , whose binary length we denote by |Df |. The query algorithm query has two inputs, Df

and x ∈ U , and returns an element of R. We require that

query(Df , x) = f(x), for all x ∈ S.
© Martin Dietzfelbinger and Stefan Walzer;
licensed under Creative Commons License CC-BY

36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019).
Editors: Rolf Niedermeier and Christophe Paul; Article No. 24; pp. 24:1–24:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-5484-3474
mailto:martin.dietzfelbinger@tu-ilmenau.de
https://orcid.org/0000-0002-6477-0106
mailto:stefan.walzer@tu-ilmenau.de
https://doi.org/10.4230/LIPIcs.STACS.2019.24
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

24:2 Constant-Time Retrieval with O(logm) Extra Bits

The values query(Df , x) for x ∈ U \ S are irrelevant.
Relevant parameters of a retrieval data structure are (1) the space |Df | in bits in terms

of m = |S| and r, (2) the running time of query, and (3) the running time of construct. In
this paper, we focus on minimising (1) while keeping (2) a constant, as small as possible.
As for (3), it is kept in the O(m1+α) range. We make some efforts to extend the range of
practical usability of our approach. (This is only partly reflected in this paper.) Note that
storing all pairs (x, f(x)) for x ∈ S in a dictionary data structure is not good enough for our
purposes, as in general this requires |Df | = rm+ Ω(m logm) bits. Since it is not necessary
to decide membership in S or a subset of S, space |Df | = O(rm) is sufficient.

There is a close connection between retrieval data structures and perfect hashing. Most
of the perfect hash functions that get by with linear space utilise a retrieval data structure
with r = 2, see [6, 7, 15]. (Exceptions are the optimal theoretical construction in [16] and
Hash-Displace-Compress in [4].) Conversely, if a hash function g : U → [p] is given that is
perfect on S, one can store f(x), x ∈ S, in position T [g(x)] of a table T [0..p− 1] to obtain a
retrieval data structure with space pr plus the space for storing g. However, if r is small
and the goal is a retrieval structure with very small space overhead, this detour via perfect
hashing is inefficient.

1.1 Basic Data Structure
The basic setup of the data structure is well known and well studied. For some n = n(m) ≥ m,
a set W ⊆ {0, 1}n of (typically sparse) vectors is chosen. One hash function or several hash
functions are used to map elements x of U to row(x) ∈W .

The data structure Df consists of row1 and a vector ~z = (z1, . . . , zn) ∈ ({0, 1}r)n, which
in construct is chosen in such a way that the query algorithm

query(Df , x) =
⊕

1≤i≤n
(row (x))i=1

zi, for x ∈ U , (1)

yields f(x) for x ∈ S. To carry out query(Df , x), one only has to find the components zi
with (row(x))i = 1 and perform

⊕
, the bitwise XOR, of these components.

Note that in this construction the r ≥ 1 components of elements of R are just treated
independently (or “in parallel”). In order to simplify notation, we concentrate on the case
r = 1 from here on. (The generalisation is immediate. The query time has to be multiplied
by r.) In this case (1) turns into

f(x) = 〈row(x), ~z〉, (2)

where 〈 · , · 〉 is the dot product of n-bit vectors. For construct one has to solve a linear system
(〈row(x), ~z〉 = f(x))x∈S over F2 for the vector ~z of “unknowns”. For this to be possible it is
sufficient that the m× n matrix A(S, row) with rows row(x), x ∈ S, has full row rank. We
assume that row(x), x ∈ U , are stochastically independent and identically distributed, and
we may simply write Am,n for a random variable distributed as A(S, row), if the distribution
of row is clear from the context.

1 In all our constructions we assume that fully random independent hash functions (ϕi,j)i,j with suitable
range {1, . . . , poly(m)} are available for free and can be evaluated on x ∈ U in constant time. Fixing a
seed value j, one gets (h0, h1, . . .) = (ϕ0,j , ϕ1,j , . . .) from which row is constructed. Hence, an index j
suffices to identify row .

M. Dietzfelbinger and S. Walzer 24:3

Algorithm
construct(S ⊆ U , f : S → {0, 1}):

pick row : S →W ⊆ {0, 1}(1+ε)|S|

solve (〈row(x), ~z〉 = f(x))x∈S for ~z
restart with new row if unsolvable
return D = (row , ~z)

Algorithm
query(Df = (row , ~z), x ∈ U):

return 〈row(x), ~z〉

Figure 1 The general framework for retrieval data structures for R = {0, 1}.

1.2 Previous Work and Relevant Techniques

Construction time and query time depend very much on the structure of the vectors in W .
Most earlier works [6, 7, 8, 11, 15] chose W as the set of vectors with constant Hamming
weight k, i.e. k entries of row(x) are 1, for some k ≥ 3. The operation query(x, ~z) then just
reads the k positions given by row(x) in ~z, which results in running time O(k) for a query.
(Only in [11, 21] sets W with vectors of Hamming weight Θ(logm) are considered. Applied
in the obvious way, this will lead to query times of Θ(logm).) There is a simple case, which
also admits linear construction time, namely when the rows of Am,n can be brought into
triangular form by row and column exchanges alone. This is equivalent to the k-uniform
hypergraph Gm,n with incidence matrix AT

m,n being peelable, i.e. having an empty 2-core [18].
In this case we do not even need a field to compute in (and no linear algebra), but (1) can
be taken to be a formula over any group (R,⊕) (like Z/mZ with addition modulo m). This
approach is underlying the constructions in [6, 7, 8, 15, 18, 23]. The common feature utilised
in these works is that for fixed k ≥ 2 there is a density threshold c4

k such that, for arbitrary
constant δ > 0, Gm,n is peelable with high probability (whp) for m < (c4

k − δ)n and not
peelable whp for m > (c4

k + δ)n. A description of these thresholds can be found in [18], a
proof in [19]. The largest threshold value is c4

3 ≈ 0.81847. In [22] it was shown that rows
with nonuniform weight (e.g. 3 for about 88% of keys and 21 for the rest) can raise the
threshold to over 0.92. It is open if with constant average Hamming weight a quotient m/n
arbitrarily close to 1 will still lead to peelability whp.

As our aim is to achieve m = cn for c = 1 − o(1), we have to give up peelability. A
standard approach [2, 11, 15] uses bit vectors with constant weight k ≥ 3 and in the construct
routine requires solving the linear system (2) over F2. In [10] it was claimed and in [20] it was
rigorously proved that there are thresholds c∗k such that for c < c∗k and m = cn, m,n→∞
we have solvability whp, and for c > c∗k and m = cn, m,n→∞ we have unsolvability whp.
These thresholds are the same as for simple orientability of k-uniform hypergraphs [10, 13, 14].
(Numerical values for some k can be found in [10].) The values 1 − c∗k approach e−k as k
increases, and hence c∗k is quite close to 1, but for constant k a constant gap remains. Queries
take time Θ(k) and are not cache efficient, since k random components of ~z are accessed.
In [11] it was shown (utilising a result from [9]) that with k = k(m) = O(logm), one can
achieve solvability for m = n, with constant probability. A similar observation was made
in [21]. The query time increases to O(logm).

A serious obstacle in these methods for reducing the overhead is that one has to solve
a linear system without the advantage of peelability. So it is necessary to address the
running time of this task. Gaussian elimination, applied naively, needs time Θ(m3), which
already for moderately large m becomes infeasible. Exploiting the fact that the rows are
sparse, a variant of Wiedemann’s algorithm [24] will reduce the time to O(m2 log2m) (for
fixed k) and to O(m2 logm) (for k = k(x) = O(logm)). Alternatively, one may use clever

STACS 2019

24:4 Constant-Time Retrieval with O(logm) Extra Bits

variants of Gaussian elimination (“structured” in [17] and “lazy” in [15]), which try to delay
the system filling up with 1’s. As far as we know, there is no mathematical analysis of
such techniques, although in experiments they drastically reduce the running time of naive
Gaussian elimination on sparse random matrices, outperforming Wiedemann’s algorithm for
small to medium inputs. So, we do not use these techniques in our theoretical analysis, but
we utilise them in our experimental implementations. Another standard speedup technique
for Gaussian elimination, of course, is word-level parallelism, where the rows of the linear
system are split into machine words and row operations can be performed by a sequence
of bitwise boolean XORs. If the word length is w, the running times may be divided by w.
Finally, the “Technique of Four Russians” is applicable to Gaussian elimination. By filling
a lookup-table with certain precomputed row sums, it achieves a speedup by a factor of
Θ(logm); for a description see [3].

A last, very important technique for achieving feasible construction times for large
retrieval data structures is input partitioning. It has been used in many works on dictionary-
like data structures, see, e.g., [2, 11, 15, 21]. Let [n] denote the set {1, . . . , n}. Using a
“level-1” hash function h0 : U → [m/C], for some C (which w.l.o.g. divides m), one splits
S into chunks Si = h−1

0 ({i}) ∩ S, for i = 1, . . . ,m/C. The expected size of each chunk is
C, and if h0 is fully random and C is not too small, one has |Si| = O(C) for all i, whp.
One sets up a separate retrieval data structure Df�Si

for each Si. When using Gaussian
elimination with |C| = mα to construct each Df�Si , the total construction time is reduced
to O((m/C) · C3) = O(mC2) = O(m1+2α), and with Wiedemann’s algorithm [24] we get
construction time O((m/C) · C2 log2(C)) = O(m1+α log2m). The downside is that one gets
an additional “outer overhead” for saving for each i a pointer to Df�Si

. Using the offsets∑
1≤i<j |Df�Si

| for this purpose costs O((m/C) logm) bits. This space we have to pay for the
reduction in construction time. In [11] and [21] chunks of size O(

√
logm) are used. An extra

auxiliary data structure is employed to accommodate “bad” keys from chunks that overflow.
Moreover, these papers use lookup tables for solving tiny systems of equations (O(

√
logm)

variables and equations). While using sublogarithmic chunk sizes has good properties in
theory, it does not seem to be competitive in practice, see [2].2

1.3 Our Contribution
There are three degrees of freedom in the retrieval framework described above, regarding
both theory and implementation:
(F1) What is the set W of “sparse” vectors that is the range of row?
(F2) Which method is used for solving the linear system?
(F3) How, if at all, do we partition the input to reduce the influence of a high running time

of the solver?
The main contribution of this paper is to propose and analyse a new answer to (F1). The
effect is that the query time is now constant – it involves only access to two memory locations
and a small dot product calculation –, while the overhead drops to m−α for a constant
α ∈ (0, 1), or even to O((logm)/m), which means that n = m+O(logm). The method is
very simple and natural: The 1’s in row(x) are concentrated in two blocks of size O(logm),
so that the non-zero part of row(x) fits in O(1) words in the (standard) word RAM model.

2 In [12] it is explained how one can justify the full-randomness assumption by partitioning S and
employing an auxiliary data structure of size C1+Ω(1) to provide fully random hash functions on each
chunk. We do not discuss this aspect of partitioning here.

M. Dietzfelbinger and S. Walzer 24:5

(This computational model was also used in [11, 21], and it is the basis of the speedup
of the Four Russians method.) We are not aware of this idea having been used in the
context of retrieval structures or perfect hashing before.3 Its appeal is in its simplicity and
in its apparent practicality. (Our experiments show that a significant reduction in overhead
is possible for sets S of realistic size, with construction times comparable to the other
approaches.) Let n = m · (1 + ε). We describe W ⊆ {0, 1}n and a distribution of row(x) ∈W
as follows. Fix a block size ` = O(logn) that divides n. For b ∈ [n/`] and p ∈ {0, 1}`
we let Bb,p = 0b`−`p0n−b` ∈ {0, 1}n. Two block indices b1, b2 ∈ [n/`] and two patterns
p1, p2 ∈ {0, 1}` are chosen uniformly at random, and row(x) is set to be Bb1,p1 ⊕ Bb2,p2 ,
with at most two non-zero blocks. Bit parallelism allows computing dot products involving
row(x), and thus answer queries, in O(1) time. It is the main contribution of this work to
establish that an overhead of Θ(logm

m) is achievable using this approach (we call it “inner
overhead” if we want to distinguish it from the “outer overhead” needed due to the use of
partitioning techniques). The theoretical analysis of the probability of obtaining a solvable
system of equations, meaning that Am,n has full row rank, uses a first moment argument.
Note that our result is also a significant theoretical improvement. Previously, overhead
ε = m−δ for constant δ required query cost O(logm) while query cost O(1) required overhead
ε = Ω(log logm√

logm
), see Table 1.

I Theorem 1 (Main Theorem). Assume the context of a word RAM with word length
w = Θ(logn) and access to fully random hash functions4.
(i) For any r < m there is an r-bit retrieval data structure with overhead ε = O(logm

m) and
a construction that succeeds in time O(m3

w logm) whp. Queries take O(r) time and access
two contiguous segments of memory.

(ii) An alternative construction based on Wiedemann’s algorithm runs in time O(rm2) whp.
Construction time can be improved by taking (F3) into account: randomly partition the
input into chunks of expected size C and use the construction from Theorem 1 on each of the
m
C chunks. For each chunk, we need to store a pointer to its data and a seed for the function
row used in the successful construction. This requires O(mC logm) and O(mC log logm) extra
bits, respectively. We then get:

I Corollary 2. Under the same conditions as Theorem 1, we have:
(i) For any C = mα (0 < α ≤ 1) and any r < C there is an r-bit retrieval data structure

with overhead ε = O(logm
C) and a construction that succeeds in time O(mC2

w logC) whp.
Queries take O(r) time and access three contiguous segments of memory5.

(ii) A alternative construction based on Wiedemann’s algorithm runs in time O(rmC).
Table 1 summarises previous work and the new construction if the effect of partitioning is
taken into account. Also, obvious improvements achieved by replacing Gaussian elimination
by Wiedemann’s algorithm are reflected. The choice of C constitutes a trade-off between
construction time and total overhead, which is the sum of the overhead from the chunks
(“inner”) and from organising the data structures for the single chunks (“outer”). For C = m

there are no chunks, the construction time is maximal, and only the “inner” overhead is

3 Possibly it was vaguely anticipated in [21], where the author suggested using “sparse equations that are
more or less local”.

4 For any universe U and any finite domain D we assume oracle access to fully random functions
(hi : U → D)i∈N, meaning we need to only store an index i to describe such a function. This assumption
is motivated by the observation that good (pseudo-)randomness is usually not an issue in practice.

5 In practice it is reasonable to expect two cache faults per query.

STACS 2019

24:6 Constant-Time Retrieval with O(logm) Extra Bits

Table 1 Comparison of previous work and the results of this paper. Where query times are
not enclosed in O-Notation the number vaguely counts accesses to random memory locations. The
column tconstruct reports the construction times given in the respective paper and alternatively times
improved by utilising Wiedemann’s algorithm [24]. Regarding the results of [11], the better thresholds
from [20] are substituted.

Paper tquery tconstruct “inner overhead” + “outer overhead” Practical?

[7, 18] 3 O(m) 0.23 + 0 X

[22] O(1) O(m) 0.087 + 0 X

[11] k O(m3) or O(m2 log2 m) e−k + o(e−k) + 0 7

[11] O(k) O(m) e−k + o(e−k) + Ω((logm)−1/4) 7

[11, 21] logm O(m3) or O(m2 log2 m) 0 + O(log logm
m

) 7

[21] O(1) O(m) 0 + Ω(log logm√
logm

) 7

[2] O(k) O(mC2) or O(mC log2 C) e−k + o(e−k) + Ω(C−1/2) (X)
[15] 3 [or 4] O(mC2

w
) or O(mC log2 C) 0.09 [or 0.024] + Θ(logm

C
) X

〈new〉 2 O(mC2

w logC) or O(mC) Θ(logm
C

) + Θ(logm
C

) X

relevant. Both from a theoretical and practical point of view the reduction from “ε is constant”
or “ε = O(log logm√

logm
)” to a polynomially small overhead is significant. Pleasingly, our approach

compares very favourably with previous results in practical benchmarks, as shown in Table 2
and explained in Section 5.

Table 2 Comparison of our algorithm in the form presented in Section 5 to the arguably best-so-far
results reported in [15]. We achieve much smaller overhead with comparable run times.

overhead Construction [µs/key] Lookup [ns]

[15] k = 3 9% 1.12 210
[15] k = 4 3% 1.75 236
〈this paper〉 0.24% 2.6 75–125

Structure of the paper. In Section 2 we define a matrix A`m,n and a related graph G`m,n
that formally capture the problem of constructing our retrieval data structure. In Section 3
we show that A`m,n has full rank whp, which is the main ingredient used to prove our Main
Theorem in Section 4. Lastly, in Section 5 we briefly present an implementation of our
approach. A discussion of practical improvements we employed is postponed to the full
version of this paper.

2 The Construction Problem in Matrix and Graph Terminology

We now formalise our idea of using “vectors with coefficients within two blocks”.
Let S ⊆ U be a set annotated with f : S → {0, 1}, ` ∈ N the block size, |S| = m and

n ≥ m with ` | n. Moreover, we pick a uniformly random function h : U → [n/`]× [n/`]×
{0, 1}` × {0, 1}` with components we call h = (b1, b2, p1, p2) that implicitly characterise row .
Together, (S, f,m, n, `, h) is an instance of the construction problem for our retrieval data
structures. The task to be solved can be expressed in two equivalent ways.

M. Dietzfelbinger and S. Walzer 24:7

Matrix terminology. For b ∈ [n/`] and p ∈ {0, 1}` let Bb,p = 0b`−`p0n−b` ∈ {0, 1}n. Then
each x ∈ S is identified with the equation 〈Bb1(x),p1(x) ⊕ Bb2(x),p2(x), ~z〉 = f(x) where
~z ∈ {0, 1}n is a vector of unknowns. Together, S is a system of equations A~z = ~b where
~b = (f(x))x∈S . The matrix A = A`m,n will be examined thoroughly in Section 3.

Graph terminology. The problem instance can also be conveniently captured as a graph
G = G`n,m = ([n/`], S) with labels. Each vertex corresponds to a block of ` variables and x ∈ S
is identified with an edge {b1(x), b2(x)} where the incidence (x, b1(x)) is labelled with p1(x),
the incidence (x, b2(x)) is labelled with p2(x) and x itself is labelled with f(x). A solution
is now a vertex labelling x : [n/`]→ {0, 1}` with 〈p1(x), x(b1(x))〉 ⊕ 〈p2(x), x(b2(x))〉 = f(x)
for all x ∈ S.

We will borrow notions from graph theory in algebraic discussions, when convenient. For
instance, we may speak of the degree of a block of variables or a connected set of equations,
meaning the degree of a corresponding vertex or the connectedness of a corresponding set of
edges.

Loops and parallel edges. It is possible to have b1(x) = b2(x) = b for some x ∈ S. Then
row(x) contains p1 ⊕ p2 in block b and G has a loop at vertex b with two labels p1 and p2.
Moreover two distinct elements x 6= x′ may be associated with the same two blocks. In this
case G is a multigraph.

Forbidding the all-zero pattern. Let h∗ : U → [n/`]×[n/`]×({0, 1}`\{0`})×({0, 1}`\{0`})
be uniformly random. Compared to h, the pattern 0` is forbidden in h∗. This gives rise to
random matrices A`∗m,n and graphs G`∗m,n with higher probability of admitting solutions, see
Proposition 3.

3 Full Rank of the Linear Systems

We now provide the main ingredient for Theorem 1, establishing that the matrices A`cn,n
defined in Section 2 have full rank whp. We also consider two natural variations concerning
A`∗cn,n.

Throughout this section, logarithms have base 2, c̄ is a shorthand for 1− c and with high
probability (whp) refers to a probability of 1− n−ε for some ε > 0.

I Proposition 3. Let β = 27 and γ = 1/4. Then we have:
(i) If 2` = 2`(n) ≥ (1 + δ) logn for δ > 0, then A`cn,n has independent rows whp,

provided that c̄ ≥ max{2−γ`, β log(n)/n}.
(ii) If ` = `(n) = ω(1) then A`∗cn,n has independent rows with probability 1− o(1),

provided that c̄ ≥ max{2−γ`, β log(n)/n}.
(iii) If ` is a large enough constant, then A`∗cn,n has independent rows with probability Θ(1),

provided that c̄ ≥ 2−γ`.

Remarks.
For 2` = logn the matrix A`cn,n has dependent rows with constant probability, simply
because the number of all-zero rows is binomially distributed with expectation cn · 2−2` =

STACS 2019

24:8 Constant-Time Retrieval with O(logm) Extra Bits

c = Θ(1). In this sense (i) is best possible. This motivates considering A`∗cn,n where
all-zero rows are far less likely6.
For ` = Θ(1) the probability that A`∗cn,n has two identical rows is Θ(1). This implies that
` = ω(1) is best possible in (ii) and the probability of Θ(1) is best possible in (iii).
We have no reason to believe that γ = 1/4 and β = 27 are “best possible” or even “good”.
Note that for ` = 4 logn the bound on c̄ becomes c̄ ≥ β log(n)/n = Θ(logn

n).
We conjecture that for each ` ≥ 2 there is a threshold value c∗` ∈ (0, 1) such that for
c < c∗` the matrix A`∗cn,n has independent rows with probability at least 1/2 and for c > c∗`
it has dependent rows whp.

3.1 Proof of Proposition 3 (i)
Recall from Section 2 how A = A`cn,n is obtained from S via a random hash function
h = (b1, b2, p1, p2) mapping elements to rows. If A does not have independent rows, then this
is witnessed by a non-trivial subset W ⊆ S of elements such that the corresponding rows of A
sum to zero. We use a first moment calculation to show that whp no inclusion-minimal witness
Y exists. We fix two parameters of candidate sets Y : The number s = |W | of elements/rows,
with 1 ≤ s ≤ m = cn, and the number t = |B| ∈ [n/`], where B =

⋃
w∈W {b1(w), b2(w)} is

the set of variable blocks involved in at least one of the rows.
There are

(
m
s

)
ways to choose Y , and

(
n/`
t

)
ways to choose B. The probability that the

rows corresponding to Y involve exactly the blocks from B is

Pr[B =
⋃
w∈W
{b1(w), b2(w)}] ≤

∏
w∈W

Pr[b1(w) ∈ B ∧ b2(w) ∈ B] = (t
n/`)

2s.

The event that the rows corresponding toW sum to zero is the intersection of the independent
events that the rows sum to zero within each block b ∈ B. Its probability is therefore∏

b∈B

Pr
[⊕

(w,i)∈W×{0,1}
bi(w)=b

pi(w) = 0`
∣∣∣ ∃(w, i) ∈W × {0, 1} : bi(w) = b

]
=
∏
b∈B

2−` = 2−`t.

In the following, it is often convenient to deal with the fraction σ = s/m of rows and the
fraction τ = t/(n/`) = `t/n of blocks involved in a witness. Accordingly, we define O(n2/`)
values pσ,τ , where pσ,τ is the probability that some set of equations involving σm rows and
exactly τn/` blocks is a minimal witness. This gives

pσ,τ ≤
(
m

s

)(
n/`

t

)
(t
n/`)

2s2−`t =
(
m

σm

)(
n/`

τn/`

)
τ2σm2−τn. (3)

We now list a few bounds that will be useful later. Throughout, σ ∈ { 1
m , . . . ,

m
m = 1} and

τ ∈ { 1
n/` , . . . ,

n/`
n/` = 1}.

I Lemma 4. Let τ̄ = 1− τ , c̄ = 1− c, and let H be the binary entropy function. Then
(a) `

n log(pσ,τ) ≤ c`H(σ) +H(τ) + 2σc` log τ − `τ = c`(H(σ) + σ log τ2) +H(τ)− `τ .
(b) `

n log(pσ,τ) ≤ `(c log(1 + τ2)− τ) +H(τ).
(c) − log c̄ ≤ `/4 (c1) c ≥ 3

4 (c2) c̄ ≥ 27 log(n)/n (c3)
(d) All minimal witnesses satisfy t ≤ s+ 1.

6 An all-zero row requires an element x with hash value h(x) fulfilling b1(x) = b2(x) and p1(x) = p2(x).

M. Dietzfelbinger and S. Walzer 24:9

(e) log(1 + τ2) ≤

τ · 2 log 5

4 ≤
2
3τ if 0 < τ ≤ 1

2 ,

1− 2τ̄ · (1− log 5
4) ≤ 1− 4

3 τ̄ if 1
2 ≤ τ ≤ 1,

τ if 0 < τ ≤ 1.

(f) − log τ ≤ 2τ̄ if 1
2 ≤ τ ≤ 1.

(g) −τ1 log τ1 ≤ −τ2 log τ2 for 0 < τ1 < τ2 <
1
4 .

(h) H(τ) ≤ −τ log τ + 2τ if τ ≤ 1
2 .

(i) H(τ1) < H(τ2) for 0 < τ1 < τ2 ≤ 1
2 and H(τ) = H(τ̄) for 0 < τ ≤ 1.

(j) If s ≥ t and τ < 1/` then `
n log(pσ,τ) ≤ −τ`/2.

The claims of Lemma 4 can be verified with simple calculations, found in Section 3.3.
Different arguments will be used to get bounds on pσ,τ for different ranges of τ . The sum

of all pσ,τ belonging to the same case will be n−ε for some ε > 0, which implies that A has
full rank whp. In the proofs, we refer to parts of Lemma 4 by their labels.

Case 1: c ≤ τ ≤ 1.

`
n log(pσ,τ)

(b,e)
≤ `(cτ − τ) +H(τ)

(i)
≤ −`τ c̄+H(c̄)

(h)
≤ −`τ c̄− c̄ log c̄+ 2c̄

(c1)
≤ −`cc̄+ c̄`/4 + 2c̄ = −c̄(`c− `/4− 2)

(c2)
≤ −c̄`/2.

This gives a bound of:

pσ,τ ≤ 2−c̄n/2
(c3)
≤ n−27/2.

Multiplying with O(n2) choices for σ and τ , this still gives a bound of O(n−23/2).
Case 2: 1/2 ≤ τ ≤ c.

`
n log(pσ,τ)

(b,e)
≤ `(c(1− 4

3 τ̄)− τ) +H(τ)
(h,i)
≤ `(τ̄ − 4

3 τ̄) + 2τ̄ − τ̄ log τ̄

≤ τ̄(−`/3 + 2− log c̄)
(c1)
≤ τ̄(−`/3 + 2 + `/4) ≤ −c̄`/13.

From this we obtain a bound pσ,τ = n−27/13 and proceed as in Case 1.
Case 3: c̄ ≤ τ ≤ 1/2.

`
n log(pσ,τ)

(b,e,f)
≤ `(2

3τ − τ) +H(τ)
(h)
≤ −τ`/3− τ log τ + 2τ

≤ τ(−`/3− log c̄+ 2)
(c1)
≤ τ(−`/3 + `/4 + 2) ≤ −τ`/13 ≤ −c̄`/13.

This is the same bound as in Case 2.
Case 4: 8 log(n)/n < τ < 1/`. Assuming s ≥ t for the moment, we may apply (j) to

obtain `
n log(pσ,τ) ≤ −τ`/2. This gives pσ,τ = 2−τn/2 ≤ 2−4 logn ≤ n−4.

Inconveniently, (d) only gives s ≥ t− 1 instead of s ≥ t and the O(n) cases with s = t− 1
are not yet handled. Luckily, changing s by 1 (or equivalently σ by 1/m) affects the
upper bound in Equation (3) by at most O(n2) and the combined contribution of the
cases in question is bounded by O(n) ·O(n2) · n−4 = O(n−1).

STACS 2019

24:10 Constant-Time Retrieval with O(logm) Extra Bits

Case 5: 2 ≤ t and `2t2 ≤ n
2e . We refine Equation (3) to get (recall σ = s

m , τ = `t
n)

pσ,τ ≤
(
m

s

)(
n/`

t

)(
t
n/`

)2s
2−`t ≤

(me
s

)s(en/`
t

)t(
t

n/`

)2s
2−`t

=
(
ce`2t2
sn

)s (en
t`2`

)t
=
(
ce`2t2
sn

)1+(s−t+1)+(t−2) (en
t`2`

)2+(t−2)

=
(
ce`2t2
sn

)(en
t`2`

)2
(
ce2`t

s2`

)t−2(
ce`2t2
sn

)s−t+1

≤ ce3n

22` (1
2)t−2(1

2)s−t+1 = ce3n

22` (1
2)s−1

where the last inequality used `/2` ≤ ce2/4 (which holds for n sufficiently large), the
upper bound on `t and t/s ≤ 2. It is crucial that the exponents t− 2 and s− t+ 1 are
nonnegative; for the latter exponent this is because of (d). The sum over all applicable s
and t is dominated by the contribution for t = 2 and s = 1, since∑

s≥1

∑
2≤t≤s+1

pσ,τ ≤
∑
s≥1

∑
2≤t≤s+1

ce3n

22` (1
2)s−1 = ce3n

22`

∑
s≥1

s · (1
2)s−1 = 4ce3n

22` .

Finally, using the assumption 2` ≥ (1 + δ) logn, and thus 22` ≥ n1+δ, we obtain

4ce3n

22` = 4ce3n−δ = O(n−δ).

Case 5’: 1 = t and ` ≤ n1/4. The argument from Case 5 essentially works, but the trivial
bound s ≥ t− 1 = 0 needs to be replaced with s ≥ 1. We get∑

s≥1
pσ,τ ≤

∑
s≥1

(
m

s

)
n
`

(
`
n

)2s 2−` ≤
∑
s≥1

n
`·2`

(
me`2
sn2

)s

= ce`
2`

∑
s≥1

(
ce`2
sn

)s−1

≤ O(n−1/2)
∑
s≥1

(
n−1/2

)s−1
= O(n−1/2).

Finally, we need to check that the case distinction is complete. If ` = ω(logn) then t = 1
corresponds to τ = `/n ≥ 27 log(n)/n = c̄ (using (c)) and Cases 1–3 already cover the entire
range of τ . For more interesting values of ` = O(logn) Cases 3 and 4 overlap due to (c) and
Cases 4 and 5 overlap since the upper bound `2t2 ≤ n

2e corresponds to τ = `t/n = O(n−1/2).

3.2 Adjustments for Proposition 3 (ii) and (iii)
We first outline how the argument from (i) needs to be modified to prove (ii). Firstly, the
probability that a sum within a block b ∈ B is ~0 is no longer 2−`. Assuming deg(b) = k and
incidences labelled with uniformly random values p1, . . . , pk ∈ {0, 1}k − {~0} it is

Pr[p1 ⊕ . . .⊕ pk = ~0]
= Pr[pk = p1 ⊕ . . .⊕ pk−1 | p1 ⊕ . . .⊕ pk−1 6= ~0] · Pr[p1 ⊕ . . .⊕ pk−1 6= ~0]
≤Pr[pk = p1 ⊕ . . .⊕ pk−1 | p1 ⊕ . . .⊕ pk−1 6= ~0] = 1/(2` − 1).

The additive difference to the bound on `
n log(pσ,τ) in Lemma 4(a) is

`
n log((2`/(2` − 1))τn/`) = τ log(1 + 1/(2` − 1)) < 2t/(2` − 1) < 4τ2−` ≤ 4τ c̄4.

M. Dietzfelbinger and S. Walzer 24:11

This is of lower order than the upper bound required in Cases 1 to 4 and thus inconsequential.
The only case where work is needed is Case 5 where the bound ` ≥ (1 + δ) logn is not

available. Since the all-zero vector is forbidden as a coefficient vector for blocks of an equation,
we know that minimal witnesses are not only connected but have minimum degree 2. The
most extreme cases are then not trees with s = t− 1, but cycles with s = t. The dominating
term is then upper bounded by c2e4`2

(2`−1)2 , which is o(1) because ` = ω(1).
For (iii) we argue as in (ii), except that when ` is constant the dominating term c2e4`2

(2`−1)2

of Case 5 does not vanish for n→∞. However, if ` is large enough then the sum is less than
1, yielding a constant probability that no Case-5-type witness exists. Witnesses of other
types have vanishing probability as before.

3.3 Proof of Lemma 4
Proof.
(a) This follows from Equation (3) after taking logarithms and multiplying by `/n on both

sides, using the standard approximation log
(
n
k

)
≤ nH(kn).

(b) This is obtained from (a) by observing that H(σ) + σ log τ2 is concave as a function of σ
and assumes its unique maximum value at σ∗ = σ∗(τ) = τ2

1+τ2 .
(c) This is part of the assumption of Proposition 3(i).
(d) If W ⊆ S, viewed as a subgraph of G = G`cn,n (see Section 2), has two connected

components W = W1 ∪W2, then the rows corresponding to W sum to zero if and only if
the rows corresponding to W1 and W2 sum to zero individually, as they involve disjoint
sets of variable blocks. In that case, W is not a minimal witness for dependence. In other
words, we can restrict our attention to connected sets W . From this t ≤ s+ 1 follows, the
upper bound being attained if W corresponds to a tree in G.

(e) Since g(τ) = log(1 + τ2) is convex on [0, 1], we may the obtain upper bounds on g by
linearly interpolating between the values g(0) = 0, g(1

2) = log 5
4 and g(1) = 1.

(f) Using that g(τ) = − log τ is convex we may obtain bounds on g by linearly interpolating
between the values g(1/2) = 1, g(1) = 0.

(g) The function g(τ) = −τ log τ is clearly continuous and its unique maximum is easily
determined to be at τ = 1/e > 1/4, which implies the claim.

(h) H(τ) = −τ log τ − τ̄ log τ̄ ≤ −τ log τ − log τ̄
(f)
≤ −τ log τ + 2τ .

(i) These properties of the entropy function are well known and easily checked.
(j) From σcn = s ≥ t = τn/` we get σ ≥ τ

c` . Using the upper bound on τ we continue
with σ ≥ τ2

c ≥
τ2

1+τ2 . This means that all values permitted for σ exceed the argument
σ∗ = τ2

1+τ2 from (b) that maximises H(σ) + σ log τ2. Again by concavity of this function
we may refine the upper bound from (a) by substituting the smallest admissible value
σ = τ

c` . This yields:

`
n log(pσ,τ) ≤ c`H(τc`) + 2τ log τ +H(τ)− `τ

(h)
≤ −τ log(τc`) + 2τ + τ log τ + 2τ − `τ

= τ log(c`) + 4τ − `τ = τ(log(c`)− `+ 4) ≤ −τ`/2. J

4 Proof of the Main Theorem

With Proposition 3 in place, we can now prove Theorem 1.

STACS 2019

24:12 Constant-Time Retrieval with O(logm) Extra Bits

Proof of Theorem 1.
(i) Aiming to apply Proposition 3(i), we pick ` := 4dlogme, c̄′ := 27 logm

m , c′ := 1− c̄′ and
n as the least multiple of ` exceeding m/c′. We generate the matrix A = A`m,n as
defined in Section 2. For c := m/n we can derive that by construction c̄ = 1 − c =
1 −m/n ≥ 1 − c′ = c̄′ = 27 logm

m and then clearly c̄ ≥ 2−`/4 = O(m−1) holds as well.
Thus Proposition 3(i) implies that A has full rank whp. Assume r = 1 for now. Solving
a corresponding system A~z = ~b yields a retrieval data structure occupying n bits.
The overhead is O(logm

m) since

n
m − 1 ≤ m/c′+`

m − 1 = O(logm
m) + 1−c′

c′ ≤ O(logm
m) + c̄′ = O(logm

m).

Construction time is dominated by the time to solve the linear system. We employ
the Method of Four Russians [3] – a variant of Gaussian elimination – which requires
O(m2/ logm) row additions. As rows contain n + 1 = O(m) bits and w bits can be
added in one word operation, we obtain a total runtime of O(m3

w logm). Queries access
d `w e = O(1) memory words in two contiguous areas of memory, and require O(1)
bit-wise and operations as well as a parity operation. Query times are thus O(1).
If r > 1 we need to solve A ·X = B with B ∈ Fm×r2 for X ∈ Fn×r2 . Solving the linear
system for several right hand sides simultaneously comes at negligible additional cost.
For cache efficient queries, blocks of X of size `× r should be stored contiguously, and
each block should be stored column-wise.

(ii) We use Wiedemann’s algorithm [24] to solve the system A~z = ~b. As the algorithm only
works for regular matrices we must first append n −m rows to the full-rank matrix
A ∈ Fm×n2 such that the resulting square matrix A′ ∈ Fn×n2 is regular. It is well known
that when picking rows uniformly from Fn2 this succeeds with probability Θ(1). We
also append n−m zeroes to b to obtain b′. The running time for solving the regular
system A′~z = ~b′ with Wiedemann’s algorithm is dominated by the running time of
O(n) matrix-vector multplications involving A′. Note that multiplications with A can
be carried out in time O(m) using word operations. The additional rows of A′ increase
this by O((m− n)n/w) = O(m logm

w), which is also O(m) if w = Ω(logm). The total
runtime for r = 1 is thus O(m2). For r > 1, the algorithm must be repeated for each
bit. J

In Section 5 we demonstrate that the approach in (i) admits a particularly efficient imple-
mentation in practice.

5 Experiments and Practical Considerations

5.1 Experimental Overhead
The benchmark uses the universe U = ascii∗ of strings, S ⊂ U is taken as the first m = 107

URLs from a eu-2015-host dataset gathered by [5] with ≈80 bytes per key, and for simplicity
f : U → {0, 1} is taken to be the parity of the string length7.

For hashing, we use murmur = MurmurHash3_x64_128 : ({0, 1}8)∗ × {0, 1}32 → {0, 1}128

[1], which conveniently has a second parameter. We use (murmur(·, s))s∈{0,1}32 as though
it were a sequence of random independent hash functions. A hash function on U can thus

7 Since the sequence of operations performed by the algorithm does not depend on f except, possibly, in
the rare cases where singular linear systems are involved, the choice of f is largely inconsequential.

M. Dietzfelbinger and S. Walzer 24:13

Table 3 Overview of all bits used in the data structure. The concrete values on the right
correspond to a run on a data set with m = 107 keys, chunk size C = 104, ` = 16 and ε = 0.0005.
In that run dlog(1 + maxi si)e = 2 and dlog(1 + maxi di)e = 9.

Number of bits bits used for per element

m entropy lower bound 1.000000
εm intended inner overhead 0.000500∑

i
ni − (1 + ε)m padding ensuring ` | ni 0.000716

dlog(1 + maxi si)e ·m/C seed for each chunk 0.000200
dlog(1 + maxi di)e ·m/C offset info for each chunk 0.000900

[not discussed] various global counters 0.000062

all of the above 1.002378

be identified simply by s, the seed. One such hash function h0 : U → [dm/Ce] partitions S
into chunks Si = {x ∈ S | h0(x) = i} for 0 ≤ i < dm/Ce where the average chunk size was
chosen as C = 104. The actual chunk sizes mi = |Si| vary slightly around C.

For each i let ni be the least multiple of the block size ` = 16 that is at least (1 + ε)mi.
Here, ε = 0.0005 is the intended inner overhead. Note that ni− (1 + ε)mi has an expectation
of roughly `−1

2 = 7.5. Within each chunk we generate and solve a system A`mi,ni
~zi = ~bi

yielding ~zi ∈ {0, 1}ni . Construction is repeated with a new seed if necessary. Let si be the
seed of the first successful construction for chunk i.

The vectors ~zi are concatenated into one bit string ~z. Let oi =
∑
j<i ni/` be the offset

(counted in blocks) where zi starts within z. We store the values di = oi − b i−1
dm/Ce |~z|c ≈

oi − E[oi] instead of the values oi as their binary representation is typically only half as long.
Finally, let d̂ := maxi di and ŝ := maxi si. In addition to ~x, m, C, d̂ and ŝ we need to

store the meta data ((si, di))i for the chunks using (dlog(d̂+ 1)e+ dlog(ŝ+ 1)e)dm/Ce bits. A
full account of everything that needs to be saved with concrete numbers is given in Table 3.

5.2 Experimental Runtimes
All tests were performed on an desktop computer with an Intel® Core i7-2600 Processor
@ 3.40GHz. A direct comparison to results from [15] is given in Table 2.8

Construction. To solve the sparse linear system A~z = ~b in a chunk, we first employ a
heuristic that reduces the system to a system A′~z′ = ~b′ that is dense but substantially smaller
than A. We dub this step BlockedLazyGauss as it is heavily inspired by the LazyGauss
algorithm from [15]. In our case of ` = 16 only 15% of the variables from A remain in A′.
The reduced system is then solved using the Method of Four Russians.

To highlight the influence of the chunk size C, we now consider construction time per
key, which is O(C2

w logC). In Figure 2 we report the runtimes of our solver for A`m,n~z = ~b, as
well as the relative contribution of the LazyGauss and the Four-Russian phases. The time
per key of ≈1.8µs reported there for C = 104 is also the main component of the time per key
of ≈2.6µs for the complete construction algorithm. The additional time is mostly spent on

8 Note that the implementations may be optimised to different degrees, and despite the fact that very
similar CPUs were used, runtime comparisons should not be overinterpreted. The authors of [15]
estimate a “tight C implementation [of their algorithm] would be about twice as fast”.

STACS 2019

24:14 Constant-Time Retrieval with O(logm) Extra Bits

10000 20000 30000 40000 50000 60000

5

10

15
tim

e
in

[µ
s/
ke
y]

chunk size C
5 10 15 20 25 30

0.5

1

1.5

2

2.5

tim
e
in

[µ
s/
ke
y]

block size `

Figure 2 Time per key of our linear system solver with representing the time for the
BlockedLazyGauss-phase, the time for the FourRussian-phase and the sum. On the left the
block size is ` = 16 and the chunk size C varies. On the right C = 104 and ` varies. The number of
equations per chunk is 0.9995C and C, respectively.

streaming the key from a zipped file (≈0.3µs), hashing it, sorting it into the correct chunk as
well as allocating and initialising the linear systems. Only a fraction of ≈0.005 of the linear
systems fail to have full rank and require a restart for the chunk.

The work on the 103 chunks can be parallelised in a straightforward way, which brings
construction time down to 1.1µs per key, using 4 cores with 2 logical processors each.

Query. A query involves computing hash values, accessing two `-bit words, and very cheap
and, xor and parity operations. In our experiments, computing hash values took ≈35ns.
Overall query time was ≈75ns for m = 106 (`, ε, C as above), when the retrieval data
structure could reasonably be expected to reside in cache. Time increased to ≈125ns for
m = 108, where the retrieval data structure certainly did not fit into cache.

6 Conclusion and Future Work

We introduced a new variant of constructing a retrieval data structure for m elements and
range {0, 1}r on the basis of the classical method of transforming keys into the rows of
a linear system of equations over F2, and using the solution vector as the data structure.
The new idea of having O(logm) many 1 entries in a row, concentrated in two blocks,
in combination with word parallelism, gives constant query time on a word RAM. The
construction time can be reduced by both exact and heuristic methods so as to achieve space
(1 + O((logm)/m))mr = mr + O(logm)r in theory and 1.0024m in realistic experiments
with r = 1.9 Future work could examine:

Is it possible to achieve constant access time and additive overhead O(log logn) by a
variant of our construction using a square system? (This would be the case if such a
systems had full rank with constant probability.)
Study the behaviour of systems of equations as considered here for fields Fq of constant
size q > 2.

9 Table 3 suggests that we can obtain ≈ 1.0012mr + 0.0012m for general r.

M. Dietzfelbinger and S. Walzer 24:15

References
1 Austin Appleby. MurmurHash3, 2012. URL: https://github.com/aappleby/smhasher/blob/

master/src/MurmurHash3.cpp.
2 Martin Aumüller, Martin Dietzfelbinger, and Michael Rink. Experimental Variations of

a Theoretically Good Retrieval Data Structure. In Proc. 17th ESA, pages 742–751, 2009.
doi:10.1007/978-3-642-04128-0_66.

3 Gregory V. Bard. Algebraic Cryptanalysis, chapter The Method of Four Russians, pages
133–158. Springer US, Boston, MA, 2009. doi:10.1007/978-0-387-88757-9_9.

4 Djamal Belazzougui, Fabiano Cupertino Botelho, and Martin Dietzfelbinger. Hash, Displace,
and Compress. In Proc. 17th ESA, pages 682–693, 2009. doi:10.1007/978-3-642-04128-0_
61.

5 Paolo Boldi, Andrea Marino, Massimo Santini, and Sebastiano Vigna. BUbiNG: Massive
crawling for the masses. In Proc. 23rd WWW’14, pages 227–228, 2014. doi:10.1145/2567948.
2577304.

6 Fabiano Cupertino Botelho, Rasmus Pagh, and Nivio Ziviani. Simple and Space-Efficient
Minimal Perfect Hash Functions. In Proc. 10th WADS, pages 139–150, 2007. doi:10.1007/
978-3-540-73951-7_13.

7 Fabiano Cupertino Botelho, Rasmus Pagh, and Nivio Ziviani. Practical Perfect Hashing in
Nearly Optimal Space. Inf. Syst., pages 108–131, 2013. doi:10.1016/j.is.2012.06.002.

8 Bernard Chazelle, Joe Kilian, Ronitt Rubinfeld, and Ayellet Tal. The Bloomier Filter: An
Efficient Data Structure for Static Support Lookup Tables. In Proc. 15th SODA, pages 30–39,
2004. URL: http://dl.acm.org/citation.cfm?id=982792.982797.

9 Colin Cooper. On the rank of random matrices. Random Structures & Algorithms, 16(2):209–
232, 2000. doi:10.1002/(SICI)1098-2418(200003)16:2<209::AID-RSA6>3.0.CO;2-1.

10 Martin Dietzfelbinger, Andreas Goerdt, Michael Mitzenmacher, Andrea Montanari, Rasmus
Pagh, and Michael Rink. Tight Thresholds for Cuckoo Hashing via XORSAT. In Proc. 37th
ICALP (1), pages 213–225, 2010. doi:10.1007/978-3-642-14165-2_19.

11 Martin Dietzfelbinger and Rasmus Pagh. Succinct Data Structures for Retrieval and Ap-
proximate Membership (Extended Abstract). In Proc. 35th ICALP (1), pages 385–396, 2008.
doi:10.1007/978-3-540-70575-8_32.

12 Martin Dietzfelbinger and Christoph Weidling. Balanced allocation and dictionaries with
tightly packed constant size bins. Theor. Comput. Sci., 380(1-2):47–68, 2007. doi:10.1016/j.
tcs.2007.02.054.

13 Nikolaos Fountoulakis and Konstantinos Panagiotou. Sharp Load Thresholds for Cuckoo
Hashing. Random Struct. Algorithms, 41(3):306–333, 2012. doi:10.1002/rsa.20426.

14 Alan M. Frieze and Páll Melsted. Maximum Matchings in Random Bipartite Graphs and the
Space Utilization of Cuckoo Hash Tables. Random Struct. Algorithms, 41(3):334–364, 2012.
doi:10.1002/rsa.20427.

15 Marco Genuzio, Giuseppe Ottaviano, and Sebastiano Vigna. Fast Scalable Construction of
(Minimal Perfect Hash) Functions. In Proc. 15th SEA, pages 339–352, 2016. doi:10.1007/
978-3-319-38851-9_23.

16 Torben Hagerup and Torsten Tholey. Efficient minimal perfect hashing in nearly minimal
space. In Proc. 18st STACS, pages 317–326, 2001. doi:10.1007/3-540-44693-1_28.

17 Brian A. LaMacchia and Andrew M. Odlyzko. Solving large sparse linear systems over finite
fields. In CRYPTO ’90, 10th Annual International Cryptology Conference, pages 109–133,
1990. doi:10.1007/3-540-38424-3_8.

18 Bohdan S. Majewski, Nicholas C. Wormald, George Havas, and Zbigniew J. Czech. A Family of
Perfect Hashing Methods. Comput. J., pages 547–554, 1996. doi:10.1093/comjnl/39.6.547.

19 Michael Molloy. The pure literal rule threshold and cores in random hypergraphs. In Proc. 15th
SODA, pages 672–681, 2004. URL: http://dl.acm.org/citation.cfm?id=982792.982896.

20 Boris Pittel and Gregory B. Sorkin. The Satisfiability Threshold for k-XORSAT. Combinatorics,
Probability & Computing, 25(2):236–268, 2016. doi:10.1017/S0963548315000097.

STACS 2019

https://github.com/aappleby/smhasher/blob/master/src/MurmurHash3.cpp
https://github.com/aappleby/smhasher/blob/master/src/MurmurHash3.cpp
http://dx.doi.org/10.1007/978-3-642-04128-0_66
http://dx.doi.org/10.1007/978-0-387-88757-9_9
http://dx.doi.org/10.1007/978-3-642-04128-0_61
http://dx.doi.org/10.1007/978-3-642-04128-0_61
http://dx.doi.org/10.1145/2567948.2577304
http://dx.doi.org/10.1145/2567948.2577304
http://dx.doi.org/10.1007/978-3-540-73951-7_13
http://dx.doi.org/10.1007/978-3-540-73951-7_13
http://dx.doi.org/10.1016/j.is.2012.06.002
http://dl.acm.org/citation.cfm?id=982792.982797
http://dx.doi.org/10.1002/(SICI)1098-2418(200003)16:2<209::AID-RSA6>3.0.CO;2-1
http://dx.doi.org/10.1007/978-3-642-14165-2_19
http://dx.doi.org/10.1007/978-3-540-70575-8_32
http://dx.doi.org/10.1016/j.tcs.2007.02.054
http://dx.doi.org/10.1016/j.tcs.2007.02.054
http://dx.doi.org/10.1002/rsa.20426
http://dx.doi.org/10.1002/rsa.20427
http://dx.doi.org/10.1007/978-3-319-38851-9_23
http://dx.doi.org/10.1007/978-3-319-38851-9_23
http://dx.doi.org/10.1007/3-540-44693-1_28
http://dx.doi.org/10.1007/3-540-38424-3_8
http://dx.doi.org/10.1093/comjnl/39.6.547
http://dl.acm.org/citation.cfm?id=982792.982896
http://dx.doi.org/10.1017/S0963548315000097

24:16 Constant-Time Retrieval with O(logm) Extra Bits

21 Ely Porat. An Optimal Bloom Filter Replacement Based on Matrix Solving. In Proc. 4th
CSR, pages 263–273, 2009. doi:10.1007/978-3-642-03351-3_25.

22 Michael Rink. Mixed Hypergraphs for Linear-Time Construction of Denser Hashing-Based Data
Structures. In Proc. 39th SOFSEM, pages 356–368, 2013. doi:10.1007/978-3-642-35843-2_
31.

23 Steven S. Seiden and Daniel S. Hirschberg. Finding succinct ordered minimal perfect hash
functions. Inf. Process. Lett., pages 283–288, 1994. doi:10.1016/0020-0190(94)00108-1.

24 Douglas H. Wiedemann. Solving Sparse Linear Equations Over Finite Fields. IEEE Transac-
tions on Information Theory, pages 54–62, 1986. doi:10.1109/TIT.1986.1057137.

http://dx.doi.org/10.1007/978-3-642-03351-3_25
http://dx.doi.org/10.1007/978-3-642-35843-2_31
http://dx.doi.org/10.1007/978-3-642-35843-2_31
http://dx.doi.org/10.1016/0020-0190(94)00108-1
http://dx.doi.org/10.1109/TIT.1986.1057137

Complexity of the Steiner Network Problem with
Respect to the Number of Terminals
Eduard Eiben
Department of Informatics, University of Bergen, Bergen, Norway
eduard.eiben@uib.no

Dušan Knop
Algorithmics and Computational Complexity, Faculty IV, TU Berlin
Department of Theoretical Computer Science, Faculty of Information Technology,
Czech Technical University in Prague, Prague, Czech Republic
dusan.knop@tu-berlin.de

Fahad Panolan
Department of Informatics, University of Bergen, Bergen, Norway
fahad.panolan@uib.no

Ondřej Suchý
Department of Theoretical Computer Science, Faculty of Information Technology,
Czech Technical University in Prague, Prague, Czech Republic
ondrej.suchy@fit.cvut.cz

Abstract

In the Directed Steiner Network problem we are given an arc-weighted digraph G, a set of
terminals T ⊆ V (G) with |T | = q, and an (unweighted) directed request graph R with V (R) = T .
Our task is to output a subgraph H ⊆ G of the minimum cost such that there is a directed path
from s to t in H for all st ∈ A(R).

It is known that the problem can be solved in time |V (G)|O(|A(R)|) [Feldman&Ruhl, SIAM
J. Comput. 2006] and cannot be solved in time |V (G)|o(|A(R)|) even if G is planar, unless the
Exponential-Time Hypothesis (ETH) fails [Chitnis et al., SODA 2014]. However, the reduction (and
other reductions showing hardness of the problem) only shows that the problem cannot be solved
in time |V (G)|o(q), unless ETH fails. Therefore, there is a significant gap in the complexity with
respect to q in the exponent.

We show that Directed Steiner Network is solvable in time f(q) · |V (G)|O(cg·q), where cg is
a constant depending solely on the genus of G and f is a computable function. We complement
this result by showing that there is no f(q) · |V (G)|o(q2/ log q) algorithm for any function f for the
problem on general graphs, unless ETH fails.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms; Theory of
computation → Parameterized complexity and exact algorithms

Keywords and phrases Directed Steiner Network, Planar Graphs, Parameterized Algorithms,
Bounded Genus, Exponential Time Hypothesis

Digital Object Identifier 10.4230/LIPIcs.STACS.2019.25

Related Version https://arxiv.org/abs/1802.08189

Funding Eduard Eiben: Eduard Eiben was supported by Pareto-Optimal Parameterized Algorithms
(ERC Starting Grant 715744).
Dušan Knop: Partially supported by DFG under project “MaMu”, NI 369/19.
Ondřej Suchý: Supported by grant 17-20065S of the Czech Science Foundation.

© Eduard Eiben, Dušan Knop, Fahad Panolan, and Ondřej Suchý;
licensed under Creative Commons License CC-BY

36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019).
Editors: Rolf Niedermeier and Christophe Paul; Article No. 25; pp. 25:1–25:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-2628-3435
mailto:eduard.eiben@uib.no
https://orcid.org/0000-0003-2588-5709
mailto:dusan.knop@tu-berlin.de
mailto:fahad.panolan@uib.no
mailto:ondrej.suchy@fit.cvut.cz
https://doi.org/10.4230/LIPIcs.STACS.2019.25
https://arxiv.org/abs/1802.08189
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

25:2 Complexity of the Steiner Network Problem w.r.t. the Number of Terminals

1 Introduction

Steiner Tree is one of the most fundamental and well studied problems in combinatorial
optimization. The input of Steiner Tree is an edge-weighted undirected graph G and a set
T ⊆ V (G) of terminals. Here, the task is to find a least cost connected subgraph H of G
containing all the terminals. The problem is known to be NP-complete and, in fact, was one
of the 21 NP-complete problems in Karp’s original list [29]. The problem is known to be
APX-complete, even when the input graph is a complete graph and all edge weights are 1 or
2 [1]. On the other hand, the problem admits a constant factor approximation algorithm
and the current best approximation ratio is less than 1.39 [3]. For an overview of the results
and applications of Steiner Tree, the reader is referred to monographs [8, 27, 35].

Steiner Tree is well studied in parameterized complexity. The most natural parameter
for the problem is the number of terminals q. The first FPT-algorithm for the problem is
the O

(
3q · n+ 2q · n2 + n(n logn+m)

)
-time algorithm of Dreyfus and Wagner [14] (inde-

pendently found by Levin [30]) from 1970s; here and on n denotes |V (G)| and m denotes
|E(G)|. This algorithm, as well as its later improvements [16, 22, 2] subsequently approach-
ing the O(2q poly(n + m)) running time, uses exponential space. The running time of
O(2q poly(n+m)) is optimal assuming Set Cover Conjecture [9]. There have been many stud-
ies for designing algorithms with lower space complexity. Polynomial space FPT-algorithms
appeared only recently: First by Nederlof [34] for weights bounded by a constant and later
by Fomin et al. [20] for arbitrary weights.

Steiner Tree can be generalized to digraphs. There are many variants of Steiner-type
problems on digraphs; the two most natural are Directed Steiner Tree (DST) and
Strongly Connected Steiner Subgraph (SCSS). In DST, we are given an arc-weighted
directed graph G, a set T ⊆ V (G) of q terminals, and a root vertex r ∈ V (G). Our task
is to find a least cost subgraph H of G such that for every t ∈ T , t is reachable from r

in H. In SCSS, the input is an arc-weighted directed graph G and a set T ⊆ V (G) of
terminals. The task is to find a least cost subgraph H of G such that for every s, t ∈ T ,
there are directed paths from s to t and from t to s in H. That is, H is a least cost strongly
connected subgraph containing all the terminals. A common generalization of DST and SCSS
is Directed Steiner Network (DSN). In DSN, we are given an arc-weighted digraph
G, a set T ⊆ V (G) of q terminals, and a digraph R on T . The task is to find a least cost
subgraph H of G which realizes all paths prescribed by the arcs of R. That is, for every arc
st ∈ A(R), there is a directed path from s to t in H. Observe that, in DSN, request graphs
R and R′ yield the same set of solutions if their transitive closures are the same. DST is
a special case of DSN where R is a single out-tree on T ∪ {r} with r being the root and T
being the set of leaves. Similarly, SCSS is a special case of DSN where R is a single directed
cycle on T .

Existence of an α-approximation algorithm for DST implies a 2α-approximation algorithm
for SCSS because of the following simple observation. The union of an in-tree and an out-tree
from one fixed terminal in T yields a strongly connected subgraph containing T . The best
known approximation ratio in polynomial time for DST and SCSS is O(qε) for any ε > 0 [4].
The same paper also yields an O(log2 q)-approximation algorithm in quasi-polynomial time.
A result of Halperin and Krauthgamer [26] implies that DST and SCSS have no O(log2−ε n)-
approximation for any ε > 0, unless NP has quasi-polynomial time Las Vegas algorithms. The
best known approximation algorithm for DSN is by Chekuri et al. [5] with an approximation
factor of O(|A(R)|1/2+ε) for any ε > 0. On the other hand, DSN cannot be approximated
to within a factor of O(2log1−ε n) for any fixed ε > 0, unless NP ⊆ TIME(2polylog(n)) [13].

E. Eiben, D. Knop, F. Panolan, and O. Suchý 25:3

Recently Dinur and Manurangsi [12] showed that, under ETH, no polynomial time algorithm
and, under Gap-ETH, even no algorithm parameterized by q can approximate DSN to within
a factor of O(|A(R)|1/4−o(1)).

Using essentially the same techniques as for Steiner Tree [14], one can show that
there is an O

(
3q · n+ 2q · n2 + n(n logn+m)

)
time algorithm for DST. On the other hand,

Guo et al. [25] showed that SCSS parameterized by q is W[1]-hard. That is, there is no
f(q) · nO(1) time algorithm for SCSS for any function f , unless FPT=W[1]. Later a stronger
lower bound has been shown by Chitnis et al. [7]. They showed that, in fact, there is no
f(q)no(q/ log q) algorithm for SCSS for any function f , unless Exponential Time Hypothesis
(ETH) of Impagliazzo and Paturi [28] fails. This stimulated the research on DSN for restricted
classes of request graphs [36, 18] and host graphs [6].

As DSN is a generalization of SCSS, DSN is also W[1]-hard parameterized by q. On the
positive side, Feldman and Ruhl [17] showed that DSN can be solved in nO(|A(R)|) time. An
independent algorithm with a similar running time also follows from the classification work
of Feldmann and Marx [18]. Complementing these results Chitnis et al. [7] showed that DSN
cannot be solved in f(q)no(|A(R)|) time for any function f , even when restricting the host
graph G to be planar and all arc weights equal to 1, unless ETH fails. In this reduction (as
well as in the reduction given for SCSS), the number of arcs of the request graph |A(R)| is
only linear in the number of terminals q. Hence, viewed in terms of the number of terminals,
this lower bound implies that there is no f(q)no(q) time algorithm for any function f , unless
ETH fails. But both the known algorithms have running time nΘ(q2) in the worst case,
leaving a significant gap between the upper and the lower bound for DSN. In this work we
contribute to fill this gap.

1.1 Our Results
I Theorem 1.1. There is an algorithm which solves any instance (G,R) of DSN in time
2cgq2 log(cgq) · nO(cg·q), where g is the Euler genus of the graph G and cg = 208g+12g.

The main idea behind the algorithm is as follows. Let H be a least cost subgraph of G which
realizes all paths prescribed by the arcs of R (call it an optimum solution). By the result of
Feldmann and Marx [18], if the treewidth1 of H is ω, then there is an algorithm for solving
DSN running in time 2O(q·ω logω) · nO(ω).2 Towards proving Theorem 1.1 we construct a
graph H ′ from H such that

the genus of H ′ is at most g (recall that g is the genus of the input graph G),
H ′ and H have the same grid minors and hence tw(H) ≤ 204·(2g+3) tw(H ′), and
the diameter of H ′ is O(q).

Finally, since H ′ has genus g and diameter O(q), it follows from a result of Eppstein [15]
that tw(H ′) = O(g · q). We conclude that H has treewidth O(cg · q) and our result follows
using the algorithm of Feldmann and Marx [18].

We complement the above positive result by the following negative one for general graphs.

I Theorem 1.2. There is no f(q) · no(q2/ log q) time algorithm for DSN on general graphs
for any function f , unless ETH fails.

Towards this result, we give a reduction from Partitioned Subgraph Isomorphism (PSI).

1 Since H is a directed graph, we have to clarify that by the treewidth of a directed graph we mean the
treewidth of the underlying undirected graph of H (that is, in a graph on the same vertex set that
contains an edge {u, v} if and only if H contained an arc (u, v)).

2 The exact running time bound is more complicated, see Proposition 2.1 for exact statement.

STACS 2019

25:4 Complexity of the Steiner Network Problem w.r.t. the Number of Terminals

2 Preliminaries

For a positive integer η, we use [η] to denote the set {1, . . . , η}. We consider simple directed
graphs and use mostly standard notation that can be found for example in the textbook
by Diestel [11]. Let G be a directed graph and let V (G) and A(G) denote its vertex set
and arc set, respectively. For vertices u, v ∈ V (G) the arc from u to v is denoted by uv or
(u, v). A walk P = (p0, . . . , p`) of length ` in G is a tuple of vertices, that is, pi ∈ V (G) for
all 0 ≤ i ≤ `, such that pipi+1 ∈ A(G) for all 0 ≤ i < `. A directed path P = (p0, . . . , p`)
in G is a walk of length ` with all vertices distinct, that is pi 6= pj for all 0 ≤ i < j ≤ `.
We let V (P) = {p0, . . . , p`}. We say that the path P is from p0 to p`; we call p0 and p` the
endpoints of P while the other vertices of P are called internal (we denote the set of all
internal vertices of P by P̊). Path P is between u and v if it is either from u to v or from v

to u. Let W be a set of vertices, we say that a path Q is a W -avoiding path if Q̊ ∩W = ∅; if
P is a path we say that Q is P -avoiding path if it is a V (P)-avoiding path. Let P be a walk
from u to v and let Q be a walk from v to w. By P ◦Q we denote the concatenation of P
and Q, that is, the walk from u to w that follows P from u to v and then follows Q from
v to w. Let P = (p0, . . . , p`) be a directed path and u, v ∈ V (P). We write u ≤P v if u is
before v on P , in other words, u = pi and v = pj such that i ≤ j. Furthermore, for i ≤ j the
subpath of P between pi and pj , denoted pi[P]pj , is the path (pi, . . . , pj).

For a vertex v ∈ V (G) its in-degree is defined as deg−G(v) = |{u ∈ V | uv ∈ A(G)}|.
The out-degree of v is deg+

G(v) = |{u ∈ V | vu ∈ A(G)}|. Finally, the total degree of v
is degG(v) = deg−G(v) + deg+

G(v). If the graph G is clear from the context we drop the
subscript G. We use sym(G) to denote the underlying undirected graph of a directed
graph G. To subdivide an arc e ∈ A(G) is to delete e = uv, add a new vertex w, and add
the arcs uw,wv. We say that H is a subdivision of G if it can be obtained by repeated
subdivision of arcs of G, that is, there exist graphs G = G0, . . . , Gη = H such that Gi+1 is
the result of arc subdivision in Gi.

We consider the following problem:

Directed Steiner Network (DSN)
Input: An arc-weighted directed graph G and an (unweighted) directed graph R

such that V (R) ⊆ V (G).
Question: Find a minimum-cost subgraph H of G in which there is a path from s to

t for every st ∈ A(R).

The problem is also called Directed Steiner Forest or Point-to-Point Connection.
We only consider positive weights on arcs, since it is possible to include all non-positive
weight arcs into the solution. We call a subgraph H of G a solution to the instance (G,R)
of DSN if H contains a path from s to t for every st ∈ A(R). Moreover, we say that H is an
inclusion-minimal solution to R, if H is a solution for some instance (G,R), but for every
e ∈ A(H), H − e is not. Note that an optimum solution (one with the least sum of weights)
is necessarily inclusion-minimal, as we assume positive weights.

I Proposition 2.1 (Feldmann and Marx [18, Theorem 5] (see also [19])). Let an instance of
DSN be given by a graph G with n vertices and a pattern R on q terminals with vertex cover
number τ . If the optimum solution to R in G has treewidth ω, then the optimum can be
computed in time 2O(q+τω logω)nO(ω).

I Proposition 2.2 (Demaine, Hajiaghayi, and Kawarabayashi [10]). Suppose G is a graph with
no K3,k-minor. If the treewidth of G is at least 204kr, then G has an r × r grid minor.

E. Eiben, D. Knop, F. Panolan, and O. Suchý 25:5

For the rest of the paper, by the genus of a graph we always mean Euler genus; that is
the minimum integer g such that the graph can be drawn without crossing itself on a sphere
with g cross-caps or with g/2 handles. For a more detailed treatment of topological graph
theory the reader is referred to [33] or [24].

I Proposition 2.3 (Ringel, see [33, Theorem 4.4.7]). If G has Euler genus at most g, then G
does not contain K3,2g+3 as a minor.

I Proposition 2.4 (Eppstein [15, Theorem 2]). Let G be a graph of Euler genus3 g and
diameter D. Then G has treewidth O(gD).

t-Boundaried Graphs and Gluing. A t-boundaried graph is a graph G and a set B ⊆ V (G)
of size at most t with each vertex v ∈ B having a label G(v) ∈ {1, . . . , t}. Each vertex in B
has a unique label. We refer to B as the boundary of G. For a t-boundaried graph G the
function δ(G) returns the boundary of G. Two t-boundaried graphs G1 and G2 can be glued
together to form a graph G = G1 ⊕G2. The gluing operation takes the disjoint union of G1
and G2 and identifies the vertices of δ(G1) and δ(G2) with the same label.

A t-boundaried graph H is a minor of a t-boundaried graph G if (a t-boundaried graph
isomorphic to) H can be obtained from G by deleting vertices or edges or contracting edges,
but never contracting edges with both endpoints being boundary vertices4. For more details
see e.g. [21].

Monadic Second Order Logic. The syntax of Monadic second order logic (MSO) includes
the logical connectives ∨,∧,¬,⇒,⇔, variables for vertices, edges, sets of vertices and sets
of edges, the quantifiers ∀,∃ that can be applied to these variables, and the following five
binary relations:
1. u ∈ U where u is a vertex variable and U is a vertex set variable;
2. d ∈ D where d is an edge variable and D is an edge set variable;
3. inc(d, u), where d is an edge variable, u is a vertex variable; and the interpretation is that

the edge d is incident on the vertex u;
4. adj(u, v), where u and v are vertex variables, and the interpretation is that u and v are

adjacent;
5. equality of variables representing vertices, edges, set of vertices and set of edges.
Many common graph-theoretic notions such as vertex degree, connectivity, planarity, outer-
planarity, being acyclic, and so on, can be expressed in MSO, as can be seen from introductory
expositions [31].

3 Solving DSN on a Fixed Surface

Fix an instance (G,R) of DSN. Let the genus of G be a fixed constant g and let H be an
inclusion-minimal solution to (G,R). Note that, since H is a subgraph of G, the genus of H
is at most g.

The goal of this section is to show the following theorem.

3 The original paper of Eppstein states genus instead of Euler genus; however, the proof works for both
orientable and non-orientable genus and hence also for Euler genus.

4 Note that these operations preserve the labeling of the boundary vertices.

STACS 2019

25:6 Complexity of the Steiner Network Problem w.r.t. the Number of Terminals

I Theorem 3.1. Let g be a fixed constant. If (G,R) is an instance of DSN such that the
genus of G is at most g and H is an inclusion-minimal solution to (G,R), then the treewidth
of H is O

(
204(2g+3)g · q

)
.

With this theorem at hand Theorem 1.1 follows from Proposition 2.1. Note that we can treat
every connected component of H separately. More precisely, for each connected component
HC of H, we apply the rest of the proof to HC and R[T ∩ V (HC)]. Hence, we assume that
H is connected.

Reversing Arcs – Symmetry. Let ←−G , ←−H , and ←−R be the directed graphs we obtain from G,
H, and R, respectively, by reversing all the arcs. That is, for example, ←−G contains an arc uv
if and only if G contains the arc vu. Note that there is a one-to-one correspondence between
an s-t path in H and a t-s path in ←−H . Hence, if H is an optimum solution to the instance
(G,R), then ←−H is an optimum solution to the instance

(←−
G,
←−
R
)
. The importance of ←−G,←−H,←−R

is that every lemma holds in both H,R and ←−H,←−R . In this way we obtain symmetric results
without reproving everything twice.

I Lemma 3.2. Let (G,R) be an instance of DSN, H be an inclusion-minimal solution to
(G,R), and let H be connected. Let R′ be a directed graph with vertex set T and for every
s, t ∈ T with s 6= t satisfying st ∈ A(R′) if and only if there is a T -avoiding s-t path in H.
Then the following holds:
1. H is an inclusion-minimal solution to R′ and
2. sym(R′) is connected.

Proof. Assume for the contradiction that sym(R′) is not connected and let R1 be a connected
component of R′. Note that since H is inclusion-minimal every vertex of H lies on some s-t
path with s, t ∈ T and st ∈ A(R′). Now let V1 be the set of vertices that lie on some s-t path
in H for s, t ∈ V (R1) and V2 = V (H) \ V1. Clearly, T \ V (R1) ⊆ V2, hence V2 is not empty.
Otherwise, by the definition of R′, R′ would contain an arc between a vertex in V (R1) and
V (R′) \ V (R1). Moreover, every vertex in V2 lies on some terminal-to-terminal path for two
terminals in T \ V (R1). Now let u ∈ V1 and v ∈ V2. Clearly, u lies on some s1-t1 path
between two terminals in R1 and v lies on a s2-t2 path between two terminals in T \ V (R1).
Since R′ does not contain arcs s1t2 nor s2t1, it follows that there is no arc between u and v.
Since this is true for any two vertices u ∈ V1 and v ∈ V2 it follows that H[V1] is a connected
component of H, which contradicts the assumption that H is connected. J

From now on we replace R with R′.

I Definition 3.3. Let H1, H2 be two directed graphs. We say that the pair (H1, H2) is a
c-admissible pair if the genus of H2 is at most the genus of H1 and tw(H1) ≤ c · tw(H2).

Overview of the Proof of Theorem 3.1. We transform the solution graph H into a graph
H ′ containing all terminals and preserving all terminal-to-terminal connections such that
(H,H ′) is an c-admissible pair for some constant c and H ′ has bounded diameter (and thus by
Proposition 2.4 has bounded treewidth). We do this by exploiting that a terminal-to-terminal
path in H contains only O(q), so called, important and marked vertices. Furthermore,
a subpart of the solution “between” two consecutive marked or important vertices has
constant treewidth and contains few vertices with arcs to the rest of the solution H. This
allows us to reduce this part of the solution to constant size while preserving genus and all
terminal-to-terminal connections. Thus, obtaining the graph H ′ of bounded diameter.

E. Eiben, D. Knop, F. Panolan, and O. Suchý 25:7

The following lemma shows that we can assume that each non-terminal vertex in H has
at least 3 neighbors.

I Lemma 3.4. Let (G,R) be an instance of DSN, H be an inclusion-minimal solution to
(G,R), and let H be connected. There exists a directed graph H≥3 such that H≥3 is an
inclusion-minimal solution to R, H≥3 is connected, every non-terminal vertex in H≥3 has at
least three neighbors, and (H,H≥3) is a 1-admissible pair. Moreover, for any s, t ∈ T , there
is a T -avoiding s-t path in H if and only if there is one in H≥3.

Proof Sketch. We exhaustively repeat the following. Let v be a non-terminal vertex and
suppose u,w are the only two neighbors of v. Note that v cannot have only one neighbor,
since H is an inclusion-minimal solution. We delete v from H and add an arc uw if both uv
and vw were in H, similarly for an arc wu. Denote the resulting graph H≥3. J

3.1 Important and Marked Vertices
For a fixed T -avoiding directed path P in H between two terminals s and t, we say that a
vertex u ∈ V (P) is important with respect to P if there is a P -avoiding directed path from
some terminal not on P to u or from u to some terminal not on P . Let IP denote the set of
all important vertices with respect to P . Let I be the union of important vertices over all
T -avoiding paths in H between terminals.

Let s, t ∈ T and P = (s = p1, . . . , pr = t) be fixed for the rest of this subsection.

I Lemma 3.5. Let (G,R) be an instance of DSN and H be an inclusion-minimal solution
to (G,R). Let P = (s = p1, . . . , pr = t) be a T -avoiding directed path between s, t ∈ T . There
are at most 2q − 2 important vertices on P . Moreover, there exists a function gP : IP → T

with
∣∣g−1
P (x)

∣∣ ≤ 2 for every x ∈ T such that for every v ∈ IP there is either v-g(v) or g(v)-v
directed (V (P) ∪ T)-avoiding path.

Proof. We bound the number of important vertices by inspecting the interaction between the
path P and other paths in the solution H. In order to do this, we construct a partial labeling
L : V (P)→ 2(T×{←,→}) as follows. For a vertex v ∈ V (P) we have (x,←) ∈ L(v) if there is
a directed P -avoiding path from a terminal x to v in H and v is the closest to s among all
such vertices of P . Similarly, we have (x,→) ∈ L(v) if there is a directed P -avoiding path
from v to a terminal x in H and v is the closest to t among all such vertices of P .

B Claim 3.6 (?5). Every important vertex received some label.

It follows from the above claim that the number of important vertices is bounded by the
possible number of labels which is 2q − 2. This is because by the definition of the labeling
every label in T × {←,→} is used at most once and (s,←) and (t,→) labels are never
assigned to any vertex of P (as they would be assigned to s and t, respectively).

As to the moreover part, it follows from the labeling procedure that if (←, x) ∈ L(v), then
there is a P -avoiding path Q in H from x to v. If this path contains another terminal, then let
y be the terminal closest to v on Q. We claim that (←, y) ∈ L(v) as well. If not, then there
would be another vertex v′ on P with this label with v′ <P v and a P -avoiding path Q′ from
y to v′. But then x[Q]y ◦ y[Q′]v′ is a walk that can be shortened to a P -avoiding path from x

to v′, contradicting (x,←) ∈ L(v). Hence, each important vertex has a (V (P) ∪ T)-avoiding
path to or from some terminal, such that it has a label of that terminal. To prove the
moreover part it remains to set gP (v) to any such terminal. J

5 Proofs of claims and lemmata marked with (?) were deferred to the full version of the paper.

STACS 2019

25:8 Complexity of the Steiner Network Problem w.r.t. the Number of Terminals

I Lemma 3.7 (?). Let (G,R) be an instance of DSN and H be an inclusion-minimal solution
to (G,R). Let P = (s = p1, . . . , pr = t) be a T -avoiding directed path between s, t ∈ T . If v
is a vertex in V (P) \ IP , then its out-degree is at most 2. Moreover, if u is its out-neighbor
not on P , then there is a P -avoiding path from u to some vertex v′ ∈ V (P) with v′ <P v.

The following expresses that in order to bound the diameter of H ′ it is enough to bound
the length of the path P linearly in |IP |.

I Lemma 3.8. Let (G,R) be an instance of DSN, H be an inclusion-minimal solution to
(G,R), and let H be connected. Moreover, assume that for every s, t ∈ T with s 6= t that
st ∈ A(R) if and only if there is a T -avoiding s-t path in H. If for every s̄t̄ ∈ A(R) there is
a T -avoiding path P̃ in H of length at most c · |IP̃ |, for some constant c, then the distance
between any two terminal vertices in the underlying undirected graph sym(H) of H is at
most 8cq.

Proof. By assumption and Lemma 3.2 both H and R are connected. Let t1, t2 ∈ T be two
arbitrary terminal vertices and let Q = (t1 = t1, t2, . . . , t` = t2) be a shortest path from t1 to
t2 in sym(R). Now let Q = (Q1, . . . , Q`−1) be a realization of the path Q in H, that is, Qi
is a directed T -avoiding path between ti and ti+1 of length at most c · |IQi | in H for every
1 ≤ i ≤ `− 1. Note that it does not matter whether Qi is a directed path from ti to ti+1 or
vice versa.

For 1 ≤ i ≤ `− 1 let gi be the function gQi for the path Qi from Lemma 3.5. Let v ∈ IQi
be an important vertex on Qi. From Lemma 3.5 it follows that there is a (V (Qi)∪T)-avoiding
directed path either from v to gi(v) or from gi(v) to v. Moreover, since Qi is T -avoiding,
there are two T -avoiding directed paths in H either one from ti to v and the other from v to
ti+1 or one from ti+1 to v and the other from v to ti. Therefore, it follows that if a terminal
t′ is in gi(IQi), then there is a T -avoiding directed path either between t′ and ti or between
t′ and ti+1 in H and consequently, by our assumptions on R, there is an arc between t′ and
either ti or ti+1 in R.

Now, for a terminal t′, let 1 ≤ i < j ≤ `− 1 be such that t′ ∈
(
gi(IQi) ∩ gj(IQj)

)
. Then

we claim that j − i ≤ 3. From the argument above, it follows that there is an edge between
t′ and ti or ti+1 and between t′ and tj or tj+1 in sym(R). However, if j − i ≥ 4, then we can
obtain a shorter path than Q in sym(R) from t1 to t2 by going along Q from t1 to ti or to
ti+1, then using the aforementioned edges to t′ and from t′ to tj or tj+1 and continuing on
Q. This is a contradiction with the choice of Q. Therefore, for each terminal t′ there are at
most 4 paths Q̄ ∈ Q such that t′ ∈ gQ̄(IQ̄). Since for each path Q̄ and terminal t′, it holds
that

∣∣∣g−1
Q̄

(t′)
∣∣∣ ≤ 2, it follows that

∑`−1
i=1 |IQi | ≤ 2 · 4 · q. Therefore, the distance between t1

and t2 is at most
∑`−1
i=1 |Qi| ≤

∑`−1
i=1 c · |IQi | ≤ 8cq and the lemma follows. J

I Lemma 3.9. Let (G,R) be an instance of DSN and H be an inclusion-minimal solution
to (G,R). Let P = (s = p1, . . . , pr = t) be a T -avoiding directed path between s, t ∈ T . Let
pi, pj, pk be three vertices on P such that
(1) i < j < k,
(2) there is a path Q from pk to pi that avoids pj, and
(3) every directed path P ′ from some terminal s′ to pj in H intersects P in a vertex p` such

that p` 6= pj and ` ≤ k.
Then pj has no in-neighbor other than pj−1 in H.

Proof. Refer to Fig. 1. Let u 6= pj−1 be an in-neighbor of pj . Let s′t′ be an arc in R such
that the arc upj is on a path P ′ from s′ to t′ in H. We show that there is a directed path
from s′ to t′ in H − upj . By our assumption, it follows that s′[P ′]pj intersects P in a vertex

E. Eiben, D. Knop, F. Panolan, and O. Suchý 25:9

P

pi pj pk

Q

s′t′

Figure 1 The three vertices pi, pj , pk on a directed path P as in Lemma 3.9. The orange (light
gray) path cannot exist as it is rerouted via pk and Q (dashed); contradicting the minimality of the
solution.

P

p1
j p2

j
pj p3

j p4
j

Qj4,2Qj3,1

Figure 2 The four vertices on P for the vertex pj . By the choice of p1
j and p4

j , the orange (light
gray) paths cannot exist.

p` such that ` < k. Therefore, the walk s′[P ′]p` ◦ p`[P]pk ◦ pk[Q]pi ◦ pi[P]pj ◦ pj [P ′]t′ induces
a directed path from s′ to t′ in H − upj . Since this is true for every pair of terminals s′, t′
with an s′-t′ path in H, it contradicts the inclusion-minimality of H and hence the only
in-neighbor of pj is pj−1. J

For a vertex pj ∈ V (P) let p1
j , p

2
j , p

3
j , p

4
j denote the following four vertices (see Fig. 2):

p1
j is the ≤P -minimal vertex on P such that there is a P -avoiding path from a vertex px,

with x ≥ j to p1
j ,

p3
j is a vertex such that pj ≤P p3

j and p3
j is the first vertex of some P -avoiding path to p1

j ,
p4
j is the ≤P -maximal vertex on P such that there is a P -avoiding path from p4

j , to some
vertex py with y ≤ j, and
p2
j is a vertex such that p2

j ≤P pj and p2
j is the last vertex of some P -avoiding path from

p4
j .

Furthermore, let us denote Qj3,1 and Qj4,2 the P -avoiding paths from p3
j to p1

j and from p4
j to

p2
j , respectively, and let Qj4,1 denote the path Qj4,2 ◦ p2

j [P]p3
j ◦Q

j
3,1.

I Lemma 3.10 (?). Let (G,R) be an instance of DSN and H be an inclusion-minimal
solution to (G,R) such that every non-terminal vertex in H has at least three neighbors. Let
P = (s = p1, . . . , pr = t) be a T -avoiding directed path between s, t ∈ T . For every pj there
are at most two vertices in V (P) \ (IP ∪ {p2

j , p
3
j}) between p1

j and p4
j .

For the rest of this section, let us define the set QP =
{
p1
j , p

2
j , p

3
j , p

4
j | pj ∈ IP

}
. Clearly,

|QP | ≤ 4 |IP |. We will call the set QP the set of marked vertices for P . Note that the same
vertex in QP may be marked for different reasons at the same time. That is, for example,
the same vertex can be denoted p1

j , because it is the first vertex for the important vertex pj
and at the same time it can be denoted p3

k, because it is also the third marked vertex for the
important vertex pk with respect to P .

3.2 Ladders
In this subsection we define ladder graphs. These graphs play crucial a role as we will be able
to show that if there is a T -avoiding s-t path for st ∈ A(R) that is “long”, then in H there is
a “large” ladder (Lemma 3.13). Moreover, it is possible to replace such a ladder with one
having constant size while preserving all connections and inclusion-minimality (Lemma 3.14).

STACS 2019

25:10 Complexity of the Steiner Network Problem w.r.t. the Number of Terminals

a1

b1

a2

b2

a3

b3

a4

b4

a5

b5

a6

b6

a1

b1

a3

b3

a4

b4

a6

b6

i2 i5

Figure 3 Example ladder graphs. The ladder G6 = G6,∅ on the left and G6,{2,5} on the right.

I Definition 3.11 (Class of Ladders). Let η be a positive integer and I ⊆ [η]. We define the
directed graph Gη and the directed graph Gη,I as follows (see Fig. 3). The vertex set V (Gη)
is the set {ai, bi | i ∈ [η]} and the arc set A(Gη) is the set

{a2i+1b2i+1 | 0 ≤ i < η/2} ∪ {b2ia2i | 1 ≤ i ≤ η/2} ∪ {a2ia2i−1 | 1 ≤ i ≤ η/2}∪
{a2ia2i+1 | 1 ≤ i < η/2} ∪ {b2i+1b2i | 1 ≤ i < η/2} ∪ {b2i−1b2i | 1 ≤ i ≤ η/2} .

The graph Gη,I is the graph Gη where we identify the vertices ai and bi whenever i ∈ I (i.e.,
Gη and Gη,∅ is the same graph). We emphasize that we suppress any loops in Gη,I . We say
that η is the length of the ladder Gη,I .

I Lemma 3.12 (?). Given a positive integer η and I ⊆ [η], the ladder Gη,I is a union of
two paths P1 from a1 to aη and P2 from bη to b1 if η is even or paths P1 from a1 to bη and
P2 from aη to b1, if η is odd. Moreover, Gη,I is an inclusion-minimal strongly connected
graph connecting the set of terminals {a1, b1, aη, bη}.

3.3 Finishing the Proof
Let again P be a T -avoiding directed path in H between two terminals s and t. In the
following technical lemma we show that if the distance on P between any two consecutive
vertices pi, pj ∈ QP ∪ IP with i < j is at least 5, then pi = p4

k and pj = p1
` where pk, p` ∈ IP

and k < `. Moreover, there exists a path from pj to pi in H and between pi and pj there is
a ladder with a constant-sized boundary.

I Lemma 3.13 (?). Let (G,R) be an instance of DSN and H be an inclusion-minimal
solution to (G,R) such that every non-terminal vertex in H has at least three neighbors. Let
P be a T -avoiding directed path in H between two terminals s and t. Let pi, pj ∈ QP ∪IP with
i < j such that there is no p ∈ QP ∪ IP with pi ≤P p ≤P pj. Let F = {pi+1, . . . , pj−1} and
let C be the set of vertices of the connected component of sym(H)− {pi+1, pi+2, pj−2, pj−1}
containing pi+3. If j− i ≥ 5, then H[C∪{pi+1, pi+2, pj−2, pj−1}] is a ladder and furthermore,
pi+1, pi+2, pj−2, and pj−1 are the only vertices with an H-neighbor outside the ladder.

I Lemma 3.14 (?). Let (G,R) be an instance of DSN and H be an inclusion-minimal
solution to (G,R) such that H is connected and every non-terminal vertex in H has at least
three neighbors. Moreover, assume that for every s, t ∈ T with s 6= t that st ∈ A(R) if and
only if there is a T -avoiding s-t path in H. Let a, b, c, d be four vertices of H and F ⊆ V (H)
such that a = b or ab ∈ A(H), c = d or cd ∈ A(H), F ∩ T = ∅, H[F] is a connected
component of H − {a, b, c, d}, and H[F ∪ {a, b, c, d}] is isomorphic to a ladder Gη,I . There
exist a directed graph H ′ and a set F ′ ⊆ V (H ′) such that:
(1) the genus of H ′ is at most the genus of H,
(2) H ′ − F ′ = H − F ,
(3) |F ′| = O(1),
(4) NH′(F ′) = {a, b, c, d},

E. Eiben, D. Knop, F. Panolan, and O. Suchý 25:11

(5) H ′ is an inclusion-minimal solution to R,
(6) for every k ≥ 10, if sym(H) contains k × k grid as a minor, then sym(H ′) contains

k × k grid as a minor,
(7) H ′ is connected,
(8) every non-terminal vertex in H ′ has at least three neighbors, and
(9) for every s, t ∈ T with s 6= t we have st ∈ A(R) if and only if there is a T -avoiding s-t

path in H ′.

Proof sketch. From Lemma 3.12 it follows that H[F ∪ {a, b, c, d}] is a union of two directed
paths P1 from a to d and P2 from c to b. We construct F ′ such that H ′[F ′ ∪ {a, b, c, d}] is a
ladder Gη′,I′ , where I ′ ⊆ {1, η′} and 1 ∈ I ′ iff a = b and η′ ∈ I ′ iff c = d. Even though it is a
bit technical, it is rather straightforward to verify that if we replace F by another ladder, then
H ′ will satisfy (5), (7), (8), and (9). If sym(H) does not contain any k × k grid for k ≥ 10,
then we just replace F with any constant size ladder and we are fine. Otherwise, we take a
largest grid minor K of sym(H). Since sym(H)[F ∪ {a, b, c, d}] has treewidth 2 and only 4
of its vertices have neighbors in the rest of H, one can show that sym(H)[F ∪ {a, b, c, d}]
contracts to at most ten vertices in K. Let KF be the graph induced on these ten vertices.
It is easy to see that if we replace H[F ∪ {a, b, c, d}] with any ladder whose underlying
undirected graph has KF as a minor which furthermore maps its boundaries onto KF in the
same way as sym(H)[F ∪ {a, b, c, d}], then the underlying undirected graph of the resulting
graph contains K as a minor as well. However, one can express by a constant-sized MSO
formula that a boundaried graph is a ladder Gη′,∅ and has the boundaried graph KF as a
minor. It follows that this formula has a constant-sized model, whose suitable orientation is
the sought replacement. J

I Lemma 3.15 (?). Let (G,R) be an instance of DSN and H be an inclusion-minimal
solution to (G,R) such that H is connected and every non-terminal vertex in H has at least
three neighbors. Moreover, assume that for every s, t ∈ T with s 6= t that st ∈ A(R) if and
only if there is a T -avoiding s-t path in H. There exists a directed graph H ′ such that

(H,H ′) is a
(
204(2g+3))-admissible pair,

T ⊆ V (H ′),
for all s, t ∈ T , there is a directed s-t path in H − (T \ {s, t}) if and only if there is a
directed path from s to t in H ′ − (T \ {s, t}),
H ′ is an inclusion-minimal solution to R,
H ′ is connected,
every non-terminal vertex in H ′ has at least three neighbors, and
for any arc st ∈ A(R), there is a T -avoiding directed path P from s to t in H ′ with length
at most O(|IP |).

Proof sketch. We obtain H ′ by recursively applying Lemma 3.14 until there is no ladder
with the boundary of size at most 4 that can be shortened by applying Lemma 3.14. By
Lemma 3.13 the distance between any two consecutive pi, pj ∈ QP ∪ IP is constant. Since
the genus of sym(H) is at most g, it follows from Proposition 2.3 that sym(H) is K3,2g+3-
minor-free. Hence, due to Proposition 2.2, the treewidth of sym(H) is at most 204(2g+3)`,
where ` is the size of the largest grid minor of sym(H) which is the same as of sym(H ′) by
Lemma 3.14. J

Proof of Theorem 3.1. Let H1 be any connected component of H, T1 = V (H1) ∩ T , and
R1 = R[T1]. By Lemma 3.2, there is R2 such that for every s, t ∈ T1 with s 6= t we have
st ∈ A(R2) if and only if there is a T1-avoiding s-t path in H1. By Lemma 3.4, there is a

STACS 2019

25:12 Complexity of the Steiner Network Problem w.r.t. the Number of Terminals

directed graph H2, such that H2 is an inclusion-minimal solution to R2, H2 is connected, for
every s, t ∈ T1 with s 6= t we have st ∈ A(R2) if and only if there is a T1-avoiding s-t path in
H2, every non-terminal vertex in H2 has at least three neighbors in H2 and the genus of H2
is at most the genus of H1. By Lemma 3.15, there exists a directed graph H ′ such that H ′ is
an inclusion-minimal solution to R2, H ′ is connected, tw(sym(H2)) ≤ 204(2g+3)tw(sym(H ′)),
and for each arc st ∈ A(R2), there is a directed path from s to t of length at most O(|IP |) in
H ′. Furthermore, all the vertices of H ′ are on some path of length at most O(|IP |) between
two terminals in H ′. By Lemma 3.8, it follows that there is a path of length at most O(q)
between each pair of terminals in sym(H ′) and hence the diameter of sym(H ′) is also at
most O(q). Finally, by Proposition 2.4, it follows that sym(H ′) has treewidth O(g′q), where
g′ is the genus of sym(H ′). Since the genus of sym(H ′) is at most the genus of sym(H2),
which in turn is at most the genus of sym(H1), which in turn is at most the genus of sym(H),
which is at most g, the genus of G, the theorem follows. J

4 Improved ETH-based Lower Bound for General Graphs

Our proof is based on a reduction from (a special case of) the following problem:

Partitioned Subgraph Isomorphism (PSI)
Input: Two undirected graphs G and H with |V (H)| ≤ |V (G)| (H is smaller) and

a mapping ψ : V (G)→ V (H).
Question: Is H isomorphic to a subgraph of G? I.e., is there an injective mapping

φ : V (H) → V (G) such that {φ(u), φ(v)} ∈ E(G) for each {u, v} ∈ E(H)
and ψ ◦ φ is the identity?

I Theorem 4.1 (Marx [32, Corollary 6.1]). If there exist a recursively enumerable class H of
graphs with unbounded treewidth, an algorithm A, and an arbitrary function f such that A
correctly decides every instance of Partitioned Subgraph Isomorphism with the smaller
graph H in H in time f(H)no(tw(H)/ log tw(H)), then ETH fails.

It is known that there are infinitely many 3-regular graphs such that each such graph H
has treewidth Θ(|V (H)|) (see [23, Proposition 1, Theorem 5]). Using the class of 3-regular
graphs as H in the above theorem, we arrive at the following corollary.

I Corollary 4.2. If there is an algorithm A and an arbitrary function f such that A correctly
decides every instance of Partitioned Subgraph Isomorphism with the smaller graph H
being 3-regular in time f(|V (H)|)no(|V (H)|/ log |V (H)|), then ETH fails.

Our plan is to use this corollary. To this end, we transform the (special) instances of PSI
to instances of DSN.

I Construction 1. Let (G,H,ψ) be an instance of PSI with H 3-regular and denote
k = |V (H)|. Note that then |E(H)| = O(k). We let r =

⌈√
k
⌉
. We first compute la-

belings α : V (H) → X, β : V (H) → Y , and γ : E(H) → Z, where X = {x1, . . . , xmax},
Y = {y1, . . . , ymax}, and Z = {z1, . . . , zmax} are three new sets. We want the sets X,Y, Z to
be of size O(r) while fulfilling the following constraints:
(i) ∀u, v ∈ V (H) : (α(u) 6= α(v)) ∨ (β(u) 6= β(v)),
(ii) ∀{u, v} ∈ E(H) : (α(u) 6= α(v)) ∧ (β(u) 6= β(v)),
(iii) ∀e, f ∈ E(H),∀u, v ∈ V (H) : ((u ∈ e) ∧ (v ∈ f) ∧ (α(u) = α(v))) =⇒ (γ(e) 6= γ(f)).
In other words, the pair (α(u), β(u)) uniquely identifies vertex u, adjacent vertices share no
labels and both pairs (α(u), γ({u, v})) and (α(v), γ({u, v})) uniquely identify edge {u, v}.

E. Eiben, D. Knop, F. Panolan, and O. Suchý 25:13

To obtain such labeling, first color the vertices of H greedily with colors 1, . . . , 4, denote
µ the coloring and A1, . . . , A4 the set of vertices of color 1, . . . , 4, respectively. For every
i ∈ [4], we split the set Ai into sets Ai,1, . . . , Ai,ai such that for every j ∈ [ai − 1] the set
Ai,j is of the size r and the set Ai,ai is of the size at most r. Since r =

⌈√
k
⌉
we know that

there will be at most r sets of the size r and, thus, at most r + 4 sets in total. We assign to
each nonempty set Ai,j a unique label x` and let α(u) = x` for every u ∈ Ai,j . Note that
|X| ≤ r + 4.

Next we construct a graph H ′ from H by turning each Ai,j into a clique. Since the degree
of each vertex in H is 3 and the size of each Ai,j is at most r, the degree of each vertex in
H ′ is at most r + 2. Hence we can color the vertices of H ′ greedily with colors y1, . . . , yr+3
and we let β be the coloring.

Finally, we construct a multigraph H ′′ from H ′ by contracting each clique Ai,j to a single
vertex. We keep multiple edges between two vertices if they are a result of the contraction,
but we remove all loops. Note that the edges preserved are exactly the edges of H. Since
the size of each Ai,j is at most r and H is 3-regular, the maximum degree (counting the
multiplicities of the edges) is at most 3r. Therefore, the maximum degree in the line graph
L(H ′′) of H ′′ is at most 6r − 2. Thus, we can color the edges of H ′′ greedily with colors
z1, . . . , z6r−1 and let γ be the coloring.

Let us check that the labelings fulfill the constraints. First, if α(u) = α(v), then
{u, v} ∈ E(H ′) and, thus, β(u) 6= β(v). If {u, v} ∈ E(H), then {u, v} ⊆ Ai,j would imply
that u and v are colored by the same color by µ – a contradiction. Hence, α(u) 6= α(v) and,
since E(H) ⊆ E(H ′), we also have β(u) 6= β(v). Finally, if e = {u, v′}, f = {u′, v}, and
α(u) = α(v), then the edges e and f share a vertex in H ′′ and, thus, γ(e) 6= γ(f).

Note also that the labelings can be obtained in O(|V (H)|2) time.
Having the labelings at hand, we construct the instance (G′, R) of DSN as follows (refer

to Figure 4 for an overview of the construction). We let V (G′) = V ∪W ∪ X ∪ Y ∪ Z,
where V = V (G), W = {wuv | {u, v} ∈ E(G)}, and X,Y, Z are the images of α, β, γ
as defined previously. We let T = V (R) = X ∪ Y ∪ Z. Note that q = O(r) = O(

√
k).

We let A(G′) = AV ∪ AW , where AV =
{(
α(ψ(u)), u

)
,
(
u, β(ψ(u))

)
| u ∈ V

}
and AW ={

(u,wuv), (v, wuv),
(
wuv, γ({ψ(u), ψ(v)})

)
| {u, v} ∈ E(G)

}
. We assign unit weights to all

arcs of G′. Finally let A(R) = AY ∪ AZ , where AY = {(α(u), β(u)) | u ∈ V (H)} and
AZ = {(α(u), γ({u, v})), (α(v), γ({u, v})) | {u, v} ∈ E(H)}.

Let us stop here to discuss the size of A(R). By Condition (i) on the labelings we have
|AY | = |V (H)|. By Condition (ii) we have (α(u), γ({u, v})) 6= (α(v), γ({u, v})) for any
{u, v} ∈ E(H). Hence, by Condition (iii) the size of AZ is exactly 2|E(H)|.

Next, we show that the construction transforms yes-instances of PSI to instances of DSN
with bounded value of the optimum.

I Lemma 4.3. If there is an injective mapping φ forming a solution to the instance (G,H,ψ)
of PSI, then there is a subgraph P of G′ forming a solution to the instance (G′, R) of DSN
with cost |A(P)| ≤ 2|V (H)|+ 3|E(H)|.

Proof. Let φ be a solution to the instance (G,H,ψ). Since φ is a solution, we know
that {φ(u), φ(v)} ∈ E(G) whenever {u, v} ∈ E(H). Consider the subgraph P = G′[Vφ]
of G′ induced by Vφ = X ∪ Y ∪ Z ∪ V ′ ∪ W ′, where V ′ = {φ(v) | v ∈ V (H)} and
W ′ =

{
wφ(u)φ(v) | {u, v} ∈ E(H)

}
. Obviously, |V ′| = |V (H)| and |W ′| = |E(H)|.

Since each arc in AW is incident to some vertex in W and each vertex in W is incident
to exactly 3 such arcs, P contains at most 3|E(H)| arcs from AW . Similarly, since each arc
in AV is incident to some vertex in V and each vertex in V is incident to exactly 2 such arcs,
P contains at most 2|V (H)| arcs from AV . Thus, P contains at most 2|V (H)|+ 3|E(H)|
arcs in total.

STACS 2019

25:14 Complexity of the Steiner Network Problem w.r.t. the Number of Terminals

α(u′), β(u′)
u′

α(v′), β(v′)
v′

γ({u′, v′})

u

v

α(ψ(u))

u

β(ψ(u))

α(ψ(v))

v

β(ψ(v))

wuv

γ({ψ(u), ψ(v)})

Figure 4 An illustration of Construction 1. Left is a pattern graph H, middle a host graph G,
and right the produced graphs G′ and R combined. We assume ψ(u) = u′ and ψ(v) = v′ here. On
the right the terminals are depicted by full squares and non-terminals by empty circles. Arcs in G′
are drawn solid, while the arcs of R are dashed.

We want to show for each (s, t) ∈ A(R) that there is a directed path from s to t

in P . Indeed, if (x, y) ∈ AY , then x = α(u) and y = β(u) for some u ∈ V (H) and
(α(u), φ(u), β(u)) = (α(ψ(φ(u))), φ(u), β(ψ(φ(u)))) is a path of length 2 from x to y in
P . If (x, z) ∈ AZ , then x = α(u) and z = γ({u, v}) for some {u, v} ∈ E(H) and
(α(u), φ(u), wφ(u)φ(v), γ({u, v})) is a path of length 3 from x to z in P . This finishes the
proof. J

Next we show that the value of the optimum of the instances of DSN produced by the
construction can be appropriately bounded only if we started with a yes-instance of PSI.

I Lemma 4.4 (?). If there is a subgraph P of G′ forming a solution to the instance (G′, R)
of DSN with cost |A(P)| ≤ 2|V (H)|+ 3|E(H)|, then there is an injective mapping φ forming
a solution to the instance (G,H,ψ) of PSI.

Proof of Theorem 1.2. Let A be an algorithm that correctly solves DSN (on general graphs)
in time f(q)no(q2/ log q) for some function f . Let us construct an algorithm B for PSI with
the smaller graph H being 3-regular as follows: Let (G,H,ψ) be an instance of PSI with H
3-regular. We use Construction 1 to build the instance (G′, R) of DSN. Then run A on (G′, R)
and return yes if and only if the cost of the obtained solution P is |A(P)| ≤ 2|V (H)|+3|E(H)|.
The answer of B is correct by Lemmata 4.3 and 4.4.

Let us analyze the running time of B. Let us denote k = |V (H)| and n = |V (G)|. We may
assume that k ≤ n, as otherwise we can immediately answer no. The labelings can be obtained
in O(k2) time. Graph G has at most O(n2) edges and the graphs G′ and R can be constructed
in linear time in the number of vertices and edges of the graphs G and H, respectively. That
is, Construction 1 can be performed in O(n2) time and, in particular, G′ has O(n2) vertices.
However, by the construction, the number q of vertices of graph R is O(

√
k). Now, A runs

on (G′, R) in time f(q)|V (G′)|o(q2/ log q) = f ′(
√
k)no((

√
k)2/ log

√
k) = f ′′(k)no(k/ log k) for some

functions f, f ′, and f ′′. But then the whole B runs in f ′′(k)no(k/ log k) time and ETH fails by
Corollary 4.2. J

5 Conclusions

Our results show that we can solve DSN in time nO(q) when the input directed graph is
embeddable on a fixed surface However, for general graphs it is unlikely to obtain even an
algorithm running in time no(q2/ log(q)). It would be interesting to see what happens for the

E. Eiben, D. Knop, F. Panolan, and O. Suchý 25:15

graph classes that are somewhere in between. For example, it is not difficult to show that
the graph H ′ that we obtain in Section 3 has at most O

(
q3) vertices and, hence, the largest

grid minor of H ′ is of size O
(
q3/2)×O(q3/2). Therefore, with a careful modification of our

approach, one can show that there is an nO(q3/2) time algorithm for DSN when the input
graph excludes a fixed minor. However, it remains open whether the running time nO(q3/2)
is asymptotically optimal or whether it is possible to design an nO(q) time algorithm for DSN
in this case.

References
1 Marshall W. Bern and Paul E. Plassmann. The Steiner Problem with Edge Lengths 1 and 2.

Inf. Process. Lett., 32(4):171–176, 1989. doi:10.1016/0020-0190(89)90039-2.
2 Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. Fourier meets Möbius:

fast subset convolution. In Proceedings of the 39th ACM Symposium on Theory of Computing,
STOC 2007, pages 67–74. ACM, 2007.

3 Jarosław Byrka, Fabrizio Grandoni, Thomas Rothvoß, and Laura Sanità. Steiner Tree
Approximation via Iterative Randomized Rounding. J. ACM, 60(1):6:1–6:33, February 2013.
doi:10.1145/2432622.2432628.

4 Moses Charikar, Chandra Chekuri, To-Yat Cheung, Zuo Dai, Ashish Goel, Sudipto Guha, and
Ming Li. Approximation Algorithms for Directed Steiner Problems. Journal of Algorithms,
33(1):73–91, 1999. doi:10.1006/jagm.1999.1042.

5 Chandra Chekuri, Guy Even, Anupam Gupta, and Danny Segev. Set connectivity problems
in undirected graphs and the directed Steiner network problem. ACM Trans. Algorithms,
7(2):18:1–18:17, 2011. doi:10.1145/1921659.1921664.

6 Rajesh Chitnis, Andreas Emil Feldmann, and Pasin Manurangsi. Parameterized Approximation
Algorithms for Bidirected Steiner Network Problems. In Yossi Azar, Hannah Bast, and Grzegorz
Herman, editors, 26th Annual European Symposium on Algorithms (ESA 2018), volume 112
of Leibniz International Proceedings in Informatics (LIPIcs), pages 20:1–20:16, Dagstuhl,
Germany, 2018. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.
ESA.2018.20.

7 Rajesh Chitnis, Mohammadtaghi Hajiaghayi, and Daniel Marx. Tight Bounds for Planar
Strongly Connected Steiner Subgraph with Fixed Number of Terminals (and Extensions). In
Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, pages
1782–1801. SIAM, 2014. doi:10.1137/1.9781611973402.129.

8 Dietmar Cieslik. Steiner minimal trees, volume 23 of Nonconvex Optimization and Its Applica-
tions. Springer Science & Business Media, 1998.

9 Marek Cygan, Holger Dell, Daniel Lokshtanov, Dániel Marx, Jesper Nederlof, Yoshio Okamoto,
Ramamohan Paturi, Saket Saurabh, and Magnus Wahlström. On Problems as Hard as
CNF-SAT. ACM Trans. Algorithms, 12(3):41, 2016. doi:10.1145/2925416.

10 Erik D. Demaine, MohammadTaghi Hajiaghayi, and Ken-ichi Kawarabayashi. Algorithmic
Graph Minor Theory: Improved Grid Minor Bounds and Wagner’s Contraction. Algorithmica,
54(2):142–180, 2009. doi:10.1007/s00453-007-9138-y.

11 Reinhard Diestel. Graph Theory, 5th Edition, volume 173 of Graduate texts in mathematics.
Springer, 2017.

12 Irit Dinur and Pasin Manurangsi. ETH-Hardness of Approximating 2-CSPs and Directed
Steiner Network. In Anna R. Karlin, editor, 9th Innovations in Theoretical Computer Science
Conference (ITCS 2018), volume 94 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 36:1–36:20, Dagstuhl, Germany, 2018. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik. doi:10.4230/LIPIcs.ITCS.2018.36.

13 Yevgeniy Dodis and Sanjeev Khanna. Design Networks with Bounded Pairwise Distance. In
Proc. 31th STOC, pages 750–759. ACM, 1999.

STACS 2019

http://dx.doi.org/10.1016/0020-0190(89)90039-2
http://dx.doi.org/10.1145/2432622.2432628
http://dx.doi.org/10.1006/jagm.1999.1042
http://dx.doi.org/10.1145/1921659.1921664
http://dx.doi.org/10.4230/LIPIcs.ESA.2018.20
http://dx.doi.org/10.4230/LIPIcs.ESA.2018.20
http://dx.doi.org/10.1137/1.9781611973402.129
http://dx.doi.org/10.1145/2925416
http://dx.doi.org/10.1007/s00453-007-9138-y
http://dx.doi.org/10.4230/LIPIcs.ITCS.2018.36

25:16 Complexity of the Steiner Network Problem w.r.t. the Number of Terminals

14 Stuart E. Dreyfus and Robert A. Wagner. The Steiner problem in graphs. Networks, 1:195–207,
1972.

15 David Eppstein. Diameter and Treewidth in Minor-Closed Graph Families. Algorithmica,
27(3):275–291, 2000. doi:10.1007/s004530010020.

16 Ranel E. Erickson, Clyde L. Monma, and Arthur F. Veinott, Jr. Send-and-Split Method for
Minimum-Concave-Cost Network Flows. Mathematics of Operations Research, 12(4):634–664,
1987. doi:10.1287/moor.12.4.634.

17 Jon Feldman and Matthias Ruhl. The Directed Steiner Network Problem Is Tractable for a
Constant Number of Terminals. SIAM Journal on Computing, 36(2):543–561, 2006.

18 Andreas Emil Feldmann and Dániel Marx. The Complexity Landscape of Fixed-Parameter
Directed Steiner Network Problems. In Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval
Rabani, and Davide Sangiorgi, editors, 43rd International Colloquium on Automata, Languages,
and Programming (ICALP 2016), volume 55 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 27:1–27:14, Dagstuhl, Germany, 2016. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik. doi:10.4230/LIPIcs.ICALP.2016.27.

19 Andreas Emil Feldmann and Dániel Marx. The Complexity Landscape of Fixed-Parameter
Directed Steiner Network Problems. CoRR, abs/1707.06808, 2017. arXiv:1707.06808.

20 Fedor V. Fomin, Petteri Kaski, Daniel Lokshtanov, Fahad Panolan, and Saket Saurabh.
Parameterized Single-Exponential Time Polynomial Space Algorithm for Steiner Tree. In
Automata, Languages, and Programming - 42nd International Colloquium, ICALP 2015,
Proceedings, Part I, volume 9134 of LNCS, pages 494–505. Springer, 2015. doi:10.1007/
978-3-662-47672-7_40.

21 Fedor V. Fomin, Daniel Lokshtanov, Neeldhara Misra, and Saket Saurabh. Planar F-Deletion:
Approximation, Kernelization and Optimal FPT Algorithms. In 53rd Annual IEEE Symposium
on Foundations of Computer Science, FOCS 2012, New Brunswick, NJ, USA, October 20-23,
2012, pages 470–479. IEEE Computer Society, 2012. doi:10.1109/FOCS.2012.62.

22 Bernhard Fuchs, Walter Kern, Daniel Mölle, Stefan Richter, Peter Rossmanith, and Xinhui
Wang. Dynamic Programming for Minimum Steiner Trees. Theory of Computing Systems,
41(3):493–500, 2007. doi:10.1007/s00224-007-1324-4.

23 Martin Grohe and Dániel Marx. On tree width, bramble size, and expansion. J. Combin.
Theory Ser. B, 99(1):218–228, 2009. doi:10.1016/j.jctb.2008.06.004.

24 Jonathan L. Gross and Thomas W. Tucker. Topological Graph Theory. Wiley-Interscience,
New York, NY, USA, 1987.

25 Jiong Guo, Rolf Niedermeier, and Ondřej Suchý. Parameterized Complexity of Arc-Weighted
Directed Steiner Problems. SIAM Journal on Discrete Mathematics, 25(2):583–599, 2011.

26 Eran Halperin and Robert Krauthgamer. Polylogarithmic Inapproximability. In Proceedings of
the Thirty-fifth Annual ACM Symposium on Theory of Computing, STOC ’03, pages 585–594,
New York, NY, USA, 2003. ACM. doi:10.1145/780542.780628.

27 Frank K. Hwang, Dana S. Richards, and Pawel Winter. The Steiner Tree Problem, volume 53
of Annals of Discrete Mathematics. Elsevier, 1992. doi:10.1016/S0167-5060(08)70188-2.

28 Russell Impagliazzo and Ramamohan Paturi. On the Complexity of k-SAT. J. Comput. Syst.
Sci., 62(2):367–375, 2001. doi:10.1006/jcss.2000.1727.

29 Richard M. Karp. Reducibility among Combinatorial Problems. In Raymond E. Miller,
James W. Thatcher, and Jean D. Bohlinger, editors, Proceedings of a symposium on the
Complexity of Computer Computations, 1972, pages 85–103, Boston, MA, 1972. Springer US.
doi:10.1007/978-1-4684-2001-2_9.

30 Anatolii Y. Levin. Algorithm for the shortest connection of a group of graph vertices. Sov.
Math. Dokl., 12:1477–1481, 1971.

31 Leonid Libkin. Elements of Finite Model Theory. Texts in Theoretical Computer Science. An
EATCS Series. Springer, 2004. doi:10.1007/978-3-662-07003-1.

32 Dániel Marx. Can You Beat Treewidth? Theory of Computing, 6(1):85–112, 2010. doi:
10.4086/toc.2010.v006a005.

http://dx.doi.org/10.1007/s004530010020
http://dx.doi.org/10.1287/moor.12.4.634
http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.27
http://arxiv.org/abs/1707.06808
http://dx.doi.org/10.1007/978-3-662-47672-7_40
http://dx.doi.org/10.1007/978-3-662-47672-7_40
http://dx.doi.org/10.1109/FOCS.2012.62
http://dx.doi.org/10.1007/s00224-007-1324-4
http://dx.doi.org/10.1016/j.jctb.2008.06.004
http://dx.doi.org/10.1145/780542.780628
http://dx.doi.org/10.1016/S0167-5060(08)70188-2
http://dx.doi.org/10.1006/jcss.2000.1727
http://dx.doi.org/10.1007/978-1-4684-2001-2_9
http://dx.doi.org/10.1007/978-3-662-07003-1
http://dx.doi.org/10.4086/toc.2010.v006a005
http://dx.doi.org/10.4086/toc.2010.v006a005

E. Eiben, D. Knop, F. Panolan, and O. Suchý 25:17

33 Bojan Mohar and Carsten Thomassen. Graphs on Surfaces. Johns Hopkins series in the
mathematical sciences. Johns Hopkins University Press, 2001.

34 Jesper Nederlof. Fast Polynomial-Space Algorithms Using Inclusion-Exclusion. Algorithmica,
65(4):868–884, 2013. doi:10.1007/s00453-012-9630-x.

35 Hans Jürgen Prömel and Angelika Steger. The Steiner Tree Problem; a Tour through Graphs,
Algorithms, and Complexity. Vieweg, 2002.

36 Ondřej Suchý. On Directed Steiner Trees with Multiple Roots. In Pinar Heggernes, editor,
Graph-Theoretic Concepts in Computer Science - 42nd International Workshop, WG 2016,
Istanbul, Turkey, June 22-24, 2016, Revised Selected Papers, volume 9941 of Lecture Notes in
Computer Science, pages 257–268, 2016. doi:10.1007/978-3-662-53536-3_22.

STACS 2019

http://dx.doi.org/10.1007/s00453-012-9630-x
http://dx.doi.org/10.1007/978-3-662-53536-3_22

Space Lower Bounds for the Signal Detection
Problem
Faith Ellen
University of Toronto, Canada
faith@cs.toronto.edu

Rati Gelashvili
University of Toronto, Canada
gelash@cs.toronto.edu

Philipp Woelfel
University of Calgary, Canada
woelfel@cpsc.ucalgary.ca

Leqi Zhu
University of Toronto, Canada
lezhu@cs.toronto.edu

Abstract
Many shared memory algorithms have to deal with the problem of determining whether the value of
a shared object has changed in between two successive accesses of that object by a process when the
responses from both are the same. Motivated by this problem, we define the signal detection problem,
which can be studied on a purely combinatorial level. Consider a system with n + 1 processes
consisting of n readers and one signaller. The processes communicate through a shared blackboard
that can store a value from a domain of size m. Processes are scheduled by an adversary. When
scheduled, a process reads the blackboard, modifies its contents arbitrarily, and, provided it is a
reader, returns a Boolean value. A reader must return true if the signaller has taken a step since the
reader’s preceding step; otherwise it must return false.

Intuitively, in a system with n processes, signal detection should require at least n bits of shared
information, i.e., m ≥ 2n. But a proof of this conjecture remains elusive. We prove a lower bound
of m ≥ n2, as well as a tight lower bound of m ≥ 2n for two restricted versions of the problem,
where the processes are oblivious or where the signaller always resets the blackboard to the same
fixed value. We also consider a one-shot version of the problem, where each reader takes at most
two steps. In this case, we prove that it is necessary and sufficient that the blackboard can store
m = n + 1 values.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases Signal detection, ABA problem, space complexity, lower bound

Digital Object Identifier 10.4230/LIPIcs.STACS.2019.26

Funding We acknowledge the support of the Natural Sciences and Engineering Research Council
of Canada (NSERC). This research was undertaken, in part, thanks to funding from the Canada
Research Chairs program. Rati Gelashvili was supported by the University of Toronto Faculty of
Arts & Science Postdoctoral Fellowship.

1 Introduction

1.1 The Signal Detection Problem
Consider a system consisting of n+ 1 processes, one signaller, s, and n readers, r1, . . . , rn,
that communicate through a shared blackboard. The blackboard can contain one value from
a domain of size m. Processes are scheduled to take steps one at a time by an adversarial

© Faith Ellen, Rati Gelashvili, Philipp Woelfel, and Leqi Zhu;
licensed under Creative Commons License CC-BY

36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019).
Editors: Rolf Niedermeier and Christophe Paul; Article No. 26; pp. 26:1–26:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:faith@cs.toronto.edu
mailto:gelash@cs.toronto.edu
mailto:woelfel@cpsc.ucalgary.ca
mailto:lezhu@cs.toronto.edu
https://doi.org/10.4230/LIPIcs.STACS.2019.26
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

26:2 Space Lower Bounds for the Signal Detection Problem

scheduler. Whenever a process takes a step, it atomically reads the blackboard and can
modify its contents arbitrarily, i.e. without interruption from other processes.

In the signal detection problem, each time a reader, ri, has taken a step, it must return a
Boolean value. If ri has no preceding step, it can return either true or false. Otherwise, it
must return true if and only if the signaller has taken a step since ri’s preceding step. We
are concerned with how large m has to be for this problem to be solvable.

1.2 Simple Signal Detection Algorithms
For large or even unbounded values of m, there are simple solutions to the signal detection
problem. For example, the board could store an unbounded signal counter that is initially 0.
Each time the signaller takes a step, it increments the counter. When a reader is scheduled,
it simply memorizes the counter value, but does not change it. To detect whether a signal
has occurred since its last step, a reader only needs to compare the current counter value
with the one it read in its previous step. The number of values the blackboard needs to store
grows with the number of signals that occur, which can be unbounded.

The following simple protocol works for all executions and needs only to store an n-bit
string (b1, . . . , bn) on the blackboard. Initially, b1 = · · · = bn = 0, and whenever the signaller
takes a step, it sets all bits to 1. For each j ∈ {1, . . . , n}, reader rj resets bit bj to 0, returns
false if this is rj ’s first step, and returns the old value of bj otherwise.

1.3 ABA Detection
Signal detection is related to the fundamental ABA detection problem in asynchronous
shared memory systems. In such systems, a process that observes the same value A in some
shared object in two successive accesses cannot tell whether the value of the object remained
unchanged between them. More formally, it cannot distinguish between an execution in
which the shared object did not change and an execution in which the value of the object
changed from A to some other value B and then back to A. Many shared memory algorithms
have to deal with this problem.

A well-known example is the double-collect algorithm for performing an atomic scan of
an array [1]: A process repeatedly performs a collect (reading all components of the array
one by one) until the sequences of values read in two consecutive collects are the same. This
algorithm is only correct (linearizable) if no ABAs occur, meaning that any two consecutive
reads of the same array entry return the same value if and only if the value of the array entry
was not changed between the two reads. This is because it can be shown that, provided no
ABAs occur, the sequence returned by a scan must be the contents of the array at the end of
its second last collect and the beginning of its last collect. However, in executions in which
ABAs occur, this implementation might incorrectly return a sequence of values that was not
the contents of the array at any point during the execution.

A standard approach to dealing with ABAs is tagging, as introduced by IBM [6], whereby
a shared object gets augmented with a tag that changes with every write operation. If tags
are never reused, the ABA problem can be avoided. From a theory perspective this solution
is unsatisfactory: If there is no bound on the length of executions, then unbounded sized
objects are required to accommodate ever increasing tag values. Even though, in many
practical scenarios, a system may never run out of tags, it is often desirable or even necessary
to use an entire word for data. In such scenarios, the tag associated with a data word could
be stored in a subsequent memory location and double-width atomic instructions could be
used. However, these are not supported by most of today’s mainstream architectures [8].

F.Ellen, R. Gelashvili, P.Woelfel, and L. Zhu 26:3

In some cases, it is possible to store the tag in an unrelated memory location [7], but this
requires technically difficult algorithms and tedious correctness proofs. As a result, algorithm
designers often deal with ABAs in an ad-hoc way. For example, handshaking bits can be
used to detect changes in the components of the array in a wait-free implementation of a
snapshot object [1]. Such solutions are algorithm specific and require individual correctness
proofs.

ABAs can also occur when using compare-and-swap (CAS) objects, which are provided by
most existing multiprocessor systems and are much more powerful than read/write registers.
Algorithms devised in theoretical research often use load-linked store-conditional (LL/SC)
objects, which do not suffer from ABAs, and can easily replace CAS objects. Unfortunately,
only a small number of multiprocessor systems provide LL/SC and they are weaker than the
LL/SC specification used in theoretical research. Variants of LL/SC available in modern
hardware restrict programmers severely in how the objects can be used [10], and “offer little
or no help with preventing the ABA problem” [9].

To study the complexity of ABA detection, Aghazadeh and Woelfel [2] defined an ABA
detecting register, which extends a read/write register with the ability to detect ABAs. It
supports the operations DWrite(x), which changes the value of the object to x, and DRead(),
which returns the current value of the object together with a Boolean flag. The flag is true
if and only if the process has previously performed DRead() and, since its last preceding
DRead(), some process performed DWrite(). The authors proved space lower bounds and
time-space-tradeoffs for linearizable implementations of ABA detecting registers in shared
memory systems with n processors that provide bounded atomic base objects, such as
read/write registers or CAS objects. For example, if only bounded read/write registers are
available as base objects, then at least n− 1 of them are needed to obtain an obstruction-free
ABA detecting register. If bounded CAS objects are also available, then any implementation
using m base objects has step-complexity Ω(n/m).

All the lower bound results in [2] are specific to the base objects provided by the system,
and provide no insights for systems using different sets of base objects. But we conjecture that
there is a large, general lower bound for the amount of information that needs to be stored
in a system for processes to detect ABAs: Intuitively, the system state needs to keep track
of whether the value of the object has changed since each process last accessed the object.
This requires at least n bits of information. Hence, it seems believable that detecting ABAs
in any system with arbitrarily powerful base objects requires at least n bits of information to
be stored either in the base object or in the hardware implementing the base objects (for
example, implementing LL/SC objects). Using the reasonable assumption that a single base
object can store O(logn) bits of information, this would imply that Ω(n/ logn) base objects
are required for implementing a single ABA detecting object.

The signal detection problem is a restricted version of the problem of detecting ABAs
in asynchronous shared memory systems, stripped down to the essentials necessary for
determining the information theoretic requirements. Its definition is self-contained, and
the problem can be studied without any background knowledge on shared memory systems.
If n processes can detect ABAs in a standard asynchronous shared memory system with
arbitrarily strong primitives, then they can also solve signal detection. Therefore, if m∗ is
the smallest value of m (the number of values stored on the blackboard) for which signal
detection can be solved, then log2 m

∗ is a lower bound for the number of bits needed for
ABA detection.

STACS 2019

26:4 Space Lower Bounds for the Signal Detection Problem

1.4 Results
We conjecture that any solution to the signal detection problem requires m ≥ 2n. This
simply defined combinatorial problem does not seem to have a simple solution and a proof of
the conjecture has eluded us so far. Even a proof of a polynomial lower bound is surprisingly
non-trivial. We show the following.

I Theorem 1. In any algorithm for the signal detection problem, the blackboard stores
m = Ω(n2) different values.

To obtain better understanding, we consider several restricted versions of the signal
detection problem and prove tight upper and lower bounds for them.

First, we consider a one-shot version of signal detection, where no reader takes more than
two steps (but the signaller can take arbitrarily many steps). We show that this problem is
strictly easier than the unrestricted version of the problem by showing that one-shot signal
detection can be solved with n+ 1 different blackboard values, which is optimal.

I Theorem 2. The minimum number of different values that the blackboard stores in an
algorithm that solves the one-shot signal detection problem is m = n+ 1.

Then we consider the case of oblivious processes. Here each process p is equipped with
a fixed function fp : {0, . . . ,m − 1} → {0, . . . ,m − 1}. When taking a step it replaces
the blackboard contents x with fp(x). Hence, what a process writes to the blackboard is
independent of the process’ internal state (but the return value of a reader’s step may not be).
In the simple algorithm above, which uses m = 2n blackboard values, processes are oblivious.
In fact, what a reader returns also only depends on the contents of the blackboard and not
on its internal state. We prove that when processes are oblivious, no better algorithm exists.

I Theorem 3. In any algorithm for the signal detection problem with oblivious processes,
the blackboard stores m ≥ 2n different values.

The signal detection problem with oblivious processes is similar to determining the
minimum size of a dictionary in a sequential system. A dictionary supports three operations,
insert(x), query(x), and reset(), where x is a parameter chosen from a domain of size n. A
call to query(x) returns true if there has been an insert(x) operation since the last reset()
operation or since the beginning of the execution, if there has been no reset(). Otherwise, it
returns false. A dictionary implemented using b(n) bits immediately yields a solution to the
signal detection problem with oblivious processes as follows: A blackboard with m = 2b(n)

possible values is used to store the dictionary. When a signaler takes a step, it simulates a
reset() operation on the dictionary stored on the blackboard. Similarly, when reader ri takes
a step, it simulates query(i) followed by insert(i) on the dictionary and then returns the
return value of its query operation. However, an arbitrary solution to the signal detection
problem does not seem to yield an implementation of a dictionary. The difficulty is that the
return value of a step by a reader ri can depend on the state of the reader and, thus, its
entire past execution. In contrast, the result of a query(i) operation is only a function of the
state of the dictionary. Hence, the n-bit information theory lower bound for implementing a
dictionary cannot be used to obtain Theorem 3.

We also consider signal detection with identical signals, where the signaller always resets
the blackboard to the same value. Note that the simple algorithm above with m = 2n

uses identical signals. Studying this restricted problem has another motivation: Consider a
shared memory system, where shared memory objects may be reset to their initial states
at arbitrary times. For example, this can happen due to power outages if volatile memory

F.Ellen, R. Gelashvili, P.Woelfel, and L. Zhu 26:5

is used. A solution to signal detection with identical signals corresponds to an algorithm
where processes can detect that such faults have happened. This may allow them to start a
recovery procedure. This is dual to the recently introduced notion of recoverable algorithms
[5, 4, 3], which tolerate power outages when the local variables of processes are stored on
volatile memory, but shared memory is non-volatile.

I Theorem 4. In any algorithm for the signal detection problem with identical signals, the
blackboard stores m ≥ 2n different values.

The lower bound proofs of m ≥ 2n for signal detection with either oblivious readers or
identical signals have one interesting aspect in common. We show that one can reach a
configuration, C, from which 2n different blackboard values result from the 2n schedules
that are sub-sequences of (r1, . . . , rn). For our simple algorithm, each execution that ends
with the signaller taking a step results in a configuration with this property. We show
that a lower bound proof for the unrestricted signal detection problem cannot rely on this
property. In particular, we present an algorithm for two readers, r1 and r2, which uses a
bounded number of blackboard values, such that every reachable configuration C satisfies
the following: the schedules sr1 and sr2 performed starting from C result in configurations
with the same blackboard contents. Hence, in contrast to our earlier intuition, it is not
necessary for the blackboard to store information about which processes have taken steps
since the signaller last took a step: Csr1 and Csr2 are indistinguishable to the signaller.
This algorithm uses m = 16 blackboard values, so it does not contradict our conjecture.
However, it has interesting implications for lower bound proof techniques - for example, the
approach that we used to prove Theorem 4 does not apply to this particular algorithm.

2 Preliminaries

We consider a deterministic, asynchronous system in which n + 1 processes with unique
IDs in {s, r1, . . . , rn} communicate with one another using a single shared blackboard. Each
time a process takes a step, it atomically reads the blackboard, may change the value of the
blackboard based on its state and the value it read, and updates its state.

A configuration C consists of a value, v(C), for the blackboard and a state for each
process. An execution is an alternating sequence of configurations and steps. If C is a
configuration and α is a finite execution starting from C, then Cα denotes the configuration
at the end of α. For any set of processes, P , a P -only execution is an execution in which
only processes in P take steps in the execution. A solo execution is a P -only execution in
which P contains only one process, i.e., all steps in the execution are by the same process.

A schedule is a sequence of processes (in which the same process can occur multiple times).
For any (deterministic) algorithm and for any configuration C, a schedule α determines a
unique execution starting from C in which the processes take steps in the order specified by
the schedule. The configuration at the end of this execution is called Cα.

Two configurations, C and C ′, are indistinguishable to a set of processes, P , if v(C) = v(C ′)
and each process in P has the same state in C as it does in C ′. If C and C ′ are indistinguishable
to P and α is a finite P -only execution from C, then it is also an execution from C ′, and Cα
and C ′α are also indistinguishable to P .

3 One-Shot Signal Detection

Recall that in the one-shot signal detection problem, no reader takes more than two steps,
but the signaller can take arbitrarily many steps. Consider the following algorithm that
solves this problem using m = n+ 1 values:

STACS 2019

26:6 Space Lower Bounds for the Signal Detection Problem

The blackboard initially has value 0.
Whenever s takes a step, it resets the blackboard contents to 0.
When ri takes its first step, it changes the blackboard contents to i if it reads 0; otherwise
it leaves the blackboard unchanged. In either case, ri locally stores the value vi 6= 0 of
the blackboard immediately after its first step and returns false. Let vi 6= 0 denote the
value of the blackboard immediately after this step.
When ri takes its second step, it returns false if it reads vi from the blackboard; otherwise
it returns true. It does not change the value of the blackboard in either case.

Note that only the signaller changes the blackboard contents to 0 and a reader only
changes the blackboard contents from 0. Thus, if the signaller does not take any steps
between the two steps of reader ri, then the value of the blackboard remains vi during this
interval and ri returns false.

If the signaller does take a step between the two steps of reader ri, then the blackboard
is reset to 0. Consider the last step, S′, by the signaller during this interval. If no reader
takes its first step after S′, but before the second step by ri, then ri will read 0 from the
blackboard on its second step and return true Otherwise, consider the first step after S′ in
which a reader rj takes its first step. It will change the blackboard contents to j. Note that
j 6= vi, since rj is the only reader that can change the blackboard contents to j and rj has
not previously taken a step. In this case, ri will read j from the blackboard on its second
step and return true.

There is also a matching lower bound. In both of the following proofs, it is sufficient to
restrict attention to executions in which each reader takes at most two steps.

I Lemma 5. Let C be a configuration and let r be a reader. If α is a ({r1, . . . , rn}−{r})-only
execution from C ′ = Cr and β is a ({s, r1, . . . , rn} − {r})-only execution from C ′αs, then,
for every configuration D in α and every configuration E in β, v(D) 6= v(E).

Proof. Suppose not. Then there is some configuration D in α and some configuration E
in β such that v(D) = v(E). Since r takes no steps in αsβ, D and E are indistinguishable
to r. Note that r must return false if it takes a step in configuration D, because s has not
taken any steps since r last took a step. However, r must return true if it takes a step in
configuration E, because s has taken a step since r last took a step. This is impossible,
because D and E are indistinguishable to r. J

We can now prove Theorem 2, restated for convenience:

I Theorem 2. The minimum number of different values that the blackboard stores in an
algorithm that solves the one-shot signal detection problem is m = n+ 1.

Proof. In the beginning of this section, we gave an algorithm for one-shot signal detection
in which blackboard stores n+ 1 values. In the following we show that, in any algorithm for
one-shot signal detection, the blackboard stores at least n+ 1 different values.

Let C0 be the initial configuration. For 1 ≤ j ≤ n, let Cj = Cj−1srj , and let Cn+1 = Cns.
For 1 ≤ i < n, consider the empty execution α from Ci and the execution β from Cis

with schedule ri+1 · · · srns. By Lemma 5 with C ′ = Ci and r = ri, v(Ci) 6= v(E) for all
configurations E in β. In particular, v(Ci) 6= v(Cj) for i+ 1 ≤ j ≤ n+ 1.

For i = n, consider the empty execution α from Cn and the empty execution β from
Cns = Cn+1 By Lemma 5 with C ′ = Cn and r = rn, v(Cn) 6= v(Cn+1).

Hence |{v(C1), . . . , v(Cn), v(Cn+1)}| = n+ 1. J

F.Ellen, R. Gelashvili, P.Woelfel, and L. Zhu 26:7

There is a simple generalization of the algorithm for one-shot signal detection using
m = n+ 1 values to an algorithm for signal detection using m = bn+ 1 values when each
reader can perform at most b + 1 steps: When a reader ri reads a 0 from the blackboard
in its j’th step, for 1 ≤ j ≤ b, it changes the blackboard contents to (i, j), instead of i, and
stores the value of the blackboard in vi. When ri takes its first step, it always returns false.
When ri takes subsequent steps, it returns false if it reads vi from the blackboard; otherwise
it returns true.

4 Identical Signals

Suppose that the signaller always resets the contents of the blackboard to a fixed value, say
0. We show that the blackboard must be able to store at least 2n values.

Given a set of readers, R, let ~R denote the schedule consisting of one occurrence of each
reader in R, in order of their identifiers, and letM(R) denote the set {ri : i ≤ j for some rj ∈
R} of all readers whose identities are less than or equal to the largest identity of the readers
in R. In particular, M(∅) = ∅. For example, M({r1, r4, r8}) = {r1, r2, . . . , r8}. Notice that,
for any two sets of readers R and R′, either M(R) ⊆M(R′) or M(R′) ⊆M(R). There are
n+ 1 such sets, i.e., |{M(R) : R ⊆ {r1, . . . , rn}}| = n+ 1.

I Lemma 6. If the blackboard can only store a finite number of different values, then it
is possible to reach a configuration D such that, for every set of readers, T , there is a
(M(T) ∪ {s})-only execution β from D~Ts such that v(D~Tsβ) = v(D~T).

Proof. Assume that, for all reachable configurations C, there is a set of readers, T , such that,
for all (M(T) ∪ {s})-only executions β from C ~Ts, v(C ~Tsβ) 6= v(C ~T). We define an infinite
sequence (Ci)i≥0 of reachable configurations as follows. Let C0 be the initial configuration.
For j ≥ 1, let Tj be a set of readers such that for all (M(Tj) ∪ {s})-only executions β from
Cj−1 ~Tjs, v(Cj−1 ~Tjsβ) 6= v(Cj−1 ~Tj). The existence of Tj follows from the assumption, since
Cj−1 is reachable. Let Cj = Cj−1 ~Tjs.

Consider the infinite sequence (M(Tj))j≥1. Since |{M(R) : R ⊆ {r1, . . . , rn}}| = n+ 1,
some set of readers occurs in the sequence infinitely often. Let M be the largest such set, let
J = {j ≥ 1 : M(Tj) = M}, and let k∗ = min{k ≥ 1 : M(Tj) ⊆M for all j ≥ k}. Note that,
for all k, ` ∈ J such that k∗ ≤ k < `, the schedule ~Tk+1s~Tk+2s · · · ~T` is (M ∪ {s})-only. Thus,
by definition of Tk, v(Ck

~Tk) 6= v(Ck
~Tks~Tk+1s · · · ~T`) = v(C`

~T`). Therefore, the blackboard
can store an infinite number of values. J

This allows us to prove Theorem 4 (restated):

I Theorem 4. In any algorithm for the signal detection problem with identical signals, the
blackboard stores m ≥ 2n different values.

Proof. Suppose the blackboard can only store a finite number of values. Then, by Lemma 6,
it is possible to reach a configuration D such that, for any set of readers T , there is a
(M(T) ∪ {s})-only execution β from D~Ts such that v(D~Tsβ) = v(D~T).

Suppose there exist two different sets of readers R,R′ ⊆ {r1, . . . , rn} such that v(D~R) =
v(D ~R′). Without loss of generality, ~R = ~Tx ~X and ~R′ = ~T ~X ′, where x ∈ R−R′ and ~T is the
longest common prefix of ~R and ~R′. Note that M(T) ∩ ({x} ∪X ∪X ′) = ∅ since ~R and ~R′

are sorted. By definition of D, there is a (M(T)∪ {s})-only execution β from D~Ts such that
v(D~Tsβ) = v(D~T). Consider the execution β′ from D~Txs which has the same schedule as β.
Since D~Ts and D~Txs are indistinguishable to M(T) and s always sets the blackboard to 0,
the corresponding configurations in β and β′ are indistinguishable to M(T). In particular,

STACS 2019

26:8 Space Lower Bounds for the Signal Detection Problem

v(D~Txsβ) = v(D~T). Since (M(T) ∪ {s, x}) ∩X ′ = ∅, configurations D~Txsβ and D~T are
indistinguishable to the set of readers X ′. Thus v(D~Txsβ ~X ′) = v(D~T ~X ′) = v(D ~R′) =
v(D~R) = v(D~Tx ~X). Since x /∈M(T) ∪X ∪X ′ ∪ {s}, it follows that D~Txsβ ~X ′ and D~Tx ~X
are indistinguishable to x. Note that x must return false if it takes a step in configuration
D~Tx ~X, because s has not taken any steps since x last took a step. However, x must return
true if it takes a step in configuration D~Txsβ ~X ′, because s has taken a step since x last took
a step. This is impossible, because these two configurations are indistinguishable to x.

Hence, v(D~R) 6= v(D ~R′) for all different sets of readers R and R′, so |{v(D~R) : R ⊆
{r1, . . . , rn}}| = 2n. J

If the signaller can only read from the blackboard and write to the blackboard, but
cannot perform atomic read-modify-write operations, the blackboard must also store at least
2n different values. The same proof works, provided the scheduler only lets the signaller
write to the blackboard in solo executions that begin with a read of the blackboard. In
such executions, the signaller writes a fixed sequence of values, that does not depend on the
steps taken by the readers. This is all that is necessary to prove that the corresponding
configurations in β and β′ are indistinguishable to M(T) and, therefore, v(D~Txsβ) = v(D~T).

5 Oblivious Processes

Recall that a process is oblivious, if what it writes to the blackboard in a step only depends on
the value of the blackboard at the beginning of that step. In this section we prove Theorem 3,
which we restate for convenience:

I Theorem 3. In any algorithm for the signal detection problem with oblivious processes,
the blackboard stores m ≥ 2n different values.

Proof. Suppose the blackboard stores fewer than 2n different values. For every (possibly
empty) set of readers R and every positive integer i, consider the schedule ρi(R), which
consists of s~R repeated i times. Because the blackboard stores fewer than 2n different values,
the blackboard contents will repeat when schedule ρ2n(R) is applied starting from the initial
configuration, C0. Let L(R) = v(C0ρ`(R)), where ` is the index of the first repetition in the
sequence v(C0ρi(R))i≥1.

Let R and R′ be any two different sets of readers. Without loss of generality, suppose there
is a reader rk ∈ R′ \R. To obtain a contradiction, assume that L(R) = L(R′). Let 0 < i < j

and 0 < i′ < j′ be such that L(R) = v(C0ρi(R)) = v(C0ρj(R)) and L(R′) = v(C0ρi′(R′)) =
v(C0ρj′(R′)). Since processes are oblivious, and v(C0ρi′(R′)) = L(R′) = L(R) = v(C0ρi(R)),
it follows that v(C0ρi′(R′)ρj−i(R)) = v(C0ρi(R)ρj−i(R)) = v(C0ρj(R)) = v(C0ρi′(R′)).
Since rk takes no steps in ρj−i(R), configurations C0ρi′(R′)ρj−i(R) and C0ρi′(R′) are indis-
tinguishable to rk. This is impossible, as the signaller has taken a step after rk’s last step in
C0ρi′(R′)ρj−i(R), but not in C0ρi′(R′), so rk would have to return different responses if it
takes the next step. Thus, if R 6= R′, then L(R) 6= L(R′).

However, since there are 2n different sets of readers and the blackboard stores fewer than
2n different values, this contradicts the pigeon-hole principle. J

6 The General Setting

LetM = {M(R) : R ⊆ {r1, . . . , rn}}, and recall that |M| = n+ 1. For any execution α, let
M(α) denote M(R), where R is the set of readers that take steps in α.

F.Ellen, R. Gelashvili, P.Woelfel, and L. Zhu 26:9

I Lemma 7. If the blackboard can only store a finite number of different values, then, from
any configuration, it is possible to reach a configuration D such that, for any pair of executions
α and β from D, there exists an (M(α) ∪M(β) ∪ {s})-only execution γ from Dα such that
v(Dαγ) = v(Dβ).

Proof. Let C0 be an arbitrary configuration. To obtain a contradiction, suppose that, for all
configurations C reachable from C0, there are two executions, α and β from C such that for
all (M(α) ∪M(β) ∪ {s})-only executions γ from Cα, v(Cαγ) 6= v(Cβ).

We inductively define an infinite execution δ starting from C0 and an infinite sequence of
configurations Cj , for j ≥ 0, in this execution such that Cj precedes Cj+1. In particular, Cj

is reachable from C0, so there exist two executions, αj+1 and βj+1 from Cj such that for all
(M(αj+1) ∪M(βj+1) ∪ {s})-only executions γ from Cjαj+1, v(Cjαj+1γ) 6= v(Cjβj+1). Let
Cj+1 = Cjαj+1 and let δ = α1α2 · · · .

For j ≥ 1, let Mj = M(αj) ∪M(βj) ∈M. SinceM is finite, there exists at least one set
inM that occurs an infinite number of times inM1,M2,M3, Let M ′ denote the largest
such set and let J = {j ≥ 1 : Mj = M ′} be the set of indices of the occurrences of M ′. Let
k∗ = min{k ≥ 1 : Mj ⊆ M ′ for all j ≥ k} be the first such index after which no set larger
than M ′ occurs. Note that, if k∗ ≤ k < ` then γ = αk+1 · · ·α`−1β` is an (M ′ ∪ {s})-only
execution from Ck−1αk. Hence, if k, ` ∈ J , then v(Ck−1βk) 6= v(Ck−1αkγ) = v(C`−1β`).
Thus {v(Ck−1βk) : k ≥ k∗ and k ∈ J} is an infinite set of values that can appear on the
blackboard. This contradicts the assumption that the blackboard can only store finite number
of different values. J

Let D be a configuration such that, for any pair of executions α and β from D, there
exists an (M(α) ∪M(β) ∪ {s})-only execution γ from Dα such that v(Dαγ) = v(Dβ). For
0 ≤ i < j ≤ n, let δ(i, j) denote the schedule r1sr2s . . . risri+1ri+2 . . . rj . For example,
δ(0, 3) = r1r2r3 and δ(2, 3) = r1sr2sr3.

I Lemma 8. If 0 ≤ i < j ≤ n, 0 ≤ i′ < j′ ≤ n, and either i 6= i′ or j 6= j′, then
v(Dδ(i, j)) 6= v(Dδ(i′, j′)).

Proof. First consider the case when i 6= i′. Without loss of generality, suppose that i < i′.
The state of reader ri+1 is the same in configurations Dδ(i, j) and Dδ(i′, j′). In configuration
Dδ(i, j), if ri+1 takes a step, it must return false, because s has not taken any steps since
ri+1 last took a step. In configuration Dδ(i′, j′), if ri+1 takes a step, it must return true,
because s has taken i′ − i steps since ri+1 last took a step. If v(Dδ(i, j)) = v(Dδ(i′, j′)),
then configurations Dδ(i, j) and Dδ(i′, j′) are indistinguishable to ri+1, which is impossible.
Thus v(Dδ(i, j)) 6= v(Dδ(i′, j′)).

Now consider the case when i = i′ and j 6= j′. Without loss of generality, suppose that
j < j′. Let δ′ = rj+1 · · · rj′ , so δ(i′, j′) = δ(i, j)δ′. By Lemma 7, where α is the execution of
schedule δ(i, j)s starting from D and β is the execution of schedule δ(i, j) starting from D,
there exists an {r1, . . . , rj , s}-only execution γ such that v(Dδ(i, j)sγ) = v(Dδ(i, j)).

To obtain a contradiction, suppose that v(Dδ(i′, j′)) = v(Dδ(i, j)). Configurations
Dδ(i′, j′) and Dδ(i, j) are indistinguishable to r1, . . . , rj , and s, since the signaller and these
readers take no steps in δ′. Let g be the schedule of execution γ. Then v(Dδ(i′, j′)sg) =
v(Dδ(i, j)sg) = v(Dδ(i, j)sγ) = v(Dδ(i, j)) = v(Dδ(i′, j′)). Since rj+1 does not appear in sg,
configurations Dδ(i′, j′)sg and Dδ(i′, j′) are indistinguishable to rj+1. Note that rj+1 must
return false if it takes a step in configuration Dδ(i′, j′), because s has not taken any steps
since rj+1 last took a step. However, rj+1 must return true if it takes a step in configuration
Dδ(i′, j′)sg, because s has taken a step since rj+1 last took a step. This is impossible,
because Dδ(i′, j′)sg and Dδ(i′, j′) are indistinguishable to rj+1. J

STACS 2019

26:10 Space Lower Bounds for the Signal Detection Problem

Using this lemma, we obtain Theorem 1 (restated for convenience):

I Theorem 1. In any algorithm for the signal detection problem, the blackboard stores
m = Ω(n2) different values.

Proof. Consider any algorithm for signal detection in which the blackboard stores a finite
number of different values. By Lemma 7, there is a reachable configuration D such that, for
any pair of executions α and β from D, there exists an (M(α)∪M(β)∪{s})-only execution γ
from Dα such that v(Dαγ) = v(Dβ). By Lemma 8, for all different choices of 0 ≤ i < j ≤ n,
the value of the blackboard in configuration Dδ(i, j) is different. There are n(n+1)/2 ∈ Ω(n2)
such choices. J

7 Two Process Algorithm

We describe an algorithm for signal detection among n = 2 readers, r1 and r2, using
m = 16 values. The algorithm has the property that, for every reachable configuration C,
v(Csr1) = v(Csr2). This will allow us to show that, from any reachable configuration C,
the number of different blackboard values that can be reached from C using {r1, r2}-only
executions is at most 3. Thus, in order to show the existence of 4 different blackboard values
from some configuration C, the signaller must also take steps. Note that our proof of the
reset case does not do this, so it is unlikely to be generalized.

At all times, the contents of the blackboard is a quadruple (track, position, both, flag) ∈
{0, 1}4. Initially, the blackboard has value (0, 0, 1, 1). The flag is used to indicate whether
the last step was taken by the signaller. In particular, the signaller always sets flag to 1
and the readers always set flag to 0. Each reader ri has 3 local variables, ti, pi and jumpi.
Initially, (ti, pi) = (0, 0) and jumpi = false. Variables ti and pi represent the last values
that ri wrote to the track and position fields of the blackboard, even if it didn’t change their
values. Readers only change these fields when the signaller sets flag to 1. If t1 = t2 and
p1 = p2 in some configuration C, then both = 1 in C. Otherwise, it is 0. If variable jumpi is
true, then when ri takes its next step, it will change the track, provided it sees track = ti,
position = pi, both = 0, and flag = 1 on the blackboard.

Suppose ri reads (t, p, b, f) from the blackboard. Then, in its next step, ri does the
following:
1. If f = 1 and b = 1, then ri changes track, sets position to 0, sets both to 0, and sets

jumpi to false.
2. If f = 1, b = 0, t = ti, p = pi and jumpi = false, then ri only changes position.
3. If f = 1, b = 0, t = ti, p = pi, and jumpi = true, then ri changes track, sets position to

0, and sets jumpi to false.
4. If f = 1, b = 0, t = ti, and p 6= pi, then ri changes track and sets jumpi to false.
5. If f = 1, b = 0, and t 6= ti, then ri changes position and sets jumpi to true.
6. If f = 0 and t 6= ti or p 6= pi, then ri sets both to 1 and sets jumpi to false.
7. If f = 0, t = ti, and p = pi, then ri doesn’t change anything.
In the first 6 cases, ri returns true. In case 7, ri returns false. Pseudocode appears in
Algorithm 1.

Note that consecutive steps by a process do not change its state or the blackboard.
Moreover, if s takes a step followed by an {r1, r2}-only execution in which they each take at
least one step, then, in the resulting configuration, their ti and pi variables will be equal to
track and position on the blackboard. From then on, r1 and r2 will not change their local
variables or the blackboard until the next signaller step. Therefore, we may restrict attention

F.Ellen, R. Gelashvili, P.Woelfel, and L. Zhu 26:11

to schedules of the form α1sα2 · · · sα` and sα1sα2 · · · sα`, where each αk is an {r1, r2}-only
schedule in which r1 and r2 each occur at most once and αk is non-empty for k < `. Since
flag is initially 1, a step by the signaller does not change the value of the blackboard. Hence
we may assume α begins with s.

Algorithm 1: Pseudocode for reader ri.
1 (track, position, both, flag)← read from blackboard
2 if (flag = 0) ∧ ((track, position) = (ti, pi)) then
3 return false

4 if (flag = 0) then
5 write (track, position, 1, 0) to blackboard
6 else if (both = 0) ∧ ((track 6= ti) ∨ ((position = pi) ∧ ¬jumpi)) then
7 write (track, 1− position, 0, 0) to blackboard
8 else
9 write (1− track, 0, 0, 0) to blackboard

10 jumpi ← (flag = 1) ∧ (both = 0) ∧ (track 6= ti)
11 (ti, pi)← last track and position written
12 return true

Given a reachable configuration C, let ti(C), pi(C), and jumpi(C) denote the value of
reader ri’s local variables ti, pi, and jumpi, respectively, in C, and let track(C), position(C),
both(C), and flag(C) denote the values of the track, position, both, and flag fields, respec-
tively, on the blackboard in C.

I Lemma 9. For every reachable configuration C and every i ∈ {1, 2},

(ti(C), pi(C)) 6= (track(Csr3−i), position(Csr3−i)) .

Proof. Suppose, for a contradiction, that this is not the case. Consider a shortest schedule
α such that, in configuration C = C0α, (ti(C), pi(C)) = (track(Csr3−i), position(Csr3−i)),
for some i ∈ {1, 2}. As discussed above, α = sα1 · · · sα`, where each αk is an {r1, r2}-only
schedule in which r1 and r2 each occur at most once and αk is non-empty for k < `.

Suppose ri does not occur in α. Then ti(C) = ti(C0) = 0. Since flag(C0) = 1, both(C0) =
1, and track(C0) = 0, track(C0sr3−i) = 1. If only s and r3−i take steps from C0sr3−i, then
neither changes track. Since α is a {s, r3−i}-only schedule, track(Csr3−i) = 1. Therefore,
ti(C) = 0 6= 1 = track(Csr3−i), which contradicts the fact that ti(C) = track(Csr3−i).

Now suppose that ri occurs at least once in α. Suppose it last occurs in αk. Let
C ′ = C0sα1 · · · sαk. Since ri does not occur in the remainder of α, (ti(C), pi(C)) =
(ti(C ′), pi(C ′)) = (track(C ′), position(C ′)). There are 3 cases:

Case 1: k = `. Then C = C ′. If r3−i takes a step from Cs, it either changes track or position.
Hence, either ti(C) 6= track(Csr3−i) or pi(C) 6= position(Csr3−i). This contradicts the
fact that (ti(C), pi(C)) = (track(Csr3−i), position(Csr3−i)).

Case 2: k < ` and αk contains both r1 and r2. Then 1 = both(C ′) = both(C ′s). Hence,
if r3−i takes a step from C ′s, it changes track to 1 − track(C ′). As ri does not take
any more steps, r3−i does not subsequently change track. Thus, ti(C) = track(C ′) 6=
1− track(C ′) = track(Csr3−i). This contradicts the fact that ti(C) = track(Csr3−i).

Case 3: k < ` and αk = ri. Since sα1 · · · sαk is strictly shorter than sα1 · · · sα`,
(ti(C ′), pi(C ′)) 6= (track(C ′sr3−i), position(C ′sr3−i)). Moreover, if α = sα1 · · · sαks,

STACS 2019

26:12 Space Lower Bounds for the Signal Detection Problem

then C = C ′s, so (ti(C), pi(C)) 6= (track(Csr3−i), position(Csr3−i)), contrary to the
assumption. Hence αk+1 = r3−i.

Suppose track(C ′sr3−i) 6= ti(C ′) or jump3−i(C ′sr3−i) is true. In the first case, r3−i

changed from ti(C ′) = track(C ′) to 1− track(C ′) and it stays on this track. In the second
case, track(C ′sr3−isr3−i) = 1 − track(C ′) and it stays on this track. In either case, this
implies that track(Csr3−i) = 1− track(C ′). Therefore, ti(C) = track(C ′) 6= track(Csr3−i),
which is a contradiction.

Now suppose that track(C ′sr3−i) = ti(C ′) and jump3−i(C ′sr3−i) is false. Since r3−i did
not change the track and jump3−i is false, (t3−i(C ′), p3−i(C ′)) = (track(C ′), position(C ′)).
Let C ′′ = C0sα1 · · · sαk−1. Since αk = ri, (t3−i(C ′′), t3−i(C ′′)) = (t3−i(C ′), t3−i(C ′)). Since
the latter is (track(C ′), position(C ′)) = (track(C ′′sri), position(C ′′sri)), this contradicts
the minimality of α.

Therefore, in all cases, we reach the desired contradiction. J

The next lemma proves that the algorithm has the desired property.

I Lemma 10. For every reachable configuration C, v(Csr1) = v(Csr2).

Proof. Suppose, for a contradiction, that this is not the case. Consider a shortest α from
the initial configuration C0 such that v(C0αsr1) 6= v(C0αsr2). Let C = C0α and write
α = sα1 · · · sα`. Notice that α` is non-empty as, otherwise, α′ = sα1 · · · sα`−1 is a shorter
execution such that v(C0α

′sr1) 6= v(C0α
′sr2). Moreover, α` /∈ {r1r2, r2r1} since, otherwise,

both(Cs) = 1 and both r1 and r2 set the blackboard to (1 − track(C), 0, 0, 0) from Cs.
Hence, α` = ri, for some i ∈ {1, 2}. Then (ti(C), pi(C)) = (track(C), position(C)). Let
C ′ = C0sα1 · · · sα`−1. There are two cases to consider.

Case 1: jumpi(C) is true. By the pseudocode, since jumpi(C) is true, ri saw that
both(C ′s) = 0, track(C ′s) 6= ti(C ′s), and it wrote ti(C) = track(C ′) and pi(C) =
1 − position(C ′). Since track(C ′) 6= ti(C ′s), it must be that track(C ′s) = t3−i(C ′s).
It follows that the next step of r3−i in Cs is to write (1 − track(C), 0, 0, 0). However,
this is precisely what ri does in its next step from Cs as well since jumpi is true and
(ti(C), pi(C)) = (track(C), position(C)). This is a contradiction.

Case 2: jumpi(C) is false. Then both(C ′s) = 0 and track(C ′s) = ti(C ′s). There are two
subcases to consider:

Suppose that either position(C ′s) 6= pi(C ′s) or jumpi(C ′s) is true. Then r3−i was
the last reader to take a step before C ′, t3−i(C ′s) = track(C ′s), and p3−i(C ′s) =
position(C ′s). Moreover, the next step of ri from C ′s is to write (1−track(C ′s), 0, 0, 0).
Thus, track(C) 6= track(C ′). It follows that the next step of r3−i from Cs is to write
(track(C), 1− position(C), 0, 0). This is a contradiction.
Suppose that position(C ′s) = pi(C ′s) and jumpi(C ′s) is false. Since both(C ′s) = 0, C ′
cannot be the initial configuration and, thus, ri was the last reader to take a step before
C ′ and α`−1 = ri. By Lemma 9, (t3−i(C ′), p3−i(C ′)) 6= (track(C ′), position(C ′)). By
definition of α, v(C ′sri) = v(C ′sr3−i). Thus, as ri did not change the track, it must
be that track(C ′s) 6= t3−i(C ′s) or (position(C ′s) = p3−i(C ′s) and jump3−i(C ′s) is
false). Since (t3−i(C ′), p3−i(C ′)) 6= (track(C ′), position(C ′)), it must be the former.
Thus, r3−i’s next step from Cs is to write (track(C), 1− position(C), 0, 0), which is
exactly what ri does. This is a contradiction.

In all cases, we reach the desired contradiction. J

I Lemma 11. For any configuration C, |{v(Cα) : α is a {r1, r2}-only execution}| ≤ 3.

F.Ellen, R. Gelashvili, P.Woelfel, and L. Zhu 26:13

Proof. For any configuration C, let α′ be the longest {r1, r2}-only execution such that
C = C ′α′. Notice that it suffices to prove that the claim holds for configuration C ′. By our
earlier assumption that s takes a step immediately after the initial configuration, we may
assume that s took the last step before C ′.

By Lemma 10, v(C ′r1) = v(C ′r2). Subsequently, from C ′ri, the steps by ri do not
change the blackboard value. If r3−i takes a step, then it sets both to 1 and v(C ′r1r2) =
v(C ′r2r1). After this, neither ri or r3−i can change the blackboard. Hence {v(C ′α) :
α is a {r1, r2}-only execution} = {v(C ′), v(C ′r1), v(C ′r1r2)}. J

Finally, we prove that the algorithm is correct.

I Lemma 12. In every execution, each reader returns the correct responses.

Proof. Suppose not, so that there is some execution α from the initial configuration C0
such that, in C = C0α, some ri returns an incorrect response in its next step from C.
Write α = α′riα

′′, where α′′ is a {s, r3−i}-only execution. If s does not take any steps
in α′′, then ri returns false, which is correct. So, s takes at least one step in α′′ and ri

returns false in its next step from C. By the pseudocode, this implies that flag(C) = 0
and (ti(C), pi(C)) = (track(C), position(C)). It follows that we may write α′′ = α′′′sr3−i.
However, this contradicts Lemma 9 from C ′ = C0α

′′′ with ri. In particular, ri returns true
in its next step from C = C ′sr3−i. J

References
1 Yehuda Afek, Hagit Attiya, Danny Dolev, Eli Gafni, Michael Merritt, and Nir Shavit. Atomic

Snapshots of Shared Memory. Journal of the ACM, 40(4):873–890, 1993.
2 Zahra Aghazadeh and Philipp Woelfel. On the time and space complexity of ABA prevention

and detection. In Proceedings of the 34th SIGACT-SIGOPS Symposium on Principles of
Distributed Computing (PODC), pages 193–202, 2015.

3 Wojciech Golab. Recoverable Consensus in Shared Memory. arXiv preprint, 2018. arXiv:
1804.10597.

4 Wojciech Golab and Danny Hendler. Recoverable Mutual Exclusion in Sub-logarithmic
Time. In Proceedings of the 36th SIGACT-SIGOPS Symposium on Principles of Distributed
Computing (PODC), pages 211–220, 2017. doi:10.1145/3087801.3087819.

5 Wojciech Golab and Aditya Ramaraju. Recoverable mutual exclusion. In Proceedings of the
35th SIGACT-SIGOPS Symposium on Principles of Distributed Computing (PODC), pages
65–74, 2016.

6 IBM. IBM system/370 extended architecture, principles of operation, 1983. Publication No.
SA22-7085.

7 Prasad Jayanti and Srdjan Petrovic. Efficient and practical constructions of LL/SC variables.
In Proceedings of the 2nd SIGACT-SIGOPS Symposium on Principles of Distributed Computing
(PODC), pages 285–294, 2003.

8 Maged Michael. ABA prevention using single-word instructions. Technical report, IBM T. J.
Watson Research Center, 2004.

9 Maged Michael. Practical Lock-Free and Wait-Free LL/SC/VL Implementations Using 64-Bit
CAS. In Rachid Guerraoui, editor, Proceedings of the 18th International Symposium on
Distributed Computing (DISC), pages 144–158, 2004.

10 Mark Moir. Practical Implementations of Non-Blocking Synchronization Primitives. In
Proceedings of the 16th SIGACT-SIGOPS Symposium on Principles of Distributed Computing
(PODC), pages 219–228, 1997.

STACS 2019

http://arxiv.org/abs/1804.10597
http://arxiv.org/abs/1804.10597
http://dx.doi.org/10.1145/3087801.3087819

Progressive Algorithms for Domination and
Independence
Grzegorz Fabiański
Faculty of Mathematics, Informatics, and Mechanics, University of Warsaw, Poland
grzegorz.fabianski@students.mimuw.edu.pl

Michał Pilipczuk
Institute of Informatics, University of Warsaw, Poland
michal.pilipczuk@mimuw.edu.pl

Sebastian Siebertz
Institute of Informatics, Humboldt-Universität zu Berlin, Germany
sebastian.siebertz@hu-berlin.de

Szymon Toruńczyk
Institute of Informatics, University of Warsaw, Poland
szymtor@mimuw.edu.pl

Abstract
We consider a generic algorithmic paradigm that we call progressive exploration, which can be used
to develop simple and efficient parameterized graph algorithms. We identify two model-theoretic
properties that lead to efficient progressive algorithms, namely variants of the Helly property and
stability. We demonstrate our approach by giving linear-time fixed-parameter algorithms for the
Distance-r Dominating Set problem (parameterized by the solution size) in a wide variety of
restricted graph classes, such as powers of nowhere dense classes, map graphs, and (for r = 1)
biclique-free graphs. Similarly, for the Distance-r Independent Set problem the technique can
be used to give a linear-time fixed-parameter algorithm on any nowhere dense class. Despite the
simplicity of the method, in several cases our results extend known boundaries of tractability for the
considered problems and improve the best known running times.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms; Theory of
computation → Fixed parameter tractability; Theory of computation → Finite Model Theory

Keywords and phrases Dominating Set, Independent Set, nowhere denseness, stability, fixed-
parameter tractability

Digital Object Identifier 10.4230/LIPIcs.STACS.2019.27

Related Version A full version of the paper is available at [10], https://arxiv.org/abs/1811.06799.

Funding The work of M. Pilipczuk and S. Siebertz is supported by the National Science Centre of
Poland via POLONEZ grant agreement UMO-2015/19/P/ST6/03998, which has received funding
from the European Union’s Horizon 2020 research and innovation programme (Marie Skłodowska-
Curie grant agreement No. 665778). G. Fabiański and Sz. Toruńczyk are supported by the NCN
grant 2016/21/D/ST6/01485.

Acknowledgements We thank Ehud Hrushovski for pointing us to the nfcp property.

1 Introduction

It is widely believed that many important algorithmic graph problems cannot be solved
efficiently on general graphs. Consequently, a natural question is to identify the most general
classes of graphs on which a given problem can be solved efficiently. Structural graph theory
offers a wealth of concepts that can be used to design efficient algorithms for generally

© Grzegorz Fabiański, Michał Pilipczuk, Sebastian Siebertz, and Szymon Toruńczyk;
licensed under Creative Commons License CC-BY

36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019).
Editors: Rolf Niedermeier and Christophe Paul; Article No. 27; pp. 27:1–27:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:grzegorz.fabianski@students.mimuw.edu.pl
mailto:michal.pilipczuk@mimuw.edu.pl
mailto:sebastian.siebertz@hu-berlin.de
mailto:szymtor@mimuw.edu.pl
https://doi.org/10.4230/LIPIcs.STACS.2019.27
https://arxiv.org/abs/1811.06799
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

27:2 Progressive Algorithms for Domination and Independence

intractable problems on restricted graph classes. An important result in this area states
that every property of graphs expressible in monadic second-order logic can be tested in
linear time on every class of bounded treewidth [3]. Similarly, every property expressible in
first-order logic can be tested in almost linear time on every nowhere dense graph class [11].

Nowhere denseness is an abstract notion of uniform sparseness in graphs, which is the
foundational definition of the theory of sparse graphs; see the monograph of Nešetřil and
Ossona de Mendez [14] for an overview. Formally, a graph class C is nowhere dense if for every
r ∈ N, one cannot obtain arbitrary large cliques by contracting disjoint connected subgraphs
of radius at most r in graphs from C . Many well-studied classes of sparse graphs are nowhere
dense, for instance the class of planar graphs, any class of graphs with a fixed bound on the
maximum degree, or any class of graphs excluding a fixed (topological) minor, are nowhere
dense. Furthermore, under certain closure conditions, nowhere denseness constitutes the
frontier of parameterized tractability for natural classes of problems. For instance, while
the first-order model-checking problem is fixed-parameter tractable on every nowhere dense
class C [11], on every subgraph-closed class D that is not nowhere dense, it is as hard as on
the class of all graphs [5, 8]. Similar lower bounds are known for many individual problems,
e.g. for the Distance-r Independent Set problem and the Distance-r Dominating Set
problem, on subgraph-closed classes which are not nowhere dense [7, 16].

Towards the goal of extending the border of algorithmic tractability for the above
mentioned problems beyond graph classes that are closed under taking subgraphs, we study a
very simple and generic algorithmic paradigm that we call progressive exploration, described
below.

This general idea can be applied to a parameterized subset problem, in which we are given
a graph G and parameter k, and the goal is to determine if G satisfies a property of the
form “there exists a candidate of size k which agrees with every witness”. Here, the notions of
candidates, witnesses, and agreeing depend on the problem under consideration. For example,
when considering the existence of a distance-r dominating set of size k, candidates are sets S
of size k, witnesses are single vertices, and a candidate S agrees with every vertex in distance
at most r from a vertex in S.

Another way of viewing a problem as above is to consider the bipartite “agreement” graph,
whose left part consists of candidates, right part consists of witnesses, and adjacency denotes
agreeing. Then the problem is to determine if the right part of this bipartite graph has some
common neighbor. Note that the size of the bipartite graph is usually polynomial in terms
of the size of the input graph G, where the exponent of the polynomial is the parameter k
that we are interested in. In particular, if we are aiming at fixed-parameter tractability, we
cannot even afford constructing the entire bipartite graph.

To solve a problem as above, a progressive exploration algorithm proceeds in rounds
i = 1, 2, . . ., where each round i finishes with constructing a candidate Si and a set of
witnesses Wi. In round i, we seek a candidate Si that agrees with every vertex in the
union of the previously constructed witness sets W1,W2, . . . ,Wi−1. If no such Si exists,
we can terminate and answer that there is no solution. On the other hand, if the found
candidate Si agrees with every witness in the graph, we also terminate and return it as a
solution. Otherwise, we find another set Wi of witnesses, such that each of the candidates
S1, . . . , Si−1, Si found so far does not agree with one of the witnesses in Wi, and proceed
to the next round. In this way, we progressively explore the whole solution space, while
constructing more and more problematic witness sets that the future candidates must agree
with, until we either find a solution or enough witnesses to certify that no solution exists.

G. Fabiański, Mi. Pilipczuk, S. Siebertz, and Sz. Toruńczyk 27:3

bounded
semi-ladder index

bounded
co-matching index

strong Helly property

bounded
ladder index

= stable

=

equation

=

nfcp

=

Helly
property

weak Helly
property

lad
de

r a
lg

or
ith

m
sem

i-ladder algorithm

Figure 1 The figure depicts various properties of classes of bipartite graphs, which are introduced
in Section 2. Domination- and independence-type problems studied in Section 3 reduce to the
problem of determining whether the right part of a given bipartite graph has a common neighbor.
In Section 4 two algorithms for the latter problem are devised, and their domains of applicability
are marked above. The ladder algorithm has a larger domain, but requires a more powerful access
oracle and has higher running time. Finally, we apply these algorithms to specific graph classes,
yielding new fixed-parameter tractability results for domination- and independence-type problems.

Progressive graph exploration is a generic approach to solving graph problems, which
so far rather resembles a wishful-thinking heuristic than a viable algorithmic methodology.
Such algorithms can be applied to any input graph, however, a priori there are multiple
problem-dependent details to be filled.

First, in order to implement the iteration, we should efficiently compute candidates Si

and small witness sets Wi in every round. Second, to analyze the running time we need to
give an upper bound on the number of rounds in which the algorithm terminates. If we can
guarantee that each round can be implemented efficiently and that the number of rounds
is bounded in the parameter k, we immediately obtain a fixed-parameter algorithm for the
problem under consideration.

In this work we study properties of algorithmic problems and graphs that ensure these
desired features. Inspired by notions from model theory, we identify combinatorial properties
of the arising bipartite graphs which lead to efficient progressive exploration algorithms.
The properties that guarantee the existence of small witness sets are variants of the Helly
property, called nfcp in model theory. The property that guarantees that the progressive
exploration algorithms stop after a bounded number of rounds is the model-theoretic notion
of stability. Under these conditions, for problems formulated using short distances in the
graph, we are able to implement progressive exploration efficiently, yielding fast and simple
fixed-parameter algorithms. See the caption in Figure 1 for an overview of the paper.

We demonstrate our approach by applying it to the Distance-r Dominating Set prob-
lem and the Distance-r Independent Set problem on a variety of restricted graph classes.
More precisely, we prove that:

For every r ∈ N and graph class C that is either nowhere dense, or is a power of a nowhere
dense class, or is the class of map graphs, the Distance-r Dominating Set problem on
any graph G ∈ C can be solved in time 2O(k log k) · ‖G‖. Here and throughout the paper,
‖G‖ denotes the total number of vertices and edges in a graph G.
For every t ∈ N, the Dominating Set problem on any Kt,t-free graph G can be solved
in time 2O(k log k) · ‖G‖; here, a graph is Kt,t-free if it does not contain the complete
bipartite graph Kt,t as a subgraph.

STACS 2019

27:4 Progressive Algorithms for Domination and Independence

For every r ∈ N and nowhere dense graph class C , the Distance-r Independent Set
problem on any graph G ∈ C can be solved in time f(k) · ‖G‖, for some function f .

Actually, for the last result, we also give a different algorithm with running time 2O(k log k)·‖G‖,
which however does not rely on the concept of progressive exploration and uses some black-
boxes from the theory of sparsity.

Our results extend the limits of tractability for Distance-r Dominating Set and
Distance-r Independent Set and, in some cases, improve the best known running times.
We include a comprehensive comparison with the existing literature at the end of Section 4.
However, let us stress here a key point: all our algorithms are derived in a generic way using
the idea of progressive exploration, hence they are very easy to implement and they do not
use any algorithmic black-boxes that depend on the class from which the input is drawn. In
fact, properties of the considered classes are used only when analyzing the running time.

2 Complexity-measures for bipartite graphs

In this section, we define the basic notions used in this paper, related to various complexity
measures associated with bipartite graphs. We work with the following notion of bipartite
graphs that is not standard in graph theory but suits the model theoretic context very well.

A bipartite graph is a triple G = (L,R,E), where L and R are two sets of vertices, called
the left part and right part, respectively, and E ⊆ L×R is a binary relation whose elements
are called edges. Hence, bipartite graphs with parts L,R correspond bijectively to binary
relations with domain L and codomain R. Note that each bipartite graph has a uniquely
determined left and right part. Also, those parts are not necessarily disjoint.

Ladders, semi-ladders, and co-matchings. We now define various complexity measures
for bipartite graphs, based on the size of a largest “obstruction” found in a given bipartite
graph. There are several types of obstructions, leading to different complexity measures. We
start with defining the various types of obstructions. Let G = (L,R,E) be a bipartite graph.
Two sequences, a1, . . . , an ∈ L and b1, . . . , bn ∈ R, form:

a co-matching of order n in G if we have (ai, bj) ∈ E ⇐⇒ i 6= j, for all i, j ∈ {1, . . . , n};
a ladder of order n in G if we have (ai, bj) ∈ E ⇐⇒ i > j, for all i, j ∈ {1, . . . , n}; and
a semi-ladder of order n in G if (ai, bj) ∈ E for all i, j ∈ {1, . . . , n} with i > j, and
(ai, bi) /∈ E for all i ∈ {1, . . . , n}.

Note that in case of a semi-ladder we do not impose any condition for i < j. Observe that
any ladder of order n and any co-matching of order n are also semi-ladders of order n.

a1

a2

a3

a4

b1

b2

b3

b4

a1

a2

a3

a4

b1

b2

b3

b4

a1

a2

a3

a4

b1

b2

b3

b4

Figure 2 A co-matching, a ladder, and a semi-ladder of order 4, respectively. Dashed gray lines
represent non-edges.

The co-matching index of a bipartite graph is the maximum order of a co-matching that
it contains. A class of bipartite graphs has bounded co-matching index if the supremum of
the co-matching indices of its members is finite. We define analogous notions for the ladder
index and the semi-ladder index, in the expected way.

G. Fabiański, Mi. Pilipczuk, S. Siebertz, and Sz. Toruńczyk 27:5

In this paper, we will often not care about the precise bounds on the indices of graphs,
and it will only matter whether the respective index is bounded in a given class. Bounded
ladder and semi-ladder indices correspond notions from model theory (see paragraph on
formulas below). We will later relate the property of having a bounded co-matching index
to a variant of the Helly property. Using a simple Ramsey argument, we now observe that
boundedness of the semi-ladder index is equivalent to boundedness of both the co-matching
and the ladder index. Let us first state Ramsey’s theorem in the form used in this paper.

I Theorem 1 (Ramsey’s theorem). For all c, ` ∈ N there exists a number Rc(`) with the
following property. If the edges of a complete graph on Rc(`) vertices are colored using c
colors, then there is a set of ` vertices which is monochromatic, that is, all edges with both
endpoints in this set are of the same color.

The standard proof of Ramsey’s theorem yields an upper bound of Rc(`) 6 cc`−1 for
c > 2. From now on, we adopt the notation Rc(`) for the multicolored Ramsey numbers as
described in Theorem 1. The proofs of all statements marked with ♠ can be found in the
full version of the paper [10].

I Lemma 2 (♠). A class of bipartite graphs has finite semi-ladder index if and only if both
its ladder index and its co-matching index are finite.

Helly property and its variants. Let p ∈ N and let G = (L,R,E) be a bipartite graph. We
say that a subset B ⊆ R is covered by a subset A ⊆ L if there exists a vertex a ∈ A which is
adjacent to all the vertices of B. Then subsets A and B have the p-Helly property if either B
is covered by A, or B contains a subset of size at most p that is not covered by A. We shall
say that G has:

the weak p-Helly property if L and R have the p-Helly property;
the p-Helly property if L and B have the p-Helly property, for all B ⊆ R; and
the strong p-Helly property if all A ⊆ L and B ⊆ R have the p-Helly property.

We say that a class C of bipartite graphs has the (weak/strong) Helly property if there is
some p ∈ N such that all graphs in C have the (weak/strong) p-Helly property.

It turns out that the strong p-Helly property corresponds precisely to having co-matching
index at most p.

I Lemma 3 (♠). Let p ∈ N and G be a bipartite graph. Then G has the strong p-Helly
property if and only if it has co-matching index at most p.

In the following paragraphs we will see specific examples of classes of bipartite graphs
satisfying variants of the (weak/strong) Helly property.

Bipartite graphs defined by formulas. We construct bipartite graphs using logical formulas.
In principle, we could consider formulas of any logic, but in this paper we only consider first-
order logic in the vocabulary of graphs, i.e., using the binary relation symbol E representing
edges, the binary relation symbol = representing equality, and logical constructs ∨,∧,¬,→,
∀,∃. E.g, the property dist(x, y) 6 5, expressing that x and y are at distance at most 5 in a
graph G, can be expressed by a first-order formula using four existential quantifiers.

We write x̄ to represent a tuple of variables (with every variable appearing only once).
If V is a set, then V x̄ denotes the set of all assignments mapping variables in x̄ to V . Let
ϕ(x̄; ȳ) be a formula with free variables partitioned into two disjoint tuples, x̄ and ȳ. Given
any graph G with vertex set V , the formula ϕ induces a bipartite graph ϕ(G) with left

STACS 2019

27:6 Progressive Algorithms for Domination and Independence

part V x̄, right part V ȳ, and where ā ∈ V x̄ and b̄ ∈ V ȳ are adjacent if and only if ϕ(ā; b̄) holds
in G. If C is a class of graphs and ϕ(x̄; ȳ) is a formula, then by ϕ(C) we denote the class of
all bipartite graphs ϕ(G), for G ∈ C . We say that ϕ has bounded ladder index on a class C if
the class ϕ(C) has bounded ladder index; similarly for the co-matching and the semi-ladder
index. The same definitions apply if instead of graphs we consider logical structures over
some fixed signature, and ϕ(x̄; ȳ) is a formula over that signature. For simplicity, we consider
only graphs in this paper.

We note that the various indices are preserved by adding spurious free variables to
formulas. Precisely, let ϕ(x̄; ȳ) be a first-order formula and let ϕ′(x̄′; ȳ′) be the same formula,
but having extra free variables, i.e., x̄ is a subtuple of x̄′ and ȳ is a subtuple of ȳ′. Then, for
any graph G, the ladder index of ϕ(G) is equal to the ladder index of ϕ′(G), although the
two bipartite graphs ϕ(G) and ϕ′(G) may differ. The same holds for all the other properties
studied in this paper: co-matching index, semi-ladder index, (weak/strong) Helly property.

The next lemma shows that a positive boolean combination (a boolean combination in
which no negations are used) of formulas with bounded semi-ladder index also has bounded
semi-ladder index. The proof uses a Ramsey argument.

I Lemma 4 (♠). Let ϕ1(x̄; ȳ), . . . , ϕk(x̄; ȳ) be formulas and let ψ(x̄; ȳ) be a positive boolean
combination of ϕ1, . . . , ϕk. Suppose G is a graph such that ϕ1(G), . . . , ϕk(G) have semi-ladder
index smaller than `. Then ψ(G) has semi-ladder index smaller than Rk(`).

We remark that the property of having bounded ladder index is preserved by taking
arbitrary boolean combinations, not just positive ones. Finally, the analogue of Lemma 4
fails for the co-matching index if positive boolean combinations are considered, but still holds
if we restrict attention to conjunctions of atomic formulas.

We will later need the following variant of Lemma 4, which provides a sharper bound for
formulas of a special form. As usual in this work, the proof relies on a Ramsey-like argument.

I Lemma 5 (♠). Let ψ(x̄; ȳ) =
∨k

j=1 ϕ(x̄j ; ȳ) for some k > 2, where ϕ(x̄; ȳ) is a formula
and x̄1, . . . , x̄k are permutations of x̄. Suppose G is a graph such that ϕ(G) has semi-ladder
index smaller than `. Then ψ(G) has semi-ladder index smaller than k`−1.

Stability theory. Many of the combinatorial properties of bipartite graphs introduced above
correspond to properties of formulas studied in model theory, specifically, in its modern
branch called stability theory. Very roughly, stability theory studies how various combinatorial
obstructions affect the logical complexity of the considered first-order theory. Stability theory
will not be used in this paper, but for bibliographic completeness, we present a dictionary
relating the notions introduced above to the notions studied there. Fix a class of structures C ;
in model theory; usually C is the class of all models of a fixed first-order theory. A first-order
formula ϕ(x̄; ȳ) is called stable (with respect to C) if ϕ(C) has bounded ladder index [21,
Chapter I.2]. It is called nfcp if ϕ(C) has the Helly property [21, Chapter II.4]. It is called
an equation if ϕ(C) has bounded semi-ladder index [19, 15].

We also remark that the properties of bipartite graphs that we consider can be viewed
as properties of set systems: a bipartite graph G = (L,R,E) gives rise to a family F of
subsets of R, consisting of neighborhoods of elements of L. The p-Helly property is usually
formulated for set systems F , requiring that every minimal subfamily of F with an empty
intersection has at most p sets in it. The semi-ladder index corresponds to the maximal
length of an inclusion-chain in the family of intersections of the sets in F .

G. Fabiański, Mi. Pilipczuk, S. Siebertz, and Sz. Toruńczyk 27:7

Stability in nowhere dense graph classes. The classes of bipartite graphs with bounded
ladder index that are relevant to this paper are provided by the following result, due to
Podewski and Ziegler [20].

I Theorem 6 ([20], cf. [1, 18]). Let C be a nowhere dense class of graphs and let ϕ(x̄; ȳ) be
a first-order formula. Then ϕ has bounded ladder index on C .

The above result was originally stated for superflat graphs, and using the notion of stability.
The proof relied on non-constructive model-theoretic methods, such as the compactness
theorem. The connection with nowhere denseness was observed by Adler and Adler [1], and a
proof providing explicit bounds was given by the last three authors in [18]. The observation
of Adler and Adler is the starting point of this work, as it brings to light the connection
between model theory and computer science which is further studied in this paper.

3 Domination and independence problems

We consider subset problems, where in a given graph we look for a solution S of size k
that satisfies some property, whose dissatisfaction can be witnessed by a small subset of
vertices W . Moreover, checking a candidate solution S against a witness W can be expressed
in first-order logic. Thus, a problem of interest can be expressed by a sentence of the form
∃x̄∀ȳϕ(x̄; ȳ), for a suitable formula ϕ(x̄; ȳ), where x̄ is a tuple of k variables that represent a
candidate S, while ȳ is a tuple of ` variables that represent a witness W .

I Example 7. The Distance-r Dominating Set problem for parameter k can be expressed
as above using the formula δk

r (x̄; y) =
∨k

i=1 δr(xi, y), where δr(x, y) is a formula that checks
whether dist(x, y) 6 r, and x̄ = (x1, . . . , xk). Similarly, the Distance-r Independent Set
problem for parameter k can be expressed using the formula ηk

r (x̄; y) =
∧

16i<j6k ηr(xi, xj , y),
where ηr(x, x′, y) is a formula that checks whether dist(x, y) + dist(x′, y) > r.

Observe that a graph G satisfies the sentence ∃x̄∀ȳϕ(x̄; ȳ) if and only if the right part of
the bipartite graph H = ϕ(G) is covered by the left side, i.e., all vertices in the right part
(witnesses) have a common neighbor (solution). We call this abstract problem – checking
whether the right part of a given bipartite graph H is covered by the left side – the Coverage
problem.

Note that the size of the bipartite graph ϕ(G) is polynomial in the size of G, where the
exponent depends on the number of free variables in ϕ, which is usually the parameter we
are interested in. As we are aiming at fixed-parameter algorithms, we cannot afford to even
construct the whole bipartite graph ϕ(G). Therefore, we will design algorithms that solve the
Coverage problem using an oracle access to the bipartite graph graph H = ϕ(G), where
the oracle calls will be implemented using subroutines on the original graph G. The running
time of these algorithms, expressed in terms of the number of oracle calls, will be bounded
only in terms of quantities (ladder indices, numbers governing Helly property, etc.) related
to the class of bipartite graphs ϕ(C), where C is the considered class of input graphs.

Therefore, to obtain an algorithm for solving the initial problem on a given graph class C

we proceed in two steps:
Prove that the class ϕ(C) has a suitable Helly-type property and bounded ladder index.
Design an algorithm for Coverage, for input bipartite graphs with suitable Helly-type
properties and bounded ladder index, that uses only a bounded number of oracle calls.

In Section 4 we give two such algorithms solving Coverage: the Semi-ladder Algorithm, and
the Ladder Algorithm. The Semi-ladder Algorithm requires that H has bounded semi-ladder
index, whereas the Ladder Algorithm requires that H has bounded ladder index and the

STACS 2019

27:8 Progressive Algorithms for Domination and Independence

weak p-Helly property, for some fixed p. Note that by Lemmas 2 and 3, boundedness of the
semi-ladder index is equivalent to boundedness of the ladder index and having the strong
p-Helly property, for some fixed p, so the prerequisites for the Semi-ladder Algorithm are
stronger than for the Ladder Algorithm. See Figure 1 for an overview.

We postpone the discussion of the algorithms to Section 4, and for now we focus on
exhibiting the suitable properties for various classes of bipartite graphs. Slightly more
precisely, we prove that on certain graph classes, formulas corresponding to domination-type
problems have bounded semi-ladder index, while those corresponding to independence-type
problems have the weak Helly property and bounded ladder index. Hence, in the first case
we will apply the Semi-ladder Algorithm, and in the second – the Ladder Algorithm.

Distance formulas and domination-type problems. We shall prove fixed-parameter trac-
tability results not only for distance-r domination, but for a more general class of domination-
type problems. Those can be expressed by suitable formulas, as explained next.

I Definition 8. For r ∈ N, let δr(x, y) be the formula checking whether dist(x, y) 6 r.
A distance formula is a formula ϕ(x̄; ȳ) which is a boolean combination of atoms of the
form δr(x, y), where the variable x occurs in x̄, the variable y occurs in ȳ, and r ∈ N is any
number. The radius of a distance formula is the maximal number r occurring in its atoms,
whereas its size is the number of atoms occurring in it. A distance formula is positive if it is
a positive boolean combination of atoms.

A domination-type property is a sentence ψ of the form ∃x̄∀ȳ ϕ(x̄; ȳ), where ϕ is a positive
distance formula. A domination-type problem is the computational problem of determining
whether a given graph G satisfies a given domination-type property.

I Example 9. Fix r ∈ N and let x̄ = (x1, . . . , xk) be a k-tuple of variable. Then the formula
δk

r (x̄; y) considered in Example 7 is a positive distance formula, hence the problem defined
by the domination-type property ∃x̄∀ȳ δ

k
r (x̄; y) (aka Distance-r Dominating Set) is a

domination-type problem. Similarly, formulas ϕ(x̄; y) expressing the following properties
give raise to natural domination-type problems:

y is at distance at most r from at least two of the vertices x1, . . . , xk; and
the sum dist(x1, y) + dist(x2, y) + . . .+ dist(xk, y) is at most r.

On the other hand, the formula ηk
r (x̄; y) considered in Example 7 is a distance formula, but

it is not positive, and hence it does not yield a domination-type property.

From Lemmas 4 and 5 and the remark about spurious variables not affecting the semi-
ladder index, we immediately obtain the following.

I Corollary 10. Let ϕ(x̄; ȳ) be a positive distance formula of radius r and size s. If G is
a graph such that the semi-ladder index of δq(G) is smaller than ` for all q 6 r, then the
semi-ladder index of ϕ(G) is smaller than Rs(`). Moreover, if ϕ = δk

r as defined in Example 7
and k > 2, then the semi-ladder index of ϕ(G) is smaller than k`−1.

Domination problems. We first consider domination-type problems and prove that they
have bounded semi-ladder indices on any nowhere dense class. This result can actually be
extended beyond nowhere denseness: to powers of nowhere dense classes, to map graphs,
and to Kt,t-free graphs for radius r = 1. We define the former two concepts next.

G. Fabiański, Mi. Pilipczuk, S. Siebertz, and Sz. Toruńczyk 27:9

For a graph G and s ∈ N, let Gs denote the graph with the same vertex set as G, where
two vertices are adjacent if and only if their distance in G is at most s. If D is a graph class,
then Ds denotes the class {Gs : G ∈ D}. Note that a power of a nowhere dense class is not
necessarily nowhere dense, e.g., the square of the class of stars is the class of complete graphs.

A graph G is a map graph if one can assign to each vertex of G a closed, arc-connected
region in the plane so that the interiors of regions are pairwise disjoint and two vertices of G
are adjacent if and only if their regions share at least one point on their boundaries. Note
that map graphs are not necessarily planar and may contain arbitrarily large cliques, as four
or more regions may share a single point on their boundaries.

The following result will be used in the next section to obtain fixed-parameter tractability
of domination-type problems over graph classes described above.

I Theorem 11 (♠). For any r ∈ N and nowhere dense graph class C , the formula δr(x, y)
has bounded semi-ladder index on C . The same holds also when C = Ds for some nowhere
dense class D and s ∈ N, when C is the class of map graphs, and when r = 1 and C is the
class of Kt,t-free graphs, for any fixed t ∈ N.

For the case when C is nowhere dense we utilize the well-known characterization of
nowhere denseness via uniform quasi-wideness [13], which we recall below.

I Definition 12. We say that a graph class C is uniformly quasi-wide if for all r ∈ N, there
are sr ∈ N and Nr : N → N such that for all k ∈ N, every graph G ∈ C , and every vertex
subset W ⊆ V (G) of size larger than Nr(k), there exist disjoint vertex subsets S ⊆ V (G) and
A ⊆W such that |S| 6 sr, |A| > k, and A is distance-r independent in G− S.

I Theorem 13 ([12, 14]). A graph class C is nowhere dense if and only if it is uniformly
quasi-wide.

The nowhere dense case of Theorem 11 is therefore encapsulated in the following lemma.

I Lemma 14 (♠). For every r ∈ N and uniformily quasi-wide class C , the class δr(C) has
bounded semi-ladder index.

We now give a very rough sketch the proof of Lemma 14. If for some G ∈ C the graph
δr(G) has semi-ladder index `, then in G we have vertices a1, . . . , a` and b1, . . . , b` such that
dist(ai, bj) 6 r for all i > j and dist(ai, bi) > r for all i. Then provided ` is huge, by uniform
quasi-wideness, we can find a large subset A ⊆ {a1, . . . , a`} of vertices that “communicate”
with each other only through a set S of constant size – all paths of length at most 2r between
vertices of A pass through S. Now the vertices from A have pairwise different distance-r
neighborhoods within {b1, . . . , b`}, but only a limited number of possible interactions with S
(measured up to distance r). This quickly leads to a contradiction if A is large enough. The
cases when C is a power of a nowhere dense class and when C is the class of map graphs
follow as simple corollaries from the result for nowhere dense classes. The case when C is
the class of Kt,t-free graphs is a simple observation: a large semi-ladder in δ1(G) enforces a
large biclique in G.

We remark that the above argument is similar to the reasoning that shows that graphs
from a fixed nowhere dense class admit small distance-r domination cores: subsets of vertices
whose distance-r domination forces distance-r domination of the whole graph. This property
was first proved implicitly by Dawar and Kreutzer in their FPT algorithm for Distance-r
Dominating Set on any nowhere dense class [4], also using uniform quasi-wideness. We
refer the reader to [17, Chapter 3, Section 5] for an explicit exposition.

STACS 2019

27:10 Progressive Algorithms for Domination and Independence

Having established boundedness of the semi-ladder index of δr(x, y) on a class C , we can
use Corollary 10 to extend this to any positive distance formula. Therefore, by Theorem 11,
Corollary 10, and Lemma 3 we immediately obtain the following.

I Corollary 15. Let C and r be as in Theorem 11 and let ϕ(x̄; ȳ) be a positive distance
formula of radius at most r. Then the class ϕ(C) has bounded semi-ladder index, so in
particular it has the strong Helly property.

In fact, Corollary 10 provides a better control of the semi-ladder index of ϕ(C) in terms
of the semi-ladder index of δr(C) and the size of ϕ. In the next section we will use these
more refined bounds for a precise analysis of the running times.

Note that Corollary 15 does not generalize to arbitrary first-order formulas. Indeed, if C

is the class of all edgeless graphs and ϕ(x; y) is the formula x 6= y, then ϕ(C) is the class of
all complements of matchings, which does not even have the weak Helly property.

Independence problems. We now move to the Distance-r Independent Set problem:
deciding whether a given graph contains a distance-r independent set of size k. This property
is most naturally expressed using an existential sentence, and not as a sentence of the form
∃x̄∀ȳϕ(x̄; ȳ). However, in Example 7 we gave a suitable formula ηk

r (x̄; y) that expresses the
problem: the trick is to phrase the property that x1, . . . , xk are pairwise at distance more
than r by saying that for every vertex y, for all 1 6 i < j 6 k the sum of distances from y

to xi and xj is larger than r. Thus, a vertex y that does not satisfy this condition may serve
as a witness that a given tuple x̄ does not form a distance-r independent set.

In the full version of the paper we prove the following.

I Theorem 16 (♠). Let C be a nowhere dense class of graphs and let k, r ∈ N. Then the
class ηk

r (C) has the weak p-Helly property, for some p ∈ N depending on k, r, and C .

It is easy to see that for any k > 2 and r > 1, the formula ηk
r (x; y) does not have the strong

Helly property on the class C of edgeless graphs. Thus, in general we cannot hope for
boundedness of the semi-ladder index of ηk

r (C) and use the Semi-Ladder Algorithm.
The proof of Theorem 16 is actually very different from the proof of Theorem 11, and

presents a novel contribution of this work. Instead of uniform quasi-wideness, we use the
characterization of nowhere denseness via the Splitter game [11]. The idea is that in case a
graph G ∈ C does not have a distance-r independent set of size k, there is a small witness of
this: a set W of size bounded in terms of k, r, and C such that for every vertex subset S of
size k, some path of length at most r connecting two vertices of S crosses W . This exactly
corresponds to the notion of witnessing expressed by ηk

r . Such a witness W is constructed
recursively along Splitter’s strategy tree in the Splitter game in G. We use the condition
that G does not have a distance-r independent set of size k to prove that we can find a small
(in terms of k, r,C) set of “representative” moves of the Connector. Trimming the strategy
tree to those moves bounds its size in terms of k, r,C , yielding the desired upper bound on
the witness size.

We remark that our proof of Theorem 16 can actually be turned into an algorithm for
the Distance-r Independent Set problem on any nowhere dense class C with running
time of 2O(k log k) · ‖G‖. However, this algorithm is much more complicated than the Ladder
algorithm that we explain in the next section, and in particular it uses some black-box results
from the theory of nowhere dense graph classes.

G. Fabiański, Mi. Pilipczuk, S. Siebertz, and Sz. Toruńczyk 27:11

4 Algorithms

In this section, we present two algorithms solving the Coverage problem on a given bipartite
graph. The bipartite graph can be only accessed via restricted access oracles; we start with
presenting this model. We then describe the two algorithms. Then we show how the oracles
can be efficiently implemented in the special cases relevant to this paper. This, in combination
with the results from the previous section, will allow us to obtain the desired algorithmic
statements about domination and independence problems on restricted graph classes.

The access oracles. We consider the following model of an algorithmic search for a solution
in a bipartite graph representing the search space. Consider a bipartite graph H = (L,R,E),
where the left side L is the set of candidates and the right side R is the set of witnesses.
An edge between a candidate a ∈ L and a witness b ∈ R is interpreted as that a and b

agree: b agrees that a is a solution. Expressed in those terms, Coverage is the problem of
finding a solution: a candidate which agrees with all witnesses. We will use the terminology
of candidates, witnesses, solutions, and agreeing as explained above, as this facilitates the
understanding of the algorithms for Coverage in terms of the original problems.

As we explained, the considered bipartite graph H will typically be of the form ϕ(G) for
some formula ϕ(x̄; ȳ) expressing the considered problem. Thus, H shall represent the whole
search space, so we allow our algorithms a restricted access to H via the following oracles.

Candidate Oracle: Given a set of witnesses B ⊆ R, the oracle either returns a candidate
a ∈ L that agrees with all witnesses of B, or concludes that no such candidate exists.

Weak Witness Oracle: Given a candidate a ∈ L, the oracle either concludes that a is a
solution, or returns a witness b ∈ R that does not agree with a.

Strong Witness Oracle: Given a set of candidates A ⊆ L and a number p ∈ N, the oracle
either finds a set of witnesses P ⊆ R such that |P | 6 p and every candidate of A does
not agree with some witness from P , or concludes that no such set P exists.

Note that the Weak Witness Oracle can be simulated by the Strong Witness Oracle applied
to A = {a}. We now provide the two algorithms for Coverage announced in Section 3.

Semi-ladder Algorithm. The Semi-ladder Algorithm proceeds in a number of rounds, where
each round consists of two steps: first the Candidate Step, and then the Witness Step. Also,
the algorithm maintains a set B of witnesses gathered so far, initially set to be empty. The
steps are defined as follows:

Candidate Step: Apply the Candidate Oracle to find a candidate a ∈ L that agrees with all
the witnesses in B. If no such candidate exists, terminate the algorithm returning that
no solution exists. Otherwise, proceed to the Witness Step.

Witness Step: Apply the Weak Witness Oracle to find a witness b ∈ R that does not agree
with a. If there is no such witness, terminate the algorithm and return a as the solution.
Otherwise, add b to B and proceed to the next round.

The correctness of the algorithm is obvious, while the running time can be bounded by
the immediate observation that if the Semi-ladder Algorithm performs ` full rounds, then
the candidates a1, . . . , a` ∈ L discovered in consecutive rounds, together with the witnesses
b1, . . . , b` ∈ R added to B in consecutive rounds, form a semi-ladder in H.

I Corollary 17. The Semi-ladder Algorithm applied to a graph H with semi-ladder index `
terminates after performing at most ` full rounds. Consequently, it uses at most ` + 1
Candidate Oracle Calls, each involving a set of witnesses B with |B| 6 `, and at most `
Weak Witness Oracle Calls.

STACS 2019

27:12 Progressive Algorithms for Domination and Independence

Ladder algorithm. As before, the Ladder Algorithm maintains the set B of witnesses
gathered so far, but also the set A of candidates found so far. The algorithm is also given a
parameter p ∈ N. Again, the algorithm proceeds in rounds, each consisting of the Candidate
step and the Witness step, with the following description:

Candidate Step: Apply the Candidate Oracle to find a candidate a ∈ L that agrees with all
the witnesses in B. If no such candidate exists, terminate the algorithm returning that
no solution exists. Otherwise, add a to A and proceed to the Witness step.

Witness Step: Apply the Strong Witness Oracle to set A and parameter p, yielding either
a set of witnesses P ⊆ R such that |P | 6 p and every candidate from A does not agree
with some witness from P , or a conclusion that no such set P exists. In the former case,
add P to B and proceed to the next round. In the latter case, terminate the algorithm
returning that a solution exists.

Note that the algorithm actually never finds a solution, but only may claim its existence
in the Witness Step, and this claim is not substantiated by having a concrete solution in
hand. However, the observation is that assuming the weak p-Helly property, the structure
discovered by the algorithm is sufficient to deduce the existence of a solution.

I Lemma 18 (♠). The Ladder Algorithm applied with parameter p in a bipartite graph with
the weak p-Helly property is always correct.

Finally, we show that if H has ladder index bounded by `, then the algorithm terminates
in a number of rounds bounded in terms of ` and p. For this we observe that during its
execution, the algorithm in fact constructs a ladder in an auxiliary bipartite graph H ′ with
candidates a on the left side and sets of witnesses P on the right side, and the ladder index
of H ′ can be bounded in terms of p and the ladder index of H using a Ramsey argument.

I Lemma 19 (♠). The Ladder Algorithm applied with parameter p to a bipartite graph H
with ladder index smaller than ` terminates after performing less than Rp(2`) full rounds.

I Corollary 20. The Ladder Algorithm applied with parameter p to a graph H with ladder
index smaller than ` and the weak p-Helly property, always returns the correct answer and
terminates after performing at most q = Rp(`) − 1 full rounds. Consequently, it uses at
most q+ 1 Candidate Oracle Calls, each involving a set of witnesses B with |B| 6 pq, and at
most q Strong Witness Oracle Calls, each involving a set of candidates A with |A| 6 q.

Implementing the oracles. The last missing ingredient for obtaining our algorithmic results
is an efficient implementation of the oracles for bipartite graphs of the form ϕ(G), where G
is the input graph and ϕ(x̄, ȳ) is a formula expressing the considered problem. We describe
such an implementation whenever ϕ is a distance formula.

We use the concept of distance profiles and distance profile complexity. Let G be a graph
and let S be a set of its vertices. For a vertex v of G, the distance-r profile of v on S, denoted
profileG,S

r (v), is the function mapping S to {0, 1, . . . , r,∞} such that for s ∈ S,

profileG,S
r (v)(s) =

{
distG(v, s) if distG(v, s) 6 r,

∞ otherwise.

The distance-r profile complexity of G is the function from N to N defined as

νG
r (m) = max

S⊆V, |S|6m
|{profileG,S

r (v) : v ∈ V (G)}|.

G. Fabiański, Mi. Pilipczuk, S. Siebertz, and Sz. Toruńczyk 27:13

That is, this is the maximum possible number of different functions from S to {0, 1, . . . , r,∞}
realized as distance-r profiles on S of vertices of G, over all vertex subsets S of size at most m.
For a graph class C , we denote νC

r (m) = supG∈C νG
r (m).

Note that for any graph G and r,m ∈ N we have νG
r (m) 6 (r + 2)m, as this is the total

number of functions from a set of size m to {0, 1, . . . , r,∞}. This bound is exponential in m,
however it is known that on nowhere dense classes an almost linear bound holds.

I Lemma 21 ([9]). Let C be a nowhere dense class of graphs. Then for every r ∈ N and
ε > 0 there exists a constant cr,ε such that νC

r (m) 6 cr,ε ·m1+ε for all m ∈ N.

We remark that the conclusion of Lemma 21 still holds when C is any fixed power of a
nowhere dense class, and when C is the class of map graphs. Moreover, when C is the class
of Kt,t-free graphs for some t ∈ N, then νC

1 (m) 6 O(mt).
We are ready to give implementations for the oracles. The main idea is that because we

are working with a distance formula, when looking for, say, a candidate that agrees with all
witnesses in a set B, the only information that is relevant about any vertex is its distance-r
profile on the set S consisting of all vertices appearing in the tuples of B. Hence, there are
only νG

r (|S|) different “types” of vertices, and instead of checking all k-tuples of vertices in
the graph, we can check all k-tuples of types.

I Lemma 22 (♠). Fix a distance formula ϕ(x̄; ȳ) of radius r and with |x̄| = c and |ȳ| = d.
Then for an input graph G = (V,E), there are implementations of oracle calls in ϕ(G) that
achieve the following running times:

Candidate Oracle: time O(|B| · ‖G‖+ |B| · νG
r (d|B|)c) for a call to B ⊆ V ȳ;

Weak Witness Oracle: time O(‖G‖+ νG
r (c)d) for a call to ā ∈ V x̄;

Strong Witness Oracle: time O(|A|·‖G‖+|A|·νG
r (c|A|)pd) for a call to A ⊆ V x̄ and p ∈ N.

Algorithmic consequences. We are ready to present our algorithmic corollaries, promised
in Section 1. Throughout this section, when stating parameterized running times we use k
to denote the target size of a solution (i.e., distance-r dominating or independent set). We
start with the domination problems.

I Theorem 23. Fix r ∈ N and let C be a class of graphs such that for each q 6 r, the class
δq(C) has finite semi-ladder index. Then, for any positive distance formula ϕ(x̄; ȳ) of radius
at most r and size k, the domination-type problem corresponding to ϕ can be solved on C in
time f(k) · ‖G‖, for some function f .

Proof. W.l.o.g. we can assume that |x̄|, |ȳ| 6 k. Let ` ∈ N be such that δq(C) has semi-ladder
index smaller than `, for all q 6 r. Given a graph G, we apply the Semi-Ladder Algorithm
for the Coverage problem in the graph ϕ(G) with implementations of oracles provided by
Lemma 22. By Lemma 4 we conclude the semi-ladder index of ϕ(C) is bounded by Rk(`).
Now the claimed running time follows immediately from Corollary 17 and Lemma 22. J

I Remark 24. By Corollary 17 and Lemma 22, the running time is actually O(p ·νC
r (p)k ·‖G‖),

where p is the semi-ladder index of ϕ(G). By Lemma 4, we have that p 6 Rk(`), which is upper-
bounded by kk`−1 for k > 2. Combining this with the trivial upper bound νC

r (p) 6 (r + 2)p

yields f(k) 6 22O(k log k) , where r and ` are considered fixed constants. However, if a priori
we know for the graph class C that νC

r (m) is polynomial in m, instead of exponential, then
by the analysis above we obtain f(k) 6 2O(k2 log k). Finally, by Lemma 5, for ϕ = δk

r – the
formula corresponding to the Distance-r Dominating Set problem – we can use a sharper
bound of p 6 k`−1. Thus, for this case we obtain an upper bound of f(k) 6 2poly(k) in the
general setting, and f(k) 6 2O(k log k) when νC

r (m) is polynomial in m.

STACS 2019

27:14 Progressive Algorithms for Domination and Independence

Now, using Theorem 23 together with combinatorial results stated in Section 2 we
immediately obtain the algorithmic results promised in Section 1. Note that the results hold
not only for Distance-r Dominating Set, but even for every domination-type problem of
fixed radius r and size k that is considered the parameter.

I Theorem 25. Fix r ∈ N. Then any domination-type problem defined by a positive distance
formula of size k and radius at most r can be solved in time 2O(k2 log k) · ‖G‖ on any graph
class C such that either C is nowhere dense, or C = Ds for a nowhere dense class D and
some s ∈ N, or C is the class of map graphs, or r = 1 and C is the class of Kt,t-free graphs
for some fixed t ∈ N. Moreover, if this domination-type problem is Distance-r Dominating
Set for parameter k, then the running time can be improved to 2O(k log k) · ‖G‖.

Proof. By Theorem 11, the class δr(C) has finite semi-ladder index. By Lemma 21 and
its strengthenings (see the comment below Lemma 21) νC

r (m) is bounded by a polynomial
in m. Hence, we may apply Theorem 23; the claimed running times follow from the remark
following it. J

We now move to the independence problems, for which we apply the Ladder algorithm.

I Theorem 26. Let r ∈ N and let C be a class of graphs such that for any k ∈ N, the
class ηk

r (C) has ladder index smaller than `(k) and has the weak p(k)-Helly property, for
some functions `, p : N→ N. Then the Distance-r Independent Set problem on C can
be solved in time f(k) · ‖G‖, for some function f .

Proof. Given a graph G, we apply the Ladder Algorithm in the graph ηk
r (C) with imple-

mentations of oracles provided by Lemma 22. The correctness of the algorithm and the
running time bound follow directly from Corollary 20 and Lemma 22, where we may set
f(k) = O(Rp(k)(2`(k)) · νC

r (p(k) ·Rp(k)(2`(k))))p(k)·k). J

I Theorem 27. For any r ∈ N and nowhere dense class C , the Distance-r Independent
Set problem on C can be solved in time f(k) · ‖G‖, for some function f .

Proof. By Theorems 6 and 16, for every k ∈ N there are constants `, p ∈ N, depending on k,
such that the class ηk

r (C) has ladder index bounded by ` and has the weak p-Helly property.
This allows us to apply Theorem 26. J

5 Discussion of related results

Fixed-parameter tractability of both Distance-r Dominating Set and Distance-r Inde-
pendent Set on any nowhere dense class follows from the general model-checking result
for first-order logic of Kreutzer et al. [11]. The algorithms derived in this manner have
running time f(k) · n1+ε for any fixed ε > 0 and some function f , where n is the number
of vertices of the input graph. In fact, an algorithm with running time f(k) · n1+ε for the
Distance-r Independent Set problem is one of the intermediate results used in [11]. A
close inspection of this algorithm reveals that the polynomial factor is in fact ‖G‖, improving
the claimed n1+ε, however this is not explicit in [11]. For the Distance-r Dominating Set
problem, its fixed-parameter tractability on any nowhere dense class was established earlier
by Dawar and Kreutzer [4], but their algorithm had at least a quadratic polynomial factor in
the running time bound.

As far as Distance-r Dominating Set on powers of nowhere dense classes is concerned,
we remark that the result provided in Theorem 25 would not follow immediately from
applying the algorithm on the graph before taking the power, for radius rs instead of r. The

G. Fabiański, Mi. Pilipczuk, S. Siebertz, and Sz. Toruńczyk 27:15

reason is that the input consists only of the graph Gs, and it is completely unclear how
to algorithmically find the preimage G if we are dealing with an arbitrary nowhere dense
class D . To the best of our knowledge, this result is a completely new contribution.

Regarding map graphs, the fixed-parameter tractability of the Distance-r Dominating
Set problem on this class of graphs was established by Demaine et al. [6]. However, they use
the recognition algorithm for map graphs of Thorup [23] to draw a map model of the graph;
this algorithm has an estimated running time of at least O(n120) [2] and not all technical
details have been published. Another way of obtaining a fixed-parameter algorithm would
be to use the fact that map graphs have locally bounded rankwidth; however, again achieving
linear running time would be difficult due to the need of computing branch decompositions
with approximately optimum rankwidth, for which the best known algorithms have cubic
running time. In contrast, as we have shown, the Semi-ladder Algorithm solves the problem
in linear fixed-parameter time without the need of having a map model provided.

Finally, the fixed-parameter tractability of Dominating Set on Kt,t-free graphs, where
both k and t are considered parameters, was established by Telle and Villanger [22]. Thus,
Theorem 25 reproves this result and also improves upon the running time: from 2O(kt+2) · ‖G‖
of [22] to 2O(k log k) · ‖G‖.

References
1 Hans Adler and Isolde Adler. Interpreting nowhere dense graph classes as a classical notion of

model theory. European Journal of Combinatorics, 36:322–330, 2014.
2 Zhi-Zhong Chen. Approximation Algorithms for Independent Sets in Map Graphs. J. Algo-

rithms, 41(1):20–40, 2001.
3 Bruno Courcelle. The monadic second-order logic of graphs. I. Recognizable sets of finite

graphs. Information and computation, 85(1):12–75, 1990.
4 Anuj Dawar and Stephan Kreutzer. Domination Problems in Nowhere-Dense Classes. In

FSTTCS 2009, volume 4 of LIPIcs, pages 157–168. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2009.

5 Anuj Dawar and Stephan Kreutzer. Parameterized complexity of first-order logic. In Electronic
Colloquium on Computational Complexity, TR09-131, page 39, 2009.

6 Erik D. Demaine, Fedor V. Fomin, MohammadTaghi Hajiaghayi, and Dimitrios M. Thilikos.
Fixed-parameter algorithms for (k, r)-center in planar graphs and map graphs. ACM Trans.
Algorithms, 1(1):33–47, 2005.

7 Pål Grønås Drange, Markus Sortland Dregi, Fedor V. Fomin, Stephan Kreutzer, Daniel
Lokshtanov, Marcin Pilipczuk, Michał Pilipczuk, Felix Reidl, Fernando Sánchez Villaamil,
Saket Saurabh, Sebastian Siebertz, and Somnath Sikdar. Kernelization and Sparseness: the
Case of Dominating Set. In STACS 2016, volume 47 of LIPIcs, pages 31:1–31:14. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2016. Full version available as arxiv preprint
https://arxiv.org/abs/1411.4575. doi:10.4230/LIPIcs.STACS.2016.31.

8 Zdeněk Dvořák, Daniel Král, and Robin Thomas. Testing first-order properties for subclasses
of sparse graphs. J. ACM, 60(5):36, 2013.

9 Kord Eickmeyer, Archontia C. Giannopoulou, Stephan Kreutzer, O-joung Kwon, Michał
Pilipczuk, Roman Rabinovich, and Sebastian Siebertz. Neighborhood Complexity and Kernel-
ization for Nowhere Dense Classes of Graphs. In ICALP 2017, volume 80 of LIPIcs, pages
63:1–63:14. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2017. Full version available as
arxiv preprint https://arxiv.org/abs/1612.08197. doi:10.4230/LIPIcs.ICALP.2017.63.

10 Grzegorz Fabiański, Michał Pilipczuk, Sebastian Siebertz, and Szymon Toruńczyk. Progressive
Algorithms for Domination and Independence. arXiv preprint, 2018. arXiv:1811.06799.

11 Martin Grohe, Stephan Kreutzer, and Sebastian Siebertz. Deciding First-Order Properties of
Nowhere Dense Graphs. J. ACM, 64(3):17:1–17:32, 2017.

STACS 2019

https://arxiv.org/abs/1411.4575
http://dx.doi.org/10.4230/LIPIcs.STACS.2016.31
https://arxiv.org/abs/1612.08197
http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.63
http://arxiv.org/abs/1811.06799

27:16 Progressive Algorithms for Domination and Independence

12 Jaroslav Nešetřil and Patrice Ossona de Mendez. First order properties on nowhere dense
structures. The Journal of Symbolic Logic, 75(03):868–887, 2010.

13 Jaroslav Nešetřil and Patrice Ossona de Mendez. On nowhere dense graphs. European Journal
of Combinatorics, 32(4):600–617, 2011.

14 Jaroslav Nešetřil and Patrice Ossona de Mendez. Sparsity – Graphs, Structures, and Algorithms,
volume 28 of Algorithms and combinatorics. Springer, 2012.

15 Allen O’Hara. An Introduction to Equations and Equational Theories, 2011.
16 MichałPilipczuk and Sebastian Siebertz. Kernelization and approximation of distance-r

independent sets on nowhere dense graphs. arXiv preprint, 2018. URL: 1809.05675.
17 Michał Pilipczuk and Sebastian Siebertz. Lecture notes for the course “Sparsity” given at

Faculty of Mathematics, Informatics, and Mechanics of the University of Warsaw, Winter
Semester 2017/18. Available at https://www.mimuw.edu.pl/~mp248287/sparsity.

18 Michał Pilipczuk, Sebastian Siebertz, and Szymon Toruńczyk. On the number of types in
sparse graphs. In LICS 2018, pages 799–808. ACM, 2018.

19 Anand Pillay and Gabriel Srour. Closed Sets and Chain Conditions in Stable Theories. J.
Symb. Log., 49:1350–1362, 1984.

20 Klaus-Peter Podewski and Martin Ziegler. Stable graphs. Fundamenta Mathematicae,
100(2):101–107, 1978.

21 Saharon Shelah. Classification theory: and the number of non-isomorphic models, volume 92.
Elsevier, 1990.

22 Jan Arne Telle and Yngve Villanger. FPT algorithms for domination in biclique-free graphs.
In ESA 2012, volume 7501 of LNCS, pages 802–812. Springer, 2012.

23 Mikkel Thorup. Map Graphs in Polynomial Time. In FOCS 1998, pages 396–405. IEEE
Computer Society, 1998.

1809.05675
https://www.mimuw.edu.pl/~mp248287/sparsity

Modification to Planarity is Fixed Parameter
Tractable
Fedor V. Fomin
Department of Informatics, University of Bergen, Norway
fomin@ii.uib.no

Petr A. Golovach
Department of Informatics, University of Bergen, Norway
petr.golovach@uib.no

Dimitrios M. Thilikos
AlGCo project-team, LIRMM, Université de Montpellier, CNRS, Montpellier, France
sedthilk@thilikos.info

Abstract
A replacement action is a function L that maps each k-vertex labeled graph to another k-vertex
graph. We consider a general family of graph modification problems, called L-Replacement to C,
where the input is a graph G and the question is whether it is possible to replace in G some k-vertex
subgraph H of it by L(H) so that the new graph belongs to the graph class C. L-Replacement to
C can simulate several modification operations such as edge addition, edge removal, edge editing,
and diverse completion and superposition operations. In this paper, we prove that for any action L,

if C is the class of planar graphs, there is an algorithm that solves L-Replacement to C in O(|G|2)
steps. We also present several applications of our approach to related problems.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms

Keywords and phrases Modification problems, Planar graphs, Irrelevant vertex technique

Digital Object Identifier 10.4230/LIPIcs.STACS.2019.28

Funding Fedor V. Fomin: Supported by the Research Council of Norway via the projects “CLASSIS”
and “MULTIVAL”. Supported by the Research Council of Norway and the French Ministry of Europe
and Foreign Affairs, via the Franco-Norwegian project PHC AURORA 2019.
Petr A. Golovach: Supported by the Research Council of Norway via the projects “CLASSIS” and
“MULTIVAL”. Supported by the Research Council of Norway and the French Ministry of Europe
and Foreign Affairs, via the Franco-Norwegian project PHC AURORA 2019.
Dimitrios M. Thilikos: Supported by projects DEMOGRAPH (ANR-16-CE40-0028) and ESIGMA
(ANR-17-CE23-0010). Supported by the Research Council of Norway and the French Ministry of
Europe and Foreign Affairs, via the Franco-Norwegian project PHC AURORA 2019.

1 Introduction

The irrelevant vertex technique was proposed by Robertson and Seymour for the Disjoint
Paths problem [24, 25], which is the central algorithmic result of their Graph Minors series
of papers. A superficial description of the technique is

If the treewidth of the input graph is small, then standard techniques on graphs of bounded
treewidth can be used to solve the problem we have on hands. Otherwise, the graph contains
an irrelevant vertex, that is, the vertex whose removal does not change the problem.

Of course, the devil is in details, and usually in order to make the irrelevant vertex technique
work, highly non-trivial arguments are involved in proving the existence of an irrelevant
vertex, see e.g. [1, 7, 12, 13, 14, 15, 17, 18, 19, 20, 22, 23]. We also refer to [6, Chapter 7]
for a high-level overview of the irrelevant vertex technique.

© Fedor V. Fomin, Petr A. Golovach, and Dimitrios M. Thilikos;
licensed under Creative Commons License CC-BY

36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019).
Editors: Rolf Niedermeier and Christophe Paul; Article No. 28; pp. 28:1–28:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-1955-4612
mailto:fomin@ii.uib.no
https://orcid.org/0000-0002-2619-2990
mailto:petr.golovach@uib.no
https://orcid.org/0000-0003-0470-1800
mailto:sedthilk@thilikos.info
https://doi.org/10.4230/LIPIcs.STACS.2019.28
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

28:2 Modification to Planarity is Fixed Parameter Tractable

There are a number of generic algorithmic results in the literature explaining why and
when a certain algorithmic technique is successful. For example, we know that many
problems can be solved by dynamic programming on graphs of bounded treewidth, and
Courcelle’s theorem explains why this happens [5]. However, we do not know any generic
characterization of problems solvable by the irrelevant vertex technique and the quest for
such a characterization is the main motivation for this paper.

We show that the irrelevant vertex approach can be used to establish fixed-parameter
tractability of a very general class of graph transformation problems. The problem we
consider is the following: For some integer k, is it possible to transform an input graph G into
a planar graph by performing at most k allowed changes? The allowed changes are defined
through the set of the following replacement actions. Suppose that for every labelled k-vertex
graph H we have a list L(H) of labelled k-vertex graphs. Then the replacement action
selects a subset of k vertices X in the graph G and replaces the subgraph G[X] induced by
X by a graph F from the list L(G[X])). More precisely, the action selects a k-sized vertex
subset X of G labelled by numbers {1, . . . , k} and, given that H is the labelled k-vertex
graph obtained from G[X], we select a labelled k-vertex graph F from L(H) and replace H
by F. Thus the vertex set of the new graph G′ is V (G) and it has the same adjacencies as in
G except pairs of vertices from X. In the transformed graph, vertices u, v ∈ X labelled by
i, j ∈ {1, . . . , k} are adjacent in G′ if and only if {i, j} is an edge of F. Then the task is for a
given graph G and the family of allowed replacement actions, to decide whether there is a
replacement action transforming G into a planar graph.

The problem of replacements to a planar graph encompasses many interesting graph
modification problems. For example, the simplest replacement action is defined by associating
with every k-vertex graph H the list L(H) consisting of an edgeless k-vertex graph. This
encodes the problem of finding in graph G a set of k vertices X such that deleting all edges
with both endpoints in X results in a planar graph. By selecting an appropriate set of
replacements, one can encode many interesting graph transformation problems, with specified
properties of the replaced subgraph. This also includes various structural properties of
replaced subgraph H, like being a a matching, a clique, or a cycle. Similarly replacement
actions can describe the structural properties of the replacement graph F. For example, the
condition could be that F is the complement of H. Or it could be some quantitive property,
like if we delete k/100 edges, we have to add a least k/200 edges, or that one graph is
obtained from another by flipping k edges according to some specified rules, etc.

Our main result is an algorithm that for any choice of the replacement actions on k-vertex
graphs, decides whether an n-vertex input graph G can be made planar by making use of
replacement in time O(f(k) · n2), where f is some function of k only. In other words, the
problem is fixed-parameter tractable (FPT) parameterized by k.

While, from the general perspective, the proof of our main result follows the path of
all irrelevant vertex techniques papers, there are several significant differences compared
with the previous works. The main difficulty we have to resolve is the following. The most
common argument towards application of the irrelevant vertex technique is that if we find
a large “flat wall” (a grid-like part of the graph which has a planar embedding), then the
central part of the wall is irrelevant. This does not work for replacements – the reason is
that replacements are non-local and may affect vertices that are anywhere in the graph.
Thus even if a vertex is inside a huge wall, it still can be used in the action. To overcome
this issue we have to define an equivalence relation between pieces of the wall expressing
the fact that equivalent pieces are “interchangeable” with respect to any application of an
action. Next we have to detect a sufficiently large set of “equivalent” pieces of the wall and

F. V. Fomin, P. A. Golovach, and D.M. Thilikos 28:3

prove that at least one of these pieces can be considered untouched by the transformation.
Identifying equivalent parts of the wall is the main technical challenge. While parts of the
wall are of bounded treewidth, typical applications of equivalence relations for graphs of
bounded treewidth used in the literature strongly exploit the property that the boundary of
treewidth bounded graphs is also bounded. However, this is not true in our case because the
parts of the wall may have huge boundaries. This requires a new way to define equivalence
relations and an efficient procedure for handling new relations, which in turn allows us to
simplify the input of large treewidth. We believe that the technical contribution of our work
will be the starting point for dealing with other algorithmic applications on planar graphs.

Section 3 is devoted to a high-level description of our algorithm, while the formal definitions
for some basic concepts of this description are presented in Section 4. In Section 5 we provide
several examples of problems that can be reduced to the replacement framework and in
Section 6 we conclude with some open problems and further research directions.

Related work. Graph planarization and, more generally, graph modification, is one of the
main themes in Parameterized Algorithms. For example, Planar Vertex Deletion, where
one asked to remove at most k vertices of the input graph to make it planar. This problem
is fixed-parameter tractable parameterized by k by the generic result from the Graph Minors
project of Robertson and Seymour [24], who showed that every minor-closed property of
graphs can be checked in polynomial time. The result of Robertson and Seymour yields
the existence of an algorithm for this problem but provides no way to construct such an
algorithm. Constructive algorithms for Planar Vertex Deletion were considered in
[16, 23]. The fastest known algorithm for this problem runs in time 2O(k log k)n [15]. The
problem of obtaining a planar graph by contracting edges was considered in [13]. More
generally, the problem of modifying a graph to some graph class excluding some fixed minors,
was considered in [9, 8, 21, 10, 11].

2 Definition of the problem and outline of the algorithm

Elementary definitions. We use N to denote the set of all non-negative numbers. Given
a k1, k2 ∈ N, we denote by [k1, k2] the set {k1, . . . , k2} and given k we denote [k] = [1, k].
Given a function ϕ : A→ B and a subset X ⊆ A we naturally extend ϕ by using ϕ(X) to
denote {ϕ(x) | x ∈ X}. We also write ϕ|X to denote the restriction of ϕ to X ⊆ A. We
denote by inj(A,B) the set of all injections from A to B. For ϕ ∈ inj(A,B), we denote by
ϕ−1 the mapping of ϕ(B) to A that is the reverse of ϕ.

All graphs in this paper are undirected, finite, simple, and without multiple edges. Given
a graph G we denote by V (G) and V (E) the set of its vertices and edges, respectively. We
also denote |G| = |V (G)|. If S ⊆ V (G), then we denote by G \ S the graph obtained by
G after removing from it all vertices in S, together with the incident edges. We define
the subgraph of G induced by S as the graph G[S] = G \ (V (G) \ S). Given an induced
subgraph G′ of G, we define G \G′ = (V (G), E(G) \ E(G′)), i.e., G \G′ is obtained from
G if we remove the edges of G′. Given two graphs G1 and G2, we define their union as
G1 ∪G2 = (V (G1) ∪ V (G2), E(G1) ∪ E(G2)).

2.1 Replacement actions
Replacements. A k-numbered-graph is any graph H where V (H) = [k], i.e., the vertices of
H are the numbers {1, . . . , k}. We denote the set of all k-numbered graphs by Hk and we set
H =

⋃
k∈NHk. A replacement action (abbreviated as R-action) is any function L : H → H,

where for every H ∈ H, |L(H)| = |H|, i.e., graphs in H are mapped to same-size graphs.

STACS 2019

28:4 Modification to Planarity is Fixed Parameter Tractable

L

ϕ−1

L(ϕ−1(G))

Lϕ(G)

ϕ

ϕ−1(G)

G

Figure 1 An illustration of a replacement action where the R-action L replaces graphs by their
complements.

Let G be a graph and let ϕ ∈ inj([k], V (G)). We define ϕ−1(G) = ([k], {ϕ−1(e) | e ∈
E(G[ϕ([k])])}), i.e., we see ϕ−1(G) is the graph in Hk that is isomorphic, via ϕ, to the
subgraph of G where ϕ applies.

Let G be a graph and let G′ be a graph where V (G′) ⊆ V (G). We denote G t G′ =
(G \G[V (G′)]) ∪G′, i.e., G tG′ occurs if we remove from G the edges between vertices in
G′ and then add all edges of G′. Given a graph G, a ϕ ∈ inj([k], V (G)), and a H ∈ Hk,
we define ϕ(H) = {ϕ([k]), {ϕ(e) | e ∈ E(H)}}. Given an R-action L : H → H, we set
Lϕ(G) = G t ϕ(L(ϕ−1(G))), in other words, we consider the part of G that is delimited by
ϕ and then we replace this part by its image via L (see Figure 1 for an example).

We now have all ingredients we need for defining our general problem.

Replacement to planarity. We examine the following family of problems, that may vary,
depending on the choice of the R-action L:

L-Replacement to a Planar Graph. (L-RP)
Input: A graph G and a non-negative integer k.
Question: Is there a ϕ ∈ inj([k], V (G)) such that Lϕ(G) is planar?

I Theorem 1. For every R-action L, there exists an algorithm that given an instance (G, k)
of L-Replacement to a Planar Graph, reports whether (G, k) is a yes-instance in
Ok(|G|2) steps1.

The main result of the paper is a proof of Theorem 1. In fact, we give an algorithm
that runs in the same running time, for the following more general annotated version of this
problem:

1 Given a function f : N× N→ N and a function g : N→ N, we use the notation f(k, n) = Ok(g(n)) in
order to say that there is a function h : N→ N where f(k, n) = O(h(k) · g(n)).

F. V. Fomin, P. A. Golovach, and D.M. Thilikos 28:5

L-Annotated Replacement to a Planar Graph (L-ARP)
Input: A graph G, a set of annotated vertices R ⊆ V (G), and a non-negative integer k.
Question: Is there a ϕ ∈ inj([k], R) such that Lϕ(G) is planar?

Theorem 1 can easily be generalized for the case when instead of a single R-action L we
are given a set L of R-actions and consider the following problem:

L-List Replacement to a Planar Graph (L-LRP)
Input: A graph G and a non-negative integer k.
Question: Is there an R-action L ∈ L and ϕ ∈ inj([k], V (G)) such that Lϕ(G) is
planar?

Since |Hk| = 2(k
2), by brute force checking all R-actions of L restricted to Hk, we reduce

this more general problem to L-Replacement to a Planar Graph and obtain the
following corollary.

I Corollary 2. For every family of R-actions L, there exists an algorithm that given an
instance (G, k) of L-List Replacement to a Planar Graph, reports whether (G, k) is
a yes-instance in Ok(|G|2) steps.

Another possibility to generalize the problem is to allow multiple actions, that is, to
consider the following variant for a given R-action L:

L-Consecutive Replacement to a Planar Graph (L-CRP)
Input: A graph G, and two non-negative integers k and r.
Question: Is there a tuple ϕ1, . . . , ϕh ∈ inj([k], V (G)) for some h ≤ r such that
Lϕh

(. . .Lϕ2(Lϕ1(G)) . . .) is planar?

Notice that Lϕh
(. . .Lϕ2(Lϕ1(G)) . . .) can be seen as L̂ψ where ψ ∈ inj([k′], V (G)) and L̂

is some R-action for k′ = |ϕ1([k]) ∪ . . . ∪ ϕh([k])|. Since k′ ≤ rk, we can check all possible
values of k′ and for each k′, construct the family of all possible R-actions L that contain all
feasible L̂ that can be results of compositions of L. This way, we reduce L-Consecutive
Replacement to a Planar Graph to L-List Replacement to a Planar Graph
and show that the problem is FPT when parameterized by k + r.

I Corollary 3. For every R-action L and a positive integer r, there exists an algorithm that
given an instance (G, k) of L-Consecutive Replacement to a Planar Graph, reports
whether (G, k) is a yes-instance in Ok+r(|G|2) steps.

In fact, it is possible to combine both generalizations and allow multiple actions chosen
from a given list or even distinct lists.

3 High-level description of the algorithm

As our algorithm for L-ARP is quite involved, in this extended abstract we present an outline
of its main ideas. Our description is high-level. Formal definitions of the most important
concepts in this description can be found in Section 4.

STACS 2019

28:6 Modification to Planarity is Fixed Parameter Tractable

Basic concepts. We start with some conventions. In the course of our description, the
word “small-enough” (resp. “big-enough” or “many-enough”) means upper (resp. lower)
bounded by some function of k. By the term “flat part of G” we refer to some subgraph
of G that can be embedded in a disk. Also by the term “bidimensionally big-enough part
of a graph G” we refer to a flat part of G that contains a subdivision of a big-enough wall
as a subgraph (see Figure 2). We say that a vertex of G is “well-enough insulated” if it
is surrounded by a collection of many-enough homocentric cycles of some flat part of G.
Intuitively, the existence of a bidimensionally big-enough part implies that a big-enough
number of vertices of G are well-enough insulated.

Figure 2 A subdivision of a 12× 12-wall and the 6 homocentric cycles insulating its two central
vertices.

Some preliminary observations. Before we present the main idea of the algorithm we start
with some preliminary observations.

Observation 1: The kick-off observation is that it is possible to express L-ARP in Monadic
Second Order logic (MSOL). This implies that when the instance graph G has small-
enough treewidth, then the problem can be solved in a linear in n = |V (G)| number of
steps. This observation is not straightforward as actions may also add edges in G and it
requires some extra effort to translate this into MSOL.

Observation 2: The second observation is that if (G, k) is a yes-instance, then either G has
bounded treewidth – and then we are done, because of Observation 1 – or it contains a
bidimensionally big-enough flat part K. Moreover, using a result from [12, Subsection
4.1], we can also assume that K, besides the fact that it is bidimensionally big-enough, it
has small-enough treewidth. This last property will permit us to apply MSOL-queries to
any portion of K. It follows that K, if it exists, can be detected in O(n) steps.

Observation 3: A third observation is that if some non-annotated vertex v in K is “surroun-
ded” by a subdivided 3-wall-annulus A (see Figure 3) and the closed interior IA of the
outer cycle of A contains only non-annotated vertices, then we can remove v from G and
reduce the instance to a simpler equivalent one. This reduction is based on the fact that
the 3-connectivity of A offers enough rigidity for the graph inside IA to remain unaffected
in any planar graph that may be created by an action on G. Based on the above, we
may assume that any bidimensionally big-enough territory of the flat part contains some
annotated vertex in its interior.

F. V. Fomin, P. A. Golovach, and D.M. Thilikos 28:7

Figure 3 A subdivided 3-wall-annulus. The grey vertices are the subdivision vertices.

The territory-equivalence idea. The main idea of the algorithm is to detect, inside a
bidimensionally big-enough part of G, a collection of many-enough pairwise-disjoint territories
and to define a suitable notion of equivalence between them that expresses all the ways an
action may affect them.

A critical aspect of our approach is that the number of equivalence classes of such an
equivalence relation should depend only on k. This permits us, given that we have many-
enough territories, to algorithmically detect some sub-collection of k + 1 of them that are
indistinguishable with respect to any action that can be applied on G. As an action affects
vertices of at most k territories, we can arbitrary pick some particular annotated vertex inside
one of them and create the equivalent instance where this vertex is no longer annotated. In
this way, we can recurse to an equivalent instance of the problem that is more simple than
the original one.

K

v

Figure 4 A visualization of the interior of the flat part K. Each subdivided sub-wall contains an
annotated vertex v surrounded by many-enough homocentric cycles. In this particular figure, each
subdivided sub-wall gives rise to a separation sequence of only 3 layers.

Separation sequences. We now explain how the above idea is implemented. First of all, we
work on the flat part K (that can be detected due to the Observation 2) and use the fact that
it is bidimensionally big-enough in order to detect in it a big-enough set X of well-enough
insulated annotated “central” vertices. Thus each v ∈ X is accompanied with a big-enough
collection Cv = {C1, . . . , Cr} of surrounding cycles, called a separation sequence (assuming

STACS 2019

28:8 Modification to Planarity is Fixed Parameter Tractable

that C1 is the outermost cycle). Moreover, based on the big-enough bidimensionality of K
we can also assume that for every two distinct v, v′ ∈ X, the closed interiors of the outermost
cycles of Cv and Cv′ are disjoint (see Figure 4). Based on Observations 2 and 3, it is possible
to detect such a set X of annotated vertices along with their accompanying cycle collections,
in O(n) steps. Moreover, for each cycle Cj in Cv we denote by Gj the graph cropped by its
interior and we make sure that the 3 outermost cycles are parts of a subdivided 3-wall-annulus
Aj . We call Gj j-th prefix graph of v.

We see each prefix graph as a doubly annotated graph Gj = (Gj , Zj , Rj) where Zj are
the vertices inside the annulus Aj and Rj are the annotated vertices inside Gj . As r is
big-enough, we know that for any application of an action on a set S of k vertices, that is able
to transform G to a planar graph, there will be some Zj , j ∈ {1, . . . , r} that will be disjoint
from S. This permits us to see this Zj as a separator of G whose inner part (including Zj) is
Gj . Moreover after an action that does not affect Zj , the set Zj will maintain its status as a
separator in the resulting graph. This notion of separator is formalized by the concept of an
annulus-embedded separator that is formally described in Subsection 4.2.

An equivalence relation on prefix graphs. Recall that a prefix graph Gj is a planar graph
of bounded treewidth. We stress that typical equivalence relations that are based on MSOL-
expressible properties require that the boundary of the bounded-treewidth graphs is also
bounded. However, this is not our case. Instead we will use the fact that the boundary Zj
“well insulates” Gj from the rest of the graph.

We need to encode, for each Gj = (Gj , Zj , Rj), all possible ways an action may rearrange
G in both sides of the separator Zj , assuming that it does not affect the vertices of Zj .
Clearly, if S is the set of vertices of G on which an action is applied, then some part of S is
outside Gj and another part is inside Gj (but not in Zj). As the action does not affect the
separator Zj , it will create a planar graph G′ where the outer and inner part will still be
well-defined with respect to Zj .

G
(i)
j

C

C ′

C
(j)
1 Z

(i)
j

Figure 5 A prefix graph Gi. The set Zj are the vertices in the annulus defined by its 3 first
layers. The red vertices are the vertices affected by some action. The graphs C′ and C are connected
components of (G \ V (Gj)) \ S that will be relocated after the application of an action to G.

The vertices of S along with the connected components of (G\V (Gj))\S will be relocated
in G′ in the inner and the outer parts of Zj . However, these possible relocations depend only
one the size of S (that is k) and the ways these components can be seen as “partially-planar
graphs” with respect to their boundary in S (which also depends on k). The precise encoding
of this is expressed by the notion of a replacement folio of a doubly annotated graph, formally
defined in Subsection 4.3. This encoding is justified by a Lemma asserting (the proof is

F. V. Fomin, P. A. Golovach, and D.M. Thilikos 28:9

omitted in this extended abstract) that any action on G that avoids Zj can be “represented”
by this folio in the sense that if two doubly annotated graphs, that correspond to different
separation sequences Cv and Cv′ , have the same replacement folio, then the application of an
action to the first can be simulated by the application of an action to the second.

An important technical step is to prove a series of lemmata that “translate” all pos-
sible elements of a replacement folio to MSOL-formulas. Again we stress that this is not
straightforward: besides the need of suitably encoding partially-planar graphs, we also
have to express all the ways “missing edges” of G may appear as the result of an action.
As a consequence of its MSOL-expressibility, it follows that our equivalence relation on
territories has a small-enough number of equivalence relations. This, together with the
bounded treewidth of the flat part K, permits us to detect in it k + 1 equivalent territories
in Ok(n) steps, “de-annotate” one of their annotated “central vertices” and create a simpler
equivalence instance. Given this reduction and the reduction of Observation 3, we may use
|V (G)|+ |R| ≤ 2|V (G)| as the complexity-measure of an instance of our algorithm. Therefore,
after O(n) recursive calls of the above reductions, the algorithm provides a correct answer
or an equivalent instance whose graph has small-enough treewidth. In the latter case, the
correct answer can be computed in Ok(n) steps, as mentioned in Observation 1. Based on
the above, the overall running time of the algorithm is Ok(n2).

4 Key concepts

4.1 Graph embeddings and boundaried graphs
Embedded graphs. We denote by S0 the sphere {(x, y, z) | x2 + y2 + z2 = 1} and we refer
to it as the plane. We consider embeddings or partial embeddings of graphs on S0 and several
subsets of it. Such subsets can be closed disks, i.e. subsets of S0 that are homeomorphic to
the set {(x, y, z) | x2 +y2 ≤ 1} and closed annuli, i.e., subsets of S0 that are homeomorphic to
the set {(x, y, z) | 1

2 ≤ x
2 + y2 ≤ 1}. Given a set X that is either a closed disk or an annulus,

we denote its boundary (i.e., the set of points of X for which every neighborhood around
them contains some point not in Z) by bor(X). Notice that if A is an annulus, then the set
bor(A) has two connected components that are both cycles. We call these cycles boundaries
of A. An oriented annulus is a triple A = (A,Nin, Nout) where A is an annulus and Nin and
Nout are its boundaries. We say that Nin (resp. Nout) is the inner (resp. outer) boundary of
A. Given an oriented annulus A = (A,Nin, Nout) we define rev(A) = (A,Nout, Nin), i.e., we
exchange the roles of the inner and the outer boundary. When we embed a graph G in the
plane, in the annulus, or in a disk, we treat G as a set of points. This permits us to make
set operations operations between graphs and sets of points. For instance, if G is a graph
embedded in the plane and ∆ is a closed disk in the plane, we can use the notation V (G)∩D
in order to the set of vertices of G that are points of D. Also, given that bor(D)∩G ⊆ V (G),
we use G ∩D to denote the graph formed by the vertices and the edges of G that are inside
D. We denote by P the class of all planar graphs.

Annotated graphs. An annotated graph is a pair (G,R) where G is a graph and R ⊆ V (G).
A triple (G,R,Z) where R,Z ⊆ V (G) is called doubly annotated graph.

Boundaried graphs. Let k ∈ N. A k-boundaried graph is a triple G = (G,B, λ) where
(G,B) is an annotated graph and λ ∈ inj(B, [k]) (keep in mind that |B| ≤ k). For every
x ∈ R, we refer to the number λ(x) as the index of x in G and we define the index set of G
as Λ(G) = λ(B). We call B the boundary of G and the vertices of B the boundary vertices

STACS 2019

28:10 Modification to Planarity is Fixed Parameter Tractable

of G. We also denoted B(G) = B and λ(B) = λ. Also we define the size, denoted by |G| of
G = (G,B, λ) by |G|. We denote by Bk the set of all k-boundaried graphs, for each k ∈ N.
Given a G = (G,B, λ) ∈ Bk we define the graph gr(G) = (Λ(G), {λ(e) | e ∈ E(G[B])}), i.e.,
gr(G) is the graph in Hk that is obtained after taking the subgraph of G induced by the
boundary B(G) and then mapping it, via λ, to numbers in [k]. Also, given two i, j ∈ Λ(G), we
say that i ∼G j if λ−1(i) and λ−1(j) belong in the same connected component of G. Clearly,
∼G is an equivalence relation. Let G1,G2 ∈ Bk. We say that G1 and G2 are compatible if
gr(G1) = gr(G2) and ∼G1=∼G2 .

Let G1 = (G1, B1, λ1) and G2 = (G2, B2, λ2) be two compatible k-boundaried graphs.
We define the gluing operation ⊕ such that G1 ⊕G2 is the graph obtained by taking the
disjoint union of G1 and G2 and then identifying each vertex in B1 with the same-indexed
vertex in B2. We make the convention that after identifying a vertex x ∈ B1 with a vertex
y ∈ B2, then the result of this identification in G1⊕G2 is again the vertex x (i.e., B1 prevails
over B2). Finally, we say that G1 ≡ G2, if they are compatible and for every boundary
graph F where gr(F) = gr(Gi), i ∈ [2] it holds that

F⊕G1 ∈ P ⇐⇒ F⊕G2 ∈ P. (1)

4.2 Annulus-embedded separators
The notion of a subdivided 3-wall-annulus is depicted in Figure 3. Notice that each such
graph contains two “boundary” cycles that we call extremal cycles.

Given a S ⊆ V (G), we define as ccin(G,S) as the set of all connected components of
G \ S that are not connected components of G. We also define ccout(G,S) as the union of
all connected components of G \ S that are connected components of G.

Annulus-boundaried graphs. An annulus-boundaried graph is a quadruple (C,K, Y,A)
where

C is a graph,
K is a connected subgraph of C,
Y is a subdivided 3-wall-annulus that is a subgraph of K,
A = (A,Nin, Nout) is an oriented annulus,
Y is embedded in A so that
Nin and Nout are the two extremal cycles of Y, and
G ∩A = K.

We call the cycle of Y that is identical to Nin (resp. Nout) inner (resp. outer) cycle of
(C,K, Y,A). We say that an annulus-boundaried graph (C,K, Y,A) is planar if Q can be
embedded in a disk ∆ such that A ⊆ ∆ and Nout = bor(∆).

Annulus-embedded separators. Let G be a graph. Let also (K,Y,A) be a triple where K
is a graph, Y is a subgraph of K and A is an oriented annulus. We say that (K,Y,A), is
a annulus-embedded separator of G if there are two subgraphs Cin and Cout of G such that
both (Cin,K, Y,A) and (Cout,K, Y, rev(A)) are annulus-boundaried graphs. Notice that each
connected component of ccin(G,V (K)) contains some vertex x where NG(x) intersects either
the inner or the outer cycle of (G,K, Y,A) (but not both). We also make the convention that
all connected components of ccout(G,V (K)) are subgraphs of Cout and we denote Cin (resp.
Cout) inner (resp. outer) component of (K,Y,A) in G. We say that (K,Y,A) is inner-planar
if (Cin,K, Y,A) is planar.

F. V. Fomin, P. A. Golovach, and D.M. Thilikos 28:11

The following observation easily directly from the definitions and the fact that that every
3-sd-annulus is 3-connected and has a unique embedding in the plane.

I Observation 4. Let (G,R) be an annotated graph and let (K,Y,A) be a annulus-embedded
separator of G. Let also Cin and Cout be the inner and the outer component of G respectively.
Then G is planar if and only if both Cin and Cout are planar.

4.3 Replacement folios
A k-planarity-folio is a setMk ⊆ Bk such that for every G ∈ Bk there is a J ∈ Mk such
that J ≡ G. It is known (see e.g., in [2]) that, for every k ∈ N, it is possible to construct
a k-planarity-folioMk whose size depends on k. Given a k ∈ N, we define gk = max{|C| |
C ∈ Mk}. For every graph L where V (L) ⊆ [k], we define CL = {G ∈ Mk | gr(G) = L}.
The following is an direct consequence of the definitions (see e.g., [2]).

I Observation 5. For every k-numbered graph L and every two compatible boundaried
graphs G1 and G2 where gr(G1) = L, it holds that G1 ≡ G2 if and only if ∀F ∈ CL,
F⊕G1 ∈ P ⇐⇒ F⊕G2 ∈ P.

From now on we fix some k-planarity folioMk. Given the above observation, the members
of theMk represent all ways a boundary graph can be “partially planar” with respect to its
boundary.

Replacement folios. Our purpose now is to define a structure representing the effect of all
replacement actions on a doubly annotated graph (G,R,Z). The actions we want to encode
involve vertices in R that are not in Z. Also they involve vertices of some virtual graph D
that is not a part of G. Later, the set Z will be the vertex set of a wall embedded separator
of a graph and D will represent the part of the graph, affected by an action, that is in the
outer component of this embedded separator.

Let k ∈ N. A k-pattern is a quadruple (Ĵin, Ĵout, D, τ) where
Ĵin, Ĵout ∈Mk (both Ĵin, Ĵout are members of the k-planarity folio),
Λ(Ĵin) ∩ Λ(Ĵout) = ∅ (Ĵin, Ĵout do not have same-index boundary vertices),
D is a graph where |D| = |gr(Ĵin) ∪ gr(Ĵout)| (the size of D is the sum of the boundaried
sizes of Ĵin, and Ĵout), and
τ is an bijection from V (D) to Λ(Jin) ∪ Λ(Jout)) (i.e., τ is a labelling of D with numbers
from the index sets of J1 and J2).

We denote by Pk the set of all k-patterns. Suppose now that (G,R,Z) is a doubly
annotated graph. The k-planar L-replacement folio of (G,R,Z) is the set Lk(G,R,Z) ⊆ Pk
containing every quadruple (Ĵin, Ĵout, D, τ) ∈ Pk for which there exists an ϕ ∈ inj([k], V (D)∪
(R \ Z)) such that
1. τ−1 ⊆ ϕ,
2. if G′ = Lϕ(G ∪D), then τ(G′) = gr(Ĵin) ∪ gr(Ĵout)
and if

Sin = ϕ(Λ(Ĵin)),
Sout = ϕ(Λ(Ĵout)),
Ĝ = (G′, Sin, ϕ

−1|Sin)⊕ Ĵin,

Ûin = ccin(Ĝ, Z), and
Ûout = ccout(Ĝ, Z),

then

STACS 2019

28:12 Modification to Planarity is Fixed Parameter Tractable

3. Ûin is planar,
4. Sout ⊆ V (Ûout), and
5. (Ûout, Sout, ϕ

−1|Sout) ≡ Ĵout.

Some intuition. Let us give some intuition on the above, quite technical, definition of
the set Lk(G,R,Z). Suppose that (Ĵin, Ĵout, D, τ) ∈ Pk. The graph G should be seen as
an annulus-boundaried graph (G,K, Y,A) where Z = V (K) where (K,Y,A) is an annulus-
embedded separator between G and a virtual “outside part”. Assume also that ϕ is an action
that affects vertices in R \ Z (i.e., vertices in the interior, call it IG, of the wall separator,
but not in R) and some virtual vertices outside G. The graph D represents these vertices
and the way these are connected between them (see Figure 6).

Ĵin

Ĵout

Sout

Sin

G

IG

D

Figure 6 A 3-sd-annulus. The grey vertices are the subdivision vertices.

Notice that the action ϕ creates some edges between V (D) and IG. Moreover, the same
action is rearranging the edges in D and the edges between the vertices in ϕ([k]) ∩ IG. The
edges of D are rearranged so as to transform it to a graph isomorphic to gr(Ĵin) ∪ gr(Ĵout)
and this is enforced by conditions 1 and 2. Let G′ be the result of the application of ϕ on
G ∪D and the Ĝ be result of gluing G′ with Ĵin. Here Jin represents a virtual “outside part”
that is not present in G. Notice that the connected components of this outside part are
finally scattered either inside or outside the resulting graph. Moreover both parts should be
finally “boundaried parts” of a planar graph and this is the reason we incorporated both
planarity and connectivity in the definition of the k-planarity folio. Now Ûin is the part of
Ĝ that goes “inside” and Ûout is the part of Ĝ that goes “outside” after the rearrangement.
In condition 3 we demand the inside part Ûin to be planar (we stress that this “inside part”
may contain connected components of Ĵin). We also demand that outside part Ûout contains
Sout (condition 4) and that Ûout is boundaried by Sout is equivalent to Ĵout because of
Condition 5 (again it is possible that this boundaried graph contains connected components
of Ĵin). In this way, Ĵout represents the virtual “outside part” the separator. Resuming, if
(Ĵin, Ĵout, D, τ) ∈ Pk then there is an action ϕ that outside G behaves as indicated by D and
τ, that assumes that the virtual outside part is equivalent to Ĵ∈ and, under this assumption,
demands that the occurring outside part is equivalent to Ĵout.

As already mentioned in the high-level description of our algorithm, all conditions of the
above definition can be expressed in Monadic Second Order logic. We omit the proof of this
fact in this extended abstract.

5 Applications

5.1 Problems generated by different Instantiations of L
L-ARP can express several modification operations based on different instantiations of L. In
this section we give a series of examples. We slightly extend the definition of an action by
demanding that L : H → H is a partial function, i.e., we allow that L(H ′) may be undefined

F. V. Fomin, P. A. Golovach, and D.M. Thilikos 28:13

for some H ′ ∈ H and, in such a case, we write L(H ′) = void. Moreover, in the question of
L-ARP we additionally demand that L(ϕ−1(G)) 6= void. To reduce the enhanced version
to the old one, we define G′ as the disjoint union of G and K5, we set k′ = k + 5 and set
up a L′ so that L′(H) is defined as follows: if H ′ is the disjoint union of a graph H and a
K5 and L(H) 6= void, then L′(H ′) is equal to the disjoint union of L(H) and K−5 (that is
the graph K5 without one edge, i.e., a planar graph), otherwise L(H) = H. We now observe
that (G, k) is a yes-instance of the enhanced L-ARP iff (G′, k′) is a yes-instance of L′-ARP.

We now proceed with a series of problems that can be easily expressed by the enhanced
version of L-ARP.

Planar Completion to a Subgraph. This problem has as input two planar graphs G and H
and asks whether it is possible to add edges in G so that the resulting graph remains planar
(a planar completion of G) and contains H as a subgraph. A variant of this problem, where
G is given along with some plane embedding, has been examined in [4]. We set k = |H|. By
setting L : H → H where L(H ′) = H, i.e., L is the constant function where the output is
always H, we reduce Edge Completion to Subgraph to L-ARP.

Planar Completion to an Induced Subgraph. Here, given G and H, we ask for a planar
completion of G that contains H as an induced subgraph. To reduce this problem to L-ARP,
we consider L : H → H where L(H ′) = H if H ′ is an induced subgraph of H, otherwise
L(H ′) = void.

Edge Deletion to a Planar Graph. Edge Deletion to a Planar Graph asks whether we
can remove at most k edges from G such that the resulting graph will be planar. A pair
(H,F) ∈ H2k ×H2k is good if E(F) ⊆ E(H) and |E(H) \ E(F)| ≤ k. For every good pair
(H,F), we define the action LH,F : H → H where LH,F (H ′) = F if H ′ = H, otherwise we
set LH,F (H ′) = void. Notice that (G, k) is a yes instance of Edge Deletion to a Planar
Graph iff there is a good pair (H,F) where (G, k) is a yes-instance of LH,F -ARP. As there
are Ok(1) good pairs, this implies an FPT-algorithm for Edge Deletion to a Planar
Graph when parameterized by k.
Alternativelly, we can see this problem as a special version of L-CRP by exchanging the
roles of r and k, setting k = 2, L(K2) = K2, and L(K2) = K2, where K2 is the complement
of the complete graph on two vertices.

Matching Deletion to a Planar Graph. We ask here whether we can remove a matching
of size at most k in order to create a planar graph. The reduction is again the same as in the
case of Edge Deletion to a Planar Graph, however now, for a pair (H,F) ∈ H2k×H2k
to be good, we additionally ask that E(H) \ E(G) is a matching of H.

Planar Subgraph Isomorphism. Planar Subgraph Isomorphism has as input two planar
graphs G and J and asks whether G contains J as a subgraph. We define the action
L : H → H where L(H ′) = H ′ if J is a subgraph of H ′, otherwise L(H ′) = void. Then
L-ARP is the Planar Subgraph Isomorphism.

Planar Induced Subgraph Isomorphism. Planar Induced Subgraph Isomorphism has as
input two planar graphs G and J and asks whether G contains J as an induced subgraph.
The construction of L is as in the previous case with the difference that we now demand
that J is isomorphic to H ′.

STACS 2019

28:14 Modification to Planarity is Fixed Parameter Tractable

Edge-disjoint Planar Superposition: given two planar graphs G and H, check whether H
is a subgraph of the complement of G and H ∪G is planar. We define the action L : H → H
where L(H ′) = H if E(H ′) = ∅, otherwise L(H ′) = void. Then L-ARP is the Edge-disjoint
Planar Superposition.

5.2 Modifications to planar graph with additional properties
Let G be a graph property, i.e, a subset of the set of all graphs. We consider the following
extension of L-RP.

L-Replacement to a Planar Graph with property G (L-RPP(G)).
Input: A graph G and a non-negative integer k.
Question: is there a ϕ ∈ inj([k], V (G)), such that Lϕ(G) a planar graph in G?

We now provide some instantiations of G for which the L-RPP(G) belongs in FPT, when
parameterized by k. In each case we explain how our algorithm should be modified.

(1) G := GH is the set of all H-subgraph-free graphs, for some connected graph H. In
the definitions of an annulus-boundaried graph and wall embedded separators (see
Subsection 4.2) instead of taking a 3-sd-wall, we now consider an r-sd-wall where r is
the diameter of H. This permits the modification of the conclusion of Observation 4 to
“G is H-subgraph free and planar if and only if both Cin and Cout are H-subgraph free
and planar”. Also we may enhance the definition of a replacement folio (defined formally
in Subsection 4.3) by considering in Condition 3 Ûin to be planar and H-subgraph free
and in Condition 5, we use a revised version of the equivalence ≡ where we instead
demand in (1) that F ⊕G1 ∈ P ∩ G ⇐⇒ F ⊕G2 ∈ P ∩ G. Notice that for every H,
GH is a MSOL-expressible property (actually it is even expressible in First Order Logic)
therefore the revised ≡ also has finite index.

(2) G = GH is the set of all induced H-subgraph-free graphs, for some connected graph H.
The modifications are exactly the same as in the previous case. Just take into account
that H-induced minor freeness is MSOL-expressible.

(3) G := Gd is the set of all d-regular graphs for d ∈ {3, 4, 5}. In this case, one can easily
verify that the following relaxed version of the conclusion of Observation 4 holds: “G is
d-regular and planar if and only if both Cin and Cout are almost d-regular and planar”.
Here by “almost” we demand the vertices of the 3-sd wall A = (A,Nin, Nout) that are on
Nout to have degree at most d and all the others to have degree exactly d. Notice that
this relaxed regularity condition is again expressible in MSOL-logic (for this we need
to annotate the vertices in Nout). As in the previous cases, we can again demand, in
Condition 3, that Ûin is planar and almost 3-regular and, in Condition 5 enhance the
definition of the equivalence relation by additionally asking almost regularity in (1).

(4) G is the set of all Eulerian graphs. This is the same as in the previous case. The only
difference is that we now ask degrees to be even. All modifications are are parallel to the
previous case (notice that connectivity demand for Eulerian graphs is already incorporated
in the definition of ≡). However, asking for a graph to have all vertices, except possibly
from some annotated set, of even degree is not MSOL-expressible. However, we can
use an extension of MSOL, called Counting MSOL (CMSOL) that is MSOL with an
additional predicate cardq,r where (G,S) |= cardq,r ⇐⇒ |S| ≡ q (mod r). It is known
(see e.g. [3, Lemma 3.2]) that equivalence relations on CMSOL-expressible properties
have finite index. This permits us to deal with the parity demand of being Eulerian.

F. V. Fomin, P. A. Golovach, and D.M. Thilikos 28:15

(5) G is the set of all bipartite graphs. As before, one can easily derive a version of
Observation 4 where the conclusion is: “G is planar bipartite if and only if both Cin and
Cout are planar bipartite’. The modifications are analogous to those of the previous cases
where the property is the exclusion of an odd cycle, which is CMSOL-expressible.

(6) G is the set of all triangulated graphs. Notice that G contains every graph G that
has exactly 3|G| − 6 edges. Let (G, k) be an instance of L-RPP(G) and let tG =
|E(G)|− (3|V (G)|−6). As an action cannot remove or introduce more than

(
k
2
)
edges, we

assume that −
(
k
2
)
≤ tG ≤

(
k
2
)
, otherwise (G, k) is a no-instance. Under this demand, L

should change to L′ where L′(H) = L(H) if |E(H)| − |E(L(H))| = tG and L′(H) = void
otherwise. As the action L′′ when applied on G always creates a graph G′ that has
3|G′|−6 edges and in the case G′ is planar, then it should also be triangulated. Therefore
(G, k) is a yes instance of L-ARP(G) iff (G′, k) is a yes instance of L′-ARP.

(7) G is the set of all radial graphs. A radial graph is a graph that can be embedded in the
plane so that all its faces are squares. Recall that a graph G is radial if it is planar,
bipartite, and has 2|G| − 4 edges. We apply the same reduction as in the previous case
for tG = |E(G)| − (2|V (G)| − 4) and we have that L-RPP(G) iff (G′, k) is a yes instance
of L′-ARP(G′) where G′ is the class of all bipartite graphs (treated in (5)).

6 Conclusions and open problems

In this paper we proved that for every editing operation that is based on adjacency modifica-
tions, the planarization problem is FPT, when parameterized by the number of edges that are
changed during this modification. We have also seen that the formalization of modification
problem by actions is quite versatile and can express most known modifications problems
of this flavour. The are three possible extensions of our results that could induce further
research on this topic.

First one may consider more general modifications where some (bounded) part of the
graph is replaced by another, however not of the same size but still bounded. We believe
that this setting is amenable to the techniques that we introduce in this paper, however
more complicated to deal with. Also, one may consider modifications that involve the whole
(unbounded) neighbourhood of a bounded part of the graph. Contractions or vertex removals
would fit in such a more general framework.

Second one may consider, instead of planar graphs, other classes of graphs such as graphs
of bounded genus or graphs excluding a graph as a minor, where one may still employ
structural results about “flat territories”. We believe that our machinery can be extended in
this direction. However, such extensions should be quite non-trivial as they involve several
technicalities on how separators may split graphs in those families and how actions may
rearrange them.

A third direction is to find more examples of, additional to planarity, target properties.
Most of the examples in Subsection 5.2 demand changes either to the way Observation 4
applies or to the equivalence relation ≡ that may still keep it of finite index. Is there a way
to systematize this into a general meta-algorithmic framework?

References
1 Isolde Adler, Stavros G. Kolliopoulos, Philipp Klaus Krause, Daniel Lokshtanov, Saket Saurabh,

and Dimitrios M. Thilikos. Tight Bounds for Linkages in Planar Graphs. In Proceedings of the
38th International Colloquium of Automata, Languages and Programming (ICALP), volume
6755 of Lecture Notes in Comput. Sci., pages 110–121. Springer, 2011.

STACS 2019

28:16 Modification to Planarity is Fixed Parameter Tractable

2 Julien Baste, Ignasi Sau, and Dimitrios M. Thilikos. Optimal Algorithms for Hitting (To-
pological) Minors on Graphs of Bounded Treewidth. In 12th International Symposium on
Parameterized and Exact Computation, IPEC 2017, September 6-8, 2017, Vienna, Austria,
pages 4:1–4:12, 2017.

3 Hans L. Bodlaender, Fedor V. Fomin, Daniel Lokshtanov, Eelko Penninkx, Saket Saurabh,
and Dimitrios M. Thilikos. (Meta) Kernelization. J. ACM, 63(5):44:1–44:69, 2016.

4 Dimitris Chatzidimitriou, Archontia C. Giannopoulou, Spyridon Maniatis, Clément Requilé,
Dimitrios M. Thilikos, and Dimitris Zoros. FPT algorithms for plane completion problems.
In 41st International Symposium on Mathematical Foundations of Computer Science, MFCS
2016, August 22-26, 2016 - Kraków, Poland, pages 26:1–26:13, 2016.

5 Bruno Courcelle. The Expression of Graph Properties and Graph Transformations in Monadic
Second-Order Logic. Handbook of Graph Grammars, pages 313–400, 1997.

6 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

7 Marek Cygan, Dániel Marx, Marcin Pilipczuk, and Michał Pilipczuk. The planar directed
k-Vertex-Disjoint Paths problem is fixed-parameter tractable. In Proceedings of the 54th
Annual Symposium on Foundations of Computer Science (FOCS), pages 197–207. IEEE, 2013.

8 Fedor V. Fomin, Daniel Lokshtanov, Neeldhara Misra, Geevarghese Philip, and Saket Saurabh.
Hitting Forbidden Minors: Approximation and Kernelization. SIAM Journal on Discrete
Mathematics, 30(1):383–410, 2016. doi:10.1137/140997889.

9 Fedor V. Fomin, Daniel Lokshtanov, Neeldhara Misra, and Saket Saurabh. Planar F-Deletion:
Approximation, Kernelization and Optimal FPT Algorithms. In Proceedings of the 53rd
Annual Symposium on Foundations of Computer Science (FOCS), pages 470–479. IEEE, 2012.

10 Archontia C Giannopoulou, Bart MP Jansen, Daniel Lokshtanov, and Saket Saurabh. Uniform
kernelization complexity of hitting forbidden minors. ACM Transactions on Algorithms,
13(3):35, 2017.

11 Archontia C Giannopoulou, Michał Pilipczuk, Dimitrios M Thilikos, Jean-Florent Raymond,
and Marcin Wrochna. Linear kernels for edge deletion problems to immersion-closed graph
classes. arXiv preprint arXiv:1609.07780, 2016.

12 Petr A. Golovach, Marcin Kaminski, Spyridon Maniatis, and Dimitrios M. Thilikos. The
Parameterized Complexity of Graph Cyclability. SIAM J. Discrete Math., 31(1):511–541,
2017. doi:10.1137/141000014.

13 Petr A. Golovach, Pim van ’t Hof, and Daniël Paulusma. Obtaining planarity by contracting
few edges. Theor. Comput. Sci., 476:38–46, 2013. doi:10.1016/j.tcs.2012.12.041.

14 Martin Grohe, Ken-ichi Kawarabayashi, Dániel Marx, and Paul Wollan. Finding topological
subgraphs is fixed-parameter tractable. In Proceedings of the 43rd Annual ACM Symposium
on Theory of Computing (STOC), pages 479–488. ACM, 2011.

15 Bart M. P. Jansen, Daniel Lokshtanov, and Saket Saurabh. A Near-optimal Planarization
Algorithm. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’14, pages 1802–1811. SIAM, 2014. URL: http://dl.acm.org/citation.
cfm?id=2634074.2634204.

16 Ken-ichi Kawarabayashi. Planarity Allowing Few Error Vertices in Linear Time. In Proceedings
of the 50th Annual Symposium on Foundations of Computer Science (FOCS), pages 639–648.
IEEE, 2009.

17 Ken-ichi Kawarabayashi and Yusuke Kobayashi. The induced disjoint path problem. In 13th
Conference on Integer Programming and Combinatorial Optimization, IPCO 2008, volume
5035 of Lecture Notes in Computer Science, pages 47–61. Springer, Berlin, 2008.

18 Ken-ichi Kawarabayashi and Bojan Mohar. Graph and map isomorphism and all polyhedral
embeddings in linear time. In Proceedings of the 40th Annual ACM Symposium on Theory of
Computing (STOC), pages 471–480. ACM, 2008.

http://dx.doi.org/10.1007/978-3-319-21275-3
http://dx.doi.org/10.1137/140997889
http://dx.doi.org/10.1137/141000014
http://dx.doi.org/10.1016/j.tcs.2012.12.041
http://dl.acm.org/citation.cfm?id=2634074.2634204
http://dl.acm.org/citation.cfm?id=2634074.2634204

F. V. Fomin, P. A. Golovach, and D.M. Thilikos 28:17

19 Ken-ichi Kawarabayashi, Bojan Mohar, and Bruce A. Reed. A Simpler Linear Time Algorithm
for Embedding Graphs into an Arbitrary Surface and the Genus of Graphs of Bounded Tree-
Width. In Proceedings of the 49th Annual Symposium on Foundations of Computer Science
(FOCS), pages 771–780. IEEE Computer Society, 2008.

20 Ken-ichi Kawarabayashi and Bruce A. Reed. Odd cycle packing. In Proceedings of the 42nd
ACM Symposium on Theory of Computing, STOC 2010, pages 695–704, 2010.

21 Eun Jung Kim, Alexander Langer, Christophe Paul, Felix Reidl, Peter Rossmanith, Ignasi
Sau, and Somnath Sikdar. Linear Kernels and Single-Exponential Algorithms Via Protrusion
Decompositions. ACM Transactions on Algorithms, 12(2):21:1–21:41, 2016. doi:10.1145/
2797140.

22 Dániel Marx. Chordal Deletion is Fixed-Parameter Tractable. Algorithmica, 57(4):747–768,
2010. doi:10.1007/s00453-008-9233-8.

23 Dániel Marx and Ildikó Schlotter. Obtaining a Planar Graph by Vertex Deletion. Algorithmica,
62(3-4):807–822, 2012.

24 Neil Robertson and Paul D. Seymour. Graph Minors. V. Excluding a planar graph. Journal
of Combinatorial Theory, Series B, 41(2):92–114, 1986.

25 Neil Robertson and Paul D. Seymour. Graph Minors. XIII. The disjoint paths problem. J.
Comb. Theory Ser. B, 63(1):65–110, 1995.

STACS 2019

http://dx.doi.org/10.1145/2797140
http://dx.doi.org/10.1145/2797140
http://dx.doi.org/10.1007/s00453-008-9233-8

Visibly Pushdown Languages over Sliding
Windows
Moses Ganardi
Universität Siegen, Germany
ganardi@eti.uni-siegen.de

Abstract
We investigate the class of visibly pushdown languages in the sliding window model. A sliding
window algorithm for a language L receives a stream of symbols and has to decide at each time
step whether the suffix of length n belongs to L or not. The window size n is either a fixed number
(in the fixed-size model) or can be controlled by an adversary in a limited way (in the variable-size
model). The main result of this paper states that for every visibly pushdown language the space
complexity in the variable-size sliding window model is either constant, logarithmic or linear in the
window size. This extends previous results for regular languages.

2012 ACM Subject Classification Theory of computation → Streaming models

Keywords and phrases visibly pushdown languages, sliding windows, rational transductions

Digital Object Identifier 10.4230/LIPIcs.STACS.2019.29

Related Version A full version of the paper is available at [18], https://arxiv.org/abs/1812.11549.

Funding The author is supported by the DFG project LO 748/13-1.

1 Introduction

The sliding window model. A sliding window algorithm (SWA) is an algorithm which
processes a stream of data elements a1a2a3 · · · and computes at each time instant t a certain
value that depends on the suffix at−n+1 · · · at of length n where n is a parameter called the
window size. This streaming model is motivated by the fact that in many applications data
elements are outdated or become irrelevant after a certain time. A general goal in the area of
sliding window algorithms is to avoid storing the window content explicitly (which requires
Ω(n) bits) and to design space efficient algorithms, say using polylogarithmic many bits in
the window size n.

A prototypical example of a problem considered in the sliding window model is the Basic
Counting problem. Here the input is a stream of bits and the task is to approximate
the number of 1’s in the last n bits (the active window). In [15], Datar, Gionis, Indyk
and Motwani present an approximation algorithm using O(1

ε log2 n) bits of space with an
approximation ratio of ε. They also prove a matching lower bound of Ω(1

ε log2 n) bits for
any deterministic (and even randomized) algorithm for Basic Counting. Other works in
the sliding window model include computing statistics [2, 3, 8], optimal sampling [9] and
various pattern matching problems [10, 12, 13, 14].

There are two variants of the sliding window model, cf. [2]. One can think of an adversary
who can either insert a new element into the window or remove the oldest element from the
window. In the fixed-size sliding window model the adversary determines the window size
n in the beginning and the initial window is set to an for some default known element a.
At every time step the adversary inserts a new symbol and then immediately removes the
oldest element from the window. In the variable-size sliding window model the window size
is initially set to n = 0. Then the adversary is allowed to perform an arbitrary sequence of
insert- and remove-operations. A remove-operation on an empty window leaves the window

© Moses Ganardi;
licensed under Creative Commons License CC-BY

36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019).
Editors: Rolf Niedermeier and Christophe Paul; Article No. 29; pp. 29:1–29:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ganardi@eti.uni-siegen.de
https://doi.org/10.4230/LIPIcs.STACS.2019.29
https://arxiv.org/abs/1812.11549
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

29:2 Visibly Pushdown Languages over Sliding Windows

empty. We also mention the timestamp-based model where every element carries a timestamp
(many elements may have the same timestamp) and the active window at time t contains
only those elements whose timestamp is at least t− t0 for some parameter t0 [9]. Both the
fixed-size and the timestamp-based model can be simulated in the variable-size model.

Regular languages. In a recent series of works we studied the membership problem to a
fixed regular language in the sliding window model. It was shown in [21] that in both the
fixed-size and the variable-size sliding window model the space complexity of any regular
language is either constant, logarithmic or linear (a space trichotomy). In a subsequent
paper [19] a characterization of the space classes was given: A regular language has a
fixed/variable-size SWA with O(logn) bits if and only if it is a finite Boolean combination of
regular left ideals and regular length languages. A regular language has a fixed-size SWA
with O(1) bits if and only if it is a finite Boolean combination of suffix testable languages
and regular length languages. A regular language has a variable-size SWA with O(1) bits if
and only if it is empty or universal.

Context-free languages. A natural question is whether the results above can be extended
to larger language classes, say subclasses of the context-free languages. More precisely, we
pose the questions: (i) Which language classes have a “simple” hierarchy of space complexity
classes (like the space trichotomy for the regular languages), and (ii) are there natural
descriptions of the space classes? A positive answer to question (i) seems to be necessary
to answer question (ii) positively. In [22] we presented a family of context-free languages
(Lk)k≥1 which have space complexity Θ(n1/k) in the variable-size model and O(n1/k)\o(n1/k)
in the fixed-size model, showing that there exists an infinite hierarchy of space complexity
classes inside the class of context-free languages. Intuitively, this result can be explained
with the fact that a language and its complement have the same sliding window space
complexity; however, the class of context-free languages is not closed under complementation
(in contrast to the regular languages) and the analysis of co-context-free languages in this
setting seems to be very difficult. Even in the class of deterministic context-free languages,
which is closed under complementation, there are example languages which have sliding
window space complexity Θ((logn)2) [22].

Visibly pushdown languages. Motivated by these observations in this paper we will study
the class of visibly pushdown languages, introduced by Alur and Madhusudan [1]. They are
recognized by visibly pushdown automata where the alphabet is partitioned into call letters,
return letters and internal letters, which determine the behavior of the stack height. Since
visibly pushdown automata can be determinized, the class of visibly pushdown languages
turns out to be very robust (it is closed under Boolean operations and other language
operations) and to be more tractable in many algorithmic questions than the class of context-
free languages [1]. In this paper we prove a space trichotomy for the class of visibly pushdown
languages in the variable-size sliding window model, stating that the space complexity of
every visibly pushdown language is either O(1), Θ(logn) or O(n) \ o(n). The main technical
result is a growth theorem (Theorem 6) for rational transductions. A natural characterization
of the O(logn)-class as well as a study of the fixed-size model are left as open problems.

Let us mention some related work in the context of streaming algorithms for context-free
languages. Randomized streaming algorithms were studied for subclasses of context-free
languages (DLIN and LL(k)) [4] and for Dyck languages [25]. A streaming property tester
for visibly pushdown languages was presented by François et al. [17].

M. Ganardi 29:3

2 Preliminaries

We define logn = blog2 nc for all n ≥ 1, which is the minimum number k of bits required
to encode n elements using bit strings of length at most k. If w = a1 · · · an is a word then
any word of the form ai · · · an (a1 · · · ai) is called suffix (prefix) of w. A prefix (suffix) v
of w is proper if v 6= w. A factor of w is any word of the form ai · · · aj . A factorization
of w is formally a sequence of possibly empty factors (w0, . . . , wm) with w = w0 · · ·wm.
We call w0 the initial factor and w1, . . . , wm the internal factors. The reversal of w is
wR = anan−1 · · · a1. For a language L ⊆ Σ∗ we denote by Suf(L) the set of suffixes of words
in L. If L = Suf(L) then L is suffix-closed.

Automata. An automaton over a monoid M is a tuple A = (Q,M, I,∆, F) where Q is a
finite set of states, I ⊆ Q is a set of initial states, ∆ ⊆ Q×M×Q is the transition relation and
F ⊆ Q is the set of final states. A run on m ∈M from q0 to qn is a sequence of transitions
of the form π = (q0,m1, q1)(q1,m2, q2) · · · (qn−1,mn, qn) ∈ ∆∗ such that m = m1 · · ·mn. We
usually depict π as q0

m1−−→ q1
m2−−→ q2 · · · qn−1

mn−−→ qn, or simply q0
m−→ qn. It is initial if

q0 ∈ I and accepting if qn ∈ F . The language defined by A is the set L(A) of all elements
m ∈M such that there exists an initial accepting run on m. A subset L ⊆M is rational if
L = L(A) for some automaton A. We only need the case where M is the free monoid Σ∗ over
an alphabet Σ or where M is the product Σ∗ × Ω∗ of two free monoids. In these cases we
change the format and write (Q,Σ, I,∆, F) and (Q,Σ,Ω, I,∆, F), respectively. Subsets of
Σ∗ are called languages and subsets of Σ∗ × Ω∗ are called transductions. Rational languages
are usually called regular languages.

In this paper we will also use right automata, which read the input from right to left.
Formally, a right automaton A = (Q,M,F,∆, I) has the same format as a (left) automaton
where the sets of initial and final states are swapped. Runs in right automata are defined
from right to left, i.e. a run on m ∈ M from qn to q0 is a sequence of transitions of the
form (q0,m1, q1)(q1,m2, q2) · · · (qn−1,mn, qn) ∈ ∆∗ such that m = m1 · · ·mn. In the graphic
notation we write the arrows from right to left. It is initial (accepting) if qn ∈ I (q0 ∈ F).

Right congruences. For any equivalence relation ∼ on a set X we write [x]∼ for the ∼-class
containing x ∈ X and X/∼ = {[x]∼ | x ∈ X} for the set of all ∼-classes. The index of ∼ is
the cardinality of X/∼. We denote by ν∼ : X → X/∼ the function with ν∼(x) = [x]∼. A
subset L ⊆ X is saturated by ∼ if L is a union of ∼-classes. An equivalence relation ∼ on the
free monoid Σ∗ over some alphabet Σ is a right congruence if x ∼ y implies xz ∼ yz for all
x, y, z ∈ Σ∗. The Myhill-Nerode right congruence ∼L of a language L ⊆ Σ∗ is the equivalence
relation on Σ∗ defined by x ∼L y if and only if x−1L = y−1L where x−1L = {z | xz ∈ L}.
It is indeed the coarsest right congruence on Σ∗ which saturates L. We usually write νL
instead of ν∼L

. A language L ⊆ Σ∗ is regular iff ∼L has finite index.

Rational transductions. Rational transductions are accepted by automata over Σ∗ × Ω∗,
which are called finite state transducers. In this paper, we will use a slightly extended but
equivalent definition. A transducer is a tuple A = (Q,Σ,Ω, I,∆, F, o) such that (Q,Σ∗ ×
Ω∗, I,∆, F) is an automaton over Σ∗ ×Ω∗ and a terminal output function o : F → Ω∗. To
omit parentheses we write runs p (x,y)−−−→ q in the form p

x|y−−→ q and depict o(q) = y by
a transition q

|y−→ without input word and target state. If π is a run p
x|y−−→ q we define

out(π) = y and outF (π) = y o(q). The transduction defined by A is the set T(A) of all
pairs (x, outF (π)) such that π is an initial accepting run p x|y−−→ q. Since the terminal output

STACS 2019

29:4 Visibly Pushdown Languages over Sliding Windows

function can be eliminated by ε-transitions, a transduction is rational if and only if it is of
the form T(A) for some transducer A. In this paper we will mainly use rational functions,
which are partial functions t : Σ∗ → Ω∗ whose graph {(x, t(x)) | x ∈ dom(t)} is a rational
transduction.

A transducer A is trim if every state occurs on some accepting run. If every word x ∈ Σ∗

has at most one initial accepting run p x|y−−→ q for some y ∈ Ω∗ then A is unambiguous. If
∆ ⊆ Q×Σ×Ω∗×Q then A is real-time. It is known that every rational function is defined by a
trim unambiguous real-time transducer [6, Corollary 4.3]. If A is unambiguous and trim then
for every word x ∈ Σ∗ and every pair of states (p, q) ∈ Q2 there exists at most one run from p to
q with input word x. Therefore, the state pair (p, q) and the input word x uniquely determine
the run (if it exists) and we can simply write p x−→ q. Similarly to [28], we define for a real-time
transducer A the parameter iml(A) = max ({|y| | (q, a, y, p) ∈ ∆} ∪ {|o(q)| | q ∈ Q}). For
every run π on a word x ∈ Σ∗ we have |out(π)| ≤ iml(A) · |x| and |outF (π)| ≤ iml(A) · (|x|+1).

The following closure properties for rational transductions are known [6]: The class of
rational transductions is closed under inverse, reversal and composition where the inverse of
T is T−1 = {(y, x) | (x, y) ∈ T}, the reversal of T is TR = {(xR, yR) | (x, y) ∈ T}, and the
composition of two transductions T1, T2 is T1 ◦T2 = {(x, z) | ∃y : (x, y) ∈ T1 and (y, z) ∈ T2}.
If T ⊆ Σ∗ × Ω∗ is rational and L ⊆ Σ∗ is regular then the restriction {(x, y) ∈ T | x ∈ L}
is also rational. If K ⊆ Σ∗ is regular (context-free) and T ⊆ Σ∗ × Ω∗ is rational then
TK = {y ∈ Ω∗ | (x, y) ∈ T for some x ∈ K} is also regular (context-free).

A right transducer is a tuple A = (Q,Σ,Ω, F,∆, I, o) such that (Q,Σ∗ × Ω∗, F,∆, I) is a
right automaton over Σ∗×Ω∗ and a terminal output function o : F → Ω∗. We depict o(q) = y

by a transition |y←− q. If π is a run q x|y←−− p we define out(π) = y and outF (π) = o(q) y. All
other notions on transducers are defined for right transducers in a dual way.

Growth functions. A function γ : N → N grows polynomially if γ(n) ∈ O(nk) for some
k ∈ N; we say that γ grows exponentially if there exists a number c > 1 such that γ(n) ≥ cn
for infinitely many n ∈ N. A function γ(n) grows exponentially if and only if log γ(n) /∈ o(n).

We will define a generalized notion of growth. Let t : Σ∗ → Y be a partial function and
let X ⊆ dom(t) be a language. The t-growth of X is the function γ(n) = |t(X ∩ Σ≤n)|,
i.e. it counts the number of output elements on input words from X of length at most n.
The growth of X is simply the idX -growth of X, i.e. γ(n) = |X ∩ Σ≤n|. It is known that
every context-free language has either polynomial or exponential growth [23]. Furthermore, a
context-free language L has polynomial growth if and only if it is bounded, i.e. L ⊆ w∗1 · · ·w∗k
for some words w1, . . . , wk [23]. We need the fact that if L is a bounded language and K is
a set of factors of words in L then K is bounded [24, Lemma 1.1(c)].

3 Visibly pushdown languages

A pushdown alphabet is a triple Σ̃ = (Σc,Σr,Σint) consisting of three pairwise disjoint
alphabets: a set of call letters Σc, a set of return letters Σr and a set of internal letters Σint .
We identify Σ̃ with the union Σ = Σc ∪Σr ∪Σint . The set of well-matched words W over Σ is
defined as the smallest set which contains {ε} ∪Σint , is closed under concatenation, and if w
is well-matched, a ∈ Σc, b ∈ Σr then also awb is well-matched. A word is called descending
(ascending) if it can be factorized into well-matched factors and return (call) letters. The set
of descending words is denoted by D. A visibly pushdown automaton (VPA) has the form
A = (Q, Σ̃,Γ,⊥, q0, δ, F) where Q is a finite state set, Σ̃ is a pushdown alphabet, Γ is the
finite stack alphabet containing a special symbol ⊥ (representing the empty stack), q0 ∈ Q is

M. Ganardi 29:5

the initial state, F ⊆ Q is the set of final states and δ = δc∪δr∪δint is the transition function
where δc : Q× Σc → (Γ \ {⊥})×Q, δr : Q× Σr × Γ→ Q and δint : Q× Σint → Q. The set
of configurations Conf is the set of all words αq where q ∈ Q is a state and α ∈ ⊥(Γ \ {⊥})∗
is the stack content. We define δ : Conf × Σ→ Conf for each p ∈ Q and a ∈ Σ as follows:

If a ∈ Σc and δ(p, a) = (γ, q) then δ(αp, a) = αγq.
If a ∈ Σint and δ(p, a) = q then δ(αp, a) = αq.
If a ∈ Σr, δ(p, a, γ) = q and γ ∈ Γ \ {⊥} then δ(αγp, a) = αq.
If a ∈ Σr and δ(p, a,⊥) = q then δ(⊥p) = ⊥q.

As usual we inductively extend δ to a function δ : Conf × Σ∗ → Conf where δ(c, ε) = c and
δ(c, wa) = δ(δ(c, w), a) for all w ∈ Σ∗ and a ∈ Σ. The initial configuration is ⊥q0 and a
configuration c is final if c ∈ Γ∗F . A word w ∈ Σ∗ is accepted from a configuration c if
δ(c, w) is final. The VPA A accepts w if w is accepted from the initial configuration. The
set of all words accepted by A is denoted by L(A); the set of all words accepted from c is
denoted by L(c). A language L is a visibly pushdown language (VPL) if L = L(A) for some
VPA A. To exclude some pathological cases we assume that Σc 6= ∅ and Σr 6= ∅. In fact, if
Σc = ∅ or Σr = ∅ then any VPL over that pushdown alphabet would be regular.

One can also define nondeterministic visibly pushdown automata in the usual way, which
can always be converted into deterministic ones [1]. This leads to good closure properties of
the class of all VPLs, as closure under Boolean operations, concatenation and Kleene star.

The set W of well-matched words forms a submonoid of Σ∗. Notice that a VPA can
only see the top of the stack when reading return symbols. Therefore, the behavior of a
VPA on a well-matched word is determined only by the current state and independent of the
current stack content. More precisely, there exists a monoid homomorphism ϕ : W → QQ

into the finite monoid of all state transformations Q→ Q such that δ(αp,w) = αϕ(w)(p) for
all w ∈W and αp ∈ Conf.

4 Sliding window algorithms and main results

In our context a streaming algorithm is a deterministic algorithm A which reads an input
word a1 · · · am ∈ Σ∗ symbol by symbol from left to right and outputs after every prefix either
1 or 0. We view A as a deterministic (possibly infinite) automaton whose states are encoded
by bit strings and thus abstract away from the actual computation, see [19] for a formal
definition. A variable-size sliding window algorithm for a language L ⊆ Σ∗ is a streaming
algorithm A which reads an input word a1 · · · am over the extended alphabet Σ = Σ ∪ {↓}.
The symbol ↓ is the operation which removes the oldest symbol from the window. At time
0 ≤ t ≤ m the algorithm has to decide whether the active window wnd(a1 · · · at) belongs to
L which is defined by

wnd(ε) = ε wnd(u↓) = ε if wnd(u) = ε

wnd(ua) = wnd(u)a wnd(u↓) = v if wnd(u) = av

for u ∈ Σ∗, a ∈ Σ. For example, a variable-size sliding window algorithm A for the language
La = {w ∈ {a, b}∗ | w contains a} maintains the window length n and the position i (from
the right) of the most recent a-symbol in the window (if it exists): We initialize n := 0 and
i :=∞. On input a we increment n and set i := 1, on input b we increment both n and i.
On input ↓ we decrement n, unless n = 0, and then set i :=∞ if i > n.

The space complexity of A is the function which maps n to the maximum number of
bits used when reading an input a1 · · · am where the window size never exceeds n, i.e.
|wnd(a1 · · · at)| ≤ n for all 0 ≤ t ≤ n. Notice that this function is monotonic. For every

STACS 2019

29:6 Visibly Pushdown Languages over Sliding Windows

language L there exists a space optimal variable-size sliding window algorithm [20, Lemma 3.1]
and we write VL(n) for its space complexity. Clearly we have VL(n) ∈ O(n). For example
the example language La above satisfies VLa

(n) ∈ O(logn) because the algorithm above only
maintains two numbers using O(logn) bits. The main result of this paper states:

I Theorem 1 (Trichotomy for VPL). If L is a visibly pushdown language then VL(n) is either
O(1), Θ(logn) or O(n) \ o(n).

In the rest of this section we will give an overview of the proof of Theorem 1.

Suffix expansions. Let ∼ be an equivalence relation on Σ∗. The suffix expansion of ∼
is the equivalence relation ≈ on Σ∗ defined by a1 · · · an ≈ b1 · · · bm if and only if n = m

and ai · · · an ∼ bi · · · bn for all 1 ≤ i ≤ n. Notice that ≈ saturates each subset Σ≤n.
Furthermore, if ∼ is a right congruence then so is ≈ since |u| = |v| implies |ua| = |va| and
ai · · · an ∼ bi · · · bn implies ai · · · ana ∼ bi · · · bna. We also define suffix expansions for partial
functions t : Σ∗ → Y with suffix-closed domain dom(t). The suffix expansion of t is the total
function ~t : dom(t)→ Y ∗ defined by ~t(a1 · · · an) = t(a1 · · · an) t(a2 · · · an) · · · t(an−1an) t(an)
for all a1 · · · an ∈ Σ∗. Here the range of ~t is the free monoid (alternatively, the set of
all sequences) over Y . If ∼ is an equivalence relation on Σ∗ then its suffix expansion ≈
is the kernel of ~ν∼, i.e. x ≈ y if and only if ~ν∼(x) = ~ν∼(y). The space complexity in
the variable-size model is captured by the suffix expansion ≈L of the Myhill-Nerode right
congruence ∼L or alternatively by the suffix expansion ~νL of νL.

I Theorem 2 ([19, Theorem 4.1]). For all ∅ (L (Σ∗ we have VL(n) = log |Σ≤n/≈L| =
log | ~νL(Σ≤n)|. In particular, VL(n) = Ω(logn) for every non-trivial language.

If L is empty or universal, then VL(n) ∈ O(1) and otherwise VL(n) = Ω(logn). Hence to
prove Theorem 1 it suffices to show that either VL(n) ∈ O(logn) or VL(n) /∈ o(n) holds for
every VPL L. If L is a regular language and A is the minimal DFA of L with state set Q, one
can identify νL(x) with the state q ∈ Q reached on input x. Hence, ~νL(x) is represented by a
word over Q. Using the transition monoid of A one can show that ~νL : Σ∗ → Q∗ is rational
(in fact right-subsequential, see Section 6) and hence the image ~νL(Σ∗) ⊆ Q∗ is regular [20,
Lemma 4.2]. Since the growth of ~νL(Σ∗) is either polynomial or exponential this implies that
VL(n) ∈ O(logn) or VL(n) /∈ o(n).

Restriction to descending words. The approach above for regular languages can be exten-
ded to visibly pushdown languages L if we restrict ourselves to the set D of descending words.
If a VPA with state set Q reads a descending word x ∈ D from the initial configuration it
reaches some configuration ⊥q with empty stack. Notice that there may be distinct configur-
ations ⊥p 6= ⊥q with L(⊥p) = L(⊥q), in which case we need to pick a single representative.
Since every suffix of x is again descending we can represent ~νL(x) by a word σ0(x) ∈ Q∗ and
in fact we will prove that S0 = σ0(D) is a context-free language (Lemma 10). By the growth
theorem for context-free languages the growth of S0 is either polynomial or exponential. If
S0 grows exponentially we obtain an exponential lower bound on | ~νL(Σ≤n)| (Lemma 11).
Hence, the interesting case is that S0 has polynomial growth, i.e. S0 is bounded.

Representation by rational functions. In order to simulate a VPA by a finite automaton
on arbitrary words we will “flatten” the input word in the following way. The input word w
is factorized w = w0w1 · · ·wm into a descending prefix w0, and call letters and well-matched
factors w1, . . . , wm. The descending prefix w0 is replaced by σ0(w0) and each well-matched

M. Ganardi 29:7

factor wi is replaced by a similar information σ1(wi) which describes the behavior of the
VPA on the factor wi and on each of its suffixes. The set Flat of all flattenings is a context-
free language. Furthermore, there exists a rational function νf such that, if a flattening s
represents a word w ∈ Σ∗ then νf (s) is a configuration representing the Myhill-Nerode class
νL(w) (Proposition 9). Hence, we can reduce proving the main theorem to the question
whether the ~νf -growth of Flat is always either polynomial or exponential.

This question is resolved positively as follows. We prove that for every rational function t
with suffix-closed domain X = dom(t) the ~t-growth of X is either polynomial or exponential
(Theorem 6). In the case that S0 has polynomial growth we can overapproximate Flat by a
regular superset RegFlat. If the ~νf -growth of RegFlat is polynomial then the same holds
trivially for the subset Flat. If the ~νf -growth of RegFlat is exponential then the proper
choice of RegFlat ensures that Flat also has exponential ~νf -growth (Proposition 14).

Dichotomy for rational functions. The main technical result of this paper states that for
every rational function t : Σ∗ → Ω∗ with suffix-closed domain X = dom(t) the ~t-growth of
X is either polynomial or exponential. We emphasize that the range of ~t is not Ω∗ but the
free monoid over Ω∗ (consisting of all finite sequences of words over Ω). There are in fact
two reasons for exponential ~t-growth: (i) The image t(X) has exponential growth, and (ii)
X contains a so called linear fooling set. We need these lower bounds in the more general
setting where X ⊆ dom(t) is a context-free subset, namely X = Flat.

I Proposition 3. Let t : Σ∗ → Ω∗ be rational with suffix-closed domain. If X ⊆ dom(t) is
context-free and t(X) has exponential growth then X has exponential t-growth and exponential
~t-growth.

I Example 4. Consider the transduction f : {a, b}∗ → a∗ defined by

f = {(an, an) | n ∈ N} ∪ {(anbw, an) | n ∈ N, w ∈ {a, b}∗},

which projects a word over {a, b} to its left-most (maximal) a-block and is rational. Its
image ~f({a, b}∗) can be identified with the set of all sequences of natural numbers which are
concatenations of monotonically decreasing sequences of the form (k, k− 1, . . . , 0). There are
exactly 2n of such sequences of length n and hence {a, b}∗ has exponential ~f -growth.

A linear fooling scheme for a partial function t : Σ∗ → Y is a tuple (u2, v2, u, v, Z) where
u2, v2, u, v ∈ Σ∗ and Z ⊆ Σ∗ such that u2 is a suffix of u and v2 is a suffix of v, |u2| = |v2|,
{u2, v2}{u, v}∗Z ⊆ dom(t) and for all n ∈ N there exists a word zn ∈ Z of length |zn| ≤ O(n)
such that t(u2wzn) 6= t(v2wzn) for all w ∈ {u, v}≤n. The set {u2, v2}{u, v}∗Z is called a
linear fooling set for t. Notice that the definition implies that u2 6= v2 and hence u is not a
suffix of v, and vice versa, i.e. {u, v} is a suffix code. Therefore {u, v}n contains 2n words of
length O(n) and thus {u2, v2}{u, v}∗ has exponential growth.

I Proposition 5. Let t : Σ∗ → Ω∗ be a partial function with suffix-closed domain. If
X ⊆ dom(t) contains a linear fooling set for t then the ~t-growth of X is exponential.

Proof. Let (u2, v2, u, v, Z) be a linear fooling scheme with {u2, v2}{u, v}∗Z ⊆ X. Let
n ∈ N and let zn ∈ Z with the properties from the definition. Consider two distinct words
w,w′ ∈ {u, v}n. Without loss of generality the words have the form w = w1uw2 and
w′ = w3vw2 for some w1, w2, w3 ∈ {u, v}∗. Hence w has the suffix u2w2 and w′ has the suffix
v2w2, which are suffixes of the same length. By assumption we have t(u2w2zn) 6= t(v2w2zn)
and hence also ~t(wzn) 6= ~t(w′zn). This implies that | ~t(u2{u, v}nzn)| ≥ 2n for all n ∈ N.
Since all words in u2{u, v}nzn ⊆ X have length O(n) there exists a number c > 1 such that
| ~t(X ∩ Σ≤cn)| ≥ 2n for sufficiently large n. J

STACS 2019

29:8 Visibly Pushdown Languages over Sliding Windows

b c a b b c a b a a b c a a a b a b b a

Figure 1 The stack height function for a word (Σc = {a}, Σr = {b}, Σint = {c}) and a monotonic
factorization bcabb cab a abc a aababb a.

The following dichotomy theorem will be proved in Section 6.

I Theorem 6. Let t : Σ∗ → Ω∗ be rational and with suffix-closed domain X = dom(t). If X
contains no linear fooling set for t and t(X) is bounded then the ~t-growth of X is polynomial.
Otherwise the ~t-growth of X is exponential.

5 Reduction to transducer problem

Fix a VPA A = (Q, Σ̃,Γ,⊥, q0, δ, F) and let ∅ (L = L(A) (Σ∗ for the rest of this section.

Monotonic factorization. A factorization of w = w0w1 · · ·wm ∈ Σ∗ into factors wi ∈ Σ∗ is
monotonic if w0 is descending (possibly empty) and for each 1 ≤ i ≤ m the factor wi is either
a call letter wi ∈ Σc or a non-empty well-matched factor. If w0w1 · · ·wm is a monotonic
factorization then w′iwi+1 · · ·wj is a monotonic factorization for any 0 ≤ i ≤ j ≤ m and
suffix w′i of wi. To see that every word w ∈ Σ∗ has at least one monotonic factorization
consider the set of non-empty maximal well-matched factors in w (maximal with respect
to inclusion). Observe that two distinct maximal well-matched factors in a word cannot
overlap because the union of two overlapping well-matched factors is again well-matched.
Since every internal letter is well-matched the remaining positions contain only return and
call letters. Furthermore, every remaining call letter must be to the right of every remaining
return letter, which yields a monotonic factorization of w. Figure 1 shows a monotonic
factorization w = w0w1 · · ·wm where the descending prefix w0 is colored red and call letters
wi are colored green. The stack height function for the word w increases (decreases) by one
on call (return) letters and stays constant on internal letters.

Representation of Myhill-Nerode classes. To apply Theorem 2 we need a suitable descrip-
tion of the ∼L-classes. We follow the approach in [5] of choosing length-lexicographic minimal
representative configurations. Since their definition slightly differs from ours (according to
their definition, a VPA may not read a return letter if the stack contains ⊥ only) we briefly
recall their argument (in the appendix). Let rConf = {δ(⊥q0, w) | w ∈ Σ∗} be the set of
all reachable configurations in A, which is known to be regular [7, 11]. Two configurations
c1, c2 ∈ rConf are equivalent, denoted by c1 ∼ c2, if L(c1) = L(c2). By fixing arbitrary linear
orders on Γ and Q we can consider the length-lexicographical order on rConf and define the
function rep : rConf → rConf which chooses the minimal representative from each ∼-class, i.e.
for all c ∈ rConf we have rep(c) ∼ c and for any c′ ∈ rConf with c ∼ c′ we have rep(c) ≤llex c

′.
The set of representative configurations is denoted by Rep = rep(rConf).

I Lemma 7 ([5]). The function rep is rational.

M. Ganardi 29:9

Finally we define νA : Σ∗ → Rep by νA(w) = rep(δ(⊥q0, w)) for all w ∈ Σ∗. It represents ∼L
in the sense that L(νA(w)) = w−1L(A) for all w ∈ Σ∗ and hence νA(u) = νA(v) if and only if
u ∼L v. Therefore we have VL(n) = log | ~νA(Σ≤n)| by Theorem 2.

Flattenings. Since we cannot compute νA using a finite state transducer we choose a
different representation of the input. Define the alphabet Σf = Σc∪Q∪QQ. A flattening is a
word s0s1 · · · sm ∈ Σ∗f where s0 ∈ Q∗ and si ∈ Σc ∪QQQ∗ for all 1 ≤ i ≤ m. Notice that the
factorization s = s0s1 · · · sm is unique. The set of all flattenings is AllFlat = Q∗(Σc∪QQQ∗)∗.
We define a function tf : AllFlat→ rConf as follows. Let s = s0s1 · · · sm ∈ Σ∗f be a flattening
and we define tf (s) by induction on m:

If s0 = ε then tf (s0) = ⊥q0. If s0 = q1 · · · qn ∈ Q+ then tf (s0) = ⊥q1.
If sm ∈ Σc then tf (s0 · · · sm) = δ(tf (s0 · · · sm−1), sm).
If sm = τq2 · · · qm ∈ QQQ∗ and tf (s0 · · · sm−1) = αq then tf (s) = ατ(q).

Define the function νf : AllFlat→ Rep by νf = rep ◦ tf .

I Lemma 8. The functions tf and νf are rational.

Proof. We first define a transducer A1 which handles flattenings where the initial factor is
empty. Let A1 = (Q,Σf , Q ∪ Γ, {q0},∆′, Q, o) with the following transitions:

p
q|ε−−→ p for all p, q ∈ Q

p
a|γ−−→ q for all δ(p, a) = (γ, q) where a ∈ Σc

p
τ |ε−−→ τ(p) for all p ∈ Q, τ ∈ QQ

and o(q) = q. For each p ∈ Q let tp be the rational function defined by A1 with the only
initial state p. One can easily show that for all s ∈ AllFlat we have tf (s) = ⊥tq0(s) and
tf (q1 · · · qks) = ⊥tq1(s) for all q1 · · · qk ∈ Q+. Hence we can prove that tf is rational by
providing a transducer for tf : First it verifies whether the input word belongs to the regular
language AllFlat ⊆ Σ∗f . Simultaneously, it verifies whether the input word starts with a state
q ∈ Q. If so, it memorizes q and simulates A1 on s′ from q, and otherwise A1 is directly
simulated on s from q0. Since rep is rational by Lemma 7, νf is also rational. J

If w = a1 · · · an ∈ D is a descending word then δ(⊥q0, w) = ⊥p for some p ∈ Q. By definition
of νA there exists a state q ∈ Q with νA(w) = ⊥q. Since each suffix of w is also descending
we have ~νA(w) = ⊥q1⊥q2 · · · ⊥qn for some q1, . . . , qn ∈ Q. We define σ0(w) = q1 · · · qn ∈ Q∗,
i.e. we remove the redundant ⊥-symbols from ~νA(w). If w is non-empty and well-matched
we additionally define σ1(w) = τq2 · · · qn ∈ QQQ∗ where τ = ϕ(w). We define the sets
S0 = σ0(D) and S1 = σ1(W \ {ε}). Notice that S0 is exactly the set of proper suffixes of
words from S1 since descending words are exactly the (proper) suffixes of well-matched words.
We say that s = s0s1 · · · sm ∈ AllFlat represents a word w ∈ Σ∗ if there exists a monotonic
factorization w = w0w1 · · ·wm ∈ Σ∗ such that s0 = σ0(w0), and for all 1 ≤ i ≤ m if wi is
well-matched, then si = σ1(wi), and if wi ∈ Σc then si = wi. Since a word may have different
monotonic factorizations, it may also be represented by many flattenings. We define the
suffix-closed set Flat = S0(Σc ∪ S1)∗, containing all flattenings which represent some word.

I Proposition 9. If s ∈ AllFlat represents w ∈ Σ∗ then νf (s) = νA(w). Therefore,
νf (Flat) = Rep and VL(n) = log | ~νf (Flat ∩ Σ≤nf)|.

I Lemma 10. The languages S0 and S1 are context-free.

Proof. Since S0 is the set of all proper suffixes of words from S1 it suffices to consider
S1. We will prove that {w ⊗ σ1(w) | w ∈ W} is a VPL over the pushdown alphabet
(Σc × Σf ,Σr × Σf ,Σint × Σf). Since the class of context-free languages is closed under

STACS 2019

29:10 Visibly Pushdown Languages over Sliding Windows

projections it then follows that S1 is context-free. A VPA can test whether the first
component w = a1 · · · an is well-matched and whether the second component has the form
τq2 · · · qn ∈ QQQ∗. Since VPLs are closed under Boolean operations, it suffices to test
whether τ 6= ϕ(w) or there exists a state qi with νA(ai · · · an) 6= ⊥qi. To guess an incorrect
state we use a VPA whose stack alphabet contains all stack symbols of A and a special
symbol # representing the stack bottom. We guess and read a prefix of the input word and
push/pop only the special symbol # on/from the stack. Then at some point we store the
second component qi in the next symbol and simulate A on the remaining suffix. Finally, we
accept if and only if the reached state is q and rep(⊥q) 6= ⊥qi. Similarly, we can verify τ by
testing whether there exists a state p ∈ Q with ϕ(w)(p) 6= τ(p). J

I Lemma 11. The language S0 is bounded if and only if S1 is bounded. If S0 is not bounded
then the ~νA-growth of Σ∗ is exponential and therefore VL(n) /∈ o(n).

Proof. Assume that S0 ⊆ s∗1 · · · s∗k is bounded. Since S1 ⊆
⋃
{τS0 | τ ∈ QQ} we have

S1 ⊆ τ∗1 · · · τ∗ms∗1 · · · s∗k for any enumeration τ1, . . . , τm of QQ. Conversely, if S1 is bounded
then each word in S0 is a factor, namely a proper suffix, of a word from S1. Therefore S0
must be also bounded.

If the context-free language S0 = σ0(D) ⊆ Q∗ is not bounded then its growth must be
exponential. Recall that ~νA(w) and σ0(w) are equal for all w ∈ D up to the ⊥-symbol.
Hence | ~νA(Σ≤n)| ≥ | ~νA(D ∩ Σ≤n)| = |σ0(D ∩ Σ≤n)| = |S0 ∩Q≤n|, which proves the growth
bound. J

Bounded overapproximation. By Lemma 11 we can restrict ourselves to the case that
S0 and S1 are bounded languages, which will be assumed in the following. We define
Ψ(a1 · · · an) = {(a1, n), (a2, n− 1) . . . , (an, 1)} and Ψ(L) =

⋃
w∈L Ψ(w).

I Lemma 12. Let K be a bounded context-free language. Then there exists a bounded regular
superset R ⊇ K such that {|w| | w ∈ K} = {|w| | w ∈ R} and Ψ(K) = Ψ(R), called a
bounded overapproximation of K.

Proof. We use Parikh’s theorem [26], which implies that for every context-free language
K ⊆ Σ∗ the set {|w| | w ∈ K} is semilinear, i.e. a finite union of arithmetic progressions,
and hence {v ∈ Σ∗ | ∃w ∈ K : |v| = |w|} is a regular language. Assume that K ⊆ w∗1 · · ·w∗k
for some w1, . . . , wk ∈ Σ∗. We define

R = (w∗1 · · ·w∗k) ∩ {v ∈ Σ∗ | ∃w ∈ K : |v| = |w|} ∩ {w ∈ Σ∗ | Ψ(w) ⊆ Ψ(K)}.

Clearly, K is contained in R and it remains to verify that the third part is regular. It suffices
to show that for each a ∈ Σ the set Pa = {i | (a, i) ∈ Ψ(K)} is semilinear because then an
automaton can verify the property Ψ(w) ⊆ Ψ(K). Consider the transducer

Ta = {(a1 · · · an,�n−i+1) | a1 · · · an ∈ Σ∗, ai = a}.

It is easy to see that Ta is rational and TaK = {�i | i ∈ Pa}. The claim follows again from
Parikh’s theorem. J

For each τ ∈ QQ let Rτ be a bounded overapproximation of τ−1S1 and let R1 =⋃
τ∈QQ(τRτ). Let R0 =

⋃
τ∈QQ Suf(Rτ), which is the set of all proper suffixes of words in

R1. Both R0 and R1 are also bounded languages. Finally, set RegFlat = R0(Σc ∪ R1)∗,
which is the same as Suf((Σc ∪ R1)∗) and is suffix-closed. According to the definition
of bounded overapproximations we can approximate a word v = τq2 · · · qk ∈ R1 in two

M. Ganardi 29:11

possible ways: Firstly, define apx`(v) to be any word of the form apx`(v) = τp2 · · · pk ∈ S1
with |v| = |apx`(v)|. Secondly, for any position 2 ≤ i ≤ k define apxi(v) to be any word
apxi(v) = τs′qipi+1 · · · pk ∈ S1 where s′, pi+1 · · · pk ∈ Q∗. If r = r0r1 · · · rm ∈ RegFlat then
we can replace any internal factor ri ∈ R1 by apx`(ri) or any apxj(ri) without changing the
value of νf (r).

I Proposition 13. νf (Flat) = νf (RegFlat) = Rep.

I Proposition 14. If RegFlat contains a linear fooling set for νf then also Flat contains a
linear fooling set for νf .

Proof of Theorem 1. If L = ∅ or L = Σ∗ then VL(n) ∈ O(1). Now assume ∅ (L (Σ∗, in
which case we have VL(n) = Ω(logn). Furthermore we know that VL(n) = log | ~νf (Flat∩Σ≤nf)|
by Proposition 9. If the constructed language S0 is not bounded then VL(n) /∈ o(n) by
Lemma 11. Now assume that S0 is bounded, in which case we can construct the regular
language RegFlat. By Theorem 6 the ~νf -growth of RegFlat is either polynomial or exponential
(formally, we have to restrict the domain of νf to the regular language RegFlat). If the
~νf -growth of RegFlat is polynomial then the same holds for its subset Flat, and hence
VL(n) ∈ O(logn). If the ~νf -growth of RegFlat is exponential then by Theorem 6 either
the image νf (RegFlat) is not bounded or RegFlat contains a linear fooling set for νf . By
Proposition 13 we have νf (RegFlat) = νf (Flat) = Rep. Hence, if Rep has exponential growth
then Proposition 3 implies that Flat has exponential ~νf -growth and hence VL(n) /∈ o(n). If
RegFlat contains a linear fooling set for νf then also Flat contains one by Proposition 14.
By Proposition 5 the ~νf -growth of Flat is exponential and hence VL(n) /∈ o(n). J

6 Dichotomy for rational functions

In this section we will prove Theorem 6. Let t : Σ∗ → Ω∗ be a rational function with suffix-
closed domain X = dom(t). By Proposition 3 the interesting case is where the image t(X) is
polynomial growing, i.e. a bounded language. There are two further necessary properties in
order to achieve polynomial ~t-growth. Since we apply the rational function to all suffixes, it is
natural to consider right transducers, reading the input from right to left. The first property
states that t has to resemble so called right-subsequential functions, which are defined by
deterministic finite right transducers. Here we will make use of a representation of rational
functions due to Reutenauer and Schützenberger, which decomposes the rational function t
into a right congruence Rt and a right-subsequential transducer B [27]. Secondly, we demand
that B is well-behaved, which means that, roughly speaking, the output produced during a
run inside a strongly connected component only depends on its entry state and the length of
the run. We will prove that in fact these properties are sufficient for the polynomial ~t-growth
and in all other cases X contains a linear fooling set.

The case of finite-index right congruences. Let ∼ be a finite index right congruence on
Σ∗ and ≈ its suffix expansion. We will characterize those finite index right congruences ∼
where Σ≤n/≈ is polynomially bounded, which can be viewed as a special case of Theorem 6
since ν∼ : Σ∗ → Σ∗/∼ is rational. First assume that ∼ is the Myhill-Nerode right congruence
∼L of a regular language L. Since log |Σ≤n/≈| is exactly the space complexity VL(n) by
Theorem 2, this case was characterized in [19] using so called critical tuples in the minimal
DFA for L. We slightly adapt this definition for right congruences. A critical tuple in a right
congruence ∼ is a tuple of words (u2, v2, u, v) ∈ (Σ∗)4 such that |u2| = |v2| ≥ 1, there exist
u1, v1 ∈ Σ∗ with u = u1u2, v = v1v2, and u2w 6∼ v2w for all w ∈ {u, v}∗.

STACS 2019

29:12 Visibly Pushdown Languages over Sliding Windows

I Proposition 15. If ∼ has a critical tuple then |Σ≤n/≈| grows exponentially and there exists
a critical tuple (u2, v2, u, v) in ∼ such that u2u ∼ u2wu and v2u ∼ v2wu for all w ∈ {u, v}∗.

Proof. If (u2, v2, u, v) is critical tuple in a right congruence ∼ then we claim that |Σ≤n/≈|
grows exponentially. Let n ∈ N and let w 6= w′ ∈ {u, v}n. There exists a word z ∈ {u, v}∗
such that w and w′ have the suffixes u2z and v2z of equal length. By the definition of
critical tuples we have u2z 6∼ v2z, which implies w 6≈ w′. Therefore |Σ≤cn/≈| ≥ 2n where
c = max{|u|, |v|}.

The second part is based on the proof of [20, Lemma 7.4]. Let ≡ be the syntactic
congruence on Σ∗ defined by x ≡ y if and only if `x ∼ `y for all ` ∈ Σ∗. Since ∼ is a right
congruence ≡ is a congruence on Σ∗ of finite index satisfying ≡⊆∼. Define the monoid
M = Σ∗/≡. It is known that there exists a number ω ∈ N such that mω is idempotent
for all m ∈ M , i.e. mω · mω = mω. Now let (u2, v2, u, v) be a critical tuple and define
u′ = (vωuω)ω and v′ = (vωuω)ωvω. Since u2 is a suffix of u′, v2 is a suffix of u′ and
u′, v′ ∈ {u, v}∗ the tuple (u2, v2, u

′, v′) is again a critical tuple in ∼. Furthermore we have
u′u′ = (vωuω)ω(vωuω)ω ≡ (vωuω)ω = u′ and v′u′ = (vωuω)ωvω(vωuω)ω ≡ (vωuω)ω = u′,
and therefore u′ ≡ wu′ for all w ∈ {u′, v′}∗. Since ≡ is a congruence this implies u2u

′ ≡ u2wu
′

and v2u
′ ≡ v2wu

′ for all w ∈ {u′, v′}∗, and thus also u2u
′ ∼ u2wu

′ and v2u
′ ∼ v2wu

′, which
concludes the proof. J

I Theorem 16. Let L ⊆ Σ∗ be regular. Then VL(n) ∈ O(logn) if and only if |Σ≤n/≈L| is
polynomially bounded if and only if ∼L has no critical tuple.

Proof. The first equivalence follows from Theorem 2. By Proposition 15 the existence of a
critical tuple in ∼ implies exponential growth of |Σ≤n/≈|.

Now assume that VL(n) /∈ O(logn). By [19, Lemma 7.2] there exist words u2, v2, u, v ∈ Σ∗
such that u2 is a suffix of u, v2 is a suffix of v, |u2| = |v2| and u2w 6∼L v2w

′ for all
w,w′ ∈ {u, v}∗ (one needs the fact that x ∼L y if and only if x and y reach the same state
in the minimal DFA for L). Since in particular u2w 6∼L v2w for all w ∈ {u, v}∗ the tuple
(u2, v2, u, v) constitutes a critical tuple. J

We generalize this theorem to arbitrary finite index right congruences (Theorem 18).
Given equivalence relations ∼ and ∼′ on a set X, we say that ∼′ is coarser than ∼ if ∼⊆∼′,
i.e. each ∼′-class is a union of ∼-classes. The intersection ∼ ∩ ∼′ is again an equivalence
relation on X.

I Lemma 17. Let ∼ and ∼′ be right congruences.
(a) If ∼′ is coarser than ∼ and ∼ has no critical tuple, then ∼′ also has no critical tuple.
(b) If ∼ and ∼′ have no critical tuple then ∼ ∩ ∼′ is also a right congruence which has no

critical tuple

Proof. Closure under coarsening is clear because the property “∼ has no critical tuple” is
positive in ∼: ∀u = u1u2 ∀v = v1v2(|u2| = |v2| → ∃w ∈ {u, v}∗ : u2w ∼ v2w).

Consider two right congruences ∼, ∼′ which have no critical tuples. One can verify
that their intersection ∼ ∩ ∼′ is again a right congruence. Let u = u1u2 and v = v1v2
with |u2| = |v2|. Because ∼ has no critical tuple there exist a word w ∈ {u, v}∗ with
u2w ∼ v2w. Now consider the condition for the words u1(u2w) and v1(v2w). Because ∼′
has no critical tuple there exists a word x ∈ {uw, vw}∗ such that u2wx ∼′ v2wx. Since ∼ is
a right congruence we also have u2wx ∼ v2wx and thus u2wx (∼ ∩ ∼′) v2wx. This proves
that ∼ ∩ ∼′ has no critical tuple. J

I Theorem 18. |Σ≤n/≈| is polynomially bounded if and only if ∼ has no critical tuple.

M. Ganardi 29:13

Proof. Let u1, . . . , um be representatives from each ∼-class. Observe that ∼=
⋂m
i=1 ∼[ui]∼

because ∼ saturates each class [ui]∼ and
⋂m
i=1 ∼[ui]∼ also saturates each class [v]∼. Let

us write ∼i instead of ∼[ui]∼ and let ≈i be its suffix expansion ≈[ui]∼ . Then we have
∼=

⋂m
i=1 ∼i and ≈=

⋂m
i=1 ≈i. This implies that

max
1≤i≤m

|Σ≤n/≈i| ≤ |Σ≤n/≈| ≤
m∏
i=1
|Σ≤n/≈i|. (1)

(⇒): If |Σ≤n/≈| is polynomially bounded then the same holds for |Σ≤n/≈i| for all 1 ≤ i ≤ k

by (1). By Theorem 16 ∼[ui]∼ has no critical tuple for all 1 ≤ i ≤ k and therefore Lemma 17(b)
implies that ∼=

⋂m
i=1 ∼[ui]∼ has no critical tuple.

(⇐): If ∼ has no critical tuple then each congruence ∼i has no critical tuple by Lemma 17(a)
because ∼i is coarser than ∼. Theorem 16 implies that |Σ≤n/≈i| is polynomially bounded
for all 1 ≤ i ≤ k. By (1) also |Σ≤n/≈| is polynomially bounded. J

Regular look-ahead. A result due to Reutenauer and Schützenberger states that every
rational function f can be factorized as f = r◦` where ` and r are left- and right-subsequential,
respectively [27]. A rational function is left- or right-subsequential if the input is read in a
deterministic fashion from left to right and right to left, respectively. In the literature the
order of the directions is usually reversed, i.e. one decomposes t as f = r ◦ `. Often this is
described by the statement that every rational function is (left-)subsequential with regular
look-ahead. Furthermore, this decomposition is canonical in a certain sense.

We follow the notation from the survey paper [16]. A right-subsequential transducer
B = (Q,Σ,Ω, F,∆, {qin}, o) is a real-time right transducer which is deterministic, i.e. qin
is the only initial state and for every p ∈ Q and a ∈ Σ there exists at most one transition
(p, a, y, q) ∈ ∆. Clearly, right-subsequential transducers define rational functions, the so
called right-subsequential functions, but not every rational function is right-subsequential.
Let R be a right congruence on Σ∗ with finite index. The look-ahead extension is the injective
function eR : Σ∗ → (Σ× Σ∗/R)∗ defined by

eR(a1 · · · an) = (a1, [ε]R)(a2, [a1]R)(a3, [a1a2]R) · · · (an, [a1 · · · an−1]R).

Let f : Σ∗ → Ω∗ be a partial function. The partial function f [R] : (Σ× Σ∗/R)∗ → Ω∗ with
dom(f [R]) = eR(dom(f)) is defined by f [R](eR(x)) = f(x). Furthermore we define a right
congruence Rf on Σ∗. For this we need the distance function ‖x, y‖ = |x|+ |y|−2|x∧y| where
x∧y is the longest common suffix of x and y. Equivalently, ‖x, y‖ is the length of the reduced
word of xy−1 in the free group generated by Σ. Notice that ‖·, ·‖ satisfies the triangle inequality.
We define u Rf v if and only if (i) u ∼dom(f) v and (ii) {‖f(uw), f(vw)‖ | uw, vw ∈ dom(f)}
is finite. One can verify that Rf is a right congruence on Σ∗. As an example, recall the
rational transduction f from Example 4. The induced right congruence Rf has two classes,
which are a∗ and a∗b{a, b}∗.

I Theorem 19 ([27]). A partial function f : Σ∗ → Ω∗ is rational if and only if Rf has finite
index and f [Rf] is right-subsequential.

For the rest of the section let B = (Q,Σ × Σ∗/Rt,Ω, F,∆, {qin}, o) be a trim right-
subsequential transducer for t[Rt]. One obtains an unambiguous real-time right transducer
A for t by projection to the first component, i.e. A = (Q,Σ,Ω, F,Λ, {qin}, o) where Λ =
{(q, a, y, p) | (q, (a, b), y, p) ∈ ∆}. Notice that every run q x|y←−− p in A induces a corresponding

STACS 2019

29:14 Visibly Pushdown Languages over Sliding Windows

run q
(x,z)|y←−−−− p in B for some z ∈ (Σ∗/Rt)∗ and that this correspondence is a bijection

between the sets of all runs in A and B. We need two auxiliary lemmas which concern the
right congruence Rt.

I Lemma 20 (Short distances). Let u, v, w ∈ Σ∗ with uw, vw ∈ X. If u Rt v then
‖t(uw), t(vw)‖ ≤ O(|u|+ |v|).

Two partial functions t1, t2 : Σ∗ → Ω∗ are adjacent if sup{‖t1(w), t2(w)‖ | w ∈ dom(t1) ∩
dom(t2)} < ∞ where sup ∅ = −∞. We remark that two functions are adjacent in our
definition if and only if their reversals are adjacent according to the original definition [27].
Notice that u Rt v if and only if u ∼X v and the functions w 7→ t(uw) and w 7→ t(vw) are
adjacent.

I Lemma 21 (Short witnesses). Let t1, t2 : Σ∗ → Ω∗ be rational functions which are not
adjacent. Then there are words x, y, z ∈ Σ∗ such that xy∗z ⊆ dom(t1) ∩ dom(t2) and
‖t1(xykz), t2(xykz)‖ = Ω(k). In particular, for each k ∈ N there exists a word x ∈ dom(t1)∩
dom(t2) of length |x| ≤ O(k) such that ‖t1(x), t2(x)‖ ≥ k.

I Proposition 22. If Rt has a critical tuple then X contains a linear fooling set.

Proof. Let (u2, v2, u, v) be a critical tuple in Rt with u = u1u2 and v = v1v2. By Pro-
position 15 we can assume that u2u Rt u2wu and v2u Rt v2wu for all w ∈ {u, v}∗. By
assumption we know that (u2u, v2u) /∈ Rt. Furthermore, we claim that u2u ∼X v2u: Let
z ∈ Σ∗ and assume that u2uz ∈ X. Then u2v1v2uz ∈ X because u2u ∼X u2v1v2u, and thus
v2uz ∈ X because X is suffix-closed. The other direction follows by a symmetric argument.

Let n ∈ N and define

N = max
x∈{u2,v2}

max
w∈{u,v}≤n

sup{‖t(xuz), t(xwuz)‖ | xuz, xwuz ∈ X} <∞.

By Lemma 20 we have N ≤ O(n). Since (u2u, v2u) /∈ Rt and u2u ∼X v2u, the functions
z 7→ t(u2uz) and z 7→ t(v2uz) are not adjacent. By Lemma 21 there exists a word zn ∈
(u2u)−1X with ‖t(u2uzn), t(v2uzn)‖ ≥ 2N + 1 and |zn| ≤ O(N) ≤ O(n). We claim that
t(u2wuzn) 6= t(v2wuzn) for all w ∈ {u, v}≤n: By the triangle inequality we have

2N + 1 ≤ ‖t(u2uzn), t(v2uzn)‖
≤ ‖t(u2uzn), t(u2wuzn)‖+ ‖t(u2wuzn), t(v2wuzn)‖+ ‖t(v2wuzn), t(v2uzn)‖
≤ 2N + ‖t(u2wuzn), t(v2wuzn)‖

which implies ‖t(u2wuzn), t(v2wuzn)‖ ≥ 1 and in particular t(u2wuzn) 6= t(v2wuzn). We
have proved that for each n ∈ N there exists a word zn of length O(n) such that t(u2wuzn) 6=
t(v2wuzn) for all w ∈ {u, v}≤n. If Z is the set of all constructed zn for n ∈ N then
{u2, v2}{u, v}∗uZ ⊆ X and (u2, v2, u, v, uZ) is a linear fooling scheme. J

Well-behaved transducers. Let (Q,�) be the quasi-order defined by q � p iff there exists
a run from p to q in A or equivalently in B. Its equivalence classes are the strongly connected
components (SCCs) of A and B. A word w ∈ Σ∗ is guarded by a state p ∈ Q if there exists
a run q′ w←− p in A such that p � q′, i.e. p and q′ belong to the same SCC. Notice that the
set of all words which are guarded by a fixed state p is suffix-closed. A run q w←− p in A is
guarded if w is guarded by p. We say that A is well-behaved if for all p ∈ Q and all guarded
accepting runs π, π′ from p with |π| = |π′| we have outF (π) = outF (π′).

M. Ganardi 29:15

I Proposition 23. If A is not well-behaved then X contains a linear fooling set.

Proof. Assume there exist states p, q, r, q′, r′ ∈ Q, and accepting runs q u2←− p and r v2←− p with
|u2| = |v2| and outF (q u2←− p) 6= outF (r v2←− p). Furthermore let p u1←− q′ u2←− p, p v1←− r′ v2←− p
and p s←− qin be runs. Let u = u1u2 and v = v1v2 and consider any word w ∈ {u, v}∗. Since
t(u2ws) = outF (q u2←− p) out(p ws←−− qin) and t(v2ws) = outF (r v2←− p) out(p ws←−− qin), we have
t(u2ws) 6= t(v2ws). This shows that (u2, v2, u, v, {s}) is a linear fooling scheme. J

If π is a non-empty run p a1···an←−−−− q in A and p (a1,ρ1)···(an,ρn)←−−−−−−−−−− q is the corresponding run in
B then we call ρ1 the key of π. The following lemma justifies the name, stating that π is
determined by the state q, the word a1 · · · an and the key ρ1.

I Lemma 24. If p w←− q and p′ w←− q are non-empty runs in A with the same key then the
runs must be identical.

Proof. Assume that w = a1 · · · an and let p (a1,ρ1)···(an,ρn)←−−−−−−−−−− q and p′ (a1,ρ
′
1)···(an,ρ

′
n)←−−−−−−−−−− q be the

corresponding runs in B with ρ1 = ρ′1. We proceed by induction on n. If n = 1 then this
statement is trivial because B is deterministic. Now assume n ≥ 2 and let p a1←− r a2···an←−−−− q
and p′ a1←− r′ a2···an←−−−− q. Since B is trim there exist an accepting run on eRt

(u) from p and
an accepting run on eRt(u′) from p′ for some words u, u′ ∈ Σ∗. By definition of t[Rt] we
have [u]Rt

= ρ1 = ρ′1 = [u′]Rt
and therefore ρ2 = [ua1]Rt

= [u′a1]Rt
= ρ′2. By induction

hypothesis we know that the runs r a2···an←−−−− q and r′ a2···an←−−−− q are identical. Since p (a1,ρ1)←−−−− r
and p′ (a1,ρ

′
1)←−−−− r′ and B is deterministic we must have p = p′. J

Let π be any run on a word y ∈ Σ∗. If π is not guarded, we can factorize π = π′π′′ such that
π′′ is the shortest suffix of π which is unguarded, and then iterate this process on π′. This
yields unique factorizations π = π0π1 · · ·πm and y = y0y1 · · · ym where πi is a run on yi from
a state qi to a state qi−1 such that yi is the shortest suffix of y0 · · · yi which is not guarded
by qi for all 1 ≤ i ≤ m and π0 is guarded. The factorization π = π0π1 · · ·πm is the guarded
factorization of π.

I Proposition 25. Assume that t(X) is bounded, A is well-behaved and Rt has no critical
tuple. Then the ~t-growth of X is polynomially bounded.

Proof. We will describe an encoding of ~t(w) for w ∈ X using O(log |w|) bits. For each word
w ∈ Σ∗ and each state q ∈ Q we define a tree Tq,w recursively, which carries information at
the nodes and edges. If w is guarded by q then Tq,w consists of a single node labelled by
the pair (q, |w|). Otherwise let w = uv such that v is the shortest suffix of w which is not
guarded by q. Then Tq,w has a root which is labelled by the tuple (q, |w|, |v|, ~νRt

(u)). For
each run p v←− q we attach Tp,u to the root as a direct subtree. The edge is labelled by the
pair (ρ, out(p v←− q)) where ρ is the key of p v←− q. By Lemma 24 distinct outgoing edges from
the root are labelled by distinct keys.

The tree Tq,w can be encoded using O(log |w|) bits: Since we have p ≺ q for every
unguarded run p

v←− q the tree Tq,w has height at most |Q| and size at most |Q||Q|. All
occurring numbers have at most magnitude |w|, and the states and keys can be encoded by
O(1) bits. The output words out(p v←− q) are factors of words from the bounded language
t(X) and have length at most iml(A) · |v|. Thus they can be encoded using O(log |w|) bits.
The node label ~νRt

(u) can be encoded using O(log |w|) bits by Theorem 18 since Rt has no
critical tuple.

Let w = xy ∈ Σ∗, q ∈ Q and let π be an accepting run on y from q. We show that Tq,w and
|y| determine outF (π) by induction on the length of the guarded factorization π = π0π1 · · ·πm.
Since Tqin ,w determines the length |w|, the tuple ~t(w) is determined by Tqin ,w for all w ∈ X.

STACS 2019

29:16 Visibly Pushdown Languages over Sliding Windows

If m = 0 then y is guarded by q. Since A is well-behaved outF (π) is determined by q (which is
part of the label of the root of Tq,w) and |y| only. Now assume m ≥ 1 and suppose that πi is
a run qi−1

yi←− qi for all 1 ≤ i ≤ m with qm = q. Then ym is the shortest suffix of w which is
not guarded by q. The root of Tq,w is labelled by (q, |ym|, ~νRt

(xy0 · · · ym−1)). Since |ym| and
|y| are known, we can also determine |y0 · · · ym−1|. From ~νRt

(xy0 · · · ym−1) and |y0 · · · ym−1|
we can then determine [y0 · · · ym−1]Rt , which is the key of πm. By Lemma 24 we can find
the unique edge which is labelled by ([y0 · · · ym−1]Rt

, out(πm)). It leads to the direct subtree
Tqm−1,xy0···ym−1 of Tq,w. By induction hypothesis Tqm−1,xy0···ym−1 and |y0 · · · ym−1| determine
outF (π0 · · ·πm−1). Finally, we can determine outF (π0 · · ·πm) = outF (π0 · · ·πm−1) out(πm),
concluding the proof. J

Now we can prove Theorem 6: If X contains no linear fooling set for t then A must be well-
behaved by Proposition 23 and Rt has no critical tuple by Proposition 22. If additionally t(X)
is bounded then the ~t-growth of X is polynomially bounded by Proposition 25. Otherwise,
if either X contains a linear fooling set or t(X) is not bounded then the ~t-growth of X is
exponential by Proposition 5 and by Proposition 3.

References
1 Rajeev Alur and P. Madhusudan. Visibly pushdown languages. In Proceedings of the 36th

Annual ACM Symposium on Theory of Computing, Chicago, IL, USA, June 13-16, 2004, pages
202–211, 2004. doi:10.1145/1007352.1007390.

2 Arvind Arasu and Gurmeet Singh Manku. Approximate Counts and Quantiles over Sliding
Windows. In Proceedings of PODS 2004, pages 286–296. ACM, 2004.

3 Brian Babcock, Mayur Datar, Rajeev Motwani, and Liadan O’Callaghan. Maintaining variance
and k-medians over data stream windows. In Proceedings of PODS 2003, pages 234–243. ACM,
2003.

4 Ajesh Babu, Nutan Limaye, Jaikumar Radhakrishnan, and Girish Varma. Streaming algorithms
for language recognition problems. Theor. Comput. Sci., 494:13–23, 2013. doi:10.1016/j.
tcs.2012.12.028.

5 Vince Bárány, Christof Löding, and Olivier Serre. Regularity Problems for Visibly Pushdown
Languages. In STACS 2006, 23rd Annual Symposium on Theoretical Aspects of Computer
Science, Marseille, France, February 23-25, 2006, Proceedings, pages 420–431, 2006. doi:
10.1007/11672142_34.

6 Jean Berstel. Transductions and context-free languages, volume 38 of Teubner Studienbücher:
Informatik. Teubner, 1979.

7 Ahmed Bouajjani, Javier Esparza, and Oded Maler. Reachability Analysis of Pushdown
Automata: Application to Model-Checking. In CONCUR ’97: Concurrency Theory, 8th
International Conference, Warsaw, Poland, July 1-4, 1997, Proceedings, pages 135–150, 1997.
doi:10.1007/3-540-63141-0_10.

8 Vladimir Braverman and Rafail Ostrovsky. Smooth Histograms for Sliding Windows. In
Proceedings of the 48th Annual IEEE Symposium on Foundations of Computer Science FOCS
2007, pages 283–293. IEEE Computer Society, 2007.

9 Vladimir Braverman, Rafail Ostrovsky, and Carlo Zaniolo. Optimal sampling from sliding
windows. J. Comput. Syst. Sci., 78(1):260–272, 2012.

10 Dany Breslauer and Zvi Galil. Real-Time Streaming String-Matching. ACM Trans. Algorithms,
10(4):22:1–22:12, 2014.

11 J Richard Büchi. Regular canonical systems. Archiv für mathematische Logik und Grundla-
genforschung, 6(3-4):91–111, 1964.

12 Raphaël Clifford, Allyx Fontaine, Ely Porat, Benjamin Sach, and Tatiana A. Starikovskaya.
Dictionary Matching in a Stream. In Proceedings of ESA 2015, volume 9294 of Lecture Notes
in Computer Science, pages 361–372. Springer, 2015.

http://dx.doi.org/10.1145/1007352.1007390
http://dx.doi.org/10.1016/j.tcs.2012.12.028
http://dx.doi.org/10.1016/j.tcs.2012.12.028
http://dx.doi.org/10.1007/11672142_34
http://dx.doi.org/10.1007/11672142_34
http://dx.doi.org/10.1007/3-540-63141-0_10

M. Ganardi 29:17

13 Raphaël Clifford, Allyx Fontaine, Ely Porat, Benjamin Sach, and Tatiana A. Starikovskaya.
The k-mismatch problem revisited. In Proceedings of SODA 2016, pages 2039–2052. SIAM,
2016.

14 Raphaël Clifford and Tatiana A. Starikovskaya. Approximate Hamming Distance in a Stream.
In Proceedings of ICALP 2016, volume 55 of LIPIcs, pages 20:1–20:14. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2016.

15 Mayur Datar, Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Maintaining Stream
Statistics over Sliding Windows. SIAM J. Comput., 31(6):1794–1813, 2002.

16 Emmanuel Filiot and Pierre-Alain Reynier. Transducers, logic and algebra for functions of
finite words. SIGLOG News, 3(3):4–19, 2016. doi:10.1145/2984450.2984453.

17 Nathanaël François, Frédéric Magniez, Michel de Rougemont, and Olivier Serre. Streaming
Property Testing of Visibly Pushdown Languages. In Piotr Sankowski and Christos D.
Zaroliagis, editors, 24th Annual European Symposium on Algorithms, ESA 2016, August
22-24, 2016, Aarhus, Denmark, volume 57 of LIPIcs, pages 43:1–43:17. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2016. doi:10.4230/LIPIcs.ESA.2016.43.

18 Moses Ganardi. Visibly Pushdown Languages over Sliding Windows. Technical report,
arXiv.org, 2018. arXiv:1812.11549.

19 Moses Ganardi, Danny Hucke, Daniel König, Markus Lohrey, and Konstantinos Mamouras.
Automata Theory on Sliding Windows. In Proceedings of the 35th Symposium on Theoretical
Aspects of Computer Science, STACS 2018, volume 96 of LIPIcs, pages 31:1–31:14. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2018.

20 Moses Ganardi, Danny Hucke, Daniel König, Markus Lohrey, and Konstantinos Mamouras.
Automata theory on sliding windows. Technical report, arXiv.org, 2018. arXiv:1702.04376.

21 Moses Ganardi, Danny Hucke, and Markus Lohrey. Querying Regular Languages over Sliding
Windows. In Proceedings of the 36th IARCS Annual Conference on Foundations of Software
Technology and Theoretical Computer Science, FSTTCS 2016, volume 65 of LIPIcs, pages
18:1–18:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016.

22 Moses Ganardi, Artur Jez, and Markus Lohrey. Sliding Windows over Context-Free Languages.
In 43rd International Symposium on Mathematical Foundations of Computer Science, MFCS
2018, August 27-31, 2018, Liverpool, UK, pages 15:1–15:15, 2018. doi:10.4230/LIPIcs.MFCS.
2018.15.

23 Seymour Ginsburg. The Mathematical Theory of Context-Free Languages. McGraw-Hill, Inc.,
New York, NY, USA, 1966.

24 Seymour Ginsburg and Edwin H Spanier. Bounded ALGOL-like languages. Transactions of
the American Mathematical Society, 113(2):333–368, 1964.

25 Frédéric Magniez, Claire Mathieu, and Ashwin Nayak. Recognizing Well-Parenthesized
Expressions in the Streaming Model. SIAM J. Comput., 43(6):1880–1905, 2014. doi:10.1137/
130926122.

26 Rohit Parikh. On Context-Free Languages. J. ACM, 13(4):570–581, 1966. doi:10.1145/
321356.321364.

27 Christophe Reutenauer and Marcel Paul Schützenberger. Minimization of Rational Word
Functions. SIAM J. Comput., 20(4):669–685, 1991. doi:10.1137/0220042.

28 Andreas Weber and Reinhard Klemm. Economy of Description for Single-Valued Transducers.
Inf. Comput., 118(2):327–340, 1995. doi:10.1006/inco.1995.1071.

STACS 2019

http://dx.doi.org/10.1145/2984450.2984453
http://dx.doi.org/10.4230/LIPIcs.ESA.2016.43
http://arxiv.org/abs/1812.11549
http://arxiv.org/abs/1702.04376
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.15
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.15
http://dx.doi.org/10.1137/130926122
http://dx.doi.org/10.1137/130926122
http://dx.doi.org/10.1145/321356.321364
http://dx.doi.org/10.1145/321356.321364
http://dx.doi.org/10.1137/0220042
http://dx.doi.org/10.1006/inco.1995.1071

Fast and Longest Rollercoasters
Paweł Gawrychowski
Institute of Computer Science, University of Wrocław, Poland
gawry@cs.uni.wroc.pl

Florin Manea
Kiel University, Germany
flm@informatik.uni-kiel.de

Radosław Serafin
Institute of Computer Science, University of Wrocław, Poland
radserafin@gmail.com

Abstract
For k ≥ 3, a k-rollercoaster is a sequence of numbers whose every maximal contiguous subsequence,
that is increasing or decreasing, has length at least k; 3-rollercoasters are called simply rollercoasters.
Given a sequence of distinct real numbers, we are interested in computing its maximum-length (not
necessarily contiguous) subsequence that is a k-rollercoaster. Biedl et al. (2018) have shown that
each sequence of n distinct real numbers contains a rollercoaster of length at least dn/2e for n > 7,
and that a longest rollercoaster contained in such a sequence can be computed in O(n log n)-time (or
faster, in O(n log log n) time, when the input sequence is a permutation of {1, . . . , n}). They have
also shown that every sequence of n > (k − 1)2 + 1 distinct real numbers contains a k-rollercoaster
of length at least n

2(k−1) −
3k
2 , and gave an O(nk log n)-time (respectively, O(nk log log n)-time)

algorithm computing a longest k-rollercoaster in a sequence of length n (respectively, a permutation
of {1, . . . , n}).

In this paper, we give an O(nk2)-time algorithm computing the length of a longest k-rollercoaster
contained in a sequence of n distinct real numbers; hence, for constant k, our algorithm computes
the length of a longest k-rollercoaster in optimal linear time. The algorithm can be easily adapted to
output the respective k-rollercoaster. In particular, this improves the results of Biedl et al. (2018),
by showing that a longest rollercoaster can be computed in optimal linear time. We also present an
algorithm computing the length of a longest k-rollercoaster in O(n log2 n)-time, that is, subquadratic
even for large values of k ≤ n. Again, the rollercoaster can be easily retrieved. Finally, we show an
Ω(n log k) lower bound for the number of comparisons in any comparison-based algorithm computing
the length of a longest k-rollercoaster.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms;
Theory of computation → Data structures design and analysis

Keywords and phrases sequences, alternating runs, patterns in permutations

Digital Object Identifier 10.4230/LIPIcs.STACS.2019.30

1 Introduction

The mathematical study of patterns occurring in sequences of numbers is a rather old and
well developed topic in combinatorics and algorithms on sequences. Within this topic, of
a particularly high interest is the study of long increasing and decreasing (not necessarily
contiguous) subsequences occurring in a sequence. For example, already in 1749, Euler
defined the Eulerian polynomials, which are the generating function for the number of
descents in permutations. Almost 200 years later, Erdős and Szekeres [9] proved the existence
of an increasing or a decreasing subsequence of length at least a + 1 in a sequence of at least
n = a2 + 1 distinct reals. More precisely, they have shown the following theorem.

© Paweł Gawrychowski, Florin Manea, and Radosław Serafin;
licensed under Creative Commons License CC-BY

36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019).
Editors: Rolf Niedermeier and Christophe Paul; Article No. 30; pp. 30:1–30:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:gawry@cs.uni.wroc.pl
mailto:flm@informatik.uni-kiel.de
mailto:radserafin@gmail.com
https://doi.org/10.4230/LIPIcs.STACS.2019.30
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

30:2 Fast and Longest Rollercoasters

I Theorem 1 (Erdős and Szekeres, 1935). Every sequence of ab + 1 distinct real numbers
contains an increasing subsequence of length at least a + 1 or a decreasing subsequence of
length at least b + 1.

The theorem of Erdős–Szekeres is strongly related to, and in fact also follows from, the
well-known decomposition of Dilworth (see [18]) regarding chains and antichains in a finite
partially ordered set. Dilworth’s result can be restated in the context of the combinatorics of
patterns in sequences of numbers as follows.

I Theorem 2 (Dilworth, 1950). Any finite sequence S of distinct real numbers can be
partitioned into k ascending sequences, where k is the maximum length of a descending
sequence in S.

Recent surveys on the combinatorics of patterns occurring in sequences are [14,15].
The study of patterns in sequences of numbers also has a well developed algorithmic

side (see, e.g., [4, 8, 10, 13]). For instance, finding a longest increasing subsequence (not
necessarily contiguous) contained in the input sequence is a basic problem in theoretical
computer science, studied already from the 1960s [3, 16, 17], with applications in areas such
as bioinfomatics and physics (see [19] and the references therein). In particular, in 1975
Fredman [10] presented an algorithm (which he attributed to Knuth, now considered folklore)
computing the length of a longest increasing subsequence (LIS) in an array of n numbers in
O(n log n) time, and proved that this is optimal for comparison-based algorithms. If required,
the algorithm can be extended to retrieve such a subsequence. If the input sequence can be
sorted in linear time (in particular, when the input sequence is a permutation of {1, . . . , n})
and we do not require the algorithm to be comparison-based, the solution given by Fredman
can be implemented in O(n log log n) time, see [8] and the references therein. Fredman’s
algorithm is often called Patience Sorting, and has some connections to constructing the
so-called Young Tableaux [3, 16].

We consider a notion that is strongly related to longest increasing subsequences (and
longest decreasing subsequences). A run in a sequence of numbers is a maximal contiguous
subsequence that is either increasing or decreasing. A k-rollercoaster, where k ≥ 3, is a
sequence of numbers whose every run has length at least k; 3-rollercoasters are called, for short,
rollercoasters. For example, the sequence (3, 6, 8, 10, 9, 5, 1, 2, 4, 7, 11) is a 4-rollercoaster with
runs (3, 6, 8, 10), (10, 9, 5, 1), (1, 2, 4, 7, 11). Given a sequence S[1 : n] = (S[1], S[2], . . . , S[n])
of n distinct numbers, the k-rollercoaster problem is to find a maximum-size set of indices
i1 < i2 < · · · < im such that (S[i1], S[i2], . . . , S[im]) is a k-rollercoaster. In other words, this
problem asks for a longest k-rollercoaster contained in the input sequence S.

There is a simple, but useful, geometrical interpretation of k-rollercoasters. The input
sequence S[1 : n] can be depicted as a set P of points in the plane by translating, for i

from 1 to n, the number S[i] to a point pi = (i, S[i]). In this setting, a k-rollercoaster in
S translates to a polygonal path in the plane, whose vertices are points of P , and such
that every maximal sub-path, with positive- or negative-sloped edges, has at least k points.
The rollercoaster (3, 6, 8, 10, 9, 5, 1, 2, 4, 7, 11) is depicted in the left half of Figure 1. Two
4-rollercoasters occurring in the sequence (3, 6, 1, 8, 7, 17, 13, 10, 11, 12, 9, 5, 14, 4, 2, 15, 16) are
depicted in the right half of the same figure.

While rollercoasters seem interesting on their own as a combinatorial structure, the
original motivation for their study was a connection to computational geometry and graph
drawing, namely to point-set embeddings of caterpillars (see [5,6] and the references therein).
More precisely, constructing a long rollercoaster in a sequence of numbers was used as an

P. Gawrychowski, F. Manea, and R. Serafin 30:3

1

2

3

4

5

6

7

8

9

10

11

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

7

8

9

10

11

1 2 3 4 5 6 7 8 9 10 11

12

13

14

15

16

17

12 13 14 15 16 17

Figure 1 Left: a 4-rollercoaster (3, 6, 8, 10, 9, 5, 1, 2, 4, 7, 11) with runs (3, 6, 8, 10), (10, 9, 5, 1),
(1, 2, 4, 7, 11). Right: two 4-rollercoasters, represented with a solid and, respectively, a dashed line,
in (3, 6, 1, 8, 7, 17, 13, 10, 11, 12, 9, 5, 14, 4, 2, 15, 16).

intermediate step towards obtaining a method of drawing a n-vertex top-view caterpillar,
with L-shaped edges, on a set of 25

3 n general orthogonal position points in the plane. This is
currently the best known bound on the number of points required to draw such a graph.

In [5], the following results regarding k-rollercoasters were shown. First, from a com-
binatorial point of view, for k = 3, it was shown that the length of a longest rollercoaster
contained in a sequence of n ≥ 7 distinct numbers is at least dn

2 e. As far as k-rollercoasters
are concerned, it was shown that for k > 4 every sequence of n > (k − 1)2 + 1 distinct
numbers contains a k-rollercoaster of length at least n

2(k−1) −
3k
2 . From an algorithmic

point of view, both previously mentioned results were constructive, leading to an O(n)-
time (respectively O(n log k)) algorithm computing a long (but not necessarily a longest)
rollercoaster (respectively, k-rollercoaster) contained in a sequence of n distinct numbers. A
longest rollercoaster contained in such a sequence was computed by an extension of Fredman’s
algorithm in O(n log n)-time, and if the input sequence is a permutation of {1, . . . , n} (or,
more generally, sortable in linear time) in O(n log log n) time. By further generalising this
approach, an O(nk log n)-time (respectively, O(nk log log n)-time) algorithm computing a
longest k-rollercoaster in a sequence of n distinct numbers (respectively, a permutation of
{1, . . . , n}) can be obtained. Note that, by the theorem of Erdös and Szekeres, a sequence of
n distinct numbers always contains a b

√
nc-rollercoaster, and the aforementioned algorithm

computes a longest such rollercoaster in O(n1.5 log n) time.

Our contributions. We consider the problem of computing a longest k-rollercoaster in an
input sequence S[1 : n] and provide three results.

Firstly, we design a comparison-based algorithm computing the length of a longest k-
rollercoaster in a sequence of n distinct numbers in O(nk2) time. Thus, we obtain an optimal
linear-time algorithm for constant values of k, in particular for k = 3. This significantly
improves the results of [5] and shows that, even though longest rollercoasters are related to
longest increasing subsequences, the rich combinatorial structure of the former makes them
provably easier to find. The starting point of our algorithm is the following natural dynamic
programming formulation. For each 2 ≤ i ≤ k, and for each element S[j], we compute
a longest (not necessarily contiguous) subsequence of S ending with S[j] and with every
run of length at least k, except for the last run, which has only i elements if i < k and at
least k elements if i = k. Now the difficulty is to find the predecessor S[j′] of S[j] in such
a subsequence in time proportional to k, in particular avoiding any kind of binary search.

STACS 2019

30:4 Fast and Longest Rollercoasters

We greedily decompose the input sequence into blocks with a certain property related to
Dilworth’s theorem and prove, by a careful case analysis, that j′ must belong to the previous
few such blocks. This, together with the special structure of the blocks and appropriate data
structures, allows us to find j′ in O(k) amortised time.

Secondly, we focus on the case of large k. Given that both the previous and the new
algorithm have at least linear dependency on k, it might seem plausible that this is inherent
to the problem, for example that for k ≥ b

√
nc the running time of any algorithm needs to

be Ω(n1.5). We show that this is not the case by designing a subquadratic algorithm that
computes a longest k-rollercoaster in a sequence of n distinct numbers in O(n log2 n) time.
To obtain this result, we exploit the fact that if an increasing (respectively, decreasing) run in
a longest k-rollercoaster extends from S[i] to S[j], then that run should be LIS (respectively,
longest decreasing sequence, LDS for short) in S[i : j]. If one arranges the length of LIS
(respectively, LDS) in S[i : j] in an n×n matrix then the matrix has the anti-Monge property.
It is known that all row maxima of an anti-Monge matrix can be found in O(n) time [2],
that is, in sublinear time w.r.t. the size of the matrix (given an oracle access to the elements
of the matrix). Such properties have been successfully exploited to speed up certain dynamic
programming algorithms. We also follow this route, and construct a longest k-rollercoaster
using dynamic programming, essentially by gluing together LISs and LDSs of consecutive
contiguous subsequences of S.

Thirdly, we show that any comparison-based algorithm computing a longest k-rollercoaster
needs Ω(n log k) comparisons. Our reasoning is similar to the one used by Fredman to show
that any comparison-based algorithm computing a LIS needs Ω(n log n) comparisons. We
leave as an open problem to close the gap between the lower and upper bounds shown here.

The paper is organised as follows. After a series of preliminaries, we describe the O(nk2)-
time algorithm for computing the length of a longest k-rollercoaster, followed by the
O(n log2 n)-time algorithm. We conclude with the lower bound for the number of com-
parisons needed to compute the length of a longest k-rollercoaster in a sequence of length n.
The proofs omitted here for space reasons can be found in [12].

2 Preliminaries

We consider sequences of distinct real numbers and work in the comparison-based model.
If S is a sequence of n numbers, then |S| = n is the length of the sequence, and S[i]
denotes its ith element. A subsequence of S is a sequence (S[i1], S[i2], . . . , S[im]), defined
by specifying the indices 1 ≤ i1 < i2 < . . . < im ≤ n. For 1 ≤ i ≤ j ≤ n, S[i : j]
denotes the contiguous subsequence (S[i], S[i + 1], . . . , S[j]); in particular, S[1 : n] denotes
the entire S. Note that unless explicitly stated, a subsequence is not necessarily contiguous.
An increasing subsequence (respectively, decreasing subsequence) of S is a subsequence
(S[i1], S[i2], . . . , S[im]) such that S[ij] < S[ij+1], for all 1 ≤ j ≤ m − 1 (respectively,
S[ij] > S[ij+1], for all 1 ≤ j ≤ m − 1). A longest increasing (respectively, decreasing)
sequence, for short LIS (respectively, LDS), is an increasing (respectively, decreasing) sequence
with the largest possible length. Fredman gave an O(n log n)-time algorithm for computing
the length of LIS, denoted res in Algorithm 1. A byproduct of this algorithm is a partition
of S[1 : n] into res non-increasing subsequences that can be obtained by creating, for every
1 ≤ j ≤ res, a list of elements that has been stored in R[j].

A run in a sequence of numbers is a maximal contiguous subsequence that is increasing
or decreasing. A k-rollercoaster is a sequence of numbers such that every run has length
at least k; 3-rollercoasters are called, for short, rollercoasters. Given a sequence S[1 : n]

P. Gawrychowski, F. Manea, and R. Serafin 30:5

Algorithm 1 Finding the length of LIS of S.
1: R[0]← 0
2: res← 0
3: for i← 1 to n do
4: k ← max{j : R[j] < S[i]} . binary search over R[0] < R[1] < R[2] < . . .

5: R[k + 1]← S[i]
6: res← max{res, k + 1}
7: return res

we are interested in finding its longest subsequence that is a k-rollercoaster. To make the
exposition easier to follow, we focus on finding the length of such a subsequence. Recovering
the subsequence itself is, in all our algorithms, rather straightforward.

3 Computing a Longest k-Rollercoaster in O(nk2)-Time

In this section we show how to find a longest k-rollercoaster of S[1 : n] in O(nk2) time.
We begin our algorithm with a preprocessing phase. An alternating k-decomposition of

S[1 : n] is a partition of S[1 : n] into contiguous subsequences (called parts) S1, S2, . . . , Sm

such that the length of LIS in the odd parts (S1, S3, S5, and so on) is k while the length
of LDS in the even parts is k, possibly smaller for the very last part, and additionally by
removing the last element of any odd (even) part we obtain a sequence with LIS (LDS) of
length less than k. In other words, for ` ≥ 1, S` is either the shortest contiguous subsequence
of S that follows directly after S1 · · ·S`−1 and has for ` odd (even) a LIS (respectively, LDS)
of length k, if such a subsequence exists, or the whole remaining part of S otherwise. For
example, an alternating 3-decomposition of S = (1, 4, 2, 5, 8, 7, 6, 3) is (1, 4, 2, 5), (8, 7, 6), (3).

I Lemma 3. An alternating k-decomposition of S[1 : n] can be found in O(n log k) time.

Proof. By terminating Algorithm 1 as soon as res = k we can find the shortest prefix of S

with LIS equal to k in O(d log k) time, where d is the length of the prefix. Then we find the
shortest prefix of the remaining suffix of S with LDS equal to k, and repeat. Overall, this
takes O(n log k) time because all parts are disjoint. J

I Proposition 4. Let A be a k-rollercoaster in S. Any part S` contains elements of at most
four consecutive runs of A.

Proof. By contradiction. Let S′` be S` without the last element. If S` contains elements of
five consecutive runs of A then S′` contains elements of four consecutive runs of A, and hence
all elements of two such consecutive runs. Thus, if S` is an odd (even) part then S′` contains
LIS (LDS) of length k, which contradicts the definition of an alternating k-decomposition. J

By Dilworth’s theorem, a part with LIS of length k can be decomposed into k decreasing
subsequences, and such a decomposition can be obtained as a byproduct of Algorithm 1.
Thus, we can decompose each part into up to k monotone (increasing or decreasing, depending
on whether the part is odd or even) subsequences. These subsequences can be then merged
to obtain a sorted list P` of all elements in the corresponding part S` in O(n log k) overall
time, for example by first merging pairs of subsequences, then quadruples, and so on.

Before moving on to the description of our algorithm, we need a combinatorial lemma
that relates an alternating k-decomposition to a longest rollercoaster.

STACS 2019

30:6 Fast and Longest Rollercoasters

I Lemma 5. Suppose that x = S[j] is a non-first element occurring in an increasing run of
a longest k-rollercoaster, and y = S[j′] is its predecessor in the same run, and consider an
alternating k-decomposition of S[1 : n]. Then either x and y are in the same part Si, or y is
in one of the parts Si−4, Si−3, Si−2, Si−1.

Proof. By contradiction. Suppose that there are at least four parts between x and y, i.e., x

is in Si and y is in some Sk with k < i− 4. Let r denote the run in the k-rollercoaster that
contains x and y, let d be the length of r, and let ` be such that r[`] = y and r[` + 1] = x.
We assume that r is an increasing run (see Figure 2); the case when r is decreasing can be
treated in the same way.

y

x

︸ ︷︷ ︸
r

r[1] r[`+ 1]r[`] r[d]

Figure 2 The increasing run r from Lemma 5, with the points x and y highlighted.

Consider the following four cases:
1. ` ≤ k− 1 (i.e., there are at most k− 2 elements in r before y) and k− 2 ≥ d− `− 1 (there

are at most k − 2 elements in r after x).
2. ` ≤ k − 1 and k − 1 ≤ d− `− 1 (there at least k − 1 elements in r after x).
3. ` ≥ k (there are at least k − 1 elements in r before y) and k − 2 ≥ d− `− 1.
4. ` ≥ k and k − 1 ≤ d− `− 1.

Recall that there are at least four whole parts between x and y. Therefore, in particular
there are three consecutive parts Si′ , Si′+1, and Si′+2 such that the first has LIS of length k,
the second has LDS of length k, and the third has LIS of length k.

In the first case, we replace r[2 : d− 1] with LIS of Si′ , the LDS of Si′+1, and LIS of Si′+2.
It is straightforward to verify that we obtain a valid k-rollercoaster, and because we remove
at most 2k − 4 elements and add at least 3k, this creates a longer k-rollercoaster, which is
a contradiction. In the second case, we replace r[2 : `] with LIS of Si′ and LDS of Si′+1.
Again, it is straightforward to verify that we obtain a valid longer k-rollercoaster, because
we remove at most k − 2 elements and add at least 2k. Similarly, in the third case, we
replace r[` + 1 : d− 1] with LDS of Si′+1 and LIS of Si′+2 to obtain a longer k-rollercoaster.
Finally, in the fourth case we simply insert LDS of Si′+1 between x and y to obtain a longer
k-rollercoaster. J

After the initial preprocessing phase we apply dynamic programming. For 1 ≤ i ≤ k,
we say that a subsequence of S (not necessarily contiguous) is a (k, i)+-rollercoaster if it
ends with an increasing run of length exactly i when i < k and at least k when i = k, while
every other run is of length at least k. Additionally, we consider k-rollercoaster ending with
a decreasing run as (k, 1)+-rollercoaster. We want to construct, for every 1 ≤ i ≤ k and
1 ≤ j ≤ n, a longest (k, i)+-rollercoaster ending with S[j]. To this end we calculate M+[j, i],
the position in S of the predecessor of S[j] in such a (k, i)+-rollercoaster, and L+[j, i], the
length of the respective (k, i)+-rollercoaster. A (k, i)−-rollercoaster is defined similarly, except

P. Gawrychowski, F. Manea, and R. Serafin 30:7

that the last run should be decreasing, and we also calculate the values M−[j, i] and L−[j, i],
defined similarly to the above and corresponding to such a (k, i)−-rollercoaster. We only
describe in detail how to compute M+[j, i] and L+[j, i], as M−[j, i] and L−[j, i] are computed
analogously. The computation proceeds from left to right, that is, we iterate over the parts
S1, S2, . . . and compute, for every element S[j] of the current part S`, the values of M+[j, i]
and L+[j, i] for every 1 ≤ i ≤ k. See Algorithm 2 for a high-level overview of the algorithm.

Algorithm 2 Computing the length of a longest k-rollercoaster.
1: Find an alternating k-decomposition S1, . . . , Sm of S.
2: for 1 ≤ ` ≤ m do
3: Merge the k monotone subsequences constituting S` to obtain a single sorted list P`.
4: for 1 ≤ ` ≤ m do

. For each S[j] in S` and 1 ≤ i ≤ k, we compute the following:
M+[j, i]: position in S of the predecessor of S[j] in its (k, i)+-rollercoaster
L+[j, i]: length of the respective (k, i)+-rollercoaster

5: for 2 ≤ i ≤ k do
6: for 1 ≤ d ≤ 4 and each S[j] ∈ S` in the order of their occurrences in P` do
7: Find Md

+[j, i] and Ld
+[j, i].

8: for each S[j] ∈ S` do
9: L+[j, i]← max{Ld

+[j, i] : 1 ≤ d ≤ 4}
10: Set M+[j, i] so that it corresponds to L+[j, i].
11: Compute, for each S[j] ∈ S`, L−[j, i] and M−[j, i] with a similar approach.
12: repeat 4 times
13: for each S[j] ∈ S` do
14: L+[j, 1]← max{L−[j, k], 1}
15: M+[j, 1]←M−[j, k] if L−[j, k] > 0 and 0 otherwise
16: for 2 ≤ i ≤ k do
17: for each S[j] ∈ S` in the order of their occurrences in P` do
18: Find M ′

+[j, i], L′+[j, i] using decomposition of S` into k monotone sequences.
19: for each S[j] ∈ S` do
20: L+[j, i]← max{L+[j, i], L′+[j, i]}
21: Update M+[j, i] so that it corresponds to L+[j, i].
22: Update, for each S[j] ∈ S`, L−[j, i] and M−[j, i] with a similar approach.
23: return max{max{L−[j, k], L+[j, k]} : 1 ≤ j ≤ n}

When we begin computing the arrays M+[·, i], L+[·, i], M−[·, i] and L−[·, i], for 2 ≤
i ≤ k, corresponding to all S[j] ∈ S`, we have already computed M+[j′, 1], M+[j′, 2], . . . ,

M+[j′, k] and L+[j′, 1], L+[j′, 2], . . . , L+[j′, k], as well as M−[j′, 1], M−[j′, 2], . . . , M−[j′, k]
and L−[j′, 1], L−[j′, 2], . . . , L−[j′, k], for every S[j′] ∈ S`′ such that `′ < `.

We start with computing the values M+[·, i], L+[·, i], M−[·, i] and L−[·, i], for 2 ≤ i ≤ k,
assuming that the predecessor S[j′] of S[j] in its corresponding rollercoaster belongs to S`−d,
for some 1 ≤ d ≤ 4. In such case the longest rollercoaster ending at S[j′] has been already
correctly determined and the computation is quite straightforward. If S[j′] also belongs to
S`, we must be more careful to guarantee that the longest rollercoaster ending at S[j′] is
already known. We proceed in iterations. In the tth iteration, we guarantee to compute the
values such that at most t runs of the corresponding rollercoaster contain elements from S`.
By Proposition 4, four iterations are enough. In a single iteration, we start with computing

STACS 2019

30:8 Fast and Longest Rollercoasters

the initial values M+[·, 1], L+[·, 1], M−[·, 1] and L−[·, 1] corresponding to S[j] being the first
element of its run. These values can be simply copied from the already known M−[·, k],
L−[·, k], M+[·, k] and L+[·, k] corresponding to S[j] being the last element of a rollercoaster
with less than t runs containing elements from S` (or set to 1 corresponding to S[j] being the
only element in the rollercoaster). This is correct because a (k, 1)+-rollercoaster is actually
either a (k, k)−-rollercoaster or a sequence consisting of a single element. Then, we calculate
the values M+[·, i], L+[·, i], M−[·, i] and L−[·, i], for 2 ≤ i < k, such that the predecessor
S[j′] ∈ S` belongs to the same run as S[j]. By performing the calculation for i = 2, 3 . . . , k−1
in this order we guarantee that the longest rollercoaster ending at the predecessor S[j′] ∈ S`

is already known for all S[j] ∈ S`, but the computation is still not completely trivial and
requires a different approach depending on whether S` was decomposed into at most k

increasing, respectively decreasing, subsequences. Finally, we extend this to i = k.

M+[j, i] belongs to S`−d for some 1 ≤ d ≤ 4. We process S`−d to identify some
candidates, denoted Md

+[j, i] and Ld
+[j, i], for M+[j, i] and L+[j, i], respectively, for every

S[j] ∈ S`. The idea is to compute these candidates in the order in which the elements S[j]
occur on the sorted list P`. So, let us consider P` and P`−d. For each element S[j] in the
current part we want to identify a longest (k, i− 1)+-rollercoaster ending in S`−d with an
element less than S[j]. Thus, as P`−d is increasing, for every element of the current part we
need to consider all elements in a prefix of P`−d. Also, if S[j′] is to the right of S[j] in P`,
that is, S[j′] ≥ S[j], then the prefix of P`−d that we need to consider to compute Md

+[j′, i]
is at least as long as the prefix that we need to consider to compute Md

+[j, i]. Therefore,
we can use two pointers to sweep through P` and P`−d from left to right, and obtain the
information needed to compute Md

+[j, i] and Ld
+[j, i], for every S[j] ∈ S`. At the beginning

the pointers point to the first element of P` and P`−d, respectively. Say that the current
element in P` and P`−d is S[j] and S[h], respectively (we update indices j and h along with
the pointers). We keep moving forward the pointer corresponding to S[h] until we find an
element S[h] > S[j]. Then we set Md

+[j, i] = h′ and Ld
+[j, i] = L+[h′, i] + 1, where S[h′] is

an element occurring earlier than S[h] in P`−d with the largest value of L+[h′, i− 1]. The
element S[h′] is maintained as we move from left to right in P`−d. Then we proceed to the
next element in P`. Overall, computing candidates Md

+[j, i] and Ld
+[j, i], for every S[j] ∈ S`,

takes O(|S`−d|+ |S`|) time.

M+[j, i] belongs to S` decomposed into k increasing subsequences. Recall that we
have already computed M+[j′, i′] and L+[j′, i′] for every i′ < i and S[j′] ∈ S`, and the goal
is to identify candidates, denoted M ′

+[j, i] and L′+[j, i], for M+[j, i] and L+[j, i], respectively,
for every S[j] ∈ S`. Consider the decomposition of S` into k increasing subsequences
I1, I2, . . . , Ik. The elements of every sequence are increasing w.r.t. their value and w.r.t their
position in S. Consider an element S[j] ∈ Ia and 1 ≤ b ≤ k (possibly a = b). The elements
of Ib that can be the predecessor of S[j] in a (k, i)+-rollercoaster (that is, possible candidates
for M+[j, i]) are both less w.r.t. value and w.r.t. position in S. Thus, these elements form a
prefix of Ib, and for every S[j] ∈ Ia and 1 ≤ b ≤ k we want to maximise L+[h′, i] over all
S[h′] in such a prefix. As in the previous case, we can use two pointers to sweep through
Ia and Ib and compute, for every S[j] ∈ Ia, the element S[h′] ∈ Ib that could precede S[j]
in a (k, i)+-rollercoaster with the largest value of L+[h′, i− 1]. Finally, we set M ′

+[j, i] and
L′+[j, i] to correspond to the largest such value among all 1 ≤ b ≤ k. Overall, computing the
candidates M ′

+[j, i] and L′+[j, i], for every S[j] ∈ S`, takes O(k|S`|) time.

P. Gawrychowski, F. Manea, and R. Serafin 30:9

M+[j, i] belongs to S` decomposed into k decreasing subsequences. This is the most
complicated case. Recall that the decomposition into k decreasing subsequences D1, D2, . . . ,

Dk was obtained with Algorithm 1. In more detail, Da consists of elements assigned to R[a]
throughout the execution of the algorithm. Thus, if S[j] ∈ Da then the predecessor of S[j]
in a sought longest (k, i)+-rollercoaster, denoted S[j′], must belong to Db for some 1 ≤ b < a.
Indeed, Algorithm 1 first processes S[j′] and then S[j], so if S[j′] ∈ Db then R[b] ≤ S[j′]
when processing S[j] and consequently S[j′] < S[j] implies that S[j] is assigned to R[a] with
a > b. So, we first compute the candidates M ′

+[j, i] and L′+[j, i] for every S[j] ∈ D1, then
for every S[j] ∈ D2, and so on. That is, consider a decreasing subsequence Da and suppose
that we have already computed the desired result for all elements in D1, D2, . . . , Da−1. Note
that at this point we have already computed, for every S[j] ∈ D1 ∪ . . . ∪Da−1, the values of
Md

+[j, i] and Ld
+[j, i], for 1 ≤ d ≤ 4, as well as the values M ′

+[j, i] and L′+[j, i] corresponding
to the current iteration. Thus, we are already able to set M+[j, i] and L+[j, i] by choosing
the option that maximises the length of the corresponding (k, i)+-rollercoaster, which is
important when extending this case to i = k.

Consider an element S[j] ∈ Da and 1 ≤ b < a. The elements of Db that can be the
predecessor of S[j] in a (k, i)+-rollercoaster (that is, possible candidates for M+[j, i]) are both
less w.r.t. value and w.r.t. position in S, similarly as in the previous case. The difference
is that now these elements form contiguous subsequence X of Db that is not necessarily a
prefix. The first element of X can be found by searching for the first element with sufficiently
small value, while its last element can be found by searching the last element with sufficiently
small position (note that X might be empty). Let S[j′] be the next element after S[j] in Da,
and Y be its corresponding contiguous subsequence of Db consisting of possible predecessors
in a (k, i)+-rollercoaster. Clearly, S[j] > S[j′] while j < j′. Thus, the first element of Y is
either the same as the first element of X or occurs after the first element of X in Da, while
the last element of Y is either the same as the last element of X or occurs after the last
element of X in Da (assuming that both X and Y are non-empty). Thus, we sweep through
Da while maintaining the current contiguous subsequence X of Db corresponding to the
possible predecessors of the current S[j] ∈ Da. This requires the following tool.

I Lemma 6 ([11]). There is a data structure that maintains a list of elements under the
following operations: pop an element from the front, push an element in the back, and return
the maximum element in the current list, each in O(1) time.

When processing the current element S[j] ∈ Da we maintain the first element S[f] ∈ Db

such that S[f] < S[j] and the last element S[`] ∈ Db such that ` < j. Then X consists of
all elements between S[f] and S[`] in Db (inclusive), and is maintained in a structure from
Lemma 6 storing the lengths of their corresponding (k, i)+-rollercoaster, that is, the already
known value of L+[·, i− 1]. This allows us to extract the element S[j′] ∈ X with the largest
value of L+[j′, i− 1], and set M ′

+[j, i] = j′ and L′+[j, i] = L+[j′, i− 1] + 1 in constant time,
while updating f and ` takes amortised constant time. Overall, computing the candidates
M ′

+[j, i] and L′+[j, i], for every S[j] ∈ S`, takes O(k|S`|) time.

Case i = k. To compute M+[j, k] and L+[j, k], we first use exactly the same approach as
before for i = k, so consider the values of M+[·, k − 1] and L+[·, k − 1]. But this only allows
us to compute the length of a longest (k, k)+-rollercoaster with the last run of length exactly
k. To extend this to arbitrary (k, k)+-rollercoasters with the last run of length greater than k

we additionally run the same algorithm but instead of looking at M+[·, k− 1] and L+[·, k− 1]
we use M+[·, k] and L+[·, k], including the values already computed in this extra step in the

STACS 2019

30:10 Fast and Longest Rollercoasters

third case. The reason why this works is that, due to the order in which we consider the
elements of S`, at the moment when we compute the length of a longest (k, k)+-rollercoaster
ending with S[j], and which may have more than k elements in the final run, we have already
computed the length of a longest (k, k)+-rollercoaster ending with any element S[j′] which
may be a predecessor of S[j] on the respective (k, k)+-rollercoaster.

Conclusion. With these final remarks, our algorithm is completely described. It only remains
to find the element S[j] for which max{L−[j, k], L+[j, k]} is maximum. The correctness
follows from the comments made throughout its description. To compute the complexity, it
is enough to note that each part S` of the partition of S is processed in O(k|S`|) time, for
each 2 ≤ i ≤ k. Adding this up, we get that the total complexity of our algorithm is O(nk2).

I Theorem 7. For every sequence S[1 : n] and k ≥ 3, the length of a longest k-rollercoaster
in S can be found in O(nk2)-time.

4 Computing a Longest k-Rollercoaster in O(n log2 n)-Time

Before we describe our algorithm, we introduce two preliminary procedures. Firstly, we
introduce the definition of an anti-Monge matrix and the algorithm for finding the maximum
in every column of such a matrix. Secondly, we describe the algorithm for finding LIS in
contiguous subsequences of the input sequence. Finally, we describe the algorithm computing
a longest k-rollercoaster in this sequence, using the previously developed tools as black boxes.

Monge matrices. Let A be an n× n matrix, and A[i, j] denote its element in the ith row
from the top and the jth column from the left. A is Monge (respectively, anti-Monge)
if, for every 1 ≤ i < j ≤ n and 1 ≤ k < ` ≤ n, the Monge equality holds, namely
A[i, k] + A[j, `] ≤ A[i, `] + A[j, k] (respectively, A[i, k] + A[j, `] ≥ A[i, `] + A[j, k]). An n× n

falling staircase anti-Monge matrix is a matrix with blanks such that for every blank all
elements below and to the left are blanks, and the anti-Monge inequality holds whenever
the four concerned elements are non-blank. Similarly, an n× n reverse falling staircase anti-
Monge matrix is a matrix with blanks such that for every blank all elements above and to the
right are blanks, and the anti-Monge inequality holds whenever the four concerned elements
are non-blank. Finally, an n× n matrix A is totally monotone if, for every 1 ≤ i < j ≤ n

and 1 ≤ k < ` ≤ n, A[i, k] ≤ A[i, `] implies A[j, k] ≤ A[j, `].

0 1 2 2 2
-1 0 1 1 2
-2 -1 0 1 2
-3 -2 -1 0 1
-4 -3 -2 -1 0

4
3 2
2 1
4 4 2 6

1 2 2 2
1 2
1 2

1

Figure 3 Anti-Monge matrix, reverse falling staircase anti-Monge matrix, and falling staircase
anti-Monge matrix.

Let us now recall some basic facts regarding Monge matrices.

I Observation 8. Adding the same value to every element in a row (or a column) of an
anti-Monge matrix results in an anti-Monge matrix.

I Observation 9. To check if an array is anti-Monge it is sufficient to check if every
contiguous 2× 2 submatrix is anti-Monge.

P. Gawrychowski, F. Manea, and R. Serafin 30:11

The following lemma follows from the well-known SMAWK algorithm [2].

I Lemma 10 (Lemma 3.3 in Aggarwal et al. [1]). All row maxima in a reverse falling staircase
totally monotone matrix can be found in O(n) time.

By transposing the matrix and observing that being anti-Monge implies being totally
monotone we obtain the following.

I Corollary 11. All column maxima in a falling staircase anti-Monge matrix can be found
in O(n) time.

LIS-in-range queries. Let S[1 : n] be the input sequence. Define M as an (n + 1)× (n + 1)
matrix with 0-indexed rows and columns, such that M [i, j] is the length of LIS in S[i + 1 : j]
for i < j and M [i, j] = j − i otherwise (the anti-Monge matrix in Figure 3 is such a matrix
for the sequence (3, 4, 1, 2)). As hinted by our example, this matrix turns out to have a rather
special structure as observed by Tiskin [20]. We describe this structure in the following.

Let S′ be the sequence obtained by sorting S (recall that S consists of distinct elements),
and observe that LIS of S is the same as a longest common sequence (LCS, for short) of S

and S′. Thus, we can think that M [i, j] is LCS of S′ and S[i + 1 : j]. As such, the following
result can be shown (see [20] and the references therein).

I Lemma 12. M is anti-Monge.

Our algorithm needs to access the elements of M . Since the matrix contains (n + 1)2

elements, it is too large to be explicitly stored in memory. Fortunately, Tiskin also showed
how to create in O(n log2 n) time an O(n)-space implicit representation of M that allows us
to obtain any of its elements in O(log n) time [20]. Before we present the internals of this
representation, we need to introduce some additional definitions illustrated in Figure 4.

I Definition 13. Let A be any n×n matrix. Its distribution matrix AΣ is an (n+1)× (n+1)
matrix defined by AΣ[x, y] =

∑
i≥x,j<y A[i, j], for every 1 ≤ x ≤ n + 1, 1 ≤ y ≤ n + 1.

I Definition 14. A permutation matrix is a square matrix that has exactly one 1 in every
row and column, and the remaining elements are equal to 0.

0 1 0
1 0 0
0 0 1

0 1 2 3
0 1 1 2
0 0 0 1
0 0 0 0

Figure 4 A permutation matrix A and its distribution matrix AΣ.

Now, we can provide the final ingredients of the construction. For two strings w1 and
w2 of length d, Tiskin defines in [20] a (2d + 1) × (2d + 1) matrix L in the following way.
Let w′2 be the string equal to ?dw2?d, whose positions are indexed from −(d− 1) to 2d. The
rows of L are indexed from −d to d, while the columns of L are indexed from 0 to 2d. The
elements of L are defined by L[i, j] = LCS(w1, w′2[i + 1 : j]) if j > i, and L[i, j] = j − i

otherwise. In this definition, it is assumed that ? matches any character. If w2 is the input
sequence S and w1 is S′ then, for 0 ≤ i, j ≤ n we have L[i, j] = M [i + 1, j + 1]. Tiskin proved
(Theorem 4.10 in [20]) that there exists 2d× 2d permutation matrix P such that L[i, j] =
j − i− P Σ[i, j]. Furthermore, he provided an O(n log2 n)-time algorithm that finds all the

STACS 2019

30:12 Fast and Longest Rollercoasters

non-zero entries of P (Algorithm 8.2 in [20]). Having all the non-zero entries of P we can
apply a dominance counting structure of Chazelle [7] that can be constructed in O(n log n)
time, uses O(n) space, and calculates P Σ[i, j] and hence also M [i + 1, j + 1] in O(log n) time.
Summarising, in O(n log2 n) time we obtain a structure that returns any element of M in
O(log n) time. We similarly obtain a matrix storing the length of LDS of every S[i + 1 : j].

Description of the algorithm. Let S[1 : n] be the input sequence. For every 1 ≤ x ≤ n,
let res[x] be the length of a longest k-rollercoaster in S[1 : x], and inc[x] (respectively, dec[x])
be the length of a longest k-rollercoaster in S[1 : x] with the last run increasing (respectively,
decreasing). Note that we do not require that these k-rollercoasters contain S[x]. Then,
res[x] = max{dec[x], inc[x]}, for 1 ≤ x ≤ n. Firstly, we introduce two structural lemmas.

I Lemma 15. Let A be a k-rollercoaster in S[1 : i] with the last run decreasing, and r be an
increasing subsequence in S[i : n] such that |r| ≥ k. Then there exists a k-rollercoaster in
S[1 : n] of length at least |A|+ |r| − 1 with the last run increasing.

Proof. Let A′ be the sequence consisting of all elements from both A and r. Recall that a
sequence is a k-rollercoaster if every run has length at least k. In order to show that A′ is a
k-rollercoaster with last run increasing we need to consider three cases: the first element of r

is the last element of A, the first element of r is greater than the last element of A, and the
first element of r is less than the last element of A.

In the first case, all runs in A′ but the last are the same as in A, and the last run is equal
to r. Since A is a k-rollercoaster and |r| ≥ k we conclude that A′ is a k-rollercoaster. A and
r have one common element, so |A′| = |A|+ |r| − 1.

In the second case, all runs in A′ but the last are also the same as in A, and the last run
consists of the last element of A and r. Again we conclude that A′ is a k-rollercoaster. Since
A and r have no common elements, |A′| = |A|+ |r|.

In the third case, all runs in A′ but the last two are the same as in A. The second-to-last
run in A′ consist of the last run of A and the first element of r, and the last run in A′ is r.
Hence, A′ is a k-rollercoaster. Since A and r have no common elements, |A′| = |A|+ |r|. J

I Lemma 16. Consider a longest k-rollercoaster in S[1 : n] with the last run increasing
(respectively, decreasing), and let r be its last run with the first element S[i]. Then r is a
longest increasing (respectively, decreasing) subsequence in S[i : n].

Proof. By contradiction. Let A be a longest k-rollercoaster from the statement of the lemma,
and suppose that there exists a longer increasing sequence r′ in S[i : n]. Let A′ be the prefix
of A ending at S[i]. Observe that |A′| = |A| − |r| + 1. Then by Lemma 15 there exists a
k-rollercoaster in S of length at least |A′|+ |r′| − 1 = |A| − |r|+ |r′| > |A|. J

The above lemmas allow us to obtain the formula for calculating the arrays inc and dec.
Recall that M [i, j] is the length of LIS in S[i + 1 : j]. Let M ′ be the matrix obtained from M

by replacing all elements less than k by −∞, and let Z(j, j′) be the set of indices j ≤ i ≤ j′

such that length of LIS in S[i : j′] is at least k (or, in other words, M ′[i− 1, j′] 6= −∞).

I Proposition 17. For every 1 ≤ x ≤ n, the following holds:

inc′[x] = max{dec[i] + M ′[i− 1, x]− 1 : i ∈ Z(1, x)}, inc[x] = max{inc′[x], M ′[0, x]}.

If Z(1, x) is empty then we set inc′[x] = 0.

P. Gawrychowski, F. Manea, and R. Serafin 30:13

Proof. By Lemma 15 we obtain that for every i ∈ Z(1, x) there exists a k-rollercoaster
in S[1 : x] with the last run increasing of length at least dec[i] + M ′[i − 1, x] − 1. We
conclude that inc′[x] is less or equal to the length of a longest k-rollercoaster with the last
run increasing in S[1 : x]. Observe that M ′[0, x] corresponds to an increasing run of length
at least k or is equal to −∞. We obtain that inc[x] is less or equal than the length of a
longest k-rollercoaster with the last run increasing in S[1 : x].

For the converse, consider a k-rollercoaster A with the last run increasing in S[1 : x]. If A

consists of just a single run then its length is M ′[0, x]. Otherwise, let S[i] be the first element
in the last run of A. Then by Lemma 16 the length of the last run is equal to M ′[i− 1, x]
and the length of A is dec[i] + M ′[i− 1, x]− 1. Overall, the length of A is at most inc[x]. J

Proposition 17 cannot be applied directly if we aim to achieve the announced O(n log2 n)
time complexity, and we need to introduce some auxiliary definitions. For every 1 ≤ d ≤ x

we define incd[x] as follows:

inc′d[x] = max{dec[i] + M ′[i− 1, x]− 1 : i ∈ Z(1, d− 1)}, incd[x] = max{inc′d[x], M ′[0, x]}.

If Z(1, d− 1) is empty then we set inc′d[x] = 0. In other words, incd[x] is equal to the length
of a longest k-rollercoaster in S[1 : x] with the last run increasing and starting at an element
S[i] with i < d or LIS of S[1 : n] of length at least k. Thus, inc1[x] is equal to either 0 or the
length of a LIS in S[1 : x]. We similarly define decd[x].

I Observation 18. For every j > i− k + 1, incj [i] = inc[i].

We describe a function Compute that receives a contiguous subsequence S[i : j] together
with the previously calculated arrays inci[i : j] and deci[i : j], and returns the arrays inc[i : j]
and dec[i : j]. To calculate the length of a longest k-rollercoaster in S[1 : n] we invoke the
function with the whole S[1 : n] and the arrays inc1[1 : n], dec1[1 : n] as arguments, and
return the maximum over the two resulting arrays. Note that inc1[1 : n] and dec1[1 : n] can
be calculated in O(n log n) time using Algorithm 1.

Let m =
⌈

i+j
2
⌉
. The main idea of Compute is to call the function recursively for the left

half to calculate inc[i : m− 1] and dec[i : m− 1]. The next step is to calculate incm[m : j]
and decm[m : j] using tools from the previous paragraphs (as described below). Finally, we
recursively calculate inc[m : j] and dec[m : j]. Concatenating the results from both recursive
calls gives us the desired result. This is summarised in Algorithm 3.

Algorithm 3 Computing the length of a longest k-rollercoaster.
1: procedure Compute(k, S[i : j], inci[i : j], deci[i : j])
2: if j − i + 2 ≤ k then
3: {inc[i : j], dec[i : j]} ← {inci[i : j], deci[i : j]}
4: return {inc[i : j], dec[i : j]}
5: m←

⌈
i+j
2
⌉

6: {inc[i : m−1], dec[i : m−1]} ← Compute(k, S[i : m−1], inci[i : m−1], deci[i : m−1])
7: Compute incm[m : j] and decm[m : j]
8: {inc[m : j], dec[m : j]} ← Compute(k, S[m : j], incm[m : j], decm[m : j])
9: return {inc[i : j], dec[i : j]}

STACS 2019

30:14 Fast and Longest Rollercoasters

Computing incm[m : j] and decm[m : j]. We only describe how to calculate incm[m : j],
as decm[m : j] can be computed by a similar approach. Recall the previously introduced
matrix M ′, obtained by replacing values less than k by −∞ in M . Let Ainc be the (m− i)×
(j + 1 −m) matrix with rows indexed from i to m − 1 and columns indexed from m to j

satisfying:

Ainc[x, y] =
{

dec[x] + M ′[x− 1, y]− 1 when M ′[x− 1, y] 6= −∞,

blank otherwise.

Since we are able to retrieve any element of M ′ in O(log n) time using LIS-in-range queries,
and the value of dec[x], for every i ≤ x ≤ m− 1, is already available, each element of Ainc
can be calculated in O(log n) time. Furthermore, we have the following property.

I Proposition 19. A is a falling staircase anti-Monge matrix.

Proof. By Lemma 12 M is an anti-Monge matrix. By Observation 8 this is still the case if
we add the same value to all elements in the same row.

To prove that A is a falling staircase matrix consider a non-blank element A[i, j]. Then
M [i, j] ≥ k. But this implies M [i− 1, j] ≥ k and M [i, j + 1] ≥ k (as long as i > 1 and j < n),
so all elements above and to the right are also non-blank as required. J

I Proposition 20. For every m ≤ ` ≤ j, incm[`] is equal to either inci[`] or the maximum in
the `th column of A.

Proof. For every m ≤ ` ≤ j, incm[`] is equal to either inci[`] or max{dec[j] + M ′[j−1, `]−1 :
j ∈ Z(i, m− 1)}. However, the latter is exactly the maximum in the `th column of A. J

I Lemma 21. We can compute incm[m : j] and decm[m : j] in O((j − i + 1) log n) time.

Proof. By Proposition 20 computing incm[m : j] reduces to finding all the column maxima
in A. Since A is a falling staircase anti-Monge matrix, we can use the algorithm from
Corollary 11. Access to any element of A requires O(log n) time, so in total we obtain
O((j − i + 1) log n) time complexity. J

We can now state with the main result of this section.

I Theorem 22. For every sequence S[1 : n] and k ≥ 3, the length of a longest k-rollercoaster
in S can be found in O(n log2 n) time.

Proof. The algorithm needs O(n log2 n) preprocessing time to construct the LIS-in-range
(and LDS-in-range) structure. We compute inc1[1 : n] and dec1[1 : n] in O(n log n) time using
Algorithm 1. Then, we call the recursive function Compute. By Lemma 21 a call of the
function on S[i : j] takes O((j − i + 1) log n) time, so its running time is described by the
recurrence T (n) = 2T (n/2) + O(n log n) that solves to O(n log2 n). Thus, the overall time
complexity is O(n log2 n). J

5 Lower Bound

In the final section of our paper, we prove that any comparison-based algorithm computing
the length of a longest k-rollercoaster in an permutation S of {1, . . . , n}, for 4 ≤ k ≤ n

3 ,
performs at least Ω(n log k) comparisons. Let T be a binary comparison tree associated with
an algorithm that computes the result. The number of comparisons made in the algorithm is
equal to the height of T , and this is a lower bound on the execution time of the algorithm.

P. Gawrychowski, F. Manea, and R. Serafin 30:15

Let A be a partial ordering associated with a path from the root to some leaf of T .
Since the algorithm cannot distinguish between permutations following the same path, every
permutation consistent with A has to give the same result. Our approach is to first identify
a set U of permutations of {1, . . . , n} such that log |U | = Θ(n log k), and any ordering
associated with a leaf of T can be consistent with at most one permutation from U . Hence,
the number of leaves in T is at least |U |. Since the height of a binary tree is at least logarithm
of the number of leaves, this will show that the height of T , and hence also the number of
comparison performed by the algorithm, is at least Ω(log |U |) = Ω(n log k).

We first recall the set Γ of `n−2` permutations of {1, . . . , n} proposed by Fredman in [10],
where ` is a parameter. These permutations are essentially different inputs S for an algorithm
computing the length of LIS, each leading to a different leaf in the comparison tree.

So, essentially, we want to construct input sequences (x1, . . . , xn), with their elements
x1, . . . , xn chosen so that certain linear orderings of the xis are induced. To create a
permutation from Γ we partition (x1, . . . , xn) into ` subsequences P1, P2, . . . , P`. To simplify
the exposure, let `prefix of a sequence be its prefix of length `, while the `suffix is its suffix
of length `; the remaining n− 2` elements are called `middle of the sequence. We partition
(x1, . . . , xn) in the following way: the ith element of `prefix (that is, xi) and the ith element
of `suffix (xn−`+i) belong to Pi. Each element from `middle of the sequence belongs to an
arbitrary chosen part Pj . This gives us `n−2` different partitions. For a partition P1, . . . , P`,
we assign values from {1, . . . , n} to the input sequence in such a way, that the elements of
each part Pi form a decreasing sequence and, for 1 i ≤ `, each element of Pi is less than any
element of Pi+1 (see Figure 5). So, each such possible assignment gives us a permutation
from Γ. LIS of any permutation from Γ is of length ` because it contains one element from
each Pi. LDS of any permutation of Γ is no longer than n− 2` + 2 because it contains at
most one element from `prefix and at most one from `suffix.

I Proposition 23. Each permutation from Γ can be split into ` descending subsequences in
only one way. For two different permutations from Γ these ways of splitting are different.

P2

P1

P3

`prefix `middle `suffix

Figure 5 Example permutation P ∈ Γ for ` = 3 in a plane. In this figure, we have P =
(6, 13, 20, 5, 19, 12, 4, 11, 18, 17, 16, 15, 10, 3, 9, 8, 2, 1, 7, 14).

We now consider the algorithm computing the length of a longest k-rollercoaster. Using
the permutations from Γ we create a set U of kn k−3

3k−3 permutations of {1, . . . , n}, again
with the same principle behind: they should be input sequences which lead to different
paths in the comparison tree associated to an algorithm computing the length of a longest

STACS 2019

30:16 Fast and Longest Rollercoasters

k-rollercoaster. Observe that log (kn k−3
3k−3) = Θ(n log k), so this would imply the desired lower

bound of Θ(n log k) on the number of comparisons done by an algorithm to compute the
length of a longest k-rollercoaster.

A permutation from U is obtained as follows. Suppose that (3k − 3) divides n. Split
the sequence (x1, . . . , xn) into n

3k−3 blocks (contiguous subsequences) of size 3k − 3. We
will assign to the elements of the ith contiguous block (xi(3k−3)+1, . . . , x(i+1)(3k−3)) distinct
values from the set {i(3k − 3) + 1, . . . , (i + 1)(3k − 3)}, as follows. In every block, use one
of the permutations from Γ (with the parameter ` set to k) to values to the elements
xi(3k−3)+1, . . . , x(i+1)(3k−3) of that block, and then assign values to those elements according
to that ordering. In this way, we can create |Γ|

n
3k−3 = (kk−3)

n
3k−3 permutations of {1, . . . , n}.

Observe that in every block the length of a longest decreasing subsequence is less than
k. Since every block consists of strictly greater values than the previous ones, a longest
decreasing subsequence of every permutation from U is less than k. A longest increasing
subsequence of every element of Γ is equal to k, so a longest k-rollercoaster for every element
of U is equal to kn

3k−3 and consists only of longest increasing subsequences corresponding to
all the blocks glued one after the other. We can now show a result similar to Proposition 23.

I Proposition 24. Each permutation from U can be split into kn
3k−3 descending subsequence

in only one way. For two different permutations from U these ways of splitting are different.

Having constructed the set U , we can proceed with the lower bound. Let A be a partial
ordering associated with a path to some leaf of T (the comparison tree associated to the
algorithm computing the length of a longest k-rollercoaster). Since the algorithm cannot
distinguish between permutations following the same path, every permutation consistent
with A has to give the same result. We recall the following lemma.

I Lemma 25 (Lemma 3.6 in [10]). Let ≤ be a partial ordering defined on S. The maximum
length of LIS in S associated with any linear embedding of this ordering, is equal to the
minimum number of decreasing subsequences relative to ≤ into which S can be partitioned.

Now we can prove the following.

I Lemma 26. Let A be partial ordering associated with the path from the root to a leaf of T .
Only one permutation from U can be consistent with A.

Proof. Consider S ∈ U that is consistent with A, and let D = kn
3k−3 be the length of its LIS.

Now let m be the minimum number of decreasing subsequences relative to the results of
the comparisons made on the path A into which S can be partitioned. If m < d then S is
consistent with A, so we can partition S into the same decreasing subsequences, but S cannot
be divided into less than than d decreasing subsequences, a contradiction. If m > d then by
Lemma 25 there exists a permutation S′ consistent with A with the length of LIS greater
than d. S′ follows the same path as S in the comparison tree, but has a longer k-rollercoaster
(consisting only of LIS of S′) than S, a contradiction. Thus, m = d for any such S.

Consider two S1, S2 ∈ U consistent with A. By Proposition 24, the only partition of S1
into d decreasing sequences is different from the only such partition of S2 (into d decreasing
sequences), so A can be consistent with only one permutation, a contradiction. J

Thus, each permutation from U corresponds to a distinct leaf of T , making the depth of
T at least log |U | = Θ(n log k) as required and proving the following theorem.

I Theorem 27. For every k satisfying 4 ≤ k ≤ n
3 , any comparison-based algorithm that

computes the length of a longest k-rollercoaster in a permutation of {1, . . . , n} performs at
least Ω(n log k) comparisons.

P. Gawrychowski, F. Manea, and R. Serafin 30:17

References
1 Alok Aggarwal and Maria M. Klawe. Applications of generalized matrix searching to geometric

algorithms. Discrete Applied Mathematics, 27(1-2):3–23, 1990.
2 Alok Aggarwal, Maria M. Klawe, Shlomo Moran, Peter W. Shor, and Robert E. Wilber.

Geometric Applications of a Matrix-Searching Algorithm. Algorithmica, 2:195–208, 1987.
3 David Aldous and Persi Diaconis. Longest Increasing Subsequences: From Patience Sorting to

the Baik-Deift-Johansson Theorem. Bulletin of the American Mathematical Society, 36:413–432,
1999.

4 Sergei Bespamyatnikh and Michael Segal. Enumerating longest increasing subsequences and
patience sorting. Information Processing Letters, 76(1):7–11, 2000.

5 Therese C. Biedl, Ahmad Biniaz, Robert Cummings, Anna Lubiw, Florin Manea, Dirk
Nowotka, and Jeffrey Shallit. Rollercoasters and Caterpillars. In ICALP, volume 107 of LIPIcs,
pages 18:1–18:15. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018.

6 Therese C. Biedl, Timothy M. Chan, Martin Derka, Kshitij Jain, and Anna Lubiw. Improved
Bounds for Drawing Trees on Fixed Points with L-Shaped Edges. In Graph Drawing and
Network Visualization - 25th International Symposium, GD 2017, Revised Selected Papers,
volume 10692 of Lecture Notes in Computer Science, pages 305–317. Springer, 2017.

7 Bernard Chazelle. A Functional Approach to Data Structures and Its Use in Multidimensional
Searching. SIAM J. Comput., 17(3):427–462, 1988.

8 Maxime Crochemore and Ely Porat. Fast Computation of a Longest Increasing Subsequence
and Application. Information and Computation, 208(9):1054–1059, 2010.

9 Paul Erdős and George Szekeres. A combinatorial problem in geometry. Compositio Mathem-
atica, 2:463–470, 1935.

10 Michael L. Fredman. On computing the length of longest increasing subsequences. Discrete
Mathematics, 11(1):29–35, 1975.

11 Hania Gajewska and Robert Endre Tarjan. Deques with Heap Order. Information Processing
Letters, 22(4):197–200, 1986.

12 P. Gawrychowski, F. Manea, and R. Serafin. Fast and Longest Rollercoasters. arXiv, 2018.
arXiv:1810.07422.

13 James W. Hunt and Thomas G. Szymanski. A Fast Algorithm for Computing Longest Common
Subsequences. Communications of the ACM, 20(5):350–353, 1977.

14 Sergey Kitaev. Patterns in Permutations and Words. Springer, 2011.
15 S. Linton, N. Ruškuc, and V. Vatter, editors. Permutation Patterns. London Mathematical

Society Lecture Note Series, vol. 376, Cambridge, 2010.
16 Dan Romik. The Surprising Mathematics of Longest Increasing Subsequences. Cambridge,

2015.
17 Craige Schensted. Longest increasing and decreasing subsequences. Canadian Journal of

Mathematics, 13:179–191, 1961.
18 J. Michael Steele. Variations on the monotone subsequence theme of Erdős and Szekeres. In

David Aldous, Persi Diaconis, Joel Spencer, and J. Michael Steele, editors, Discrete Probability
and Algorithms, pages 111–131. Springer New York, 1995.

19 Xiaoming Sun and David P. Woodruff. The Communication and Streaming Complexity
of Computing the Longest Common and Increasing Subsequences. In Proceedings of the
Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’07, pages 336–345.
Society for Industrial and Applied Mathematics, 2007.

20 Alexander Tiskin. Fast Distance Multiplication of Unit-Monge Matrices. Algorithmica,
71(4):859–888, 2015.

STACS 2019

http://arxiv.org/abs/1810.07422

Wealth Inequality and the Price of Anarchy
Kurtuluş Gemici
Department of Sociology, National University of Singapore, Singapore
kgemici@nus.edu.sg

Elias Koutsoupias
Department of Computer Science, University of Oxford, United Kingdom
elias@cs.ox.ac.uk

Barnabé Monnot
Engineering Systems & Design, Singapore University of Technology and Design, Singapore
monnot_barnabe@mymail.sutd.edu.sg

Christos H. Papadimitriou
Department of Computer Science, Columbia University, United States of America
christos@cs.columbia.edu

Georgios Piliouras
Engineering Systems & Design, Singapore University of Technology and Design, Singapore
georgios@sutd.edu.sg

Abstract
The price of anarchy quantifies the degradation of social welfare in games due to the lack of a
centralized authority that can enforce the optimal outcome. It is known that, in certain games, such
effects can be ameliorated via tolls or taxes. This leads to a natural, but largely unexplored, question:
what is the effect of such transfers on social inequality? We study this question in nonatomic
congestion games, arguably one of the most thoroughly studied settings from the perspective of
the price of anarchy. We introduce a new model that incorporates the income distribution of the
population and captures the income elasticity of travel time (i.e., how does loss of time translate to
lost income). This allows us to argue about the equality of wealth distribution both before and after
employing a mechanism. We establish that, under reasonable assumptions, tolls always increase
inequality in symmetric congestion games under any reasonable metric of inequality such as the Gini
index. We introduce the inequity index, a novel measure for quantifying the magnitude of these
forces towards a more unbalanced wealth distribution and show it has good normative properties
(robustness to scaling of income, no-regret learning). We analyze inequity both in theoretical settings
(Pigou’s network under various wealth distributions) as well as experimental ones (based on a large
scale field experiment in Singapore). Finally, we provide an algorithm for computing optimal tolls
for any point of the trade-off of relative importance of efficiency and equality. We conclude with a
discussion of our findings in the context of theories of justice as developed in contemporary social
sciences and present several directions for future research.

2012 ACM Subject Classification Theory of computation → Algorithmic game theory

Keywords and phrases congestion games, inequality

Digital Object Identifier 10.4230/LIPIcs.STACS.2019.31

Acknowledgements Kurtuluş Gemici acknowledges NUS Strategic Research Grant (WBS: R-109-
000-183-646) awarded to Global Production Networks Centre (GPN@NUS). Elias Koutsoupias
acknowledges ERC Advanced Grant 321171 (ALGAME). Barnabé Monnot acknowledges the SUTD
Presidential Graduate Fellowship. Christos Papadimitriou acknowledges NSF grant 1408635 “Al-
gorithmic Explorations of Networks, Markets, Evolution, and the Brain”. Georgios Piliouras
acknowledges SUTD grant SRG ESD 2015 097, MOE AcRF Tier 2 Grant 2016-T2-1-170, NRF grant
NRF2016NCR-NCR002-028 and a NRF fellowship. Barnabé Monnot and Georgios Piliouras would
like to thank the other members of the National Science Experiment team at SUTD: Garvit Bansal,
Francisco Benita, Sarah Nadiawati, Hugh Tay Keng Liang, Nils Ole Tippenhauer, Bige Tunçer,

© Kurtuluş Gemici, Elias Koutsoupias, Barnabé Monnot, Christos H. Papadimitriou,
and Georgios Piliouras;
licensed under Creative Commons License CC-BY

36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019).
Editors: Rolf Niedermeier and Christophe Paul; Article No. 31; pp. 31:1–31:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kgemici@nus.edu.sg
mailto:elias@cs.ox.ac.uk
mailto:monnot_barnabe@mymail.sutd.edu.sg
mailto:christos@cs.columbia.edu
mailto:georgios@sutd.edu.sg
https://doi.org/10.4230/LIPIcs.STACS.2019.31
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

31:2 Wealth Inequality and the Price of Anarchy

Darshan Virupashka, Erik Wilhelm and Yuren Zhou. The National Science Experiment is supported
by the Singapore National Research Foundation (NRF), Grant RGNRF1402.

1 Introduction

Inequality in wealth and income have been rampant worldwide in the past four decades [32,39],
considered by many the scourge of modern societies. Economic analysis, on the other hand,
traditionally focuses on efficiency, that is to say, Pareto optimality of the allocation. Whether,
and to what extent, efficiency and equality are at loggerheads has been debated in economics,
and the verdict appears to depend on context and assumptions.

Modern societies also give rise to a plethora of strategic scenarios, in which the behavior
of one agent affects the others, and the outcome of which ultimately affects the agents’ overall
well-being. In game theory, we study the inefficiency of these strategic situations through
the so-called price of anarchy, the relative efficiency of the game’s Nash equilibria over the
social optimum [28]. For congestion games in particular, it is known that the price of anarchy
can be combatted through the introduction of tolls which enforce the optimal outcome as
equilibrium, see [15, 18] among an extensive literature. However, the effect that tolls may
have on the level of inequality in the society does not appear to have been addressed in the
literature.

The present paper is a first attempt to articulate and study this issue. We consider games
(here only congestion games) in which the agents’ utility and behavior depend explicitly on
their income or wealth, and study the effect the game’s equilibria have on inequality.

Example: Transportation in Singapore, seen as a congestion game with tolls, has a price
of anarchy that is close to one [29]. The main arteries are almost never clogged, and public
transportation is accessible and runs smoothly. This is the result of bold policy decisions:
car ownership in Singapore is significantly taxed, and dynamically adaptive tolls are in place.
Interestingly, transportation delays seem to be a decreasing function of income (see Section
7 on data). This is no accident: In this paper we show that there is an inherent tension
between efficiency and equality in the context of congestion games.

We are interested in the ways in which optimal (or more generally efficiency-enhancing)
mechanisms affect inequality. Inequality is measured in many ways, but perhaps most often
through what is known as the Gini coefficient (or Gini index). Informally (see Section 3
for the definition), the Gini coefficient of a distribution of income or wealth is twice the
area between the 45o line and the normalized convex cumulative wealth/income curve (see
Figure 1). That is, we compute the cumulative income/wealth Q(y) of the lowest y fraction
of the population for all 0 ≤ y ≤ 1, we normalize it so that Q(1) = 1, and then we integrate
y −Q(y) from 0 to 1. At total equality the Gini index is zero, while at total inequality (i.e.,
when the emperor owns everything) it is one. In 2015, the income Gini in OECD countries
ranged from the .20s (Northern Europe) to the .40s and .50s (USA and East Asia).

Our contributions. We study nonatomic congestion games with tolls, where we introduce
a new model that incorporates the wealth distribution of the population and captures the
income elasticity of travel time (i.e., how loss of time translates to lost income). This allows
us to argue about the equality of wealth distribution both before and after participating in
a mechanism (with or without tolls). The basics of our modeling are thus: We consider a

K. Gemici, E. Koutsoupias, B. Monnot, C.H. Papadimitriou, and G. Piliouras 31:3

continuum of agents, each agent of a type x > 0 standing for their income.1 We assume that
the distribution of types is known. Suppose these agents engage in a game Γ and that, at
equilibrium, type x receives a cost cx. This cost is expressed in the same units as income,
dollars, say; after incorporating the losses due to time spent in traffic in dollars as well as any
possible costs due to tolls/taxes. As a result, the agent’s total wealth becomes x′ = x− αcx,
where α is a small constant standing for the importance of the game under consideration to
an individual’s well-being. In Section 4 we establish a broad qualitative result, the Inequity
Theorem (Theorem 2), showing that tolls always increase inequality in symmetric congestion
games under the most classic inequality measure, the Gini coefficient. In fact, participating
in a toll-free symmetric congestion game has no impact on the Gini, whereas optimal tolls on
the other hand have a negative impact on the Gini. Theorem 6 broadly expands Theorem 2
to any inequality measure that satisfies four fundamental axioms: invariance to population
scaling, anonymity, invariance to income scaling and the transfer principle (see Section
3). These measures include, besides Gini, some of the most widely employed indices, such
as [40] or [3].

At a technical level, the proof of the Inequity Theorem combines game-theoretic properties
of congestion games with tolls and the axioms of inequality measures. In order to argue
that the Gini of the final income distribution is worse than that of the original, it suffices to
argue that the Lorenz curve of the original distribution (see Figure 1) dominates the latter.
Lorenz curve domination is established via the combination of Lemmas 3, 4, 5, implying
Theorem 2. In fact, Lorenz curve domination suffices to argue something stronger. Any
inequality measure satisfying the four axioms is also consistent with the Lorenz domination
order, yielding Theorem 6.

In Section 5 we introduce the inequity index, a novel measure for quantifying the magnitude
of these forces towards a more unbalanced wealth distribution. Let q be the initial income
distribution of the population of agents under consideration, let G(q) be its Gini coefficient,
and suppose that q̂ is the distribution of the income after each x becomes x− α · cx (that is,
after the game has been played). We are interested in the way the game affects the Gini
coefficient; we express this, informally, as the coefficient of α in G(q̂)−G(q), ignoring terms
that are o(α); in other words, we are interested in the derivative of G(q) with respect to α.
We call this quantity the inequity of the game. We show that from a theoretical perspective
it has attractive properties. Specifically it is robust to scaling of income (Theorem 9) and
it remains unaffected if instead of immediate equilibration we assume that all agents apply
regret-minimizing algorithms (Theorem 10).

We analyze inequity both in theoretical settings (Section 6) as well as experimental ones
(Section 7). Specifically, these effects become apparent already in the well-trodden Pigou’s
network [31]. This network has two parallel links, one with constant delay function 1, and
another with delay function x (that is, a delay proportional to the percentage of agents
that take this option). Its price of anarchy is 4

3 , and the inequity turns out to be zero. It
is well-known that the price of anarchy, in the case of equal incomes, can be rendered to
one by adding tolls, and it is not hard to see that the same can be done for any income
distribution [15] – but then the inequity becomes substantial. If tolls decrease, we have a
full-fledged trade-off between inequity and price of anarchy. In Theorem 11 we calculate the
precise price of anarchy to inequity trade-off of any variant of Pigou’s network with income
distributions of the form yβ .

1 Or wealth; we write “income” henceforth in this paper, but “wealth” would also be appropriate
everywhere.

STACS 2019

31:4 Wealth Inequality and the Price of Anarchy

In Section 7 we perform data analytics on a dataset capturing the routing behavior of
tens of thousands of Singaporean students. This dataset captures the movement of each
individual at a high frequency (one new datapoint per individual every 13 seconds) and
allows us to distinguish between different modes of transportation (walking, bus, train, car).
We can pinpoint each individual’s home location which allows us to compute estimates about
their wealth. Given the level of data granularity, we can control for different parameters
and identify a statistically significant increased commute time for the lower-income students,
which corroborates our theoretical analysis. Interestingly, the Singapore case also points
out some of the successful policies (e.g., polycentric urban development model) that can be
implemented to alleviate the trade-off between efficiency and equality. Finally, we provide an
algorithm for computing optimum tolls for any point of the trade-off of relative importance
of efficiency and equality for symmetric networks on parallel links. We also present inequity
results in asymmetric settings, which prompt several open questions. The full online text [22]
provides any missing supplementary material and analysis.

2 Related work

Price of anarchy was introduced in congestion games [28], leading to a long sequence of
influential papers in the area [13,16,20,37,38]. A similarly long line of research on tolls is
existing in the AGT community, starting with [15, 18]. Recently, [25] have found efficient
algorithms to compute tolls that minimize latency where not all edges can be tolled, putting
their work close to the current situation in many cities. [6] have shown that taxes depending
on the congestion level of a resource for weighted agents increase the efficiency of congestion
games with polynomial latency functions. [5] have proved that without knowing the latency
functions and using only tolls and an efficient number of queries to an oracle, target equilibrium
flows can be reached. The data analytics, experimental part of our paper shows, perhaps
unsurprisingly, that the use of public transportation plays a critical, but not well-understood,
role in the functioning of a traffic network. [19] introduced a model of congestion games with
buses, and hopefully more research will follow along these lines.

Given the proliferation of the usage of algorithms in all aspects of our lives (from suggesting
Airbnb hosts to identifying convicts eligible for early parole), the theoretical computer science
community has recently focused on understanding issues of fairness, equality and justice.
Surprisingly, the intersection of price of anarchy, i.e., efficiency in games, and fairness has
not been explored so far. On a related tangent, the issues of altruism and efficiency have
been tackled, e.g. by [9] and [10]. [11, 12] have recently used the Gini coefficient over
the probabilities of the agent winning probabilities as an inequality measure of different
mechanisms and design mechanisms with such good properties. Although syntactically
similar, these works do not model wealth distributions nor do they examine the differential
effects of mechanisms to equality, which is our focus.

We continue the line of work of [29] where price of anarchy in congestion games is studied
using field experiments with thousands of participants. In this paper, our data analytics
corroborate our theoretical insights and give rise to novel questions for future research.

3 Model Description

We describe a game-theoretic model where a continuum of agents participates in a traffic
congestion game with tolls. The total disutility for each agent depends both on their traffic-
induced latency as well as on the tolls, whose effects are experienced differentially based on
each agent’s income level.

K. Gemici, E. Koutsoupias, B. Monnot, C.H. Papadimitriou, and G. Piliouras 31:5

Congestion game. A symmetric congestion game with type-specific costs consists of a
finite set E of edges, and a finite subset of 2E called the set of paths P , common to all types.
We shall only deal with network congestion games, where the set of paths consists of all
possible paths between two nodes s and t in a graph with edge set E.

Income. We have a continuum of types which lie in [0, 1]. Type x has income q(x), where q
is the quantile function of the income of a population of agents – that is, |z : q(z) ≤ q(x)| = x,
where | · | is the Lebesgue measure. We shall further assume that q(0) > 0 and q is measurable
and nondecreasing. Typically, we will assume a continuum of types and a strictly increasing,
continuous q. In this case, if we treat income as random variable, then q expresses the inverse
of its cumulative distribution function.

Flow. A flow F : [0, 1] → P is a mapping from types to paths; we shall only need to
consider finitary flows, that is, flows F which divide [0, 1] into finitely many intervals, and
map the interiors of those intervals to one path in P ; that is, F is specified by a finite number
of reals a0 = 0 < a1 < a2 < · · · < ak = 1 such that F (b) = F (c) for all i and b, c ∈ (ai, ai+1]

Edge cost. Our main result, the Inequity Theorem, holds under general conditions on
the edge cost functions. For simplicity of exposition, we look at a specific case that has
natural properties and leave to the full online text [22] a discussion on more general results
for larger classes of edge cost functions. Each agent x using edge e experiences the edge cost
fe(q, z, τe), where q is the agent’s income, z is the level of congestion on edge e and τe is the
fixed toll paid by the agent.

We are interested in the following edge cost function:

fe(q, z, τe) = τe
q

+ `e(z)

The path cost for P is
∑
e∈P fe(q, z, τe).

There is an extensive discussion in the transportation literature of the true cost of
transportation to the traveler and the value of time, see [2, 8] for some of the most recent
papers, with dozens of references therein. This field has established and studied the income
elasticity of the value of (travel) time (informally, the precise nature of the formula τe

q

above) and validated and measured it through extensive surveys and other studies over
three decades. The upshot is that the cross-sectional elasticity (that is, the elasticity with
regressive corrections across causal parameters such as having children and living in the
capital) is constant across long periods of time, and that the precise relationship seems to be
τe
qβ

where β ≤ 1 is conventionally taken to be one, even though certain countries, such as the
UK, use value 0.8.

Agent cost. Let F be a flow. The congestion of this flow, cF , is a function mapping E
to the nonnegative reals, where cF (e) = |{x : e ∈ F (x)}|, where | · | denotes the Lebesgue
measure. The agent cost under flow F to an agent of type x is some function of its income
and path cost.

The model allows for some degree of flexibility when designing the overall cost of the
agents. We focus our attention to the following agent cost:

costF (x) = q(x) ·
∑

e∈F (x)

fe(q(x), cF (e), τe) (AC)

Edge costs are scaled by the income of the agent and thus the agent cost is given in the units
of the toll, i.e. money.

STACS 2019

31:6 Wealth Inequality and the Price of Anarchy

For fe(q, z, τe) = τe
q + `e(z), we have

costF (x) =
∑

e∈F (x)

τe + q(x) · `e(z) (CAN)

We call this agent cost function canonical and show further that it is a natural choice with
good properties (Section 5).

Nash equilibrium. We say that a flow F is a Nash equilibrium in our model if for all types
x and for all paths P ∈ P

costF (x) ≤ q(x) ·
∑
e∈P

fe(q(x), cF (e), τe) (NE)

that is, if no type x would be better off by deviating to another path P ∈ P.
In the following, we define q to be the income distribution of agents before playing the

game. With our definition of agent costs, one can study q0, the income distribution after
playing the game without tolls, where fe(q, z, τe) = `e(z). The move from q to q0 is defined
as the impact of travel, the variation that is due only to the presence of a game. When
tolls are levied, we have a second move, from q0 to q̂, defined as the impact of tolls. We
will be mostly concerned with the latter impact.

L(x)

Quantile x

A B

Figure 1 The Lorenz curve is plotted in blue. The green area is B =
∫ 1

0 L(t)dt. The Gini
coefficient is then G = 1− 2B = 2A.

Gini coefficient. The Gini coefficient [23] is a central measure of inequality.

I Definition 1. The Gini coefficient of income distribution q is given by

G(q) = 1− 2
∫ 1

0
L(t)dt

where L(t) is the Lorenz curve, or the fraction of total income held by individuals under and
at quantile x.

L(t) = 1
µ

∫ t

0
q(x)dy = 1

µ
Q(t) (LC)

for Q(t) =
∫ t

0 q(x)dx, the cumulative income up to quantile t. We show in Figure 1 the
relationship between the Lorenz curve and the Gini coefficient.

A Gini coefficient equal to zero corresponds to perfect equality (everyone has the same
income), whereas a Gini coefficient of one corresponds to maximal inequality (e.g., one person
has all the income). The Gini coefficient has several desirable properties such as:

Scale independence. The Gini coefficient does not change after rescaling incomes (e.g.
change of units/currency).

K. Gemici, E. Koutsoupias, B. Monnot, C.H. Papadimitriou, and G. Piliouras 31:7

Population independence. It does not depend on the size of the population.
Anonymity. It does not depend on the identity of the rich/poor individuals.
Transfer principle. If income (less than the difference2) is transferred from a rich
person to a poor person the resulting distribution is more equal (i.e., the Gini decreases).

Our motivating problem. We consider how Nash equilibrium flow F affects the incomes
of the population. In particular, we assume that the income of type x changes from q(x)
to q(x) − α · costF (x) for some (intuitively small) α > 0. We call the resulting income
distribution q̂(x). Notice that, in general, q̂(x) may be different from q(x) − α · costF (x),
since the cost of F may rearrange the order of types (recall that distributions such as q(x)
are assumed to be nondecreasing). As we shall see in the Inequity Theorem proof of Section
4, this turns out to never be the case and moreover the inequality increases as a result.

4 The Negative Impact of Tolls on Inequality

4.1 The Inequity theorem
Tolls can be used in congestion games so as to induce socially optimal flows (from the
perspective of total cost) as Nash equilibrium [15, 18]. We next prove a general theorem
showing that tolls always exacerbate societal inequality. So, in a sense to achieve optimality
from the perspective of social welfare we have to pay a hidden cost in terms of fairness.

I Theorem 2 (The Inequity Theorem). In any Nash equilibrium of any symmetric congestion
game with type-specific costs, any set of positive edge tolls τe increases the inequality of the
population. More specifically,

The impact of travel is zero: the Gini coefficient of the ex ante income distribution q is
equal to the Gini coefficient of the toll-free income distribution q0, G(q0) = G(q).
The impact of tolls is nonpositive: the Gini coefficient of the ex ante income distribution
is lower than (or equal to) the Gini coefficient of the ex post income distribution q̂ =
q − α · costF , or G(q̂) ≥ G(q) = G(q0).

Additionally, if the quantile distribution of income is increasing and edge cost functions are
decreasing in income, the Gini coefficient increases strictly.

Proof Sketch. First, we show that the impact of travel is null. In the toll-free version of the
game, the Nash equilibrium is the usual Wardrop equilibrium and all agents incur the same
cost C, regardless of their route choice. This implies that all agents lose the same share of
income exactly equal to α · C. Since the Gini coefficient and all inequality measures we will
be concerned with are scale invariant, the inequality is not affected by the impact of travel.

The proof of the impact of tolls is done in three steps. First, we show that if two income
distributions with equal means cross at one point, one has a higher Gini coefficient than
the other (Lemma 3). This is equivalent to the transfer principle, or Pigou-Dalton principle
of income inequality measures. Second, we show that when a distribution is obtained by
decreasing proportionally less the higher incomes than the lower incomes – in other words, a
regressive tax – then the resulting distribution has a higher Gini coefficient than the original
one, i.e., is more unequal (Lemma 4). Third, we show that under equilibrium in the game,
players with higher incomes have a lower path cost than players with lower incomes (Lemma
5). Finally, Theorem 2 is obtained as a corollary of the three lemmas.

2 If the income transfer is less than the difference of their incomes, the ordering of the wealth of the users
does not change.

STACS 2019

31:8 Wealth Inequality and the Price of Anarchy

I Lemma 3. Suppose q and q̂ are two income distributions (represented by their quantile
functions) of equal means, i.e., µ =

∫ 1
0 q(x)dx =

∫ 1
0 q̂(x)dx = µ̂. If there exists x∗ such that

q̂(x) ≤ q(x),∀x ≤ x∗, and q̂(x) ≥ q(x) otherwise, then G(q) ≤ G(q̂).

I Lemma 4. Suppose two income distributions (represented by their quantile functions) q
and q̂ are such that q̂(x) = β(x) · q(x) and 1 ≥ β(y) ≥ β(z) > 0 for y ≥ z3 then G(q) ≤ G(q̂).

I Lemma 5. Let 0 ≤ x ≤ y ≤ 1 and F be an equilibrium flow. If agent costs are given by
the path cost

∑
e∈F (x)

τe
q + `e(z) then costF (x) ≥ costF (y).

The resulting income distribution in the game is given by q̂(x) = q(x) · (1− α · costF̄ (x)).
At equilibrium costs decrease with income (Lemma 5). Thus, distribution q Lorenz-dominates
distribution q̂ (Lemma 3 and 4), i.e., the Lorenz curve of q is always above that of q̂. This
implies that the inequality in q̂ is greater than in q. J

Theorem 2 can actually be generalized. Lorenz domination, a partial order, is respected
by all inequality coefficients that satisfy the same four axioms as the Gini coefficient, yielding
the following more general version of the Inequity Theorem.

I Theorem 6. For any income inequality measure satisfying the axioms of invariance to
population scaling, anonymity, invariance to income scaling and the transfer principle, the
Inequity Theorem holds and inequality increases as tolls are levied on the players.

The remaining of the paper focuses on the case of the Gini coefficient.

4.2 Computing the efficiency-equality trade-off

In a parallel links network serving a population with a known income distribution, the routing
and tolls that optimize any desired trade-off between efficiency and equality can be computed
via dynamic programming.

4.2.1 The model

Because of the computational nature of this section, and for the sake of simplicity, we will
stick to a simplified, discrete model. Very few of these simplifications are crucial. We assume
a population whose income is presented in n quantiles q1, . . . , qn, where q1 stands for the
average income of the lowest 1

n of the population – if n were 100, these would be the income
percentiles.

We have K parallel links – we assume that K is fixed. Each link e has a delay function
fe(x) which we assume for simplicity to be piecewise constant with increments at values of x
that are multiples of 1

n (so that each link accommodates full quantiles), and that the delays
have integer values in the set [D], where D is the maximum delay. Evidently, the problem is
one of allocating each quantile to a link, and imposing appropriate tolls. It is easy to see
that at equilibrium each link will be assigned a contiguous set of quantiles.

3 I.e., q̂ is obtained from q by a transformation that reduces lower incomes relatively more than higher
incomes. Income order is preserved and µ̂ ≤ µ.

K. Gemici, E. Koutsoupias, B. Monnot, C.H. Papadimitriou, and G. Piliouras 31:9

4.2.2 The objective

We seek to optimize a trade-off between efficiency and equality, that is to say, a weighted sum
of total delay and the Gini coefficient resulting from this game, say of the form “minimize
total delay + λ times the Gini after the game,” where λ > 0 is the relative importance of
equality over efficiency. It is important to note that the Gini coefficient before the game is in
this case captured by (ignoring additive terms and a factor of −2

n)∑n
i=1(n+ 1− i)qi∑n

i=1 qi.

This is on account of the fact that, in the sum that approximates the double integral in
Equation (LC), the lowest quantile appears n times, the second lowest n− 1, etc.

After the game imputes a cost to the ith quantile, the Gini coefficient is captured by

·
∑n
i=1(n+ 1− i)(qi − δi)∑n

i=1(qi − δi)
,

where δi = qidi + τi is the cost of the equilibrium to the ith percentile, and di is the delay
and τi is the toll incurred by the ith quantile. Now, since it is reasonable to assume that
δi << qi, this quantity can be adequately represented by its numerator divided by the sum of
the qi’s4. Thus, omitting constant terms (it is important to recall that the qi’s are constant),
both additive and multiplicative, we conclude that what is minimized is a linear function
of the delays di and the tolls τi. Adding to them the total delay5, we conclude that the
objective is of the form

min
allocation of quantiles to links

n∑
i=1

(αidi + βiτi),

for some known positive parameters αi, βi.

4.2.3 The algorithm

The algorithm is dynamic programming; namely, we compute the quantity cost[S,m, d] with
S ⊆ [K], m ≤ n, and d ≤ D, which is the smallest value of the objective that can be achieved
by allocating the lowest m percentiles to the set S of links (in the optimum order) with the
(largest) delay of the m-th percentile equal to d. The algorithm is presented in Algorithm 1.

By τ(d, d′, r,m− r) we denote the toll required to equalize, for the m− rth quantile, the
delay d′ with the greater delay d. In conclusion (here D∗ ≤ n is the number of different
values of the delay in the network):

I Theorem 7. The optimum trade-off between total delay and the Gini coefficient can be
computed in time O(nD∗)

But of course, the O-notation hides the constant K22K .

4 For more accuracy, the computed value of
∑

i
δi, can be plugged in here and repeat the computation.

5 Note that even the total weighted delay
∑

i
qidi can be similarly accommodated as part of the trade-off.

STACS 2019

31:10 Wealth Inequality and the Price of Anarchy

Algorithm 1: A dynamic programming algorithm to compute the trade-off between
efficiency and equality.

Data: Calculate the values cost[{e},m, d] for all links e,m ∈ [n], d ∈ [D]
begin

for s← 2 to K do
for All sets S ⊆ L with |S| = K do

for m← 1 to n do
for d← 1 to D do

cost[S,m, d] = mine∈S, r<m: `e(r)=d; d′≤d cost[S − {e},m− r, d′]
+
∑m
j=m−r+1(αjd′ + βjt(d, d′, r,m− r))

end
end

end
end

end

4.3 The asymmetric case
In the case of multiple source-destination pairs the inequality within each set of players
in any single commodity is again worsened as a result of tolls. Such a statement is not
obtainable for the society as a whole. In the full online text [22], we show how to create,
admittedly contrived, counterexamples where despite the fact that within each subpopulation
the inequality worsens the population as a whole becomes more equal (e.g. the rich and poor
use different subnetworks and only the rich get taxed). We believe that such adversarial
counterexamples may be circumvented by imposing more realistic models, and pose this as
one of the possible directions for future work.

5 The Inequity Index

The Inequity Theorem shows that under general conditions of the cost functions, the income
inequality between agents increases after tolls are levied. In this section, we quantify this
deterioration of equality by introducing a new metric. We have captured the importance of
the game costs to the agents’ income by a parameter α > 0, intuitively small. The inequity
(index) is defined as the derivative of the Gini coefficient as α goes to zero.

I Definition 8. Let Γ be a nonatomic symmetric congestion game. Agents have an initial
ex ante distribution (q(x))x∈[0,1] and incur a cost costF (x) under flow F . Let qα(x) =
q(x)− α · costF (x) be the ex post income distribution for some α > 0. The inequity of Γ is
defined as

I(Γ) = lim
α→0+

G(qα)−G(q)
α

.

Note that this notion is well-defined. The Gini coefficient for distribution qα is given by

G(qα) = 1− 2
∫ 1

0
∫ x

0 (q(t)− α · costF (t))dtdx∫ 1
0 (q(x)− α · costF (x))dx

= 1− 2
∫ 1

0 Q(x)dx− α
∫ 1

0
∫ x

0 costF (t)dtdx
µ− α · SC

where µ is the total income of distribution q and SC is the social cost. This function is
indeed differentiable with respect to α, provided the obvious requirement of µ > 0 is satisfied.

K. Gemici, E. Koutsoupias, B. Monnot, C.H. Papadimitriou, and G. Piliouras 31:11

5.1 Scale invariance of the inequity index
The Inequity Theorem implies that the inequity is always nonnegative. For the rest of the
paper we will focus on the canonical cost functions (CAN). As a reminder, the cost of agent
x in edge e is

q(x) · fe(q(x), cF (e), τe) = q(x) · `e(cF (e)) + τe .

The canonical cost functions, besides having strong experimental justification [2,8] provide
also significant advantages in the theoretical study of inequity. Specifically, the inequity
index is invariant under scaling of the population incomes.

I Theorem 9 (Robustness under scaling of income). Assume agent cost functions are in
canonical form (CAN) in a game Γ. Then the inequity is scale invariant: if all incomes
are scaled by a constant λ > 0 and optimal tolls are used in the resulting game Γλ, then
I(Γ) = I(Γλ).

Proof Sketch. To give the main idea of the proof, we introduce a scaling parameter λ > 0.
This parameter can be understood as a redenomination of the value of money in the game,
for both income and the tolls, where one unit of the “new” currency is effectively as valuable
as λ units of the previous currency. As such, this does not affect the strategic content of
the game (no change of actions) nor the costs, by the scale invariance property of the Gini
coefficient. J

5.2 No-regret learning
So far we have looked at the inequity index in the context of agents playing the Nash
Equilibrium of the routing game. However, it is possible to relax this assumption and let
agents implement a no-regret strategy of their own.

Let F1, F2, . . . be a sequence of flows obtained from agents repeatedly playing the game.
Agent x is implementing a no-regret algorithm if it has vanishing regret, i.e.

R(T) = 1
T

T∑
i=1

costFi(x)−min
p∈P

1
T

T∑
i=1

∑
e∈p

fe(q(x), cFi(e), τe)→ 0 as T →∞

We also call an ε-approximate Nash Equilibrium a flow Fε such that∫ 1

0
costFε(x)dx−min

p∈P

∑
e∈p

fe(q(x), cFε(e), τe) ≤ ε .

Following the results in [7], we can show that under regret minimizing agents, the flow
converges to that of an approximate equilibrium under the assumption of a finite number of
wealth/income levels w1, . . . , wK . This assumption is rather realistic since in practice there
can only be a finite number of income levels. Also, any continuous distributions over incomes
can be approximated to arbitrary high accuracy by a distribution of finite but large enough
support.

I Theorem 10 (Robustness under no-regret learning). Given a finite number of income levels,
the inequity index is uniquely defined under the assumption of no-regret learning agents.
Specifically, if all agents follow a no-regret algorithm, we have

lim
α→0;α>0

lim
T→∞

1
T

∑T
t=1G(q̂t)−G(q)

α
= I(Γ)

where q̂t is the ex post income distribution of the t-th instance of the game.

STACS 2019

31:12 Wealth Inequality and the Price of Anarchy

0.00

0.01

0.02

0.03

0.04

0.05

0 2 4 6 8 10

Beta
In

iq
ui

ty

(a)

β 0 1 2 3 4

G 0 1
24

3
64

3
80

5
192

(b)

Figure 2 a. The Inequity index as a function of the income coefficient β. It is 0 when there is no
inequality (β = 0) because tolls have the same effect on everybody, and rises as the inequality increases.
At some point, β ≈ 1.688, the Inequity index starts decreasing, because the toll (β + 1)2−(β+1)

becomes small and has little effect on the inequality index. b. Values of the inequity for different β.

Proof Sketch. In the first step of the proof, we show that the symmetric game of type-specific
costs Γ reduces to an asymmetric congestion game Γ̂. In the second step, results on the
behavior of no-regret dynamics in asymmetric congestion games [7] imply the robustness
of the inequity index. This is due to the Gini coefficient being a bounded and continuous
function. J

6 Computing the Inequity in Pigou

To illustrate the interplay between wealth or income and congestion games, we consider
the well-studied Pigou network, which consists of two parallel links with latency functions
`u(r) = 1 and `d(r) = r. Assume that this transportation network is used by a population
of (normalized) size 1 and with wealth or income function q(x) = xβ , for some nonnegative
parameter β.

The perceived cost for quantile x is cost(x) = `e(c(e)) · q(x) + τe, where e = e(x) is the
edge used by the quantile, c(e) is the flow through link e, and τe the price of link e. It is not
hard to argue that at equilibrium the cu fraction of the population that uses the constant
cost link is the poorest cu part of the population. We will assume further that the social
designer selects tolls to minimize the actual latency on the network,6 and that, without loss
of generality, the price of the constant cost edge is set to τu = 0, while τ = τd is the optimal
price on the variable cost edge.

By continuity, at equilibrium the perceived cost of quantile cu must be the same in both
links, from which we get τ = q(cu)cu. We want to investigate the effects of price τ on the
Gini coefficient.

Let q̂(x) = q(x)− α · q(x) · cost(x) be the perceived income when we take into account
the effects of perceived latency into the actual income, where α indicates the importance of
transportation. We are interested in first order effects, so we will always assume that α is
very small and that in fact it tends to 0. Let’s define as G(α, τ) the inequality coefficient
when we take into account the effects on the income of the transportation cost, assuming
that the social designer selects toll τ .

6 There are reasonable alternatives for the social planner, such as minimizing the social cost, that we do
not explore in this work.

K. Gemici, E. Koutsoupias, B. Monnot, C.H. Papadimitriou, and G. Piliouras 31:13

We can now compute directly the Gini coefficient. For the Pigou network the optimal
switching point is cu = 1/2. For income distribution q(x) = xβ , this optimal switching point
corresponds to toll τ = 2−(β+1). Since at equilibrium, τ = q(cu)cu = cβ+1

u = 2−(β+1), we
have

G(α, (β + 1)2−(β+1)) = β

β + 2 + β(β + 1)
(β + 2)2β+3α+O

(
α2) .

The last expression comes from the Maclaurin expansion of the function, from which we
derive the following Theorem.
I Theorem 11. For the Pigou network with two links and latency functions 1 and x, and
for a population with income distribution q(x) = xβ, when tolls are selected to minimize the
actual latency, the toll at Nash (Wardrop) equilibrium is τ = q(cu)cu = 2−(β+1), and the
Inequity index is I(Γ) = dG(0)

dα = β(β+1)
(β+2)2β+3 .

The values of the inequity as a function of the income coefficient β are shown in Figure 2.
The maximum occurs when the income coefficient β is close to 2 (actually when β ≈ 1.688),
which means that real-life income distributions have almost the maximum Inequity index.

7 Tolls and Inequality: Empirical Findings

We use detailed transportation data gathered through Singapore’s National Science Experi-
ment (NSE) to test how income inequality affects the distribution of transportation delays
in a representative sample of students [29, 30, 43]. Although Singapore is the third most
densely populated country in the world, the modern infrastructure, cost of private cars, and
significant tolls in Singapore minimize congestion on the roads. We examine whether this
gain in efficiency incurs costs in terms of income inequality, as predicted by the theoretical
results in this paper. The NSE dataset enables us to accurately split student trips in the
morning – the time of the day when tolls are most onerous – by the transportation mode (bus,
car, walk, and train) [42]. We then combine the travel data with a dataset on property prices
to assess the relationship between income and the average duration and average distance of
trips by transportation mode.

By relying on the sociological literature pertaining to income inequality and Singapore’s
urban development, we divide the students into 9 wealth brackets based on residence. We
then conservatively classify these brackets as low-income, middle-income, and high-income
groups [1, 14, 17, 24, 26, 36, 41]. The differences in the means of trip distance and duration
are statistically significant among these three groups; and, they lend strong support to the
predictions of the Inequity Theorem. When one compares low-income and high-income
groups, there is a notable increase in car usage and decrease in the use of walking and public
transportation. Because cars are much faster than using bus and walking, the use of cars is
associated with a sizable difference in the average duration that students spend in traveling
to school (Figure 3).

Although students from high-income groups travel a longer distance compared to middle-
income groups, this translates into minor differences in travel duration. The opposite is the
case when we compare low-income and middle-income groups. These students experience
on average 7 to 5 minutes delay compared to middle-income groups, despite the fact that
the distance they travel is roughly comparable to high-income groups (Figure 3). Thus, the
Singaporean case – which is an ideal setting to examine the relationship between inequality
and transportation delays – offers positive evidence on the Inequity Theorem. It also provides
some lessons on the policies that can be implemented to mitigate the trade-off between
efficiency and inequality, as we discuss in the full text [22].

STACS 2019

31:14 Wealth Inequality and the Price of Anarchy

0

10

20

30

1 2 3 4 5 6 7 8 9

Wealth index

M
ea

n
du

ra
tio

n
(m

in
ut

es
)

Mode
Car

Train

Bus

Walk

Bus Walk

Car Train

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

0

5

10

0

5

10

Wealth index

M
ea

n
du

ra
tio

n
(m

in
ut

es
)

Figure 3 The average trip duration per wealth bracket is presented in the two figures above.
Left: Average duration in each transport mode. It is notable that brackets 1 and 2 have respectively
7 and 5 minutes more travel time on average than the other brackets. Right: The left plot is split
along the transport mode, to show the relative durations spent in each mode across wealth brackets.
Given that the least-affluent groups spend much more time on the roads compared to middle-income
groups, there is a quasi-monotonic increase in the use of car as wealth increases, while we observe
that the uses of walking and public transportation decrease as wealth increases.

8 Discussion

The Inequity Theorem raises important questions pertaining to distributive justice and the
efficiency of decentralized decision-making mechanisms such as markets [4, 21, 27, 33–35].
Namely, if efficiency can be obtained through purposeful intervention but only at a price
of increase in inequality, what are the implications of this trade-off for the organization of
markets, industries, and society in general? We offer three potential avenues of research:

What is the opportunity cost of inequity?
How does inequity affect cooperation among members of society?
How does inequity affect the formation of groups and thus cooperation between different
groups?

We believe that these questions hold the promise of opening up new lines of research for
algorithmic game theory. We hope that future work in this area will shed light on important
but largely unexplored issues about the interplay between efficiency and optimality in a wide
range of economic scenarios and mechanisms.

References
1 Tilak Abeysinghe and Keen Meng Choy. The Aggregate Consumption Puzzle in Singapore.

Journal of Asian Economics, 15(3):563–578, June 2004. doi:10.1016/j.asieco.2004.05.007.
2 Pedro AL Abrantes and Mark R Wardman. Meta-analysis of UK values of travel time: An

update. Transportation Research Part A: Policy and Practice, 45(1):1–17, 2011.
3 Anthony B Atkinson et al. On the measurement of inequality. Journal of economic theory,

2(3):244–263, 1970.
4 Jens Beckert. Beyond the Market: The Social Foundations of Economic Efficiency. Princeton

University Press, Princeton, NJ, 2002.

http://dx.doi.org/10.1016/j.asieco.2004.05.007

K. Gemici, E. Koutsoupias, B. Monnot, C.H. Papadimitriou, and G. Piliouras 31:15

5 Umang Bhaskar, Katrina Ligett, Leonard J Schulman, and Chaitanya Swamy. Achieving
target equilibria in network routing games without knowing the latency functions. Games and
Economic Behavior, 2018.

6 Vittorio Bilò and Cosimo Vinci. Dynamic taxes for polynomial congestion games. In Proceedings
of the 2016 ACM Conference on Economics and Computation, pages 839–856. ACM, 2016.

7 Avrim Blum, Eyal Even-Dar, and Katrina Ligett. Routing without regret: On convergence
to Nash equilibria of regret-minimizing algorithms in routing games. In Proceedings of the
twenty-fifth annual ACM symposium on Principles of distributed computing, pages 45–52. ACM,
2006.

8 Maria Börjesson, Mogens Fosgerau, and Staffan Algers. On the income elasticity of the value
of travel time. Transportation Research Part A: Policy and Practice, 46(2):368–377, 2012.

9 Ioannis Caragiannis, Christos Kaklamanis, Panagiotis Kanellopoulos, Maria Kyropoulou, and
Evi Papaioannou. The Impact of Altruism on the Efficiency of Atomic Congestion Games.
In Martin Wirsing, Martin Hofmann, and Axel Rauschmayer, editors, Trustworthly Global
Computing, pages 172–188, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

10 Po-An Chen, Bart De Keijzer, David Kempe, and Guido Schäfer. The robust price of anarchy
of altruistic games. In International Workshop on Internet and Network Economics, pages
383–390. Springer, 2011.

11 Zhou Chen, Qi Qi, and Changjun Wang. Balancing Efficiency and Equality in Vehicle Licenses
Allocation. In International Conference on Web and Internet Economics. Springer, 2017.

12 Zhou Chen, Qi Qi, Changjun Wang, and Wenwei Wang. Mechanism Design with Efficiency
and Equality Considerations. In International Conference on Web and Internet Economics,
pages 120–132. Springer, 2017.

13 George Christodoulou and Elias Koutsoupias. The price of anarchy of finite congestion games.
In Proceedings of the thirty-seventh annual ACM symposium on Theory of computing, pages
67–73. ACM, 2005.

14 Beng-Huat Chua. Communitarian Ideology and Democracy in Singapore. Routledge, London,
1995.

15 Richard Cole, Yevgeniy Dodis, and Tim Roughgarden. Pricing network edges for heterogeneous
selfish users. In Proceedings of the thirty-fifth annual ACM symposium on Theory of computing,
pages 521–530. ACM, 2003.

16 José R Correa, Andreas S Schulz, and Nicolás E Stier-Moses. Selfish routing in capacitated
networks. Mathematics of Operations Research, 29(4):961–976, 2004.

17 Robert H. Edelstein and Sau Kim Lum. House Prices, Wealth Effects, and the Singapore
Macroeconomy. Journal of Housing Economics, 13(4):342–367, December 2004. doi:10.1016/
j.jhe.2004.09.006.

18 Lisa Fleischer, Kamal Jain, and Mohammad Mahdian. Tolls for heterogeneous selfish users in
multicommodity networks and generalized congestion games. In Foundations of Computer
Science, 2004. Proceedings. 45th Annual IEEE Symposium on, pages 277–285. IEEE, 2004.

19 Dimitris Fotakis, Laurent Gourvès, and Jérôme Monnot. Selfish transportation games. In
International Conference on Current Trends in Theory and Practice of Informatics, pages
176–187. Springer, 2017.

20 Dimitris Fotakis, Spyros Kontogiannis, and Paul Spirakis. Selfish unsplittable flows. Theor-
etical Computer Science, 348(2–3):226–239, 2005. Automata, Languages and Programming:
Algorithms and Complexity (ICALP-A 2004)Automata, Languages and Programming: Al-
gorithms and Complexity 2004. doi:10.1016/j.tcs.2005.09.024.

21 Kurtuluş Gemici. The Neoclassical Origins of Polanyi’s Self-Regulating Market. Sociological
Theory, 33(2):125–147, June 2015. doi:10.1177/0735275115587389.

22 Kurtuluş Gemici, Elias Koutsoupias, Barnabé Monnot, Christos Papadimitriou, and Georgios
Piliouras. Wealth inequality and the price of anarchy. arXiv:1802.09269.

23 Corrado Gini. Measurement of inequality of incomes. The Economic Journal, 31(121):124–126,
1921.

STACS 2019

http://dx.doi.org/10.1016/j.jhe.2004.09.006
http://dx.doi.org/10.1016/j.jhe.2004.09.006
http://dx.doi.org/10.1016/j.tcs.2005.09.024
http://dx.doi.org/10.1177/0735275115587389
http://arxiv.org/abs/1802.09269

31:16 Wealth Inequality and the Price of Anarchy

24 Sun Sheng Han. Polycentric Urban Development and Spatial Clustering of Condominium
Property Values: Singapore in the 1990s. Environment and Planning A: Economy and Space,
37(3):463–481, March 2005. doi:10.1068/a3746.

25 Tobias Harks, Ingo Kleinert, Max Klimm, and Rolf H Möhring. Computing network tolls with
support constraints. Networks, 65(3):262–285, 2015.

26 W. Gregg Huff. The Developmental State, Government, and Singapore’s Economic Develop-
ment Since 1960. World Development, 23(8):1421–1438, 1995.

27 Christopher Jencks. Does Inequality Matter? Daedalus, 131(1):49–65, 2002.
28 Elias Koutsoupias and Christos H. Papadimitriou. Worst-case Equilibria. In STACS, pages

404–413, 1999.
29 Barnabé Monnot, Francisco Benita, and Georgios Piliouras. Routing Games in the Wild:

Efficiency, Equilibration and Regret. In International Conference on Web and Internet
Economics, pages 340–353. Springer, 2017.

30 Barnabé Monnot, Erik Wilhelm, Georgios Piliouras, Yuren Zhou, Daniel Dahlmeier, Hai Yun
Lu, and Wang Jin. Inferring Activities and Optimal Trips: Lessons From Singapore’s National
Science Experiment. In Michael-Alexandre Cardin, Saik Hay Fong, Pao Chuen Lui, and
Yang How Tan, editors, Complex Systems Design & Management Asia, pages 247–264. Springer,
2016.

31 Arthur Cecil Pigou. The economics of welfare. Palgrave Macmillan, 1920.
32 Thomas Piketty. Capital in the 21st Century. Harvard University Press Cambridge, MA, 2014.
33 Karl Polanyi. The Great Transformation: The Political and Economic Origins of Our Time.

Beacon Press, Boston, MA, 1957.
34 John Rawls. A Theory of Justice. Belknap Press, Cambridge, MA, rev. edition, 1999.
35 John Rawls. Justice as Fairness: A Restatement. Harvard University Press, Cambridge, MA,

2001.
36 Sean F. Reardon and Kendra Bischoff. Income Inequality and Income Segregation. American

Journal of Sociology, 116(4):1092–1153, January 2011. doi:10.1086/657114.
37 Tim Roughgarden. Intrinsic robustness of the price of anarchy. In Proc. of STOC, pages

513–522, 2009.
38 Tim Roughgarden and Éva Tardos. How bad is selfish routing? Journal of the ACM (JACM),

49(2):236–259, 2002.
39 Joseph E Stiglitz. The price of inequality: How today’s divided society endangers our future.

WW Norton & Company, 2012.
40 H Theil. Economics and information theory. North-Holland, Amsterdam, 1967. OCLC:

710718565.
41 Carl A. Trocki. Singapore: Wealth, Power and the Culture of Control. Psychology Press, 2006.
42 Erik Wilhelm, Don MacKenzie, Yuren Zhou, Lynette Cheah, and Nils Ole Tippenhauer.

Evaluation of Transport Mode Using Wearable Sensor Data from Thousands of Students. In
Proceedings of the Transportation Research Board 96th Annual Meeting, pages 1–18. Trans-
portation Research Board, 2017.

43 Erik Wilhelm, Yuren Zhou, Nan Zhang, Jacksheng Kee, George Loh, and Nils Tippenhauer.
Sensg: Large-scale deployment of wearable sensors for trip and transport mode logging. In
Transportation Research Board 95th Annual Meeting, 2016.

http://dx.doi.org/10.1068/a3746
http://dx.doi.org/10.1086/657114

Lean Tree-Cut Decompositions: Obstructions and
Algorithms
Archontia C. Giannopoulou
LaS team, Technische Universität Berlin, Germany
archontia.giannopoulou@tu-berlin.de

O-joung Kwon
Department of Mathematics, Incheon National University, South Korea
ojoungkwon@inu.ac.kr

Jean-Florent Raymond
LaS team, Technische Universität Berlin, Germany
raymond@tu-berlin.de

Dimitrios M. Thilikos
AlGCo project-team, LIRMM, Université de Montpellier, CNRS, Montpellier, France
sedthilk@thilikos.info

Abstract
The notion of tree-cut width has been introduced by Wollan in [The structure of graphs not admitting
a fixed immersion, Journal of Combinatorial Theory, Series B, 110:47–66, 2015]. It is defined via
tree-cut decompositions, which are tree-like decompositions that highlight small (edge) cuts in a
graph. In that sense, tree-cut decompositions can be seen as an edge-version of tree-decompositions
and have algorithmic applications on problems that remain intractable on graphs of bounded
treewidth. In this paper, we prove that every graph admits an optimal tree-cut decomposition that
satisfies a certain Menger-like condition similar to that of the lean tree decompositions of Thomas
[A Menger-like property of tree-width: The finite case, Journal of Combinatorial Theory, Series
B, 48(1):67–76, 1990]. This allows us to give, for every k ∈ N, an upper-bound on the number
immersion-minimal graphs of tree-cut width k. Our results imply the constructive existence of a
linear FPT-algorithm for tree-cut width.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms; Theory of
computation → Fixed parameter tractability

Keywords and phrases tree-cut width, lean decompositions, immersions, obstructions, parameterized
algorithms

Digital Object Identifier 10.4230/LIPIcs.STACS.2019.32

Related Version The full version of the paper can also be found on arXiv at https://arxiv.org/
pdf/1808.00863.

Funding Archontia C. Giannopoulou: Supported by the ERC consolidator grant Distruct-648527.
O-joung Kwon: Supported by the ERC consolidator grant Distruct-648527 and by the National
Research Foundation of Korea (NRF) grant funded by the Ministry of Education (No. NRF-
2018R1D1A1B07050294).
Jean-Florent Raymond: Supported by ERC consolidator grant Distruct-648527.
Dimitrios M. Thilikos: Supported by projects DEMOGRAPH (ANR-16-CE40-0028) and ESIGMA
(ANR-17-CE23-0010). Supported by the Research Council of Norway and the French Ministry of
Europe and Foreign Affairs, via the Franco-Norwegian project PHC AURORA 2019.

Acknowledgements We are grateful to Michał Pilipczuk and Marcin Wrochna for extensive discus-
sions about the proof of Theorem 1.

© Archontia C. Giannopoulou, O-joung Kwon, Jean-Florent Raymond, and
Dimitrios M. Thilikos;
licensed under Creative Commons License CC-BY

36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019).
Editors: Rolf Niedermeier and Christophe Paul; Article No. 32; pp. 32:1–32:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:archontia.giannopoulou@tu-berlin.de
mailto:ojoungkwon@inu.ac.kr
https://orcid.org/0000-0003-4646-7602
mailto:raymond@tu-berlin.de
https://orcid.org/0000-0003-0470-1800
mailto:sedthilk@thilikos.info
https://doi.org/10.4230/LIPIcs.STACS.2019.32
https://arxiv.org/pdf/1808.00863
https://arxiv.org/pdf/1808.00863
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

32:2 Lean Tree-Cut Decompositions

1 Introduction

Menger’s theorem is a classic result in graph theory and arguably one of the most used. It
can be informally stated as follows: two vertex sets of a graph can be linked by k vertex-
disjoint paths if and only if they cannot be separated by the removal of k vertices [25]. A
significant feature of this result is that it provides a concise certificate for the optimality
(in terms of cardinality) of a collection of k disjoint paths between two sets, in the form of
a separator of size k. Many variants of Menger’s theorem are known, including edge and
directed versions [25, 19].

In 1990, Thomas [31] obtained a similar duality between paths and separators in tree
decompositions. Tree decompositions are central objects in the theory of graph minors of
Robertson and Seymour. Introduced in the early times of their Graph Minors series [28], they
soon became the standard way to approach problems related to minors (such as Disjoint
Paths, Feedback Vertex Set, etc.) and to minor-closed graph classes. The result of
Thomas is that every graph admits an optimal tree decomposition, said to be lean, where
the following holds: two bags of the decomposition1 can be connected by k vertex-disjoint
paths if and only if they cannot be separated by the removal of a bag on at most k vertices.
That is, while Menger’s theorem provides a set of k vertices separating the two bags, Thomas
proved that such vertices (again forming a concise certificate of optimality) can moreover be
found in a unique bag. Lean tree decompositions had important applications as they have
been used to optimize parameter dependencies and to simplify arguments in proofs of the
Graph Minors series [2, 9].

The objects of our attention in this paper are tree-like decompositions of graphs called
tree-cut decompositions. These decompositions, introduced by Wollan in [32], highlight small
(edge) cuts in graphs and are particularly suited to deal with problems related to the immersion
ordering2 and immersion-closed graph classes. (Comparatively, tree decompositions display
small vertex separators and are tailored for minor-related problems.) A strength of tree-cut
decompositions compared to other decompositions defined by edge cuts (such as cutwidth
orderings or carving decompositions) is that they enjoy two highly desirable properties that
mirror those of tree decompositions: (a) they admit an excluded wall immersion theorem
[32] (comparable to the excluded grid minor theorem of Robertson and Seymour [29]) and
(b) they can be used for dynamic programming, additionally for problems that cannot be
tackled under the bounded-treewidth framework [11, 21, 15]. Thus they are believed to be a
credible translation of tree decompositions to the settings of immersions. The importance
of tree decomposition-based techniques in graph algorithms is an additional motivation to
study their possible counterpart in the immersion world. Our first contribution is to show
that paths and cuts in tree-cut decompositions obey a duality as in the aforementioned result
of Thomas.

I Theorem 1. Every graph has an optimal tree-cut decomposition that is lean.

For the above statement to be meaningful, we adapted the notion of leanness to the
setting of tree-cut decomposition; in particular it relates edge-disjoint paths with edge cuts.3
A similar notion of leanness has been previously studied in [16] for the simpler setting of
cutwidth orderings. We also note that analogs of lean tree decompositions appeared for

1 We follow here the standard terminology about tree-decompositions, see Section 6 for details.
2 The immersion ordering is a partial order on graphs that has properties similar to the minor ordering,

see Section 2 for details.
3 The formal definition is given in Section 2.

A.C. Giannopoulou, O. Kwon, J.-F. Raymond, and D.M. Thilikos 32:3

several different width parameters such as θ-tree-width [6, 13], pathwidth [24], directed path-
width [22], DAG-width [23], rank-width [26], linear-rankwidth [20], profile- and block-width
[9], matroid treewidth [12, 1, 9] and matroid branchwidth [12].

To prove Theorem 1, we design an improvement procedure that, in a finite number of
steps, transforms a tree-cut decomposition that is not lean into a lean one.

Tree-cut decompositions can be used to define the graph parameter of tree-cut width, in the
same way that treewidth can be defined via tree decompositions. Our second result pertains to
obstructions for bounded tree-cut width. We say that a graph is an (immersion)-obstruction
for tree-cut width at most k if it has tree-cut width more than k and all its proper immersions
have tree-cut width at most k. Intuitively, such graphs delimit the border between the graphs
of small tree-cut width (i.e. at most k) and the rest. As a consequence of the results of
Robertson and Seymour in [27], the set obs(k) of obstructions for tree-cut width at most k
is finite, for every k ∈ N. Unfortunately the techniques used to prove this result (namely,
properties of well-quasi-orders) do not provide explicit upper-bounds on its size. We consider
here the related question of estimating the size of the elements of obs(k). This question
has received significant attention in related settings. In [24], Lagergren gave exponential
upper-bounds on the order of minor-obstructions to graphs of pathwidth or treewidth at

most k (2O(k4) and 22O(k5)), respectively. Moreover, the size of immersion-obstructions to
graphs of cutwidth at most k is known to lie between (3k−5 − 1)/2 [17] and 2O(k3 log k) [16].
As noted in [5], these size estimations can be important in practice. Our result on this topic
is a constructive upper-bound on the size of obstructions for bounded tree-cut width.
I Theorem 2. Let k ∈ N. If G has tree-cut width more than k and every proper immersion
of G has tree-cut width at most k, then G has at most 22O(k4) vertices.

Our proof has two main ingredients. The first one is an encoding into a finite number
of types of the features of a graph that are relevant when computing tree-cut width, in the
fashion of the folios of [30] and the protrusion machinery of [4], but adapted to the different
setting studied here (and similar in this sense to the techniques developed in [16, 7]). The
second ingredient is our aforementioned result on leanness. Informally, Theorem 1 allows us,
when “redundancy” has been identified in a graph (using the first ingredient), to obtain an
immersion that has the same tree-cut width and less vertices. To the best of our knowledge,
no explicit upper-bound concerning obs(k) was known before.

The third problem that we consider is of algorithmic nature: how fast can the tree-
cut width of a graph be computed? This problem is NP-hard [21] and therefore has been
approached through parameterized complexity and approximation algorithms. A consequence
of the aforementioned result of Robertson and Seymour [27] and a result in [18] is the existence
– and the existence only – of an FPT algorithm that decides, given a graph G and k ∈ N,
whether G has tree-cut width at most k. The first step towards a constructive FPT algorithm
for tree-cut width was achieved by Kim et al. [21] who designed a 2O(k2 log k) ·n2-time factor 2
approximation algorithm. Our third result is the first constructive parameterized algorithm
for tree-cut width.
I Theorem 3. It is possible to construct an algorithm that given an n-vertex graph G and
an integer r decides whether G has tree-cut width more than r in f(r) · n steps, where f is
some recursive function.

Our algorithm relies on the fact that graphs of small tree-cut width have small treewidth
and on our result on the size of the obstructions. Graphs of large treewidth can be immediately
rejected, while graphs of small treewidth can be searched for the existence of an obstruction
to tree-cut width at most k using standard techniques on tree decompositions. We leave as
an open problem to determine the optimal order of magnitude for f .

STACS 2019

32:4 Lean Tree-Cut Decompositions

Organization of this extended abstract. In Section 2, we give preliminary definitions. The
proofs of Theorem 1 is given in Section 3. In Sections 4 and 5 we introduce the machinery
used to prove Theorems 2 and 3 whose proofs are given in Section 6. Finally, in Section 7,
we provide some discussion on how to bound the parametric dependence of the algorithm of
Theorem 3. Due to the space constraints, the proofs of the lemmas marked by F have been
omitted. They can be found in the full version [14].

2 Preliminaries

In this paper, graphs are undirected, finite, loopless, and may have multiple edges. We
respectively denote by V (G) and E(G) the vertex and edge sets of a graph G and by |G|
and ‖G‖ the cardinalities of these sets (counting edges with multiplicities).

A cut in a graph G is a set F ⊆ E(G) such that G− F has more connected components
than G. If A,B ⊆ V (G), the cut F is an (A,B)-cut if there is no path connecting a vertex
of A to a vertex of B in G − F . If A,B ⊆ E(G), we say that F is an (A,B)-cut if there
is no path from an endpoint of an edge of A to an endpoint of an edge of B in G− F . If
(X,Y) is a partition of V (G), we sometimes refer to the cut {xy ∈ E(G), x ∈ X and y ∈ Y }
by (X,Y). For k ∈ N, a graph is said to be k-edge-connected if it has no cut on (strictly)
less than k edges.

If T is a tree and a, b ∈ E(T), we denote by aTb the (unique) path of T from a to b and
containing these edges.

Immersions. For graphs H and G, a pair (φ, ψ) is an H-immersion model in G if
φ is an injection from V (H) to V (G),
ψ maps every edge uv of H to a path of G between φ(u) and φ(v) such that different
edges are mapped to edge-disjoint paths.

We say that H is an immersion of G if there is an H-immersion model in G and we denote
this by H ≤ G. This defines a partial order on graphs. We also say that H is a proper
immersion of G if H ≤ G and H is not isomorphic to G.

Tree-cut decompositions. A near-partition of a set S is a family of pairwise disjoint subsets
S1,. . . , Sk ⊆ S such that

⋃k
i=1 Si = S. Observe that this definition allows some sets Si of

the family to be empty.

(a) (b)

ut

v

Figure 1 Example of a tree-cut decomposition (right) of a graph (left).

A tree-cut decomposition of a graph G is a pair (T,X) where T is a tree and X =
{Xt}t∈V (T) is a near-partition of V (G). We call elements of V (T) nodes and elements of
V (G) vertices for clarity. The set Xt is called the bag of the decomposition corresponding to
the node t, or just the bag at t.

A.C. Giannopoulou, O. Kwon, J.-F. Raymond, and D.M. Thilikos 32:5

An example of a tree-cut decomposition (X , T) of a graph G is depicted in Figure 1. In
this picture, the tree T is depicted in blue and G is drawn on top of it to highlight which
vertices (resp. edges) belong to which bags (resp. adhesions). This decomposition has an
empty bag, at node t.

For an edge {u, v} ∈ E(T), we denote by Tuv and Tvu the connected components of
T−{uv} containing u and v, respectively. The adhesion adh(T,X)(uv) of some edge uv ∈ E(T)
is defined as the set of edges of G that have an endpoint in a bag of Tuv and the other one
in a bag of Tvu. We drop the subscript when it is clear from the context. In Figure 1, the
adhesion of the edge tu of T consists in the two thick red edges of G.

If G is 3-edge-connected, we define the width of (T,X) as follows:

width(T,X) = max
{

max
tt′∈E(T)

| adh(tt′)|, max
t∈V (T)

(|Xt|+ degT (t))
}
.

The tree-cut width of G is the maximum width over all tree-cut decompositions of G. For
the simplicity of the presentation we only work on 3-edge-connected graphs in the extended
abstract4. However, our results hold for all graphs and full proofs can be found in the full
version [14]

3 A Menger-like property of tree-cut width

In this section, we give a formal definition of the notion of leanness for tree-cut decompositions
and we sketch the proof of Theorem 1.

A tree-cut decomposition (T,X) is said to be lean if, for every distinct edges a, b ∈ E(T)
and every A ⊆ adh(a), B ⊆ adh(b) with |A| = |B| =: k,

either there are k edge-disjoint paths linking A to B;
or there is an edge e in aTb such that | adh(e)| < k.

Observe that when the second point holds, adh(e) is an (A,B)-cut. Therefore, as with
Thomas’ notion of leanness mentioned in the introduction, the absence of a large collection
of (here edge-disjoint) paths can be certified by a small (edge) separator that has restricted
position.
Out first result (Theorem 1) shows that every graph admits a tree-cut decomposition that is
lean and has optimum width. Its proof can in fact be reduced to the case of 3-edge-connected
graphs.

I Lemma 4 (F (included in the proof of Theorem 1)). Theorem 1 holds iff it holds for
3-edge-connected graphs.

Therefore we can now focus on 3-edge-connected graphs. A crucial element of the proof
of Theorem 1 is the definition of a potential on tree-cut decompositions, called fatness, as
in Bellenbaum and Diestel’s proof of Thomas leanness result for tree-decompositions [2].
Let G be a graph on m edges and let (T,X) be a tree-cut decomposition of G. For
every i ∈ [m], we denote by T≥i the subgraph of T induced by the edges that have
adhesion at least i. The fatness, denoted by fatness(T,X), of (T,X) is the (2m)-tuple
(αm,−βm, αm−1,−βm−1, . . . , α1,−β1), where for every i ∈ [m],

4 There is a definition the width for tree-cut decompositions of graphs that are not 3-edge-connected. It
can be found in the full version [14]. The definition that we give here is equivalent to that of Wollan
in [32].

STACS 2019

32:6 Lean Tree-Cut Decompositions

αi is the number of edges of T≥i; and

βi is the number of connected components of T≥i.
We order fatnesses by lexicographic order. Informally, fatness is used to quantify the progress
made when improving a non-lean tree-cut decomposition. This is captured by the following
lemma which constitutes an important technical ingredient of the paper.

I Lemma 5 (F). Let G be a 3-edge-connected graph. If (T,X) is a tree-cut decomposition
of G that is not lean, then G has a tree-cut decomposition of smaller fatness and no bigger
width than the one of (T,X).

As the fatness of tree-decompositions of a given graph can take a finite number of values,
Lemma 5 implies that we can, after a finite number of “improvement steps”, obtain a lean
tree-cut decomposition. Let us now describe what we mean by improvement step. Let G be

a b

a1
∅
s1

b1 b′1

∅
s2

a′2 a2 b2

Figure 2 A tree-cut decomposition of a graph G (left) and its (a, b, F)-segregation (right), where
F is a cut that separates G into GA and GB . The vertices of GA and GB respectively lie in blue
and green bags. Newly introduced bags, corresponding to nodes s1, s2, are empty. The adhesion of
s1s2 is exactly F .

such a graph and let (T,X) be a tree-cut decomposition of G. Let a, b ∈ E(T), and let F be
an inclusion-wise minimal cut separating a graph G into two graphs that we call GA and
GB . We define the (a, b, F)-segregation of (T,X) as the pair (U,Y) obtained as follows:

1. consider a first copy T1 of T , subdivide once the edge corresponding to b, call s1 the
subdivision vertex, and call the two created edges b1 and b′1, with the convention that
(the copy of) a is closer to b1 in T1;

2. symmetrically, consider a second copy T2 of T , subdivide once the edge corresponding
to a, call s2 the subdivision vertex, and call the two created edges a2 and a′2, with the
convention that (the copy of) b is closer to a2 in T2;

3. in the disjoint union of these two trees, add an edge joining s1 and s2: this gives U ;

4. for every t ∈ V (U), let Yt =

Xt ∩ V (GA) if t ∈ V (T1) \ {s1}
Xt ∩ V (GB) if t ∈ V (T2) \ {s2}, and
∅ if t ∈ {s1, s2}.

The construction of an (a, b, F)-segregation is depicted in Fig. 2. It is not hard to see that a
segregation of a tree-cut decomposition is still a tree-cut decomposition.

For every non-lean tree-cut decomposition (T,X) there are edges a, b, e ∈ E(T) and
subsets A ⊆ adh(a), B ⊆ adh(b) violating the definition of leanness. The proof of Lemma 5
consists in showing that the (a, b, F)-segregation of (T,X), for some cut F carefully chosen
using a, b, e, A,B, has the same width as (T,X) and smaller fatness.

A.C. Giannopoulou, O. Kwon, J.-F. Raymond, and D.M. Thilikos 32:7

4 Tidy decompositions and branch interfaces

For the rest of the proofs we need the notion of tidiness of a tree-cut decomposition of a
graph G, with respect to some edge-cut F of G. Informally, the tidiness property, is satisfied
in a tree-cut decomposition of G, when, given a cut in a graph, the tree-cut decomposition
can be almost partitioned (excluding a set of nodes whose size is upper-bounded linearly
by the size of F) to subtrees in such a way that the vertices of the graph residing in each
subtree reside also to the same side of the cut. (See also Figure 3.)

⊆ A ⊆ B ⊆ A ⊆ A ⊆ B

⊆ A

⊆ B

∈
M

∈
M

(i)

∈
M

(ii)

Figure 3 Parts of an (A,B)-tidy tree-cut decomposition, with subtrees colored differently
depending whether the bags of their vertices are included in A or in B.

To clearly define tidy tree-cut decompositions and state the main lemma of this section
we need the following.

For a tree T and a set M ⊆ V (T), the least common ancestor closure (lca-closure) of M
is the set lca(M) ⊆ V (T) obtained from M by repeatedly adding to it, for every triple x, y, z
in the set, the common vertex of the paths xTy, yTz, and zTx.

I Lemma 6 ([10]). Let T be a rooted forest and M ⊆ V (T). Then | lca(M)| ≤ 2|M | and
every connected component C of T − lca(M) has at most two neighbors in T .

Let T be a tree, M ⊆ V (T), and v ∈ V (T). A node u ∈ V (T) is a M-descendant of v
if every path from u to a vertex of M contains v. We denote by descM

T (v) the set of such
vertices (we drop the subscript when it is clear from the context). In particular v ∈ descM (v)
holds for every v ∈ V (T) and descM (v) = {v} holds for every v ∈ M . We also use the
notation descT (v) instead of descV (G)

T (v).

I Definition 7 (tidy tree-cut decomposition). Let D = (T, {Xu}u∈V (T)) be a tree-cut decom-
position of a graph G and let (A,B) be a cut of this graph. Let M ⊆ V (T) be the lca-closure
of the nodes of T whose bags contain endpoints of the cut (A,B). We denote by CM

i , i ∈ [2]
the set of connected components of T −M that have exactly i neighbors in M (and drop the
superscript M if it is clear from the context).

We say that D is (A,B)-tidy if the following conditions hold for every connected component
F of T −M :
(i) if F ∈ CM

2 : for every w ∈ V (F), all the bags at T descM (w) are subsets of one of A
and B;

(ii) if F ∈ CM
1 : let u be the node of F adjacent to M . Then, first, u has at most two

neighbors in F ; let us call them v, w (if they exist). Second, Xu intersects at most one
of A and B and all the bags at T descM (v) (resp. T descM (w)) are subsets of A (resp.
B), or the other way around.

These two situations are again depicted on Fig. 3.

STACS 2019

32:8 Lean Tree-Cut Decompositions

Furthermore, we show that there exists a tidy tree-cut decomposition of optimum width
where the number of these subtrees is upper-bounded by a function of the size of the cut
and the tree-cut width of the graph.

JA JB

JA

JB

v

J

a
l
+
b l

a
r

+
b r

vA vB

a
l
+
b l

a
r

+
b r

a
r

+
b l

∈
M

v

a
l
+
b l

J ∈
M v′

a
l
+
b l

al

bl

(a) (b)

Figure 4 Improvement step towards obtaining a tidy tree-cut decomposition from a general
tree-cut decomposition without increasing the width.

Before we present the lemma, we need the following definition.
Let G be a graph and let D = (T, {X}u∈V (T)) be a tree-cut decomposition of G. For

X ⊆ V (G), a X-block is a maximal subtree F of T such that:
bags at nodes of F are subsets of X;
at most two nodes of T − V (F) have a neighbor in F .

If (A,B) is a cut, we refer to A- and B- blocks as (A,B)-blocks.

I Lemma 8 (F). Let ` ∈ N≥3 and G be a 3-edge-connected graph. If (A,B) is a cut of G of
size `, then there is an optimum tidy tree-cut decomposition D = (T,X) of G with less than
8` · tcw(G) (A,B)-blocks in T −M , where M is the lca-closure of the nodes of T whose bags
contain endpoints of the cut (A,B).

Note that from the definition of a block, two A-blocks (resp. B-blocks) cannot be connected
by a link of T . This simple property is crucial in the proof of Lemma 8. It allows us, given a
tree-cut decomposition of a graph G that has many (A,B)-blocks, to swap two of them (hence
decreasing the total number of blocks) without increasing the width of the decomposition.
Fig. 4 illustrates how we may obtain a tidy tree-cut decomposition of optimum width from a
general tree-cut decomposition of optimum width while Fig. 5 illustrates the intuition behind
swapping A- and B-blocks in order to decrease their total number.

Ti−1 Ti Ti+1 Ti+2
vp

i−1 vs
i−1 vp

i

ei−1
vs

i vp
i+1

ei

vs
i+1 vp

i+2

ei+1

vs
i+2

Li−1

Ri

Ri+1
Pi Si

Ti−1 Ti+1 Ti Ti+2
vp

i−1 vs
i−1

vp
i+1 vs

i+1

vp
i

vs
i vp

i+2 vs
i+2

Li−1 Ri+1

Pi
Si

Pi+1
Si+1

Figure 5 From D (top) to D′ (bottom): swapping the blocks Ti and Ti+1.

A.C. Giannopoulou, O. Kwon, J.-F. Raymond, and D.M. Thilikos 32:9

5 Branch Interfaces

Tidy tree-cut decompositions will be used in this section to classify certain subgraphs of a
graph into a bounded number of equivalence classes. This will be directly used to obtain our
result on obstructions.

A k-boundaried graph is a pair G = (G, x̄) where G is a graph and x̄ = (x1, . . . , xk) is a
k-tuple of the graph’s vertices, called boundary vertices (ordered, not necessarily distinct).
The extension of G is the graph G∗ obtained from G by adding k new vertices x′1, . . . , x′k and
edges x1x

′
1, . . . , xkx

′
k. The join A⊕B of two k-boundaried graphs A = (A, x̄),B = (B, ȳ) is

the graph obtained from the disjoint union of A and B by adding an edge xiyi for i ∈ [k].
Intuitively, a boundaried graph can be seen as the subgraph corresponding to one side of an
(edge) cut in a larger graph. Its boundary vertices then record the endpoints of the edges of
the cut and can be glued to an other boundaried graph to recover the original graph.

We note that our definition of boundaried graph (already used in previous work [16, 15,
8, 7]) slightly differs from that usually followed in the literature (e.g. in [4]), in particular
the join operation. This is because the problems that we consider are related to (edge) cuts –
a setting where our definition is more natural – while other papers often deal with settings
pertaining to (vertex) separators, typically graphs of bounded treewidth.

Let A and B be two k-boundaried graphs and let G = A⊕B. (This is roughly the same
as saying that G has a cut (A,B) of size k.) Let D = (T,X) be an (A,B)-tidy tree-cut
decomposition of G. Let M denote the lca-closure of the vertices of T whose bags contain
endpoints of the cut.

Let us construct a new pair B = (U,Y) from D as follows: for every (A,B)-block F of T ,
we contract F to a single vertex x and define Yx as the set of vertices of G that are contained
in bags at F . For every x ∈ M we set Yx = Xx. We call B a bucketing of G. In order to
avoid confusion with the bags of a tree-cut decomposition, we refer to the elements of Y
as buckets. Recall that by Lemma 8, the vertices of M are separated in T by a bounded
number of alternations of (A,B)-blocks. Therefore the size of U is bounded by a function of
k and tcw(G).

A bucketing of A is obtained from a bucketing of G by forgetting the content of the
buckets corresponding to B; formally it is the pair (U,Y ′) where Y ′ = {Yu ∩ V (A), u ∈
V (U −M)} ∪ {Yu, u ∈ M}. Given the bucketing (U,Y ′) of A together with D, we can
compute:

for each edge e of U , the size z(e) of its adhesion (defined as for tree-cut decompositions);
for each node x ∈ V (T −M), the width z(x) of the corresponding (A,B)-block in D;5
for each node x ∈ V (T −M), the maximum α(x) of adhesions sizes over the subpath
linking the attachement points (i.e. vertices with a neighbor outside of the block) of the
corresponding (A,B)-block in D;
for each node x ∈M , the sum z(x) of its degree in T and bag size in D;
a function f : [2k]→ V (U) specifying which buckets of U contain the endpoints of the
cut.

Informally, these values encode all the relevant information about the contribution of A
to the width of D. If ` = tcw(G), then we say that (U, z, α, f) (seen as a tuple independent
of A) is a (k, `)-branch interface6 and we say that A conforms with this branch interface.

5 That is, the width of D restricted to this block.
6 Note that we define here a slightly simplified notion of branch interface than in the full version [14],
which is sufficient for the presentation given in this extended abstract.

STACS 2019

32:10 Lean Tree-Cut Decompositions

Observe that the number of (k, `)-branch interfaces can be upper-bounded by a function of k
and `. In particular we have the following.

I Observation 9. For all k, ` ∈ N there are 2O(`k log k) (k, `)-branch interfaces.

We denote by Ik,`(A) the set of (k, `)-branch interfaces A conforms with. Intuitively, this
set records all the possible ways for A to appear in a tidy tree-cut decomposition of a graph
A ⊕B of tree-cut width at most `. That is, whatever k-boundaried graph B we consider
(among those such that tcw(A⊕B) ≤ `), all the possible ways (A,B)-blocks can interleave
and contribute to the width in a tidy tree-cut decomposition of A⊕B is of bounded size
and recorded in Ik,`(A). This is formalized by the following lemma.

I Theorem 10 (edge-protrusion replacement lemma F). Let k, ` be two positive integers.
Let also A1 and A2 be two k-boundaried graphs with Ik,`(A1) = Ik,`(A2). Then for any
k-boundaried graph B where tcw(A1 ⊕B) ≤ ` and such that both A1 ⊕B and A2 ⊕B are
3-edge connected, it holds that tcw(A2 ⊕B) = tcw(A1 ⊕B).

6 Obstructions and algorithms for tree-cut width

We explain in this section how the machinery introduced in the two previous sections can be
used to obtain theorems 2 and 3.

Let H = (H,x) and G = (G, y) be two k-boundaried graphs. If there is an H∗-immersion
model (φ, ψ) of G∗ where φ(xi) = yi and φ(x′i) = y′i for each i ∈ [k], then we say that H is a
rooted immersion of G and we denote this by H ≤ G.

Immersion obstructions. For every k ∈ N, we denote by obs(k) the set of all immersion-
minimal graphs whose tree-cut width is strictly greater than k. For instance, it is easy to see
that obs(1) contains only the graph with two vertices and a double edge between them.

Our purpose is to provide a bound to the order of the graphs in obs(k), as a function of
k. It follows from [21, Lemmata 3 and 4] that all graphs in obs(k) are 3-edge-connected for
k ≥ 2.

We use the following lemmata.

I Proposition 11 ([16]). Let w,m be positive integers and let y be a word in [w]∗ of length
mw. Then there is a number k ∈ [w] and a subword u of y such that all numbers in u are at
least k and u contains the number k at least m times.

I Lemma 12 (F). Let k ∈ N and let H = (H,x) and G = (G, y) be two k-boundaried
graphs. For every ` ∈ N, if H ≤ G, then Ik,`(G) ⊆ Ik,`(H).

I Lemma 13. There exists a function g : N2 → N such that for every w, r ∈ N and every
3-edge-connected graph G where tcw(G) ≤ w and |V (G)| > g(r, w), G contains as a proper
immersion a graph H for which tcw(H) ≤ r implies tcw(G) ≤ r. Moreover such a function
can be chosen so that g(r, w) = 22O(r·w3) .

Proof. By Lemma 5, there exists a lean tree-cut decomposition D = (T,X) of G with width
at most w. We also assume that for every node t of T of degree at most 2, the bag Xt is
non-empty, otherwise we revise D by contracting a link incident to t. The 3-edge connectivity
of G implies that ∆(T) ≤ w. We root T on some, arbitrarily chosen, node s. This permits
us to see T as a directed tree where all links are oriented towards the root s. In particular, if
(v, u) is a link of T , we always assume that u is closer than v to the root.

A.C. Giannopoulou, O. Kwon, J.-F. Raymond, and D.M. Thilikos 32:11

From Observation 9 there is a function α : N2 → N, with α(w, `) = 2O(`·w·log w), such
that the number of the different (w, `) interfaces of w-boundaried graphs is upper-bounded
by α(w, `). We define d = mw where m = α(w, `) + 1 and ` = 8wr. Let z be a node of T of
maximum distance from the root s. Notice that z is a leaf of T . Let also f : N2 → N be a
function such that if |T | > f(d,w), then T contains a path P of length d from z to some
node, say u that is different than the root s. Notice that, as ∆(T) ≤ w, we can choose f such
that f(d,w) = 2O(d·log w). We also set up the function g : N2 → N where g(r, w) = f(d,w) ·w.
Clearly, g(r, w) = f(mw, w) · w = 2O((2O(`·w2·log w))w·log w) · w = 22O(r·w3) .

Notice that if |G| > g(r, w), then |T | > f(d,w) and the aforementioned path P exists
in T . Let e1, . . . , ed be the links of P ordered so that e1 is the one that is closer to the
root and let wei

= | adhD(ei)|. We now see the string y = we1 . . . wed
as a word in [w]∗.

As d = mw, from Proposition 11 there is some k ∈ [w] and a subword y′ = wei . . . wej

of y such that weh
≥ k for h ∈ [i, j] and there is some I ⊆ [i, j] such that m = |I| and

∀h ∈ I wej = k. Let f1, . . . , fm be the links in {eh | h ∈ I} ordered as a subsequence of
e1, . . . , ed. As D is lean, we know that there exist k edge-disjoint paths from adh(T,X)(f1)
to adh(T,X)(fm). We denote these paths by P1, . . . , Pk. Notice also that for every q ∈ [m],
adh(T,X)(fm) contains exactly one edge from each of the paths in P1, . . . , Pk. We denote by
eq,p the unique edge in E(Pk) ∩ adh(T,X)(fq), for (p, q) ∈ [k] × [m]. for every q ∈ [m], we
define λq : adh(T,X)(fq)→ [wfq] so that λq(eq,p) = p for p ∈ [k].

For q ∈ [m], we denote by tq the tail of the edge fq and we define Aq = (Aq, x̄q) where
Aq = G[

⋃
t∈descT (tq) Xt] and x̄q are the endpoints of the edges in adh(T,X)(fq) that belong to

A1, ordered according to λq (recall that descT (tq) consists of the descendants of tq, including
tq, in the rooted tree T). We also set Bq = (Bq, x̄

′
q) where Bq = G − V (Aq) and x̄′q are

the endpoints of the edges in adh(T,X)(fq) that belong to Bq, again ordered according to λq.
Notice that for every q ∈ [m], Bq ⊕Aq = G. Moreover for every (q, q′) ∈ [m]2, where q ≤ q′,
there are k edge-disjoint paths in Aq that are joining, for each p ∈ [k] the edge eq,p with the
edge eq′,p. This implies that Aq ≤ Aq′ . This, combined with Lemma 12, yields that

Ik,`(A1) ⊆ · · · ⊆ Ik,`(Am)

and, as m = α(r, w) + 1, there is a pair (q, q′) ∈ [m]2, where q < q′ and Ik,`(Aq) = Ik,`(Aq′).
We set H = Aq′ ⊕Bq. Since q 6= q′, H is a proper immersion of G. From Lemma 10, the fact
that tcw(Aq⊕Bq) = tcw(G) ≤ r implies that tcw(H) = tcw(Aq⊕Bq′) = tcw(Aq⊕Bq) =
tcw(G) ≤ r. J

I Theorem 14 (Restatement of Theorem 2). For every k ∈ N, every graph in obs(k) has
22O(k4) vertices.

Proof. Let G ∈ obs(k). This means that tcw(G) ≥ k+1 and that if H is a proper immersion
of G, then tcw(H) < tcw(G) and hence, tcw(H) ≤ k. It is easy to verify that if H is
a proper immersion of G with ‖H‖ = ‖G‖ − 1 then tcw(H) ≥ tcw(G) − 1. This last
observation implies that tcw(G) ≤ k + 1. If |V (G)| > g(k, k + 1) (where g is the function of
Lemma 13) then Lemma 13 implies that G contains as a proper immersion a graph H for
which tcw(H) ≤ k implies that tcw(G) ≤ k. As tcw(H) ≤ k for every proper immersion H
of G, we deduce that tcw(G) ≤ k, a contradiction to the fact that tcw(G) ≥ k + 1. The
result follows as g(k, k + 1) = 22O(k4) . J

STACS 2019

32:12 Lean Tree-Cut Decompositions

Tree decompositions. A tree decomposition of a graph G is a pair D = (T,X), where T is
a tree and X = {Xt | t ∈ V (T)} is a collection of subsets of V (G) such that:⋃

t∈V (T) Xt = V (G),
for every uv ∈ E, there is a t ∈ V (T) such that {u, v} ⊆ Xt, and
for each {x, y, z} ⊆ V (T) such that z lies on the unique path between x and y in T ,
Xx ∩Xy ⊆ Xz.

The width of a tree decomposition D = (T,X) is maxt∈V (T) |Xt|−1. The treewidth of a graph
G, denoted by tw(G), is the smallest integer w such that there exists a tree decomposition
of G of width at most w.

The proof of Theorem 3 comes as a direct consequence of Theorem 14.

Proof of Theorem 3. We set n = |V (G)|. Observe that ∆(G) = Or(1). Moreover, if an
edge has multiplicity strictly greater than r, then both its endpoints should be in the same
bag of a tree-cut decomposition with width at most r. Therefore, we may replace each edge
in G of multiplicity bigger than r + 1 by one of multiplicity r + 1 and this modification can
be implemented in Or(n) steps. By applying this preprocessing we may assume that G has
Or(n) edges.

In [11] it was proved that there exists a constant c1 such that, for every graph H,
tw(H) ≤ c1 · (tcw(H))2. We run the algorithm in [3] that, given a graph H and an integer
q, either outputs a tree decomposition of H of width at most 5q or reports that tw(G) > q,
setting H = G and q = c1 · r2. If tw(G) > q we know that tcw(G) > r and we readily
have an answer. Therefore, we can assume that we have a tree decomposition of G of
width at most 5c1 · r2. As the property of the immersion-containment of a graph H can be
expressed in Monadic Second Order Logic, by using Courcelle’s theorem, it is possible to
construct an algorithm that, given two graphs H1 and H2, outputs whether H1 ≤ H2 in
O|V (H1)|+tw(G)(|V (H2)|) steps. By Theorem 14, the set obs(r) can be constructed in Or(1)
steps. Then, by testing immersion-containment for every graph H ∈ obs(r), we can decide
whether tcw(G) ≤ r in Or(n) steps. J

7 Discussion

An interesting direction is to specify the parameterized dependence of the algorithm in
Theorem 3. We argue below on why the proof of Lemma 13 can already give a first bound.

Notice that Lemma 10 defines an equivalence relation of w-boundaried graphs. We
say that two k-boundaried graphs G1 and G2 are (w, r)-equivalent, namely G1 ≡w,r G2
if Iw,8wr(G1) = Iw,8wr(G2). Notice that the proof of Lemma 13 already implies that a
minimum-size of a representative of any of the equivalence classes of ≡w,r has g(r, w) =
22O(r·w3) vertices. By brute-force checking on all graphs on g(r, w) = 22O(r·w3) vertices, we may

construct a set Rw,r of representatives for ≡. Moreover |Rw,r| = 222O(r·w3)

. The knowledge
of Rw,r permits us to avoid the use of Courcelle’s theorem in Theorem 3. For this, we first
transform the tree decomposition of the proof of Theorem 3 to a tree-cut decomposition
with width w = O(r4) using [32, Lemma 12]. Then we implement an algorithmic version

of the proof of Lemma 13: as long as the sub-tree of T rooted on u of height 222r·w3

exists,
we reduce G = Aq ⊕ Bq to the smaller equivalent instance G = Aq′ ⊕ Bq. Given that

|Rw,r| = 222O(r·w3)

and using suitable data-structures, this compression can be implemented

in 222O(r13)

steps and as it is repeated at most n times, it will report a correct answer in
222O(r13)

· n steps.

A.C. Giannopoulou, O. Kwon, J.-F. Raymond, and D.M. Thilikos 32:13

Clearly, the parameterized dependence of the above argumentation is still too heavy. We
believe that a detailed dynamic programming based on how collections of branch interfaces
are updated along a rooted tree-cut decomposition may yield a bound f(r) = 2poly(r) to the
function of Theorem 3.

A second direction for further research is to obtain an algorithm that, besides computing
the tree-cut width of a graph, also provides a tree-cut decomposition of optimal width.

References
1 Jeffrey Azzato. Linked tree-decompositions of represented infinite matroids. Journal of

Combinatorial Theory, Series B, 101(3):123–140, 2011. doi:10.1016/j.jctb.2010.12.003.
2 Patrick Bellenbaum and Reinhard Diestel. Two short proofs concerning tree-decompositions.

Combinatorics, Probability and Computing, 11(6):541–547, 2002.
3 Hans L. Bodlaender, Pål Grønås Drange, Markus S. Dregi, Fedor V. Fomin, Daniel Lokshtanov,

and Michal Pilipczuk. A (ckn) 5-Approximation Algorithm for Treewidth. SIAM Journal of
Computing, 45(2):317–378, 2016.

4 Hans L Bodlaender, Fedor V Fomin, Daniel Lokshtanov, Eelko Penninkx, Saket Saurabh, and
Dimitrios M Thilikos. (Meta) kernelization. Journal of the ACM, 63(5):44, 2016.

5 Heather Booth, Rajeev Govindan, Michael A. Langston, and Siddharthan Ramachandramurthi.
Cutwidth approximation in linear time. In Proceedings of the Second Great Lakes Symposium
on VLSI, pages 70–73. IEEE, 1992.

6 Johannes Carmesin, Reinhard Diestel, M. Hamann, and Fabian Hundertmark. k-Blocks: A
Connectivity Invariant for Graphs. SIAM Journal on Discrete Mathematics, 28(4):1876–1891,
2014.

7 Dimitris Chatzidimitriou, Jean-Florent Raymond, Ignasi Sau, and Dimitrios M. Thilikos. An
O(logOPT)-approximation for covering and packing minor models of θr. Algorithmica, April
2017. doi:10.1007/s00453-017-0313-5.

8 Dimitris Chatzidimitriou, Jean-Florent Raymond, Ignasi Sau, and Dimitrios M Thilikos.
Minors in graphs of large θr-girth. European Journal of Combinatorics, 65:106–121, 2017.

9 Joshua Erde. A unified treatment of linked and lean tree-decompositions. Journal of Combin-
atorial Theory, Series B, 130:114–143, 2018.

10 Fedor V. Fomin, Daniel Lokshtanov, Neeldhara Misra, and Saket Saurabh. Planar F-Deletion:
Approximation, Kernelization and Optimal FPT Algorithms. In Proceedings of FOCS 2012,
pages 470–479. IEEE Computer Society, 2012.

11 Robert Ganian, Eun Jung Kim, and Stefan Szeider. Algorithmic applications of tree-cut width.
In Mathematical foundations of computer science 2015. Part II, volume 9235 of Lecture Notes
in Computer Science, pages 348–360. Springer, Heidelberg, 2015.

12 James F. Geelen, A. M. H. Gerards, and Geoff Whittle. Branch-width and well-quasi-ordering
in matroids and graphs. Journal of Combinatorial Theory, Series B, 84(2):270–290, 2002.

13 Jim Geelen and Benson Joeris. A generalization of the Grid Theorem. arXiv preprint, 2016.
arXiv:1609.09098.

14 Archontia C. Giannopoulou, O-joung Kwon, Jean-Florent Raymond, and Dimitrios M. Thilikos.
Lean tree-cut decompositions: obstructions and algorithms. arXiv e-prints, August 2018.
arXiv:1808.00863.

15 Archontia C. Giannopoulou, Michal Pilipczuk, Jean-Florent Raymond, Dimitrios M. Thilikos,
and Marcin Wrochna. Linear Kernels for Edge Deletion Problems to Immersion-Closed Graph
Classes. In 44th International Colloquium on Automata, Languages, and Programming, ICALP
2017, July 10-14, 2017, Warsaw, Poland, pages 57:1–57:15, 2017.

16 Archontia C. Giannopoulou, Michał Pilipczuk, Jean-Florent Raymond, Dimitrios M. Thilikos,
and Marcin Wrochna. Cutwidth: Obstructions and Algorithmic Aspects. Algorithmica, March
2018. doi:10.1007/s00453-018-0424-7.

STACS 2019

http://dx.doi.org/10.1016/j.jctb.2010.12.003
http://dx.doi.org/10.1007/s00453-017-0313-5
http://arxiv.org/abs/1609.09098
http://arxiv.org/abs/1808.00863
http://dx.doi.org/10.1007/s00453-018-0424-7

32:14 Lean Tree-Cut Decompositions

17 Rajeev Govindan and Siddharthan Ramachandramurthi. A weak immersion relation on graphs
and its applications. Discrete Mathematics, 230(1–3):189–206, 2001.

18 Martin Grohe, Ken-ichi Kawarabayashi, Dániel Marx, and Paul Wollan. Finding Topological
Subgraphs is Fixed-parameter Tractable. In Proceedings of the Forty-third Annual ACM
Symposium on Theory of Computing, STOC ’11, pages 479–488, New York, NY, USA, 2011.
ACM.

19 Tibor Grünwald. Ein Neuer Beweis Eines Mengerschen Satzes. Journal of the London
Mathematical Society, s1-13(3):188–192, 1938. doi:10.1112/jlms/s1-13.3.188.

20 Mamadou Moustapha Kanté and O-joung Kwon. An Upper Bound on the Size of Obstructions
for Bounded Linear Rank-Width. CoRR, abs/1412.6201, 2014. arXiv:1412.6201.

21 Eun Jung Kim, Sang-il Oum, Christophe Paul, Ignasi Sau, and Dimitrios M. Thilikos. An
FPT 2-Approximation for Tree-Cut Decomposition. Algorithmica, 80(1):116–135, 2018.

22 Ilhee Kim and Paul D. Seymour. Tournament minors. Journal of Combinatorial Theory,
Series B, 112:138–153, 2015.

23 Shiva Kintali. Directed Minors III. Directed Linked Decompositions. CoRR, 2014. arXiv:
1404.5976.

24 Jens Lagergren. Upper Bounds on the Size of Obstructions and Intertwines. Journal of
Combinatorial Theory, Series B, 73(1):7–40, 1998.

25 Karl Menger. Zur allgemeinen kurventheorie. Fundamenta Mathematicae, 1(10):96–115, 1927.
26 Sang-il Oum. Rank-width and vertex-minors. Journal of Combinatorial Theory, Series B,

95(1):79–100, 2005.
27 Neil Robertson and Paul Seymour. Graph Minors. XXIII. Nash-Williams’ Immersion Conjec-

ture. Journal of Combinatorial Theory, Series B, 100(2):181–205, March 2010.
28 Neil Robertson and Paul D. Seymour. Graph Minors. II. Algorithmic Aspects of Tree-Width.

Journal of Algorithms, 7(3):309–322, 1986.
29 Neil Robertson and Paul D. Seymour. Graph Minors. V. Excluding a planar graph. Journal

of Combinatorial Theory, Series B, 41(2):92–114, 1986.
30 Neil Robertson and Paul D Seymour. Graph Minors. XIII. The disjoint paths problem. Journal

of combinatorial theory, Series B, 63(1):65–110, 1995.
31 Robin Thomas. A menger-like property of tree-width: The finite case. Journal of Combinatorial

Theory, Series B, 48(1):67–76, 1990.
32 Paul Wollan. The structure of graphs not admitting a fixed immersion. Journal of Combinatorial

Theory, Series B, 110:47–66, 2015.

http://dx.doi.org/10.1112/jlms/s1-13.3.188
http://arxiv.org/abs/1412.6201
http://arxiv.org/abs/1404.5976
http://arxiv.org/abs/1404.5976

Dispersing Obnoxious Facilities on a Graph
Alexander Grigoriev
Department of Quantitative Economics, Maastricht University, Maastricht, The Netherlands
a.grigoriev@maastrichtuniversity.nl

Tim A. Hartmann
Department of Computer Science, RWTH Aachen, Aachen, Germany
hartmann@algo.rwth-aachen.de

Stefan Lendl
Institute of Discrete Mathematics, TU Graz, Graz Austria
lendl@math.tugraz.at

Gerhard J. Woeginger
Department of Computer Science, RWTH Aachen, Aachen Germany
woeginger@algo.rwth-aachen.de

Abstract
We study a continuous facility location problem on a graph where all edges have unit length and
where the facilities may also be positioned in the interior of the edges. The goal is to position as
many facilities as possible subject to the condition that any two facilities have at least distance δ
from each other.

We investigate the complexity of this problem in terms of the rational parameter δ. The problem
is polynomially solvable, if the numerator of δ is 1 or 2, while all other cases turn out to be NP-hard.

2012 ACM Subject Classification Mathematics of computing; Theory of computation → Graph
algorithms analysis; Theory of computation → Discrete optimization

Keywords and phrases algorithms, complexity, optimization, graph theory, facility location

Digital Object Identifier 10.4230/LIPIcs.STACS.2019.33

Related Version A full version of the paper is available at https://arxiv.org/abs/1811.08918.

Funding Stefan Lendl: Supported by the Austrian Science Fund (FWF): W1230, Doctoral Program
“Discrete Mathematics”.
Gerhard J. Woeginger : Supported by the DFG RTG 2236 “UnRAVeL”.

Acknowledgements The research in this paper has been started during the Lorentz Center Workshop
on Fixed-Parameter Computational Geometry, which was organized in May 2018 in Leiden. We thank
the Lorentz Center for its hospitality. Alexander Grigoriev and Gerhard Woeginger acknowledge
helpful discussions with Fedor Fomin, Petr Golovach and Jesper Nederlof.

1 Introduction

A large part of the facility location literature deals with desirable facilities that people like
to have nearby, such as service centers, police departments, fire stations, and warehouses.
However, there also do exist facilities that are undesirable and obnoxious, such as nuclear
reactors, garbage dumps, chemical plants, military installations, and high security penal
institutions. A standard goal in location theory is to spread out such obnoxious facilities and
to avoid their accumulation and concentration in a small region; see for instance Erkut &
Neuman [6] and Cappanera [2] for comprehensive surveys on this topic.

In this paper, we investigate the location of obnoxious facilities in a metric space whose
topology is determined by a graph. Formally, let G = (V,E) be an undirected connected
graph, where every edge is rectifiable and has unit length. Let P (G) denote the continuum set

© Alexander Grigoriev, Tim A. Hartmann, Stefan Lendl, and Gerhard J. Woeginger;
licensed under Creative Commons License CC-BY

36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019).
Editors: Rolf Niedermeier and Christophe Paul; Article No. 33; pp. 33:1–33:11

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:a.grigoriev@maastrichtuniversity.nl
mailto:hartmann@algo.rwth-aachen.de
mailto:lendl@math.tugraz.at
mailto:woeginger@algo.rwth-aachen.de
https://doi.org/10.4230/LIPIcs.STACS.2019.33
https://arxiv.org/abs/1811.08918
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

33:2 Dispersing Obnoxious Facilities on a Graph

of points on all the edges in E together with all the vertices in V . For two points p, q ∈ P (G),
we denote by d(p, q) the length of a shortest path connecting p and q in the graph. A subset
S ⊂ P (G) is said to be δ-dispersed for some positive real number δ, if any two points p, q ∈ S
with p 6= q are at distance d(p, q) ≥ δ from each other. Our goal is to compute for a given
graph G = (V,E) and a given positive real number δ a maximum cardinality subset S ⊂ P (G)
that is δ-dispersed. Such a set S is called an optimal δ-dispersed set, and |S| is called the
δ-dispersion number δ-Disp(G) of the graph G.

Known and related results
Obnoxious facility location goes back to the seminal articles of Goldman & Dearing [10]
from 1975 and Church & Garfinkel [3] from 1978. The area actually covers a wide variety of
problem variants and models; some models specify a geometric setting, while other models
use a graph-theoretic setting.

For example, Abravaya & Segal [1] consider a purely geometric variant of obnoxious
facility location, where a maximum cardinality set of obnoxious facilities has to be placed
in a rectangular region, such that their pairwise distance as well as the distance to a fixed
set of demand sites is above a given threshold. As another example we mention the graph-
theoretic model of Tamir [15], where every edge e ∈ E of the underlying graph G = (V,E)
is rectifiable and has a given edge-dependent length `(e). Tamir discusses the complexity
and approximability of various optimization problems with various objective functions. One
consequence of [15] is that if the graph G is a tree, then the value δ-Disp(G) can be computed
in polynomial time. Segal [14] locates a single obnoxious facility on a network under various
objective functions, such as maximizing the smallest distance from the facility to the clients
on the network or maximizing the total sum of the distances between facility and clients.

Megiddo & Tamir [13] consider the covering problem that is dual to the δ-dispersion
packing problem: Given a graph G = (V,E) with rectifiable unit-length edges, find a
minimum cardinality subset S ⊂ P (G) such that every point in P (G) is at distance at most
δ from one of the facilities in S. Among many other results [13] shows that this covering
problem is NP-hard for δ = 2.

Our results
We provide a complete picture of the complexity of computing the δ-dispersion number for
connected graphs G = (V,E) and positive rational numbers δ.

If δ = 1/b for some integer b, then the δ-dispersion number of G can be written down
without really looking at the structure of the graph: IfG is a tree then δ-Disp(G) = b|E|+1,
and if G is not a tree then δ-Disp(G) = b|E|.
If δ = 2/b for some integer b, then δ-Disp(G) can be computed in polynomial time. The
algorithm uses the Edmonds-Gallai decomposition of G and reformulates the problem as
a submodular optimization problem.
If δ = a/b for integers a and b with a ≥ 3 and gcd(a, b) = 1, then the computation of
δ-Disp(G) is an NP-hard problem.

The rest of the paper is organized as follows. Section 2 summarizes the basic notations
and states several technical observations. Section 3 presents the NP-hardness results. The
reductions are essentially based on routine methods, but need to resolve certain number-
theoretic issues. Our technical main contribution is the polynomial time algorithm for the
case δ = 2 as developed in Section 4; this result is heavily based on tools from matching
theory. Section 5 summarizes the polynomially solvable special cases and provides additional
structural insights.

A. Grigoriev, T. A. Hartmann, S. Lendl, and G. J. Woeginger 33:3

2 Notation and technical preliminaries

All graphs in this paper are undirected and connected, and all edges have unit length.
Throughout the paper we use the word vertex in the graph-theoretic sense, and we use the
word point to denote the elements of the geometric structure P (G). For a graph G = (V,E)
and a subset V ′ ⊆ V , we denote by G[V ′] the subgraph induced by V ′. For an integer c ≥ 1,
the c-subdivision of G is the graph that results from G by subdividing every edge in E by
c− 1 new vertices into c new edges.

For an edge e = {u, v} and a real number λ with 0 ≤ λ ≤ 1, we denote by p(u, v, λ) the
point on e that has distance λ from vertex u. Note that p(u, v, 0) = u and p(u, v, 1) = v, and
note that point p(u, v, λ) coincides with point p(v, u, 1− λ); hence we will sometimes assume
without loss of generality that λ ≤ 1/2.

I Lemma 2.1. Let G be a graph, let c ≥ 1 be an integer, and let G′ be the c-subdivision of
G. Then for every δ > 0, the δ-dispersed sets in G are in one-to-one correspondence with
the (c · δ)-dispersed sets in G′. In particular, δ-Disp(G) = (c · δ)-Disp(G′).

Proof. Every point p(u, v, λ) in P (G) translates into a corresponding point in P (G′) that
lies on the subdivided edge between u and v and is at distance c · λ from vertex u. J

Lemma 2.1 has many useful consequences, as for instance the following:

I Lemma 2.2. Let δ > 0 and let c ≥ 1 be an integer.
If the problem of computing the δ-dispersion number is NP-hard, then also the problem of
computing the (c · δ)-dispersion number is NP-hard.
If the problem of computing the (c · δ)-dispersion number is polynomially solvable, then
also the problem of computing the δ-dispersion number is polynomially solvable.

Proof. By Lemma 2.1 the c-subdivision of a graph yields a polynomial time reduction from
computing δ-dispersions to computing (c · δ)-dispersions. J

For integers ` and k, the rational number `/k is called k-simple. A set S ⊆ P (G) is
k-simple, if for every point p(u, v, λ) in S the number λ is k-simple.

I Lemma 2.3. Let δ = a/b with integers a and b, and let G = (V,E) be a graph. Then there
exists an optimal δ-dispersed set S∗ that is 2b-simple.

Proof. We first handle the cases with b = 1, so that δ is integer. Consider an optimal
δ-dispersed set S for graph G. Note that for every vertex u, at most one point p(u, v, λ) with
v ∈ V and 0 ≤ λ < 1/2 is in S. For every point p = p(u, v, λ) with 0 ≤ λ ≤ 1/2 in S, we
put a corresponding point p∗ into set S∗: If 0 ≤ λ < 1/2 then p∗ = p(u, v, 0), and if λ = 1/2
then p∗ = p(u, v, 1/2). As all points in the resulting set S∗ are either vertices or midpoints
of edges, we get that S∗ is 2-simple. We claim that S∗ is still δ-dispersed: Consider two
distinct points p∗ and q∗ in S∗. Note that d(p, p∗) < 1/2 and d(q, q∗) < 1/2 by construction.

If p∗ and q∗ both are vertices in V , then the distance d(p∗, q∗) is integer. Suppose for
the sake of contradiction that d(p∗, q∗) < δ, which by integrality implies d(p∗, q∗) ≤ δ − 1
The triangle inequality yields d(p, q) ≤ d(p, p∗) + d(p∗, q∗) + d(q∗, q). The left hand
side in this inequality is at least δ, wheras its right hand side is strictly smaller than
(1/2) + (δ − 1) + (1/2). This contradiction shows d(p∗, q∗) ≥ δ.
If p∗ and q∗ both are midpoints of edges, then p = p∗ and q = q∗ yields d(p∗, q∗) ≥ δ.

STACS 2019

33:4 Dispersing Obnoxious Facilities on a Graph

If p∗ is the midpoint of some edge and q∗ is a vertex, then d(p∗, q∗) = D + 1/2 for some
integer D. The triangle inequality together with p = p∗ implies δ ≤ d(p, q) = d(p∗, q) ≤
d(p∗, q∗) + d(q∗, q) < D + 1. This implies D ≥ δ, so that the desired d(p∗, q∗) ≥ δ + 1/2
holds.

Since S and S∗ have the same cardinality, we conclude that S∗ is an optimal δ-dispersed set
that is 2-simple, exactly as desired.

In the cases where δ = a/b for some integer b ≥ 2, we consider the b-subdivision G′ of G.
By the above discussion, G′ possesses an optimal a-dispersed set S′ that is 2-simple. Then
Lemma 2.1 translates S′ into an optimal δ-dispersed set S for G that is 2b-simple. J

3 NP-completeness results

In this section we present our NP-hardness proofs for computing the δ-dispersion number.
All proofs are done through polynomial time reductions from the following NP-hard variant
of the independent set problem; see Garey & Johnson [9].

Problem: Independent Set in Cubic Graphs (Cubic-Ind-Set)

Instance: An undirected, connected graph H = (VH , EH) in which every vertex is
adjacent to exactly three other vertices; an integer bound k.

Question: Does H contain an independent set I with |I| ≥ k vertices?

Throughout this section we consider a fixed rational number δ = a/b, where a and b are
positive integers that satisfy gcd(a, b) = 1 and a ≥ 3. Section 3.1 discusses the cases with
odd numerators a ≥ 3, and Section 3.2 discusses the cases with even numerators a ≥ 4. It is
instructive to verify that our arguments do not work for the cases with a = 1 and a = 2, as
our gadgets and our arguments break down at various places.

3.1 NP-hard cases with odd numerator
Throughout this section we consider a fixed rational number δ = a/b where gcd(a, b) = 1 and
where a ≥ 3 is an odd integer. For the NP-hardness proof, we first determine four positive
integers x1, y1, x2, y2 that satisfy the following equations (1) and (2).

2b · x1 − 2a · y1 = a− 1 (1)

b · x2 − a · y2 = 1 (2)

Note that the value a− 1 on the right hand side of equation (1) is even, and hence is divisible
by the greatest common divisor gcd(2b, 2a) = 2 of the coefficients in the left hand side. With
this, Bézout’s lemma yields the existence of positive integers x1 and y1 that satisfy (1).
Bézout’s lemma also yields the existence of positive integers x2 and y2 in equation (2), as
the coefficients in the left hand are relatively prime.

Our reduction now starts from an arbitrary instance H = (VH , EH) and k of Cubic-Ind-
Set, and constructs a corresponding dispersion instance G = (VG, EG) from it.

For every vertex v ∈ VH , we create a corresponding vertex v∗ in VG.
For every edge e = {u, v} ∈ EH , we create a corresponding vertex e∗ in VG.
For every edge e = {u, v} ∈ EH , we create (i) a path with x1 edges that connects vertex
u∗ to vertex e∗, (ii) another path with x1 edges that connects v∗ to e∗, and (iii) a cycle
C(e) with x2 edges that runs through vertex e∗.

A. Grigoriev, T. A. Hartmann, S. Lendl, and G. J. Woeginger 33:5

u∗ v∗

e∗︸ ︷︷ ︸
path on x1 edges

︸ ︷︷ ︸
path on x1 edges

cycle C(e) on x2 edges

Figure 1 The edge e = {u, v} in the instance of Cubic-Ind-Set translates into three vertices u∗,
e∗, v∗ in the dispersion instance, together with two paths and one cycle.

This completes the description of the graph G = (VG, EG); see Figure 1 for an illustration.
We claim that graph H contains an independent set of size k, if and only if (a/b)-Disp(G) ≥
k + (2y1 + y2)|EH |.

I Lemma 3.1. If graph H contains an independent set of size k, then the (a/b)-dispersion
number of graph G is at least k + (2y1 + y2)|EH |.

Proof. Let I be an independent set of size k in graph H = (VH , EH). We construct from I

a δ-dispersed set S ⊂ P (G) as follows. Let u ∈ VH be a vertex, and let e1, e2, e3 be the three
edges in EH that are incident to u.

If u ∈ I, then we put point u∗ into S. On each of the three paths that connect vertex u∗
respectively to vertex e∗i (i = 1, 2, 3), we select y1 further points for S. The first selected
point is at distance δ from u∗, and every further selected point is at distance δ = a/b from
the preceding selected point. By equation (1), on each of the three paths the distance
from the final selected point to point e∗i (i = 1, 2, 3) then equals (a− 1)/(2b).
If u /∈ I, then on each of the three paths between u∗ and e∗i (i = 1, 2, 3) we select y1
points for S. The first selected point is at distance δ/2 = a/(2b) from u∗, and every
further selected point is at distance δ from the preceding selected point. By equation (1),
the distance from the final selected point to point e∗ then equals (2a− 1)/(2b).

Furthermore, for every edge e ∈ EH we select y2 points from the cycle C(e) for S:
We start in point e∗ and traverse C(e) in clockwise direction. The first selected point is
at distance (a+ 1)/(2b) from point e∗, and every further selected point is at distance δ
from the preceding selected point. By equation (2), the distance from the final selected
point to point e∗ then equals (a+ 1)/(2b).

This completes the construction of set S. Now let us count the points in S. First, there are
the k points u∗ ∈ S for which u ∈ I. Furthermore, for every edge e = {u, v} ∈ EH there
are 2y1 points in S that lie on the two paths from u∗ to e∗ and from e∗ to v∗. Finally, for
every edge e ∈ EH there are y2 points that lie on the cycle C(e). Altogether, this yields the
desired size k + (2y1 + y2)|EH | for S.

It remains to verify that the point set S is δ-dispersed. By construction, the points
selected from each path are at distance at least δ from each other, and the same holds for
the points selected from each cycle. If vertex u∗ is in S, then all selected points on the three
incident paths are at distance at least δ from u∗. If vertex u∗ is not in S, then the first
selected point on every path is at distance δ/2 from u∗, so that these points are pairwise

STACS 2019

33:6 Dispersing Obnoxious Facilities on a Graph

at distance at least δ from each other. Hence the only potential trouble could arise in the
neighborhood of point e∗, where paths and cycles are glued together. Every selected point
on C(e) is at distance at least (a+ 1)/(2b) from point e∗. Every selected point on some path
from u∗ to e∗ is at distance at least (a− 1)/(2b) from e∗ if u ∈ I and is at distance at least
(2a− 1)/(2b) if u /∈ I. Since for any edge e = {u, v} ∈ EH at most one of the end vertices u
and v is in I, at most one selected point can be at distance (a − 1)/(2b) from e∗, and all
other points are at distance at least (a+ 1)/(2b) from e∗. Hence S is indeed δ-dispersed. J

I Lemma 3.2. If the (a/b)-dispersion number of graph G is at least k+ (2y1 + y2)|EH |, then
graph H contains an independent set of size k.

Proof. Let S be an (a/b)-dispersed set of size k+ (2y1 + y2)|EH |. By Lemma 2.3 we assume
that for every point p(u, v, λ) in S, the denominator of the rational number λ is 2b.

For an edge e = {u, v} ∈ EH , let us consider its corresponding path π on x1 edges
that connects vertex u∗ to vertex e∗. Suppose that there is some point p in S ∩ π with
d(p, e∗) ≤ (a− 2)/(2b). Then by Equation (2), set S will contain at most y2 − 1 points from
the cycle C(e). In this case we restructure S as follows: We remove point p together with
the at most y2 − 1 points on cycle C(e) from S, and instead insert y2 points into S that
are δ-dispersed on C(e) and that all are at distance at least (a+ 1)/(2b) from e∗. As this
restructuring does not decrease the size of S, we will from now on assume without loss of
generality that d(p, e∗) ≥ (a− 1)/(2b) holds for every point p ∈ S ∩ π.

Now let us take a closer look at the points in S ∩ π. Equation (1) can be rewritten into
x1 = y1δ + (a− 1)/(2b), which yields |S ∩ π| ≤ y1 + 1.

In the equality case |S ∩ π| = y1 + 1, we must have u∗ ∈ S and also the point on π at
distance (a− 1)/(2b) from e∗ must be in S.
In case |S ∩π| ≤ y1, there is ample space for picking y1 points from π that are δ-dispersed
and that are at distance at least δ/2 from u∗ and at distance at least δ/2 from e∗. Hence
we will from now on assume |S ∩ π| = y1 in these cases.

Now let us count: Set S contains exactly y1 interior points from every path π, and
altogether there are 2|EH | such paths. Set S contains exactly y2 points from every cycle
C(e), and altogether there are |EH | such cycles. Since |S| ≥ k + (2y1 + y2)|EH |, this means
that S must contain at least k further points on vertices u∗ with u ∈ VH . The corresponding
subset of VH is called I.

Finally, we claim that this set I with |I| ≥ k forms an independent set in graph H.
Suppose for the sake of contradiction that there is an edge e = {u, v} ∈ EH with u∗ ∈ I and
v∗ ∈ I. Consider the two paths that connect u∗ to e∗ and v∗ to E∗. By the above discussion,
S then contains two points at distance (a− 1)/(2b) from e∗. As these two points are then at
distance at most (a− 1)/b < δ from each other, we arrive at the desired contradiction. J

The statements in Lemma 3.1 and in 3.2 yield the following theorem.

I Theorem 3.3. Let a and b be positive integers with gcd(a, b) = 1 and odd a ≥ 3. Then it
is NP-hard to compute the (a/b)-dispersion number of a graph G.

3.2 NP-hard cases with even numerator
In this section we consider a fixed rational number δ = a/b where gcd(a, b) = 1 and where
a ≥ 4 is an even integer. The NP-hardness argument is essentially a minor variation of the
argument in Section 3.1 for the cases with odd numerators. Therefore, we will only explain
the modifications, and leave all further details to the reader.

A. Grigoriev, T. A. Hartmann, S. Lendl, and G. J. Woeginger 33:7

The NP-hardness proof in Section 3.1 is centered around the four positive integers
x1, y1, x2, y2 introduced in equations (1) and (2). We perform the same reduction from
Cubic-Ind-Set as in Section 3.1 but with positive integers x1, y1, x2, y2 that satisfy the
following equations (3) and (4).

2b · x1 − 2a · y1 = a− 2 (3)

b · x2 − a · y2 = 2 (4)

In (3), the right hand side a− 2 is even and divisible by the greatest common divisor of the
coefficients in the left hand side. In (4), the coefficients in the left hand are relatively prime.
Therefore Bézout’s lemma can be applied to both equations.

The graph G = (VG, EG) is defined as before, with a vertex v∗ for every v ∈ VH and
a vertex e∗ for every e ∈ EH , with paths on x1 edges and cycles C(e) on x2 edges. The
arguments in Lemma 3.1 and 3.2 can easily be adapted and yield the following theorem.

I Theorem 3.4. Let a and b be positive integers with gcd(a, b) = 1 and even a ≥ 4. Then it
is NP-hard to compute the (a/b)-dispersion number of a graph G.

3.3 Containment in NP
In this section we consider the decision version of δ-dispersion: “For a given graph G = (V,E),
a positive real δ, and a bound k, decide whether δ-Disp(G) ≤ k.” Our NP-certificate specifies
the following partial information on a δ-dispersed set S in a graph G = (V,E):

The certificate specifies the set W := V ∩ S∗.
For every edge e ∈ E, the certificate specifies the number ne of facilities that are located
in the interior of e.

As every edge accommodates at most 1/δ points from S, the encoding length of our certificate
is polynomially bounded in the instance size. For verifying the certificate, we introduce for
every vertex u and for every incident edge e = {u, v} ∈ E with ne > 0 a corresponding real
variable x(u, e), which models the distance between vertex u and the closest point from S in
the interior of edge e. Finally, we introduce the following linear constraints:

The non-negativity constraints x(u, e) ≥ 0.
For every edge e = {u, v} ∈ E, the inequality x(u, e) + (ne − 1)δ + x(v, e) ≤ 1.
For all u, v ∈W with u 6= v, the inequality d(u, v) ≥ δ.
For all w ∈W and e = {u, v} ∈ E, the inequality x(u, e) + d(u,w) ≥ δ.
For all e = {u, v} ∈ E and e′ = {u′, v′} ∈ E, the inequality x(u, e)+d(u, u′)+x(u′, e′) ≥ δ.

These inequalities enforce that on every edge the variables properly work together, and that
the underlying point set indeed is δ-dispersed. For verifying the certificate, we simply check
in polynomial time whether the resulting linear program has a feasible solution, and whether
|W |+

∑
e∈E ne ≥ k holds.

I Theorem 3.5. The decision version of δ-dispersion lies in NP, even if the value δ is given
as part of the input.

4 The polynomial time result for δ = 2

This section derives a polynomial time algorithm for computing the 2-dispersion number
of a graph. This algorithm is heavily based on tools from matching theory, as for instance
developed in the book by Lovász & Plummer [12]. As usual, the size of a maximum cardinality
matching in graph G is denoted by ν(G).

STACS 2019

33:8 Dispersing Obnoxious Facilities on a Graph

I Lemma 4.1. Every graph G = (V,E) satisfies 2-Disp(G) ≥ ν(G).

Proof. The midpoints of the edges in every matching form a 2-dispersed set. J

A 2-dispersed set is in canonical form, if it entirely consists of vertices and of midpoints of
edges. Recall that by Lemma 2.3 every graph G = (V,E) possesses an optimal 2-dispersed set
in canonical form. Throughout this section, we will consider 2-dispersed (but not necessarily
optimal) sets S∗ in canonical form; we always let V ∗ denote the set of vertices in S∗, and we
let E∗ denote the set of edges whose midpoints are in S∗. Finally, N∗ ⊆ V denotes the set
of vertices in V − V ∗ that have a neighbor in V ∗. As S∗ is 2-dispersed, the vertex set V ∗
forms an independent set in G, and the edge set E∗ forms a matching in G. Furthermore,
the vertex set N∗ separates the vertices in V ∗ from the edges in E∗; in particular, no edge
in E∗ covers any vertex in N∗. We start with two technical lemmas that will be useful in
later arguments.

I Lemma 4.2. Let G = (V,E) be a graph with a perfect matching, and let S∗ be some
2-dispersed set in canonical form in G. Then |S∗| ≤ ν(G).

Proof. Let M ⊆ E denote a perfect matching in G, and for every vertex v ∈ V let e(v)
denote its incident edge in matching M . Consider the vertex set V ∗ and the edge set E∗
that correspond to set S∗. Then E∗ together with the edges e(v) with v ∈ V ∗ forms another
matching M ′ of cardinality |E∗| + |V ∗| = |S∗| in G. Now |S∗| = |M ′| ≤ ν(G) yields the
desired inequality. J

A graph G is factor-critical [12], if for every vertex x ∈ V there exists a matching that
covers all vertices except x. A near-perfect matching in a graph covers all vertices in V

except one. Note that the statement in the following lemma cannot be extended to graphs
that consist of a single vertex.

I Lemma 4.3. Every 2-dispersed set S∗ in a factor-critical graph G = (V,E) with |V | ≥ 3
satisfies |S∗| ≤ ν(G).

Proof. Without loss of generality we assume that S∗ is in canonical form, and we let V ∗
and E∗ denote the underlying vertex set and edge set, respectively. If V ∗ is empty, we
have |S∗| = |E∗| ≤ ν(G) since E∗ is a matching. If V ∗ is non-empty, then also N∗ is
non-empty (here we use the condition |V | ≥ 3) and we pick some vertex x ∈ N∗. We consider
a near-perfect matching M that covers all vertices except x, and we let e(v) denote the
edge incident to v ∈ V in matching M . Then E∗ together with the edges e(v) with v ∈ V ∗
forms another matching M ′ of cardinality |E∗|+ |V ∗| = |S∗| in G. The claim follows from
|S∗| = |M ′| ≤ ν(G). J

The following theorem goes back to Edmonds [5] and Gallai [7, 8]; see also Lovász &
Plummer [12]. Figure 2 gives an illustration.

I Theorem 4.4. (Edmonds-Gallai structure theorem) Let G = (V,E) be a graph. The
following decomposition of V into three sets X,Y, Z can be computed in polynomial time.

X = {v ∈ V | there exists a maximum matching that misses v}

Y = {v ∈ V | v /∈ X and v is adjacent to some vertex in X}

Z = V − (X ∪ Y)

The Edmonds-Gallai decomposition has the following properties:

A. Grigoriev, T. A. Hartmann, S. Lendl, and G. J. Woeginger 33:9

X

Y

Z

Figure 2 An illustration for the Edmonds-Gallai structure theorem. A maximum matching is
shown with fat edges, and the non-matching edges are dashed.

Set X is the union of the odd-sized components of G−Y ; every such odd-sized component
is factor-critical. Set Z is the union of the even-sized components of G− Y .
Every maximum matching in G induces a perfect matching on every (even-sized) compon-
ent of Z and a near-perfect matching on every (odd-sized) component of X. Furthermore,
the matching matches the vertices in Y to vertices that belong to |Y | different components
of X.

We further subdivide the set X in the Edmonds-Gallai decomposition into two parts: Set
X1 contains the vertices of X that belong to components of size 1, and set X≥3 contains the
vertices that belong to (odd-sized) components of size at least 3. The vicinity vic(v) of a
vertex v ∈ V consists of vertex v itself and of the midpoints of all edges incident to v.

I Lemma 4.5. There exists an optimal 2-dispersed set S∗ in canonical form (with underlying
edge set E∗) that additionally satisfies the following three properties.

P1. In every component of X≥3, the set E∗ induces a near-perfect matching.
P2. For every vertex y ∈ Y , the set vic(y) ∩ S∗ is either empty or consists of the

midpoint of some edge between X and Y .
P3. In every component of Z, the set E∗ induces a perfect matching.

Proof. We start from an arbitrary optimal 2-dispersed set S∗ (in canonical form, with
corresponding sets V ∗ and E∗) and transform it in two steps into an optimal 2-dispersed set
of the desired form.

In the first transformation step, we exploit a matching M between sets Y and X that
matches every vertex y ∈ Y to some vertex M(y), so that for y1 6= y2 the vertices M(y1)
and M(y2) belong to different components of X; see Theorem 4.4. A vertex y ∈ Y is called
blocked, if it is adjacent to some x ∈ X1 ∩ S∗. As for a blocked vertex the set vic(y) ∩ S∗ is
already empty (and hence already satisfies property P2), we will not touch it at the moment.
We transform S∗ in the following way.

STACS 2019

33:10 Dispersing Obnoxious Facilities on a Graph

For every non-blocked vertex y ∈ Y , the set vic(y) ∩ S∗ contains at most one point. We
remove this point from S∗, and we insert instead the midpoint of the edge between y and
M(y) into S∗. These operations cannot decrease the size of S∗.
Every (odd-sized) component C of X≥3 contains at most one point M(y) with y ∈ Y .
We compute a near-perfect matching MC for C that misses this vertex M(y) (and if no
such vertex is in C, matching MC misses an arbitrary vertex of C). We remove all points
in C from S∗, and we insert instead the midpoints of the edges in MC . As by Lemma 4.3
we remove at most ν(C) points and as we insert exactly ν(C) points, these operations
will not decrease the size of S∗.

The resulting set S∗ is of course again in canonical form, and it is also easy to see that S∗ is
still 2-dispersed. Furthermore, S∗ now satisfies properties P1 and P2.

In the second transformation step, we note that the current S∗ does neither contain
vertices from Y nor midpoints of edges between Y and Z. For every (even-sized) component
C of Z, we compute a perfect matching MC . We remove all points in C from S∗, and we
insert instead the midpoints of the edges in MC . As by Lemma 4.3 we remove at most ν(C)
points and as we insert exactly ν(C) points, these operations will not decrease the size of S∗.
The resulting set S∗ is 2-dispersed and satisfies properties P1, P2, and P3. J

The optimal 2-dispersed sets in Lemma 4.5 are strongly structured and fairly easy to
understand: The perfect matchings in set Z contribute exactly |Z|/2 points to S∗. Every
(odd-sized) component C in X≥3 contributes exactly (|C| − 1)/2 points to S∗. The only
remaining open decisions concern the points in X1 and the midpoints of the edges {y,M(y)}
for y ∈ Y . So let us consider the set T := S∗ ∩X1, and let Γ(T) ⊂ Y denote the vertices in
Y that are adjacent to some vertex in T . Then every vertex y in Y − Γ(T) contributes the
midpoint of {y,M(y)} to S∗, and every vertex x ∈ T contributes itself to S∗.

Hence the remaining optimization problem boils down to finding a subset T ⊆ X1 that
maximizes the function value f(T) := |Y − Γ(T)|+ |T |, which is equivalent to minimizing
the function value

g(T) := |Γ(T)| − |T |. (5)

The set function g(T) in (5) is a submodular function, as it satisfies g(A)+g(B) ≥ g(A∪B)+
g(A ∩B) for all A,B ⊆ X1; see for instance Grötschel, Lovász & Schrijver [11]. Therefore,
the minimum value of g(T) can be determined in polynomial time by the ellipsoid method
[11], or by Cunningham’s combinatorial algorithm [4].

We finally summarize all our insights and formulate the main result of this section.

I Theorem 4.6. The 2-dispersion number of a graph G can be computed in polynomial time.

5 The polynomially solvable cases

Theorem 4.6 and Lemma 2.2 together imply that for every rational number δ = a/b with
numerator a ≤ 2, the δ-dispersion number of a graph can be computed in polynomial time.
We now present some results that provide additional structural insights into these cases. The
cases where the numerator is a = 1 are structurally trivial, and the value of the corresponding
δ-dispersion number can be written down with the sole knowledge of |V | and |E|.

The proofs for the results of this section can be found in the full version of this paper.

I Lemma 5.1. Let δ = 1/b for some integer b, and let G = (V,E) be a connected graph.
If G is a tree then δ-Disp(G) = b|E|+ 1.
If G is not a tree then δ-Disp(G) = b|E|.

A. Grigoriev, T. A. Hartmann, S. Lendl, and G. J. Woeginger 33:11

The following lemma derives an explicit (and very simple) connection between the
2-dispersion number and the (2/b)-dispersion number (with odd denominator b) of a graph.

I Lemma 5.2. Let G = (V,E) be a graph, let z ≥ 1 be an integer, and let δ = 2/(2z + 1).
Then the dispersion numbers satisfy δ-Disp(G) = 2-Disp(G) + z|E|.

References
1 S. Abravaya and M. Segal. Maximizing the number of obnoxious facilities to locate within a

bounded region. Computers and Operations Research, 37:163–171, 2010.
2 P. Cappanera. A survey on obnoxious facility location problems. Technical report, Dipartimento

di Informatica, Universitá di Pisa, Italy, 2010.
3 R.L. Church and R.S. Garfinkel. Locating an obnoxious facility on a network. Transportation

Science, 12:107–118, 1978.
4 W.R. Cunningham. On submodular function minimization. Combinatorica, 5:185–192, 1985.
5 J. Edmonds. Paths, trees, and flowers. Canadian Journal of Mathematics, 17:449–467, 1965.
6 E. Erkut and S. Neuman. Analytical models for locating undesirable facilities. European

Journal of Operational Research, 40:275–291, 1989.
7 T. Gallai. Kritische Graphen II. A Magyar Tudományos Akadémia Matematikai Kutató

Intézetének Közleményei, 8:373–395, 1963.
8 T. Gallai. Maximale Systeme unabhängiger Kanten. A Magyar Tudományos Akadémia

Matematikai Kutató Intézetének Közleményei, 9:401–413, 1964.
9 M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of

NP-Completeness. W. H. Freeman, 1979.
10 A.J. Goldman and P.M. Dearing. Concepts of optimal location for partially noxious facilities.

ORSA Bulletin, 23:B–31, 1975.
11 M. Grötschel, L. Lovász, and A. Schrijver. Geometric algorithms and combinatorial optimization.

Springer Verlag, 1988.
12 L. Lovász and M.D. Plummer. Matching Theory. Annals of Discrete Mathematics 29, North-

Holland, Amsterdam, 1986.
13 N. Megiddo and A. Tamir. New results on the complexity of p-center problems. SIAM Journal

on Computing, 12:751–758, 1983.
14 M. Segal. Placing an obnoxious facility in geometric networks. Nordic Journal of Computing,

10:224–237, 2003.
15 A. Tamir. Obnoxious facility location on graphs. SIAM Journal on Discrete Mathematics,

4:550–567, 1991.

STACS 2019

Reachability in O(log n) Genus Graphs is in
Unambiguous Logspace
Chetan Gupta
Indian Institute of Technology, Kanpur, India
gchetan@cse.iitk.ac.in

Vimal Raj Sharma
Indian Institute of Technology, Kanpur, India
vimalraj@cse.iitk.ac.in

Raghunath Tewari
Indian Institute of Technology, Kanpur, India
rtewari@cse.iitk.ac.in

Abstract
We show that given an embedding of an O(logn) genus graph G and two vertices s and t in G,
deciding if there is a path from s to t in G is in unambiguous logarithmic space.

Unambiguous computation is a restriction of nondeterministic computation where the non-
deterministic machine has at most one accepting computation path on each input. An important
fundamental question in computational complexity theory is whether this is an actual restriction or
are unambiguous computations as powerful as general nondeterminism. We investigate this problem
in the domain of logarithmic space bounded computations, where the corresponding unambiguous
and general nondeterministic classes are UL and NL respectively.

In 1997 Reinhardt and Allender showed that NL and UL are equal in a non-uniform model.
More specifically they showed that if one can efficiently construct an O(logn)-bit min-unique weight
function for a graph, then these classes are equal unconditionally as well. In other words, they gave
a UL algorithm to solve reachability in graphs with a min-unique weight assignment. Using this
approach reachability in various classes of graphs such as planar graphs, constant genus graphs,
minor free graphs, etc., have been shown to be in UL by devising min-unique weight functions for
those classes.

In this paper we improve these results by constructing a min-unique weight function for O(logn)
genus graphs. We define signature of a path in a graph as the parity of the number of crossings of
that path with respect to each handle of the surface on which the graph is embedded. We construct
our weight function in two steps. First we ensure that between any pair of vertices, amongst all
paths having the same signature, the minimum weight path is unique. Now since in a genus g
graph there are 22g many possible signatures, we use the hashing scheme of Fredman, Komlós and
Szemerédi to isolate a unique minimum weight path among these 22g many paths isolated in the
first step.

2012 ACM Subject Classification Theory of computation → Complexity classes

Keywords and phrases logspace unambiguity, high genus, path isolation

Digital Object Identifier 10.4230/LIPIcs.STACS.2019.34

Acknowledgements The authors would like to thank Ministry of Electronics and IT, India for
supporting this research through the Visvesvaraya PhD and YFRF program. The third author
would also like to thank DST for providing funding support.

1 Introduction

Deciding reachability between a pair of vertices in a graph is an important problem in
computational complexity theory. Directed graph reachability characterizes the complexity of
the class nondeterministic logspace (NL) and undirected graph reachability characterizes the

© Chetan Gupta, Vimal Raj Sharma, and Raghunath Tewari;
licensed under Creative Commons License CC-BY

36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019).
Editors: Rolf Niedermeier and Christophe Paul; Article No. 34; pp. 34:1–34:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:gchetan@cse.iitk.ac.in
mailto:vimalraj@cse.iitk.ac.in
mailto:rtewari@cse.iitk.ac.in
https://doi.org/10.4230/LIPIcs.STACS.2019.34
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

34:2 Reachability in O(log n) Genus Graphs is in Unambiguous Logspace

complexity of the class deterministic logspace (L). The latter follows due to a seminal result
by Reingold in 2005 [24]. Several other variants of this problem characterize the complexity
of other complexity classes [6, 13, 7].

Unambiguous computation is a natural restriction of nondeterministic computation where
for every input the Turing machine can have at most one accepting computation path. In the
domain of logarithmic space, this defines the class unambiguous logspace (UL) of languages
for which there are nondeterministic logspace bounded Turing machines that have exactly one
accepting path for every input in the language and zero accepting path otherwise. The class
UL was introduced in [9] and subsequently its properties were also studied in the paper [4].
The relation between NL and UL was not well understood till that point. In 1997, Reinhardt
and Allender showed that NL and UL are equal in a non-uniform setting [25]. Subsequently,
it was shown that if deterministic linear space functions cannot be computed by 2εn sized
circuits then NL = UL [3]. Both these results gave evidence that most likely the classes are
the same unconditionally. Recently directed graph reachability was shown to be decidable by
an unambiguous algorithm running in polynomial time and using O(log2 n) space [20]. The
space bound was improved to O(log1.5 n) in a subsequent result [29].

A graph G is said to be min-unique with respect to a weight function w if for every pair
of vertices in G there is at most one minimum weight path from one vertex to the other
with respect to w. We will call such a weight function a path isolating weight function.
Min-uniqueness has been studied in several papers [30, 16, 25]. Reinhardt and Allender
showed that if graphs in a class of graphs are min-unique with respect to an O(logn) bit
weight function then deciding reachability for that class of graphs is in UL [25]. They also
gave a UL algorithm to check if a graph is min-unique.

The technique of assigning weights to isolate a combinatorial structure is not specific to
the graph reachability problem and has been applied to other computational problems as
well. In a sequence of results it has been shown that assigning an efficiently computable
weight function to a graph class such that the minimum weight perfect matching is unique
with respect to the weight function, results in an efficient parallel algorithm for computing
matching for the respective class of graphs [11, 12, 5, 14]. Another area which has successfully
used the idea of isolating structures to obtain better upper bounds is polynomial identity
testing. More specifically, researchers have used basis isolating weight assignment to obtain
polynomial and quasi-polynomial time algorithms for certain restrictions of the polynomial
identity testing problem [1, 19, 18].

Observe that devising a UL algorithm for directed graph reachability would show that
NL = UL, since directed graph reachability is complete for the class NL. Although the
NL versus UL has been elusive so far, partial progress has been made towards solving this
problem. For several classes of directed graphs, the reachability problem has been shown to
be in UL – such as layered grid graphs [2], planar graphs [8], constant genus graphs [21, 12],
graphs with polynomially many paths from the source to all other vertices [23], K3,3-free
and K5-free graphs [27, 5]. The techniques involve either an efficient construction of a path
isolating weight function or reduction to reachability in a graph class for which the problem
is already known to be in UL.

Reachability in positive genus graphs is a natural extension of planar reachability. Allender
et al. showed that reachability in 1 genus graphs can be reduced to planar reachability [2].
After planar reachability was shown to be in UL, reachability in constant genus graphs was
reduced to reachability in planar graphs [21]. Later a path isolating weight function was also
given for constant genus graphs [12]. Prior to our result, the best known nondeterministic
space upper bound for reachability in non-constant genus graphs was nothing better than
general directed graphs. The question of whether reachability in ω(1) genus graphs belongs
to UL or not has been open for almost a decade.

C. Gupta, V. R. Sharma, and R. Tewari 34:3

1.1 Our Result
In this paper, we make progress towards understanding the space complexity of directed
graph reachability and show the following result.

I Theorem 1. Given a polygonal schema of an O(logn) genus directed graph G, deciding
reachability in G is in UL ∩ coUL.

Given a genus g graph, in the first stage, we give an O(logn) bit weight function wpl which
is essentially the same weight function as defined in [26] and another weight function wlen
which gives weight 1 to every edge in the graph. Weight function wlen ensures that minimum
weight paths among all pairs of vertices are of minimum length as well. We then show that
between every pair of vertices in the graph, the number of minimum weight “topologically
unequivalent” paths is at most 2O(g). For this, we define a notion called signature which
allows us to classify topologically equivalent paths. We show that topologically equivalent
paths are very similar to paths in planar graphs and therefore we can borrow the machinery
for path isolation in planar graphs here as well. In the second stage, we use the hashing
scheme of Fredman, Komlós and Szemerédi [15] to compute an O(logn + g) bit weight
function wfks with respect to which only one among the 2O(g) many paths of the first stage
gets the minimum weight value.

When g is O(logn) the number of such minimum weight paths produced in the first stage
is at most polynomial in n. Thereafter by combining the weight functions wlen, wpl and wfks
we get an O(logn) bit weight function with respect to which the graph is min-unique. We
then apply Reinhardt and Allender’s algorithm to get a UL algorithm for O(logn) genus
reachability.

1.2 Organization of the Paper
The rest of the paper is organized as follows. In Section 2 we define the notations and
framework of our problem. We discuss different representations of high genus graphs and
how to efficiently obtain a representation that is suitable for our purpose. We also state
results from earlier work that we use in this paper. In Section 3 we prove the main result by
giving a min-unique weight function.

2 Preliminaries

Let G = (V,E) be a directed graph on n vertices and m edges. Let uv denote an edge directed
from u to v. A weight function is a map w : E → Z which maps every edge in G to an integer.
A weight function w is said to be skew-symmetric if for every edge uv, w(uv) = −w(vu). For
a set of edges S, w(S) =

∑
e∈S w(e). We can think of different structures in a graph such as

path, walk, cycle as sets of edges and define the weight of the structure accordingly.

2.1 Representation of High Genus Graph
A genus g surface is a sphere with g handles on it. The genus of a graph is the minimum
genus surface on which the graph can be embedded without any edge crossings. Such an
embedding is also called a 2-cell embedding. Since we are dealing with graphs embedded
on surfaces, it is important to specify how the input graph is represented. Given a graph,
computing its genus is NP-hard [28]. To the best of our knowledge, no PTAS is known
either to compute the genus of a graph. So in accordance with the convention followed by

STACS 2019

34:4 Reachability in O(log n) Genus Graphs is in Unambiguous Logspace

earlier papers that deals with problems on bounded genus graphs, we also assume a suitable
representation of the input graph [22, 17]. We use a representation similar to the one used
by Mahajan and Varadarajan [22].

Given a genus g graph G we consider an embedding of G inside a polygon S with 4g
sides, s1, s2, . . . , s4g. We refer to these as the segments of S. Moreover, we assume there
is no vertex on the boundary of the polygon. The segments s4k+1 and s4k+2 are directed
in anti-clockwise and segments s4k+3 and s4k+4 are directed in clockwise direction. The
segments s4k+1 and s4k+3 form a pair together such that an edge can come into one of
them and go out from another. Similarly, segments s4k+2 and s4k+4 form a pair. Also, if
an edge is the jth edge crossing a segment si from head to tail then it will be the jth edge
crossing the paired segment of si from tail to head. Pairs (s4k+1, s4k+3) and (s4k+2, s4k+4)
together constitute the ith handle of the sphere. We assume that we are provided with the
combinatorial embedding of the graph G inside S and an ordering of the edges crossing each
segment si. We also assume without loss of generality that an edge can cross a segment of
the polygonal schema at most once. This is because an edge crossing multiple segments can
be subdivided into several edges in logspace so that reachability is still preserved. We call
this representation the polygonal schema of G.

Let ES be the set of edges in G that cross some segment si. Then observe that Gplanar =
G \ ES is a planar graph. A piecewise straight line embedding of a planar graph is an
embedding where vertices are integral coordinates and an edge is a piecewise straight
line segment connecting its two end points such that no two edges intersect. Given the
combinatorial embedding of a planar graph a piecewise straight line embedding of it can be
constructed in logspace such that each edge consists of at most 4 segments [26].

For a genus g graph G, a flat schema is an embedding of G such that the polygon S is
represented as a straight line segment parallel to the x-axis, the internal planar graph Gplanar
is given as a piecewise straight line embedding and each edge in ES is drawn as a piecewise
straight line segment such that no two edges cross each other. Moreover, all vertices and
points where an edge crosses a segment are integral coordinates. See Figure 1 for an example
of a flat schema of K5.

s2

s3

s4

s1

a b

cd

e

(a) Polygonal schema of K5.

s1 s2 s3 s4

a b

cd

e

(b) Flat schema of K5.

Figure 1 Embeddings of K5.

Given a polygonal schema of G, we can compute a piecewise straight line embedding of
Gplanar in logspace. Now using a similar idea we draw each edge in ES as a piecewise straight
line segment from its end vertices to the corresponding segments of S. We summarize this
process in Lemma 2.

I Lemma 2. Given a polygonal schema of a graph G with 4g segments we can construct
a flat schema of G with 4g segments, having polynomially bounded integer coordinates in
logspace.

C. Gupta, V. R. Sharma, and R. Tewari 34:5

The weight function wpl that we define in Section 3 is similar to the weight function in
[26]. That is why we need edges to be piecewise straight line segments. Also the flat schema
embedding is necessary because we want all edges parallel to the x-axis to have weight 0
with respect to wpl.

2.2 Previous Work
Consider a genus g graph G embedded on a surface of genus g say Γ. A simple cycle C in
G is called a separating cycle if cutting along C divides the surface into at least two parts.
Otherwise C is called a non-separating cycle. We state a characterization of these cycles
from Lemma 4 of Cabello and Mohar [10] and Lemma 10 of Datta et al. [12].

I Theorem 3 ([10, 12]). Consider a polygonal schema of a genus g graph. A cycle C in G is
said to be surface separating if and only if C crosses each segment of the polygonal schema an
even number of times. Moreover, if C is surface separating then with respect to each segment
si, the cycle C alternates between coming into si and going out of it (if C crosses si at all).

We next state the popular hashing result by Fredman, Komlós and Szemerédi.

I Theorem 4 ([15]). Let S = {x1, x2, . . . , xk} be a set of n−bit integers. Then there exists
a O(logn+ log k) bit prime number p so that for all xi 6= xj ∈ S, xi mod p 6= xj mod p.

In Theorem 5 we state a slightly modified version of Reinhardt and Allender’s result that
would be useful for our purpose.

I Theorem 5 ([25]). There is a nondeterministic logspace Turing machine M that takes a
tuple 〈G, s, t, w〉 as input where G is a directed graph on n vertices, s and t are vertices in
G and w is an O(logn) bit edge weight function and outputs the following along a unique
computation path while all other computation paths halt and reject:

Not Min-unique if G is not min-unique with respect to w,
Yes if G is min-unique with respect to w and there is a path from s to t in G, and
No if G is min-unique with respect to w and there is no path from s to t in G.

Finally, in Theorem 6 we state the relation between the area of a simple cycle in a planar
graph and weight of the cycle with respect to a suitable weight function as shown by Tewari
and Vinodchandran.

I Theorem 6 ([26]). Given a piece-wise straight line embedding of a planar graph G, there
exists a logspace computable weight function w such that for any cycle C in G, we have
w(C) = 2 ·Area(C) if C is a counter-clockwise cycle and w(C) = −(2 ·Area(C)) if C is a
clockwise cycle, where Area(C) is the area of the region enclosed by C.

3 Isolating Paths in High Genus Graphs

In this section we show that graphs of logarithmic genus are min-unique with respect to an
O(logn)-bit weight function that can be computed by an unambiguous logspace machine.
Using this weight function in combination with Theorem 5 we get a UL ∩ coUL algorithm for
directed graph reachability in O(logn) genus graphs. Theorem 7 is the main technical result
of this paper where we show the existence and computability of such a weight function.

STACS 2019

34:6 Reachability in O(log n) Genus Graphs is in Unambiguous Logspace

I Theorem 7. Given a genus g directed graph G = (V,E) in terms of its flat schema, there
exists an O(logn + g) bit weight function w : E → Z, such that for every u, v ∈ V , there
exists a unique minimum weight path from u to v with respect to w, if v is reachable from u.
Moreover, there is a nondeterministic O(logn+ g) space algorithm that given G as input,
outputs the weight function w along a unique computation path while all other paths halt
and reject.

Let S = {s1, s2, . . . , s4g} be the set of segments of the flat schema of G. We define a
skew-symmetric weight function wpl that gives non-zero weight to every surface separating
cycle in G. For edges which do not cross any segment of the flat schema (we refer to them
as planar edges), wpl is same as the weight function defined in [26], and for edges which do
cross some segment of the flat schema (we refer to them as crossing edges) we modify the
weight function to be the sum of the weights of the two line segments of the edge. Formally,
for an edge e = uv we define the wpl(e) as:

wpl(e) =
{

(yve
− yue

)(xve
+ xue

) if e is a planar edge
(yu′

e
− yue

)(xu′
e

+ xue
) + (yve

− yv′
e
)(xve

+ xv′
e
) if e is a crossing edge

where (xue , yue) and (xve , yve) are the coordinates of u and v respectively and (xu′
e
, yu′

e
)

and (xv′
e
, yv′

e
) are the coordinates of intersection points of edge e with segments si and sj

respectively, assuming that edge e comes into si and goes out of sj .
We also define another weight function wlen that assigns value one to every edge in the

graph. That is wlen(e) = 1 for every edge e ∈ G. Let wcomb = wlen · nk1 + wpl be the weight
function defined by combining wpl and wlen for a large enough constant k1. As a result the
minimum weight path with respect to wcomb also has the minimum length.

We first show that every surface separating cycle has non-zero weight with respect to wpl.
The idea is to decompose every surface separating cycle into a set of planar cycles having
the same orientation such that the weight of the original cycle is the sum of the weights of
the planar cycles.

I Lemma 8. Let C be a simple surface separating cycle of length at least 3 in G, then
wpl(C) 6= 0.

Proof. A surface separating cycle can be of two types – one which does not intersect with
any segment of the flat schema and the one which does. If C does not intersect any segment
of the flat schema then C is a planar cycle. Hence wpl(C) 6= 0 by [26].

Now consider the case where some edges of C cross the flat schema. From Theorem 3 we
know that since C is a surface separating cycle, therefore, C alternates between going out
and coming into the segments of the flat schema. Without loss of generality assume that the
first edge of C crossing the flat schema going left to right, is coming into it. The other case
is analogous.

For every edge e = uv which crosses the boundary S of the flat schema we subdivide
e into two directed edges ueu′e and v′eve, such that u′e is the point at which uv comes into
some segment si and v′e is the point at which uv goes out of some segment sj . Let C ′
be the cycle corresponding to C formed by this subdivision. By definition of wpl we have
wpl(uv) = wpl(ueu′e) + wpl(v′eve) and hence wpl(C) = wpl(C ′).

Let x1, x2, . . . x2t be the set of intersection points of C ′ and S ordered from left to right.
Add t dummy directed edges from x2i−1 to x2i for all 1 ≤ i ≤ t. This decomposes C ′ into
a set of disjoint planar cycles C1, C2, . . . , Ck such that each Ci has the same orientation
(counter-clockwise, since we assume the first edge is coming into S). See Figure 2 for
an example.

C. Gupta, V. R. Sharma, and R. Tewari 34:7

u vwx y zq

r s

t

(a) Surface separating cycle C.

u vwx y zq

r s

t
C1

C2
C3

u′ x′ y′ q′
w′ v′ t′ z′

(b) Decomposition of C into C1, C2 and C3.

Figure 2 Decomposing a surface separating cycle into planar cycles.

By Theorem 6, wpl(Ci) = 2 · Area(Ci) for each i. Moreover, since the Ci’s have all
the edges of C ′ plus some horizontal edges (the dummy edges) of zero weight, therefore
wpl(C ′) =

∑k
i=1 wpl(Ci) = 2 ·

∑k
i=1 Area(Ci). Therefore wpl(C) 6= 0. J

We now show that the number of minimum weight paths with respect to wcomb, between
any pair of vertices is at most 22g. We define classes of paths based on the number of times
a path intersects each segment of the flat schema, and show that in each such class there is
at most one minimum weight path.

Given a polygonal schema of a genus g graph G, by Lemma 2 we assume that we are
provided with a flat schema of G having 4g segments. Let T = {T1, T2, . . . , T2g} be the set
of segments of the flat schema such that no two elements of T are pairs of each other.

For a path P in G, define the signature of P , denoted as sign(P), as a binary string
s = s1s2 . . . s2g where si = 1 if P crosses Ti an odd number of times and si = 0 if P crosses
Ti an even number of times. Clearly, the total number of different signatures are 22g. This
definition can be similarly extended to cycles and walks as well.

For 0 ≤ i ≤ 2l − 1, let bin(i) be the l-bit string that denotes the binary representation
of i (if the binary representation has lesser than l bits then we prefix it with appropriate
number of zeroes to make it l-bit long). Now consider l = 2g. For every pair of vertices u
and v, we define 22g classes of paths Kuv

0 ,Kuv
1 , . . . ,Kuv

22g−1 as follows:

Kuv
i = {P | P is path from u to v and sign(P) = bin(i)}.

Note that if P = P1P2 . . . Pk be a partition of a path P into subpaths, then sign(P) =
sign(P1)⊕ sign(P2)⊕ . . . sign(Pk), where ⊕ is the bitwise XOR operator.

For a directed path P from x to y, let P r represent the directed path from vertex y to x
obtained by reversing the edges along the path P . Note that sign(P) = sign(P r).

I Theorem 9. Let G = (V,E) be a genus g graph embedded on a flat schema having 4g
segments. Let u and v be two vertices in G and i be a non-negative integer less than or equal
to 22g − 1. Then in every class Kuv

i there exists at most one minimum weight path from u to
v with respect to wcomb, that is, the weight function wcomb is min-isolating for each set Kuv

i .

Proof. Assume that P1 and P2 are two minimum weight paths in Kuv
i with respect to wcomb.

Then wpl(P1) = wpl(P2) and wlen(P1) = wlen(P2). Consider two cases – when P1 and P2
have common intermediate vertices and when they do not.
Case 1: P1 and P2 do not have any common intermediate vertices. We will show that

P1 and P r2 together form a surface separating cycle. Let C = P1P
r
2 be the directed

cycle formed by taking P1 followed by P r2 . Since P1 and P2 do not have any common
intermediate vertices therefore C is a simple cycle. Recall that wpl is a skew-symmetric

STACS 2019

34:8 Reachability in O(log n) Genus Graphs is in Unambiguous Logspace

weight function so wpl(P r2) = −wpl(P2). Therefore,
wpl(C) = wpl(P1) + wpl(P r2)

= wpl(P1)− wpl(P2)
= 0 (since P1 and P2 have the same minimum weight)

Also since P1 and P2 belong to Kuv
i we have that sign(P1) = sign(P2) = sign(P r2).

Therefore we get that sign(C) = 0 (the all zeroes vector). By Theorem 3 we have that C
is a surface separating cycle and thus by Lemma 8 wpl(C) cannot be zero. Thus we get a
contradiction. Therefore Case 1 cannot occur.

Case 2: P1 and P2 have common intermediate vertices. Note that at any common inter-
mediate vertex, the paths P1 and P2 can either cross each other or tangentially touch
each other without crossing. We refer to the former as crossing vertex and the latter as
grazing vertex.
We will show that the closed walk formed by P1 and P r2 reduces to a surface separating
simple cycle such that the weight of the closed walk is almost equal to that of the cycle.

I Lemma 10. Let P1 and P2 be two minimum weight paths from u to v with u1, u2, . . . ul
being the set of common intermediate vertices. Then u1, u2, . . . ul must occur in the same
order in both paths P1 and P2.

Proof. Lemma is trivially true when l = 1. So, let l > 1. Suppose ui occurs before uj in P1
and uj occurs before ui in P2, for i < j. Let a, b and c be the lengths of path P1 from u to
ui, ui to uj and uj to v respectively. Similarly, let d, e and f be the lengths of path P2 from
u to uj , uj to ui and ui to v respectively. Since wlen(P1) = wlen(P2) we have

a+ b+ c = d+ e+ f. (1)

If d < a+ b then taking P2 from u to uj and P1 from uj to v gives us a shorter length path
from u to v than either P1 or P2. Similarly, if d > a+ b we can construct a shorter length
from u to v as well. Hence we can assume that

d = a+ b. (2)

Using analogous argument we can assume

f = b+ c. (3)

Now adding Equations 2 and 3 we have

a+ 2b+ c = d+ f. (4)

Now since b and e are non zero, Equations 1 and 4 contradict each other. Hence u1, u2, . . . ul
occur in the same order in paths P1 and P2. J

I Lemma 11. Let P1 and P2 be two paths in Kuv
i having crossing vertices v1, v2, . . . vk, such

that these vertices divide P1 and P2 into k+1 sub-paths P 1
1 , P

2
1 , . . . P

k+1
1 and P 1

2 , P
2
2 , . . . P

k+1
2

respectively (as shown in Figure 3). Then the paths P ′ = P 1
1P

2
2 . . . P

k+1
i and P ′′ =

P 1
2P

2
1 . . . P

k+1
j (where i = 1 and j = 2 if k is even and i = 2 and j = 1 if k is odd)

belong to the same class.

C. Gupta, V. R. Sharma, and R. Tewari 34:9

u v1 v2 vk−1 vk v

P 1
1 P 2

2 P k1 P k+1
2

P 1
2 P 2

1 P k2 P k+1
1

Figure 3 Crossings of paths P1 (bold line) and P2 (dashed line) at k many points.

The intuition of Lemma 11 is that if P1 and P2 cross each other then the two paths
obtained by taking the “above” and “below” portions of these two paths have the same
signature.

Proof. Since P1 and P2 belong to same class, we have

sign(P1) = sign(P2)
sign(P 1

1)⊕ sign(P 2
1)⊕ . . .⊕ sign(P k+1

1) = sign(P 1
2)⊕ sign(P 2

2)⊕ . . .⊕ sign(P k+1
2)

We know that if a, b, c, d are binary strings of equal length then a⊕b = c⊕d⇔ a⊕c = b⊕d.
Therefore by rearranging the terms we get

sign(P 1
1)⊕ sign(P 2

2)⊕ . . .⊕ sign(P k+1
i) = sign(P 1

2)⊕ sign(P 2
1)⊕ . . .⊕ sign(P k+1

j)
sign(P ′) = sign(P ′′)

Hence P ′ and P ′′ belong to the same class. J

Note that P ′ and P ′′ need not belong to the same class as P1 and P2. We define
P j,ki (j < k) as a shorthand for path P ji P

j+1
i . . . P ki .

I Lemma 12. Let P1 and P2 are two minimum weight paths in Kuv
i having crossing vertices

v1, v2, . . . vk, then wpl(P i1) = wpl(P i2), for all i, 1 ≤ i ≤ k + 1. Additionally, for the closed
walk C ′ = P ′(P ′′)r we have that wpl(C ′) = 0 and sign(C ′) = 0 (where P ′ and P ′′ are as
defined in Lemma 11).

Proof. Assume that there exists some j (1 ≤ j ≤ k + 1) such that j is the smallest index,
where wpl(P j1) 6= wpl(P j2). Without loss of generality assume that wpl(P j1) < wpl(P j2).
Now consider path P̃ = P 1,j−1

2 P j1P
j+1,k+1
2 . P̃ is a path from u to v and by construction

wpl(P̃) < wpl(P2). This is a contradiction since P2 is a minimum weight path from u to v.
Therefore for all i we have wpl(P i1) = wpl(P i2).

Now,

wpl(C′) = wpl(P ′) + wpl((P ′′)r)
= wpl(P 1

1) + wpl(P 2
2) + wpl(P 3

1) + . . .+ wpl(P k+1
i) +

wpl((P 1
2)r) + wpl((P 2

1)r) + wpl((P 3
2)r) + . . .+ wpl((P k+1

j)r)
= (wpl(P 1

1) + wpl((P 1
2)r)) + (wpl(P 2

2) + wpl((P 2
1)r)) + (wpl(P 3

1) + wpl((P 3
2)r)) +

. . .+ (wpl(P k+1
i) + wpl((P k+1

j)r))
= (wpl(P 1

1)− wpl(P 1
2)) + (wpl(P 2

2)− wpl(P 2
1)) + (wpl(P 3

1)− wpl(P 3
2)) +

. . .+ (wpl(P k+1
i)− wpl(P k+1

j))
= 0.

By Lemma 11 we have that P ′ and P ′′ belong to the same class. Hence sign(C ′) =
sign(P ′)⊕ sign(P ′′) = 0. J

STACS 2019

34:10 Reachability in O(log n) Genus Graphs is in Unambiguous Logspace

We now argue that there is a simple cycle (say Ĉ) such that C ′ and Ĉ are infinitesimally
separated. Hence their signatures are the same. However the weight function wpl depends
on the coordinates of an edge, therefore wpl(C ′) and wpl(Ĉ) are nearly the same. This
implies that wpl(Ĉ) is close to zero. Which leads to a contradiction as we will show that
|wpl(C̃)| > |wpl(Ĉ)| where C̃ is one of the planar cycles in which Ĉ can be decomposed.
Hence P1 and P2 cannot be two minimum weight paths in Kuv

i .
Consider a graph Ĝ that is similar toG except that in Ĝ we split each common intermediate

vertex ui (both crossing and grazing vertices) of the paths P1 and P2, into two vertices u′i
and u′′i , such that u′i and u′′i are δ distance apart (see Figure 4). If e = xui was an edge in
P1(or P2) then we will have the edge e′ = xu′i (or e′ = xu′′i) in Ĝ. Let N = cnk be an upper
bound on the coordinates of the embedding of G, where c and k are constants. Then by
definition of wpl, we have |wpl(e)− wpl(e′)| ≤ 4Nδ + δ2. Let us define f(δ) := 4Nδ + δ2.

Let v1, v2, . . . , vk be the crossing vertices of P1 and P2, and Q1′
, Q2′

, . . . , Q(k+1)′ be
the paths from u to v′1, v′1 to v′2 and so on till v′k to v respectively, such that the paths
Q1′

, Q2′
, . . . , Q(k+1)′ correspond to the paths P 1

1 , P
2
2 . . . , P

k+1
i respectively (see Figure 4).

Note that the paths Qi′ and P ij (where j is 1 if i is odd and 2 otherwise) can have at most n
edges that differ and their weights wpl differ by at most f(δ) for each such edge. Therefore
|wpl(P ij)− wpl(Qi

′)| ≤ n · f(δ). Similarly let Q1′′
, Q2′′

, . . . , Q(k+1)′′ be the paths from u to
v′′1 , v′′1 to v′′2 and so on till v′′k to v respectively, such that the paths Q1′′

, Q2′′
, . . . , Q(k+1)′′

correspond to the paths P 1
2 , P

2
1 . . . , P

k+1
j respectively. By an analogous argument we have,

|wpl(P ij)− wpl(Qi
′′)| ≤ n · f(δ) (where j is 2 if i is odd and 1 otherwise).

u

v′1

v′′1

v′2

v′′2

v′k−1

v′′k−1

v′k

v′′k

v

Q1′
Q2′

Qk
′

Q(k+1)′

Q1′′
Q2′′

Qk
′′

Q(k+1)′′

Figure 4 Splitting vertices to form the graph Ĝ from G.

Now Q′ = Q1′
Q2′

. . . Q(k+1)′ and Q′′ = Q1′′
Q2′′

. . . Q(k+1)′′ are paths from u to v (cor-
responding to the paths P ′ and P ′′ respectively) that do not cross each other, as shown in
Figure 4. Observe that sign(Q′) = sign(P ′) since the difference between the coordinates of
vertices along Q′ and P ′ is less than 1, therefore the number of crossings with respect to
each segment of the flat schema remains the same. Similarly, sign(Q′′) = sign(P ′′). Now
consider the simple cycle Ĉ = Q′(Q′′)r. By Lemma 12, sign(Ĉ) = 0. Hence Ĉ is a surface
separating cycle by Theorem 3.

|wpl(Ĉ)− wpl(C′)| = |(wpl(Q′) + wpl((Q′′)r))− (wpl(P ′) + wpl((P ′′)r))|

= |
((
wpl(Q1′

) + . . .+ wpl(Q(k+1)′
)
)
−
(
wpl(Q1′′

) + . . .+ wpl(Q(k+1)′′
)
))

−
((
wpl(P 1

1) + . . .+ wpl(P (k+1)
i)

)
−
(
wpl(P 1

2) + . . .+ wpl(P (k+1)
j)

))
|

≤
∣∣∣wpl(Q1′

)− wpl(P 1
1)
∣∣∣+ . . .+

∣∣∣wpl(Q(k+1)′
)− wpl(P (k+1)

i)
∣∣∣

+
∣∣∣wpl(Q1′′

)− wpl(P 1
2)
∣∣∣+ . . .+

∣∣∣wpl(Q(k+1)′′
)− wpl(P (k+1)

j)
∣∣∣

≤ 2(k + 1)nf(δ)

C. Gupta, V. R. Sharma, and R. Tewari 34:11

Now since by Lemma 12 wpl(C ′) = 0, therefore we can choose δ small enough (say less
than 1/100N3) so that we get |wpl(Ĉ)| < 1/3.

Without loss of generality assume that C ′ crosses some segment of the flat schema. If
not then both P1 and P2 would not be crossing any segment of the polygon and hence with
respect to wpl both cannot be minimum weight paths [26]. Since C ′ crosses some segment,
therefore, Ĉ also must cross the same segment. Since Ĉ is a surface separating cycle therefore
by Lemma 8, Ĉ can be decomposed into planar cycles such that the weight of Ĉ is equal
to sum of the weights of the planar cycles with respect to wpl. Moreover, the weight of
each planar cycle has the same sign and each planar cycle has a dummy edge (an edge
that is incident on a segment of the flat schema). Let C̃ be one such planar cycle, and
consider a triangulation of C̃ (by thinking of C̃ as a polygon). There exists some triangle
say T = (a, x, y) in this triangulation that contains the dummy edge xy of C̃ as one of its
sides. Now ||x− y|| ≥ 1 since vertices in C ′ were integral and in Ĉ, x and y were not shifted.
Moreover, a cannot be a vertex that is δ close to any segment of the flat schema. This is
because for every vertex v that lies at the intersection of cycle C ′ and the side S of the flat
schema, v was not split when forming the cycle Ĉ. Hence the distance of a from the line
joining x and y is at least 1− δ. Therefore the area of the triangle Area(T) > 1/2− 1/200n.
Now, Area(T) ≤ Area(C̃) ≤ |wpl(C̃)| ≤ |wpl(Ĉ)| ≤ 1/3, where the second inequality follows
from Theorem 6. This contradicts that P1 and P2 are two minimum weight paths in G with
respect to wcomb.

Therefore the class Kuv
i has at most one minimum weight path from u to v with respect

to wcomb. This completes the proof of Theorem 9. J

For a fixed pair of vertices u, v, the number of classes Kuv
i is at most 22g. Since by

Theorem 9 there is at most one minimum weight path from u to v in each class Kuv
i , therefore

we have the following the result.

I Theorem 13. Let G = (V,E) be a genus g graph embedded on a flat schema having 4g
segments. Then there exists at most 22g minimum weight paths between any pair of vertices
in G, with respect to weight function wcomb.

Now we are ready to prove Theorem 7 which says that there is a weight function with
respect to which there is at most one minimum weight path between any pair of vertices in
G.

Proof of Theorem 7. Let Muv be the set of all minimum weight paths from u to v with
respect to wcomb and let M =

⋃
(u,v)∈V 2 Muv. By Theorem 13, |Muv| is at most 22g. Hence

|M | ≤ n2 · 22g.
Assume that edges of the graph are labeled e1, e2, . . . , em. Define a weight function windex

such that it assigns weight 2i to the edge ei. It is easy to see that every path in graph gets
unique weight with respect to windex. Thus every path in M also gets a unique weight with
respect to windex. However windex is an exponential valued weight function.

Now by Theorem 4 there exists an O(logn + g) bit prime p such that with respect to
weight function wfks := (windex) mod p, every path in M gets a unique weight. Therefore
with respect to the weight function w := wcomb · nk2 + wfks, where k2 is a sufficiently large
constant, the minimum weight path between every pair of vertices in graph is unique. Note
that wcomb and wfks are O(logn) bit and O(logn+ g) bit weight functions respectively.

Computing wcomb can be done in logspace since it is a simple function of the coordinates
of the end points of an edge. To compute wfks one needs to find the appropriate prime whose
existence is shown in Theorem 4. For each prime, we check if G is min-unique with respect

STACS 2019

34:12 Reachability in O(log n) Genus Graphs is in Unambiguous Logspace

to the corresponding weight function and if not we move to the next prime. This can be
done by a nondeterministic O(logn+ g) space algorithm along a unique computation path
as shown in [20]. J

Proof of Theorem 1. Now given a graph G on n vertices and two vertices s and t in G we
cycle through all primes less than n′, and for each prime, we compute the weight function w
given in Theorem 7. Using Theorem 5 we check if G is min-unique with respect to w and if
so we check if there is a path from s to t in G. If G is not min-unique with respect to w then
we move to the next prime. Theorem 4 guarantees that there is an n′ = nO(1) and a prime
less than n′ such that G is min-unique with respect to the corresponding prime. Hence along
a unique computation path, we finally have Yes or No answer depending on whether s is
reachable from t or not respectively, while all other paths halt and reject. J

References
1 Manindra Agrawal, Rohit Gurjar, Arpita Korwar, and Nitin Saxena. Hitting-Sets for ROABP

and Sum of Set-Multilinear Circuits. SIAM J. Comput., 44(3):669–697, 2015. doi:10.1137/
140975103.

2 Eric Allender, David A. Mix Barrington, Tanmoy Chakraborty, Samir Datta, and Sambuddha
Roy. Planar and Grid Graph Reachability Problems. Theory of Computing Systems, 45(4):675–
723, 2009. doi:10.1007/s00224-009-9172-z.

3 Eric Allender, Klaus Reinhardt, and Shiyu Zhou. Isolation, Matching, and Counting: Uniform
and Nonuniform Upper Bounds. Journal of Computer and System Sciences, 59:164–181, 1999.

4 Carme Àlvarez and Birgit Jenner. A Very Hard Log-space Counting Class. Theoretical
Computer Science, 107:3–30, 1993.

5 Rahul Arora, Ashu Gupta, Rohit Gurjar, and Raghunath Tewari. Derandomizing Isolation
Lemma for K3,3-free and K5-free Bipartite Graphs. In 33rd Symposium on Theoretical Aspects
of Computer Science, STACS 2016, February 17-20, 2016, Orléans, France, pages 10:1–10:15,
2016.

6 David A. Mix Barrington. Bounded-width polynomial-size branching programs recognize
exactly those languages in NC1. Journal of Computer and System Sciences, 38:150–164, 1989.

7 David A. Mix Barrington, Chi-Jen Lu, Peter Bro Miltersen, and Sven Skyum. Searching
constant width mazes captures the AC0 hierarchy. In 15th International Symposium on
Theoretical Aspects of Computer Science (STACS), Volume 1373 in Lecture Notes in Computer
Science, pages 74–83. Springer, 1998.

8 Chris Bourke, Raghunath Tewari, and N. V. Vinodchandran. Directed Planar Reachability
Is in Unambiguous Log-Space. ACM Transactions on Computation Theory, 1(1):1–17, 2009.
doi:10.1145/1490270.1490274.

9 Gerhard Buntrock, Birgit Jenner, Klaus-Jörn Lange, and Peter Rossmanith. Unambiguity
and fewness for logarithmic space. In Proceedings of the 8th International Conference on
Fundamentals of Computation Theory (FCT’91), Volume 529 Lecture Notes in Computer
Science, pages 168–179. Springer-Verlag, 1991.

10 Sergio Cabello and Bojan Mohar. Finding Shortest Non-Separating and Non-Contractible
Cycles for Topologically Embedded Graphs. Discrete & Computational Geometry, 37(2):213–
235, February 2007. doi:10.1007/s00454-006-1292-5.

11 Samir Datta, Raghav Kulkarni, and Sambuddha Roy. Deterministically Isolating a Perfect
Matching in Bipartite Planar Graphs. In STACS 2008, 25th Annual Symposium on Theoretical
Aspects of Computer Science, Bordeaux, France, February 21-23, 2008, Proceedings, pages
229–240, 2008. doi:10.4230/LIPIcs.STACS.2008.1346.

12 Samir Datta, Raghav Kulkarni, Raghunath Tewari, and N.V. Vinodchandran. Space complexity
of perfect matching in bounded genus bipartite graphs. Journal of Computer and System
Sciences, 78(3):765–779, 2012. In Commemoration of Amir Pnueli. doi:10.1016/j.jcss.
2011.11.002.

http://dx.doi.org/10.1137/140975103
http://dx.doi.org/10.1137/140975103
http://dx.doi.org/10.1007/s00224-009-9172-z
http://dx.doi.org/10.1145/1490270.1490274
http://dx.doi.org/10.1007/s00454-006-1292-5
http://dx.doi.org/10.4230/LIPIcs.STACS.2008.1346
http://dx.doi.org/10.1016/j.jcss.2011.11.002
http://dx.doi.org/10.1016/j.jcss.2011.11.002

C. Gupta, V. R. Sharma, and R. Tewari 34:13

13 Kousha Etessami. Counting quantifiers, successor relations, and logarithmic space. Journal of
Computer and System Sciences, 54(3):400–411, June 1997.

14 Stephen A. Fenner, Rohit Gurjar, and Thomas Thierauf. Bipartite Perfect Matching is in
quasi-NC. CoRR, 2016. arXiv:1601.06319.

15 Michael L. Fredman, János Komlós, and Endre Szemerédi. Storing a Sparse Table with 0(1)
Worst Case Access Time. J. ACM, 31(3):538–544, June 1984. doi:10.1145/828.1884.

16 Anna Gál and Avi Wigderson. Boolean complexity classes vs. their arithmetic analogs. Random
Struct. Algorithms, 9(1-2):99–111, 1996. doi:10.1002/(SICI)1098-2418(199608/09)9:1/2\
%3C99::AID-RSA7\%3E3.0.CO;2-6.

17 Anna Galluccio and Martin Loebl. On the Theory of Pfaffian Orientations. I. Perfect Matchings
and Permanents. Electr. J. Comb., 6, 1999. URL: http://www.combinatorics.org/Volume_
6/Abstracts/v6i1r6.html.

18 Rohit Gurjar, Arpita Korwar, and Nitin Saxena. Identity Testing for Constant-Width, and
Commutative, Read-Once Oblivious ABPs. In 31st Conference on Computational Complexity,
CCC 2016, May 29 to June 1, 2016, Tokyo, Japan, pages 29:1–29:16, 2016. doi:10.4230/
LIPIcs.CCC.2016.29.

19 Rohit Gurjar, Arpita Korwar, Nitin Saxena, and Thomas Thierauf. Deterministic Identity
Testing for Sum of Read-once Oblivious Arithmetic Branching Programs. In Proceedings of
the 30th Conference on Computational Complexity, CCC ’15, pages 323–346, Germany, 2015.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.CCC.2015.323.

20 Vivek Anand T. Kallampally and Raghunath Tewari. Trading Determinism for Time in Space
Bounded Computations. In 41st International Symposium on Mathematical Foundations of
Computer Science, MFCS 2016, August 22-26, 2016 - Kraków, Poland, pages 10:1–10:13, 2016.
doi:10.4230/LIPIcs.MFCS.2016.10.

21 Jan Kynčl and Tomáš Vyskočil. Logspace Reduction of Directed Reachability for Bounded
Genus Graphs to the Planar Case. ACM Transactions on Computation Theory, 1(3):1–11,
2010. doi:10.1145/1714450.1714451.

22 Meena Mahajan and Kasturi R. Varadarajan. A New NC-algorithm for Finding a Perfect
Matching in Bipartite Planar and Small Genus Graphs (Extended Abstract). In Proceedings
of the Thirty-second Annual ACM Symposium on Theory of Computing, STOC ’00, pages
351–357, New York, NY, USA, 2000. ACM. doi:10.1145/335305.335346.

23 Aduri Pavan, Raghunath Tewari, and N. V. Vinodchandran. On the power of unambiguity in
log-space. Computational Complexity, 21(4):643–670, 2012. doi:10.1007/s00037-012-0047-3.

24 Omer Reingold. Undirected connectivity in log-space. Journal of the ACM, 55(4), 2008.
doi:10.1145/1391289.1391291.

25 Klaus Reinhardt and Eric Allender. Making Nondeterminism Unambiguous. SIAM J. Comput.,
29(4):1118–1131, 2000. doi:10.1137/S0097539798339041.

26 Raghunath Tewari and N. V. Vinodchandran. Green’s theorem and isolation in planar graphs.
Inf. Comput., 215:1–7, 2012. doi:10.1016/j.ic.2012.03.002.

27 Thomas Thierauf and Fabian Wagner. Reachability in K3,3-free Graphs and K5-free Graphs is
in Unambiguous Log-Space. In 17th International Conference on Foundations of Computation
Theory (FCT), Lecture Notes in Computer Science 5699, pages 323–334. Springer-Verlag, 2009.

28 Carsten Thomassen. The Graph Genus Problem is NP-Complete. J. Algorithms, 10(4):568–576,
1989. doi:10.1016/0196-6774(89)90006-0.

29 Dieter van Melkebeek and Gautam Prakriya. Derandomizing Isolation in Space-Bounded
Settings. In 32nd Computational Complexity Conference, CCC 2017, July 6-9, 2017, Riga,
Latvia, pages 5:1–5:32, 2017. doi:10.4230/LIPIcs.CCC.2017.5.

30 Avi Wigderson. NL/poly ⊆ ⊕L/poly (Preliminary Version). In Proceedings of the Ninth
Annual Structure in Complexity Theory Conference, Amsterdam, The Netherlands, June 28 -
July 1, 1994, pages 59–62, 1994. doi:10.1109/SCT.1994.315817.

STACS 2019

http://arxiv.org/abs/1601.06319
http://dx.doi.org/10.1145/828.1884
http://dx.doi.org/10.1002/(SICI)1098-2418(199608/09)9:1/2%3C99::AID-RSA7%3E3.0.CO;2-6
http://dx.doi.org/10.1002/(SICI)1098-2418(199608/09)9:1/2%3C99::AID-RSA7%3E3.0.CO;2-6
http://www.combinatorics.org/Volume_6/Abstracts/v6i1r6.html
http://www.combinatorics.org/Volume_6/Abstracts/v6i1r6.html
http://dx.doi.org/10.4230/LIPIcs.CCC.2016.29
http://dx.doi.org/10.4230/LIPIcs.CCC.2016.29
http://dx.doi.org/10.4230/LIPIcs.CCC.2015.323
http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.10
http://dx.doi.org/10.1145/1714450.1714451
http://dx.doi.org/10.1145/335305.335346
http://dx.doi.org/10.1007/s00037-012-0047-3
http://dx.doi.org/10.1145/1391289.1391291
http://dx.doi.org/10.1137/S0097539798339041
http://dx.doi.org/10.1016/j.ic.2012.03.002
http://dx.doi.org/10.1016/0196-6774(89)90006-0
http://dx.doi.org/10.4230/LIPIcs.CCC.2017.5
http://dx.doi.org/10.1109/SCT.1994.315817

Dominating Sets and Connected Dominating Sets
in Dynamic Graphs
Niklas Hjuler
University of Copenhagen, Denmark
hjuler@di.ku.dk

Giuseppe F. Italiano
LUISS University, Rome, Italy
gitaliano@luiss.it

Nikos Parotsidis
University of Rome Tor Vergata, Italy
nikos.parotsidis@uniroma2.it

David Saulpic
ENS Paris, France
david.saulpic@ens.fr

Abstract
In this paper we study the dynamic versions of two basic graph problems: Minimum Dominating Set
and its variant Minimum Connected Dominating Set. For those two problems, we present algorithms
that maintain a solution under edge insertions and edge deletions in time O(∆ ·polylog n) per update,
where ∆ is the maximum vertex degree in the graph. In both cases, we achieve an approximation
ratio of O(log n), which is optimal up to a constant factor (under the assumption that P 6= NP).
Although those two problems have been widely studied in the static and in the distributed settings,
to the best of our knowledge we are the first to present efficient algorithms in the dynamic setting.

As a further application of our approach, we also present an algorithm that maintains a Minimal
Dominating Set in O(min(∆,

√
m)) per update.

2012 ACM Subject Classification Theory of computation → Dynamic graph algorithms

Keywords and phrases Dominating Set, Connected Dominating Set, Dynamic Graph Algorithms

Digital Object Identifier 10.4230/LIPIcs.STACS.2019.35

Funding This work was done while Niklas Hjuler and David Saulpic were visiting University of
Rome Tor Vergata.

1 Introduction

The study of dynamic graph algorithms is a classical area in algorithmic research and has
been thoroughly investigated in the past decades. Maintaining a solution of a graph problem
in the case where the underlying graph changes dynamically over time is a big challenge in
the design of efficient and practical algorithms. Indeed, in several applications, due to the
dynamic nature of today’s data, it is not sufficient to compute a solution to a graph problem
only once and for all: often, it is necessary to maintain a solution efficiently while the input
graph is undergoing a sequence of dynamic updates. More precisely, a dynamic graph is a
sequence of graphs G0, ..., GM on n nodes and such that Gi+1 is obtained from Gi by adding
or removing a single edge. The natural first barrier, in the study of dynamic algorithms, is
to design algorithms that are able to maintain a solution for the problem at hand after each
update faster than recomputing the solution from scratch. Many dynamic graph problems
such as minimum spanning forests (see e.g. [22, 26]), shortest paths [12], matching [4, 27, 30]
or coloring [7] have been extensively studied in the literature, and very efficient algorithms
are known for those problems. Recently, a lot of attention has been devoted to the Maximal

© Niklas Hjuler, Giuseppe F. Italiano, Nikos Parotsidis, and David Saulpic;
licensed under Creative Commons License CC-BY

36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019).
Editors: Rolf Niedermeier and Christophe Paul; Article No. 35; pp. 35:1–35:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hjuler@di.ku.dk
mailto:gitaliano@luiss.it
mailto:nikos.parotsidis@uniroma2.it
mailto:david.saulpic@ens.fr
https://doi.org/10.4230/LIPIcs.STACS.2019.35
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

35:2 Dominating Sets and Connected Dominating Sets in Dynamic Graphs

Independent Set problem (MIS). In this problem, one wishes to find a maximal set of
vertices that do not share any edge (“maximal” meaning that it is not possible to add any
vertex without violating this property). Until very recently, the best known update bound
on the complexity to maintain a MIS was a simple O(∆) algorithm, where ∆ is an upper
bound on the degree of vertices in the graph. This bound was first broken by Assadi et al. [2]
who gave a O(m3/4) algorithm, then by Gupta and Khan [19] improved the update bound
to O(m2/3). Very recently, using randomization, Assadi et al. [3] presented an amortized
fully-dynamic algorithm with an expected Õ(n1/2)-time bound per update.

The MIS problem is closely related to the Dominating Set (DS) problem: given a graph
G = (V,E) the DS problems is to find a subset of vertices D ⊆ V such that every vertex in
G is adjacent to D (or dominated by D). Indeed, a MIS is also a Minimal DS: the fact that
it is not possible to add a vertex without breaking the independence property implies that
every vertex is adjacent to the MIS, so this must be also a DS; at the same time, it is not
possible to remove a vertex since that vertex is no longer dominated. Thus, to find a Minimal
DS one can simply find a MIS: this gives immediately a deterministic O(m2/3) [19] bound
and a randomized Õ(n1/2) [3] one. However, while it is known that is hard to approximate
Maximum Independent Set1 within a factor n1−ε for every ε > 0[21], a simple greedy
approach achieves a O(logn)-approximation for Minimum DS [11].

In recent years, there has been a lot of work on designing dynamic graph algorithms for
maintaining approximate solutions to several problems. A notable example is matching, where
for different approximations there exist different algorithms (see e.g., [4, 5, 27, 20, 8, 30]).
This raises the natural question on whether there exists a dynamic algorithm capable of
maintaining an approximation to Minimum DS, and even better a O(logn) approximation. In
this paper, we answer this question affirmatively by presenting an algorithm that achieves a
O(logn) approximation, with a complexity matching the long standing O(∆) bound for MIS.
Moreover, if one is interested in finding a DS faster, we present a very simple deterministic
O(m1/2) algorithm to compute a Minimal DS, improving the O(m2/3) bound coming from
MIS. We believe these are important steps towards understanding the complexity of the
problem. Those two results are stated below.

I Theorem 1. Starting from a graph with n vertices, a O(logn) approximation of Minimum
Dominating Set can be maintained over any sequence of Ω(n) edge insertions and deletions
in O(∆ logn) amortized time per update, where ∆ is the maximum degree of the graph over
the sequence of updates.

I Theorem 2. Starting from a graph with n (fixed) vertices, a Minimal Dominating Set
can be deterministically maintained over any sequence of edge insertions and deletions in
O(
√
m) amortized time per update, where m is an upper bound on the number of edges in

the graph.

We also study the Minimum Connected Dominating Set problem (MCDS), which
adds the constraint that the graph induced by the DS D must be connected. This problem
was first introduced by Sampathkumar and Walikar [28] and arises in several applications.
The most noteworthy is its use as a backbone in routing protocols: it allows to limit the
number of packet transmissions, by sending packets only along the backbone rather than
throughout the whole network. Du and Wan’s book [13] summarizes the knowledge about

1 It is not possible to find a polynomial-time algorithm that finds a n1−ε-approximation to Maximum
Independent Set under the assumption NP 6= ZPP

N. Hjuler, G. F. Italiano, N. Parotsidis, and D. Saulpic 35:3

MCDS. A special class of graphs is geometric graphs, where vertices are points in the plane,
and two vertices are adjacent if they fall within a certain range (say, their distance is at
most 1). This can model wifi transmissions, and the dynamic MCDS had been studied in this
setting: a polynomial-time approximation scheme is known [10], and Guibas et al. [17] show
how to maintain a constant-factor approximation with polylogarithmic update time. While
geometric graphs model problems linked to wifi transmissions, the general graph setting
can be also seen as a model for wired networks. However, no work about dynamic MCDS
is known in this setting: the static case is well studied, with a greedy algorithm developed
by Guha and Keller [16] that achieves an approximation factor O(ln ∆). They also show a
lower bound matching their complexity, together with their approximation factor. MCDS
had also been thoroughly studied in the distributed setting (see e.g. a heuristic to find a
Minimal CDS in [9], another one that sends O(∆n) messages and has a time complexity
at each vertex O(∆2) [31] or a 3 logn approximation that runs in O(γ) rounds where γ
is the size of the CDS found, with time complexity O(γ∆2 + n) and message complexity
O(n∆γ +m+ n logn) [6]). Despite all this work, no results are known in the dynamic graph
setting. As another application of our approach, we contribute to filling this gap in the
research line of MCDS. In particular, in this paper we show how our algorithm for Minimum
DS can be adapted in a non-trivial way to maintain a O(logn) approximation of the MCDS
in general dynamic graphs.

I Theorem 3. Starting from a graph with n vertices, a O(logn) approximation of Minimum
Connected Dominating Set can be maintained over any sequence of Ω(n) edge insertions
and deletions in Õ(∆) amortized time per update.

We further show how to maintain independently a Dominating Set D and a set of vertices
C such that the induced subgraphs on the vertices C ∪ D is connected. The set C has the
additional property that |C| ≤ 2|D|, such that |C ∪ D| = O(|D|). If D is a α-approximation
of Minimum DS, this gives a O(α) approximation for MCDS.

Further Related Work

It is well known that finding a Minimum DS is NP-hard [15]. It is therefore natural to look
for approximation algorithms for this problem. Unfortunately, it is also NP-hard to find a
c logn approximation, for any 0 < c < 1 [14]. This bound is tight, since there is a simple
greedy algorithm matching this bound [11]. Minimum DS had been studied extensively in
distributed computing: an algorithm which runs in O(logn log ∆) rounds finds a O(logn)
approximation with high probability [23] and an algorithm with constant number of rounds
achieves a non-trivial approximation[25].

The DS problem is closely related to the Set Cover problem: the two problems are
equivalents under L-reduction [24]. However, Set Cover was studied in the dynamic setting
[18, 1], but with different kinds of updates: instead of edges being inserted or deleted (which
would represent new elements in the sets according to the L-reduction), new elements are
being added to the cover (which would be new vertices in DS).

Outline. The rest of the paper is organized as follows. First, we present an algorithm for
Minimum DS, which will be used later on also for MCDS: we start by a Õ(n) algorithm, and
then show how to overcome its bottleneck in order to achieve a Õ(∆) complexity. Finally,
we present our O(

√
m) algorithm for Minimal DS.

STACS 2019

35:4 Dominating Sets and Connected Dominating Sets in Dynamic Graphs

2 A O(log n) approximation of Minimum Dominating Set in
O(∆ log n) time per update

This section aims at proving Theorem 1. Following a reduction from Set Cover, minimum
DS is NP-hard to approximate within a factor logn [14]. Here we present a matching upper
bound (up to a constant factor), in the dynamic setting. Our algorithm relies heavily on
the clever set cover algorithm by Gupta et al. [18]. While in the static setting Set Cover is
equivalent to minimum DS, in the dynamic setting these two problems are different. More
precisely, in the dynamic Set Cover problem one is asked to cover a set of points S (called
the universe) with a given family of sets F , while the set S is changing dynamically. To draw
the parallel with DS, in the latter the set S is the set of vertices of the graph (which does
not change) and for every vertex the set of its neighbors is in F . The dynamic part concerns
therefore F , and not the universe S.

Gupta et al. present an O(logn)-approximation for dynamic Set Cover problem: in
what follows, we show how to adapt their algorithm to the DS case, with an update time of
O(∆ logn). As in [18], the approach easily adapts to the weighted case. Unfortunately, this
cannot be generalized to MCDS, therefore we do not consider this property of the algorithm.
The following definitions are partly adapted from [18].

2.1 Preliminaries

For a vertex v, let N(v) be the set of its neighbors, including v. The algorithm maintains a
solution St at time t such that an element of St is a pair composed of

a dominant vertex v

a set Dom(v) ⊆ N(v), which are the vertices that are dominated by v. We call |Dom(v)|
the cardinality of the pair.

We call a dominating pair an element of St. The algorithm requires that multiple copies of a
vertex can appear as the dominant vertex of a pair. However, each vertex is exactly in one
Dom(v). The solution to the DS problem is composed of all vertices that appear as dominant
vertices of a pair. Since each vertex is in exactly one Dom(v), each vertex is dominated and
therefore the set of dominants is a valid solution to the DS problem.

The dominating pairs are placed into levels according to their cardinality: the level l is
defined by a range Rl := [2l−10, 2l], and each pair (v,Dom(v)) is placed at an appropriate
level l such that |Dom(v)| ∈ Rl. In that case, elements of Dom(v) are said to be dominated at
level l; we denote by Vl the set of all vertices dominated at level l. We say that an assignment
of levels is valid if it respects the constraint |Dom(v)| ∈ Rl. This allows us to define the
notion of Stability:

stable solution: A solution St is stable if there is no vertex v and level l such that
|N(v)∩Vl| > 2l; in other words, it is not possible to introduce a new vertex in the solution
to dominate some vertices at level l such that the resulting dominating pair could be at
level strictly greater that l.

The algorithm will dynamically maintain a stable solution St, with a valid assignment
of levels. Note that the ranges Rl overlap: this gives some slack to the algorithm, which
allows enough flexibility to prevent too many changes while our algorithm maintains a valid
solution.

N. Hjuler, G. F. Italiano, N. Parotsidis, and D. Saulpic 35:5

2.2 The algorithm

The main part of the algorithm is the function Stabilize, which restores the stability at the
end of every update. The function is the following (see [18]):

Stabilize. As long as a vertex v violates the stability condition at level l, do the
following: Add the pair (v,N(v) ∩ Vl) to the lowest possible level j (i.e., the lowest
level such that |N(v) ∩ Vl| ∈ Rj); Remove the elements of N(v) ∩ Vl from the set
of their former covering pair: if it gets empty, remove the pair from the solution.
Otherwise, if the cardinality of such a pair goes below 2l−10, put it at the highest
possible level.

Edge addition. When a new edge (u, v) is added to the graph, one just need to ensure that
the solution remains stable, and thus the algorithm runs Stabilize.

Edge deletion. When an edge (u, v) is removed from the graph, we proceed as follows. If
neither u nor v dominates the other endpoint, the solution remains valid and stable, and
nothing needs to be done. Otherwise, assume without loss of generality that v dominates u.
Then:

Remove u from Dom(v)
Add the pair (u,Domu = {u}) to the solution with level 1
Run Stabilize

Correctness. All the nodes of the graph are dominated at every time. Indeed, Stabilize
does not make any node undominated and if a vertex is not dominated after an edge removal,
the algorithm simply adds it to the solution. Therefore, the solution St maintained by the
algorithm is a valid one.

2.3 Analysis

Approximation ratio. We use the following lemma by Gupta et al. [18] to bound the cost
of a stable solution.

I Lemma 4 (Lemma 2.1 in [18]). The number of sets at one level in any stable solution is at
most 210 ·OPT.

Since for every dominating pair (v,Dom(v)) we have that 1 ≤ |Dom(v)| ≤ n, there are
only logn levels that can contain a set. The total cost of a stable solution is therefore
O(logn ·OPT).

A token scheme to bound the number of updates. Unfortunately, the analysis of Gupta
et al. cannot be applied directly to the case of DS, due to the different nature of the updates.
However, we can build upon their analysis, as follows. We first bound the number of vertices
that change level, and then explain how to implement a level change so that it costs O(∆).
We prove the following lemma by using a token argument.

I Lemma 5. After k updates of the algorithm, at most O(k logn+ n logn) elements have
changed levels.

STACS 2019

35:6 Dominating Sets and Connected Dominating Sets in Dynamic Graphs

Proof. We use the following token scheme, where each vertex pays one token for each level
change. In the beginning, we give 2 logn tokens to every vertex. If a vertex is undominated
after an edge removal, we give 2 logn new tokens to this vertex. Since at most one vertex
gets undominated for each edge deletion, the total number of tokens given after k updates
is O(k logn+ n logn). To prove the lemma, we need to show that at any time each vertex
has always a positive amount of tokens. We adapt the proof of Gupta et al. to show the
following invariant:

I Invariant 1. Every vertex at level l has more than 2(logn− l) tokens.

When a vertex is moved to a higher level, it pays one token for the cost of moving. It
also saves one token, and gives it to an “emergency fund” of its former covering pair. Each
pair has therefore a fund of tokens that can be used when the pair has to be moved to a
lower level.

When the pair (v,Dom(v)) has to be moved from level l to level l − j, it means that
a lot of vertices have left Dom(v) and that the tokens they gave to the pair can be used
to pay for the operation. Formally, we want to pay one token for every vertex in Dom(v)
for its level change, but we also want to restore the invariant. We need therefore 2j + 1
tokens for each vertex of Dom(v). Since the pair can be moved to level l− j, this means that
|Dom(v)| < 2l−j . Since a new pair is moved to the lowest possible level, this pair could not
be at level l− 1, which implies that |Dominit(v)| > 2l−1 where Dominit(v) is the set Dom(v)
at the time where it was created. Moreover, each of the vertices that left gave one token:
the amount of tokens usable is therefore bigger than 2l−1 − 2l−j . Thus we want to prove
that 2l−1 − 2l−j ≥ (2j + 1) · |Dom(v)|. It is enough to have 2l−1 − 2l−j ≥ 3 · (2j + 1)2l−j ,
i.e. to have 2j−1 − 1 ≥ 3(2j + 1). But since the pair was moved to level l − j, it means that
|Dom(v)| > 2l−j−1 and |Dom(v)| < 2l−10: putting these two equations together gives j > 9,
which ensures that 2j−1 − 1 ≥ 3(2j + 1) and concludes the proof. J

As the following corollary shows, we can bound the number of changes to D to O(logn)
amortized. This property will be useful in Section 3.

I Corollary 6. After k updates of the algorithm, at most O(k logn+ n logn) vertices can be
added to or removed from D.

Proof. Whenever a vertex is added to or removed from D, its level is changed. Lemma 5
gives the corresponding bound. J

We now turn to the implementation of the function Stabilize. As shown in the next
lemma, we implemented so that its cost is O(∆) for each element that changes level.

I Lemma 7. A stable solution can be maintained in O(∆ logn) amortized time per update.

Proof. For all vertices v and all levels l, the algorithm maintains the set N(v) ∩ Vl and its
cardinality. Every time a vertex changes its level, it has to inform all its neighbors: this
can be done in O(∆). When an edge (u, v) is added to or removed from the solution, the
algorithm updates the sets N(v) ∩ Vlu and N(u) ∩ Vlv , where lu and lv are the levels of u
and v, respectively.

During a call to Stabilize, the algorithm maintains also a list of vertices that may have
to be added to restore the stability: for a vertex v and level l, every time that N(v) ∩ Vl
changes, if the new cardinality violates the stability, we add v to this list in constant time.
The algorithm processes the list vertex by vertex: it checks that the current vertex still needs
to be added to the solution, and add it if necessary.

Since we pay O(∆) per level change and there are O(logn) amortized changes, the
amortized complexity of each update is O(∆ logn). J

N. Hjuler, G. F. Italiano, N. Parotsidis, and D. Saulpic 35:7

Since a stable solution gives a O(logn) approximation to minimum DS, Lemmas 4 and 7
yield the proof of Theorem 1: a O(logn) approximation of Minimum Dominating Set can be
maintained in O(∆ logn) amortized time per update.

3 A O(log n) Approximation for Minimum Connected Dominating
Set in Õ(n) per update

A possible way to compute a Connected DS is simply to find a DS and add a set of vertices
to make it connected. Section 2 gives an algorithm to maintain an approximation of the
Minimum DS: we will use it as a black box (and refer to it as the “black box”), and show how
to make its solution connected without losing the approximation guarantee. If the original
graph is not connected, the algorithm finds a CDS in every connected component: we focus
in the following on a single of these components. Let D be the DS maintained, and C be a set
of vertices such that C ∪ D is connected and C is minimal for that property. The minimality
of C will ensure that |C| ≤ 2|D|: since D is a O(logn) approximation of MDS, this leads to a
O(logn) approximation for MCDS. Note that the vertices of C are not used for domination:
C ∪ D is therefore not minimal, but still an approximation of minimum.

Overall, we will apply the following charging scheme to amortize the total running time.
The main observation is that although a lot of vertices can be deleted to restore the minimality
of C, only a few can be added at every step. We thus give enough potential to a vertex
whenever it is added into C and whenever its neighborhood changes, so that at the time of
its removal from C it has accumulated enough potential for scanning its entire neighborhood.
After an edge deletion we might have to restore the connectivity requirement. We do that by
adding at most 2 new vertices in C: this is crucial for our amortization argument.

Outline. The set C may have to be updated for two reasons:
Restore the connectivity: if an edge gets deleted from the graph, or if the black box
removes some vertices from D, it may be necessary to add some vertices to C in order to
restore the connectivity of C ∪ D.
Restore the minimality of C: when an edge is added to the graph, or when a vertex is
added to C ∪ D (either by the black box or in order to restore the connectivity), some
vertices of C may become useless and therefore need to be removed.

We now address those two points. All our bounds are expressed in term of the total number
of changes in C ∪D: let therefore k be this number of changes. We will show later that, after
t updates to the graph, k = O(t logn).

The first phase of the algorithm is to restore the connectivity. We explain in the following
how to decide which vertices should be added to C for that purpose.

Restore the connectivity after an edge deletion

To monitor the connectivity requirement, we use the following idea. The algorithm maintains
a minimum spanning tree (MST) of the graph G where a weight 1 is assigned to the edges
between vertices in C ∪ D (called from now on D̃), and weight m is assigned to all other
edges. These weights ensure that, as long as D̃ is connected, the MST induces a tree on D̃.
When G[D̃] gets disconnected by an update, the MST uses a vertex of V \ D̃ as an internal
vertex: in that case, our algorithm adds this vertex to C, to restore the connectivity. We
give more details in the next section.

STACS 2019

35:8 Dominating Sets and Connected Dominating Sets in Dynamic Graphs

The edge weights are updated as the graph undergoes edge insertions and deletions and
vertices enter or leave D̃. The MST of the weighted version of the graph has the following
properties.

If D̃ is a connected DS, then the MST has weight (|D̃| − 1) + m · |V \ D̃| (Kruskal’s
algorithm on this graph would use |D̃| − 1 edges of weight 1 to construct a spanning tree
on D̃, then |V \ D̃| edges of weight m to span the entire graph).
If D̃ is a DS but G[D̃] is not connected, then the weight of the MST has larger value.

The two properties stem from the fact that a MST can be produced by finding a minimum
spanning forest on D̃ and extend it to a MST on V . Kruskal’s algorithm ensures that this
leads to a MST. In the case where D̃ is connected, the first step yields a tree of weight D̃ − 1,
and since the graph is connected the second step yields a cost m · |V \ D̃|. However, if D̃ is
not connected, the second step adds strictly more that |V \ D̃| edges, therefore yielding a
cost bigger than m · (1 + |V \ D̃|). This is more than (|D̃| − 1) +m · |V \ D̃|, as claimed.

Furthermore, if G[D̃] has two connected components C1, C2, then the shortest of all paths
between vertices u, v, u ∈ C1, v ∈ C2 is the minimum number of vertices whose insertion
into C restores the connectivity requirement. Note that the shortest of all such paths must
have length at most 2 (otherwise, there must be a vertex not adjacent to any vertex in D,
which contradicts the fact that D is a DS).

After an edge deletion, it may happen that D̃ becomes disconnected and that the MST
includes some internal vertices (at most 2, by the previous discussion) not in D̃: in that case,
we add them to C. This turns out to be enough to ensure the connectivity.

To maintain the MST of the weighted version of the input graph we use the O(log4 n)
update time fully-dynamic MST algorithm from [22]. Since the weights of the edges incident
to the vertices that enter or leave D̃ are also updated, the algorithm runs in time Õ(∆) for
each change in D̃, i.e. in time k · Õ(∆)

Restore the connectivity when a vertex is deleted by the black box. When a vertex v is
deleted from D by the black box DS algorithm, we need to be more careful: updating the
edge weights and finding the new MST may add a lot of vertices to C (as many as ∆, one
per edge of the MST incident to v). However, if the removal of v disconnects G[D̃], it is
enough to add v to C to restore the connectivity. If its removal does not disconnect G[D̃],
nothing needs to be done. It is possible to know if the graph G[D̃] gets disconnected using
the properties of the MST, by only looking at the weight of the MST. The complexity of this
step is therefore Õ(∆), the time needed to update the weights of the MST.

Restore the minimality. The second phase of the algorithm is to restore the minimality of
C. We explain next how to find the vertices of C that need to be removed to accomplish
this task. This minimality condition is equivalent to the condition that all vertices in C are
articulation points in the graph induced by C ∪D. (An articulation point is a vertex such
that its removal increases the number of connected components.) This turns out to be useful
in order to identify which vertices need to be removed to restore the minimality of C.

To restore the connectivity requirement, new vertices were added into C, and the black
box added some vertices to D: this might result in some vertices in C not being articulation
points of G[D̃] anymore. As observed before, these are the vertices that need to be removed.
We need to identify a maximal set of such vertices that can be removed from C without
violating the connectivity requirement. To do this, the algorithm queries in an arbitrary
order one-by-one all the vertices v ∈ C to determine whether G[D̃ \ v] is connected. This can
be done using a data structure from Holm et al. [22] that requires Õ(1) per query. Whenever

N. Hjuler, G. F. Italiano, N. Parotsidis, and D. Saulpic 35:9

the algorithm identifies a vertex such that G[D̃ \ v] is connected, it can safely remove it from
C. The complexity of this step is therefore Õ(n) to find all articulation points, and an extra
Õ(∆) for each of the vertices we remove from C.

The following three lemmas conclude the proof: the first shows that the algorithm is
correct, the second the Õ(n) time bound and the third the O(logn) approximation ratio.

I Lemma 8. The algorithm that first restores the connectivity of C∪D and then the minimality
of C is correct: it gives a minimal set C such that C ∪ D is connected.

Proof. After restoring the connectivity requirement the algorithm maintains a spanning tree
of D̃, so G[D̃] is indeed connected. In the following steps, before the algorithm removes a
vertex v from C, it first verifies that G[D̃ \ v] remains connected, which guarantees that G[D̃]
is connected at the end of the update procedure. Since the black box ensures that D is a
DS, D̃ is a DS too: hence at the end, D̃ satisfies both the domination and the connectivity
requirements. It remains to show that C is minimal, i.e., that all vertices in C are articulation
points in G[D̃]. Since during the second step the algorithm only removes vertices from C, a
vertex that was not an articulation point cannot become one, and therefore the loop to find
the articulation points is correct. The set C is therefore a minimal set such that C ∪ D is
connected. J

I Lemma 9. The amortized complexity of the algorithm is Õ(n) per update.

Proof. The amortized cost of the black box to compute D is Õ(∆). We analyze now the
additional cost of maintaining D̃. As shown in this section, the cost to add or delete a vertex
from D̃ is Õ(∆). To prove the lemma, we bound the number of changes in D̃. For that, we
count the number of vertices added to D̃: in an amortized sense this bounds the number of
changes too. Formally, we pay a budget deg(v) when v is added to D̃. Following insertions
and deletions of edges adjacent to v, we update this budget (with a constant cost), so that
when v gets deleted from D̃ a budget equal to its degree is available to spend.

From Corollary 6, the black box makes at most Õ(1) changes to D per update (in an
amortized sense). If it removes a vertex from D, we showed previously that no new vertex
is added to D̃. The number of additions to D̃ is therefore Õ(1). Moreover, in the case of
an edge deletion, at most two vertices are added to D̃ to maintain the connectivity. Since
restoring the minimality requires only to delete vertices, the total number of additions into
D̃ is Õ(1). As the cost for any of these additions is Õ(∆), the total cost of this algorithm is
upper bounded by the loop to find the articulation points, which is Õ(n). J

I Lemma 10. The algorithm maintains a O(logn) approximation for MCDS, i.e. |C ∪ D| =
O(logn) ·OPT

Proof. We first prove that |C| ≤ 2|D|, using the minimality of C. Each vertex of C is there
to connect some components of D. Consider the graph (W,F) where vertices W are either
connected components of D or vertices of C, and the set F of edges is constructed as follows.
Start with a graph containing one vertex for each connected component of D, and add
vertices of C one by one. When the vertex v is added, identify a node u in D adjacent to v
such that adding the edge (u, v) to F does not create a cycle: add to F an edge between v
and the node corresponding to the connected component containing u. It is always possible
to find such a vertex u, otherwise v would not be necessary for the connectivity, which would
contradict the minimality of C. This process gives a forest such that every node of C is
adjacent to a connected component of D. Since C ∪D is connected, it is possible to complete
F to make it a tree, adding some other edges. This tree has the two following properties.

STACS 2019

35:10 Dominating Sets and Connected Dominating Sets in Dynamic Graphs

1. The leaves are vertices that correspond to connected component of D: indeed, if a vertex
of C was a leaf in this tree, it could be removed without losing the connecting of C ∪ D,
which would contradict the minimality of C.

2. Any vertex of C is adjacent to a connected component of D, by construction of the forest.

These properties ensure that for every subtree rooted at a vertex of C, there is a D vertex
at distance at most 2 from the root: otherwise, the vertices at distance 1 from it would
be from C and adjacent only to C vertices. Moreover, since a C vertex is not a leaf, it has
necessarily some descendant and the reasoning applies. Therefore, by rooting the tree at an
arbitrary vertex of C, we can charge every C vertex to a D descendant at distance at most 2.
As a D vertex can be charged only by an ancestor at most two levels above it, it is charged
at most twice. This ensures that |C| ≤ 2|D|.

Moreover, since D is a O(logn) approximation of MDS, |D| = O(logn) ·OPT. Putting
things together, we have |C ∪ D| = |C|+ |D| = O(logn) ·OPT. J

Combining Lemmas 8, 9 and 10 proves our claim: there is a Õ(n) algorithm to maintain a
O(logn) approximation of the Minimum Connected Dominating Set. The main bottleneck of
this approach is the time spent by the algorithm in the second phase to query all vertices in
C in order to identify the vertices that are no longer articulation points. In the next section
we present an algorithm that overcomes this limitation and is able to identify the necessary
vertices more efficiently.

4 A more intricate Õ(∆) algorithm to restore the minimality of C

In this section we present a more sophisticated algorithm for implementing the phase that
guarantees the minimality of the maintained connected dominating set. This gives a proof
of Theorem 3. We focus on a single edge update: indeed, when a vertex is added to (or
removed from) D̃, one can simply add (or remove) all its edges one by one. As in the analysis
of the complexity in Lemma 9, the amortized number of changes in D̃ is Õ(1). We aim now
at proving that the time required for handling a single change is Õ(∆): for that, we treat
edge insertions and deletions to D̃ one by one, and prove that any edge update can be done
in Õ(1), which would prove the claimed bound. Our algorithm maintains another spanning
forest F of G[D̃] (unweighted) using the algorithm from [22].

I Lemma 11. The vertices of C that are not articulation points after the insertion of the
edge (v, w) all lie on the tree path v...w of F . Moreover, the removal of any of these vertices
results in the other vertices being articulation points again.

Proof. Let Gb be the graph before the insertion of (v, w), and Ga be the one after. Let u be
a vertex that is an articulation point in Gb[D̃] but not in Ga[D̃]. Suppose by contradiction
that u is not on the tree path v...w: that means that v and w are connected in Gb[D̃] \ {u}.
Since u is an articulation point in Gb[D̃], v is not connected to some vertex x in Gb[D̃] \ {u}.
But as v and w are connected in Gb[D̃] \ {u}, adding the edge (v, w) does not connect v and
x and therefore u is still an articulation point after the insertion of the edge. Therefore,
all the articulation points that can be removed are in the cycle v...w, v. Since they are not
articulation points in Ga[D̃], they separate Gb[D̃] in only two components: one with v, the
other with w. Therefore, v...w, v is the only cycle containing v and w, and removing any
vertex from it make the articulation points of Gb[D̃] be articulations point in Ga[D̃], because
they disconnect v and w again. J

N. Hjuler, G. F. Italiano, N. Parotsidis, and D. Saulpic 35:11

Lemma 11 allows us to focus on the following problem: find a vertex in C that is no
longer an articulation point in G[D̃] after the insertion of the edge (v, w). To achieve this,
the algorithm maintains for each vertex v ∈ C the number nc(v) of connected component of
G[D \ v]. For v /∈ C we set for convenience nc(v) to be the number of connected component
in G[D \ v] plus n. This information can be used as follows: when an edge (v, w) is added, if
for one vertex u ∈ C it holds nc(u) = 1 then u is removed from C (because it is no longer an
articulation point). To identify such a vertex, the algorithm queries for the minimal value
along the path v...w in T : if the minimum value is 1, the corresponding vertex is removed
from C. This removal makes all the other vertices of the set C articulation points again: by
Lemma 11, the cycle created by the insertion of (v, w) is broken by the deletion of u from
G[D̃] .

Notice that we are only interested in the nc(v) values of the vertices in C, as nc(v) > n

for v /∈ C. Since we compute a minimum and the values relevant are smaller than n, this is
equivalent to ignoring v. The advantage of this offset is that when v becomes part of C, it is
sufficient to decrease its value by n to make it consistent. We now show how to keep this
value up to date after adding or removing an edge.

Maintaining the nc(v) values in a top-tree. For this purpose, we use the biconnectivity
data structure from [22] (called top-tree) on the subgraph G[D̃]. To avoid cumbersome
notation, we pretend that we execute the algorithm on G, although the underlying graph on
which we execute the algorithm is G[D̃]. We also assume that the number of vertices remains
n throughout the execution, which is simply implemented by removing from G all incident
edges from the vertices with no incident edges in G[D̃].

We now briefly describe the approach of [22]. The algorithm maintains a spanning forest
F of G and assigns a level `(e) to each edge e of the graph. Let Gi be the graph composed of
F and all edges of level at least i. The levels are attributed such that the following invariant
is maintained:

I Invariant 2. The maximal number of vertices in a biconnected component of Gi is dn/2ie.

Therefore the algorithm needs only to consider dlog2 ne levels. Whenever an edge (v, w) is
deleted, one needs to find which vertices in the path v...w in F are still biconnected. We use
the following notion to describe the algorithm.

I Definition 12. A vertex u is covered by a nontree edge (x, y) if it is contained in a tree
cycle induced by (x, y). We say that a path v...w is covered at level i if every of its node is in
a tree cycle induced by an edge at level greater than i.

Mark that all the vertices that are covered by a given edge are in the same biconnected
component.

When a non-tree edge (v, w) is removed, it may affect the 2-edge connected components
along the tree-path v...w in T . To find which vertices are affected, the following algorithm is
used in [22]. It first marks the vertices in v...w as no longer covered at level `(v, w). Then,
it iterates over edges (x, y) that could cover v...w, i.e., the ones such that the intersection
between x...y and v...w is not empty, and marks the vertices in this intersection as covered.
This step is explained in the following function, which is called for all level i from `(v, w)
down to 0. meet(v, w, x) is the intersection of the tree paths v...w, v...x and x...w.
Recover(v, w, i). Set u := v, and iterate over the vertices of v...w towards w. For each

value of u, consider each nontree edge (q, r) with meet(q, v, w) = u and such that u...q is
covered at level i. If it is possible without breaking Invariant 2, increase the level of (q, r)

STACS 2019

35:12 Dominating Sets and Connected Dominating Sets in Dynamic Graphs

to i+ 1 and mark the edges of q...r covered at level i+ 1. Otherwise, mark them covered
at level i and stop. If the phase stopped, start a second symmetric phase with u = w and
iterating on w...v towards v.

As shown in [22], this is correct and runs in O(log4) amortized time.

Figure 1 The edge (q, r) covers some node u on the path v...w.

In our case, we are interested in the vertices u whose value nc(u) changes. They are
exactly those that are still marked as not covered at the end of the process. Indeed, if an
edge (q, r) covers a vertex u (see Figure 1), then v and w are still connected in G[D \ u],
hence the connected component of G[D \ u] do not change. However, if u is not covered by
any edge, then v and w gets disconnected in G[D \ u], thus nc(u) must be updated.

We maintain the nc(·) values in a top-tree, as follows. We call a segment a subpath of
v...w. The idea is to maintain the non-covered segments and decrease the nc values along
these at the end of the process. The top-trees allow us to alter the value of a segment of a
path in O(polylogn) time.

Figure 2 The black segments are covered by edges (qi, ri). The red segments are uncovered.

Computing the list of uncovered segments. To find the uncovered segments (in red on
Figure 2), we sort the covered ones and take the complementary. Let (q1, r1), ..., (qk, rk)
be the nontree edges considered in the execution of Recover, and let xi = LCA(v, qi) and
yi = LCA(v, ri) (where LCA(u, v) is the lowest common ancestor of u and v in the tree).
The covered segments are exactly the (xi, yi). Using lowest common ancestor queries, it is

N. Hjuler, G. F. Italiano, N. Parotsidis, and D. Saulpic 35:13

possible to sort those segments according to the position of xi along the path v...w. Given
the segments in order, it is then possible to determine the uncovered segments in linear
time: they correspond to the complementary of those segments. Answering a lowest common
ancestor query on a dynamic tree can be done in O(logn) (see [29]), hence it is possible to
sort the covered segments in time O(k log2 n) and to find the uncovered segments with the
same complexity.

Since k is the number of edges that move to a higher level during a call to Recover, and
the maximum level is logn, the total complexity of computing the uncovered segments is at
most log3 n per edges. Hence the overall complexity is O(log4 n), which is the cost of the
function Recover.

Adding an edge. To add an edge, two things are required: first decrease some nc value,
and then query if a vertex has a nc value 1. We have to decrease the nc value of a vertex y
if and only if its predecessor and its successor along the tree path v...w were not connected
in D \ {y} before the insertion of (v, w). This turns out to be equivalent to saying that y is
not covered: thus, the algorithm needs to compute the list of segments along v...w that were
uncovered before the insertion of (v, w). It then must decrease the nc values along these
segments, because they become connected. This is analogous to the case of an edge deletion:
the latter can be used the following way. First add the edge (v, w) (and make updates to
the data structure according to [22]), then delete it using the algorithm from the previous
section, with the only difference that, instead of increasing the nc values along the uncovered
segments, the algorithm decrease them.

It is then easy to find the minimum nc value along the path v...w, using the top-tree. If
this value is 1, we can remove the corresponding vertex from C. To remove it, we remove its
incident edges one by one, each time updating the nc values of the remaining vertices.

The results of this section are summarized in the following lemma.

I Lemma 13. After these updates, C is minimal. Moreover, the algorithm runs in amortized
time Õ(1) for a single edge update.

A direct corollary of this lemma and Lemma 9 is Theorem 3.

I Corollary 14 (Theorem 3). The whole algorithm to maintain the Connected DS is correct
and runs in time Õ(∆)

Proof. The correctness follows from Lemma 13 and from the correctness of the Õ(n) algorithm.
As for the running time, the only difference from Lemma 9 is the search for articulation
points: this takes Õ(1) for each edge added or removed from D̃, and consequently Õ(∆) for
each node added to or removed from D̃. This yields that the algorithm takes Õ(∆) amortized
time per update. J

5 A O(min(∆,
√

m)) amortized algorithm for Minimal Dominating
Set

This section presents a faster algorithm if one is only interested in finding a Minimal DS.
This is a DS in which it is not possible to remove a vertex, but it can be arbitrarily big. For
instance, in a star, the Minimum DS is only one vertex (the center), but its complementary
is another minimal DS and has size n− 1. This result highlights the difference between MIS
and Minimal DS: the best known deterministic complexity for MIS is O(m2/3), whereas we
present here a O(

√
m) algorithm for Minimal DS.

STACS 2019

35:14 Dominating Sets and Connected Dominating Sets in Dynamic Graphs

Key idea. When one needs to add a new vertex to the dominating set in order to dominate
a vertex v, he can choose a vertex with degree O(

√
m), either v or one of its neighbors

(a similar idea appears in Neiman et al. [27]). We present an algorithm with complexity
proportional to the degree of the vertex added to the DS: this will give a O(min(∆,

√
m))

algorithm. To analyze the complexity, we follow an argument similar to the one for CDS.
At most one vertex is added to the DS at every step, even though several can be removed.
Therefore we can pay for the (future) deletion of a vertex at the time it enters the DS.

For a vertex v, N(v) is the set of its neighbors, including v. Let D be the dominating set
maintained by the algorithm. If v ∈ D and u ∈ N(v), we say that v dominates u.

For each vertex v, the algorithm keeps this sets up-to-date:
let ND(v) be the set of neighbors of v that are in the dominating set D, i.e., ND(v) =
D ∩N(v)
if v ∈ D, let OnlyBy(v) be the set of neighbors of v that are dominated only by v, i.e.,
OnlyBy(v) = {u ∈ N(v) | |ND(u)| = 1}

Note that ND(v) and OnlyBy(v) are useful to check, throughout any sequence of updates,
whether a vertex v must be added to or removed from the current dominating set. In
particular, if ND(v) = ∅ then v is not dominated by any other vertex, and thus it must be
included in the dominating set. On the other hand, if OnlyBy(v) = ∅, all the neighbors of v
(v included) are already dominated by some other vertex, and thus v could be removed from
the dominating set.

5.1 The algorithm
We now show how to maintain a minimal dominating set D and the setsND(v) and OnlyBy(v),
for each vertex v, under arbitrary sequences of edge insertions and deletions. We first describe
two basic primitives, which will be used by our insertion and deletion algorithms: adding a
vertex to and deleting a vertex from a dominating set D.

Adding a vertex v to D. Following some edge insertion or deletion, it may be necessary
to add a vertex v to the current dominating set D. In this case, we scan all its neighbors u
and add v to the sets ND(u). If before the update ND(u) consisted of a single vertex, say w,
we also have to remove u from the set OnlyBy(w), since now u is dominated by both v and
w. If OnlyBy(w) becomes empty after this update, we remove w from D since it is no longer
necessary in the dominating set.

Removing a vertex v from D. When a vertex v is removed from the dominating set, we
have to remove v from all the sets ND(u) such that u ∈ N(v). If after this update ND(u)
consists of a single vertex, say w, we add u to OnlyBy(w).

Edge insertion. Let (u, v) be an edge to be inserted in the graph. We distinguish three
cases depending on whether u and v are in the dominating set D before the insertion. If
neither of them is in the dominating set (i.e., u /∈ D and v /∈ D), then nothing needs to be
done. If both are in the dominating set (i.e., u ∈ D and v ∈ D), then we start by adding v to
the set ND(u). If u was only necessary to dominate itself, we remove u from D. Otherwise,
we add u to ND(v) and perform the same check on v.

If only one of them is in the dominating set (say, u /∈ D and v ∈ D), we have to add v to
the set ND(u). As in the case of adding a vertex to D, this may cause the removal of another
vertex from the dominating set. This can happen only if before the insertion, ND(u) = {w}

N. Hjuler, G. F. Italiano, N. Parotsidis, and D. Saulpic 35:15

for some vertex w and OnlyBy(w) = {u}: in other terms, u was dominated only by w, and
w was in the dominating set only to dominate u. Since after the addition of the edge (u, v)
u is also dominated by v, w can be removed from the dominating set.

Edge deletion. Let (u, v) be the edge being deleted from the graph. We distinguish again
the same three cases as before. If u /∈ D and v /∈ D, nothing needs to be done. If both u ∈ D
and v ∈ D, we just have to remove u (resp. v) from the sets ND(u) and OnlyBy(u) (resp.
ND(v) and OnlyBy(v)).

If only one of them is in the dominating set, say u /∈ D and v ∈ D, then we have to
remove v from ND(u). Now, there are two different subcases:

If ND(u) 6= {v} before the deletion, then nothing needs to be done.
Otherwise, we have to remove u from OnlyBy(v): if OnlyBy(v) = ∅ after this operation,
then we can safely remove v from D. The algorithm must find a new vertex to dominate
u: we simply add u to the dominating set.

5.2 Running time
Adding or removing a vertex v from the dominating set can be done in time O(deg(v)), where
deg(v) is the degree of v in the current graph. While several vertices can be removed from D
at every step, only one can be added (following an edge deletion): the amortized complexity
of the algorithm is therefore O(∆), where ∆ is an upper bound on the degree of the nodes.

Nevertheless, it is possible to chose the vertex to be added to the dominating set more
carefully. When the algorithm must find a new vertex to dominate vertex u, it does the
following:

If deg(u) ≤ 2
√
m+ 1, the algorithm simply adds u to D.

Otherwise, deg(u) > 2
√
m+ 1. The algorithms finds a vertex w ∈ N(u) with deg(w) ≤√

m and adds w to D. Note that such a vertex w can be found by simply scanning only
2
√
m + 1 neighbors of u, since (by averaging) at least one of them must have degree

smaller than
√
m.

In both cases, the insertion takes time O(min(∆,
√
m)).

When a vertex v is deleted from the dominating set, its degree can be potentially larger
than 2

√
m. However, when v was added to the dominating set its degree must have been

O(
√
m): this implies that many edges were added to v, and we can amortize the work over

those edges. More precisely, when a vertex v enters the dominating set, we put a budget
deg(v) on it. Every time an edge incident to v is added to the graph, we increase by one this
budget, so that when v has to be removed from D, v has a budget larger than deg(v) that
can be used for the operation.

References
1 Raghavendra Addanki and Barna Saha. Fully Dynamic Set Cover–Improved and Simple.

arXiv preprint, 2018. arXiv:1804.03197.
2 Sepehr Assadi, Krzysztof Onak, Baruch Schieber, and Shay Solomon. Fully dynamic maximal

independent set with sublinear update time. In Proceedings of the 50th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018,
2018.

3 Sepehr Assadi, Krzysztof Onak, Baruch Schieber, and Shay Solomon. Fully Dynamic Maximal
Independent Set with Sublinear in n Update Time, pages 1919–1936. SIAM, 2019. doi:
10.1137/1.9781611975482.116.

STACS 2019

http://arxiv.org/abs/1804.03197
http://dx.doi.org/10.1137/1.9781611975482.116
http://dx.doi.org/10.1137/1.9781611975482.116

35:16 Dominating Sets and Connected Dominating Sets in Dynamic Graphs

4 Aaron Bernstein, Sebastian Forster, and Monika Henzinger. A Deamortization Approach
for Dynamic Spanner and Dynamic Maximal Matching. In Proceedings of the Thirtieth
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1899–1918. SIAM, 2019. doi:
10.1137/1.9781611975482.115.

5 Aaron Bernstein and Cliff Stein. Faster fully dynamic matchings with small approximation
ratios. In Proceedings of the twenty-seventh annual ACM-SIAM symposium on Discrete
algorithms, pages 692–711. Society for Industrial and Applied Mathematics, 2016.

6 Sivakumar R Bevan Das and V Bharghavan. Routing in ad-hoc networks using a virtual
backbone. In Proceedings of the 6th International Conference on Computer Communications
and Networks (IC3N’97), pages 1–20, 1997.

7 Sayan Bhattacharya, Deeparnab Chakrabarty, Monika Henzinger, and Danupon Nanongkai.
Dynamic algorithms for graph coloring. In Proceedings of the Twenty-Ninth Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 1–20. Society for Industrial and Applied
Mathematics, 2018.

8 Sayan Bhattacharya, Monika Henzinger, and Giuseppe F Italiano. Deterministic fully dynamic
data structures for vertex cover and matching. SIAM Journal on Computing, 47(3):859–887,
2018.

9 Sergiy Butenko, Xiuzhen Cheng, Carlos A Oliveira, and Panos M Pardalos. A new heuristic
for the minimum connected dominating set problem on ad hoc wireless networks. In Recent
developments in cooperative control and optimization, pages 61–73. Springer, 2004.

10 Xiuzhen Cheng, Xiao Huang, Deying Li, Weili Wu, and Ding-Zhu Du. A polynomial-time
approximation scheme for the minimum-connected dominating set in ad hoc wireless networks.
Networks: An International Journal, 42(4):202–208, 2003.

11 V. Chvatal. A Greedy Heuristic for the Set-Covering Problem. Mathematics of Operations
Research, 4(3):233–235, 1979. URL: http://www.jstor.org/stable/3689577.

12 Camil Demetrescu and Giuseppe F. Italiano. A New Approach to Dynamic All Pairs Shortest
Paths. J. ACM, 51(6):968–992, 2004.

13 Ding-Zhu Du and Peng-JunWan. Connected dominating set: theory and applications, volume 77.
Springer Science & Business Media, 2012.

14 Uriel Feige. A threshold of ln n for approximating set cover. Journal of the ACM (JACM),
45(4):634–652, 1998.

15 M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman, 1979.

16 Sudipto Guha and Samir Khuller. Approximation algorithms for connected dominating sets.
Algorithmica, 20(4):374–387, 1998.

17 Leonidas Guibas, Nikola Milosavljević, and Arik Motskin. Connected dominating sets on
dynamic geometric graphs. Computational Geometry, 46(2):160–172, 2013.

18 Anupam Gupta, Ravishankar Krishnaswamy, Amit Kumar, and Debmalya Panigrahi. Online
and dynamic algorithms for set cover. In Proceedings of the 49th Annual ACM SIGACT
Symposium on Theory of Computing, pages 537–550. ACM, 2017.

19 Manoj Gupta and Shahbaz Khan. Simple dynamic algorithms for Maximal Independent Set
and other problems. arXiv preprint, 2018. arXiv:1804.01823.

20 Manoj Gupta and Richard Peng. Fully dynamic (1+ e)-approximate matchings. In Foundations
of Computer Science (FOCS), 2013 IEEE 54th Annual Symposium on, pages 548–557. IEEE,
2013.

21 Johan Håstad. Clique is hard to approximate withinn 1- ε. Acta Mathematica, 182(1):105–142,
1999.

22 Jacob Holm, Kristian de Lichtenberg, and Mikkel Thorup. Poly-logarithmic Deterministic Fully-
dynamic Algorithms for Connectivity, Minimum Spanning Tree, 2-edge, and Biconnectivity. J.
ACM, 48(4):723–760, 2001.

23 Lujun Jia, Rajmohan Rajaraman, and Torsten Suel. An efficient distributed algorithm for
constructing small dominating sets. Distributed Computing, 15(4):193–205, 2002.

http://dx.doi.org/10.1137/1.9781611975482.115
http://dx.doi.org/10.1137/1.9781611975482.115
http://www.jstor.org/stable/3689577
http://arxiv.org/abs/1804.01823

N. Hjuler, G. F. Italiano, N. Parotsidis, and D. Saulpic 35:17

24 Viggo Kann. On the approximability of NP-complete optimization problems. PhD thesis, Royal
Institute of Technology Stockholm, 1992.

25 Fabian Kuhn and Roger Wattenhofer. Constant-time distributed dominating set approximation.
Distributed Computing, 17(4):303–310, 2005.

26 D. Nanongkai, T. Saranurak, and C. Wulff-Nilsen. Dynamic Minimum Spanning Forest
with Subpolynomial Worst-Case Update Time. In 2017 IEEE 58th Annual Symposium on
Foundations of Computer Science (FOCS), pages 950–961, October 2017.

27 Ofer Neiman and Shay Solomon. Simple deterministic algorithms for fully dynamic maximal
matching. ACM Transactions on Algorithms (TALG), 12(1):7, 2016.

28 E Sampathkumar and HB Walikar. The connected domination number of a graph. J. Math.
Phys, 1979.

29 Daniel D Sleator and Robert Endre Tarjan. A data structure for dynamic trees. Journal of
computer and system sciences, 26(3):362–391, 1983.

30 S. Solomon. Fully Dynamic Maximal Matching in Constant Update Time. In 2016 IEEE 57th
Annual Symposium on Foundations of Computer Science (FOCS), pages 325–334, October
2016. doi:10.1109/FOCS.2016.43.

31 Jie Wu and Hailan Li. On calculating connected dominating set for efficient routing in ad hoc
wireless networks. In Proceedings of the 3rd international workshop on Discrete algorithms
and methods for mobile computing and communications, pages 7–14. ACM, 1999.

STACS 2019

http://dx.doi.org/10.1109/FOCS.2016.43

On Kernelization for Edge Dominating Set under
Structural Parameters
Eva-Maria C. Hols
Department of Computer Science, Humboldt-Universität zu Berlin, Germany
hols@informatik.hu-berlin.de

Stefan Kratsch
Department of Computer Science, Humboldt-Universität zu Berlin, Germany
kratsch@informatik.hu-berlin.de

Abstract
In the NP-hard edge dominating set problem (EDS) we are given a graph G = (V, E) and an
integer k, and need to determine whether there is a set F ⊆ E of at most k edges that are incident
with all (other) edges of G. It is known that this problem is fixed-parameter tractable and admits a
polynomial kernelization when parameterized by k. A caveat for this parameter is that it needs to
be large, i.e., at least equal to half the size of a maximum matching of G, for instances not to be
trivially negative. Motivated by this, we study the existence of polynomial kernelizations for EDS
when parameterized by structural parameters that may be much smaller than k.

Unfortunately, at first glance this looks rather hopeless: Even when parameterized by the deletion
distance to a disjoint union of paths P3 of length two there is no polynomial kernelization (under
standard assumptions), ruling out polynomial kernelizations for many smaller parameters like the
feedback vertex set size. In contrast, somewhat surprisingly, there is a polynomial kernelization for
deletion distance to a disjoint union of paths P5 of length four. As our main result, we fully classify
for all finite sets H of graphs, whether a kernel size polynomial in |X| is possible when given X such
that each connected component of G−X is isomorphic to a graph in H.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms

Keywords and phrases Edge dominating set, kernelization, structural parameters

Digital Object Identifier 10.4230/LIPIcs.STACS.2019.36

Related Version A full version is available at [16], https://arxiv.org/abs/1901.03582.

Funding Eva-Maria C. Hols: Supported by DFG Emmy Noether-grant (KR 4286/1).

1 Introduction

In the edge dominating set problem (EDS) we are given a graph G = (V,E) and an
integer k, and need to determine whether there is a set F ⊆ E of at most k edges that are
incident with all (other) edges of G. It is known that this is equivalent to the existence of a
maximal matching of size at most k. The edge dominating set problem is NP-hard but
admits a simple 2-approximation by taking any maximal matching of G. It can be solved in
time O∗(2.2351k)1 [18], making it fixed-parameter tractable for parameter k. Additionally,
for EDS any given instance (G, k) can be efficiently reduced to an equivalent one (G′, k′)
with only O(k2) vertices and O(k3) edges [33] (this is called a kernelization).

The drawback of choosing the solution size k as the parameter is that k is large on many
types of easy instances. This has been addressed for many other problems by turning to so
called structural parameters that are independent of the solution size. Two lines of research
in this direction have yielded polynomial kernelizations for several other NP-hard problems.

1 O∗-notation hides factors that are polynomial in the input size.

© Eva-Maria C. Hols and Stefan Kratsch;
licensed under Creative Commons License CC-BY

36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019).
Editors: Rolf Niedermeier and Christophe Paul; Article No. 36; pp. 36:1–36:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-2832-0722
mailto:hols@informatik.hu-berlin.de
https://orcid.org/0000-0002-0193-7239
mailto:kratsch@informatik.hu-berlin.de
https://doi.org/10.4230/LIPIcs.STACS.2019.36
https://arxiv.org/abs/1901.03582
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

36:2 Edge Dominating Set

One possibility is to choose the parameter as the size of a set X such that G−X belongs to
some class C where the problem in question can be efficiently solved; such sets X are called
modulators. The other possibility is to parameterize above some lower bound for the solution,
i.e., the parameter is the difference between the solution size k and the lower bound.

The vertex cover problem, where, given a graph G and an integer k, we are asked
whether there are k vertices that are incident with all edges, has been successfully studied
under different structural parameters. It had been observed that vertex cover is FPT
parameterized by the size of a modulator to a class C when one can solve vertex cover
on graphs that belong to C in polynomial time; e.g. if C is the graph class of forests or,
more generally, of bipartite or Kőnig graphs. Furthermore, there also exist kernelizations
for vertex cover parameterized by modulators to some graph classes C. The first of
a number of such results is due to Jansen and Bodlaender [19] who gave a kernelization
with O(`3) vertices where ` is the size of a (minimum) feedback vertex set of the input graph.
Clearly, the solution size k cannot be bounded in terms of ` alone because forests already
have arbitrarily large minimum vertex covers. This result has been generalized, e.g., for
parameterization by the size of an odd cycle transversal [24].

There are also parameterized algorithms for vertex cover above lower bounds that
address the specific complaint about the seemingly unnecessarily large parameter value k in
many graph classes. It was first shown that vertex cover parameterized by ` = k −MM

where MM stands for the size of a maximum matching is FPT [27]. In other words, the
parameter value ` is the difference between k and the obvious lower bound. This has been
improved to work also for parameterization by ` = k−LP where LP stands for the minimum
fractional vertex cover (as determined by the LP relaxation) [5, 25] and, recently, even for
parameter ` = k − (2LP −MM) [13]. All of these above lower bound parameterizations of
vertex cover also have randomized polynomial kernelizations [24, 23].

Motivated by the number of positive results for vertex cover parameterized by struc-
tural parameters we would like to know whether some of these results carry over to the
related but somewhat more involved edge dominating set problem.

Our results. For kernelization subject to the size of a modulator to some tractable class C
there is bad news: Even if C contains only the disjoint unions of paths of length two (consisting
of three vertices each) we show that there is no polynomial kernelization for parameterization
by |X| with G −X ∈ C unless NP ⊆ coNP/poly (and the polynomial hierarchy collapses).
The same is true when C contains at least all disjoint unions of triangles. Thus, for the usual
program of studying modulators to well-known hereditary graph classes C there is essentially
nothing left to do because the only permissible connected components would have one or two
vertices.2 That said, as the next result shows, this perspective would ignore an interesting
landscape of positive and negative results that can be obtained by permitting certain forms
of connected components in G−X but not necessarily all induced subgraphs thereof, i.e., by
dropping the requirement that C needs to be hereditary (closed under induced subgraphs).

Indeed, there is, e.g., a polynomial kernelization for parameter |X| when all connected
components of G −X are paths of length four. This indicates that the structure even of
constant-sized components permitted in G−X determines in a nontrivial way whether or not
there is a polynomial kernelization. Note the contrast with vertex cover where a modulator
to component size d admits a kernelization with O(kd) vertices for each fixed d. Naturally,
we are interested in finding out exactly which cases admit polynomial kernelizations.

2 This very modest case actually admits a polynomial kernelization.

E. C. Hols and S. Kratsch 36:3

This brings us to our main result. For H a set of graphs, say that G is an H-component
graph if each connected component of G is isomorphic to some graph in H. We fully classify
the existence of polynomial kernelizations for parameterization by the size of a modulator to
the class of H-component graphs for all finite sets H. To clarify, the input consists of (G, k,X)
such that G−X is an H-component graph and the task is to determine whether G has an
edge dominating set of size at most k; the parameter is |X|. Note that these problems are
fixed-parameter tractable for all finite sets H because G has treewidth at most |X|+O(1).

I Theorem 1. For every finite set H of graphs, the edge dominating set problem
parameterized by the size of a given modulator X to the class of H-component graphs falls
into one of the following two cases:
1. It has a kernelization with O(|X|d) vertices, O(|X|d+1) edges, and size O(|X|d+1 log |X|).

Moreover, unless NP ⊆ coNP/poly, there is no kernelization to size O(|X|d−ε) for any
ε > 0. Here d = d(H) is a constant depending only on the set H.

2. It has no polynomial kernelization unless NP ⊆ coNP/poly.

To obtain the classification one needs to understand how connected components of G−X
that are isomorphic to some graph H ∈ H can interact with a solution for G, and to derive
properties of H that can be leveraged for kernelizations or lower bounds for kernelization.
Crucially, edge dominating sets for G may contain edges between X and components of G−X.
From the perspective of such a component (isomorphic to H) this is equivalent to first covering
edges incident with some vertex set B ⊆ V (H) (the endpoints of chosen edges to X) and
then covering the remaining edges by a minimum edge dominating set for H −B. Depending
on the size of a minimum edge dominating set of H −B and further properties of H, such
a set B may be used to rule out any polynomial kernelizations or to give a lower bound
of O(|X|d−ε) for the kernel size, where d = |B|. Conversely, absence of such sets or an
upper bound for their size can be leveraged for kernelizations. Some sets B may make others
redundant, further complicating both upper and lower bounds.

For a given finite set H of graphs, the lower bound obtained from the classification is
simply the strongest one over all H ∈ H. If this does not already rule out a polynomial
kernelization then, for each H ∈ H, we can reduce the number of components isomorphic
to H to O(|X|d(H)) where d(H) depends only on H. Moreover, we also have the almost
matching lower bound of O(|X|d(H)−ε), assuming NP * coNP/poly. The value d(H) is the
maximum over all d(H) for H ∈ H that yield such a polynomial lower bound; it can be
computed in time depending only on H, i.e., in constant time for each fixed H.

Regarding parameterization above lower bounds, we prove that it is NP-hard to determine
whether a graph G has an edge dominating set of size equal to the lower bound of half the size
of a maximum matching. This rules out any positive results for parameter ` = k − 1

2MM .

Related work. The parameterized complexity of edge dominating set has been studied
in a number of papers [9, 10, 31, 32, 33, 34, 8, 18]. Structural parameters were studied, e.g., by
Escoffier et al. [8] who obtained an O∗(1.821`) time algorithm where ` is the vertex cover size
of the input graph, and by Kobler and Rotics [22] who gave a polynomial-time algorithm for
graphs of bounded clique-width. It is easy to see that EDS is fixed-parameter tractable with
respect to the treewidth of the input graph. Prieto [26] was the first to find a kernelization
to O(k2) vertices for the standard parameterization by k; this was improved to O(k2) vertices
and O(k3) edges by Xiao et al. [33] and further tweaked by Hagerup [15]. Our work appears to
be the first to study the existence of polynomial kernelizations for EDS subject to structural
parameters, though some lower bounds, e.g., for parameter treewidth are obvious.

STACS 2019

36:4 Edge Dominating Set

Classically, edge dominating set remains NP-hard on planar cubic graphs, bipartite
graphs with maximum degree three [36]. This implies NP-hardness already for |X| = 0 when
considering parameterization by a modulator to any graph class containing this special case.
edge dominating set has also been studied from the perspective of approximation [12, 4,
3, 29, 8], enumeration [20, 14, 21], and exact exponential-time algorithms [28, 32, 30, 35].

Organization. We begin with some preliminaries in Section 2. Section 3 provides some
intuition for the main result by proving the lower bound for edge dominating set para-
meterized by the size of a modulator to a P3-component graph as well as the polynomial
kernelization for parameterization by the size of a modulator to a P5-component graph.
Section 4 gives a detailed statement of the main result including the required definitions to
determine which result applies for any given set H. Due to space restrictions, the proof of
the main result and the hardness proof for parameter ` = k − 1

2MM are deferred to the full
version of this work. We conclude in Section 5.

2 Preliminaries

We use standard graph notation as given by Diestel [7]. In particular, for a graph G = (V,E)
we let N(v) = {u ∈ V | {u, v} ∈ E} and N [v] = N(v) ∪ {v}; similarly, N [X] =

⋃
x∈X N [x]

and N(X) = N [X] \ X. We let E(X,Y) = {{x, y} | x ∈ X, y ∈ Y } and we let δ(v) =
{{u, v} | u ∈ V, {u, v} ∈ E}. By G[X] we denote the induced subgraph of G on vertex set
X and by G−X the induced subgraph on vertex set V \X; we let G− v = G− {v}. We
denote the size of a minimum edge dominating set of a graph G by eds(G).

Let H be a set of graphs. We say that a graph G is an H-component graph if each
connected component of G is isomorphic to some graph in H. Clearly, disconnected graphs
in H do not affect which graphs G are H-component graphs and, thus, our proofs need
only consider the connected graphs H ∈ H. We write H-component graph rather than
{H}-component graph for single (connected) graphs H.

Let [n] denote the set {1, 2, . . . , n}.

Parameterized complexity. A parameterized problem Q is a subset of Σ∗ × N where Σ
is any finite set. The second component k of instances (x, k) is called the parameter. A
parameterized problem Q is fixed-parameter tractable if there is an algorithm that correctly
solves all instances (x, k) in time f(k)|x|c where f is a computable function and c is a
constant independent of k. A kernelization for Q is an efficient algorithm that, given an
instance (x, k), takes time polynomial in |x|+ k and returns an instance (x′, k′) of size at
most f(k) such that (x, k) ∈ Q if and only if (x′, k′) ∈ Q where f is a computable function.
The function f is also called the size of the kernelization and a kernelization is polynomial
(resp. linear) if f(k) is polynomially (resp. linearly) bounded in k.

We use the notion of a cross-composition [2], which is a convenient front-end for the seminal
kernel lower bound framework of Bodlaender et al. [1] and Fortnow and Santhanam [11].
A relation R ⊆ Σ∗ × Σ∗ is a polynomial equivalence relation if equivalence of two strings
x, y ∈ Σ∗ can be tested in time polynomial in |x| + |y| and if R partitions any finite set
S ⊆ Σ∗ into a number of classes that is polynomially bounded in the largest element of S.

I Definition 2 ((OR-)cross-composition [2]). Let L ⊆ Σ∗ be a language, let R be a polynomial
equivalence relation on Σ∗, and let Q ⊆ Σ∗ × N be a parameterized problem. An (OR-)cross-
composition of L into Q (with respect to R) is an algorithm that, given t instances x1, . . . , xt ∈

E. C. Hols and S. Kratsch 36:5

Σ∗ of L belonging to the same equivalence class of R, takes time polynomial in
∑t

i=1 |xi|
and outputs an instance (y, k) ∈ Σ∗ × N such that the following hold:

“PB”: The parameter value k is polynomially bounded in maxt
i=1 |xi|+ log t.

“OR”: The instance (y, k) is yes for Q if and only if at least one instance xi is yes for L.
An (OR-)cross-composition of L into Q of cost f(t) instead satisfies “OR” and “CB”:

“CB”: The parameter value k is bounded by O(f(t) · (maxt
i=1 |xi|)c), where c is some

constant independent of t.

If L is NP-hard then both forms of cross-compositions are known to imply lower bounds
for kernelizations for Q. Theorem 4 additionally builds on Dell and van Melkebeek [6].

I Theorem 3 ([2, Corollary 3.6.]). If an NP-hard language L has a cross-composition to Q then
Q admits no polynomial kernelization or polynomial compression unless NP ⊆ coNP/poly.

I Theorem 4 ([2, Theorem 3.8.]). Let d, ε > 0. If an NP-hard language L has a cross-
composition into Q of cost f(t) = t1/d+o(1), where t is the number of instances, then Q has no
polynomial kernelization or polynomial compression of size O(kd−ε) unless NP ⊆ coNP/poly.

All our composition-based proofs use for L the NP-hard multicolored clique problem.
Therein we are given a graph G = (V,E), an integer k, and a partition of V into k sets
V1, . . . , Vk of equal size; we need to determine whether there is a clique of size k in G that
contains exactly one vertex from each set Vi. Such a set X is called a multicolored k-clique.

3 EDS parameterized by the size of a modulator to a P3- resp.
P5-component graph

In this section we study the difference of edge dominating set parameterized by the size
of a modulator to a P3-component graph and edge dominating set parameterized by
the size of a modulator to a P5-component graph, which are both more restrictive than
parameterization by size of a feedback vertex set (modulator to a forest). Note that the latter
is FPT, because the treewidth is at most the size of the feedback vertex set plus one and
edge dominating set parameterized by the treewidth is FPT. Hence, edge dominating
set parameterized by the above modulators is FPT too.

First, we show that edge dominating set parameterized by the size of a modulator
to a P3-component graph has no polynomial kernelization unless NP ⊆ coNP/poly. This
rules out polynomial kernelizations for a large number of interesting parameters like feed-
back vertex set size or size of a modulator to a linear forest. Somewhat surprisingly, we
then show that when parameterized by the modulator to a P5-component graph we do
get a polynomial kernelization.

3.1 Lower bound for EDS parameterized by the size of a modulator to
a P3-component graph

We give a kernelization lower bound for edge dominating set parameterized by the size of
a modulator X, such that deleting X results in a disjoint union of P3’s. To prove this we
give a cross-composition from multicolored clique.

I Theorem 5. edge dominating set parameterized by the size of a modulator to a P3-
component graph (and thus also parameterized by the size of a modulator to a linear forest)
does not admit a polynomial kernelization unless NP ⊆ coNP/poly.

STACS 2019

36:6 Edge Dominating Set

Z ′

Z

W

I1 I2 I3 I4 It−1 It
. . .

V
S

S′

T

T ′

...
...

...
...

...
...

Figure 1 Construction of the graph G′ with k = 4, where X ′ = W ∪Z ∪Z′ ∪V ∪T ∪T ′ ∪S ∪S′.

Proof. To prove the theorem we give a cross-composition from the NP-hard multicolored
clique problem to edge dominating set parameterized by the size of a modulator to
a P3-component graph. Input instances are of the form (Gi, ki) where Gi comes with a
partition of the vertex set into k color classes. (Since the color classes are of equal size it
holds that k ≤ |V (Gi)|.) For the polynomial equivalence relation R we take the relation that
puts two instances (G1, k1), (G2, k2) of multicolored clique in the same equivalence class
if k1 = k2 and |V (G1)| = |V (G2)|. It is easy to check that R is a polynomial equivalence
relation. (Instances with size at most N have at most N vertices. Thus, we get at most N2

classes for instances of size at most N .)
Let a sequence of instances Ii = (Gi, k)t

i=1 of multicolored clique be given that are
equivalent under R. We identify the color classes of the input graphs so that all graphs have
the same vertex set V and the same color classes V1, V2, . . . , Vk. Let n := |Vi| be the number
of vertices of each color class; thus, each instance has |V | = n · k vertices. We assume w.l.o.g.
that every instance has at least one edge in E(Vp, Vq) for all 1 ≤ p < q ≤ k; otherwise, this
instance would be a trivial no instance and we can delete it. Furthermore, we can assume
w.l.o.g. that t = 2s for an integer s, since we may copy some instances if needed (while at
most doubling the number of instances and increasing log t by less than one).

Now, we construct an instance (G′, k′, X ′) of edge dominating set parameterized
by the size of a modulator to a P3-component graph, where the size of X ′ is polynomially
bounded in n+ k + s (see Figure 1 for an illustration). We add a set V consisting of k · n
vertices to graph G′ which represents the vertices of the t instances. The set V is partitioned
into the k color classes V1, V2, . . . , Vk. To choose which vertices are contained in a clique of

E. C. Hols and S. Kratsch 36:7

size k, we add a set T = {t1, t2, . . . , tk} and a set T ′ = {t′1, t′2, . . . , t′k}, each of size k, to G′.
We make tj ∈ T , with j ∈ [k], adjacent to all vertices in Vj and to vertex t′j ∈ T ′. Next,
we add two sets Z, Z ′, each of size s, and a set W of size 2s to G′ and add edges to G′
such that each vertex in Z has exactly one private neighbor in Z ′ and is adjacent to all
vertices in W . The set W contains

(2s
s

)
≥ 2s different subsets of size s. For each instance

(Gi, k), with i ∈ [t], we pick a different subset of size s of W and denote it by W (i). For all
1 ≤ p < q ≤ k we add a vertex sp,q and a vertex s′p,q to G′; these will correspond to the edge
sets E(Vp, Vq). Let S = {sp,q | 1 ≤ p < q ≤ k} and S′ = {s′p,q | 1 ≤ p < q ≤ k}. We make
vertex sp,q adjacent to vertex s′p,q for all 1 ≤ p < q ≤ k. For each graph Gi, for i ∈ [t], we
add |E(Gi)| paths of length two to the graph G′; every P3 represents exactly one edge of
the graph Gi. Let P e

i = ue
i,1u

e
iu

e
i,2 denote the path of instance i ∈ [t] that represents edge

e ∈ E(Gi). Finally, we make vertices in P e
i , with i ∈ [t] and e ∈ E(Gi), adjacent to vertices

in the sets W , V , and S as follows: We make vertex ue
i,1 of path P e

i , with i ∈ [t], which
represents edge e = {x, y} ∈ E(Gi) adjacent to the vertices x, y in V and to all vertices in the
set W (i) ⊆W . Additionally, we make vertex ue

i adjacent to vertex sp,q where 1 ≤ p < q ≤ k
such that e ∈ E(Vp, Vq).

The set X ′ is defined to contain all vertices that do not participate in the paths P e
i , i.e.,

X ′ = W ∪ Z ∪ Z ′ ∪ V ∪ T ∪ T ′ ∪ S ∪ S′. Clearly, G − X ′ is a P3-component graph and
|X ′| = 4s+ k · n+ 2k + 2 ·

(
k
2
)
. Let k′ = k + s+

∑t
i=1 |E(Gi)|. Note that the size of k′ can

depend linearly on the number of instances, because our parameter is the size of X ′, which
is polynomially bounded in n+ s, as k ≤ n. We return the instance (G′, k′, X ′); clearly, this
instance can be generated in polynomial time.

Now, we have to show that (G′, k′, X ′) is a YES-instance of EDS if and only if there
exists an i∗ ∈ [t] such that (Gi∗ , k) is a YES-instance of multicolored clique.

(⇒:) Assume first that (G′, k′, X ′) is yes for EDS and that there exists an edge dominating
set F of size at most k′ in G′. We can always pick F such that it fulfills the following properties
(most hold for all solutions of size at most k′):
1. The vertex sets S, T , and Z must be subsets of V (F): E.g., for each edge {z, z′} with

z ∈ Z and z′ ∈ Z ′ the set V (F) must contain z or z′; if it contains z′ then {z, z′} ∈ F as
it is the only edge incident with z′; either way we get z ∈ V (F). The same applies for S
and S′, and for T and T ′.

2. Because S, T, Z ⊆ V (F) but S ∪ T ∪ Z is an independent set, the set F must contain at
least |S| edges incident with S, |T | edges incident with T , and |Z| edges incident with Z.
By straightforward replacement arguments we may assume that F contains exactly the
following edges incident with S ∪T ∪Z: |T | edges between T and V , |Z| edges between Z
and W , and |S| edges between S and middle vertices ue

i of P3’s in G′ −X ′. Furthermore,
we can assume that these edges are a matching, because no color class is empty, no edge
set E(Vp, Vq) is empty, and Z is adjacent to all vertices in W .

3. For each P e
i = ue

i,1u
e
iu

e
i,2, which represents the edge e of instance (Gi, k), at least vertex

ue
i must be an endpoint of an edge in F : Indeed, to cover the edge {ue

i , u
e
i,2} one of its

two vertices must be in V (F). Similar to Property 1 above, if ue
i,2 ∈ V (F) then F must

contain its sole incident edge {ue
i , u

e
i,2} and, hence, ue

i ∈ V (F).
4. An edge in F cannot have its endpoints in two different P3’s of G′ −X ′ because no such

edges exist.
Let FT = F ∩ E(T, V), let FZ = F ∩ E(Z,W), let FS = F ∩ E(S, {ue

i | i ∈ [t], e ∈ E(Gi)}),
and let FR = F \ (FT ∪ FZ ∪ FS). Hence, due to Properties 1 and 2, we have

|FR| ≤ k′ − |FT | − |FZ | − |FS | ≤
t∑

i=1
|E(Gi)| −

(
k

2

)
.

STACS 2019

36:8 Edge Dominating Set

By Property 3, all vertices ue
i are endpoints of edges in F . Among FT ∪ FZ ∪ FS this can

only be true for the |S| =
(

k
2
)
edges in FS . Since there are exactly

∑t
i=1 |E(Gi)| vertices ue

i ,
which is (greater or) equal to |FR|+ |FS |, and there are no edges connecting different such
vertices, each edge in FR ∪ FS is incident with a private vertex ue

i . This also implies that
all edges in FR have no endpoints in V ∪W as those sets are not adjacent to any vertex ue

i .
Thus, in W exactly the |Z| = s endpoints of FZ are endpoints of F . Similarly, in V exactly
the |T | = k endpoints of FT are endpoints of F ; let X ⊆ V denote this set of k vertices.
Observe that by construction of G′ the set X contains exactly one vertex from each color
class, because tj ∈ T , for j ∈ [k], is only adjacent to vertices of Vj .

Now, consider any path P e
i = ue

i,1u
e
iu

e
i,2 where ue

i is an endpoint of an edge f ∈ FS .
Clearly, the other endpoint of f lies in S, and, by the above accounting, no other edge of F
is incident with ue

i,1 or ue
i,2. In particular, this implies that all neighbors of ue

i,1 in W and
V must be endpoints of edges in F . If e = {x, y} then these neighbors of ue

i,1 are the set
W (i) ⊆W and the vertices x, y ∈ V , and, by construction of G′, the edge {x, y} must exist
in Gi. Thus, W (i) ∪ {x, y} ⊆ V (F) which implies that x, y ∈ X.

Repeating this argument for all |S| =
(

k
2
)
paths of this type, we can conclude the following:

(1) All paths correspond to the same instance i∗ ∈ [t] because we require W (i) ⊆ V (F), but
exactly |Z| = |W (i∗)| = s such vertices are in V (F). (Different values of i would require
different sets W (i), exceeding size s.) (2) There are

(
k
2
)
edges of Gi∗ represented by the

paths and all their endpoints must be in X = V ∩ V (F). Since |X| = k, the edges must
form a clique of size k on vertex set X in Gi∗ . We already observed above that X contains
exactly one vertex per color class, hence, instance (Gi∗ , k) is yes, as claimed.

(⇐:) For the other direction, assume that for some i∗ ∈ [t] the multicolored clique
instance (Gi∗ , k) is a YES-instance. Let X = {x1, x2, . . . , xk} ⊆ V be a multicolored clique
of size k in Gi∗ with xj ∈ Vj for j ∈ [k], let E′ be the set of edges of the clique X, and let
ep,q = {xp, xq} for 1 ≤ p < q ≤ k. We construct an edge dominating set F of G′ of size
at most k′ as follows: First we add the k edges {tj , xj} for j ∈ [k] between T and X ⊆ V ;
thus, T ∪X ⊆ V (F). We then add a maximum matching (of size s) between W (i∗) ⊆ W

and Z to the set F . This matching saturates W (i∗) and Z because |Z| = |W (i∗)| = s;
thus, W (i∗) ∪ Z ⊆ V (F). Next, we add the edges {uep,q

i∗ , sp,q} for all edges ep,q ∈ E′, with
1 ≤ p < q ≤ k, to the set F ; hence S ⊆ V (F). Finally, for all other paths P e

i , with
i ∈ [t], e ∈ E(Gi), and i 6= i∗ or e /∈ E′, we add the edge {ue

i,1, u
e
i} to F . (We have thus

selected exactly one edge incident with each path of G′ −X ′.) By construction, it holds that
|F | = k + s+

∑t
i=1 |E(Gi)| = k′.

It remains to show that F is indeed an edge dominating set of G′. To prove this, it
suffices to show that V (G′) − V (F) is an independent set in G′. We already know that
S ∪ T ∪W (i∗) ∪X ∪ Z ⊆ V (F). Moreover, V (F) contains the middle vertex ue

i for all P3’s
in G′ −X ′ and it contains ue

i,1 for all P3’s that do not correspond to an edge of the clique X
(i.e., with i 6= i∗ or with i = i∗ but e 6= ep,q for any 1 ≤ p < q ≤ k). The sets S′, T ′, and Z ′
are independent sets whose neighborhoods S, T , and Z are subsets of V (F). Similarly, all
vertices ue

i,2 have their single neighbor ue
i in V (F). Thus, only vertices in W \W (i∗) and

V \X could possibly be adjacent to vertices uep,q

i∗,1 , which correspond to the edges of Gi∗ [X],
in G′− V (F), but this can be easily refuted: Indeed, each uep,q

i∗,1 is adjacent only to xp and xq

in V , which are both in X ⊆ V (F), and to the vertices in W (i∗) in W , but W (i∗) ⊆ V (F)
as well. Thus V (G′)− V (F) is an independent set in G′ and hence F is an edge dominating
set for G′ of size at most k′. Thus, (G′, k′, X ′) is yes, which completes the cross-composition.

By Theorem 3 the cross-composition from multicolored clique implies the claimed
lower bound for kernelization. J

E. C. Hols and S. Kratsch 36:9

We proved that edge dominating set parameterized by the size of a modulator to a
P3-component graph has no polynomial kernelization unless NP ⊆ coNP/poly. A similar proof
establishes the same lower bound for modulators to K3-component graphs. As mentioned
in the introduction this rules out polynomial kernels using modulators to essentially all
interesting hereditary graph classes.3

3.2 Polynomial kernelization for EDS parameterized by the size of a
modulator to a P5-component graph

To illustrate why other, non-hereditary, sets H may well allow polynomial kernelizations for
parameterization by the size of a modulator X to an H-component graph, we sketch a simple
kernelization for the case of H = {P5}, i.e., when components of G−X are isomorphic to
the path of length four. This does not use the full generality of the kernelization obtained
in Section 4 because P5 does not have any (later called) uncovered vertices or (later called)
strongly beneficial sets (which are the main source of complication).

For the kernelization we need the following theorem which is due to Hopcroft and Karp [17].
The second claim of the theorem is not standard (but well known).

I Theorem 6 ([17]). Let G be an undirected bipartite graph with partition R and S, on
n vertices and m edges. Then we can find a maximum matching of G in time O(m

√
n).

Furthermore, in time O(m
√
n) we can find either a maximum matching that saturates R or

a set Y ⊆ R such that |NG(Y)| < |Y | and such that there exists a maximum matching M in
G−NG[Y] that saturates R \ Y .

I Theorem 7. edge dominating set parameterized by the size of a given modulator X to
a P5-component graph admits a kernelization with O(|X|) vertices.

Proof. Let (G, k,X) be an instance of edge dominating set parameterized by the size
of a modulator to a P5-component graph, and let C be the set of connected components
of G−X. We construct a bipartite graph GB where one part is the set X, the other part
consists of one vertex sP for every connected component P in C, and where there is an
edge between x ∈ X and sP with P = w1w2w3w4w5 ∈ C if and only if x is adjacent to a
vertex of P that is not the middle vertex w3. Now, we apply Theorem 6 to obtain either
a maximum matching in GB that saturates X or a set Y ⊆ X such that |NGB

(Y)| < |Y |
and such that there exists a maximum matching in GB −NGB

[Y] that saturates X \ Y . If
there exists a maximum matching in GB that saturates X then let X1 = X and X2 = ∅.
Otherwise, if there exists a set Y with the above properties then let X1 = X \Y and X2 = Y .
Observe that X2 also contains the vertices in X that are only adjacent to middle vertices of
components in C, and the vertices in X that are not adjacent to any component in C. Let M
be a maximum matching in GB −NGB

[X2] that saturates X1. The partition X1∪̇X2 of X
fulfills the following properties:

Let C2 be the set of connected components P in C where sP is a vertex in NGB
(X2), i.e.,

C2 = {P = w1w2w3w4w5 ∈ C | NG({w1, w2, w4, w5}) ∩X2 6= ∅}. It holds either that C2
is the empty set (when X2 = ∅) or that it contains less than |X2| connected components
of C, i.e., |C2| < |X2| (when Y = X2 6= ∅).

3 It certainly does completely settle the question for modulators to H-component graphs for all hereditary
classes H. If H contains any connected graph with at least three vertices then we get a lower bound;
else all connected components have one or two vertices and there is a polynomial kernelization.

STACS 2019

36:10 Edge Dominating Set

For every vertex x ∈ X1, let Px = wx
1w

x
2w

x
3w

x
4w

x
5 be the connected component in

C1 := C \ C2 that is paired to x by M , i.e., {x, sPx
} ∈ M . It holds that there exists a

vertex wx ∈ {wx
1 , w

x
2 , w

x
4 , w

x
5} such that {wx, x} ∈ E(G) (definition of GB). Note that

C1 also contains all connected components that are not adjacent to any vertex in X or
where only the middle vertex of a path in C is adjacent to a vertex in X.

Using the above partition, one can show that there exists an optimum solution S that
contains for each path Px with x ∈ X1 the locally optimal solution {{x,wx}, {wx

3 , w
x
2}}

resp. {{x,wx}, {wx
3 , w

x
4}} depending on whether wx ∈ {wx

4 , w
x
5} or wx ∈ {wx

1 , w
x
2}. More

generally, for every vertex w of a path P ∈ C, except the middle vertex, and every vertex
x ∈ X that is adjacent to w there exists a local optimum solution to P that uses edge {w, x}
and has the middle vertex of P as an endpoint of the second solution edge. This is the
crucial difference to a path P ′ = v1v2v3 of length two. Here, the only locally optimal solution
that dominates P ′ and contains an edge between P ′ and X is {{v2, x}} with x ∈ X, but
this local solution does not contain the vertices v1 and v3. We used this in our lower bound
construction to control which P3’s may be used to “buy” vertices in X.

I Reduction Rule 1. Delete X1 from G, i.e., let G′ = G − X1, X ′ = X \ X1 = X2, and
k′ = k.

B Claim 8. Reduction Rule 1 is safe.

Proof. Let F be an edge dominating set of size at most k in G. We construct an edge
dominating set F ′ of size at most k′ = k in G′ by deleting every edge e = {x, y} ∈ F if both
endpoints of e are contained in X1, or if exactly one endpoint is contained in X1 and the
other endpoint is isolated in G′; and by replacing every edge e = {x, y} ∈ F with x ∈ X1
and y /∈ X1 by exactly one edge in δG′(y) if δG′(y) 6= ∅. It holds that F ′ has size at most
k = k′ because we either delete edges in F or replace them one for one by a new edge. Since
every vertex in V (G′) ∩ V (F) is either contained in V (F ′) or isolated in G′ it holds that F ′
is an edge dominating set in G′.

For the other direction, let F ′ be an edge dominating set of size at most k′ in G′. Consider
the path Px = wx

1w
x
2w

x
3w

x
4w

x
5 for some vertex x ∈ X1. It holds that the only vertex in Px

that can be adjacent to a vertex in X ′ = X \X1 = X2 is vertex wx
3 ; otherwise Px would be a

component in C2 and not in C1 (by definition of C1 and C2). Furthermore, the edge dominating
set F ′ must dominate the two non-adjacent edges {wx

1 , w
x
2} and {wx

4 , w
x
5}. Since wx

1 , wx
2 ,

wx
4 , and wx

5 are only adjacent to vertices in Px the set F ′ must contain one of the two edges
ex

1,2 = {wx
1 , w

x
2}, ex

2,3 = {wx
2 , w

x
3} and one of the two edges ex

3,4 = {wx
3 , w

x
4}, ex

4,5 = {wx
4 , w

x
5}.

To obtain an edge dominating set of size at most k in G we replace for each vertex x ∈ X1
these edges with the local optimum solution {{x,wx}, {wx

3 , w
x
2}} resp. {{x,wx}, {wx

3 , w
x
4}}

depending whether wx ∈ {wx
4 , w

x
5} or wx ∈ {wx

1 , w
x
2}. It holds that |F | ≤ |F ′| because for

every vertex x ∈ X1 we replace the at least two edges in F ′ ∩ {ex
1,2, e

x
2,3, e

x
3,4, e

x
4,5} by the two

edges of the locally optimal solution {{x,wx}, {wx
3 , w

x
2}} resp. {{x,wx}, {wx

3 , w
x
4}}.

It remains to show that F is indeed an edge dominating set in G. The set V (F) contains
all vertices in V (F ′), except some vertices in the connected components Px with x ∈ X1
where we change the edge dominating set F ′. Furthermore, V (F) contains all vertices in
X1 because for every vertex x ∈ X1 the edge {wx, x} is contained in F . Thus, the only
edges that are possibly not dominated by F have one endpoint in a path Px with x ∈ X1.
Since wx

3 is contained in V (F) (by construction), since every edge in Px is dominated by F
(by construction), and since the vertices in {wx

1 , w
x
2 , w

x
4 , w

x
5} are only adjacent to vertices in

Px ∪X1, it follows that F is an edge dominating set in G. C

E. C. Hols and S. Kratsch 36:11

After applying Reduction Rule 1 it holds that for each path P = w1w2w3w4w5 ∈ C1 only
the vertex w3 can be adjacent to a vertex in X, and we can assume that every (optimum)
solution contains the edges {w2, w3} and {w3, w4}. Additionally, one can show that there
exists an optimum solution that does not contain any edge between C1 and X because we can
replace any such edge e = {x, v} with v ∈ V (C1) by the edge {x, u} with u ∈ NG(x) \ V (C1)
(or delete this edge when NG(x) \ V (C1) = ∅). This allows us to delete C1 from G.

I Reduction Rule 2. Delete all connected components in C1 and decrease k by the size of a
minimum edge dominating set in C1, i.e., let G′ = G− C1, X ′ = X, and k′ = k − eds(C1).

B Claim 9. Reduction Rule 2 is safe.

Proof. First, we will show that there exists an edge dominating set F of size at most k in
G such that no edge in F has one endpoint in a connected component of C1 and the other
endpoint in X. Let F be an edge dominating set of size at most k in G with F ∩ E(C1, X)
minimal, and let P = w1w2w3w4w5 be a path in C1. We can assume, w.l.o.g., that F contains
the edges {w2, w3} and {w3, w4} because F must dominate the non-adjacent edges {w1, w2},
{w4, w5}, and the vertices w1, w2, w4, w5 are only adjacent to vertices in P ; otherwise, P
is contained in C2 and not C1. Now, assume for contradiction that there exists an edge
e = {x, y} ∈ F ∩ E(C1, C) with x ∈ X and y ∈ P where P = w1w2w3w4w5 is a path in
C1. It holds that y = w3 because w3 is the only vertex in P that is adjacent to a vertex in
X. If every vertex u ∈ NG(x) is contained in V (F) then let F̃ = F \ {e}. Otherwise, let
F̃ = F \{e}∪{{x, u}}, where u ∈ NG(x)\V (F). It holds that F̃ is an edge dominating set in
G because y = w3 is still a vertex in V (F̃) which implies V (F) ⊆ V (F̃). Furthermore, u is not
contained in a connected component of C1 because for every path P = w1w2w3w4w5 in C1 the
vertex w3 is contained in V (F) and no other vertex is adjacent to a vertex in X. Now, the set
F̃ is an edge dominating set of size at most k in G with F̃ ∩E(C1, X) (F ∩E(C1, X) which
contradicts the minimality of F ∩ E(C1, X) and proves that there exists an edge dominating
set F of size at most k in G with F ∩ E(C1, X) = ∅. This implies that F ′ = F \ E(C1)
is an edge dominating set of size at most k′ in G′ when F is a solution to (G, k,X) with
F ∩ E(C1, X) = ∅.

For the other direction, let F ′ be an edge dominating set of size at most k′ in G′. To obtain
an edge dominating set F of size at most k in G we add for every path P = w1w2w3w4w5
in C1 the two edges {w2, w3} and {w3, w4}, which are a minimum edge dominating set of
P , to F ′. It follows that F has size |F ′|+ eds(C1) ≤ k. The set F dominates all edges in
G−X as well as all edges between C2 and X because F ′ ⊆ F , and because F contains an
edge dominating set of C1. Additionally, F dominates all edges between C1 and X because F
dominates all middle vertices of the paths in C1 which are the only vertices in C1 that are
adjacent to X. Hence, F is an edge dominating set of size at most k in G. C

Let (G′, k′, X ′) be the reduced instance. It holds that the set of connected components in
G′ −X ′ is C2 because we delete all other connected components during Reduction Rule 2.
Since |C2| ≤ |X2| = |X ′| it follows that G′ has at most 5 · |C2| + |X ′| ≤ 6|X ′| vertices. It
remains to show that we can perform the reduction in polynomial time. We apply each
Reduction Rule at most once. Furthermore, we can apply the Reduction Rules in polynomial
time because we can compute the partition of X as well as the sets C1 and C2 in polynomial
time, and because we can delete sets of vertices from G and X in polynomial time. J

While this is not the full story about the classification in the following section, it hopefully
shows the spirit of how upper and lower bounds for kernelization can arise. Solution edges
between components of G−X and X play a crucial role and they affect the solutions for
components in nontrivial ways, e.g., apart from control opportunities, it depends on how
much budget is needed for H −B when edges between B and X are in the solution.

STACS 2019

36:12 Edge Dominating Set

4 EDS parameterized by the size of a modulator to an H-component
graph

In this section, we develop a complete classification of edge dominating set parameterized
by the size of a modulator to an H-component graph regarding existence of polynomial
kernelizations for all finite sets H. This is motivated by the observed difference between
modulating to P3-component graphs (no polynomial kernelization unless NP ⊆ coNP/poly) vs.
modulating to P5-component graphs (polynomial kernelization). To this end, we will study
which properties graphs H ∈ H must have, such that edge dominating set parameterized
by the size of a modulator to an H-component graph has resp. does not have a polynomial
kernel. To recall, the input of our problem is a tuple (G, k,X) where G − X is an H-
component graph and we ask whether G has an edge dominating set of size at most k;
the parameter is |X|.

In contrast to vertex cover, where we can delete a vertex in the modulator if we
know that this vertex must be in a solution of certain size, this is not the case for edge
dominating set because we do not necessarily know which incident edge should be chosen.
Of course, we can check for a vertex x in the modulator X how not having this vertex as an
endpoint of a solution edge influences the size of a minimum edge dominating set of G−X.
But, even if we find out that a vertex x in the modulator X must be an endpoint of a solution
edge, we do not know if the other endpoint of the solution edge incident with x is in X or in
a connected component of G−X. If there would be a connected component C in G−X
with the property that there exists a vertex v ∈ N(x)∩V (C) with eds(C) = eds(C − v) + 1,
then it could be possible to have x as an endpoint of a solution edge without paying more
than the cost of a minimum edge dominating set in C. Thus, instead of finding vertices in
the modulator that must be endpoint of a solution edge, we want to find vertices in the
modulator that can be endpoints of a solution edge without spending more budget than the
size of a minimum edge dominating set in G−X. Similarly, getting edges to r vertices in
X while increasing the cost in C by less than r is of interest (cost equal to r can always be
had). The following definition classifies relevant vertices and vertex sets in a graph H, which
may occur as a component of G−X.

I Definition 10. Let H = (V,E) be a connected graph.
We call a vertex v ∈ V extendable if eds(H − v) + 1 = eds(H). We denote the set of
extendable vertices of H by Q(H). (Intuitively, these vertices allow a local solution for an
H-component in G−X that includes an edge {v, x} with x ∈ X and v ∈ V (H).)
We call a set Y ⊆ Q(H) free if for all vertices v ∈ Y and for all minimum edge dominating
sets F in H there exists a minimum edge dominating set F ′ in H − v of size |F | − 1
and with V (F) \ Y ⊆ V (F ′). By W (H) we denote the unique maximum free set of H.
We call a vertex w ∈ W (H) free.4 (Intuitively, vertices in Y can be used for solution
edges between components and X, while covering the same vertices of H −Y as any local
optimum solution; thus, they cannot be used for lower bounds like for P3-components.)
We call a vertex v ∈ V uncovered if no minimum edge dominating set F of H contains
an edge incident with v, i.e. v /∈ V (F). We denote the set of uncovered vertices by U(H).
(Intuitively, H-components with any v ∈ U(H) adjacent to x ∈ X are easy to handle
because x /∈ V (F) would imply that the local cost for H increases above eds(H).)

4 We show in the full version that W (H) is unique.

E. C. Hols and S. Kratsch 36:13

ba

f

k l

c d

eeeeee g h i j

Figure 2 Example of an H-component with eds(H) = 4. The wavy edges are a possible minimum
edge dominating set of H.

For any Y ⊆ V define cost(Y) := |Y |+ eds(H − Y)− eds(H).
(Intuitively, cost(Y) is equal to the additional budget that is needed for an H-component
of G−X when exactly the vertices in Y have solution edges to X. Note that cost({v}) = 0
for all extendable vertices v.)
We call a set B ⊆ V \ W (H) beneficial if for all B̃ (B we have |B| − cost(B) >
|B̃| − cost(B̃) or, equivalently, eds(H − B) < eds(H − B̃). Note that this must also
hold for B̃ = ∅ which implies that for all beneficial sets we have |B| − cost(B) > 0 or,
equivalently, eds(H −B) < eds(H).
(Intuitively, the solution may include |B| edges between B and some X ′ ⊆ X while
increasing the cost for the H-component by exactly cost(B); this saves |B| − cost(B) > 0
over taking any |B| edges incident with X ′. The condition for all B̃ (B ensures that
the savings of getting |B| edges at cost cost(B) is greater than for any proper subset.)
We call a beneficial set B strongly beneficial if cost(B) <

∑h
i=1 cost(Bi) holds for all

covers B1, B2, . . . , Bh (B of B. (Intuitively, for a strongly beneficial set B we cannot
get the same number of edges to X by using sets Bi in several different H-components.)

I Example 11 (Illustration of Definition 10). Figure 2 shows a connected graph H. The size
of an edge dominating set in H is at least four because a solution has to dominate the four
pairwise non-adjacent edges {a, b}, {k, l}, {j, d} and {g, h}. Thus, eds(H) = 4 because the
wavy edges are an edge dominating set of H.

The vertices {a, b, k, l}, marked with a green cycle, as well as the vertices {d, h, j}, marked
with an orange rectangle, are extendable. But only the green marked vertices {a, b, k, l} are
free: Let F be any minimum edge dominating set in H. The set F must contain exactly one
of the two edges e1 = {a, b} and e2 = {a, f}, and exactly one of the two edges e3 = {k, l}
and e4 = {k, f}. Now, F ′ = F \ {e1, e2, e3, e4} ∪ {f, k} is an edge dominating set in H − a
and H − b of size |F | − 1, and F ′ = F \ {e1, e2, e3, e4} ∪ {a, f} is an edge dominating set
in H − k and H − l of size |F | − 1 which implies that the vertices {a, b, k, l} are free. The
vertices {d, h, j} are not free because no minimum edge dominating set F ′ in H − d, resp.
H − h, resp. H − j has vertex c, which is not extendable, as an endpoint of a solution edge,
but the graph H has a minimum edge dominating set that has c as an endpoint, namely
the one containing the wavy edges {a, b}, {h, c}, {d, j}. The vertex e, marked with a blue
triangle, is uncovered.

The set {c, g} is strongly beneficial, whereas the set {c, g, i, j} is only beneficial, but not
strongly beneficial: The set {c, g} is beneficial because eds(H−{c, g}) = 3 and eds(H−c) =
eds(H − g) = eds(H) = 4, and strongly beneficial because the only possible non-trivial
cover of {c, g} is {c}, {g} and cost({c, g}) = 1 < 2 = cost({c}) + cost({g}). The set
{c, g, i, j} is beneficial because eds(H − {c, g, i, j}) = 2 and eds(H − B) ≥ 3 for all B (
{c, g, i, j}. But {c, g, i, j} is not strongly beneficial because cost({c, g, i, j}) = 2 = 1 + 1 + 0 =
cost({c, g})+cost({i})+cost({j}). Observe that the set {c, g, i} is not beneficial even though

STACS 2019

36:14 Edge Dominating Set

eds(H − {c, g, i}) = 3 < 4 = eds(H), because {c, g} ({c, g, i} and eds(H − {c, g, i}) = 3 =
eds(H − {c, g}).

We are now able to give a more detailed version of Theorem 1, which specifies for each
finite set H of connected graphs the kernelization complexity of edge dominating set
parameterized by the size of a modulator to H-component graphs.

I Theorem 12. Let H be any finite set of connected graphs. The edge dominating set
problem parameterized by the size of a modulator to H-component graphs behaves as follows:
1. If H contains any graph H fulfilling one of the following items then there is no polynomial

kernelization unless NP ⊆ coNP/poly:
a. There is an extendable vertex in H that is not free, i.e., Q(H) \W (H) 6= ∅.
b. There is a strongly beneficial set B in H that contains an uncovered vertex, i.e.,

B ∩ U(H) 6= ∅.
c. There is a vertex in H that is neither uncovered, free, nor neighbor of a free vertex,

i.e., V (H) \ (N [W (H)] ∪ U(H)) 6= ∅.
d. There is a strongly beneficial set B ⊆ N(W (H)) in H such that no minimum edge

dominating set FB of H −B covers all vertices of N(W (H)) \B.
2. Else, if H contains at least one graph that has a strongly beneficial set, then there is a

kernelization to O(|X|d) vertices, O(|X|d+1) edges, and size O(|X|d+1 log |X|), and there
is no kernelization to size O(|X|d−ε), for any ε > 0, unless NP ⊆ coNP/poly where d is
the size of the largest strongly beneficial set in any H ∈ H.

3. Else, there is a kernelization to O(|X|2) vertices, O(|X|3) edges, and size O(|X|3 log |X|),
and there is no kernelization to size O(|X|2−ε), for any ε > 0, unless NP ⊆ coNP/poly.

Observe, Theorem 1 directly follows from Theorem 12 because disconnected graphs in
H do not affect the resulting class of H-component graphs, i.e., given any finite set H of
graphs we can take the subset H′ of connected graphs in H and apply Theorem 12 to H′.
As an example for applying the theorem, for H = {P3} we get Item 1a, for H = {P4} we get
Item 1b, for H = {K3} and H = {K5} we get Item 1c, and for H = {P2} = {K2}, H = {K4},
H = {P5}, as well as H = {E = } we get Item 3.
I Remark. We showed that edge dominating set parameterized by the size of a given
modulator X to a P5-component graph admits a kernelization with O(|X|) vertices (see
Theorem 7). The reason why we the kernelization procedure of Item 3 only reduces to O(|X|2)
vertices instead of O(|X|) vertices is that H-components can have uncovered vertices. This
leads to a different marking argument similar to the case for edge dominating set
parameterized by solution size. Note that EDS parameterized by solution size is covered
by Item 3.

Proof outline for Theorem 12. We begin by establishing a number of useful properties of
the terms introduced in Definition 10, e.g., that each graph H containing a beneficial set B
also contains a strongly beneficial set B′ ⊆ B (Proposition 13 (11)).

The kernelization lower bound of Item 1 is proved by generalizing the lower bound
obtained for P3-component graphs in Theorem 5. We define so-called control pairs by ab-
stracting properties of P3-components used in the proof and show that there is no polynomial
kernelization when any graph H ∈ H has a control pair (Theorem 15). For a connected
graph H = (V,E) the pair (C,B) is called a control pair, if B ⊆ V is strongly beneficial, if
C ⊆ V \ (Q(H) ∪B) and no vertex c ∈ C is extendable in H −B, if there exists a minimum
edge dominating set F in H such that C ⊆ V (F), and if for all minimum edge dominating

E. C. Hols and S. Kratsch 36:15

sets FB in H −B it holds that C * V (FB). Observe that for H = P3 = v1v2v3 the set B is
the vertex v2 and the set C is the vertex v1 (or v2). Afterwards, we show that graphs H
fulfilling Items 1a, 1b, 1c, or 1d have control pairs (Lemmas 17, 18, 19, and 20).

In Item 1d, and in the items below, we (may) use that no graph in H fulfills Items 1a, 1b,
or 1c. Accordingly, each graph H ∈ H has V (H) = N [W (H)] ∪ U(H), i.e., each vertex of H
is uncovered, free, or neighbor of a free vertex. Moreover, every extendable vertex is also free,
i.e., Q(H) = W (H), and strongly beneficial sets contain no (uncovered) vertices of U(H).
This implies that all strongly beneficial sets are subsets of N(W (H)), the neighborhood
of the free vertices, as neither uncovered nor free vertices can be contained and no further
vertices except those in N(W (H)) exist in H (in this case).

For Item 2 we have that no graph in H fulfills any of the Items 1a through 1d and that at
least one graph in H has a strongly beneficial set. Thus, in addition to the above restrictions
on H ∈ H, we know that for each strongly beneficial set B, which here must be a subset of
N(W (H)), there is a minimum edge dominating set FB of H − B that covers all vertices
in N(W (H)) \ B. We give a general kernelization procedure that reduces the number of
components in G −X to O(|X|d) where d is the size of the largest strongly beneficial set
among graphs H ∈ H (Lemma 27). We then rule out kernelizations of size O(|X|d−ε) using
only H-components, where H is any graph in H that exhibits the largest size d of strongly
beneficial sets (Lemma 31). Note that in the present item d is always at least two because
having a strongly beneficial set B of size one would mean that v ∈ B is an extendable vertex
that is not free (because beneficial sets are disjoint from the set W (H) of free vertices), which
is handled by Item 1a.

Finally, for Item 3, it remains to consider the case that no graph H ∈ H fulfills any of
the Items 1a through 1d and that no graph in H has a strongly beneficial set. It follows
that no graph in H has any beneficial sets (Proposition 13 (11)) and, as before, we have
V (H) = N [W (H)] ∪ U(H). We obtain a kernelization to O(|X|2) vertices, O(|X|3) edges,
and size O(|X|3 log |X|) (Lemma 23). The lower bound ruling out kernelizations of size
O(|X|2−ε) for any ε > 0, and in fact for any set H, follows easily by a simple reduction from
vertex cover for which a lower bound ruling out size O(n2−ε) is known [6] (Lemma 35). J

5 Conclusion

As our main result, we have given a complete classification for edge dominating set
parameterized by the size of a modulator to H-component graphs for all finite sets H. An
obvious follow-up question is to extend this result to infinite sets H. Our lower bounds of
course continue to work in this setting, and the upper bounds still permit us to reduce the
number of connected components (under the same conditions as before, e.g., that relevant
beneficial sets have bounded size). However, for infinite H, polynomial kernels also require
us to shrink connected components of G−X, and to derive general rules for this. Moreover,
even determining beneficial sets etc. for graphs H ∈ H could no longer be dismissed as being
constant time. It is conceivable that such a classification is doable whenever graphs in H
have bounded treewidth, as this simplifies the required additional steps. Since most known
tractable graph classes for edge dominating set have bounded treewidth (and tractability
for G−X is required, or else NP-hardness for |X| = 0 rules out kernels and fixed-parameter
tractability), this seems like a reasonable goal. Apart from this, it would be nice to close the
gap between size O(|X|d+1 log |X|) and the lower bound of O(|X|d−ε).

STACS 2019

36:16 Edge Dominating Set

References
1 Hans L. Bodlaender, Rodney G. Downey, Michael R. Fellows, and Danny Hermelin. On

problems without polynomial kernels. J. Comput. Syst. Sci., 75(8):423–434, 2009. doi:
10.1016/j.jcss.2009.04.001.

2 Hans L. Bodlaender, Bart M. P. Jansen, and Stefan Kratsch. Kernelization Lower Bounds by
Cross-Composition. SIAM J. Discrete Math., 28(1):277–305, 2014. doi:10.1137/120880240.

3 Jean Cardinal, Stefan Langerman, and Eythan Levy. Improved approximation bounds
for edge dominating set in dense graphs. Theor. Comput. Sci., 410(8-10):949–957, 2009.
doi:10.1016/j.tcs.2008.12.036.

4 Miroslav Chlebík and Janka Chlebíková. Approximation hardness of edge dominating set
problems. J. Comb. Optim., 11(3):279–290, 2006. doi:10.1007/s10878-006-7908-0.

5 Marek Cygan, Marcin Pilipczuk, Michal Pilipczuk, and Jakub Onufry Wojtaszczyk. On
multiway cut parameterized above lower bounds. TOCT, 5(1):3:1–3:11, 2013. doi:10.1145/
2462896.2462899.

6 Holger Dell and Dieter van Melkebeek. Satisfiability Allows No Nontrivial Sparsification
unless the Polynomial-Time Hierarchy Collapses. J. ACM, 61(4):23:1–23:27, 2014. doi:
10.1145/2629620.

7 Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics.
Springer, 2012.

8 Bruno Escoffier, Jérôme Monnot, Vangelis Th. Paschos, and Mingyu Xiao. New Results on
Polynomial Inapproximabilityand Fixed Parameter Approximability of Edge Dominating Set.
Theory Comput. Syst., 56(2):330–346, 2015. doi:10.1007/s00224-014-9549-5.

9 Henning Fernau. Edge dominating set: Efficient Enumeration-Based Exact Algorithms. In
Hans L. Bodlaender and Michael A. Langston, editors, Parameterized and Exact Computation,
Second International Workshop, IWPEC 2006, Zürich, Switzerland, September 13-15, 2006,
Proceedings, volume 4169 of Lecture Notes in Computer Science, pages 142–153. Springer,
2006. doi:10.1007/11847250_13.

10 Fedor V. Fomin, Serge Gaspers, Saket Saurabh, and Alexey A. Stepanov. On Two Techniques
of Combining Branching and Treewidth. Algorithmica, 54(2):181–207, 2009. doi:10.1007/
s00453-007-9133-3.

11 Lance Fortnow and Rahul Santhanam. Infeasibility of instance compression and succinct PCPs
for NP. J. Comput. Syst. Sci., 77(1):91–106, 2011. doi:10.1016/j.jcss.2010.06.007.

12 Toshihiro Fujito and Hiroshi Nagamochi. A 2-approximation algorithm for the minimum
weight edge dominating set problem. Discrete Applied Mathematics, 118(3):199–207, 2002.
doi:10.1016/S0166-218X(00)00383-8.

13 Shivam Garg and Geevarghese Philip. Raising The Bar For Vertex Cover: Fixed-parameter
Tractability Above a Higher Guarantee. In Robert Krauthgamer, editor, Proceedings of
the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016,
Arlington, VA, USA, January 10-12, 2016, pages 1152–1166. SIAM, 2016. doi:10.1137/1.
9781611974331.ch80.

14 Petr A. Golovach, Pinar Heggernes, Dieter Kratsch, and Yngve Villanger. An Incremental
Polynomial Time Algorithm to Enumerate All Minimal Edge Dominating Sets. Algorithmica,
72(3):836–859, 2015. doi:10.1007/s00453-014-9875-7.

15 Torben Hagerup. Kernels for Edge Dominating Set: Simpler or Smaller. In Branislav Rovan,
Vladimiro Sassone, and Peter Widmayer, editors, Mathematical Foundations of Computer
Science 2012 - 37th International Symposium, MFCS 2012, Bratislava, Slovakia, August 27-31,
2012. Proceedings, volume 7464 of Lecture Notes in Computer Science, pages 491–502. Springer,
2012. doi:10.1007/978-3-642-32589-2_44.

16 Eva-Maria C. Hols and Stefan Kratsch. On Kernelization for Edge Dominating Set under
Structural Parameters. CoRR, abs/1901.03582, 2019. arXiv:1901.03582.

17 John E. Hopcroft and Richard M. Karp. An n5/2 Algorithm for Maximum Matchings in
Bipartite Graphs. SIAM J. Comput., 2(4):225–231, 1973. doi:10.1137/0202019.

http://dx.doi.org/10.1016/j.jcss.2009.04.001
http://dx.doi.org/10.1016/j.jcss.2009.04.001
http://dx.doi.org/10.1137/120880240
http://dx.doi.org/10.1016/j.tcs.2008.12.036
http://dx.doi.org/10.1007/s10878-006-7908-0
http://dx.doi.org/10.1145/2462896.2462899
http://dx.doi.org/10.1145/2462896.2462899
http://dx.doi.org/10.1145/2629620
http://dx.doi.org/10.1145/2629620
http://dx.doi.org/10.1007/s00224-014-9549-5
http://dx.doi.org/10.1007/11847250_13
http://dx.doi.org/10.1007/s00453-007-9133-3
http://dx.doi.org/10.1007/s00453-007-9133-3
http://dx.doi.org/10.1016/j.jcss.2010.06.007
http://dx.doi.org/10.1016/S0166-218X(00)00383-8
http://dx.doi.org/10.1137/1.9781611974331.ch80
http://dx.doi.org/10.1137/1.9781611974331.ch80
http://dx.doi.org/10.1007/s00453-014-9875-7
http://dx.doi.org/10.1007/978-3-642-32589-2_44
http://arxiv.org/abs/1901.03582
http://dx.doi.org/10.1137/0202019

E. C. Hols and S. Kratsch 36:17

18 Ken Iwaide and Hiroshi Nagamochi. An Improved Algorithm for Parameterized Edge Domin-
ating Set Problem. J. Graph Algorithms Appl., 20(1):23–58, 2016. doi:10.7155/jgaa.00383.

19 Bart M. P. Jansen and Hans L. Bodlaender. Vertex Cover Kernelization Revisited - Upper
and Lower Bounds for a Refined Parameter. Theory Comput. Syst., 53(2):263–299, 2013.
doi:10.1007/s00224-012-9393-4.

20 Mamadou Moustapha Kanté, Vincent Limouzy, Arnaud Mary, and Lhouari Nourine. On the
Neighbourhood Helly of Some Graph Classes and Applications to the Enumeration of Minimal
Dominating Sets. In Kun-Mao Chao, Tsan-sheng Hsu, and Der-Tsai Lee, editors, Algorithms
and Computation - 23rd International Symposium, ISAAC 2012, Taipei, Taiwan, December
19-21, 2012. Proceedings, volume 7676 of Lecture Notes in Computer Science, pages 289–298.
Springer, 2012. doi:10.1007/978-3-642-35261-4_32.

21 Mamadou Moustapha Kanté, Vincent Limouzy, Arnaud Mary, Lhouari Nourine, and Takeaki
Uno. Polynomial Delay Algorithm for Listing Minimal Edge Dominating Sets in Graphs. In
Frank Dehne, Jörg-Rüdiger Sack, and Ulrike Stege, editors, Algorithms and Data Structures
- 14th International Symposium, WADS 2015, Victoria, BC, Canada, August 5-7, 2015.
Proceedings, volume 9214 of Lecture Notes in Computer Science, pages 446–457. Springer,
2015. doi:10.1007/978-3-319-21840-3_37.

22 Daniel Kobler and Udi Rotics. Edge dominating set and colorings on graphs with fixed clique-
width. Discrete Applied Mathematics, 126(2-3):197–221, 2003. doi:10.1016/S0166-218X(02)
00198-1.

23 Stefan Kratsch. A Randomized Polynomial Kernelization for Vertex Cover with a Smaller
Parameter. In Piotr Sankowski and Christos D. Zaroliagis, editors, 24th Annual European
Symposium on Algorithms, ESA 2016, August 22-24, 2016, Aarhus, Denmark, volume 57 of
LIPIcs, pages 59:1–59:17. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016. doi:
10.4230/LIPIcs.ESA.2016.59.

24 Stefan Kratsch and Magnus Wahlström. Representative Sets and Irrelevant Vertices: New
Tools for Kernelization. In 53rd Annual IEEE Symposium on Foundations of Computer Science,
FOCS 2012, New Brunswick, NJ, USA, October 20-23, 2012, pages 450–459. IEEE Computer
Society, 2012. doi:10.1109/FOCS.2012.46.

25 Daniel Lokshtanov, N. S. Narayanaswamy, Venkatesh Raman, M. S. Ramanujan, and Saket
Saurabh. Faster Parameterized Algorithms Using Linear Programming. ACM Trans. Al-
gorithms, 11(2):15:1–15:31, 2014. doi:10.1145/2566616.

26 Elena Prieto. Systematic kernelization in FPT algorithm design. PhD thesis, The University
of Newcastle, Australia, 2005.

27 Venkatesh Raman, M. S. Ramanujan, and Saket Saurabh. Paths, Flowers and Vertex Cover.
In Camil Demetrescu and Magnús M. Halldórsson, editors, Algorithms - ESA 2011 - 19th
Annual European Symposium, Saarbrücken, Germany, September 5-9, 2011. Proceedings,
volume 6942 of Lecture Notes in Computer Science, pages 382–393. Springer, 2011. doi:
10.1007/978-3-642-23719-5_33.

28 Venkatesh Raman, Saket Saurabh, and Somnath Sikdar. Efficient Exact Algorithms through
Enumerating Maximal Independent Sets and Other Techniques. Theory Comput. Syst.,
41(3):563–587, 2007. doi:10.1007/s00224-007-1334-2.

29 Richard Schmied and Claus Viehmann. Approximating edge dominating set in dense graphs.
Theor. Comput. Sci., 414(1):92–99, 2012. doi:10.1016/j.tcs.2011.10.001.

30 Johan M. M. van Rooij and Hans L. Bodlaender. Exact Algorithms for Edge Domination.
Algorithmica, 64(4):535–563, 2012. doi:10.1007/s00453-011-9546-x.

31 Jianxin Wang, Beiwei Chen, Qilong Feng, and Jianer Chen. An Efficient Fixed-Parameter
Enumeration Algorithm for Weighted Edge Dominating Set. In Xiaotie Deng, John E. Hopcroft,
and Jinyun Xue, editors, Frontiers in Algorithmics, Third International Workshop, FAW 2009,
Hefei, China, June 20-23, 2009. Proceedings, volume 5598 of Lecture Notes in Computer
Science, pages 237–250. Springer, 2009. doi:10.1007/978-3-642-02270-8_25.

STACS 2019

http://dx.doi.org/10.7155/jgaa.00383
http://dx.doi.org/10.1007/s00224-012-9393-4
http://dx.doi.org/10.1007/978-3-642-35261-4_32
http://dx.doi.org/10.1007/978-3-319-21840-3_37
http://dx.doi.org/10.1016/S0166-218X(02)00198-1
http://dx.doi.org/10.1016/S0166-218X(02)00198-1
http://dx.doi.org/10.4230/LIPIcs.ESA.2016.59
http://dx.doi.org/10.4230/LIPIcs.ESA.2016.59
http://dx.doi.org/10.1109/FOCS.2012.46
http://dx.doi.org/10.1145/2566616
http://dx.doi.org/10.1007/978-3-642-23719-5_33
http://dx.doi.org/10.1007/978-3-642-23719-5_33
http://dx.doi.org/10.1007/s00224-007-1334-2
http://dx.doi.org/10.1016/j.tcs.2011.10.001
http://dx.doi.org/10.1007/s00453-011-9546-x
http://dx.doi.org/10.1007/978-3-642-02270-8_25

36:18 Edge Dominating Set

32 Mingyu Xiao. Exact and Parameterized Algorithms for Edge Dominating Set in 3-Degree
Graphs. In Weili Wu and Ovidiu Daescu, editors, Combinatorial Optimization and Applications
- 4th International Conference, COCOA 2010, Kailua-Kona, HI, USA, December 18-20, 2010,
Proceedings, Part II, volume 6509 of Lecture Notes in Computer Science, pages 387–400.
Springer, 2010. doi:10.1007/978-3-642-17461-2_31.

33 Mingyu Xiao, Ton Kloks, and Sheung-Hung Poon. New parameterized algorithms for the edge
dominating set problem. Theor. Comput. Sci., 511:147–158, 2013. doi:10.1016/j.tcs.2012.
06.022.

34 Mingyu Xiao and Hiroshi Nagamochi. Parameterized edge dominating set in graphs with
degree bounded by 3. Theor. Comput. Sci., 508:2–15, 2013. doi:10.1016/j.tcs.2012.08.015.

35 Mingyu Xiao and Hiroshi Nagamochi. A refined exact algorithm for Edge Dominating Set.
Theor. Comput. Sci., 560:207–216, 2014. doi:10.1016/j.tcs.2014.07.019.

36 Mihalis Yannakakis and Fanica Gavril. Edge dominating sets in graphs. SIAM Journal on
Applied Mathematics, 38(3):364–372, 1980.

http://dx.doi.org/10.1007/978-3-642-17461-2_31
http://dx.doi.org/10.1016/j.tcs.2012.06.022
http://dx.doi.org/10.1016/j.tcs.2012.06.022
http://dx.doi.org/10.1016/j.tcs.2012.08.015
http://dx.doi.org/10.1016/j.tcs.2014.07.019

Compressed Decision Problems in Hyperbolic
Groups
Derek Holt
University of Warwick, UK
D.F.Holt@warwick.ac.uk

Markus Lohrey
Universität Siegen, Germany
lohrey@eti.uni-siegen.de

Saul Schleimer
University of Warwick, UK
s.schleimer@warwick.ac.uk

Abstract
We prove that the compressed word problem and the compressed simultaneous conjugacy problem
are solvable in polynomial time in hyperbolic groups. In such problems, group elements are input
as words defined by straight-line programs defined over a finite generating set for the group. We
prove also that, for any infinite hyperbolic group G, the compressed knapsack problem in G is
NP-complete.

2012 ACM Subject Classification Theory of computation → Algebraic complexity theory

Keywords and phrases hyperbolic groups, algorithms for compressed words, circuit evaluation
problems

Digital Object Identifier 10.4230/LIPIcs.STACS.2019.37

Related Version A full version can be found https://arxiv.org/abs/1808.06886.

Funding Markus Lohrey: has been supported by the DFG research project LO 748/12-1.

1 Introduction

Compression techniques in group theory have attracted attention in recent years [9, 10, 30,
36, 37]. Often, algorithms for classical group theoretic problems, such as the word problem
or the conjugacy problem, face the problem that huge intermediate words arise during the
computation. In some situations, these words are highly compressible; one can then attempt
to compute on succinct representatives instead of on the words themselves.

Straight-line programs (SLPs) are a widely-used compression technique for words. An
SLP can be seen as a context-free grammar G that produces a single word denoted val(G); see
Section 4 for a precise definition. The size of G can be defined as the sum of the lengths of the
right-hand sides of the productions of G. In fact, the length of val(G) can be exponential in
the size of G, showing that non-trivial compression is possible for SLPs. There are numerous
papers in computer science that study the complexity of decision problems for words that are
succinctly represented by SLPs; see [29] for a survey. Applications of SLPs in group theory
can be traced back to Babai and Szemeredi’s reachability theorem for finite groups [2].

In this paper we deal with the so-called compressed word problem for a finitely generated
group G, which we define as follows. Suppose that Σ is a finite generating set for G. We
assume that Σ is symmetric: if a lies in Σ then so does a−1. The word problem for G
asks whether a given word w ∈ Σ∗ represents the group identity of G. This is one of the

© Derek Holt, Markus Lohrey, and Saul Schleimer;
licensed under Creative Commons License CC-BY

36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019).
Editors: Rolf Niedermeier and Christophe Paul; Article No. 37; pp. 37:1–37:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:D.F.Holt@warwick.ac.uk
mailto:lohrey@eti.uni-siegen.de
mailto:s.schleimer@warwick.ac.uk
https://doi.org/10.4230/LIPIcs.STACS.2019.37
https://arxiv.org/abs/1808.06886
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

37:2 Compressed Decision Problems in Hyperbolic Groups

fundamental decision problems in group theory as set out by Dehn [8] in 1911. The compressed
word problem for G is the same problem except that the input word w is represented by an
SLP. We also call such inputs compressed words.

Clearly, the compressed word problem for a group G is decidable if and only if the word
problem for G is decidable. It also seems obvious that the computational complexity of the
compressed word problem for G should be more difficult than the word problem itself. This
is indeed the case if P 6= NP; see the discussion on the next page. It is also interesting to note
that the compressed word problem for a group G is exactly the circuit evaluation problem for
G: here the input is a circuit (a directed acyclic graph whose nodes are called gates) where
input gates are labelled by generators of G and where internal gates compute the product of
their inputs. We then ask if a distinguished output gate evaluates to the identity of G. For
finite groups, the complexity of the circuit evaluation problem (and hence, the compressed
word problem) was clarified in [4]: if G is a finite solvable group, then the compressed
word problem for G belongs to the parallel complexity class DET ⊆ NC2. Futher, if G is
a finite non-solvable group, then the compressed word problem for G is P-complete. This
dichotomy naturally motivates the investigation of compressed word problems for general
finitely generated groups.

The compressed word problem also has applications for the ordinary (uncompressed)
word problem. From techniques very similar to those used in the proof of [40, Theorem 5.2]
we may deduce the following: the word problem for a finitely generated subgroup of the
automorphism group Aut(G) is polynomial time reducible to the compressed word problem
for G. Similar reductions exist for certain group extensions; see [40, Theorem 4.1] and [30,
Theorem 4.8 and 4.9]. This makes groups for which the compressed word problem can be
solved in polynomial time interesting. Indeed the class of these groups is quite rich. Let Fn
be the free group on n generators. The first result for infinite groups was obtained in [28],
where the second author showed that the compressed word problem for Fn is P-complete.
This result was used by the third author to show that the word problem for Aut(Fn) can
be solved in polynomial time [40, Theorem 5.2]. This solved an open problem posed by
Baumslag [3, Problem (C1)]. Two other important classes of groups in which the compressed
word problem can be solved in polynomial time have been found, as follows.

Virtually special groups; that is, finite extensions of finitely generated subgroups of
right-angled Artin groups. Right-angled Artin groups are also known as graph groups
or partially commutative groups. Recent work related to three-dimensional topology
has shown that the class of virtually special groups is very rich. It contains all Coxeter
groups [19], one-relator groups with torsion [43], fully residually free groups [43] (for fully
residually free groups, Macdonald [33] independently obtained a polynomial time solution
for the compressed word problem), and fundamental groups of hyperbolic 3-manifolds [1].
Finitely generated nilpotent groups [30]. Here, the compressed word problem even belongs
to the parallel complexity class DET [26].

Moreover, for finitely generated linear groups the compressed word problem belongs to the
complexity class coRP [30, Theorem 4.15], which implies that there is an efficient randomized
polynomial time algorithm that may err with a small probability on negative input instances.
On the negative side, it is known that the compressed word problem for every restricted
wreath product G o Z with G finitely generated non-abelian is coNP-hard [30, Theorem 4.21].
If G is also finite, then the word problem for G o Z can be easily solved in polynomial time,
see also [42]. Assuming P 6= NP this gives examples of groups in which the compressed
word problem is harder than the word problem. Another interesting result that relates

D. Holt, M. Lohrey, and S. Schleimer 37:3

the compressed word problem to the area of algebraic complexity theory was shown in [30,
Theorem 4.16]: The compressed word problem for the linear group SL3(Z) is equivalent (up
to polynomial time reductions) to polynomial identity testing (that is, the problem whether
a circuit over a polynomial ring Z[x1, . . . , xn] evaluates to the zero polyomial).

In this paper, we prove that the compressed word problem can be solved in polynomial
time in every hyperbolic group.1 Hyperbolic groups have a Cayley graph that satisfies a
certain hyperbolicity condition, see Section 3 for a precise definition. Hyperbolic groups are
of fundamental importance in geometric group theory. In a certain probabilistic sense, almost
all finitely presented groups are hyperbolic [16, 38]. Also from a computational viewpoint,
hyperbolic groups have nice properties: it is known that the word problem and the conjugacy
problem can be solved in linear time [12, 21]. They also have a nice shortlex automatic
structure [11]. We show in Theorem 15 that, from a given SLP G over the generators of a
hyperbolic group G, one can compute in polynomial time an SLP for the shortlex normal
form of the word val(G) (this is the length lexicographically smallest word that represents the
same group element as val(G)). Since the shortlex normal form for a word w is the empty
word if and only if w =G 1 (here, and in the rest of the paper, we write u =G v if the words
u and v represent the same element of the group G), we obtain the following corollary:

I Corollary 1. The compressed word problem for a hyperbolic group can be solved in polyno-
mial time.

A relatively easy consequence of Corollary 1 is that for every hyperbolic group one can
compute in polynomial time the order of the group element that is represented by a given
SLP (Corollary 16). In Section 6.2 we consider the compressed conjugacy problem: the input
consists of SLP-compressed words u, v and it is asked whether there exists a word x with
x−1ux =G v. We prove that the compressed conjugacy problem for a hyperbolic group can be
solved in polynomial time. For this, we show that the algorithm from [12], which solves the
conjugacy problem for a hyperbolic group in linear time, can be implemented in polynomial
time for SLP-compressed input words. Based on this algorithm, we then generalise our result
on compressed conjugacy to the compressed simultaneous conjugacy problem, where the
input consists of two finite lists u1, . . . , un and v1, . . . , vn of SLP-compressed words over the
generators of the group G, and it is asked whether there exists a word x with x−1uix =G vi
for 1 ≤ i ≤ n. This problem was shown to be solvable in polynomial time for finitely
generated nilpotent groups in [34]. In the uncompressed setting, the simultaneous conjugacy
problem was shown to be solvable in linear time for hyperbolic groups in [5]. Again, we show
that the algorithm in [5] can be implemented in polynomial time for SLP-compressed input
words, which yields the following.

I Theorem 2. Let G be a hyperbolic group. Then the compressed simultaneous conjugacy
problem for G can be solved in polynomial time. Moreover, if the two input lists are conjugate,
then we can compute an SLP for a conjugating element in polynomial time.

The (ordinary) simultaneous conjugacy problem has also been studied for classes of groups
other than hyperbolic groups; see for example [25] and the references therein. The SLP-
compressed version is important because the word problem for finitely generated subgroups of
the outer automorphism group Out(G) of G can be reduced to the compressed simultaneous
conjugacy problem for G [20, Proposition 10]. Note that in [7] it is shown that for a
hyperbolic group G, Aut(G) and hence Out(G) are finitely generated. Hence, we get the
following corollary from our main results.

1 This result was announced in [30, Theorem 4.12] without proof.

STACS 2019

37:4 Compressed Decision Problems in Hyperbolic Groups

I Corollary 3. For every hyperbolic group G, the word problems for Aut(G) and Out(G) can
be solved in polynomial time.

As a byproduct of our algorithm for the compressed simultaneous conjugacy problem we
also show that for every hyperbolic group one can compute in polynomial time from a given
finite set S of SLP-compressed group elements a finite generating set for the centraliser of S,
where every element of this generating set is represented by an SLP. We call this computation
problem the compressed centraliser problem.

I Theorem 4. Let G be a hyperbolic group. Then the compressed centraliser problem for G
can be solved in polynomial time.

Finally, we consider the compressed knapsack problem for a hyperbolic group. In the
(ordinary) knapsack problem for a finitely generated group G the input is a list of words
u1, . . . , un, v over the generators of G, and it is asked whether there exist natural numbers
n1, . . . , nk such that v =G un1

1 · · ·u
nk

k . This problem has been studied in [13, 14, 27, 32, 35]
for various classes of groups. In [35] it was shown that the knapsack problem for a hyperbolic
group can be solved in polynomial time. Recently, this complexity bound was improved to
LogCFL (the closure of the class of context-free languages under logspace-reductions) [31].
Moreover, for every non-elementary hyperbolic group (meaning that the group contains a
free non-abelian subgroup), knapsack is LogCFL-complete, whereas for elementary hyperbolic
groups knapsack belongs to NL (nondeterministic logspace) [31]. In the compressed knapsack
problem, the words u1, . . . , un, v are represented by SLPs. For the special case G = Z this
problem is a variant of the classical knapsack problem for binary encoded integers, which is
known to be NP-complete. This makes it interesting to look for groups where the compressed
knapsack problem belongs to NP. In [32] it was shown that compressed knapsack for every
virtually special group belongs to NP. Here, we prove:

I Theorem 5. If G is an infinite hyperbolic group then the compressed knapsack problem
for G is NP-complete.

Full proofs can be found in the arXiv version [22].

2 General notations

Zero is included in the set of natural numbers: that is, N = {0, 1, 2, . . .}. Let Σ be a finite
alphabet of symbols. The set of all finite words over Σ is denoted with Σ∗. We use ε ∈ Σ∗
to denote the empty word. Suppose that w = a0a1 · · · an−1 ∈ Σ∗ with ai ∈ Σ. The length
of w is |w| = n. For 0 ≤ i ≤ n − 1 we define w[i] = ai. For 0 ≤ i ≤ j ≤ n we define
w[i : j] = ai · · · aj−1. We use w[: j] to mean w[0 : j], the prefix of length j, and we also use
w[i :] to mean w[i : n], the suffix of length n− i. Note that w[i : i] = ε and w = w[: i]w[i :]
for all 0 ≤ i ≤ n. We say that u ∈ Σ∗ is a factor of w ∈ Σ∗ if there exist x, y ∈ Σ∗ with
w = xuy.

Fix a strict linear order < on the alphabet Σ. We extend < to the length-lexicographic
order <llex on Σ∗: for words u, v ∈ Σ∗ we have u <llex v if and only if (i) |u| < |v| or (ii)
|u| = |v| and there exist words x, y, z ∈ Σ∗ and symbols a, b ∈ Σ such that a < b, u = xay,
and v = xbz. Note that <llex is a well-order on Σ∗. Hence, every non-empty subset L ⊆ Σ∗
contains a unique smallest element with respect to <llex.

D. Holt, M. Lohrey, and S. Schleimer 37:5

p q

r

Pp,q

Pp,r Pq,r

Figure 1 The shape of a geodesic triangle in a hyperbolic group.

3 Hyperbolic groups

Let G be a finitely generated group equipped with a finite, symmetric, generating set Σ. The
Cayley graph of G with respect to Σ is the directed edge-labelled graph Γ = Γ(G) with node
set G and all edges of the form (g, ga) for g ∈ G and a ∈ Σ. The edge (g, ga) is labelled with
the generator a. Note that for every a-labelled edge (g, h), the reversed edge (h, g) is labelled
with a−1. We view Γ as a geodesic metric space (the precise definition of a geodesic metric
space is not needed in this paper), where every edge (g, ga) is identified with a unit-length
interval. The distance between two nodes p, q ∈ Γ is denoted by dΓ(p, q). For g ∈ G let
|g| := dΓ(1, g); so |g| is the length of a shortest word in Σ∗ that represents g. For r ≥ 0, let
Br(1) = {g ∈ G : dΓ(1, g) ≤ r}.

Given a word w ∈ Σ∗, one obtains a unique path P [w] that starts at 1 and is labelled by
the word w. This path ends in the group element represented by w. More generally, for g ∈ G
we denote by g · P [w] the path that starts at g and is labelled by w. We will mostly consider
paths of the form g · P[w]. One views P := g · P[w] as a continuous mapping P : [0, n]→ Γ
from the real interval [0, n] to Γ, where n = |w|. We say that a path P : [0, n] → Γ is
path from P (0) to P (n). A path P : [0, n] → Γ is geodesic if dΓ(P (0), P (n)) = n. A word
w ∈ Σ∗ is geodesic if the path P[w] is geodesic, which means that there is no shorter word
representing the same group element from G. A word w ∈ Σ∗ is shortlex reduced if it is
the length-lexicographically least word that represents the same group element as w. For
this, we have to fix an arbitrary linear order on Σ. Note that if u = xy is shortlex reduced
then x and y are shortlex reduced too. For a word u ∈ Σ∗ we denote by shlex(u) the unique
shortlex reduced word that represents the same group element as u. Whenever appropriate,
we identify elements of Br(1) with geodesic words over Σ of length at most r.

A geodesic triangle consists of three points p, q, r ∈ Γ and geodesic paths Pp,q, Pp,r, Pq,r
(the three sides of the triangle), where Px,y is a path from x to y. We call a geodesic triangle
δ-slim for δ ≥ 0, if every point p on one of the three sides has distance at most δ from a point
p′ belonging to one of the two sides that are opposite to p. The group G is called δ-hyperbolic
if every geodesic triangle is δ-slim. Finally, G is hyperbolic, if it is δ-hyperbolic for some
δ ≥ 0. Figure 1 shows the shape of a geodesic triangle in a hyperbolic group. The property
of being hyperbolic is independent of the chosen finite generating set Σ, but the constant δ
depends in general on the chosen finite generating set. Finitely generated free groups are
for instance 0-hyperbolic, if the generating set is a free basis. The word problem for every
hyperbolic group can be decided in real time [21]. Moreover, one can compute shlex(w) from
a given word w in linear time; see [12] where the result is attributed to Shapiro.

STACS 2019

37:6 Compressed Decision Problems in Hyperbolic Groups

p q

r

Pp,q

Pp,r Pq,r

Figure 2 A δ-thin triangle in a hyperbolic group. Dotted lines represent geodesic paths of length
at most δ.

v1 v2
va b

u
u1 u2

c

Figure 3 Splitting a geodesic rectangle according to Lemma 7.

We will need an equivalent definition of hyperbolicity in terms of so-called thin triangles.
Again, consider three points p, q, r ∈ Γ and let Px,y for x, y ∈ {p, q, r} be a geodesic path
from x to y, where Py,x is the path Px,y traversed in the reversed direction. Moreover, let
dx,y = dΓ(x, y) be the length of Px,y. The three lengths dp,q, dp,r and dq,r fulfil the triangle
inequality. From this one can deduce real numbers sp, sq, sr ≥ 0 such that sx + sy = dx,y for
all x, y ∈ {p, q, r} with x 6= y. The geodesic triangle determined by the three sides Pp,q, Pp,r,
Pq,r is called δ-thin for δ ≥ 0, if for all x, y, z with x ∈ {p, q, r} and {y, z} = {p, q, r} \ {x}
we have dΓ(Px,y(t), Px,z(t)) ≤ δ for all t ∈ [0, sx]; see Figure 2. It is well known (see for
example [23, Theorem 6.1.3]) that in a δ-hyperbolic group every geodesic triangle is δ′-thin
for some constant δ′ ≥ δ.

Let us fix a δ-hyperbolic group G with the finite symmetric generating set Σ for the rest
of the section, and let Γ be the corresponding geodesic metric space. By choosing δ large
enough, we can assume that all geodesic triangles in Γ are δ-thin. We need a few well-known
results about hyperbolic groups.

I Lemma 6 (c.f. [11, Theorem 3.4.5]). The set {shlex(u) : u ∈ Σ∗} is a regular language.

The proofs of the following two simple lemmas can be found in [22].

I Lemma 7. Let a, b, u, v ∈ Σ∗ be geodesic words such that v =G aub and consider a
factorisation v = v1v2 with |v1| ≥ |a|+2δ and |v2| ≥ |b|+2δ. Then there exists a factorisation
u = u1u2 and a geodesic word c with |c| ≤ 2δ such that v1 =G au1c and v2 =G c−1u2b.

The situation in Lemma 7 is shown in Figure 3.

I Lemma 8. For i ∈ {0, 1, 2} let Pi : [0, ni] → Γ be geodesic paths such that P0(0) =
P1(0), P0(n0) = P2(0) and P1(n1) = P2(n2) (so P0, P1, P2 form a geodesic triangle). Let
j ≤ min{n0, n1} be any integer such that dΓ(P0(j), P1(j)) > δ. Then there exist integers
i0, i1 ∈ [0, n2] with i0 ≤ i1, dΓ(P0(j), P2(i0)) ≤ δ, and dΓ(P1(j), P2(i1)) ≤ δ.

D. Holt, M. Lohrey, and S. Schleimer 37:7

P0 P1
> δ

≤
δ ≤

δ

P2

Figure 4 The situation from Lemma 8.

Lemma 8 follows easily from the fact that the geodesic triangle with sides P0, P0, and P1
is thin. The situation is shown in Figure 4.

4 Compressed words and the compressed word problem

A straight-line program (SLP for short) over the alphabet Σ is a triple G = (V, ρ, S), where V is
a finite set of variables such that V ∩Σ = ∅, S ∈ V is the start variable, and ρ : V → (V ∪Σ)∗
is a mapping such that the relation {(B,A) ∈ V × V : B occurs in ρ(A)} is acyclic. For the
reader familiar with context-free grammars, it might be helpful to view the SLP G = (V, ρ, S)
as the context-free grammar (V,Σ, P, S), where P contains all productions A → ρ(A) for
A ∈ V . The definition of an SLP implies that this context-free grammar derives exactly one
terminal word, which will be denoted by val(G). One can define this string inductively as
follows. First, for every A ∈ V we define valG(A). Assume that ρ(A) = w0A1w1 · · ·Akwk
with k ≥ 0, wi ∈ Σ∗ and Ai ∈ V . Then we define valG(A) = w0valG(A1)w1 · · · valG(Ak)wk.
Finally, we define val(G) = valG(S).

The word ρ(A) is also called the right-hand side of A. We define the size of the SLP
G = (V, ρ, S) as the total length of all right-hand sides: |G| =

∑
A∈V |ρ(A)|. SLPs offer a

succinct representation of words that contain many repeated substrings. For instance, the
word (ab)2n can be produced by the SLP G = ({A0, . . . , An}, ρ, An) with ρ(A0) = ab and
ρ(Ai+1) = AiAi for 0 ≤ i ≤ n− 1.

Quite often, it is convenient to assume that all right-hand sides are of the form a ∈ Σ
or BC with B,C ∈ V . This corresponds to the well-known Chomsky normal form for
context-free grammars. There is a simple linear time algorithm that transforms an SLP
G with val(G) 6= ε into an SLP G′ in Chomsky normal form with val(G) = val(G′), see for
example [30, Proposition 3.8]. We use the fact that the following algorithmic tasks for SLPs
can be solved in polynomial time; see also [30, Proposition 3.9].

Given an SLP G, compute the length |val(G)|.
Given an SLP G and an integer 0 ≤ i < |val(G)|, compute the symbol val(G)[i].
Given an SLP G and integers 0 ≤ i ≤ j ≤ |val(G)|, compute an SLP for val(G)[i : j].

Also the following two propositions are well-known:

I Proposition 9 (c.f. [6, Lemma 2]). For a given SLP G and n ∈ N, we can compute an SLP
Gn with val(Gn) = val(G)n in time O(|G|+ logn).

I Proposition 10 (c.f. [30, Theorem 3.11]). Given a deterministic finite state automaton
M over the alphabet Σ and an SLP G over the alphabet Σ, we can determine in polynomial
time whether val(G) is in the language L(M) of M .

STACS 2019

37:8 Compressed Decision Problems in Hyperbolic Groups

Finally, we need the following fundamental result:

I Theorem 11 (c.f. [39]). Given two SLPs G and H, one can check in polynomial time
whether val(G) = val(H).

The compressed word problem for a finitely generated group G with the finite symmetric
generating set Σ is the following decision problem:
Input: an SLP G over the alphabet Σ.
Question: does val(G) represent the group identity of G?
It is an easy observation that the computational complexity of the compressed word problem
for G does not depend on the chosen generating set Σ in the sense that if Σ′ is another
finite symmetric generating set for G, then the compressed word problem for G with respect
to Σ is logspace reducible to the compressed word problem for G with respect to Σ′ [30,
Lemma 4.2]. Therefore we do not have to specify the generating set.

5 The compressed word problem for hyperbolic groups

Fix a δ-hyperbolic group G with the finite symmetric generating set Σ, where δ > 0 is chosen
in such a way that all geodesic triangles are δ-thin. We can moreover assume that δ is an
integer (later, we want to cut off from a word its prefix and suffix of length a certain multiple
of δ). Let us set ζ := 2δ ≥ 1 for the following.

We need an extension of SLPs by two operators: so-called tether operators and cut
operators. A TCSLP (T stands for “tethered”, C stands for “cut”) over the alphabet Σ is a
tuple G = (V, ρ, S), where V is a finite set of variables such that V ∩ Σ = ∅, S ∈ V is the
start variable, and ρ is a mapping with domain V such that for every A ∈ V , ρ(A) (the
right-hand side of A) is of one of the following forms:
(1) a word w ∈ (V ∪ Σ)∗
(2) an expression B[: i] or B[i :] with B ∈ V and i ∈ N ([: i] and [i :] are called cut operators),
(3) an expression B〈a, b〉 with B ∈ V and a, b ∈ Bζ(1) (〈a, b〉 is called a tether operator).
Moreover, we require that the relation {(B,A) ∈ V × V : B occurs in ρ(A)} is acyclic.
The reflexive and transitive closure of this relation is denoted with ≤G . We evaluate
variables of type (1) as for SLPs. If ρ(A) = B[: i] or ρ(A) = B[i :] then we define
valG(A) = valG(B)[: i] or valG(A) = valG(B)[i :], respectively. Finally, if ρ(A) = B〈a, b〉 we
define valG(A) := shlex(a valG(B) b). The reader might ask what happens if i > |valG(B)| in
case ρ(A) = B[: i] or ρ(A) = B[i :]. This will not occur in the TCSLPs constructed in this
paper.

For convenience we will also allow more complex right-hand sides ρ(A) such as for instance
(B[: i]〈a, b〉)(C[j :]〈c, d〉). We define the size of such a right-hand side as the total number of
occurrences of symbols from Σ∪V in the right-hand side. The size of G is obtained by taking
the sum over all variables. Note that the numbers i ∈ N in cut operators do not contribute
to the size of a TCSLP. This does not cause any problems. If one encodes these numbers in
binary notation and adds the lengths of these encodings to the size of an TCSLP, then this
would only increase the size by a constant factor.

If right-hand sides of type (2) do not occur, we speak of a TSLP and if right-hand sides
of type (3) do not occur, we speak of a CSLP. CSLPs are also known as composition systems
and have been studied before, see for example [18]. In [28], CSLPs are used in the polynomial
time algorithm for the compressed word problem of a free group.

We say that the TCSLP G is shortlex, if for every variable A, the word valG(A) is
shortlex reduced. Note that right-hand sides of type (1) may lead to words that are not

D. Holt, M. Lohrey, and S. Schleimer 37:9

shortlex reduced, since the concatenation of two shortlex reduced words is not necessarily
shortlex reduced. The goal of this section is to compute from a given shortlex TCSLP G in
polynomial time an SLP G′ such that val(G) =G val(G′). In a first step we will present such
a transformation only for TSLPs. In a second step, we will transform a shortlex TCSLP into
an equivalent TSLP. This second step is inspired by the polynomial time transformation of a
CSLP into an equivalent SLP from [18].

For a variable A, we define the height, height(A) for short, inductively by

height(A) = max{height(B) + 1: B ∈ V occurs in ρ(A)},

where max ∅ = 0. Let height(G) = height(S); it is the length of a longest chain in the partial
order ≤G that ends in S.

I Lemma 12. Given a TSLP G over the alphabet Σ, we can check in polynomial time whether
G is shortlex. Moreover, if G is shortlex, then we can compute in polynomial time an SLP G′
over G such that val(G) =G val(G′).

Proof. Let G = (V, ρ, S). In the same way as for SLPs, we can assume that all right-hand
sides from (V ∪ Σ)∗ are of the form a ∈ Σ or BC with B,C ∈ V (variables with right-hand
side ε can be eliminated). Let µ = height(G). We will transform G into the desired SLP G′.
This will be done by a bottom-up process; that is we consider the variables in G in order of
increasing height. If G is not shortlex, we will detect this during the transformation.

For a variable A, we define the tether-height, theight(A) for short, inductively as follows:
if ρ(A) = a, then theight(A) = 0,
if ρ(A) = BC, then theight(A) = max{theight(B), theight(C)}, and
if ρ(A) = B〈s, t〉 then theight(A) = theight(B) + 1.

By removing unused variables, we can assume that S has maximal height and maximal tether
height among all variables. For a nonterminal A we define ηA := theight(S)−theight(A)+1 > 0.

Consider a nonterminal A. Since we are processing the variables in order of increasing
height, we can assume that for all B <G A the word valG(B) is shortlex reduced. Let
w := valG(A). If |w| ≤ 16ζηA + 2ζ then we will explicitly compute the word w in the
process of defining the SLP G′. Otherwise, we will compute explicitly words `A, rA such that
w = `Aw

′rA for some word w′ of length at least 2ζ. The words `A and rA will satisfy the
length constraints 8ζηA ≤ |`A|, |rA| ≤ 8ζηA + 2ζheight(A). Moreover, in the latter case, the
SLP G′ will contain variables A′a,b for all a, b ∈ Bζ(1) such that valG′(A′a,b) = shlex(aw′b).
The A′a,b, together with a start variable S′, which will be added at the end of the process,
will be the only variables that we include in the SLP G′. All of the words that we compute
and store, such as the `A and rA, are to enable us to carry out the necessary computations,
and are not stored as part of G′.

We now make a case distinction on the form of the right-hand side ρ(A). We only consider
the most difficult case that ρ(A) = B〈a, b〉 for a, b ∈ Bζ(1).

Let u := valG(B) and v := valG(A) = shlex(aub). The word u is shortlex reduced by
assumption, and v is shortlex reduced by definition. Let η = ηB . We have ηA = η− 1 ≥ 1. If
|u| ≤ 16ζη + 2ζ then we have explicitly computed the word u. We explicitly compute the
word v = shlex(aub), and then distinguish the cases |v| ≤ 16ζη + 2ζ and |v| > 16ζη + 2ζ.
In the first case, there is nothing to do. If |v| > 16ζη + 2ζ, we factorise v as v = `Av

′rA
with |`A| = |rA| = 8ζη, and thus |v′| ≥ 2ζ. We can compute for all a, b ∈ Bζ(1) the word
shlex(av′b) and set ρ′(A′a,b) = shlex(av′b).

Now assume that |u| > 16ζη + 2ζ. We have computed words `B , rB such that 8ζη ≤
|`B |, |rB | ≤ 8ζη + 2ζheight(B) and u = `Bu

′rB for a word u′ of length at least 2ζ. Moreover,
we have already defined variables B′c,d for all c, d ∈ Bζ(1), which produce shlex(cu′d).

STACS 2019

37:10 Compressed Decision Problems in Hyperbolic Groups

w′ x′

u′
y′ z′

w x y z
a e c d f b

g h

i j

`B rB

Figure 5 The situation from the proof of Lemma 12. Dotted lines represent words that are given
by SLPs.

Using Proposition 10 we check in polynomial time for all c, d ∈ Bζ(1) whether the word

shlex(a`Bc−1)valG′(B′c,d)shlex(d−1rBb) = shlex(a`Bc−1)shlex(cu′d)shlex(d−1rBb)

is shortlex reduced, in which case it is shlex(a`Bu′rBb) = shlex(aub) = v; see Figure 5. By
Lemma 7, there must exist such c, d ∈ Bζ(1). Let s = shlex(a`Bc−1) and t = shlex(d−1rBb).
By the triangle inequality, these words have length at least 8ζη − 2ζ. Hence we can factorise
these words as s = wx and t = yz with |w| = |z| = 8ζ(η − 1) = 8ζηA ≥ 8ζ. The words
x and y have length at least 6ζ. We set `A := w and rA := z. These words satisfy the
required bounds on their lengths. Note that valG(A) = shlex(aub) = `Ax shlex(cu′d)yrA and
|x shlex(cu′d)y| ≥ 12ζ ≥ 2ζ.

It remains to define the right-hand sides of the variables A′g,h for all g, h ∈ Bζ(1). Let us fix
g, h ∈ Bζ(1). The lower bounds on the lengths of w, x, y, z allow us to apply Lemma 7 to the
geodesic rectangles with sides a, `B , c, wx and d, rB , b, yz, respectively (all of these words have
been computed explicitly). We can compute in polynomial time e, f ∈ Bζ(1) and factorisations
`B = w′x′, rB = y′z′ as shown in Figure 5. By the triangle inequality, the words x′ and y′
must have length at least 4ζ. Now consider the geodesic rectangle with sides x′u′y′, shlex(ge),
shlex(fh), and shlex(gex′u′y′fh). Since |x′|, |y′| ≥ 4ζ and |shlex(ge)|, |shlex(fh)| ≤ 2ζ, we
can apply Lemma 7 again: There must exist i, j ∈ Bζ(1) such that the word

shlex(gex′i−1) valG′(B′i,j) shlex(j−1y′fh) = shlex(gex′i−1) shlex(iu′j) shlex(j−1y′fh)

is shortlex reduced, in which case the above word is shlex(gex′u′y′fh). Using Proposition 10,
we can compute such i, j ∈ Bζ(1) in polynomial time. We finally define the right-hand side
of A′g,h as ρ′(A′g,h) = shlex(gex′i−1)B′i,j shlex(j−1y′fh).

This concludes the definition of the right-hand sides for the variables A′a,b. We complete
the definition of G′ by adding a start variable S′ to G′ and setting ρ′(S′) = `SS

′
1,1rS . J

The next lemma generalises Lemma 12 to TCSLPs.

I Lemma 13. Given a TCSLP G over the alphabet Σ, we can check in polynomial time
whether G is shortlex. Moreover, if G is shortlex, then we can compute in polynomial time an
SLP G′ over G such that val(G) =G val(G′).

Proof sketch. The idea of the proof is taken from [18], where it is shown that a CSLP can
be transformed in polynomial time into an equivalent SLP. Let G = (V, ρ, S) be the input
TCSLP. We can assume that all right-hand sides from (V ∪ Σ)∗ are of the form a ∈ Σ or
BC with B,C ∈ V . By Lemma 12 it suffices to transform G into an equivalent TSLP. Let
µ = height(G). Consider a variable A such that ρ(A) = B[: i]; the case that ρ(A) = B[i :]
can be dealt with analogously. We can assume that i ≤ |valG(B)| (this will be true for the
TCSLP constructed in the proof of Theorem 15 below). By considering the variables in order

D. Holt, M. Lohrey, and S. Schleimer 37:11

of increasing height, we can moreover assume that no cut operator occurs in the right-hand
side of any variable C <G A. We then push the operator in ρ(A) towards smaller (with
respect to <G) variables. Thereby we add at most µ new variables to the TCSLP. Moreover
the height of the TCSLP after the cut elimination is still bounded by µ. Hence, the final
TSLP has at most µ · |V | variables. In addition, every right-hand side of the final TSLP will
have length at most 2ζ + 1, so its size will be polynomially bounded. J

I Lemma 14. Given shortlex TCSLPs G0 and G1 such that val(Gi) represents the group
element gi, we can check in polynomial time, whether dΓ(g0, g1) ≤ δ. Moreover, if this is
true, we can compute a ∈ Bδ(1) such that g0a =G g1.

Proof. For all a ∈ Bδ(1) we compute, by adding one new variable to G0, a shortlex TCSLP
G0,a for shlex(val(G0)a). Using Lemma 13 and Theorem 11 we can check in polynomial time
whether val(G0,a) = val(G1), which is equivalent to g0a =G g1. J

Finally, we can prove the main technical result of this section:

I Theorem 15. From a given SLP G over the alphabet Σ we can compute in polynomial
time an SLP G′ for shlex(val(G)).

Proof. By Lemma 13 it suffices to compute in polynomial time a shortlex TCSLP G′ for
shlex(val(G)). For this, we process G bottom-up; that is, we consider the variables in order
of increasing height. Assume that G = (V, ρ, S) and that G is in Chomsky normal form.
The TCSLP G′ will contain all variables from V plus some auxiliary variables. Let us write
G′ = (V ′, ρ′, S). For every variable A ∈ V we will have valG′(A) = shlex(valG(A)). Consider
a variable A ∈ V and assume that, for all variables B <G A, we have already defined ρ′(B)
in such a way that valG′(B) = shlex(valG(B)).

If ρ(A) = a ∈ Σ then we set ρ′(A) := shlex(a). Now assume that ρ(A) = BC. Thus we
have already defined TCSLPs for the words u := shlex(valG(B)) and v := shlex(valG(C)).
Moreover, by Lemma 13 we can transform these TCSLPs into SLPs. Using these SLPs, we
can compute the lengths m = |u| and n = |v|. If m = 0 or n = 0, then we set ρ′(A) := C or
ρ′(A) := B, respectively. So let us assume that m and n are both non-zero. Moreover, we
only consider the case that m ≤ n; the other case is symmetric. From the SLP for u we can
compute an SLP for u−1. Consider the geodesic paths P0 := P[u−1] and P1 := P[v]. Using
Lemma 14 we can check whether dΓ(P0(m), P1(m)) ≤ δ.

Case 1. dΓ(P0(m), P1(m)) ≤ δ. In this case, we can compute by Lemma 14 a word a of
length at most δ such that a =G uv[: m]. The situation is shown in Figure 6 on the left.
We set ρ′(A) := C[m :]〈a, 1〉.

Case 2. dΓ(P0(m), P1(m)) > δ. Using binary search, we compute an integer i ∈ [0,m− 1]
such that dΓ(P0(i), P1(i)) ≤ δ and dΓ(P0(i + 1), P1(i + 1)) > δ. For this we store an
interval [p, q] ⊆ [0,m] such that p < q, dΓ(P0(p), P1(p)) ≤ δ and dΓ(P0(q), P1(q)) > δ.
Initially, we set p = 0 and q = m, and we stop if q = p + 1. In each iteration, we
compute r = d(p+ q)/2e and check, using Lemma 14, whether dΓ(P0(r), P1(r)) ≤ δ or
dΓ(P0(r), P1(r)) > δ. In the first case we set p := r and do not change q, and in the
second case we set q := r and do not change p. Hence, in each iteration the size of
the interval [p, q] is roughly halved. Therefore, the binary search stops after O(log(m))
iterations, which is polynomial in the input length. In addition to the position i, we can
also compute a ∈ Bδ(1) that labels a path from P0(i) to P1(i).

STACS 2019

37:12 Compressed Decision Problems in Hyperbolic Groups

s

u va

b c

u

v
a

Figure 6 Case 1 (left) and 2 (right) from the proof of Theorem 15.

Let P2 be the unique geodesic path from P0(m) to P1(n) that is labelled with a shortlex
reduced word. Note that this path is labelled with shlex(uv). By Lemma 8 there exist i0 ≤ i1
such that dΓ(P0(i+ 1), P2(i0)) ≤ δ and dΓ(P1(i+ 1), P2(i1)) ≤ δ. We therefore iterate over
all b, c ∈ Bδ(1), compute the word s := shlex(b−1u[m− i− 1]av[i]c−1) explicitly, and check
whether the word

shlex(u[: m− i− 1]b) s shlex(cv[i+ 1 :]) (1)

is shortlex reduced too, in which case it is shlex(uv). This can be done using Proposition 10 and
using the fact that SLPs for u and v are available. From these SLPs we can compute TCSLPs
for shlex(u[: m− i− 1]b) and shlex(cv[i+ 1 :]), which can be transformed into SLPs using
Lemma 13. It is guaranteed by Lemma 8 that we will find b, c ∈ Bδ(1) such that the word in (1)
is shortlex reduced. For these b, c we finally set ρ′(A) := (B[: m−i−1]〈1, b〉) s (C[i+1 :]〈c, 1〉).
This concludes the proof of the theorem. J

A word w ∈ Σ∗ represents the group identity if and only if shlex(w) = ε. Hence, Corollary 1
from the introduction follows directly from Theorem 15.

6 Further compressed decision problems

6.1 Computing the order of a compressed group element
An easy consequence of Corollary 1 is the following result:

I Corollary 16. Let G be a hyperbolic group G with the finite symmetric generating set Σ.
From a given SLP G over the alphabet Σ one can compute in polynomial time the order (an
element from N ∪ {∞}) of the group element represented by val(G).

Proof. Let G be an SLP over the alphabet Σ. It is known that every hyperbolic group has
a finite number of conjugacy classes of finite subgroups, and hence that there is a bound
on the order of its finite subgroups [23, Theorem 6.8.4]. So there exists a constant c = c(G)
such that the order of every element g ∈ G belongs to {1, . . . , c,∞}. Hence, in order to
compute the order of (the group element represented by) val(G), it suffices to check whether
val(G)k =G 1 for any 1 ≤ k ≤ c. By Corollary 1, this can be done in polynomial time. J

6.2 Compressed conjugacy and centralisers
Let G be a finitely generated group G with a fixed finite symmetric generating set for G. For
group elements g, h ∈ G we use the standard abbreviation gh = h−1gh, which is extended
to lists L = (g1, . . . , gk) with gi ∈ G by Lh = (gh1 , . . . , ghk). We extend these definitions to
words over Σ in the obvious way. The compressed conjugacy problem for G is the following
problem:

D. Holt, M. Lohrey, and S. Schleimer 37:13

Input: SLPs G and H over the alphabet Σ.
Question: Do G and H represent conjugate elements in G? That is, does there exist g ∈ G

with val(G)g =G val(H)?

More generally, we can define the compressed simultaneous conjugacy problem for G:
Input: Finite lists LG := (G1, . . . ,Gk) and LH := (H1, . . . ,Hk) of SLPs over the alphabet Σ.
Question: Do LG and LH represent conjugate lists of elements in G? That is, does there

exist g ∈ G with val(Gi)g =G val(Hi) for all 1 ≤ i ≤ k?
In the case when the answer to either of these questions is positive, we might also want to
compute an SLP for an element g ∈ G that conjugates val(G) to val(H) or LG to LH.

The compressed centraliser problem for G is the following computation problem:
Input: A finite list (G1, . . . ,Gk) of SLPs over G.
Output: A finite list of SLPs (H1, . . . ,Hl) such that {val(H1), . . . , val(Hl)} is a generating

set for the centraliser of the group elements represented by val(G1), . . . , val(Gk).
The proofs of Theorems 2 and 4 from the introduction can be found in the full version
[22]. A linear-time algorithm for solving the conjugacy problem of a hyperbolic group G is
described in [12, Section 3]. This was generalised in [5] to a linear-time algorithm for the
(uncompressed) simultaneous conjugacy problem and the centraliser problem. We show in
[22] that essentially the same algorithms (modulo applications of Theorem 15) can be used to
solve the compressed (simultaneous) conjugacy problem for G and the compressed centraliser
problem in polynomial time.

6.3 Compressed knapsack
Let G be a finitely generated group with the finite symmetric generating set Σ. A knapsack
expression over G is a rational expression of the form E = v0u

∗
1v1u

∗
2v2 · · ·u∗kvk with k ≥ 0

and ui, vi ∈ Σ∗. A solution for E is a tuple (n1, n2, . . . , nk) ∈ Nk of natural numbers such
that v0u

n1
1 v1u

n2
2 v2 · · ·unk

k vk =G 1. The length of E is defined as |E| = |v0|+
∑k
i=1 |ui|+ |vi|.

The knapsack problem for G is the following decision problem:
Input: A knapsack expression E over G.
Question: Does E has a solution?
In [35] it was shown that the knapsack problem for a hyperbolic group can be solved in
polynomial time. A crucial step in the proof for this fact is the following result, which is of
independent interest:

I Theorem 17 (c.f. [35]). For every hyperbolic group G there exists a polynomial p(x) such
that the following holds: if a knapsack expression E = v0u

∗
1v1u

∗
2v2 · · ·u∗kvk over G has a

solution then it has a solution (n1, . . . , nk) ∈ Nk such that ni ≤ p(|E|) for all 1 ≤ i ≤ k.

Let us now consider the compressed knapsack problem for G. It is defined in the same
way as the knapsack problem, except that the words ui, vi ∈ Σ∗ are given by SLPs. The
compressed knapsack problem for Z is NP-complete [17, Proposition 4.1.1]. In fact, this
problem corresponds to a variant of the classical knapsack problem for binary encoded
integers (for an integer z, it is easy to construct in polynomial time from the binary encoding
of z an SLP over the symmetric generating set {a, a−1} of Z which evaluates to az or to
(a−1)−z). Using this fact, Corollary 1 and Theorem 17, we can easily deduce Theorem 5
from the introduction, as follows.

Proof of Theorem 5. Consider a knapsack expression E = v0u
∗
1v1u

∗
2v2 · · ·u∗kvk over G,

where the ui and vi are given by SLPs Gi and Hi, respectively. We then have |ui| ≤ 3|Gi|/3 and
|vi| ≤ 3|Hi|/3; see the proof of Lemma 1 in [6] (these bounds on the lengths of the ui and vi do

STACS 2019

37:14 Compressed Decision Problems in Hyperbolic Groups

not assume that the Gi andHi are in Chomsky normal form). LetN := |H0|+
∑k
i=1(|Gi|+|Hi|)

be the input length. By Theorem 17, there exists a polynomial p(x) such that E has a
solution if and only if it has a solution (n1, . . . , nk) ∈ Nk such that ni ≤ p(|E|) for all
1 ≤ i ≤ k. We obtain a bound of the form 2O(N) on the ni. Hence, we can guess a tuple
(n1, . . . , nk) ∈ Nk with all ni bounded by 2O(N) and then check whether it is a solution of
E. The latter can be done in polynomial time by constructing from the SLPs Gi and Hi an
SLP G for v0u

n1
1 v1u

n2
2 v2 · · ·unk

k vk using Proposition 9. Finally, we check in polynomial time
whether val(G) =G 1 using Corollary 1.

The second statement of Theorem 5 follows from the well known fact that every infinite
hyperbolic group contains a copy of Z together with the above mentioned result for Z. J

7 Conclusion and open problems

We proved that for every hyperbolic group G, several compressed decision problems (where
input words are represented by straight-line programs) can be solved in polynomial time,
namely the compressed versions of the following problems: the word problem, computing the
order of a group element, the simultaneous conjugacy problem, computing the centralizer of
a finite set of group elements, and the knapsack problem.

An important open problem is the precise complexity of the compressed word problem
for finitely generated linear groups. We mentioned in the introduction that the compressed
word problem for every finitely generated linear group belongs to the complexity class coRP.
It is open, whether this upper bound can be improved to P for every finitely generated linear
group. This is a very difficult question: as mentioned in the introduction, the compressed
word problem for the finitely generated linear group SL3(Z) is equivalent (up to polynomial
time reductions) to polynomial identity testing. The precise complexity of the latter problem
is an outstanding open problem in algebraic complexity theory that is tightly related to
lower bounds in circuit complexity theory [24]. But there are many interesting subclasses of
finitely generated linear groups, for which it is open whether a polynomial time algorithm
for the compressed word problem exists. Let us mention braid groups and Baumslag-Solitar
groups BS(1, p) (for p ≥ 2) in this context.

Another interesting class of groups, where compressed decision problems have not been
considered in depth so far are automaton groups. A concrete open problem is the complexity
of the compressed word problem for the Grigorchuk group. The (uncompressed) word problem
for the Grigorchuk group can be solved in deterministic logarithmic space [15].

Let us finally mention the compressed variant of the generalized word problem (or
subgroup membership problem) for a finitely generated free group F (Σ). The input consists
of a finite list of SLPs for words w,w1, . . . , wn ∈ (Σ ∪Σ−1)∗ and the question is whether the
group element represented by w belongs to the subgroup generated by the group elements
represented by the words w1, . . . , wn. In the standard (uncompressed) setting this problem
can be easily solved in polynomial time using Stalling’s folding procedure, see [41] for an
efficient implementation. It is open, whether also the compressed generalized word problem
for a finitely generated free group can be solved in polynomial time.

D. Holt, M. Lohrey, and S. Schleimer 37:15

References
1 Ian Agol. The virtual Haken conjecture. Documenta Mathematica, 18:1045–1087, 2013. With

an appendix by Ian Agol, Daniel Groves, and Jason Manning.
2 László Babai and Endre Szemerédi. On the complexity of matrix group problems I. In

Proceedings of the 25th Annual Symposium on Foundations of Computer Science, FOCS 1984,
pages 229–240. IEEE Computer Society, 1984.

3 Gilbert Baumslag, Alexei G. Myasnikov, and Vladimir Shpilrain. Open problems in combin-
atorial group theory. In Combinatorial and geometric group theory, pages 1–38. American
Mathematical Society, 2002.

4 Martin Beaudry, Pierre McKenzie, Pierre Péladeau, and Denis Thérien. Finite Monoids: From
Word to Circuit Evaluation. SIAM Journal on Computing, 26(1):138–152, 1997.

5 David J. Buckley and Derek F. Holt. The conjugacy problem in hyperbolic groups for finite
lists of group elements. International Journal of Algebra and Computation, 23(5):1127–1150,
2013.

6 Moses Charikar, Eric Lehman, Ding Liu, Rina Panigrahy, Manoj Prabhakaran, Amit Sahai,
and Abhi Shelat. The smallest grammar problem. IEEE Transactions on Information Theory,
51(7):2554–2576, 2005.

7 François Dahmani and Vincent Guirardel. The Isomorphism Problem for All Hyperbolic
Groups. Geometric and Functional Analysis, 21(2):223–300, 2011.

8 Max Dehn. Über unendliche diskontinuierliche Gruppen. Mathematische Annalen, 71:116–144,
1911.

9 Volker Diekert, Jürn Laun, and Alexander Ushakov. Efficient Algorithms for Highly Compressed
Data: the Word Problem in Higman’s Group is in P. International Journal of Algebra and
Computation, 22(8), 2012.

10 Will Dison, Eduard Einstein, and Timothy R. Riley. Ackermannian Integer Compression and
the Word Problem for Hydra Groups. In Proceedings of the 41st International Symposium
on Mathematical Foundations of Computer Science, MFCS 2016, volume 58 of LIPIcs, pages
30:1–30:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016.

11 David B. A. Epstein, James W. Cannon, Derek F. Holt, Silvio V. F. Levy, Michael S. Paterson,
and William P. Thurston. Word Processing in Groups. Jones and Bartlett, 1992.

12 David B. A Epstein and Derek F. Holt. The Linearity of the Conjugacy Problem in Word-
hyperbolic Groups. International Journal of Algebra and Computation, 16(2):287–306, 2006.

13 Elizaveta Frenkel, Andrey Nikolaev, and Alexander Ushakov. Knapsack problems in products
of groups. Journal of Symbolic Computation, 74:96–108, 2016.

14 Moses Ganardi, Daniel König, Markus Lohrey, and Georg Zetzsche. Knapsack Problems for
Wreath Products. In Proceedings of the 35th Symposium on Theoretical Aspects of Computer
Science, STACS 2018, volume 96 of LIPIcs, pages 32:1–32:13. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2018.

15 Max Garzon and Yechezkel Zalcstein. The complexity of Grigorchuk groups with application
to cryptography. Theoretical Computer Science, 88(1):83–98, 1991.

16 Mikhail Gromov. Hyperbolic groups. In S. M. Gersten, editor, Essays in Group Theory,
number 8 in MSRI Publ., pages 75–263. Springer, 1987.

17 Christoph Haase. On the complexity of model checking counter automata. PhD thesis, University
of Oxford, St Catherine’s College, 2011.

18 Christian Hagenah. Gleichungen mit regulären Randbedingungen über freien Gruppen. PhD
thesis, University of Stuttgart, 2000.

19 Frédéric Haglund and Daniel T. Wise. Coxeter groups are virtually special. Advances in
Mathematics, 224(5):1890–1903, 2010.

20 Nico Haubold, Markus Lohrey, and Christian Mathissen. Compressed decision problems for
graph products of groups and applications to (outer) automorphism groups. International
Journal of Algebra and Computation, 22(8), 2013.

STACS 2019

37:16 Compressed Decision Problems in Hyperbolic Groups

21 Derek F. Holt. Word-hyperbolic groups have real-time word problem. International Journal
of Algebra and Computation, 10:221–228, 2000.

22 Derek F. Holt, Markus Lohrey, and Saul Schleimer. Compressed decision problems in hyperbolic
groups. CoRR, 2018. arXiv:1808.06886.

23 Derek F. Holt, Sarah Rees, and Claas E. Röver. Groups, Languages and Automata, volume 88
of London Mathematical Society Student Texts. Cambridge University Press, 2017.

24 Russell Impagliazzo and Avi Wigderson. P = BPP if E requires exponential circuits: Deran-
domizing the XOR lemma. In Proceedings of the 29th Annual ACM Symposium on the Theory
of Computing, STOC 1997, pages 220–229. ACM, 1997.

25 Martin Kassabov and Francesco Matucci. The simultaneous conjugacy problem in groups of
piecewise linear functions. Groups, Geometry, and Dynamics, 6(2):279–315, 2012.

26 Daniel König and Markus Lohrey. Evaluation of circuits over nilpotent and polycyclic groups.
Algorithmica, 80(5):1459–1492, 2018.

27 Daniel König, Markus Lohrey, and Georg Zetzsche. Knapsack and subset sum problems in
nilpotent, polycyclic, and co-context-free groups. In Algebra and Computer Science, volume
677 of Contemporary Mathematics, pages 138–153. American Mathematical Society, 2016.

28 Markus Lohrey. Word problems and membership problems on compressed words. SIAM
Journal on Computing, 35(5):1210–1240, 2006.

29 Markus Lohrey. Algorithmics on SLP-Compressed Strings: A Survey. Groups Complexity
Cryptology, 4(2):241–299, 2012.

30 Markus Lohrey. The Compressed Word Problem for Groups. SpringerBriefs in Mathematics.
Springer, 2014.

31 Markus Lohrey. Knapsack in Hyperbolic Groups. In Proceedings of the 12th International
Conference on Reachability Problems, RP 2018, volume 11123 of Lecture Notes in Computer
Science, pages 87–102. Springer, 2018.

32 Markus Lohrey and Georg Zetzsche. Knapsack in Graph Groups. Theory of Computing
Systems, 62(1):192–246, 2018.

33 Jeremy Macdonald. Compressed words and automorphisms in fully residually free groups.
International Journal of Algebra and Computation, 20(3):343–355, 2010.

34 Jeremy MacDonald, Alexei G. Myasnikov, and Denis Ovchinnikov. Low-complexity computa-
tions for nilpotent subgroup problems. CoRR, abs/1706.01092, 2017. arXiv:1706.01092.

35 Alexei G. Myasnikov, Andrey Nikolaev, and Alexander Ushakov. Knapsack Problems in
Groups. Mathematics of Computation, 84:987–1016, 2015.

36 Alexei G. Myasnikov, Alexander Ushakov, and Dong Wook Won. The Word Problem in the
Baumslag group with a non-elementary Dehn function is polynomial time decidable. Journal
of Algebra, 345(1):324–342, 2011.

37 Alexei G. Myasnikov, Alexander Ushakov, and Dong Wook Won. Power circuits, exponential
algebra, and time complexity. International Journal of Algebra and Computation, 22(6), 2012.

38 Alexander Yu. Ol’shanskii. Almost every group is hyperbolic. International Journal of Algebra
and Computation, 2(1):1–17, 1992.

39 Wojciech Plandowski. Testing Equivalence of Morphisms on Context-Free Languages. In
Proceedings of the 2nd Annual European Symposium on Algorithms, ESA 1994, volume 855 of
Lecture Notes in Computer Science, pages 460–470. Springer, 1994.

40 Saul Schleimer. Polynomial-time word problems. Commentarii Mathematici Helvetici,
83(4):741–765, 2008.

41 Nicholas W. M. Touikan. A Fast Algorithm for Stallings’ Folding Process. International
Journal of Algebra and Computation, 16(6):1031–1046, 2006.

42 Stephan Waack. The Parallel Complexity of Some Constructions in Combinatorial Group
Theory. Journal of Information Processing and Cybernetics EIK, 26:265–281, 1990.

43 Daniel T. Wise. Research announcement: the structure of groups with a quasiconvex hierarchy.
Electronic Research Announcements in Mathematical Sciences, 16:44–55, 2009.

http://arxiv.org/abs/1808.06886
http://arxiv.org/abs/1706.01092

How to Secure Matchings Against Edge Failures
Felix Hommelsheim
Department of Mathematics, TU Dortmund University, Germany
felix.hommelsheim@math.tu-dortmund.de

Moritz Mühlenthaler
Department of Mathematics, TU Dortmund University, Germany
moritz.muehlenthaler@math.tu-dortmund.de

Oliver Schaudt
Department of Mathematics, RWTH Aachen University, Germany
schaudt@mathc.rwth-aachen.de

Abstract
Suppose we are given a bipartite graph that admits a perfect matching and an adversary may delete
any edge from the graph with the intention of destroying all perfect matchings. We consider the task
of adding a minimum cost edge-set to the graph, such that the adversary never wins. We show that
this problem is equivalent to covering a digraph with non-trivial strongly connected components at
minimal cost. We provide efficient exact and approximation algorithms for this task. In particular,
for the unit-cost problem, we give a log2 n-factor approximation algorithm and a polynomial-time
algorithm for chordal-bipartite graphs. Furthermore, we give a fixed parameter algorithm for the
problem parameterized by the treewidth of the input graph. For general non-negative weights we
give tight upper and lower approximation bounds relative to the Directed Steiner Forest problem.
Additionally we prove a dichotomy theorem characterizing minor-closed graph classes which allow
for a polynomial-time algorithm. To obtain our results, we exploit a close relation to the classical
Strong Connectivity Augmentation problem as well as directed Steiner problems.

2012 ACM Subject Classification Hardware → Robustness; Mathematics of computing → Match-
ings and factors; Mathematics of computing → Graph algorithms; Mathematics of computing →
Approximation algorithms; Theory of computation → Fixed parameter tractability; Mathematics of
computing → Mathematical optimization

Keywords and phrases Matchings, Robustness, Connectivity Augmentation, Graph Algorithms,
Treewidth

Digital Object Identifier 10.4230/LIPIcs.STACS.2019.38

Related Version A full version of the paper is available at https://arxiv.org/abs/1805.01299.

Funding Felix Hommelsheim: Research partially supported by the German Research Foundation
(DFG), RTG 1855.
Moritz Mühlenthaler : Research partially supported by the German Research Foundation (DFG),
RTG 1855.

Acknowledgements We would like to thank Viktor Bindewald for the fruitful discussions about
some of the results in this paper.

1 Introduction

We say that a bipartite graph is robust if it admits a perfect matching after the removal of
any single edge. Our goal is to make a bipartite graph robust at minimal cost by adding edges
from its bipartite complement and we study the complexity of the corresponding optimization
problem. We refer to this problem informally as robust matching augmentation. In general,
an augmentation problem asks for a minimum-cost set of edges to be added to a graph
in order to establish a certain property. In our context this property is robustness. As a

© Felix Hommelsheim, Moritz Mühlenthaler, and Oliver Schaudt;
licensed under Creative Commons License CC-BY

36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019).
Editors: Rolf Niedermeier and Christophe Paul; Article No. 38; pp. 38:1–38:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:felix.hommelsheim@math.tu-dortmund.de
mailto:moritz.muehlenthaler@math.tu-dortmund.de
mailto:schaudt@mathc.rwth-aachen.de
https://doi.org/10.4230/LIPIcs.STACS.2019.38
https://arxiv.org/abs/1805.01299
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

38:2 How to Secure Matchings Against Edge Failures

motivation, consider some assignment-type application, such as staff or task scheduling. The
application requires that we choose a perfect matching that assigns, say, tasks to machines.
By buying additional edges, we would like to ensure that after the failure of any single edge
the resulting graph has a perfect matching, i.e., we may continue our operation. Buying
edges may correspond for example to training staff or upgrading machines. Note that in
many situations some kind of infrastructure is already available, so it may make sense to
upgrade it instead of designing robust infrastructure from scratch.

A design problem asks for a minimum-cost subgraph with a certain property, for instance
a minimum-cost k-edge-connected subgraph [12, 22]. Robust matching augmentation can
be stated also as a design problem, where the given infrastructure is available at zero cost
and the host graph is a complete bipartite graph. In fact, our problem is a special case of
the bulk-robust assignment problem, a design problem introduced in [2]. Bulk-robustness is
a redundancy-based robustness concept proposed by Adjiashvili, Stiller, and Zenklusen [3].
Roughly speaking, the input of a bulk-robust design problem is a host graph and a list of
sets of edges, the failure scenarios. If a failure scenario emerges then the corresponding edges
are deleted from the host graph. The task is to select a minimum-cost subgraph of the host
graph that has a certain property (e.g., it contains an assignment [2], a spanning tree [3], or
an st-path [4]), no matter which failure scenario emerges. Bulk-robust design problems are
notoriously hard. For example, the bulk-robust assignment problem is known to be NP-hard
even if only one of two fixed edges may fail [2]. Here, we consider the setting that any single
edge of the host graph may fail.

We provide a detailed study of the complexity of the robust matching augmentation
problem. For the unweighted problem we give a tight logn-factor approximation algorithm
as well as polynomial-time algorithms for chordal-bipartite graphs and graphs of bounded
treewidth. For the weighted problem we give a characterization of minor-closed graph classes
for which the problem admits a polynomial-time algorithm. Our algorithmic results are
based on the following reformulation of the robust matching augmentation problem: Given
a digraph, find a minimum-cost superset of its arcs, such that each vertex is contained in
some non-trivial strongly connected component. In contrast, the classical strong connectivity
augmentation problem asks for the minimal number of arcs that are needed to have all
vertices covered by a single strongly connected component. It was shown by Eswaran and
Tarjan that this problem admits a polynomial-time algorithm, but its edge-weighted variant
is NP-hard [16]. It turns out that the classical algorithm for strong connectivity augmentation
is useful in order to satisfy our more relaxed strong connectivity requirements at minimal
cost.

Our Contribution

Recall that we call a bipartite graph robust if it admits a perfect matching after the removal
of any single edge. For a bipartite graph (V,E), we denote by E the edge-set of its bipartite
complement. We provide algorithms and hardness results for variants of the following
problem.

Robust Matching Augmentation
instance: Undirected bipartite graph G = (U+W,E) that admits a perfect matching.
task: Find a set L ⊆ E of minimum cardinality, such that the graph G+ L is robust.

Based on a characterization of robustness in terms of strong connectivity, we provide a
deterministic log2 n-factor approximation for Robust Matching Augmentation, as well
as a fixed parameter tractable (FPT) algorithm for the same problem parameterized by the

F. Hommelsheim, M. Mühlenthaler, and O. Schaudt 38:3

treewidth of the input graph. We also give a polynomial-time algorithm for instances on
chordal-bipartite graphs, which are bipartite graphs without induced cycles of length at least
six. Furthermore, we show that Robust Matching Augmentation admits no polynomial-
time sublogarithmic-factor approximation algorithm unless P = NP, so our approximation
guarantee is essentially tight. We also consider the following more general setting. Let us
call a bipartite graph k-robust, if it admits a matching of cardinality k after the removal of
any single edge. By a simple reduction we show that our algorithmic results carry over to
the task of making a bipartite graph k-robust.

We refer by Weighted Robust Matching Augmentation to the generalization of
Robust Matching Augmentation, where each edge e ∈ E has a non-negative cost ce. The
task is to find a minimum-cost set L ⊆ E, such that G+L is robust. First, we show that the
approximability of Weighted Robust Matching Augmentation is closely linked to that
of Directed Steiner Forest. In particular we show that an f(n)-factor approximation
algorithm for Weighted Robust Matching Augmentation implies an f(n+ k)-factor
approximation algorithm for Directed Steiner Forest, where k is the number of terminal
pairs. By a result of Halperin and Krauthgamer [23] it follows that there is no log2−ε(n)-
factor approximation for Weighted Robust Matching Augmentation, unless NP ⊆
ZTIME(npolylog(n)). On the positive side, we show that an f(k)-factor approximation for
the Directed Steiner Forest problem yields an (f(k) + 1)-factor approximation for
Weighted Robust Matching Augmentation. Hence, the algorithms from [10, 18] give
an approximation guarantee of 1+n 1

2 +ε for Weighted Robust Matching Augmentation,
for every ε > 0.

Second, we prove a complexity dichotomy based on graph minors. Let T be a class
of connected graphs closed under connected minors. We show that Weighted Robust
Matching Augmentation restricted to input graphs from T is NP-complete if T contains
at least one of two simple graph classes, which will be defined in Section 5, and admits a
polynomial-time algorithm otherwise. The polynomial-time algorithm for the remaining
instance classes uses a reduction to the Directed Steiner Forest problem with a constant
number of terminal pairs, which in turn admits a (slice-wise) polynomial-time algorithm due
to a result by Feldman and Ruhl [17]. The terminal pairs of the instance are computed by
the Eswaran-Tarjan algorithm.

Summary of Algorithmic Techniques

By close inspection, it turns out that in order to make some bipartite graph G robust at
minimum cost, we may restrict our attention to failures of single edges from any fixed perfect
matching M of G. We then show that the resulting problem is equivalent to augmenting a
minimum-cost set A of arcs to a given digraph D, such that in the graph D+A, each vertex
is contained in a strongly connected component and each strongly connected component
contains at least two vertices. In order to satisfy these connectivity requirements, we select
certain sources and sinks of the condensation of the digraph and add a minimum-cardinality
set of arcs, such that the selected sources and sinks are contained in a single strongly
connected component. For this purpose, we use the classical Eswaran-Tarjan algorithm.
From the arcs we added we obtain an optimal set L of edges such that G + L is robust,
provided that the selection of sources and sinks was optimal.

We model the task of selecting sources and sinks as a variant of the Set Cover problem
with some additional structure. Given an acyclic digraph, the task is to select a minimum-
cardinality subset of the sources, such that each sink is reachable from at least one of the
selected sources. We refer to this problem as Source Cover and remark that its complexity
may be of independent interest, since it generalizes Set Cover but is a special case of

STACS 2019

38:4 How to Secure Matchings Against Edge Failures

Directed Steiner Tree. We give an FPT algorithm for the Source Cover problem
parameterized by the treewidth of the input graph and a polynomial-time algorithm for
chordal-bipartite graphs (ignoring orientations). The FPT algorithm is single exponential
in the treewidth. Our reductions from Robust Matching Augmentation to Source
Cover preserve chordal-bipartiteness and bounded treewidth, so efficient algorithms for
Source Cover on these graph classes imply efficient algorithms for Robust Matching
Augmentation on the same classes.

As a by-product of our analysis of the Source Cover problem, we obtain FPT algorithms
for the node-weighted and arc-weighted versions of the Directed Steiner Tree problem
on acyclic digraphs, which are exponential in the treewidth and linear in the number of nodes
of the input graph.

Related work

In [2], Adjiashvili, Bindewald and Michaels proposed an LP-based randomized algorithm
for the bulk-robust assignment problem. They claim an O(logn)-factor approximation
guarantee for their algorithm. Since the robust assignment problem generalizes Weighted
Robust Matching Augmentation, an O(logn)-factor approximation for our problem is
implied. However, due to our inapproximability result for Weighted Robust Matching
Augmentation, this can not be true, unless NP ⊆ ZTIME(npolylog(n)). The authors of [2]
agree that their analysis is incorrect.

A connectivity augmentation problem related to strong connectivity, but of a different
flavor, is the tree augmentation problem (TAP). The TAP asks for a minimum-cost edge-set
that increases the edge-connectivity of a given tree from one to two. In contrast to robust
matching augmentation, the TAP admits a constant-factor approximation [21]. The constant
has recently been lowered to 3/2 + ε for bounded-weight instances [1, 19]. Similar to robust
matching augmentation, the input graph is available at zero cost. Let us briefly remark that
there is more conceptual similarity. The matching preclusion number of a graph is the minimal
number of edges to be removed, such that the remaining graph has no perfect matching.
Robust matching augmentation can be stated as the task of finding a minimum-cost edge-set
that increases the matching preclusion number of a bipartite graph from one to two, while
the TAP aims to increase connectivity from one to two. The matching preclusion number is
considered to be a measure of robustness of interconnect networks [9, 11]. Determining the
matching preclusion number of a graph is NP-hard [14, 25].

In our reduction from robust matching augmentation problem to a connectivity augmen-
tation problem, we construct a digraph from the input graph and a fixed perfect matching.
This construction is closely related to the classical Dulmage-Mendelsohn decomposition (DM-
decomposition) introduced in [15]. In fact the digraph from our reduction can be obtained
from the auxiliary digraph that is used for computing the DM-decomposition of a graph by
contracting the edges of the perfect matching. In [5], the authors consider the problem of
making a bipartite graph DM-irreducible, which means that its DM-decomposition consists
of a single component. They show that the unweighted variant of this problem admits a
polynomial-time algorithm. For balanced bipartite graphs that admit a perfect matching, the
problem reduces to the strong connectivity augmentation problem. Hence, DM-irreducibility
of such graphs implies robustness, but not vice versa.

Robust perfect matchings with a given recovery budget were studied by Dourado et
al. in [14]. Our notion of robustness corresponds to 1-robust∞-recoverable in their terminology.
They provide hardness results and structural insights mainly for fixed recovery budgets,
which bound the number of edges that can be changed in order to repair a matching, after a
certain number of edges has been removed from the graph.

F. Hommelsheim, M. Mühlenthaler, and O. Schaudt 38:5

Notation

Undirected and directed graphs considered here are simple. For sets U , W , we denote by
U+W their disjoint union. For an undirected bipartite graph G = (U+W,E) with bipartition
(U,W), we denote by E the edge-set of its bipartite complement. Let D = (V,A) be a directed
graph. We refer by A to the arcs not present in D. That is, we let A ⊆ (V × V) \ A. By
U(D) we refer to the underlying undirected graph of D. For L ⊆ E, we write G+ L for the
graph G′ = (V (G), E(G) ∪ L). Simple paths in graphs are given by a sequence of vertices.
For graphs G,H we write H ⊆ G if H is a subgraph of G. Recall that a graph H is an
induced minor of a graph G if it arises from G by a sequence of vertex deletions and edge
contractions. Similarly, the graph H is a minor of G if we additionally allow edge deletion.
Furthermore, the graph H is a connected minor of G if H is connected and a minor of G.
In general, contractions may result in parallel edges or loops, which we simply discard in
order to keep our graphs simple. Let G be a class of graphs. We will refer to the restriction
of (Weighted) Robust Matching Augmentation to instances where the graph G is
bipartite, admits a perfect matching, and belongs to the class G as (Weighted) Robust
Matching Augmentation on G. Given a set of items X and sets S ⊆ 2X , the Set Cover
problems asks for a minimum-cardinality subset C ⊆ S, such that each x ∈ X is contained in
some s ∈ C. The incidence graph G(I) of a Set Cover instance I = (X,S) is an undirected
bipartite graph on the vertex set X + S that has an edge xs if and only if the item x ∈ X is
contained in the set s ∈ S.

Organization of the Paper

The remainder of the paper is organized as follows. We illustrate the relation between robust
matching augmentation and strong connectivity augmentation in Section 2. In Section 3 we
show an even closer relation of Robust Matching Augmentation to the Source Cover
problem. Algorithms for the Source Cover problem are given in Section 4 as well as our
results on robust matching augmentation with unit costs. In Section 5 we give the complexity
classification for the weighted version of the problem and Section 6 concludes the paper.

2 Robust Matchings and Strong Connectivity Augmentation

In this section we give some preliminary observations on the close relationship between
robust matching augmentation with unit costs and strong connectivity augmentation. For
this purpose, we fix an arbitrary perfect matching and construct an auxiliary digraph that
is somewhat similar to the alternating tree used in Edmond’s blossom algorithm. We show
that the original graph is robust if the auxiliary graph is strongly connected (but not vice
versa). Furthermore, we show that there is an optimal edge-set making the given graph
robust, that corresponds to a set of arcs connecting sources and sinks in the auxiliary digraph.
Finally, if no source or sink of the auxiliary digraph corresponds to a non-trivial robust part
of the original graph, then we may use the algorithm for strong connectivity augmentation
by Eswaran and Tarjan [16] to make the original graph robust. As a consequence, we have
that Robust Matching Augmentation on trees can be solved efficiently by using the
Eswaran-Tarjan algorithm. In Section 3, we will generalize this result.

Let G = (U +W,E) be a bipartite graph that admits a perfect matching and let M be
an arbitrary but fixed perfect matching M of G. We call an edge e ∈ M critical if G − e
admits no perfect matching. Observe that an edge e ∈M is critical if and only if it is not

STACS 2019

38:6 How to Secure Matchings Against Edge Failures

(a) Graph G and matching M (wiggly edges). (b) Digraph D(G, M).

Figure 1 Illustration of the correspondence between the dotted edges of G and dotted arcs of
D(G, M).

contained in an M -alternating cycle. Furthermore, no edge in E \M is critical. Since M is
perfect, each edge e ∈M is incident to a unique vertex ue of U . We consider the following
auxiliary digraph D(G,M) = (U,A), whose arc-set A is given by

A :={uu′ | u, u′ ∈ U : there is a vertex w ∈W such that uw ∈M and wu′ ∈ E \M}.

We first note that the choice of the bipartition of G is irrelevant.

I Fact 1. Let G′ = (U ′ +W ′, E), where (U ′,W ′) is a bipartition of G. Then D(G,M) is
isomorphic to D(G′,M).

Note that we may perform the reverse construction as well. That is, from any digraph
D′ we may obtain a corresponding undirected graph G and a perfect matching M of G such
that D(G,M) = D′. In fact, augmenting edges to G is equivalent to augmenting arcs to
D(G,M).

I Fact 2. Let A be the set of arcs that are not present in D(G,M). Then there is a 1-to-1
correspondence between E and A.

An example of the correspondence mentioned in Fact 2 is shown in Figure 1. In order
to keep our notation tidy, we will make implicit use of Fact 2 and refer to A and E

interchangeably. Observe that for edges e, f ∈M there is an M -alternating path containing
e and f in G if and only if ue is connected to uf in D(G,M). This implies the following
characterization of robustness.

I Fact 3. G is robust if and only if each strongly connected component of D(G,M) is
non-trivial, that is, it contains at least two vertices.

LetD′ be a digraph. A vertex ofD′ is called a source (sink) if it has no incoming (outgoing)
arc. We refer to the set of sources (sinks) of D′ by V +(D′) (V −(D′)). Furthermore, we
denote by C(D′) the condensation of D′, that is, the directed acyclic graph of strongly
connected components of D′. We call a source or sink of C(D′) strong if the corresponding
strongly connected component of D′ is non-trivial. From Fact 3 it follows that a subgraph of
G that corresponds to a strong source or a strong sink is robust against the failure of a single
edge. Furthermore, observe that the choice of the perfect matching M of G is irrelevant in
the following sense.

I Fact 4. Let M and M ′ be perfect matchings of G. Then C(D(G,M)) is isomorphic to
C(D(G,M ′)).

F. Hommelsheim, M. Mühlenthaler, and O. Schaudt 38:7

Fact 4 is of key importance for our algorithmic results, for which we generally assume
that some fixed perfect matching is given. Next, we observe that for unit costs we may
restrict our attention to connecting sources and sinks of C(D) in order to make G robust. It
is easy to check that this does not hold for general non-negative costs.

I Fact 5. Let L ⊆ E such that G+L is robust. Then there is some L′ ⊆ E of cardinality at
most |L|, such that G+ L′ is robust and L′ connects only sinks to sources of C(D(G,M)).

We remark that the construction of L′ given in the proof of Fact 5 can be performed in
polynomial time.

We denote by γ(D′) the minimal number of arcs to be added to a digraph D′ in order
to make it strongly connected. Eswaran an Tarjan have proved the following min-max
relation [16].

I Fact 6. Let D′ be a digraph. Then γ(D′) = max{|V +(D′)|, |V −(D′)|}.

From the proof of Fact 6 it is easy to obtain a polynomial-time algorithm that, given
a digraph D′, computes an arc-set L of cardinality γ(D′) such that D′ + L is strongly
connected [20]. We will refer to this algorithm by Eswaran-Tarjan. The following proposi-
tion illustrates the usefulness of the algorithm Eswaran-Tarjan for Robust Matching
Augmentation, and at the same time its limitations.

I Fact 7. Suppose that C(D(G,M)) contains no strong sources or sinks. Then Eswaran-
Tarjan computes a set L ⊆ E of minimum cardinality such that G+ L is robust.

Fact 7 implies that Eswaran-Tarjan solves Robust Matching Augmentation on
trees. If strong sources or sinks are present in D(G,M), then we may or may not need to
consider them in order to make G robust. This is precisely what makes the problem Robust
Matching Augmentation hard. This close connection will be presented in Section 3. We
will formalize the task of selecting strong sources and sinks in terms of the Source Cover
problem, which is discussed in Section 4.

3 Robust Matching Augmentation

In this section we present our main technical tool for solving the problem Robust Matching
Augmentation. By combining it with the results in Section 4 we obtain our algorithmic
results. Let us first restate the problem in a slightly different way.

Robust Matching Augmentation
instance: Bipartite graph G = (U +W,E) and perfect matching M of G.
task: Find a minimum-cardinality set L ⊆ E such that G+ L is robust.

Fixing the perfect matching M in the instance is just for notational convenience, since
we can compute a perfect matching in polynomial time and our results do not depend on
the exact choice of M , according to the discussion in Section 2. For the main theorem of
this section we need to introduce the Source Cover problem. Given an acyclic digraph,
the Source Cover problem asks for a minimum-cardinality subset of its sources, such that
each sink is reachable from at least one selected source. The Source Cover problem is
formally defined as follows.

Source Cover
instance: Weakly connected acyclic digraph D = (V,A).
task: Find a minimum-cardinality subset S of the sources V +(D) of D, such that for
each sink t ∈ V −(D) there is an S-t-path in D.

STACS 2019

38:8 How to Secure Matchings Against Edge Failures

Note that the assumption that D is connected is needed only for technical reasons. Our
main technical result is the following.

I Theorem 8. There is a polynomial-time algorithm that, given an instance I = (G,M) of
Robust Matching Augmentation, computes two instances A1 = (S1) and A2 = (S2) of
Source Cover such that the following holds.
1. U(S1) and U(S2) are induced minors of U(D(G,M)).
2. OPT(I) = max{OPT(A1),OPT(A2)}
3. From a solution C1 of A1 and a solution C2 of A2 we can construct in polynomial time a

solution L of I of cardinality max{|C1|, |C2|}.

Proof. Let I = (G,M) be an instance of Robust Matching Augmentation, where
G = (U +W,E). Our goal is to obtain from solutions of the Source Cover instances a
suitable selection of sources and sinks of C(D(G,M)), such that we can make M robust
by connecting the selected sources and sinks, using the algorithm Eswaran-Tarjan. Let
us denote by ue the vertex in U that is incident to an edge e ∈ M . Furthermore, let
D := D(G,M). We construct the Source Cover instance A1 as follows. For each critical
edge e ∈ M , we remove from D each vertex v ∈ U − ue, such that v is reachable from ue

in D. Let D′ be the resulting graph and let the Source Cover instance A1 be given by
A1 := (C(D′)). The construction of A2 is as for A1, but with the arcs of D reversed. This
turns the sources of D into sinks. Clearly, the acyclic digraphs of A1 and A2 are induced
minors of U(D), since they were constructed by deleting vertices of U(D) and contracting
strong components. By Fact 3, the set of critical edges can be obtained efficiently by Tarjan’s
classical algorithm for computing strongly connected components. In order to generate A1
and A2, observe that D′ and C(D′) can both be obtained by applying a breadth-first search
starting at each vertex of D or D′, respectively. So it remains to prove Statement 2 and 3.

Let C1 (C2) be a solution to A1 (A2). We show how to construct in polynomial time a
solution L of I of cardinality max{|C1|, |C2|}. Let X ⊆ V (D̂) be the set of vertices incident
to critical edges. Moreover, let D̂ ⊆ C(D) be the graph induced by the vertices of C(D) that
are on C1X-paths or on XC2-paths in C(D). Note that D̂ can be computed by a depth-first
search applied on each source and sink. By running Eswaran-Tarjan on D̂ we obtain an
arc-set L∗ such that D̂ + L∗ is strongly connected. Hence, each u ∈ X is on some directed
cycle in D̂ + L∗. From L∗ we can obtain in a straight-forward way an arc-set L of the same
cardinality, such that each u ∈ X is on some directed cycle of D + L. For each ss′ ∈ L∗, we
add to L an arc uu′, where u (u′) is some vertex in the strong component s (s′) of D. By
the construction of L, each u ∈ X is on some directed cycle of D. By Fact 2 and 6 we have
constructed a solution L of I of cardinality |L| = |L∗| = max{|C1|, |C2|}. This completes the
proof of Statement 3.

It remains to prove that OPT(I) ≥ max{OPT(A1),OPT(A2)}. Suppose for a contradiction
that OPT(I) < max{OPT(A1),OPT(A2)}. Without loss of generality, let OPT(A1) attain
the maximum. Due to Fact 5, we may assume that an optimal solution L of I connects
sources and sinks of C(D). Let R ⊆ V (C(D)) be the corresponding sources of C(D). Then
for each critical edge e ∈M , the vertex ue must be reachable from some source s ∈ R. But
then R is a solution of A1 of cardinality |R| = OPT(I) < OPT(A1), a contradiction. J

By Theorem 8, in order to solve Robust Matching Augmentation, is suffices to solve
two instances of Source Cover. Due to Statement 1 of the theorem, structural features of
the input graph, such as bounded treewidth and chordal-bipartiteness, are passed on to the
digraphs of the source cover instances. We now consider the following more general setting.

F. Hommelsheim, M. Mühlenthaler, and O. Schaudt 38:9

We call a bipartite graph k-robust if it admits a matching of cardinality k after the removal
of any single edge.

Robust k-Matching Augmentation
instance: Bipartite graph G = (U +W,E) that admits a matching of size k.
task: Find a minimum-cardinality set L ⊆ E such the graph G+ L is k-robust.

Note that if k is less than the size of a maximum matching then L = ∅ is optimal due
to the existence of a larger matching. We give a polynomial-time reduction from Robust
k-Matching Augmentation to Robust Matching Augmentation. Let (G,M) be
an instance of Robust k-Matching Augmentation, where the input graph G is given
by G = (V,E). Without loss of generality, we assume that M is U -perfect, so |U | ≤ |W |.
Otherwise, adding an edge joining two unmatched vertices solves the problem. We construct
an instance (G′,M ′) of Robust Matching Augmentation as follows. Let G′ be a copy
of G to which we add a leaf to each unmatched vertex of W . We then add a vertex z to U
joined to each vertex of the other part of the bipartition. Finally, we add a vertex z′ joined
to z and each leaf added in the previous step. Furthermore, we extend the matching M of G
to a perfect matching M ′ of G′ by adding the edges between the leaves and the previously
unmatched vertices to M ′. Note that by construction, if e is a critical edge of G′ then G− e
does not admit a matching of cardinality |M |.

Note that the construction increases the treewidth by at most two, but does not preserve
chordal-bipartiteness of the input graph. However, the corresponding digraph contains no
induced cycle of length at least six, so all our algorithmic results for Robust Matching
Augmentation carry over to Robust k-Matching Augmentation.

I Proposition 9. There is a polynomial-time reduction f from Robust k-Matching
Augmentation to Robust Matching Augmentation, such that the following holds. Let
I := (G) be an instance of Robust k-Matching Augmentation and let f(I) = (G′). Then
1. OPT(f(I)) = OPT(I) and from a solution L′ of f(I) we can construct in polynomial time

a solution L of I such that |L| ≤ |L′|.
2. tw(G′) ≤ tw(G) + 2
3. If G is chordal-bipartite then U(D(G′,M ′)) has no induced cycle of length at least six.

4 The Source Cover Problem

In Section 3 we made precise the close relation between Robust Matching Augmentation
and the Source Cover problem. In this section we present our algorithmic results for
the Source Cover problem as well as their consequences consequences for Robust k-
Matching Augmentation. Recall that the Source Cover problem asks for a minimum-
cardinality subset of the source of a given digraph, such that each sink is reachable from
at least one selected source. It is easy to see that Source Cover is a special case of
the Directed Steiner Tree problem and that it generalizes Set Cover. We give a
simple polynomial-time algorithm for Source Cover if the input graph is chordal-bipartite
(ignoring orientations). Furthermore, we show that Source Cover parameterized by
treewidth (again ignoring orientations) is FPT. As a by-product, we obtain a simple FPT
algorithm for the arc-weighted and node-weighted versions of the Directed Steiner Tree
problem on acyclic digraphs, whose running time is linear in the size of the input graph
and exponential in the treewidth of the underlying undirected graph. To the best of our
knowledge, the parameterized complexity of the general Directed Steiner Tree problem
with respect to treewidth is open. For the corresponding undirected Steiner Tree problem,
an FPT algorithm was given by Bodlaender et al. in [8].

STACS 2019

38:10 How to Secure Matchings Against Edge Failures

(a) A digraph D such that U(D) is balanced,
but U(F (D)) is not.

...
...

(b) Digraphs D such that U(D) has treewidth
one, but the treewidth of U(F (D)) is un-
bounded.

Figure 2 Examples showing that flattening does not preserve balancedness or bounded treewidth.

By “flattening” the input digraph, we can transform an instance I = (D) of Source
Cover into a Set Cover instance as follows. Let F (D) = (V +(D) ∪ V −(D), A′) be an
acyclic digraph, where A′ is given by

A′ := {st | s ∈ V +(D), t ∈ V −(D), t is reachable from s in D}.

Then U(F (D)) is the incidence graph of a Set Cover instance A on V −(F (D)), such that
the feasible solutions of I and A are in 1-to-1 correspondence.

As a first consequence of Theorem 8, Proposition 9, and this “flattening” we may use
the classic Greedy-Algorithm for Set Cover obtain a simple log2 n-factor approximation
algorithm for Robust k-Matching Augmentation.

I Corollary 10. Robust k-Matching Augmentation admits a polynomial-time log2 n-
factor approximation algorithm, where n is the number of vertices of the input graph.

However, as illustrated in Figure 2, some useful properties of the input digraph may not
be preserved by the “flattening” operation. In particular, if U(D) has treewidth at most r,
then the treewidth of U(F (D)) cannot be bounded by a constant in general. Furthermore,
the graph U(F (D)) is not necessarily balanced1 (or planar) if U(D) is. Therefore, we cannot
take advantage of polynomial-time algorithms for Set Cover on balanced incidence graphs
or incidence graphs of bounded treewidth. Motivated by the example in Figure 2b we leave
as an open question, whether Source Cover on balanced graphs admits a polynomial-time
algorithm. By Theorem 8, the existence of such an algorithm implies a polynomial-time
algorithm for Robust Matching Augmentation on balanced graphs.

4.1 Source Cover on Chordal Bipartite Graphs

We show that in contrast to the treewidth and balancedness, chordal-bipartiteness is indeed
preserved by the flattening operation introduced above. From this we obtain the following
result.

I Theorem 11. Source Cover on chordal-bipartite graphs admits a polynomial-time
algorithm.

1 A graph is called balanced if the length of each induced cycle is divisible by four.

F. Hommelsheim, M. Mühlenthaler, and O. Schaudt 38:11

To prove the theorem, we show that if U(D) is chordal-bipartite, so is U(F (D)). The
graph U(F (D)) is the incidence graph of a Set Cover instance, whose optimal solutions
correspond canonically to the optimal solutions of the Source Cover instance (D). It is
known that Set Cover on chordal-bipartite incidence graphs (and more generally, balanced
graphs) admits a polynomial-time algorithm: It is possible to use LP-methods and the fact
that covering polyhedra of balanced matrices are integral, see [26, pp. 562-573]. Alternatively
we can use a combinatorial algorithm by Hoffman et al. [24]. By combining Theorem 8,
Proposition 9, and Theorem 11 we obtain the following result.

I Corollary 12. Robust k-Matching Augmentation admits a polynomial-time algorithm
on chordal-bipartite graphs.

4.2 Source Cover on Graphs of Bounded Treewidth
We provide a fixed-parameter algorithm for Node Weighted Directed Steiner Tree on
acyclic digraphs that is single-exponential in the treewidth of the underlying undirected graph
and linear in the instance size. Since Source Cover is a restriction of Node Weighted
Directed Steiner Tree on acyclic graphs, this implies a polynomial-time algorithm for
Source Cover parameterized by the treewidth of the underlying undirected graph. Let us
first recall some definitions related to Steiner problems and tree decompositions.

Node Weighted Directed Steiner Tree
instance: Acyclic digraph D = (V,A), costs c ∈ RV

≥0, terminals T ⊆ V , root r ∈ V .
task: Find a minimum-cost subset F ⊆ V , such that r is connected to each terminal
in (F,E(F)).

Arc Weighted Directed Steiner Tree is the corresponding problem, where the
costs are on the arcs of the graph. A tree decomposition of a graph G = (V,E) is a tree T as
follows. Each node x ∈ V (T) of T has a bag Bx ⊆ V of vertices of G such that the following
properties hold.⋃

x∈V (T) Bx = V .
If Bx and By both contain a vertex v ∈ V , then the bags of all nodes of T in the path
between x and y contain v as well. Equivalently, the tree nodes containing vertex v form
a connected subtree of T .
For each edge vw in G there is some bag that contains both v and w. That is, for vertices
adjacent in G, the corresponding subtrees have a node in common.

The width of a tree decomposition is the size of its largest bag minus one. The treewidth
tw(G) of G is the minimum width among all possible tree decompositions of G.

To solve the Node Weighted Directed Steiner Tree on acyclic digraphs, we use
a simple dynamic-programming algorithm over the tree decomposition of the underlying
undirected graph of the input digraph D with n vertices.

I Theorem 13. Node Weighted Directed Steiner Tree on acyclic digraphs can be
solved in time O(5w · w · n) if a tree decomposition of U(D) of width w is provided.

Note that an optimal tree-decomposition of a graph G can be computed in time
O(2O(tw(G)3) · n) by Bodlaender’s famous theorem [7]. Our algorithm intuitively works
in the following way and is similar to the dynamic programming algorithm for Dominating
Set (see, e.g., [13, Section 7.3.2]). We interpret a solution to Node Weighted Directed
Steiner Tree as follows: each vertex of D may be active or not. Each active vertex needs
a predecessor that is also active, unless it is the root. The cost to activate a vertex is given

STACS 2019

38:12 How to Secure Matchings Against Edge Failures

by the cost function of the Node Weighted Directed Steiner Tree instance. Starting
with all terminals active, it is easy to see that Node Weighted Directed Steiner Tree
on acyclic graphs is equivalent to the problem of finding a minimum cost active vertex set
satisfying the above conditions. We compute an optimal solution in a bottom-up fashion
using a so-called nice tree decomposition of the input graph.

By a simple reduction, we also obtain an FPT-time algorithm for Arc Weighted
Directed Steiner Tree on acyclic digraphs. We just subdivide each arc and assign the
cost of the arc to the corresponding new vertex. Each old vertex receives cost zero. This
transformation does not increase the treewidth.

Furthermore, we can reduce Source Cover to Node Weighted Directed Steiner
Tree by adding a new vertex r and connecting r to each source by an arc. The sources have
cost one, while all other vertices have cost zero. The root vertex is r and the set of terminals
is the set of sinks. Adding a single new vertex increases the treewidth by at most one. As a
consequence of this reduction and Theorem 13, we obtain the following result.

I Corollary 14. Source Cover can be solved in time O(5w · w · n) if a tree-decomposition
of U(D) of width w is provided.

By combining Theorem 8, Proposition 9, Corollary 14, and the observation that treewidth
is monotone under taking minors, we have:

I Corollary 15. Robust k-Matching Augmentation parameterized by the treewidth of
the input graph is FPT.

5 Weighted Robust Matching Augmentation

We first demonstrate that the edge-weighted version of Robust Matching Augmentation
is substantially more involved than the unit-cost version. To this end, we show that the
approximability of Weighted Robust Matching Augmentation essentially corresponds
to the approximability of Directed Steiner Forest. The latter problem is defined as
follows:

Directed Steiner Forest
instance: Directed graph G = (V,A), k terminal pairs (si, ti)1≤i≤k, costs w ∈ ZA

≥0.
task: Find a minimum-cost subgraph G′ ⊆ G such that for each 1 ≤ i ≤ k, the vertex
si is connected to ti in G′.

I Proposition 16. Let n′ be the number of vertices of a Weighted Robust Matching
Augmentation instance and n and k be the number of vertices and terminal pairs of a
Directed Steiner Forest instance, respectively.

A polynomial-time f(n′)-factor approximation algorithm for Weighted Robust Match-
ing Augmentation implies a polynomial-time f(n + k)-factor approximation algorithm
for Directed Steiner Forest. Furthermore, a polynomial-time f(n)-factor (resp., f(k)-
factor) approximation algorithm for Directed Steiner Forest implies a polynomial-time
(f(n) + 1)-factor (resp., (f(k) + 1)-factor) approximation algorithm for Weighted Robust
Matching Augmentation.

On the one hand, Proposition 16 implies an (n1/2+ε + 1)-factor approximation algorithm
for Weighted Robust Matching Augmentation for every ε > 0, due to the results
in [10, 18]. On the other hand, an algorithm achieving a guarantee of n1/3 or better
for Weighted Robust Matching Augmentation would imply a better approximation

F. Hommelsheim, M. Mühlenthaler, and O. Schaudt 38:13

Figure 3 The graphs K∗
1,3 and P ∗

3 , each with its unique perfect matching.

algorithm for Directed Steiner Forest, as the number k of distinct terminal pairs is at
most O(n2) and the current best approximation factor for Directed Steiner Forest in
terms of n is n2/3+ε due to a result of Berman et al. [6]. Additionally, by a result of Halperin
and Krauthgamer [23], Proposition 16 implies the following lower bound.

I Corollary 17. For every ε > 0 Weighted Robust Matching Augmentation does not
admit a log2−ε(n)-factor approximation algorithm unless NP ⊆ ZTIME(npolylog(n)).

Given this negative result we proceed to identify structural features that lead to polynomial-
time algorithms for Weighted Robust Matching Augmentation. The main result
of this section is a classification of the complexity of the problem Weighted Robust
Matching Augmentation on minor-closed graph classes. In particular we show that the
problem is NP-hard on a minor-closed class G of graphs if and only if G contains at least
one of the two graph classes K∗ and P∗, which are defined as follows. Let K1,r be the star
graph with r leaves and let Pr be the path on r vertices. For any graph H let H∗ be the
graph obtained by attaching a leaf to each vertex of H. Then K∗ := {K∗1,r | r ∈ N} and
P∗ := {P ∗r | r ∈ N}. Note that each graph in K∗ and P∗ has a unique perfect matching. See
Figure 3 for an illustration of the graphs K∗1,3 and P ∗3 .

I Lemma 18. Weighted Robust Matching Augmentation is NP-hard on each of the
classes K∗ and P∗.

We complement Lemma 18 by showing that Weighted Robust Matching Augmen-
tation on a class G of graphs admits a polynomial-time algorithm if G contains neither K∗
nor P∗.

I Theorem 19. Let G be a class of connected graphs that is closed under connected minors.
Then Weighted Robust Matching Augmentation on G admits a polynomial-time
algorithm if and only if there is some r ∈ N such that G contains neither the graph K∗1,r nor
P ∗r . The only if part holds under the assumption that P 6= NP.

In order to prove Lemma 18, we first show that Weighted Robust Matching Aug-
mentation is NP-hard for graphs consisting only of a perfect matching by a reduction from
Robust Matching Augmentation. The hardness of Weighted Robust Matching
Augmentation on K∗ and P∗ follows from this result.

Before we give the proof of Theorem 19, we need the following key lemma. The polynomial-
time algorithm described in the proof of the lemma uses the fact that Directed Steiner
Forest can be solved in polynomial time if the number of terminal pairs is constant [17].

I Lemma 20. Let r ∈ N be constant and let T be a class of perfectly matchable trees, each
with at most r leaves. Then Weighted Robust Matching Augmentation on T admits
a polynomial-time algorithm.

STACS 2019

38:14 How to Secure Matchings Against Edge Failures

We remark that the running time of the algorithm given in Lemma 20 is slicewise
polynomial in the number of leaves of the input graph. We can now state the proof of our
main result.

Proof of Theorem 19. According to Lemma 18, Weighted Robust Matching Augmen-
tation is NP-hard if G completely contains the class K = {K∗1,r | r ∈ N} or the class
P = {P ∗r | r ∈ N}. Assuming P 6= NP, this proves the only if statement of the theorem.

To see the if statement, let us consider r ∈ N such that G does not contain K∗1,r or P ∗r .
First we will reduce the problem to the case when G contains only trees. For this, let T be
the class of all trees in G that admit a perfect matching.

B Claim 1. There is a polynomial time reduction of Weighted Robust Matching
Augmentation on G to Weighted Robust Matching Augmentation on T .

The key idea for the proof is to define an equivalent instance on an arbitrary tree of G
on an adapted cost function. We may hence restrict our attention to Weighted Robust
Matching Augmentation on the class T . As the next claim shows, the relevant trees
contained in T have a bounded number of leaves.

B Claim 2. There is some number f(r) depending only on r such that every tree in T has
at most f(r) many leaves.

According to the above claims, there is a polynomial reduction of Weighted Robust
Matching Augmentation on G to Weighted Robust Matching Augmentation on a
class of trees with a bounded number of leaves. Hence, Lemma 20 implies that Weighted
Robust Matching Augmentation on G can be solved in polynomial time. J

6 Conclusion

We presented algorithms for the task of securing matchings of a graph against the failure
of a single edge. For this, we established a connection to the classical strong connectivity
augmentation problem. Not surprisingly, the unit weight case is more accessible, and we were
able to give a log2 n-factor approximation algorithm, as well as polynomial-time algorithms for
graphs of bounded treewidth and chordal-bipartite graphs. For general non-negative weights,
we showed a close relation to Directed Steiner Forest in terms of approximability
and gave a dichotomy theorem characterizing minor-closed graph classes which allow a
polynomial-time algorithm.

In our opinion, the case of a single edge failure is well understood now and so one might
go for the case of a constant number of edge failures next. Let us remark that if the number
of edge failures is a part of the input, even checking feasibility is NP-hard [14, 25].

References
1 David Adjiashvili. Beating Approximation Factor Two for Weighted Tree Augmentation with

Bounded Costs. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 2384–2399. Society for Industrial and Applied Mathematics, 2017.
doi:10.1137/1.9781611974782.157.

2 David Adjiashvili, Viktor Bindewald, and Dennis Michaels. Robust Assignments via Ear
Decompositions and Randomized Rounding. In 43rd International Colloquium on Automata,
Languages, and Programming, volume 55, pages 71:1–71:14, Dagstuhl, Germany, 2016. doi:
10.4230/LIPIcs.ICALP.2016.71.

http://dx.doi.org/10.1137/1.9781611974782.157
http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.71
http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.71

F. Hommelsheim, M. Mühlenthaler, and O. Schaudt 38:15

3 David Adjiashvili, Sebastian Stiller, and Rico Zenklusen. Bulk-robust combinatorial optimiza-
tion. Mathematical Programming, 149(1-2):361–390, 2015. doi:10.1007/s10107-014-0760-6.

4 David Adjiashvili and Rico Zenklusen. An s− t connection problem with adaptability. Discrete
Applied Mathematics, 159(8):695–705, 2011. doi:10.1016/j.dam.2010.12.018.

5 Kristóf Bérczi, Satoru Iwata, Jun Kato, and Yutaro Yamaguchi. Making Bipartite Graphs
DM-Irreducible. SIAM Journal on Discrete Mathematics, 32:560–590, 2018. doi:10.1137/
16M1106717.

6 Piotr Berman, Arnab Bhattacharyya, Konstantin Makarychev, Sofya Raskhodnikova, and
Grigory Yaroslavtsev. Approximation algorithms for spanner problems and Directed Steiner
Forest. Information and Computation, 222:93–107, 2013. 38th International Colloquium on
Automata, Languages and Programming (ICALP 2011). doi:10.1016/j.ic.2012.10.007.

7 Hans L. Bodlaender. A Linear-Time Algorithm for Finding Tree-Decompositions of
Small Treewidth. SIAM Journal on Computing, 25(6):1305–1317, 1996. doi:10.1137/
S0097539793251219.

8 Hans L. Bodlaender, Marek Cygan, Stefan Kratsch, and Jesper Nederlof. Deterministic
single exponential time algorithms for connectivity problems parameterized by treewidth.
Information and Computation, 243:86–111, 2015. doi:10.1016/j.ic.2014.12.008.

9 Robert C. Brigham, Frank Harary, Elizabeth C. Violin, and Jay Yellen. Perfect-matching
Preclusion. Congressus Numerantium, 174:185–192, 2005.

10 Chandra Chekuri, Guy Even, Anupam Gupta, and Danny Segev. Set Connectivity Problems
in Undirected Graphs and the Directed Steiner Network Problem. In Proceedings of the
Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 532–541. Society
for Industrial and Applied Mathematics, 2008.

11 Eddie Cheng and László Lipták. Matching preclusion for some interconnection networks.
Networks, 50(2):173–180, 2007. doi:10.1002/net.20187.

12 Joseph Cheriyan, András Sebő, and Zoltán Szigeti. Improving on the 1.5-Approximation of
a Smallest 2-Edge Connected Spanning Subgraph. SIAM Journal on Discrete Mathematics,
14(2):170–180, 2001. doi:10.1137/S0895480199362071.

13 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.

14 Mitre C. Dourado, Dirk Meierling, Lucia D. Penso, Dieter Rautenbach, Fabio Protti, and
Aline Ribeiro de Almeida. Robust recoverable perfect matchings. Networks, 66(3):210–213,
2015. doi:10.1002/net.21624.

15 Andrew L Dulmage and Nathan S Mendelsohn. Coverings of bipartite graphs. Canadian
Journal of Mathematics, 10(4):516–534, 1958.

16 Kapali P. Eswaran and Robert E. Tarjan. Augmentation problems. SIAM Journal on
Computing, 5(4):653–665, 1976. doi:10.1137/0205044.

17 Jon Feldman and Matthias Ruhl. The Directed Steiner Network Problem is Tractable
for a Constant Number of Terminals. SIAM Journal on Computing, 36(2):543–561, 2006.
doi:10.1137/S0097539704441241.

18 Moran Feldman, Guy Kortsarz, and Zeev Nutov. Improved Approximating Algorithms for
Directed Steiner Forest. In Proceedings of the Twentieth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 922–931. Society for Industrial and Applied Mathematics, 2009.

19 Samuel Fiorini, Martin Groß, Jochen Könemann, and Laura Sanità. Approximating
Weighted Tree Augmentation via Chvátal-Gomory Cuts. In Proceedings of the Twenty-
Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 817–831, 2018. doi:
10.1137/1.9781611975031.53.

20 András Frank and Tibor Jordán. Graph Connectivity Augmentation. In Handbook of Graph
Theory, Combinatorial Optimization, and Algorithms, chapter 14, pages 313–346. CRC Press,
2015.

21 Greg N Frederickson and Joseph Ja’Ja’. Approximation Algorithms for Several Graph Augmen-
tation Problems. SIAM Journal on Computing, 10(2):270–283, 1981. doi:10.1137/0210019.

STACS 2019

http://dx.doi.org/10.1007/s10107-014-0760-6
http://dx.doi.org/10.1016/j.dam.2010.12.018
http://dx.doi.org/10.1137/16M1106717
http://dx.doi.org/10.1137/16M1106717
http://dx.doi.org/10.1016/j.ic.2012.10.007
http://dx.doi.org/10.1137/S0097539793251219
http://dx.doi.org/10.1137/S0097539793251219
http://dx.doi.org/10.1016/j.ic.2014.12.008
http://dx.doi.org/10.1002/net.20187
http://dx.doi.org/10.1137/S0895480199362071
http://dx.doi.org/10.1002/net.21624
http://dx.doi.org/10.1137/0205044
http://dx.doi.org/10.1137/S0097539704441241
http://dx.doi.org/10.1137/1.9781611975031.53
http://dx.doi.org/10.1137/1.9781611975031.53
http://dx.doi.org/10.1137/0210019

38:16 How to Secure Matchings Against Edge Failures

22 Harold N. Gabow, Michel X. Goemans, Éva Tardos, and David P. Williamson. Approximating
the smallest k-edge connected spanning subgraph by LP-rounding. Networks, 53(4):345–357,
2009. doi:10.1002/net.20289.

23 Eran Halperin and Robert Krauthgamer. Polylogarithmic inapproximability. In Proceedings
of the 35th Annual ACM Symposium on Theory of Computing, pages 585–594, 2003. doi:
10.1145/780542.780628.

24 Alan J. Hoffman, Anthonius W. J. Kolen, and Michel Sakarovitch. Totally-Balanced and
Greedy Matrices. SIAM Journal on Algebraic Discrete Methods, 6(4):721–730, 1985. doi:
10.1137/0606070.

25 Mathieu Lacroix, A. Ridha Mahjoub, Sébastien Martin, and Christophe Picouleau. On the
NP-completeness of the perfect matching free subgraph problem. Theoretical Computer Science,
423:25–29, 2012. doi:10.1016/j.tcs.2011.12.065.

26 Laurence A. Wolsey and George L. Nemhauser. Integer and Combinatorial Optimization.
Wiley Series in Discrete Mathematics and Optimization. Wiley, 1999.

http://dx.doi.org/10.1002/net.20289
http://dx.doi.org/10.1145/780542.780628
http://dx.doi.org/10.1145/780542.780628
http://dx.doi.org/10.1137/0606070
http://dx.doi.org/10.1137/0606070
http://dx.doi.org/10.1016/j.tcs.2011.12.065

A Deterministic Polynomial Kernel for Odd Cycle
Transversal and Vertex Multiway Cut in Planar
Graphs
Bart M. P. Jansen
Eindhoven University of Technology
b.m.p.jansen@tue.nl

Marcin Pilipczuk
Institute of Informatics, University of Warsaw
malcin@mimuw.edu.pl

Erik Jan van Leeuwen
Department of Information & Computing Sciences, Utrecht University
e.j.vanleeuwen@uu.nl

Abstract
We show that Odd Cycle Transversal and Vertex Multiway Cut admit deterministic polyno-
mial kernels when restricted to planar graphs and parameterized by the solution size. This answers
a question of Saurabh. On the way to these results, we provide an efficient sparsification routine in
the flavor of the sparsification routine used for the Steiner Tree problem in planar graphs (FOCS
2014). It differs from the previous work because it preserves the existence of low-cost subgraphs
that are not necessarily Steiner trees in the original plane graph, but structures that turn into
(supergraphs of) Steiner trees after adding all edges between pairs of vertices that lie on a common
face. We also show connections between Vertex Multiway Cut and the Vertex Planarization
problem, where the existence of a polynomial kernel remains an important open problem.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis; Theory of
computation → Parameterized complexity and exact algorithms

Keywords and phrases planar graphs, kernelization, odd cycle transversal, multiway cut

Digital Object Identifier 10.4230/LIPIcs.STACS.2019.39

Related Version A full version of the paper is available at [18], http://arxiv.org/abs/1810.01136.

Funding Bart M. P. Jansen: Supported by NWO Gravitation grant “Networks”.
Marcin Pilipczuk: Supported by the “Recent trends in kernelization: theory and experimental
evaluation” project, carried out within the Homing programme of the Foundation for Polish Science
co-financed by the European Union under the European Regional Development Fund.

1 Introduction

Kernelization provides a rigorous framework within the paradigm of parameterized complexity
to analyze preprocessing routines for various combinatorial problems. A kernel of size g for
a parameterized problem Π and a computable function g is a polynomial-time algorithm
that reduces an input instance x with parameter k of problem Π to an equivalent one with
size and parameter value bounded by g(k). Of particular importance are polynomial kernels,
where the function g is required to be a polynomial, that are interpreted as theoretical
tractability of preprocessing for the considered problem Π. Since a kernel (of any size) for
a decidable problem implies fixed-parameter tractability (FPT) of the problem at hand,
the question whether a polynomial kernel exists became a “standard” tractability question
one asks about a problem already known to be FPT, and serves as a further finer-grained
distinction criterion between FPT problems.

© Bart M.P. Jansen, Marcin Pilipczuk, and Erik Jan van Leeuwen;
licensed under Creative Commons License CC-BY

36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019).
Editors: Rolf Niedermeier and Christophe Paul; Article No. 39; pp. 39:1–39:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:b.m.p.jansen@tue.nl
mailto:malcin@mimuw.edu.pl
mailto:e.j.vanleeuwen@uu.nl
https://doi.org/10.4230/LIPIcs.STACS.2019.39
http://arxiv.org/abs/1810.01136
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

39:2 A Deterministic Polynomial Kernel for Plane OCT and MwC

In the recent years, a number of kernelization techniques emerged, including the bidimen-
sionality framework for sparse graph classes [10] and the use of representative sets for graph
separation problems [20]. On the hardness side, a lower bound framework against polynomial
kernels has been developed and successfully applied to a multitude of problems [1, 5, 7, 11].
For more on kernelization, we refer to the survey [22] for background and to the appropriate
chapters of the textbook [3] for basic definitions and examples.

For this work, of particular importance are polynomial kernels for graph separation
problems. The framework for such kernels developed by Kratsch and Wahlström in [20, 21],
relies on the notion of representative sets in linear matroids, especially in gammoids. Among
other results, the framework provided a polynomial kernel for Odd Cycle Transversal
and for Multiway Cut with a constant number of terminals. However, all kernels for graph
separation problems based on representative sets are randomized, due to the randomized
nature of all known polynomial-time algorithms that obtain a linear representation of a
gammoid. As a corollary, all such kernels have exponentially small probability of turning an
input yes-instance into a no-instance.

The question of deterministic polynomial kernels for the cut problems that have random-
ized kernels due to the representative sets framework remains widely open. Saket Saurabh, at
the open problem session during the Recent Advances in Parameterized Complexity school
(Dec 2017, Tel Aviv) [27], asked whether a deterministic polynomial kernel for Odd Cycle
Transversal exists when the input graph is planar. In this paper, we answer this question
affirmatively, and prove an analogous result for the Multiway Cut problem.

I Theorem 1.1. Odd Cycle Transversal and Vertex Multiway Cut, when restricted
to planar graphs and parameterized by the solution size, admit deterministic polynomial
kernels.

Recall that the Odd Cycle Transversal problem, given a graph G and an integer k, asks
for a set X ⊆ V (G) of size at most k such that G \X is bipartite. For the Multiway Cut
problem, we consider the Vertex Multiway Cut variant where, given a graph G, a set of
terminals T ⊆ V (G), and an integer k, we ask for a set X ⊆ V (G) \ T of size at most k such
that every connected component of G \X contains at most one terminal. In other words, we
focus on the vertex-deletion variant of Multiway Cut with undeletable terminals. In both
cases, the allowed deletion budget, k, is our parameter. (A deterministic polynomial kernel
for Edge Multiway Cut in planar graphs is known [25, Theorem 1.4].)

Note that in general graphs, Vertex Multiway Cut admits a randomized polynomial
kernel with O(k|T |+1) terminals [20], and whether one can remove the dependency on |T |
from the exponent is a major open question in the area. Theorem 1.1 answers this question
affirmatively in the special case of planar graphs.

Our motivation stems not only from the aforementioned question of Saurabh [27], but
also from a second, more challenging question of a polynomial kernel for the Vertex
Planarization problem. Here, given a graph G and an integer k, one asks for a set
X ⊆ V (G) of size at most k such that G \ X is planar. For this problem, an involved
2O(k log k) · n-time fixed-parameter algorithm is known [17], culminating a longer line of
research [17, 19, 23]. The question of a polynomial kernel for the problem has not only been
posed by Saurabh during the same open problem session [27], but also comes out naturally
in another line of research concerning vertex-deletion problems to minor-closed graph classes.

Consider a minor-closed graph class G. By the celebrated Robertson-Seymour theorem,
the list of minimal forbidden minors F of G is finite, i.e., there is a finite set F of graphs
such that a graph G belongs to G if and only if G does not contain any graph from F as
a minor. The F-Deletion problem, given a graph G and an integer k, asks to find a set

B.M.P. Jansen, Ma. Pilipczuk, and E. J. van Leeuwen 39:3

Figure 1 When all terminals (blue squares) lie on the infinite face, a solution to Vertex
Multiway Cut (black circles) is a Steiner forest (red dashed connections) in the overlay graph.

X ⊆ V (G) of size at most k such that G \X has no minor belonging to F , i.e., G \X ∈ G. If
F contains a planar graph or, equivalently, G has bounded treewidth, then the parameterized
and kernelization complexity of the F-Deletion problem is well understood [9]. However,
our knowledge is very partial in the other case, when G contains all planar graphs. The
understanding of this general problem has been laid out as one of the future research
directions in a monograph of Downey and Fellows [6]. The simplest not fully understood case
is when G is exactly the set of planar graphs, that is, F = {K3,3,K5}, and the F-Deletion
becomes the Vertex Planarization problem. The question of a polynomial kernel or a
2O(k) · nO(1)-time FPT algorithm for Vertex Planarization remains open [13, 27].

In Section 6, we observe that there is a simple polynomial-time reduction from Planar
Vertex Multiway Cut to Vertex Planarization that keeps the parameter k unchanged.
If Vertex Planarization would admit a polynomial kernel, then our reduction would
transfer the polynomial kernel back to Planar Vertex Multiway Cut. In the presence
of Theorem 1.1, such an implication is trivial, but the reduction itself serves as a motivation:
a polynomial kernel for Planar Vertex Multiway Cut should be easier than for Ver-
tex Planarization, and one should begin with the first before proceeding to the latter.
Furthermore, we believe the techniques developed in this work can be of use for the more
general Vertex Planarization case.

Techniques On the technical side, our starting point is the toolbox of [25] that provides
a polynomial kernel for Steiner Tree in planar graphs, parameterized by the number of
edges of the solution. The main technical result of [25] is a sparsification routine that, given
a connected plane graph G with infinite face surrounded by a simple cycle ∂G, provides a
subgraph of G of size polynomial in the length of ∂G that, for every A ⊆ V (∂G), preserves
an optimal Steiner tree connecting A.

Both Odd Cycle Transversal and Vertex Multiway Cut in a plane graph G

translate into Steiner forest-like questions in the overlay graph L(G) of G: a supergraph of G
that has a vertex vf for every face of G, adjacent to every vertex of G incident with f . To see
this, consider a special case of Planar Vertex Multiway Cut where all terminals lie on
the infinite face of the input embedded graph. Then, an optimal solution is a Steiner forest
between some tuples of vertices on the outer face lying between the terminals, cf. Figure 1.
Following [25], this suggest the following approach to kernelization of vertex-deletion cut
problems in planar graphs:
1. By problem-specific reductions, reduce to the case of a graph of bounded radial diameter.
2. Using the diameter assumption, find a tree in the overlay graph that has size bounded

polynomially in the solution size, and that spans all “important” objects in the graph
(e.g., neighbors of the terminals in the case of Multiway Cut or odd faces in the case
of Odd Cycle Transversal).

STACS 2019

39:4 A Deterministic Polynomial Kernel for Plane OCT and MwC

3. Cut the graph open along the tree. Using the Steiner forest-like structure of the problem
at hand, argue that an optimal solution becomes an optimal Steiner forest for some choice
of tuples of terminals on the outer face of the cut-open graph.

4. Sparsify the cut-open graph with a generic sparsification routine that preserves optimal
Steiner forests, glue the resulting graph back, and return it as a kernel.

However, contrary to the Steiner tree problem [25], these Steiner forest-like questions
optimize a different cost function than merely number of edges, namely the number of vertices
of G, with the “face” vertices vf ∈ V (L(G)) \ V (G) being for free. This cost function is
closely related to (half of) the number of edges in case of paths and trees with constant
number of leaves, but may diverge significantly in case of trees with high-degree vertices.

For this reason, we need an analog of the main technical sparsification routine of [25]
suited for our cost function. To this end, we re-use most of the intermediate results of [25],
changing significantly only the final divide&conquer argument. We provide a statement and
an overview of the proof of such routine in Section 3. A full proof can be found on arXiv [18].

The application of the obtained sparsification routine to the case of Odd Cycle
Transversal, presented in Section 4, follows the phrasing of the problem as a T -join-
like problem in the overlay graph due to Fiorini et al [8]. For the sake of reducing the number
of odd faces, we adapt the arguments of Suchý [28] for Steiner tree.

The arguments for Vertex Multiway Cut are somewhat more involved and sketched
in Section 5. A full version can be found on arXiv [18]. Here, we first use known LP-based
rules [4, 12, 14, 26] to reduce the number of terminals and neighbors of terminals to O(k)
and then use an argument based on outerplanarity layers to reduce the diameter.

2 Preliminaries

A finite undirected graph G consists of a vertex set V (G) and edge set E(G) ⊆
(

V (G)
2
)
. We

denote the open neighborhood of a vertex v in G by NG(v). For a vertex set S ⊆ V (G) we
define its open neighborhood as NG(S) :=

⋃
v∈S NG(v) \ S. For all standard but undefined

here terms related to planar graph we refer to [25].
For vertex subsets X,Y of a graph G, we define an (X,Y)-cut as a vertex set Z ⊆

V (G) \ (X ∪ Y) such that no connected component of G \ Z contains both a vertex of X
and a vertex of Y . An (X,Y) cut Z is minimal if no proper subset of Z is an (X,Y)-cut,
and minimum if it has minimum possible size.

2.1 Planar graphs
In a connected embedded planar (i.e. plane) graph G, the boundary walk of a face f is the
unique closed walk in G obtained by going along the face in counter-clockwise direction.
Note that a single vertex can appear multiple times on the boundary walk of f and an edge
can appear twice if it is a bridge. We denote the number of edges of this walk by |f |; note
that bridges are counted twice in this definition. The parity of a face f is the parity of |f |.
Then a face is odd (even) if its parity is odd (even). The boundary walk of the outer face of
G is called the outer face walk and denoted ∂G.

We define the radial distance in plane graphs, based on a measure that allows to hop
between vertices incident on a common face in a single step. Formally speaking, a radial path
between vertices p and q in a plane graph G is a sequence of vertices (p = v0, v1, . . . , v` = q)
such that for each i ∈ [`], the vertices vi−1 and vi are incident on a common face. The
length of the radial path equals `, so that a trivial radial path from v to itself has length 0.
The radial distance in plane graph G between p and q, denoted dRG(u, v), is defined as the
minimum length of a radial pq-path.

B.M.P. Jansen, Ma. Pilipczuk, and E. J. van Leeuwen 39:5

For a plane graph G, let F (G) denote the set of faces of G. For a plane (multi)graph G,
an overlay graph G′ of G is a graph with vertex set V (G)∪F (G) obtained from G as follows.
For each face f ∈ F (G), draw a vertex with identity f in the interior of f . For each connected
component C of edges incident on the face f , traverse the boundary walk of C starting at an
arbitrary vertex. Every time a vertex v is visited by the boundary walk, draw a new edge
between v and the vertex representing f , without crossing previously drawn edges. Doing
this independently for all faces of G yields an overlay graph G′. Observe that an overlay
graph may have multiple edges between some f ∈ F (G) and v ∈ V (G), which occurs for
example when v is incident on a bridge that lies on f . The resulting plane multigraph G′
is in general not unique, due to different homotopies for how edge bundles may be routed
around different connected components inside a face. For our purposes, these distinctions
are never important. We therefore write L(G) to denote an arbitrary fixed overlay graph
of G. Observe that F (G) forms an independent set in L(G).

Apart from the overlay graph, we will also use the related notion of radial graph (also
known as face-vertex incidence graph). A radial graph of a connected plane graph G is
a plane multigraph R(G) obtained from L(G) by removing all edges with both endpoints
in V (G). Hence a radial graph of G is bipartite with vertex set V (G) ∪ F (G), where vertices
are connected to the representations of their incident faces. From these definitions it follows
that L(G) is the union of G and R(G), which explains the terminology.

We need also the following simple but useful lemma.

I Lemma 2.1. Let G be a connected graph, let T ⊆ V (G) and assume that for each vertex
v ∈ V (G), there is a terminal t ∈ T that can reach v by a path of at most K edges. Then G
contains a Steiner tree of at most (2K + 1)(|T | − 1) edges on terminal set T , which can be
computed in linear time.

Proof. Observe that there exists a spanning forest in G where each tree is rooted at a vertex
of T , and each tree has depth at most K. Such a spanning forest can be computed in linear
time by a breadth-first search in G, initializing the BFS-queue to contain all vertices of T
with a distance label of 0. Consider the graph H obtained from G by contracting each tree
into the terminal forming its root. Since G is connected, H is connected as well. An edge t1t2
between two terminals in H implies that in G there is a vertex in the tree of t1 adjacent to a
vertex of the tree of t2. So for each edge in H, there is a path between the corresponding
terminals in G consisting of at most 2K + 1 edges.

Compute an arbitrary spanning tree of the graph H, which has |T | − 1 edges since H
has |T | vertices. As each edge of the tree expands to a path in G between the corresponding
terminals of length at most 2K + 1, it follows that G has a connected subgraph F of at
most (2K + 1)(|T | − 1) edges that spans all terminals T . To eliminate potential cycles in F ,
take a spanning subtree of F as the desired Steiner tree. J

I Lemma 2.2 ([16, Lemma 1]). Let G be a planar bipartite graph with bipartition V (G) =
X] Y for X 6= ∅. If all distinct u, v ∈ Y satisfy NG(u) 6⊆ NG(v), then |Y | ≤ 5|X|.

3 Sparsification

A plane partitioned graph is an undirected multigraph G, together with a fixed embedding
in the plane and a fixed partition V (G) = A(G)] B(G) where A(G) is an independent
set. Consider a subgraph H of a plane partitioned graph G. The cost of H is defined as
cost(H) := |V (H) ∩B(G)|, that is, we pay for each vertex of H in the part B(G). We say
that H connects a subset A ⊆ V (G) if A ⊆ V (H) and A is contained in a single connected
component of H.

STACS 2019

39:6 A Deterministic Polynomial Kernel for Plane OCT and MwC

Our main sparsification routine is the following.

I Theorem 3.1. Given a connected plane partitioned graph G, one can in time |∂G|O(1) ·
O(|G|) find a subgraph Ĝ in G, with the following properties:
1. Ĝ contains all edges and vertices of ∂G,
2. Ĝ contains O(|∂G|212) edges,
3. for every set A ⊆ V (∂G) there exists a subgraph H of Ĝ that connects A and has minimum

possible cost among all subgraphs of G that connect A.

In the subsequent sections, given a connected plane graph G, we will apply Theorem 3.1
to a graph G′ that is either the overlay graph of G without the vertex corresponding to the
outer face, or the radial graph of G. In either case, A(G′) = V (G′) \ V (G) is the set of face
vertices and B(G′) = V (G), i.e., we pay for each “real” vertex, not a face one. If the studied
vertex-deletion graph separation problem in G turns into some Steiner problem in G′, then
we may hope to apply the sparsification routine of Theorem 3.1.

After this brief explanation of the motivation of the statement of Theorem 3.1, we
proceed with an overview of its proof. We closely follow the divide&conquer approach of the
polynomial kernel for Steiner Tree in planar graphs [25].

We adopt the notation of (strictly) enclosing from [25]. For a closed curve γ on a plane,
a point p /∈ γ is strictly enclosed by γ if γ is not continuously retractable to a single point
in the plane punctured at p. A point p is enclosed by γ if it is strictly enclosed or lies on
γ. The notion of (strict) enclosure naturally extends to vertices, edges, and faces of a plane
graph G being (strictly) enclosed by γ; here a face (an edge) is strictly enclosed by γ if every
interior point of a face (every point on an edge except for the endpoints, respectively) is
strictly enclosed. We also extend this notion to (strict) enclosure by a closed walk W in a
plane graph G in a natural manner. Note that this corresponds to the natural notion of
(strict) enclosure if W is a cycle or, more generally, a closed walk without self-intersections.

We start with restricting the setting to G being bipartite and ∂G being a simple cycle.
Theorem 3.1 follows from Lemma 3.2 by simple manipulations, and its proof can be found
on arXiv [18].

I Lemma 3.2. The statement of Theorem 3.1 is true in the restricted setting with G being
a connected bipartite simple graph with ∂G being a simple cycle and A(G) being one of the
bipartite color classes (so that B(G) is an independent set as well).

We now sketch the proof of Lemma 3.2. The full proof can be found on arXiv [18].
First observe that the statement of Lemma 3.2 is well suited for a recursive divide&conquer

algorithm. As long as |∂G| is large enough, we can identify a subgraph S of G such that:
1. The number of edges of S is O(|∂G|);
2. For every set A ⊆ V (∂G) there exists a subgraph H of G that connects A, has minimum

possible cost among all subgraphs of G that connect A, and for every finite face f of
S ∪ ∂G, if Gf is the subgraph of G consisting of the edges and vertices embedded within
the closure of f , then one of the following holds:
a. |∂Gf | ≤ (1− δ)|∂G| for some universal constant δ > 0;
b. H does not contain any vertex of degree more than 2 that is strictly inside f .

Similarly as in the case of [25], we show that such a subgraph S is good for recursion.
First, we insert S into the constructed sparsifier Ĝ. Second, we recurse on Gf for every
finite face f of S ∪ ∂G that satisfies Point 2a. Third, for every other finite face f (i.e.,
one satisfying Point 2b), we insert into Ĝ a naive shortest-paths sparsifier: for every two
vertices u1, u2 ∈ V (∂Gf), we insert into Ĝ a minimum-cost path between u1 and u2 in Gf .

B.M.P. Jansen, Ma. Pilipczuk, and E. J. van Leeuwen 39:7

Property 1 together with the multiplicative progress on |∂G| in Point 2a ensure that the
final size of Ĝ is polynomial in |∂G|, with the exponent of the polynomial bound depending
on δ and the constant hidden in the big-O notation in Property 1.

The main steps of constructing S are the same as in [25]. First, we try minimum-size (i.e.,
with minimum number of edges, as opposed to minimum-cost) Steiner trees for a constant
number of terminals on ∂G. If no such trees are found, the main technical result of [25]
shows that one can identify a cycle C in G of length O(|∂G|) with the guarantee that for any
choice of A ⊆ V (∂G), there exists a minimum-size Steiner tree connecting A that does not
contain any Steiner point strictly inside C. In [25] such a cycle is used to construct a desired
subgraph S with the inside of C being a face satisfying the Steiner tree analog of Point 2b.
In the case of Lemma 3.2, we need to perform some extra work here to show that – by some
shortcutting tricks and adding some slack to the constants – one can construct such a cycle
C ′ with the guarantee that the face f inside C ′ satisfies exactly the statement of Point 2b:
that is, no “Steiner points” with regards to minimum-cost trees, not minimum-size ones.

In other words, the extra work is needed to at some point switch from “minimum-size”
subgraphs (treated by [25]) to “minimum-cost” ones (being the main focus of Lemma 3.2).
In our proof, we do it as late as possible, trying to re-use as much of the technical details
of [25] as possible. Observe that for a path H in G, the cost of H equals |E(H)|/2 up to an
additive ± 1

2 error. Similarly, for a tree H with a constant number of leaves, the cost of H
is |E(H)|/2 up to an additive error bounded by a constant. Hence, as long as we focus on
paths and trees with bounded number of leaves, the “size” and “cost” measures are roughly
equivalent. However, if a tree H in G contains a high-degree vertex v ∈ B(G), the cost of H
may be much smaller than half of the number of edges of H: a star with a center in B(G)
has cost one and arbitrary number of edges. For this reason, the final argument of the proof
of Lemma 3.2 that constructs the aforementioned cycle C ′ using the toolbox of [25] needs to
be performed with extra care (and some sacrifice on the constants, as compared to [25]).

4 Odd Cycle Transversal

To understand the Odd Cycle Transversal problem, we rely on the correspondence
between odd cycle transversals and T -joins. This correspondence was originally developed by
Hadlock [15] for the edge version of Odd Cycle Transversal on planar graphs; for the
vertex version discussed here, we build on the work of Fiorini et al. [8]. Given a graph H and
set T ⊆ V (H), a T -join in H is a set J ⊆ E(H) such that T equals the set of odd-degree
vertices in the subgraph of H induced by J . It is known that a connected graph contains a
T -join if and only if |T | is even.

I Lemma 4.1 ([8, Lemma 1.1]). Let T be the set of odd faces of a connected plane graph G.
Then C ⊆ V (G) is an odd cycle transversal of G if and only if R(G)[C ∪ F (G)] contains a
T -join, that is, each connected component of R(G)[C ∪ F (G)] contains an even number of
vertices of T .

This leads to the following problem :

Bipartite Steiner T -join Parameter: k
Input: A connected bipartite graph G, a fixed partition V (G) = A(G)]B(G), T ⊆ A(G),
and an integer k.
Question: Does there exist a set C ⊆ B(G) of size at most k such that G[C ∪A(G)]
contains a T -join, that is, each connected component of G[C ∪A(G)] contains an even
number of vertices of T?

STACS 2019

39:8 A Deterministic Polynomial Kernel for Plane OCT and MwC

In particular, we are interested in the problem when G is a plane graph, which we call
Plane Bipartite Steiner T -join. We call T the set of terminals of the instance; A(G)\T
is the set of non-terminals. We call C ⊆ B(G) a solution to an instance of Bipartite
Steiner T -join if |C| ≤ k and G[C ∪A(G)] contains a T -join.

I Lemma 4.2. If Plane Bipartite Steiner T -join has a polynomial kernel, then Plane
Odd Cycle Transversal has a polynomial kernel.

Proof. By Lemma 4.1, the answer to a plane instance (G,T, k) of Odd Cycle Transversal
is equivalent to the answer of the Plane Bipartite Steiner T -join instance on the
graph R(G), with the face vertices F (G) taking the role of A, V (G) taking the role of B,
and T ⊆ F (G) being the odd faces. So if Plane Bipartite Steiner T -join has a polynomial
kernel, then an instance of Plane Odd Cycle Transversal can be compressed to size
polynomial in k by transforming it into an instance of Plane Bipartite Steiner T -join
and applying the kernel to it. Since Plane Bipartite Steiner T -join is in NP and Plane
Odd Cycle Transversal is NP-hard, by standard arguments (cf. [2]) the T -join instance
can be reduced back to an instance of the original problem of size polynomial in k, which
forms the kernel. J

Below, we will give a polynomial kernel for Plane Bipartite Steiner T -join. Combined
with Lemma 4.2, this implies a polynomial kernel for Plane Odd Cycle Transversal.

4.1 Reducing the number of terminals
Let (G,A(G),B(G), T, k) be an instance of Plane Bipartite Steiner T -join. As a first
step, we show that the graph can be reduced so that there remain at most 6k2 terminals.
To this end, we adapt the rules that Suchý [28] developed for Plane Steiner Tree
parameterized by the number of Steiner vertices of the solution tree. Each of the rules is
applied exhaustively before a next rule will be applied.

I Observation 4.3. Let C be a solution for the instance. Then each vertex of T has a
neighbor in C.

This is the analogue of [28, Lemma 2] and is immediate from the bipartiteness of G.

I Observation 4.4. If k < 0 or there is a connected component containing exactly one
terminal t ∈ T , then we can safely answer NO.

I Lemma 4.5. Let X ⊆ T be a maximal set such that NG(x) = NG(y) for all x, y ∈ X.
Remove all but 2− (|X| mod 2) vertices of X from the graph and T . The resulting instance
(G′,A(G′),B(G′), T ′, k) has a solution if and only if (G,A(G),B(G), T, k) has a solution.

Proof. Let Y ⊆ X be the set of remaining vertices of X. Observe that |X| ≡ |Y | (mod 2)
and that |Y | ≥ 1. The equivalence is now immediate. J

I Lemma 4.6. Let u, v ∈ B(G) and let L = NG(u) ∩NG(v) ∩ T with L 6= ∅. If a connected
component X of G \ (L ∪ {u, v}) exists that contains no terminals, then remove X from
the graph. The resulting instance (G′,A(G′),B(G′), T, k) has a solution if and only if
(G,A(G),B(G), T, k) has a solution.

Proof. If (G′,A(G′),B(G′), T, k) has a solution C, then C is a solution for the instance
(G,A(G),B(G), T, k), as G′ is an induced subgraph of G with the same terminal set.

B.M.P. Jansen, Ma. Pilipczuk, and E. J. van Leeuwen 39:9

Suppose that C is a minimal solution for (G,A(G),B(G), T, k). We construct a solution
for (G′,A(G′),B(G′), T, k) such that C ′ ∩X = ∅. Suppose that C ∩X 6= ∅; otherwise, let
C ′ = C. Let C ′ = (C \ X) ∪ {v}. In either case, |C ′| ≤ |C| ≤ k. We claim that C ′ is
still a solution for (G,A(G),B(G), T, k). To this end, first consider C ∪ {v}. All connected
components of G[C ∪A(G)] that neighbor v will then be unified into a single connected
component Z of G[C ∪{v}∪A(G)]. The parity of |Z ∩T | is equal to the sum (mod 2) of the
parities of |Z ′∩T | of the connected components Z ′ of G[C∪A(G)] neighboring v. Since these
parities are 0, their sum is 0, and |Z ∩ T | is even. Now consider the connected component
ZZ of G[C ′ ∪A(G)] that contains v. Clearly, ZZ ∩ T = Z ∩ T , because X ∩ T = ∅ and any
path in G[C ∪ {v} ∪A(G)] that intersects X can be re-routed through v and the vertices of
L ⊆ A(G). The claim follows, and thus the lemma as well. J

We now present the final two reduction rules. Each relies on the following operation.

I Lemma 4.7. Let v ∈ B(G). Let G′ be obtained from G by contracting all edges between
v and its neighbors in G. Let v′ be the resulting vertex, and let A(G′) and B(G′) be the
resulting color classes, where v′ ∈ A(G′). Let T ′ be obtained from T by removing NG(v) ∩ T ,
and adding v′ to T ′ if and only if |NG(v) ∩ T | ≡ 1 (mod 2).

If (G,A(G),B(G), T, k) has a solution C with v ∈ C, then (G′,A(G′),B(G′), T ′, k − 1)
has a solution;
if (G′,A(G′),B(G′), T ′, k − 1) has a solution, then (G,A(G),B(G), T, k) has a solution.

Proof. Suppose there is a solution C to (G,A(G),B(G), T, k) such that v ∈ C. Then
the vertices of T ∩ NG(v) are in the same connected component Z of G[C ∪A(G)]. Let
C ′ = C \ {v} and let Z ′ be obtained from Z by contracting all edges between v and NG(v).
Then Z ′ is a connected component of G′[C ′ ∪A(G′)]. By the construction of T ′, Z ′ contains
an even number of vertices of T ′. Moreover, |C ′| = |C| − 1 ≤ k − 1. Hence, C ′ is a solution
to (G′,A(G′),B(G′), T ′, k − 1).

Suppose there is a solution C ′ to (G′,A(G′),B(G′), T ′, k− 1). Let C = C ′ ∪ {v}. Let Z ′
be the connected component of G′[C ′ ∪A(G′)] that contains v′, and let Z be obtained from
Z ′ by adding NG[v] and removing v′. Then Z is a connected component of G[C ∪A(G)].
Moreover, by the construction of T ′, Z contains an even number of vertices of T . Finally,
|C| = |C ′|+ 1 ≤ k. Hence, C is a solution to (G,A(G),B(G), T, k). J

I Lemma 4.8. Let u, v ∈ B(G) and let L = NG(u) ∩NG(v) ∩ T with L 6= ∅. If a connected
component X of G \ (L∪ {u, v}) exists for which all terminals in X ∩ T neighbor v and there
is a solution C to the instance (G,A(G),B(G), T, k), then there is a solution that contains v.

Proof. Assume that v 6∈ C, or the lemma would already follow. Since the rule of Lemma 4.6
is inapplicable, there is a terminal in X. Moreover, no terminal in X ∩ T neighbors u,
because any such terminal would be in L and thus not in X. Since every terminal has to
have a neighbor in C, it follows that C ∩ X 6= ∅. Therefore, C ′ = (C \ X) ∪ {v} is not
larger than C. We claim that C ′ is still a solution. To this end, first consider C ∪ {v}. All
connected components of G[C ∪A(G)] that neighbor v will then be unified into a single
connected component Z of G[C ∪ {v} ∪A(G)]. In particular, Z contains X ∩ T . The parity
of |Z ∩T | is equal to the sum (mod 2) of the parities of |Z ′ ∩T | of the connected components
Z ′ of G[C ∪A(G)] that neighbor v. Since these parities are 0, their sum is 0, and |Z ∩ T | is
even. Now consider the connected component ZZ of G[C ′ ∪A(G)] that contains v. Clearly,
ZZ ∩ T = Z ∩ T , because any path in G[C ∪ {v} ∪A(G)] that intersects X can be re-routed
through v and the vertices of L. The claim follows, and thus the lemma as well. J

STACS 2019

39:10 A Deterministic Polynomial Kernel for Plane OCT and MwC

I Lemma 4.9. If there is a vertex v ∈ B(G) adjacent to more than 6k terminals and there is
a solution C to the instance (G,A(G),B(G), T, k), then there is a solution that contains v.

Proof. The proof is completely analogous to the proof of [28, Lemma 11]. If v ∈ C, then we
are done. So assume that v 6∈ C. Let B ⊆ C be the set of vertices in C adjacent to at least
two terminals in NG(v). Given b ∈ B, let x, y be any two terminals in NG(b) ∩NG(v) and
consider the region R that is enclosed by the cycle x, b, y, v and that does not contain the
outer face. If R does not contain any other terminal of NG(b) ∩NG(v), then R is called the
(internal) eye of x, b, y, v. The support of b ∈ B, denoted supp(b), is the set of vertices a ∈ B
such that a is contained inside an eye R of b, but not inside an eye of any b′ ∈ B \ {b} for
which b′ is inside R. The bound of 6k (instead of 5k) ensures that the proof of [28, Lemma
16] can be modified (straightforwardly) to yield a vertex b ∈ B(G) adjacent to more than
2 |supp(b)|+ 4 vertices of T . The further arguments then imply the existence of a twin set in
T of size at least 3, thus contradicting the exhaustive execution of the rule of Lemma 4.5. J

Lemma 4.8 and 4.9, when combined with Lemma 4.7, naturally lead to two reduction
rules. After exhaustively applying all the reduction rules in this section, each vertex of B(G)
neighbors at most 6k terminals.

I Observation 4.10. If |T | > 6k2, then we can safely answer NO.

This rule is immediate from Observation 4.3 and the fact that any solution contains at most
k vertices that are each adjacent to at most 6k terminals by Lemma 4.9.

4.2 Reducing the diameter and obtaining the kernel
We now reduce the diameter of the graph. Our arguments here are a generalization of the
arguments of Fiorini et al. [8] in their FPT-algorithm for Plane Odd Cycle Transversal.

I Lemma 4.11. Suppose there is a solution for (G,A(G),B(G), T, k). Let C be a minimal
solution. Then each vertex v ∈ C has distance at most k+ 1 in G[C ∪A(G)] to a vertex of T .

Proof. Suppose for sake of contradiction that v ∈ C has distance at least k + 1 to each
vertex of T in G[C ∪A(G)]. Since C is minimal, there are two connected components X and
Y of G[(C \ {v}) ∪A(G)] with an odd number of terminals. Let x ∈ X ∩ T and y ∈ Y ∩ T .
Consider a shortest path in G[C ∪A(G)] from x to v. This path P is fully contained in
G[V (X)∪ {v}] and has length at least k+ 1. As P connects vertices on opposite sides of the
bipartite graph, |V (P)∩C| ≥ 1+k/2. Hence, |V (X)∩C| ≥ k/2. Similarly, |V (Y)∩C| ≥ k/2.
Since X and Y are vertex disjoint, it follows that |C| ≥ 2k/2 + 1 > k, a contradiction. J

I Corollary 4.12. Suppose there is a solution for (G,A(G),B(G), T, k). Let C be a minimal
solution. Then every vertex of C ∪ T has distance at most k + 2 to T in G[C ∪A(G)].

I Lemma 4.13. We can safely answer NO, or we can compute, in polynomial time, disjoint
subgraphs G1, . . . , G` of G for some ` ≤ k such that:
1. the graphs Gi jointly contain all terminals;
2. for each i and for each vertex v ∈ V (Gi), there is a terminal t ∈ T ∩ V (Gi) that can

reach v by a path of at most k + 2 edges;
3. for any solution C for (G,A(G),B(G), T, k), C ∩ V (Gi) is a solution for (Gi,A(Gi),

B(Gi), T ∩ V (Gi), ki) for each i, where ki = |C ∩ V (Gi)|;
4. if (Gi,A(Gi),B(Gi), T ∩ V (Gi), ki) has a solution for each i for some k1, . . . , k` ≥ 0 that

sum up to at most k, then (G,A(G),B(G), T, k) has a solution.

B.M.P. Jansen, Ma. Pilipczuk, and E. J. van Leeuwen 39:11

Proof. For each terminal t ∈ T , let B(t) be the set of all vertices within distance k + 2 of t.
Let G1, . . . , G` be the connected components of G[

⋃
t∈T B(t)]. If ` > k, then G has more

than k terminals with disjoint neighborhoods in B(G), and we can safely answer NO. We
now consider the properties set forth in the lemma statement:
1. True by construction and the definition of the function B.
2. True by construction and the definition of the function B.
3. True by construction, the definition of the function B, and Corollary 4.12.
4. We take the union C of the solutions Ci of the sub-instances. Note that the subgraphs Gi

are disjoint and thus contain disjoint sets of terminals. Hence, any connected component
of G[C ∪A(G)] that contains connected components of G[Ci ∪A(G)] for multiple i, still
contains an even number of terminals.

This finishes the proof. J

Property 2 of Lemma 4.13 implies that each constructed subgraph Gi has diameter O(k ·
|T ∩ V (Gi)|), which is O(k3) using Observation 4.10. The proof of Theorem 4.14 employs an
additional argument to obtain a quadratic-size Steiner tree to cut open.

I Theorem 4.14. Plane Bipartite Steiner T -join has a kernel of size O(k425).

Proof. We first exhaustively apply the reduction rules of Subsection 4.1 until each vertex
of B(G) neighbors at most 6k terminals. The rules can clearly be executed exhaustively in
polynomial time. As per Observation 4.10, we may assume that |T | ≤ 6k2. Then we apply
Lemma 4.13 and consider each of the ` subgraphs Gi separately. Let Ti = T ∩ V (Gi); note
that |Ti| ≤ 6k2. Moreover, we can assume that |Ti| is even, or we can safely answer NO.

We construct a small set Ai ⊆ V (Gi) such that G[Ai] is connected and contains Ti. Start
by adding Ti to Ai. Then, we find a subset T ′i of Ti such that the sets NGi(t) are pairwise
disjoint for t ∈ T ′i by the following iterative marking procedure: add any unmarked t ∈ Ti

to T ′i and then mark all terminals in NGi(NGi(t)). It follows from Observation 4.3 that
|T ′i | ≤ k, or we can safely answer NO. Now apply Lemma 2.1 to find a Steiner tree of at most
(2(k + 2) + 1) (|T ′i | − 1) edges (and vertices) on T ′i . Add these vertices to Ai. Finally, for
each t ∈ Ti, let t′ ∈ T ′i be a terminal such that t ∈ NGi

(NGi
(t′)) ∪ {t′} and add an arbitrary

vertex of N(t) ∩N(t′) to Ai. Then |Ai| ≤ 6k2 + 6k2 + (2k + 5) |T ′i | = O(k2). Moreover, by
construction, Gi[Ai] is connected and contains Ti.

Let Si be a spanning tree of Gi[Ai]. Note that Si has size O(k2) by the construction of
Ai and contains Ti. We cut the plane open along Si and make the resulting face the outer
face. Let Ĝi denote the resulting plane graph. That is, we create a walk Wi on the edges of
Si that visits each edge of Si exactly twice. This walk has O(k2) edges. Then we duplicate
the edges of Si and duplicate each vertex v of Si exactly dSi

(v)− 1 times, where dSi
(v) is

the degree of v in Si. We can then create a face in the embedding that has Wi as boundary.
Then we obtain Ĝi by creating an embedding in which this new face is the outer face. See
Figure 2. This also yields a natural mapping π from E(Ĝi) to E(Gi) and from V (Ĝi) to
V (Gi). Finally, we observe that the terminals Ti are all on the outer face of Ĝi and that Ĝi

is a connected plane partitioned graph.
Now apply Theorem 3.1 to Ĝi and let G̃i be the resulting graph. Let Fi = π(G̃i). Note

that G̃i has O(|∂Ĝi|212) = O(|Wi|212) = O(k424) edges, and thus so has Fi. Finally, let
F =

⋃`
i=1 Fi. Clearly, |F | = O(k425), as ` < k. Also note that each of the reduction rules,

the above marking procedures, and F itself can be computed in polynomial time.
We claim that (F,A(F),B(F), T, k) is a kernel. Since F is a subgraph of G, it follows

that if (F,A(F),B(F), T, k) has a solution, then so does (G,A(G),B(G), T, k). Now let C
be a minimum solution for (G,A(G),B(G), T, k). Then Ci = C ∩ V (Gi) is a solution for

STACS 2019

39:12 A Deterministic Polynomial Kernel for Plane OCT and MwC

Si

Gi Ĝi

Figure 2 The process of cutting open the graph Gi along the tree Si. Adapted from [24] with
permission.

(Gi,A(Gi),B(Gi), T ∩ V (Gi), ki) for each i, where ki = |C ∩ V (Gi)|. Consider some i and
let Ji be a T -join of Gi[Ci ∪A(Gi)].

Let Z be a connected component of Gi[Ji]. We show how to find a connected subgraph Z ′
of Fi (and thus of Gi) such that V (Z ′)∩Ti ⊇ V (Z)∩Ti and |V (Z ′)∩B(Gi)| ≤ |V (Z)∩B(Gi)|.
Consider the subgraph Ẑ of Ĝi formed by π−1(V (Z) ∪ E(Z)). Note that any connected
component Y of Ẑ connects A = V (Y) ∩ ∂Ĝi. Then by Theorem 3.1, there is a subgraph
H(Y) of G̃i that connects A and has minimum possible cost among all subgraphs of Gi

that connect A. Hence, |V (H(Y)) ∩ B(Gi)| ≤ |V (Y) ∩ B(Gi)|. Now let H be the union
of H(Y) over all connected components Y of Ẑ. Observe that H is a subgraph of G̃i. Let
Z ′ = (π(V (H)), π(E(H))). Observe that, by construction, Z ′ is a subgraph of Fi with the
claimed properties. In particular, observe that although Ẑ can be much larger than Z due to
the duplication of vertices of Z ∩ Si when Gi was cut open along Si, we de-duplicate these
vertices when using π(V (H)).

Consider the union J ′i of all these connected subgraphs Z ′ over all connected components Z
of Gi[Ji]. Then |V (Gi[J ′i])∩B(Gi)| ≤ |V (Gi[Ji])∩B(Gi)| = |Ci|. Moreover, by construction,
for each connected component ZZ of Gi[J ′i] there exists a set Z(ZZ) of connected components
Z of Gi[Ji] such that ZZ ∩ T is the union of Z ∩ T over all these connected components
Z. We note that the sets Z(ZZ) induce a partition of the connected components of Gi[Ji].
Observe that the parity of |ZZ ∩ T | is equal to the sum (mod 2) of the parities of the
corresponding connected components of Gi[Ji], and thus, equal to 0. It follows that Gi[J ′i]
contains a Ti-join. Hence, V (Gi[J ′i]) ∩B(Gi) is a solution for (Gi,A(Gi),B(Gi), Ti, ki). By
repeating this procedure for all i, it follows from the proof of Lemma 4.13 that the union of
these solutions is a solution for (G,A(G),B(G), T, k). Moreover, any T -join that is contained
in this solution is fully contained in F . Hence, (F,A(F),B(F), T, k) has a solution. J

I Corollary 4.15. Plane Odd Cycle Transversal has a polynomial kernel.

5 Vertex Multiway Cut

In this section we sketch our polynomial kernel for Planar Vertex Multiway Cut. Many
important details are omitted in this presentation, but the full version can be found on
arXiv [18]. Now, let (G,T, k) be an input of Planar Vertex Multiway Cut.

The first step towards the kernel is a preprocessing routine that ostensibly aims to reduce
the diameter of G. Recall that for Odd Cycle Transversal, we could reduce the diameter
of the radial graph to O(k3) by Lemma 4.13, which enabled us to find a small tree connecting
the terminals in Theorem 4.14 along which we could cut open the graph. For Planar
Vertex Multiway Cut, we use a much more involved argument to find this small tree.

To be more precise, we partition the vertices of the input plane graph G using its
outerplanarity layers. A vertex belongs to outerplanarity layer k ≥ 1 if it is on the outer face
after k − 1 times simultaneously removing all vertices on the outer face. We then obtain a

B.M.P. Jansen, Ma. Pilipczuk, and E. J. van Leeuwen 39:13

tree, denoted T(G), by simultaneously contracting all edges whose endpoints belong to the
same layer; note that this operation shrinks each connected component induced by each layer
to a node of the tree, and each node u of the tree corresponds to a set κ(u) of vertices of G.
We call a node u in T(G) important if κ(u) contains a terminal or if two distinct children of
u have a descendant v in T(G) for which κ(v) contains a terminal. We then argue that if the
unique path of P in T(G) between two important nodes has length more than 2(k + 1), then
any optimal T -multiway cut will only use vertices corresponding to the first k+ 1 nodes (call
this set Q), to the last k + 1 nodes (call this set R), or to a (κ(x), κ(y))-cut of size at most k
for some x ∈ Q, y ∈ R. This means that only O(k3) nodes along P are relevant, which
combined with the definition of important nodes leads to O(k3|T |) relevant nodes in T(G).

The intuition behind relevant nodes is that we are only interested in the part of the
graph induced by relevant nodes, and thus we simultaneously contract all edges of G whose
endpoints both belong to a non-relevant node of T(G). We denote by Z the set of vertices
that arise due to this contraction. We must forbid that Z belongs to the solution of the
kernel, a detail later dealt with by replacing each vertex of Z by a suitably chosen grid. We
now use the LP-based reduction rules of Cygan et al. [4] to reduce the number of terminals
to 2k, so that there are only O(k4) relevant nodes. The definition of T(G) combined with
the contraction we described earlier implies that the radial distance of each terminal to the
outer face is O(k4). This enables us to find a tree H of size O(k5) in the overlay graph of G
along which we cut it open (cf. Figure 2). Call the resulting graph Ĝ.

The second step of the kernel is to establish a correspondence between vertex cuts X in
G and Steiner trees in Ĝ that connect vertices along ∂Ĝ. To this end, observe that each
connected component of G\X can be bounded by a closed curve γ that intersects the drawing
of G only in vertices of X. This curve corresponds to a closed curve γ∗ in the overlay graph
of G that intersects its drawing only in vertices of X or F (G). This set of intersected vertices
X ′ will contain vertices of H such that in Ĝ, X ′ can be decomposed to induce several Steiner
trees that connect vertices along ∂Ĝ. Then it suffices to note that the cost of each Steiner
tree only depends on the number of vertices of V (G) it contains and that vertices of F (G)
are free. By picking A(Ĝ) = V (G) and B(Ĝ) = F (G), we can then apply Theorem 3.1.

Note that the kernel contains, for each cut X ⊆ V (G), a set X ′ ⊆ V (G) that mimics
the set X in the following way: for each Y ⊆ X ∩ V (∂Ĝ) which is contained in a single
connected component of Ĝ[X ∪ F], the set Y is contained in a single connected component
of Ĝ[X ′ ∪ F]. Then for every pair of vertices u, v ∈ T , if X is a (u, v)-cut in G then X ′ is
also a (u, v)-cut in G. Hence by preserving minimum connectors for subsets of V (∂Ĝ), we
preserve minimum solutions to Planar Vertex Multiway Cut.

6 Reductions to Vertex Planarization

In this section we show two reductions from Planar Vertex Multiway Cut: one to the
disjoint version of Vertex Planarization, and one to the regular one. We start with
recalling formal problem definitions.

Vertex Planarization Parameter: k

Input: A graph G and an integer k.
Question: Does there exist a set X ⊆ V (G) such that G \X is planar?

STACS 2019

39:14 A Deterministic Polynomial Kernel for Plane OCT and MwC

Figure 3 The graph H0 of Observation 6.1 with the K5 minor model on the right.

u v

w

u v w

Figure 4 Embedding neighbors of a terminal (blue square) into a hole cut out in a large grid.
Every neighbor of a terminal is connected to k + 1 vertices of the grid (k + 1 = 4 in the figure).

Disjoint Vertex Planarization Parameter: k + |S|
Input: A graph G, a set S ⊆ V (G) such that G \ S is planar, and an integer k.
Question: Does there exist a set X ⊆ V (G) \ S of size at most k such that G \X is
planar?

Lemma 6.2 and 6.3 below give polynomial-parameter transformations from Planar Ver-
tex Multiway Cut to Disjoint Vertex Planarization and Vertex Planarization.

Both reductions rely on the same idea: if a Vertex Planarization instance contains a
large grid, the budget of k deletions is not able to effectively break it, and there is essentially
only one way to embed it in the plane. If some parts of the graph are attached to vertices of
the grid incident to faces far away from each other, a solution to Vertex Planarization
needs to separate such parts from each other. This allows to embed a Planar Vertex
Multiway Cut instance. Formally, we rely on the following observation (see Figure 3).

I Observation 6.1. Consider the following graph H0: we start with H0 being a 4× 4 grid
with vertices xa,b, 1 ≤ a, b ≤ 4 (i.e., the vertex xa,b lies in a-th row and b-th column of the
grid) and then add an edge x2,2x2,4 but delete edges x1,2x2,2 and x1,4x2,4. Then H0 contains
a K5 minor and is therefore not planar.

I Lemma 6.2. Given a Planar Vertex Multiway Cut instance (G,T, k), one can in
linear time compute an equivalent Disjoint Vertex Planarization instance (G′, S, k)
with |S| ≤ 8|T |.

Proof. If |T | ≤ 1, then the input instance is trivial, and we can output G′ = S = ∅.
Otherwise, let T = {t1, t2, . . . , t|T |}. We start by constructing a 4 × 2|T | grid H. Denote
S = V (H); note that |S| = 8|T | as promised. For 1 ≤ i ≤ |T |, let xi be the (2i)-th vertex in

B.M.P. Jansen, Ma. Pilipczuk, and E. J. van Leeuwen 39:15

the second row of H. We construct the graph G′ from G]H by identifying ti with xi for
every 1 ≤ i ≤ |T |. We claim that the resulting Disjoint Vertex Planarization instance
(G′, S, k) is equivalent to the input Planar Vertex Multiway Cut instance (G,T, k).
Note that V (G) \ T = V (G′) \ S.

In one direction, let X ⊆ V (G) \ T be a solution to Planar Vertex Multiway Cut
on (G,T, k). We show that X is also a solution to Disjoint Vertex Planarization on
(G′, S, k) by showing a planar embedding of G′ \ X. First, embed H in the natural way.
Second, for every connected component C of G \ X, proceed as follows. If C contains a
terminal ti, then fix a planar embedding of C that keeps ti incident to the infinite face, and
embed C in one of the faces of H incident with xi. Otherwise, if C does not contain any
terminal, embed C in the infinite face of H. Since every connected component C contains at
most one terminal, this is a valid planar embedding of G′ \X.

In the other direction, let X ⊆ V (G′) \S be a solution to Disjoint Vertex Planariza-
tion on (G′, S, k). We claim that X is also a solution to Planar Vertex Multiway
Cut on (G,T, k). Assume the contrary; since |X| ≤ k and X ⊆ V (G′) \ S = V (G) \ T by
assumption, we have two terminals ti, tj ∈ T and a ti − tj path P in G \X. Consider the
subgraph H ∪ P of G′ \X and contract P to a single edge titj . Then, this minor of G′ \X
contains H0 from Observation 6.1 as a minor. By Observation 6.1, G′ \X contains K5 as a
minor, contradicting its planarity. J

I Lemma 6.3. Given a Planar Vertex Multiway Cut instance (G,T, k), one can
in polynomial time compute an equivalent Vertex Planarization instance (G′, k) with
|E(G′)|+ |V (G′)| ≤ O(k(|E(G)|+ |V (G)|)).

Proof. We proceed as in the proof of Lemma 6.2, but we need to make H thicker in order
not to allow any tampering.

If |T | ≤ 1, then the input instance is trivial, and we can output G′ = ∅. Similarly, we
output a trivial no-instance if two terminals of T are adjacent. Otherwise, fix a planar
embedding φ of G and let T = {t1, t2, . . . , t|T |}. For every 1 ≤ i ≤ |T |, let di be the degree
of ti in G and let v1

i , . . . , v
di
i be the neighbors of ti in G in clockwise order around ti in φ.

Let D =
∑|T |

i=1 di.
We define a graph H as follows. We start with H being a 4(k+ 1)× (D+ |T |)(k+ 1)-grid

with vertices xa,b, 1 ≤ a ≤ 4(k + 1), 1 ≤ b ≤ (D + |T |)(k + 1) (i.e., the vertex xa,b lies
in a-th row and b-th column). For every 1 ≤ i ≤ |T |, let b←i = (i +

∑
j<i dj)(k + 1) and

b→i = b←i + di(k+ 1); additionally, let b→0 = 0. For every 1 ≤ i ≤ |T | and every b←i < b ≤ b→i ,
we delete from H the edge xk+1,bxk+2,b; see Figure 4.

We now define the graph G′ as follows. We start with G′ = H] (G \ T). Then,
for every 1 ≤ i ≤ |T | and every 1 ≤ j ≤ di, we make vj

i adjacent to xk+2,b for every
b←i + (j − 1)(k + 1) < b ≤ b←i + j(k + 1). This finishes the construction of the Vertex
Planarization instance (G′, k). We now show that it is equivalent to Planar Vertex
Multiway Cut on (G,T, k).

In one direction, let X be a solution to Planar Vertex Multiway Cut on (G,T, k).
We show that X is also a solution to Vertex Planarization on (G′, k) by constructing a
planar embedding of G′ \X. First, we embed H naturally and for every 1 ≤ i ≤ |T | let fi

be the face of the embedding that is incident with vertices xk+2,b for every b←i < b ≤ b→i .
Then, for every connected component C of G \ X we proceed as follows. If C does not
contain a terminal, then since X ∩ T = ∅, component C contains no neighbors of terminals
either; hence the vertices of C are not adjacent to H in G′. We embed C in the infinite
face of H. Otherwise, assume that the only terminal of C is ti. We take the embedding of

STACS 2019

39:16 A Deterministic Polynomial Kernel for Plane OCT and MwC

C induced by φ, change the infinite face so that ti is incident with the infinite face, and
embed C \ ti with the induced embedding into fi. The fact that v1

i , . . . , v
di
i are embedded

around ti in φ in this order allows us now to draw all edges between vertices of NG(ti) and
{xk+2,b|b←i < b ≤ b→i } in a planar fashion.

In the other direction, let X ′ be a solution to Vertex Planarization on (G′, k). We
claim that X := X ′ ∩ (V (G) \ T) is a solution to Planar Vertex Multiway Cut on
(G,T, k). If this is not the case, then there exist two terminals ti1 , ti2 , 1 ≤ i1 < i2 ≤ |T |
and a path P from ti1 to ti2 in G \X. Let vj1

i1
be the neighbor of ti1 on P and vj2

i2
be the

neighbor of ti2 on P . Since |X ′| ≤ k, there exist:
indices 1 ≤ a1 ≤ k + 1, k + 2 ≤ a2 ≤ 2k + 2, 2k + 3 ≤ a3 ≤ 3k + 3, 3k + 4 ≤ a4 ≤ 4k + 4
such that no vertex of X ′ is in rows numbered a1, a2, a3, nor a4 of H;
for every 1 ≤ i ≤ |T |, an index b→i−1 < bi ≤ b←i with no vertex of X ′ in the bi-th column
of H; and
for every 1 ≤ i ≤ |T | and every 1 ≤ j ≤ di an index b←i +(j−1)(k+1) < bj

i ≤ b←i +j(k+1)
with no vertex of X ′ in the bj

i -th column of H.
We conclude by observing that the graph H0 from Observation 6.1 is a minor of a subgraph
of G′ \X induced by P , the a1-th, a2-th, a3-th, and a4-th rows of H, and columns of H with
numbers bi1 , b

j1
i1
, bi2 , b

j2
i2
. J

7 Conclusions

We conclude with several open problems. First, the exponents in the polynomial bounds of our
kernel sizes are enormous, similarly as for planar Steiner tree [25]. Thus, we reiterate the
question of reducing the bound of the main sparsification routine of [25] to quadratic. Second,
we hope that our tools can pave the way to a polynomial kernel for Vertex Planarization,
which remains an important open problem. Third, nothing is known about the kernelization
of Multiway Cut parameterized above the LP lower bound [4], even in the case of planar
graphs and edge deletions.

References
1 Hans L. Bodlaender, Rodney G. Downey, Michael R. Fellows, and Danny Hermelin. On

problems without polynomial kernels. J. Comput. Syst. Sci., 75(8):423–434, 2009. doi:
10.1016/j.jcss.2009.04.001.

2 Hans L. Bodlaender, Stéphan Thomassé, and Anders Yeo. Kernel bounds for disjoint cycles
and disjoint paths. Theor. Comput. Sci., 412(35):4570–4578, 2011. doi:10.1016/j.tcs.2011.
04.039.

3 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

4 Marek Cygan, Marcin Pilipczuk, Michal Pilipczuk, and Jakub Onufry Wojtaszczyk. On
multiway cut parameterized above lower bounds. TOCT, 5(1):3:1–3:11, 2013. doi:10.1145/
2462896.2462899.

5 Holger Dell and Dieter van Melkebeek. Satisfiability Allows No Nontrivial Sparsification
unless the Polynomial-Time Hierarchy Collapses. J. ACM, 61(4):23:1–23:27, 2014. doi:
10.1145/2629620.

6 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013. doi:10.1007/978-1-4471-5559-1.

7 Andrew Drucker. New Limits to Classical and Quantum Instance Compression. SIAM J.
Comput., 44(5):1443–1479, 2015. doi:10.1137/130927115.

http://dx.doi.org/10.1016/j.jcss.2009.04.001
http://dx.doi.org/10.1016/j.jcss.2009.04.001
http://dx.doi.org/10.1016/j.tcs.2011.04.039
http://dx.doi.org/10.1016/j.tcs.2011.04.039
http://dx.doi.org/10.1007/978-3-319-21275-3
http://dx.doi.org/10.1145/2462896.2462899
http://dx.doi.org/10.1145/2462896.2462899
http://dx.doi.org/10.1145/2629620
http://dx.doi.org/10.1145/2629620
http://dx.doi.org/10.1007/978-1-4471-5559-1
http://dx.doi.org/10.1137/130927115

B.M.P. Jansen, Ma. Pilipczuk, and E. J. van Leeuwen 39:17

8 Samuel Fiorini, Nadia Hardy, Bruce Reed, and Adrian Vetta. Planar graph bipartization in
linear time. Discrete Applied Mathematics, 156:1175–1180, 2008. doi:10.1016/j.dam.2007.
08.013.

9 Fedor V. Fomin, Daniel Lokshtanov, Neeldhara Misra, and Saket Saurabh. Planar F-Deletion:
Approximation, Kernelization and Optimal FPT Algorithms. In 53rd Annual IEEE Symposium
on Foundations of Computer Science, FOCS 2012, New Brunswick, NJ, USA, October 20-23,
2012, pages 470–479. IEEE Computer Society, 2012. doi:10.1109/FOCS.2012.62.

10 Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Dimitrios M. Thilikos. Bidimen-
sionality and Kernels. In Moses Charikar, editor, Proceedings of the Twenty-First Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2010, Austin, Texas, USA, January
17-19, 2010, pages 503–510. SIAM, 2010. doi:10.1137/1.9781611973075.43.

11 Lance Fortnow and Rahul Santhanam. Infeasibility of instance compression and succinct PCPs
for NP. J. Comput. Syst. Sci., 77(1):91–106, 2011. doi:10.1016/j.jcss.2010.06.007.

12 Naveen Garg, Vijay V. Vazirani, and Mihalis Yannakakis. Multiway cuts in node weighted
graphs. J. Algorithms, 50(1):49–61, 2004. doi:10.1016/S0196-6774(03)00111-1.

13 Archontia C. Giannopoulou, Bart M. P. Jansen, Daniel Lokshtanov, and Saket Saurabh.
Uniform Kernelization Complexity of Hitting Forbidden Minors. ACM Trans. Algorithms,
13(3):35:1–35:35, 2017. doi:10.1145/3029051.

14 Sylvain Guillemot. FPT algorithms for path-transversal and cycle-transversal problems.
Discrete Optimization, 8(1):61–71, 2011. doi:10.1016/j.disopt.2010.05.003.

15 F. Hadlock. Finding a maximum cut of a planar graph in polynomial time. SIAM Journal on
Computing, 4:221–225, 1975. doi:10.1137/0204019.

16 Bart M. P. Jansen. Polynomial Kernels for Hard Problems on Disk Graphs. In Proc. 12th
SWAT, volume 6139, pages 310–321. Springer, 2010. doi:10.1007/978-3-642-13731-0_30.

17 Bart M. P. Jansen, Daniel Lokshtanov, and Saket Saurabh. A Near-Optimal Planarization
Algorithm. In Chandra Chekuri, editor, Proceedings of the Twenty-Fifth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7, 2014,
pages 1802–1811. SIAM, 2014. doi:10.1137/1.9781611973402.130.

18 Bart M. P. Jansen, Marcin Pilipczuk, and Erik Jan van Leeuwen. A deterministic polyno-
mial kernel for Odd Cycle Transversal and Vertex Multiway Cut in planar graphs. CoRR,
abs/1810.01136, 2018. arXiv:1810.01136.

19 Ken-ichi Kawarabayashi. Planarity Allowing Few Error Vertices in Linear Time. In 50th
Annual IEEE Symposium on Foundations of Computer Science, FOCS 2009, October 25-27,
2009, Atlanta, Georgia, USA, pages 639–648. IEEE Computer Society, 2009. doi:10.1109/
FOCS.2009.45.

20 Stefan Kratsch and Magnus Wahlström. Representative Sets and Irrelevant Vertices: New
Tools for Kernelization. In 53rd Annual IEEE Symposium on Foundations of Computer Science,
FOCS 2012, New Brunswick, NJ, USA, October 20-23, 2012, pages 450–459. IEEE Computer
Society, 2012. doi:10.1109/FOCS.2012.46.

21 Stefan Kratsch and Magnus Wahlström. Compression via Matroids: A Randomized Polynomial
Kernel for Odd Cycle Transversal. ACM Trans. Algorithms, 10(4):20:1–20:15, 2014. doi:
10.1145/2635810.

22 Daniel Lokshtanov, Neeldhara Misra, and Saket Saurabh. Kernelization - Preprocessing with
a Guarantee. In Hans L. Bodlaender, Rod Downey, Fedor V. Fomin, and Dániel Marx, editors,
The Multivariate Algorithmic Revolution and Beyond - Essays Dedicated to Michael R. Fellows
on the Occasion of His 60th Birthday, volume 7370 of Lecture Notes in Computer Science,
pages 129–161. Springer, 2012. doi:10.1007/978-3-642-30891-8_10.

23 Dániel Marx and Ildikó Schlotter. Obtaining a Planar Graph by Vertex Deletion. Algorithmica,
62(3-4):807–822, 2012. doi:10.1007/s00453-010-9484-z.

24 Marcin Pilipczuk, Michal Pilipczuk, Piotr Sankowski, and Erik Jan van Leeuwen. Network Spar-
sification for Steiner Problems on Planar and Bounded-Genus Graphs. CoRR, abs/1306.6593,
2013. arXiv:1306.6593.

STACS 2019

http://dx.doi.org/10.1016/j.dam.2007.08.013
http://dx.doi.org/10.1016/j.dam.2007.08.013
http://dx.doi.org/10.1109/FOCS.2012.62
http://dx.doi.org/10.1137/1.9781611973075.43
http://dx.doi.org/10.1016/j.jcss.2010.06.007
http://dx.doi.org/10.1016/S0196-6774(03)00111-1
http://dx.doi.org/10.1145/3029051
http://dx.doi.org/10.1016/j.disopt.2010.05.003
http://dx.doi.org/10.1137/0204019
http://dx.doi.org/10.1007/978-3-642-13731-0_30
http://dx.doi.org/10.1137/1.9781611973402.130
http://arxiv.org/abs/1810.01136
http://dx.doi.org/10.1109/FOCS.2009.45
http://dx.doi.org/10.1109/FOCS.2009.45
http://dx.doi.org/10.1109/FOCS.2012.46
http://dx.doi.org/10.1145/2635810
http://dx.doi.org/10.1145/2635810
http://dx.doi.org/10.1007/978-3-642-30891-8_10
http://dx.doi.org/10.1007/s00453-010-9484-z
http://arxiv.org/abs/1306.6593

39:18 A Deterministic Polynomial Kernel for Plane OCT and MwC

25 Marcin Pilipczuk, Michal Pilipczuk, Piotr Sankowski, and Erik Jan van Leeuwen. Network
Sparsification for Steiner Problems on Planar and Bounded-Genus Graphs. ACM Trans.
Algorithms, 14(4):53:1–53:73, 2018. doi:10.1145/3239560.

26 Igor Razgon. Large Isolating Cuts Shrink the Multiway Cut. CoRR, abs/1104.5361, 2011.
arXiv:1104.5361.

27 Saket Saurabh. Open problems from Recent Advances in Parameterized Complexity school,
2017. https://rapctelaviv.weebly.com/uploads/1/0/5/3/105379375/future.pdf.

28 Ondřej Suchý. Extending the Kernel for Planar Steiner Tree to the Number of Steiner Vertices.
Algorithmica, 79:189–210, 2017. doi:10.1007/s00453-016-0249-1.

http://dx.doi.org/10.1145/3239560
http://arxiv.org/abs/1104.5361
http://dx.doi.org/10.1007/s00453-016-0249-1

A Characterization of Subshifts with Computable
Language
Emmanuel Jeandel
LORIA, Campus Scientifique - BP 239, 54506 Vandoeuvre-les-Nancy, France
emmanuel.jeandel@loria.fr

Pascal Vanier
Laboratoire d’Algorithmique, Complexité et Logique, Université de Paris-Est, LACL, UPEC, France
pascal.vanier@lacl.fr

Abstract
Subshifts are sets of colorings of Zd by a finite alphabet that avoid some family of forbidden patterns.
We investigate here some analogies with group theory that were first noticed by the first author.
In particular we prove several theorems on subshifts inspired by Higman’s embedding theorems of
group theory, among which, the fact that subshifts with a computable language can be obtained as
restrictions of minimal subshifts of finite type.

2012 ACM Subject Classification Theory of computation → Models of computation

Keywords and phrases subshifts, computability, Enumeration degree, Turing degree, minimal
subshifts

Digital Object Identifier 10.4230/LIPIcs.STACS.2019.40

Funding Pascal Vanier : Sponsored by grant TARMAC ANR 12 BS02 007 01.

Acknowledgements The authors wish to thanks the anonymous referees for many helpful remarks
and improvements.

1 Introduction

Subshifts are colorings of Zd by some finite alphabet Σ avoiding some family of forbidden
patterns. They are closed shift invariant subsets of ΣZd . The most commonly studied family
of subshifts are the subshifts of finite type (SFTs), those that can be defined via a finite
family of forbidden patterns, which correspond to the sets of colorings by Wang tilesets.

It is well known since the work of Berger [5] that many problems or invariants in tiling
theory, and therefore for subshifts of finite type, are not computable. A recent trend in
multidimensional symbolic dynamics initiated by Hochman [16, 17] shows that computability
is not a fluke but an integral part of the study of subshifts. Indeed, many recent results show
precise correspondences between computability notions and invariants for subshifts [25, 19].
This has led to the study of another class of subshift, effective (or effectively closed) subshifts:
subshifts which are defined by a recursively enumerable family of forbidden patterns.

Of particular interest is the embedding (simulation) theorem by Hochman [16], extended
by Aubrun-Sablik and Durand-Romashchenko-Shen [2, 10], that characterizes effectively
closed subshifts, as projections of higher dimensional subshifts of finite type,

This theorem is strikingly similar to theorems in combinatorial group theory and first
order logic. The Higman embedding theorem [14] characterizes recursively presented groups,
i.e. groups given by a computable set of relators, as subgroups of finitely presented groups, i.e.
groups given by a finite set of relators. The Kleene-Craig-Vaught [21, 8] theorem characterizes
recursively axiomatisable theories, i.e. theories given by a computable set of axioms, as
syntactic restrictions of finitely axiomatisable theories, i.e. theories given by a finite set of
axioms.

© Emmanuel Jeandel and Pascal Vanier;
licensed under Creative Commons License CC-BY

36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019).
Editors: Rolf Niedermeier and Christophe Paul; Article No. 40; pp. 40:1–40:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-7236-2906
mailto:emmanuel.jeandel@loria.fr
https://orcid.org/0000-0001-9207-9112
mailto:pascal.vanier@lacl.fr
https://doi.org/10.4230/LIPIcs.STACS.2019.40
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

40:2 A Characterization of Subshifts with Computable Language

Based on this analogy, the first author described a general theory [18] in which many
theorems of these three fields can be formulated using an unified framework, and a dictionary
between similar notions can be established. The framework is quite abstract and it cannot
be used to prove the embedding theorems above for all these theories at once: they rely after
all in each case on properties of an encoding of Turing machines, and this encoding heavily
depends on the theory under consideration. It suggests nonetheless that there is more than a
similarity between these theorems, and that something deeper is to be found.

In this article, we study this by providing analogues in symbolic dynamics of the other
embedding theorems of Higman:

The relative Higman theorem [15] which, as its name indicates, is a relativized version of
the classic Higman theorem
The Boone-Higman-Thompson [6, 26] theorem that characterizes groups with computable
word problem as subgroups of simple recursively presented groups.

The first theorem is presented in section 3.2. It is very similar to a theorem in a previous
article by Aubrun and Sablik [1]. As we will explain, their article suffers however from
unfortunate mistakes and the theorem they proved is regrettably wrong.

The second theorem is presented in section 3.3. The Boone-Higman-Theorem in our
context, becomes: “A subshift has a computable language iff it is the restriction of a minimal
subshift, itself a restriction of a subshift of finite type”. Using recent results from Durand
and Romashchenko [11], this can be simplified to “A subshift has a computable language iff
it is the restriction of a minimal subshift of finite type”. Whether such a simplification is
possible for groups (i.e. whether any group with a computable word problem is a subgroup
of a finitely presented simple group) is a long standing open question.

The article is organized as follows. We first start with defining the relevant notions
from symbolic dynamics, computability theory, and group theory. We will then explain how
concepts from group theory translate into notions of symbolic dynamics. The remaining
part is devoted to the proof of the three Higman theorems for subshifts: the classic Higman
theorem (a slight reformulation of the Hochman-Aubrun-Sablik-Durand-Romashchenko-Shen
theorem), the relative Higman theorem and the Boone-Higman-Thompson theorem.

2 Preliminary definitions

2.1 Subshifts
The d-dimensional full shift is the set ΣZd where Σ is a finite alphabet whose elements
are called letters or symbols. Each element of the full shift may be seen as a coloring of
Zd with the letters of Σ. For v ∈ Zd, the shift function σv : ΣZd → ΣZd is defined by
σv(xz) = xz+v. The full shift equipped with the distance d(x, y) = 2−min{‖v‖ | v∈Zd,xv 6=yv}
forms a compact metric space on which the shift functions act as homeomorphisms. A closed
shift invariant subset X of ΣZd is called a subshift or shift. An element of a subshift X is
called a configuration or point.

Subshifts are exactly the subsets of ΣZd that avoid some family of forbidden patterns.
A pattern of shape P , where P is a 4-connected1 finite subset of Zd, is an element of ΣP

or alternatively a function p : P → Σ. A configuration x avoids a pattern p of shape P if
∀z ∈ Zd, p 6= σz (x)|P .

1 The exact notion of connectedness we use is irrelevant. However it is crucial in what follows to look
only at connected patterns.

E. Jeandel and P. Vanier 40:3

Subshifts can thus be defined by some family of patterns they avoid. When a subshift can
be defined this way by a finite family, it is called a subshift of finite type. When a subshift can
be defined by a recursively enumerable family of forbidden patterns, it is called an effectively
closed subshift.

If X is a subshift, we denote by L (X) its language, i.e. the set of patterns that appear
somewhere in one of its points.

I Example 1. The set X1 of all biinfinite words over the alphabet {a, b} that do not contain
the word aa is, by definition, a subshift. It is defined by the set of forbidden patterns
F = {aa}. Another possible defining set of forbidden patterns is F = {aab, aaa}

I Example 2. The set X2 of all biinfinite words over the alphabet {a, b} where the letter
a appears at most once is a subshift. It is defined e.g. by the set of forbidden patterns
F = {abna, n ∈ N}. It can be proven that it is not a subshift of finite type, although it is
certainly an effectively closed subshift.

We denote by Σd? the set of d-dimensional patterns over the alphabet Σ. For d = 1,
we write this Σ?. As an abuse of notation, we consider a d-dimensional pattern to be also
a k-dimensional pattern for k > d along the d first dimensions: as an example if X is a
d-dimensional subshift, L (X) ∩ A? is the set of one dimensional patterns (i.e. horizontal
words) over the alphabet A that appear in X.

I Example 3. Let X3 be the two-dimensional subshift over the alphabet {0, 1} defined with
the set of forbidden patterns F = {(1

1), (1 1)}. X3 is therefore the set of colorings of the
plane with 0 and 1 s.t. no two symbols 1 can be put next to each other. It is easy to see
that (0 1

1 0) ∈ L (X3) but (1 0
1 0) 6∈ L (X3).

Notice that any subshift X can always be defined by its set L (X)c. In particular X is an
effectively closed subshift iff L (X)c is recursively enumerable.

2.2 Combinatorial Group Theory
We assume the reader has a passing familiarity with group theory, and will focus this brief
description to the specifics of combinatorial group theory.

A good introduction to this particular aspect may be found in [22, 24]. The book by
Higman and Scott [15] contains invaluable information about the interplay between group
theory and computability.

A set of generators for a group G is a set S s.t. for any g ∈ G, there exist s±1
1 , . . . , s±1

n ∈ S
such that g = s1 · · · sn. A group is finitely generated if there exists a finite such S.

Let a1 . . . ak be a set of generators for some finitely generated group G. The word problem
for G, denoted WP (G, {a1 . . . ak}) is the language of all formal words over the alphabet
{a±1

1 . . . a±1
k } that evaluates to 1 (the identity element) in G. The computability properties

of WP (G, {a1 . . . ak}) do not depend on the set of generators (as long as it is finite), so that
we will usually speak of the word problem as WP (G) without specifying the generators.

There is (up to isomorphism) a unique largest group generated by n elements, which is
called the free group Fn on n generators. If the generators are written a1 . . . an, Fn can be
thought of as the set of all irreducible words over the alphabet {a±1

1 . . . a±1
n }, i.e. all words

that do not contain aia
−1
i or a−1

i ai as factors, with the obvious product operation.
Fn is the largest group with n generators a1 . . . an in the sense that if G is a group with

n generators s1 . . . sn, then there is a unique onto morphism φ s.t. φ(ai) = si.

STACS 2019

40:4 A Characterization of Subshifts with Computable Language

In particular any group with n generators can be seen as a quotient of a free group. This
gives rise to the notion of groups given by generators and relations.

If R is a set of formal words over {a±1
1 . . . a±1

n }, we denote by 〈a1, a2, . . . an | R〉 the
largest group G generated by n elements a1 . . . an s.t. all relations in R evaluate to 1 in the
group G. Formally, G is the quotient of the free group Fn by the smallest normal subgroup
N of Fn that contains all relations R.

A finitely generated group G is finitely presented if G = 〈S | R〉 for some finite S and R,
or more generally if G is isomorphic to such a group. G is recursively presented if G = 〈S | R〉
for some finite2 S and recursively enumerable set R.

I Example 4. The group G = Z× Z/3Z is finitely presented. A possible finite presentation
is G =

〈
a1, a2

∣∣ a1a2a
−1
1 a−1

2 , a3
2
〉
. There are of course other presentations with the same

generators, for example G =
〈
a1, a2

∣∣ a2a1a2a
−1
1 a2, a

3
2
〉
.

For this group G, we have a1a2a1a2 6∈ WP (G, {a1, a2}) and
a2

1a2a
−1
1 a2a

−1
1 a2 ∈ WP (G, {a1, a2}).

Notice that for all groups G with generators S, we have that G = 〈S | WP (G,S)〉 and
that G is recursively presented iff WP (G) is recursively enumerable.

2.3 Subshifts as analogs of subgroups
There is a natural analogy between subshifts and subgroups, which is obtained in the following
way: the alphabet plays the role of the generators and the forbidden patterns play the role
of the relations.

If X is a d-dimensional subshift over the alphabet Σ given by the forbidden patterns F ,
we will write X = 〈Σ | F〉d to further stress the analogy between groups and subshifts.

Continuing the analogy, the word problem WP (G) of G correspond naturally to the
complement of the language of X, L (X)c. In particular, if S is a set of generators, G =
〈S | WP (G,S)〉. If X is a subshift over alphabet Σ, then X = 〈Σ | L (X)c〉d.

To further the correspondence, we need an analogy in subshifts of the operations of
adding/removing generators and relations. In terms of groups, H is obtained from G by
adding relations iff H is a quotient of G. In terms of subshifts, Y is obtained from X

by adding forbidden patterns iff X ⊆ Y . So taking a quotient corresponds to subshift
containment.

If H is obtained from G by removing generators, it means that H is a subgroup of G
(of course not all subgroups can be obtained this way). What the operations of removing
symbols means for subshifts is discussed in the following section.

2.3.1 Removing symbols and dimensions
Removing symbols, or removing dimensions, is intuitively easy:

I Definition 5. Let X ′ be a subshift over an alphabet Σ′ of dimension d′ and let Σ ⊆ Σ′ and
d < d′, the (Σk, d) restriction X of X ′ is the set of d-dimensional configurations of width k
over the alphabet Σ that appear in X ′. We write X ≺ X ′ if X is some restriction of X ′.

By compactness X is exactly the subshift of dimension d over the alphabet Σk that forbids
all patterns in L (X ′)c ∩

(
Σk

)?d.

2 One could take more generally S to be recursively enumerable

E. Jeandel and P. Vanier 40:5

I Example 6. Let X ′ = 〈a, b | (a a), (b b), (a
b), (b

a)〉2, it is easy to see that X ′ contains only
two configurations: a and b alternate on every row, and columns are uniform. That is every
configuration locally look like figure 1.

. .

. . . a b a b a b . . .

. . . a b a b a b . . .

. . . a b a b a b . . .

. . . a b a b a b . . .

. . . a b a b a b . . .

. .

Figure 1 Configurations of X ′.

The ({a, b}, 1) restriction of X ′ is therefore the one-dimensional subshift that contains
all two configurations, that alternate a and b. The ({a}, 1) restriction of X ′ is the empty
subshift, and the ({a, b}2, 1) restriction contains exactly the two configurations that alternate
(a

a) and
(

b
b

)
.

In terms of computability, the restriction is significant : If X ≺ X ′ then X can be more
complicated than X ′:

I Proposition 7. If X ≺ X ′ then L (X) is corecursively enumerable in L (X ′).

Indeed P ∈ L (X) iff for all n there exists a d′ dimensional pattern of size n in L (X ′) with
P at its center. (More precisely, L (X)c is enumeration-reducible to L (X ′)c, see below for
the definition.)

I Proposition 8. There exist two subshifts X ≺ X ′ s.t. L (X ′) is computable and L (X) is
not computable.

Proof. Let X be any one-dimensional effectively closed subshift over the alphabet {a, b}
with a noncomputable language. It is well known that X can be given by a computable
family of forbidden patterns F (see e.g. [3]).

Now let X ′ be the subshift over the alphabet {a, b,#} given by the same family of
forbidden patterns. It is clear that L (X ′) is computable. Indeed, let w ∈ {a, b,#}? and write
w = #u1#u2 . . .#uk# with ui ∈ {a, b}?, with the # symbols at the ends possibly missing.
Then w ∈ L (X ′) iff each ui does not contain any element of F . For the nontrivial direction,
observe that in this case the biinfinite word ω#w#ω does not contain any forbidden word
of F . As F is computable, we can test whether each ui contains any element of F , and
therefore L (X ′) is computable.

On the other hand, the restriction of X ′ to the alphabet {a, b} is our initial subshift X,
which has an uncomputable language. J

This is in contrast with combinatorial group theory, where a (f.g.) subgroup of a group
with a computable word problem has immediately a computable word problem. This is due
to the fact that looking at subshifts makes us look at infinite objects given by finite words.
To obtain theorems similar to Higman’s, we will have to force an additional restriction:

I Definition 9. Let X ′ be a subshift over an alphabet Σ′ of dimension d′ and X be a subshift
over an alphabet Σ ⊆ Σ′ of dimension d < d′. We say that X is a full restriction of X ′, in
symbols X v X ′ if L (X) = L (X ′) ∩ Σ?d

STACS 2019

40:6 A Characterization of Subshifts with Computable Language

In other words, if X the (Σ, d) restriction of X ′, then every d-dimensional infinite word
over Σ that can be found in X ′ is in X. Here we also ask that every finite word over Σ that
can be found in X ′ is already in X. In this case:

I Proposition 10. If X ≺ X ′ then L (X) is many-one reducible to L (X ′). In particular if
L (X ′) is computable, then L (X) is computable.

Proof. Obvious by definition: L (X) = L (X ′) ∩ Σ?d. J

In this paper we will not be using restrictions of width more than 1.

2.3.2 Adding symbols and dimensions

The operation of adding a dimension is quite obvious.

I Definition 11. Let X be a subshift of dimension d over the alphabet Σ. The extension X ′
of X to dimension d′ is the subshift of dimension d′ that avoids all patterns of L (X)c.

A point of X ′ therefore looks like elements of X stacked in the additional dimensions3. Notice
that by definition X v X ′.

Adding symbols is also easy to define:

I Definition 12. Let X be a subshift of dimension d over the alphabet Σ. The extension X ′
of X to alphabet Γ ⊃ Σ is the subshift over the alphabet Γ that avoid all patterns of L (X)c.

Notice that X ′ is defined using all patterns of L (X)c, not only a defining set of forbidden
patterns. Notice also that X v X ′.

To understand what the points of X ′ look like, we will first look at an example where
Γ = Σ ∪ {#} and X is one-dimensional. In this case, a typical element of X ′ is of the form
. . .#u−1#u0#u1#u2 . . . where each ui is a finite word in L (X). Notice in particular that
there is no relation between the word ui and the word ui+1.

If we look at a similar construction in dimension 2, we would see patterns of L (X) that
are separated by # symbols, see Figure 2. The # symbol in the example is what is typically
called a safe symbol [7, 20] in symbolic dynamics, and is one of the typical conditions needed
to obtain good mixing properties on subshifts.

More generally, we could define in the same way the free product of two subshifts:

I Definition 13. Let X and Y be two subshifts of the same dimension on disjoint alphabets
A and B respectively. The free product X ∗ Y is the subshift Z on A ∪ B with forbidden
patterns L (X)c ∪ L (Y)c

A typical example of a point in Z is depicted in Figure 3. The discrete plane is divided
into 4-connected zones that each correspond to a valid pattern of X or a valid pattern of Y .

We note that, for this construction to work, we need the language of a subshift to be
defined in terms of connected patterns. If we took as the language of a subshift to be all
patterns, connected or not, then the extension of X to alphabet Σ ∪ {#} would merely
consist in points of X with some symbols changed to #, which is a different beast altogether.

E. Jeandel and P. Vanier 40:7

#
#
#
#
#
#
#
#
#
#
#
#
#

#
#
#
#
#
#
#
#
#
#
#
#
#

#
#
#
#
#
#
#
#
#
#
#
#
#

#
#
#
#
#
#
#
#
#
#
#
#
#

#
#
#
#
#
#
#
#
#
#
#
#
#

#
#
#
#
#
#
#
#
#
#
#
#
#

#
#
#
#
#
#
#
#
#
#
#
#
#

#
#
#
#
#
#
#
#
#
#
#
#
#

#
#
#
#
#
#
#
#
#
#
#
#
#

#
#
#
#
#
#
#
#
#
#
#
#
#

#
#
#
#
#
#
#
#
#
#
#
#
#

#
#
#
#
#
#
#
#
#
#
#
#
#

#
#
#
#
#
#
#
#
#
#
#
#
#

u1

u2

u3

u4

Figure 2 A configuration of X ′, the exten-
sion of X ⊆ ΣZ2

to alphabet Γ = Σ∪ {#}: any
(connected) pattern of X can appear anywhere,
as long as there are some # separating it from
other patterns of X. The (unconnected) pat-
tern consisting of u1, u2, u3 and u4 may not
appear in a valid configuration of X.

a
b

a
b

a
b

b

a
b

a
b

a
b

a
b

a
b

b

a
b

a
b

a
b

a
b

a
bc c

c
d

d

c
d

d

c
d

d

c
d

d

c
d

d

c
d

d

c
d

d

c
d

d

c
d

d

c
d

d

c
d

d

c
d

d

d

d

d

d

d

d

d

d

d

d

d

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c
b

a
b

c

c

c

a
b

a

c

c

c
b

a
b

c

c

c

a
b

a

a
b

a
b

a
b

a

Figure 3 A portion of a valid
configuration of the free product of
X = 〈a, b | (a a), (b b), (a

a), (b
b)〉2 and

Y = 〈c, d | (c d), (d,c), (c
d)〉2 , the 4-connected

components of X and Y are gray and blue
respectively.

Table 1 Dictionary between groups and subshifts.

Group G Subshift X

Group with n generators Subshift on n symbols
Free group with n generators Full shift on n symbols
Word problem WP (G) co-language L (X)c

Finitely presented group SFT
Recursively presented group Effectively closed subshift
Simple group Minimal subshift
G1 is a quotient of G2 X1 ⊆ X2

G1 ⊆ G2 X1 v X2 (Definition 9)

3 The three embedding theorems

In this section we prove the equivalent versions of the Higman embedding and Higman
relative embedding theorems. To make the article easier to read, we will take some liberties
when stating the theorems of Higman. To obtain more exact statements, “G is a subgroup
of H” should be replaced by “G is isomorphic to a subgroup of H”.

Table 1 gives the correspondence we will use between the vocabulary of groups and the
vocabulary of subshifts. It is based on the previous discussion and on the article [18]. The
correspondence is not exact, but serves as an intuition for the theorems.

3 Note that this definition readily generalizes with X over an alphabet Σk and X ′ with alphabet Σ: every
row of with k must avoid all patterns of L (X)c.

STACS 2019

40:8 A Characterization of Subshifts with Computable Language

x9
x8

x7
x6

x5
x4

x3
x2

x1
x0

x9
x8

x7
x6

x5
x4

x3
x2

x1
x0

x9
x8

x7
x6

x5
x4

x3
x2

x1
x0

x9
x8

x7
x6

x5
x4

x3
x2

x1
x0

x9
x8

x7
x6

x5
x4

x3
x2

x1
x0

x9
x8

x7
x6

x5
x4

x3
x2

x1
x0

x9
x8

x7
x6

x5
x4

x3
x2

x1
x0

x9
x8

x7
x6

x5
x4

x3
x2

x1
x0

x9
x8

x7
x6

x5
x4

x3
x2

x1
x0

x9
x8

x7
x6

x5
x4

x3
x2

x1
x0

0 1 2 3 4 5 6 7 8 9

0 0 0

x9
x8

x7
x6

x5
x4

x3
x2

x1
x0
1 1 1

x9
x8

x7
x6

x5
x4

x3
x2

x1
x0
2 2 2

x9
x8

x7
x6

x5
x4

x3
x2

x1
x0
3 3 3

x9
x8

x7
x6

x5
x4

x3
x2

x1
x0
4 4 4

x9
x8

x7
x6

x5
x4

x3
x2

x1
x0
5 5 5

x9
x8

x7
x6

x5
x4

x3
x2

x1
x0
6 6 6

x9
x8

x7
x6

x5
x4

x3
x2

x1
x0

Figure 4 In [16, 2, 9] some layer contains a vertically repeated sequence (xi)i∈Z that is checked
by some other layers which are superimposed as on the left. It is quite straigtforward to tranform a
construction which has layers to an interleaving of the layers as seen on the right.

3.1 The Higman embedding theorem
We start with the first Higman embedding theorem:

I Theorem 14 (Higman embedding theorem [14]). A f.g. group G is recursively presented iff
there exists a finitely presented group H s.t. G ⊆ H.

I Theorem 15 (Higman embedding theorem for subshifts). A d-dimensional subshift X over
an alphabet Σ is effectively closed iff there exists a d+1 dimensional SFT X ′ over an alphabet
Γ ⊇ Σ s.t. X v X ′

As stated in the introduction, this theorem corresponds very closely to a result on
subactions of subshifts first discovered by Hochman [16] and then improved by Aubrun-
Sablik-Durand-Romashchenko-Shen. We first restate the theorem in a suitable form:

I Theorem 16 ([2, 9]). A d-dimensional subshift X over an alphabet Σ is effectively closed
iff there exists a (d+ 1)-dimensional SFT X ′ ⊆ (Σ× Γ)Zd+1 such that

X =
{
x

∣∣ (x↑, y) ∈ X ′
}

where x↑ is the configuration where for any z ∈ Zd and j ∈ Z, x↑z,j = xz.

Proof of Theorem 15. All these constructions have one or several computation layers that
check a layer on which the effectively closed subshift is written. In our case instead of
superimposing the computation layer and the verified layer, we interleave them : if c =
(x, y) ∈ X × Y in the original construction, the new configuration c′ would be formed by
c′(i,2j) = x(i,j) and c′(i,2j+1) = y(i,j). This remains an SFT.

We may further assume that the alphabet for the computation is disjoint from the
alphabet of the checked subshift. Thus, by restricting the language to the words belonging
to the alphabet of the checked layer, only this layer remains. J

Note that Higman’s original theorem is valid non only for finitely generated groups but
for general groups. To obtain a similar statement for subshifts, one would need to deal with
subshifts over an infinite alphabet. We think that Hochman’s original result [16] on effective
dynamical systems provides such a generalization.

3.2 Higman’s relative embedding theorem
The relative Higman theorem is, as its name indicates, the relativized version of the Higman
embedding theorem, and states conditions on when a group G can be obtained as a subgroup
of an extension of a group H. We first need a definition:

E. Jeandel and P. Vanier 40:9

I Definition 17 ([15]). A group K is finitely presented over G if K can be obtained from G

by adding finitely many generators and finitely many relations

See [15, Definition 6.1] for the exact definition. The Higman relative embedding theorem then
characterizes when a group G can be obtained as a subgroup of a group finitely presented in
H. The classical relative embedding theorem correspond to the case where H is trivial. It
turns out that the necessary computability criterion has to do with enumeration-reducibility,
that we now define:

I Definition 18 ([13]). If L and M are two sets we say that L is enumeration-reducible
to M , in symbols L ≤e M if there exists a partial computable function f : N× N→ Pf (N)
where Pf (N) is (a computable representation of) the set of all finite subsets of N s.t.

x ∈ L ⇐⇒ ∃n, f(n, x) ⊆M

The definition might seem quite obtuse at first. Intuitively, L ≤e M if there is a computable
procedure that can enumerate L from any enumeration of M .

The relative embedding theorem is then as follows:

I Theorem 19 (The relative Higman embedding theorem [15]). K is a subgroup of a group
that is finitely presented over G iff WP (K) ≤e WP (G).

We will now prove our version of the theorem. We first need an analog of “finitely
presented over” in terms of subshift:

I Definition 20. Let Y be a subshift over an alphabet Σ. U is of finite type over Y if U is
obtained from Y by adding finitely many new symbols, dimensions, and finitely many new
forbidden patterns.

That is, U = Y1 ∩ Y2, where Y1 is an extension to a larger alphabet and higher dimension
(in the sense of Definitions 11 and 12) of Y , and Y2 is a subshift of finite type. To be
consistent with the exact definition for groups, we also need that Y v U , that is for none of
the new forbidden patterns to contain only symbols of Σ.

This definition is straightforwardly extendable to effective subshifts:

I Definition 21. Let Y be a subshift over an alphabet Σ. U is effectively closed over Y if
U is obtained from Y by adding finitely many new symbols, dimensions and a recursively
enumerable set of new forbidden patterns. As before, it is required that Y v U .

A straightforward corollary of Theorem 15 is the following:

I Corollary 22. If Y is effectively closed over X, then there exists a subshift Z of finite type
over Y such that X v Y v Z.

We can now formulate our theorem.

I Theorem 23 (The relative Higman embedding theorem for subshifts). Let X be a subshift
over an alphabet A and Y be a subshift over an alphabet B disjoint from A.

Then L (X)c ≤e L (Y)c iff there exists a subshift U of finite type over Y such that X v U .

Let Y = ∅ be the empty subshift over the alphabet {0}. Then a subshift of finite type over
Y is exactly the same as a subshift of finite type. Furthermore L (X)c ≤e L (Y)c means
that L (X)c is enumeration reducible over the full set, which is equivalent to saying that
L (X)c is recursively enumerable. In the case Y = ∅ this theorem is therefore equivalent to
Theorem 15. Before going into the proof, we will give a few remarks.

STACS 2019

40:10 A Characterization of Subshifts with Computable Language

First we want to state that this result is very similar, but incompatible with a result
of Aubrun and Sablik[1]. The result of Aubrun and Sablik states that X can be obtained
from Y using some operations (very similar to ours) iff L (X)c ≤s L (Y)c where ≤s is strong
enumeration reducibility [13]. It turns out that there are many mistakes in the proofs so
that the result as stated in their paper is actually provably wrong (the authors have been
contacted and a corrigendum is being worked on). Problems arise in both directions in the
proof. First, if X can be obtained from Y , then it is not true that L (X)c ≤s L (Y)c. The
authors use in their proof a lot of dovetailing arguments, but dovetailing arguments cannot
be used for their reduction ≤s. As an example, A ≤s B does not imply A × A ≤s B or
A? ≤s B [23]. In fact, the smallest reducibility relation that contains ≤s and that satisfy
these statements is the reduction ≤e we used [23]. There are also some mistakes in the
reverse direction that have been patched in Aubrun’s PhD thesis, but only for the case of
mixing subshifts. In fact, the set of operations the authors were taking is not sufficient to do
the operations for general subshifts.

Proof. For simplicity, we focus on the case where the two subshifts are one-dimensional. Let
X ⊆ AZ and Y ⊆ BZ be subshifts.
⇐: It is clear that if there exists U of finite type over Y with alphabet C ⊆ A ∪B such

that L (X) = L (U) ∩ A? then L (X)c ≤e L (Y)c: it is clear that L (X)c ≤e L (U)c, so we
only need to prove that L (U)c ≤e L (Y)c. Take an enumeration of L (Y)c since U is of finite
type over Y , any pattern not in L (Y) is not in L (U) and furthermore, to determine that
a pattern p is in L (U)c, by compactness, one only needs to find some size at which it is
impossible to form a valid pattern with p in its center. The procedure is the following: for
every k, enumerate the k first patterns of L (Y)c and check for all radiuses smaller than k
whether each extension of p to this radius contains either some forbidden pattern enumerated
this far or one of the patterns defining U from Y (which are in finite number). If there
exists such a radius, it will be found at some step, p is then added to the enumeration. Thus
L (X)c ≤e L (Y)c.
⇒: Assume L (X)c ≤e L (Y)c, we will construct a 2D subshift U effectively closed over

Y such that L (X) = L (U) ∩A?, the result then follows by applying Corollary 22. In order
to achieve this, from Y we will construct two intermediary subshifts:

First we will construct YL: a 2D subshift in which the language of Y will be arranged in
a dyadic like fashion. This subshift will be effective in Y . This subshift will serve as an
“oracle” allowing to know whether a pattern is or is not in Y in a bounded manner: one
configuration at least will contain all the patterns appearing in Y in bounded windows
with computable sizes.
From YL we can then construct U , in which one row out of two will be identical and
belong to X and one row out of two will be in YL. This subshift is obtained by adding
a recursively enumerable set of forbidden patterns and is thus effective over Y . By
restricting the alphabet of this subshift we obtain X.

Let us now describe more precisely the different intermediate subshifts and how they are
constructed, starting with YL:

While Y is one dimensional, YL consists of two dimensions, its alphabet is ΣYL
= B∪{#},

with # a special symbol not belonging to B.
YL will consist of rows, each of which will have a type: an integer n ∈ N∪ {∞}. A row of
type i 6=∞ has to be periodic. One row out of two will be of type 1, one row out of two
in the remaining ones will be of type 2 and so on.

E. Jeandel and P. Vanier 40:11

Let us define inductively a row of type i: a row of type i consists of a sequence of |B|2
i−1

words of length 2i − 1 each, separated by # and repeated periodically. All rows of some
type in a configuration must be identical and a word appearing in a row of type i must
be a subword of some word of a row of type (i+ 1), see Figure 5. Thus, a word of some
type i must appear as a subword of some word in a line of type k for any k > i which
does not contain a forbidden pattern of Y and thus appears in some configuration of Y .

w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1

w2
0 # w2

1 # w2
2 # w2

3 # w2
0 # w2

1 # w2
2 # w2

3 # w2
0 # w2

1 # w2
2 # w2

3 # w2
0 # w2

1 # w2
2 # w2

3 # w2
0 # w2

1 # w2
2 # w2

3 # w2
0 # w2

1 # w2
2 # w2

3 # w2
0 # w2

1 # w2
2 # w2

3 # w2
0 # w2

1 # w2
2 # w2

3

w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1

w4
0 # w4

1 # w4
2 # w4

3 # w4
4 # w4

5 # w4
6 # w4

7

w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1

w2
0 # w2

1 # w2
2 # w2

3 # w2
0 # w2

1 # w2
2 # w2

3 # w2
0 # w2

1 # w2
2 # w2

3 # w2
0 # w2

1 # w2
2 # w2

3 # w2
0 # w2

1 # w2
2 # w2

3 # w2
0 # w2

1 # w2
2 # w2

3 # w2
0 # w2

1 # w2
2 # w2

3 # w2
0 # w2

1 # w2
2 # w2

3

w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1

w3
0 # w3

1 # w3
2 # w3

3 # w3
4 # w3

5 # w3
6 # w3

7 # w3
0 # w3

1 # w3
2 # w3

3 # w3
4 # w3

5 # w3
6 # w3

7

w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1

w2
0 # w2

1 # w2
2 # w2

3 # w2
0 # w2

1 # w2
2 # w2

3 # w2
0 # w2

1 # w2
2 # w2

3 # w2
0 # w2

1 # w2
2 # w2

3 # w2
0 # w2

1 # w2
2 # w2

3 # w2
0 # w2

1 # w2
2 # w2

3 # w2
0 # w2

1 # w2
2 # w2

3 # w2
0 # w2

1 # w2
2 # w2

3

w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1

w5
0 # w5

1 # w5
2 # w5

3

w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1

w2
0 # w2

1 # w2
2 # w2

3 # w2
0 # w2

1 # w2
2 # w2

3 # w2
0 # w2

1 # w2
2 # w2

3 # w2
0 # w2

1 # w2
2 # w2

3 # w2
0 # w2

1 # w2
2 # w2

3 # w2
0 # w2

1 # w2
2 # w2

3 # w2
0 # w2

1 # w2
2 # w2

3 # w2
0 # w2

1 # w2
2 # w2

3

w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1

w3
0 # w3

1 # w3
2 # w3

3 # w3
4 # w3

5 # w3
6 # w3

7 # w3
0 # w3

1 # w3
2 # w3

3 # w3
4 # w3

5 # w3
6 # w3

7

w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1

w2
0 # w2

1 # w2
2 # w2

3 # w2
0 # w2

1 # w2
2 # w2

3 # w2
0 # w2

1 # w2
2 # w2

3 # w2
0 # w2

1 # w2
2 # w2

3 # w2
0 # w2

1 # w2
2 # w2

3 # w2
0 # w2

1 # w2
2 # w2

3 # w2
0 # w2

1 # w2
2 # w2

3 # w2
0 # w2

1 # w2
2 # w2

3

w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1

w4
0 # w4

1 # w4
2 # w4

3 # w4
4 # w4

5 # w4
6 # w4

7

w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1

w2
0 # w2

1 # w2
2 # w2

3 # w2
0 # w2

1 # w2
2 # w2

3 # w2
0 # w2

1 # w2
2 # w2

3 # w2
0 # w2

1 # w2
2 # w2

3 # w2
0 # w2

1 # w2
2 # w2

3 # w2
0 # w2

1 # w2
2 # w2

3 # w2
0 # w2

1 # w2
2 # w2

3 # w2
0 # w2

1 # w2
2 # w2

3

w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1

w3
0 # w3

1 # w3
2 # w3

3 # w3
4 # w3

5 # w3
6 # w3

7 # w3
0 # w3

1 # w3
2 # w3

3 # w3
4 # w3

5 # w3
6 # w3

7

w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1

w2
0 # w2

1 # w2
2 # w2

3 # w2
0 # w2

1 # w2
2 # w2

3 # w2
0 # w2

1 # w2
2 # w2

3 # w2
0 # w2

1 # w2
2 # w2

3 # w2
0 # w2

1 # w2
2 # w2

3 # w2
0 # w2

1 # w2
2 # w2

3 # w2
0 # w2

1 # w2
2 # w2

3 # w2
0 # w2

1 # w2
2 # w2

3

w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1

w6
0 # w6

1

w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1

w2
0 # w2

1 # w2
2 # w2

3 # w2
0 # w2

1 # w2
2 # w2

3 # w2
0 # w2

1 # w2
2 # w2

3 # w2
0 # w2

1 # w2
2 # w2

3 # w2
0 # w2

1 # w2
2 # w2

3 # w2
0 # w2

1 # w2
2 # w2

3 # w2
0 # w2

1 # w2
2 # w2

3 # w2
0 # w2

1 # w2
2 # w2

3

Figure 5 A typical point of YL : each line of type i is periodic of period |B|2
i−1
· 2i and each

word wi
k in included in some word wj

k′ for all j > i.

Thus YL is a 2D arrangement of words of L (Y) in a uniformly recurrent way, and there
exists at least one configuration containing all of L (Y). Furthermore, YL is effective over
Y .
We describe how to construct U from YL: we know that L (X)c ≤e L (Y)c. Thus, there
exists a computable f : N× N→ Pfinite(N) such that:

x ∈ L (X)c iff ∃n ∈ N, f(x, n) ⊆ L (Y)c

In other words, some word w is in L (X) iff for any n ∈ N, there is some word of f(x, n)
in L (Y). That is to say, supposing L (Y) is given as an oracle, we have an enumerable
way to check that a word w belongs to L (X): enumerate the n ∈ N and compute f(w, n)
and check that at least one element belongs to L (Y), if not halt. The computations that
do not halt are the ones where w belongs to L (X).
Given YL, this can be implemented in an effective way: take x ∈ AZ and y ∈ YL. We
interleave x in y by using the same technique as in figure 4: we insert a copy of x between
each pair of lines of y.
We now need to ensure that all words on the lines with alphabet A belong to L (X).
This may also be done by adding a recursively enumerable set of forbidden patterns: in
order to check that some subword w of x is in L (X), one needs to check that for each n,

STACS 2019

40:12 A Characterization of Subshifts with Computable Language

f(w, n) appears in some line of type i > |w|: for every pattern w we forbid all patterns
that contain w but no pattern of f(w, n), since rows of type i appear every 2i+2 rows, for
each w this constitutes a finite number of forbidden patterns for each n. Thus we may
recursively enumerate the forbidden patterns for each w ∈ A?. J

3.3 The Boone-Higman-Thompson theorem
The Boone-Higman-Thompson theorem is a theorem that characterizes groups with a
computable word problem. It turns out that the characterization is obtained with the notions
of a simple group:

I Theorem 24 (The Boone-Higman-Thompson theorem [6, 26]). A group G has a computable
word problem iff it is a subgroup of a simple recursively presented group.

Recall that a simple group is a group with no proper (nontrivial) quotient. By Dictionary 1,
the equivalent should be a subshift with no proper (nontrivial) subshift, i.e. what is called in
the literature a minimal subshift. This seems to be indeed, the good analogy, as argued for
in [18], and we will prove:

I Theorem 25. Let X be a 1 dimensional subshift over an alphabet Σ. Then X has a
computable language iff there exists a two dimensional minimal effective subshift Y over an
alphabet Γ ⊃ Σ such that X v Y .

Recently, Durand and Romashchenko [11] have proved that given a d-dimensional minimal
effectively closed subshift, it can be realized as a subaction of a (d+ 1)-dimensional minimal
SFT:

I Theorem 26 ([11]). Let X be a minimal effectively closed subshift. There exists a minimal
SFT Y such that X is a subaction of Y : X is the projection by a letter to letter map of the
lines of Y .

This together with Theorem 25 gives us the subshift counterpart to the Boone-Higman-
Thompson theorem:

I Corollary 27 (The Boone-Higman-Thompson theorem for subshifts). Let X be a 1 dimensional
subshift over an alphabet Σ. Then X has a computable language iff there exists a three
dimensional minimal subshift of finite type Y over an alphabet Γ ⊃ Σ s.t. X v Y .

Both Theorem 25 and Corollary 27 translate to higher dimensions, the details of the
proofs are left to the reader.

Before proving the Theorem 25, one needs a good intuition on what a minimal subshift
looks like. Minimal subshifts are defined as subshifts that do not contain any nontrivial
subshifts, but an equivalent, more palatable definition, is that minimal subshifts are uniformly
recurrent subshifts, that is subshifts X where, for every pattern u ∈ L (X), there exists a size
n s.t. the pattern u occurs in every pattern of X of size n. In particular, all configurations x
of X have the same patterns, and every pattern that appear should appears everywhere, i.e.
in any sufficiently large part of x.

We now proceed to the proof of the theorem. One direction is well known: A minimal
effectively closed subshift has a computable language, see [4] for example. Therefore L (Y) is
computable and therefore L (Y) ∩ Σ? is computable.

The other direction essentially amounts to the following: Given a set of patterns L
on an alphabet A, find a minimal subshift X that contains all patterns of L (and other
patterns). Before reading the proof, the reader should try by itself as an exercise to find a two-
dimensional minimal subshift X over an alphabet {a, b, c} that contains all one-dimensional
words over the alphabet {a, b}.

E. Jeandel and P. Vanier 40:13

Our proof is quite similar to a construction by Elek and Monod [12] of a subshift with a
non-amenable topological full group. Our construction is done however with more care to
ensure that everything we are doing remains computable and that our subshift is already
minimal, but the idea is essentially the same.

Let us now start with a 1 dimensional subshift X over an alphabet Σ with a computable
language.

We define recursively a set (wi)i∈N of biinfinite rows. Each row will be periodic. We will
denote by pi the period of the row and by vi the word that repeats, so that vi is of length pi

and for all k ∈ Z, (wi)k = vk mod pi
.

The row w0 is the row of period p1 = 1 corresponding to the word v0 = #. Suppose the
row wn is given, of period pn.

Let {u1, u2 . . . ukn+1} be the (computable) list of all words of length 2pn − 1 that appear
in X. We define vn+1 to be the word consisting of all possible pairs of words of size 2pn − 1,
separated by the # symbol

#u1#u1#u1#u2#u1#u3 . . . ukn+1#ukn+1−1#ukn+1#ukn+1

and wn+1 is the biinfinite word where vn+1 repeats periodically. Notice that vn+1 is of size
pn+1 = 2k2

n+1pn so that pn+1 is strictly greater than pn and pn divides pn+1 .
We repeat some properties of our set of rows:
The row wn is periodic of period pn. Furthermore the symbol # appears in wn only in
positions multiple of 2pn−1.
pi divides pj if i < j.
pn > n.

I Lemma 28. Let u be a word of length k that appears in wn for n ≥ k in position i. Then
u appears in position i+ tpk−1 in wk for some integer t.

Proof. The result is clear for n = k. Now suppose that n > k. There are two cases for u:
either u = s1#s2 for two words s1, s2 ∈ Σ? or u = s for some word s ∈ Σ?.

We start with the first case, u = s1#s2. The words s1 and s2 are words of size < k that
are factors of some word of size 2p(n−1) − 1 that appears in X. Therefore there are also
respectively suffix and prefix of some words t1, t2 that appear in X, each of size 2p(k−1) − 1.
By definition t1#t2 appears in wk therefore u appears in wk. As every symbol # inside wk

appears at positions that are multiples of 2pk−1 and that it is also the case inside wn (as pk

divides pn−1), the position where u appears in wk must be of the form i+ tpk−1 for some t.
Now the second case. Suppose that u = s for some word s that appears in X of size k.

u appears from position i to position i + k − 1 in wn. Let 0 ≤ j < pk−1 so that j = i − 1
mod pk−1. u is a word of size k that appears in X and therefore can be completed as a word v
of size 2pk−1−1 that appears in X by adding j letters at the beginning and 2pk−1−1−(j+k)
letters at the end. This word v appears at position tpk−1 + 1 in wk for some t and therefore
u appears in position tpk−1 + 1 + j = t′pk−1 + i in wk. J

I Definition 29. If i is an integer, the level of i, denoted by lvl(i) is the greatest power of 2
that divides i, i.e. i = k × 2lvl(i) with k odd. The level of 0 is +∞ by convention.

The two following lemmas are clear.

I Lemma 30. Let n > k, then lvl(i+ 2n) = lvl(i).

I Lemma 31. Let i 6= j s.t. lvl(i) ≥ k and lvl(j) ≥ k. Then |i− j| ≥ 2k > k.

STACS 2019

40:14 A Characterization of Subshifts with Computable Language

We now define a configuration y in the following way: the i-th row of y is the row wj

where j is the level of i.
For i = 0, we take any word w that is a limit point of {wj , j ∈ N}.
Notice that y is likely not computable, as the row 0 might be arbitrarily complex. However

all other rows are computable.
To simplify notations, we will denote the rows of y in exponent, so that the symbol in

the i-th row and j-th column of y is yi
j and the ith row of y is yi. By definition, we therefore

have yi
j = w

lvl(i)
j for i 6= 0.

I Lemma 32. Let u be a pattern defined over [1, k]× [1, k] that appears in y.
Then u also appears inside y at position (i+ 1, j + 1) with i ∈ [0, 2k − 1] and therefore u

appears inside the first 2k+1 − 1 rows of y (in the rows labeled 1 to 2k+1 − 1).

Proof. Let u be a pattern defined on the square [1, k]× [1, k].
Suppose that u appears inside y at position (i + 1, j + 1). That is: for all (l,m) ∈

[1, k]2, um
l = yi+m

j+l .
There are two cases. First, suppose that all of the integers i + 1, i + 2, . . . i + k are of

level strictly less than k. Then for all l ∈ [i+ 1, i+ k] and all integers t, yl+2kt = yl. We can
therefore suppose wlog that i ∈ [0, 2k−1] and the result is proven.

Otherwise some of the integers i+ 1, . . . i+ k is of level at least k. By Lemma 31, this
happens only for one of the integers, say the integer i+ r = z × 2n for n ≥ k.

The word ur appears by definition in yi+r which is of level at least k. By Lemma 28, it
also appears in wk at position j + 1 + tpk−1 and therefore in y2k at position j + 1 + tpk−1.
(Lemma 28 also applies if i+ r = 0, as the row 0 of u is the limit of rows of arbitrary large
level). In other words for all l ∈ [1, k], ur

l = y2k

j+tpk−1+l.
We now claim that the word u appears in position [2k−r+1, j+1+tpk−1] inside y. That is,

for all l,m ∈ [1, k]2, um
l = y2k−r+m

j+tpk−1+l. The result is clear for m = r. Now let m ∈ [1, k],m 6= r.
As i+m is of level strictly less than k, yi+m+t2k = yi+m for all t by Lemma 30. In particular
as i+ r is dividible by 2k, we get that yi+m = yi+m+2k−(i+r) = y2k−r+m. Furthermore the
row yi+m is periodic of period ps for some s < k and in particular it is periodic of period
pk−1. Therefore

um
l = yi+m

j+l = yi+m
k+l+tpk−1

= y2k−r+m
k+l+tpk−1

J

I Corollary 33. Let u be a pattern of size k × k inside y. Then u appears in any window of
size 2k+2 × 2pk.

Proof. Indeed, by the previous lemma, u appears inside y in position (i, j) for some i ∈ [1, 2k]
However the rows from 1 to 2k+1 − 1 are all periodic of period pk, and repeat vertically with
period 2k+1 by Lemma 30. Therefore the pattern u itself repeats horizontally with period
pk and repeats vertically with period 2k+1 and consequently appears in any window of size
2k+2 × 2pk. J

I Corollary 34. Let Y be the subshift that forbids all patterns of size k×k that do not appear
in the square [1, 2k+2]× [1, 2pk] of y.

Then Y is minimal, effectively closed, and L (X) = L (Y) ∩ Σ?.

Proof. The first conclusions are immediate from the previous corollary. The second one
comes from the fact that y (apart from the row 0) is computable. The third one is by
definition of y. J

E. Jeandel and P. Vanier 40:15

4 Discussion

In this article, we have introduced the analogues of the three Higman theorems, originally
for groups, in terms of subshifts. This reinforces the convictions of the authors that symbolic
dynamics has a deep connection with objects from combinatorial algebra. To obtain these
theorems, we had to introduce the following concepts:

An equivalent of the notion of free product for groups (Definitions 12 and 13).
An equivalent of the notion of subgroup containement (Definition 9).

Compared to existing constructions, these two new ideas are rather combinatorial rather
than dynamic. In particular, they cannot be defined easily in terms of the infinite words in
the subshifts; they are defined in terms of the finite words that constitute the language of
the subshift. This could be seen as a drawback of the construction, so we will give some
arguments explaining why more “dynamical” constructions cannot work.

The concept of the free product of subshifts is used for the relativized Higman theorem.
This operation does not appear in the work of Aubrun and Sablik [1] (which was flawed as
we saw) and is probably mandatory; Suppose that a minimal subshift X is defined from a
subshift Y by various dynamical constructions (cartesian product, factor, subactions, etc) as
in [1]. Let Y ′ be the smallest subshift of Y that contains all uniformly recurrent points of
Y . Then it is easy to see that Y ′ also defines X using the same constructions. However Y ′
may have very different computability properties than Y . In particular it is possible to have
L (X)c ≤e L (Y)c but L (X)c 6≤e L (Y ′)c.

In fact, when looking at our whole construction (and the construction of [1]), we see that
it is important to start with a subshift X with the property that, for every finite collection
of words u ∈ L (X), there exists a uniformly recurrent point of X that contains all of them.
So we either have to assume that our subshift has this property (this is what Aubrun did
in her PhD thesis, by assuming some mixing properties), or use a free product: The free
product of X with any (nonempty) subshift always has this property.

The full restriction operator v, the analogue of subgroup containment, is mostly used
in the equivalent of the Boone-Higman-Thompson theorem. In fact, it can be replaced in
the other theorems by more traditional dynamical operators, like factor maps (the original
Hochman theorem was indeed stated in terms of factor maps). It is not clear if we could
obtain a analogue of Boone-Higman-Thompson theorem in terms of factor map. It is certainly
true that factors of minimal subshifts of finite type have a computable language; However,
they also have the additional property that the set of their uniformly recurrent points is
dense, and therefore not all subshifts with computable language can be obtained this way.

References
1 Nathalie Aubrun and Mathieu Sablik. An Order on Sets of Tilings Corresponding to an Order

on Languages. In 26th International Symposium on Theoretical Aspects of Computer Science,
STACS 2009, February 26-28, 2009, Freiburg, Germany, Proceedings, pages 99–110, 2009.

2 Nathalie Aubrun and Mathieu Sablik. Simulation of Effective Subshifts by Two-dimensional
Subshifts of Finite Type. Acta Applicandae Mathematicae, 126(1):35–63, 2013. doi:10.1007/
s10440-013-9808-5.

3 Alexis Ballier. Propriétés structurelles, combinatoires et logiques des pavages. PhD thesis,
Aix-Marseille Université, 2009.

4 Alexis Ballier and Emmanuel Jeandel. Computing (or not) Quasi-periodicity Functions of
Tilings. In Jarkko Kari, editor, Second Symposium on Cellular Automata "Journées Automates
Cellulaires", JAC 2010, Turku, Finland, December 15-17, 2010. Proceedings, pages 54–64.
Turku Center for Computer Science, 2010.

5 Robert Berger. The Undecidability of the Domino Problem. Number 66 in Memoirs of the
American Mathematical Society. The American Mathematical Society, 1966.

STACS 2019

http://dx.doi.org/10.1007/s10440-013-9808-5
http://dx.doi.org/10.1007/s10440-013-9808-5

40:16 A Characterization of Subshifts with Computable Language

6 William W. Boone and Graham Higman. An algebraic characterization of groups with soluble
word problem. Journal of the Australian Mathematical Society, 18(1):41–53, August 1974.
doi:10.1017/S1446788700019108.

7 Mike Boyle, Ronnie Pavlov, and Michael Schraudner. Multidimensional sofic shifts without
separation and their factors. Transactions of the AMS, 362(9):4617–4653, September 2010.
doi:10.1090/S0002-9947-10-05003-8.

8 W. Craig and R. L. Vaught. Finite Axiomatizability Using Additional Predicates. The Journal
of Symbolic Logic, 23(3):289–308, September 1958.

9 Bruno Durand, Andrei Romashchenko, and Alexander Shen. Effective Closed Subshifts in 1D
Can Be Implemented in 2D. In Fields of Logic and Computation, number 6300 in Lecture Notes
in Computer Science, pages 208–226. Springer, 2010. doi:10.1007/978-3-642-15025-8_12.

10 Bruno Durand, Andrei Romashchenko, and Alexander Shen. Fixed-point tile sets and their
applications. Journal of Computer and System Sciences, 78(3):731–764, May 2012. doi:
10.1016/j.jcss.2011.11.001.

11 Bruno Durand and Andrei E. Romashchenko. On the expressive power of quasiperiodic SFT.
In 42nd International Symposium on Mathematical Foundations of Computer Science (MFCS),
pages 1–14, 2017.

12 Gábor Elek and Nicolas Monod. On the Topological Full Group of a Minimal Cantor Z2-System.
Proceedings of the American Mathematical Society, 141(10):3549–3552, October 2013.

13 Richard M. Friedberg and Hartley Rogers. Reducibility and Completeness for Sets of Integers.
Zeitschrift für mathematische Logik und Grundlagen der Mathematik, 5:117–125, 1959.

14 Graham Higman. Subgroups of Finitely Presented Groups. Proceedings of the Royal Society
of London. Series A, Mathematical and Physical Sciences, 262(1311):455–475, August 1961.

15 Graham Higman and Elizabeth Scott. Existentially Closed Groups. Oxford University Press,
1988.

16 Michael Hochman. On the dynamics and recursive properties of multidimensional symbolic
systems. Inventiones Mathematicae, 176(1):2009, April 2009.

17 Michael Hochman and Tom Meyerovitch. A characterization of the entropies of multi-
dimensional shifts of finite type. Annals of Mathematics, 171(3):2011–2038, May 2010.
doi:10.4007/annals.2010.171.2011.

18 Emmanuel Jeandel. Enumeration Reducibility in Closure Spaces with Applications to Logic
and Algebra. In ACM/IEEE Symposium on Logic in Computer Science (LICS), pages 1–11,
2017.

19 Emmanuel Jeandel and Pascal Vanier. Characterizations of periods of multidimensional shifts.
Ergodic Theory and Dynamical Systems, 35(2):431–460, April 2015. doi:10.1017/etds.2013.
60.

20 Aimee Johnson and Kathleen Madden. Factoring higher-dimensional shifts of finite type onto
the full shift. Ergodic Theory and Dynamical Systems, 25:811–822, 2005.

21 S.C. Kleene. Two Papers on the Predicate Calculus, chapter Finite Axiomatizability of Theories
in the Predicate Calculus Using Additional Predicate Symbols, pages 31–71. Number 10 in
Memoirs of the American Mathematical Society. American Mathematical Society, 1952.

22 R.C. Lyndon and P.E. Schupp. Combinatorial Group Theory. Classics in Mathematics. Springer
Berlin Heidelberg, 2001.

23 Daniele Marsibilio and Andrea Sorbi. Bounded Enumeration Reducibility and its degree
structure. Archive for Mathematical Logic, 51:163–186, 2012.

24 Mark Sapir. Combinatorial Algebra: Syntax and Semantics. Springer Monographs in Mathe-
matics. Springer, 2014.

25 Stephen G. Simpson. Mass problems associated with effectively closed sets. Tohoku Mathe-
matical Journal, 63(4):489–517, 2011.

26 Richard J. Thompson. Embeddings into Finitely Generated Simple Groups which Preserve
the Word Problem. In Sergei I. Adian, William W. Boone, and Graham Higman, editors,
Word Problems II, volume 95 of Studies in Logic and the Foundations of Mathematics, pages
401–441. North Holland, 1980.

http://dx.doi.org/10.1017/S1446788700019108
http://dx.doi.org/10.1090/S0002-9947-10-05003-8
http://dx.doi.org/10.1007/978-3-642-15025-8_12
http://dx.doi.org/10.1016/j.jcss.2011.11.001
http://dx.doi.org/10.1016/j.jcss.2011.11.001
http://dx.doi.org/10.4007/annals.2010.171.2011
http://dx.doi.org/10.1017/etds.2013.60
http://dx.doi.org/10.1017/etds.2013.60

Lower Bounds for DeMorgan Circuits of Bounded
Negation Width
Stasys Jukna
Institute of Computer Science, Goethe University Frankfurt, Frankfurt am Main, Germany
Institute of Data Science and Digital Technologies, Vilnius University, Lithuania
http://www.thi.informatik.uni-frankfurt.de/~jukna/
stjukna@gmail.com

Andrzej Lingas
Department of Computer Science, Lund University, Box 118, 22100 Lund, Sweden
http://fileadmin.cs.lth.se/cs/Personal/Andrzej_Lingas/
Andrzej.Lingas@cs.lth.se

Abstract
We consider Boolean circuits over {∨,∧,¬} with negations applied only to input variables. To
measure the “amount of negation” in such circuits, we introduce the concept of their “negation
width.” In particular, a circuit computing a monotone Boolean function f(x1, . . . , xn) has negation
width w if no nonzero term produced (purely syntactically) by the circuit contains more than w
distinct negated variables. Circuits of negation width w = 0 are equivalent to monotone Boolean
circuits, while those of negation width w = n have no restrictions. Our motivation is that already
circuits of moderate negation width w = nε for an arbitrarily small constant ε > 0 can be even
exponentially stronger than monotone circuits.

We show that the size of any circuit of negation width w computing f is roughly at least the
minimum size of a monotone circuit computing f divided by K = min{wm,mw}, where m is the
maximum length of a prime implicant of f . We also show that the depth of any circuit of negation
width w computing f is roughly at least the minimum depth of a monotone circuit computing f
minus logK. Finally, we show that formulas of bounded negation width can be balanced to achieve
a logarithmic (in their size) depth without increasing their negation width.

2012 ACM Subject Classification Theory of computation → Circuit complexity

Keywords and phrases Boolean circuits, monotone circuits, lower bounds

Digital Object Identifier 10.4230/LIPIcs.STACS.2019.41

Funding Stasys Jukna: Research supported by the DFG grant JU 3105/1-1 (German Research
Foundation).
Andrzej Lingas: Research supported in part by VR grant 2017-03750 (Swedish Research Council).

1 Introduction

Understanding the power of negations in computations is one of the most basic objectives
in computational complexity. While strong, even exponential, lower bounds for explicit
monotone Boolean functions are already known for monotone Boolean {∨,∧} circuits, we
can currently prove only depressingly small (linear) lower bounds on the size of {∨,∧,¬}
circuits when there are no restrictions on the number or the usage of negation gates.

In this paper, we concentrate on DeMorgan circuits, that is, on {∨,∧,¬} circuits with
fanin-2 OR and AND gates, and with negation applied only to input variables. In other
words, a DeMorgan circuit is a circuit with fanin-2 OR and AND gates, while inputs are
variables x1, . . . , xn and their negations x1, . . . , xn; to simplify notation, we will write xi
instead of ¬xi. DeMorgan circuits are sometimes called normalized circuits [17], standard
circuits [31, Section 6.13] or circuits with tight negations [25]. A circuit is a formula if its
underlying graph is a tree. A monotone circuit is a DeMorgan circuit with no negated input

© Stasys Jukna and Andrzej Lingas;
licensed under Creative Commons License CC-BY

36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019).
Editors: Rolf Niedermeier and Christophe Paul; Article No. 41; pp. 41:1–41:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.thi.informatik.uni-frankfurt.de/~jukna/
mailto:stjukna@gmail.com
http://fileadmin.cs.lth.se/cs/Personal/Andrzej_Lingas/
mailto:Andrzej.Lingas@cs.lth.se
https://doi.org/10.4230/LIPIcs.STACS.2019.41
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

41:2 Circuits of Bounded Negation Width

variables at all. By just doubling the circuit size and using DeMorgan rules, any circuit over
{∨,∧,¬} of size s can be converted to a DeMorgan circuit computing the same function and
having size at most 2s (see, for example, [6, Theorem 3.1]).

The effect of negations on the size or depth of {∨,∧,¬} circuits was mainly considered
by either restricting the total number of used negation gates, or by restricting the usage
of negations. There is an extensive literature on the research in the first direction, when
the total number of NOT gates is bounded; here negations can be applied not only to input
variables. We refer to [13, Chapter 10] and the papers cited therein for this line of research;
see also [26, 3, 9] for more recent developments in this direction.

Another line of research (which attracted much less attention, and which we follow in
this paper) was to restrict the “amount of negation” in circuits. One of the first results
in this direction was proved by Raz and Wigderson [21, Theorem 4.1]: if w ≤ n2−ε for a
constant ε > 0, then any DeMorgan circuit with at most w negated input variables computing
the s-t connectivity function of n-vertex graphs must have depth Ω(log2 n). Guo et al. [9]
have proved that any DeMorgan circuit with at most w negated input variables computing
a monotone Boolean function f must have depth at least the monotone circuit depth of
f minus w. Koroth and Sarma [16] relax this restriction (on the total number of allowed
negated input variables), and say that a (not necessarily DeMorgan) circuit over {∨,∧,¬}
has orientation weight w if the function computed at each gate is monotone in all but at
most w variables. They prove that the depth of any circuit over {∨,∧,¬} of orientation
weight w computing a monotone function f is at least the minimum depth of a monotone
circuit computing f divided by 4w + 1.

In this paper, as the measure of the “amount of negation” in DeMorgan circuits, we
consider their “negation width” (see Definition 1.2 below). This measure (without calling it
the negation width) was already considered by Amano and Maruoka [2, Sect. 4]. They used
a modification of Razborov’s Method of Approximation [23, 24] to show that DeMorgan
circuits of small negation width for the Clique function must still be large (we recall their
result right before Corollary 6.2). Our main results (Theorems 1.6 and 1.8) give a general
reduction of DeMorgan circuits of bounded negation width to monotone circuits, from which
the bound of [2], as well as new lower bounds, follow (see Section 6).
I Notation. We use standard terminology regarding Boolean functions (see, for example, [31]).
In particular, a term is an AND of literals, each being a variable or its negation. The length
of a term is the number of distinct literals in it. A term is a zero term if it contains a variable
and its negation. An implicant of a Boolean function f(x1, . . . , xn) is a nonzero term p such
that p ≤ f holds, that is, p(a) ≤ f(a) holds for all a ∈ {0, 1}n. An implicant of f is a prime
implicant of f if after the removal of all occurrences of any single literal in p the resulting
term is not an implicant of f anymore. The set of all prime implicants of f will be denoted
by PI(f). A Boolean function f is monotone if a ≤ b implies f(a) ≤ f(b). Note that if f is
monotone, then all prime implicants of f are positive, that is, consist solely of not negated
variables.

1.1 Negation width of circuits
Our goal is to understand to what extent the usage of negated input variables can decrease
the size or the depth of DeMorgan circuits computing monotone Boolean functions. As a
measure of the “amount of negation” in DeMorgan circuits, we will use their “negation width.”
This measure is motivated by a trivial fact that every DeMorgan circuit not only computes a
particular Boolean function but also produces (purely syntactically) some set of terms in a
natural way.

S. Jukna and A. Lingas 41:3

I Definition 1.1 (Terms produced by circuits). The set of terms produced at an input gate
holding a literal z is a singleton-set {z}. The set of terms produced at an OR gate is a union
of sets of terms produced at its two inputs, while the set produced at the AND gate is obtained
by taking the AND of every term produced at one of its inputs with every term produced at
the other input.

The set T (C) of terms produced by the entire circuit C is the set of terms produced at the
output gate of C. During the production of terms, we use the “shortening” axiom x ∧ x = x,
but do not use the “annihilation” axiom x ∧ x = 0. So, T (C) can contain also zero terms,
those having a variable and its negation.1 Easy induction on the circuit size shows that the
Boolean function f computed by a circuit C is the function computed by the OR of all terms
produced by C.

If the circuit C is monotone (has no negated inputs at all), then we clearly have PI(f) ⊆
T (C), that is, every prime implicant of f must then be produced by the circuit. But even
then, the equality T (C) = PI(f) does not need to hold: already in 1981, Okol’nishnikova [18]
exhibited an explicit monotone Boolean function f of n variables which can be computed by
a monotone circuit of size O(n), but any monotone circuit C satisfying T (C) = PI(f) must
have 2Ω(n1/4) gates.

The situation when the computed by the circuit C function f is monotone, but the
circuit C itself is not necessarily monotone, is even more subtle: then even the inclusion
PI(f) ⊆ T (C) does not need to hold. For example, the function f = x ∨ y is computed by a
circuit C = xy ∨ y, but T (C) = {xy, y} whereas PI(f) = {x, y}.

However, we have the following simple and well-known property of (not necessarily
monotone) DNFs computing monotone Boolean functions (see, for example, [5, Theorem 1.24
on p. 37]): if D is a (not necessarily monotone) DNF computing a monotone Boolean
function f , then the monotone DNF obtained from D by first removing all zero terms,
and then removing all occurrences of negated variables from the remaining terms, also
computes f . This, in particular, implies that the obtained monotone DNF must contain all
prime implicants of f .

If C is a DeMorgan circuit computing f , then the OR of terms in T (C) computes f . So,
by the aforementioned fact [5, Theorem 1.24 on p. 37], for every prime implicant p of f ,
the set T (C) must contain either p itself or at least one extension of p, that is, a nonzero
term of the form p · r, where the term r = xi1 · · ·xil consists solely of negated variables.
This motivates the following measure of DeMorgan circuits computing monotone Boolean
functions.

I Definition 1.2 (Negation width). A DeMorgan circuit computing a monotone Boolean
function f has negation width w if for every prime implicant p of f , the circuit produces
either p itself or some its extension containing at most w negated variables.

There are no other restrictions on the remaining produced terms, except the trivial one
that the function computed by the OR of all produced terms must coincide with f . Note
that the negation width w of any DeMorgan circuit computing f satisfies 0 ≤ w ≤ n−m,
where m is the minimum length of a prime implicant of f . Also, minimal circuits of negation
width w = 0 are monotone circuits: just replace each negated input gate xi by constant 0.

1 At a “functional” level, zero terms are redundant: they contribute nothing to the values of the computed
function. The only reason to keep them in T (C) is to ensure that “syntactical” changes of circuits
(replacements of some input gates by constants), which we will latter make, do not turn some previously
zero terms into nonzero terms.

STACS 2019

41:4 Circuits of Bounded Negation Width

Examples of sufficient conditions for a circuit to have negation width at most w are any of
the following.

The circuit has at most w negated input variables; such circuits were considered, for
example, by Raz and Wigderson [21], and Guo et al.[9].
No input-output path has more than2 logw AND gates; such circuits computing quadratic
forms (multi-output functions) were considered in [17].
No nonzero term produced by the circuit contains more than w distinct negated variables.
Note that this restriction is a relaxation of both two previous restrictions.

None of these sufficient conditions is necessary. In particular, the negation width puts no
restrictions on the length of produced zero terms. So, at intermediate gates, the circuit can
produce very long terms, and then cancel them (turn them into zero terms). At this point,
it is worth to mention that DeMorgan circuits computing monotone Boolean functions f
more efficiently than monotone circuits must use cancellations (must produce zero terms):
otherwise, we could just replace all negated input variables by constants 1, and the resulting
monotone circuit would still compute f .

We shall also consider DeMorgan circuits of bounded average negation width. Let C be a
DeMorgan circuit computing a monotone Boolean function f .

IDefinition 1.3 (Average negation width). The negation width of a prime implicant p ∈ PI(f)
in the circuit C is the minimum number w such that T (C) contains an extension of p with at
most w negated variables. The average negation width of the circuit C is the average, over
all prime implicants p ∈ PI(f), of the negation width of p in C.

Note that a circuit C computing f has negation width w if every prime implicant of f has
negation width at most w in C. Average negation width relaxes this “every” requirement.

1.2 Motivation
Our motivation to consider circuits of bounded negation width w is that allowance of
even moderately large negation width w = nε for an arbitrarily small constant ε > 0 can
substantially reduce the size of monotone circuits.

I Example 1.4. The triangle function CLIQUE(n, 3) has one variable for every edge of the
complete graph Kn on {1, . . . , n}, and accepts a subgraph G of Kn if and only if G contains
a triangle. It is known that this function requires monotone circuits of almost cubic size
n3−o(1) [23, 1]. According to Claim A.3 in Appendix A, the function can be computed in
already sub-cubic size n3−ε/4 if negation width w = nε is allowed.

I Example 1.5. The threshold-k function Thnk accepts a Boolean input of length n if and
only if it contains at least k ones. The smallest known monotone circuits for Thnk have size of
order n log k (see, for example, [15]). On the other hand, for k ≤ n1/3, the function Thnk can
be computed by a DeMorgan circuit of linear size O(n) if negation width w = k3 is allowed
(see Claim A.5 in Appendix A.3).

Using monotone circuit lower bounds of Razborov [24] and Tardos [29], one can show that,
on some monotone Boolean functions, super-polynomial, and even exponential gaps between
the size of monotone circuits and circuits of moderate negation width can be achieved; see
Examples A.1 and A.2 in Appendix A. We are not aware of any similar separating examples
for restrictions on the use of negations considered in [21, 16, 9]: restricted number of allowed
negated input variables, or restricted orientation weight.

2 All logarithm in this paper are to the base 2.

S. Jukna and A. Lingas 41:5

1.3 Our contributions
Our first general result relates (non-monotone) DeMorgan circuits and formulas of bounded
negation width to monotone circuits and formulas.

I Theorem 1.6. Let f be a monotone Boolean function with all prime implicants of length at
most m. Let s be the minimum size of a monotone circuit computing f , and d the minimum
depth of such a circuit. Then any DeMorgan circuit of negation width w computing f must
have size at least s/K−1 and depth at least d−logK, where K = 8 min{mw, wm}·log |PI(f)|.

This theorem allows to extend known lower bounds for monotone circuits to lower bounds
for (non-monotone) DeMorgan circuits of bounded negation width. We provide several such
extensions for specific monotone Boolean functions following from Theorem 1.6 in Section 6
(see Corollaries 6.1-6.5). In particular, Theorem 1.6 implies that any DeMorgan circuit of
negation with w ≤ nε computing the triangle function CLIQUE(n, 3) must have Ω(n3−4ε)
gates (see Corollary 6.1). This bound is not very far from the truth because for w = nε,
O(n3−ε/4) gates are also sufficient (Claim A.3 in Appendix A).

Our second general result concerns circuits of bounded average width. It complements the
general framework for converting lower bounds for monotone circuits to those for DeMorgan
circuits of bounded negation width given in Theorem 1.6.

I Definition 1.7. A monotone Boolean function h K-approximates a monotone Boolean
function f if there is an OR g of at least a 1/K portion of prime implicants of f such that
g ≤ h ≤ f holds.

I Theorem 1.8. Let f be a monotone Boolean function with all prime implicants of length
at most m. Let w ≥ 0 and K = 8 · min{m2w, (2w)m}. If every monotone circuit K-
approximating f requires at least t gates, then every DeMorgan circuit of average negation
width w computing f must also have at least t gates.

Let us note the difference between Theorems 1.6 and 1.8. The advantage of Theorem 1.6
is that one can directly use known lower bounds on the monotone circuit complexity of the
function f themselves. Theorem 1.8 is more general: it applies to circuits when only the
average negation width is bounded, and we do not have the additional log |PI(f)| factor in
the “blow down” parameter K. However, in order to apply Theorem 1.8, one has to show
that not only the function f itself but also any sufficiently close approximation of f requires
large monotone circuits. So, one has to analyze the monotone lower bound proofs to ensure
this latter property. We will demonstrate this by proving that every DeMorgan circuit of
average negation width w = o(

√
k/ log k) computing the clique function CLIQUE(n, k) must

have 2Ω(
√
k) gates (see Corollary 6.8 in Section 6).

Our third general result extends the well-known Spira’s depth reduction theorem [27]
to DeMorgan formulas of bounded negation width: it shows that such formulas can also be
balanced without increasing their negation width.

I Theorem 1.9. If a monotone Boolean function f can be computed by a DeMorgan formula
of size s and negation width w, then f can be also computed by a DeMorgan formula of depth
at most 3 · log s and the same negation width w.

The rest of the paper is organized as follows. In Section 2, a special type of “random
subcircuits” is introduced. Sections 3–5 are devoted to the proof of our main results
(Theorems 1.6–1.9). In Section 6, we give several applications of our general results to
specific Boolean functions. Appendix A contains proofs of the upper bounds claimed in our
motivating examples (Examples 1.4–A.1).

STACS 2019

41:6 Circuits of Bounded Negation Width

2 Random subcircuits

Let f(x1, . . . , xn) be a monotone Boolean function, and C be a DeMorgan circuit computing f .
For a subset Y = {xi : i ∈ I} of variables, the monotone Y -subcircuit of C is obtained as
follows.
1. First, set to 0 all variables in Y ; so, for every i ∈ I, the input gate xi is set to 0, while

the negated input gate xi is set to 1.
2. Then replace by constant 0 each of the remaining negated input gates xj for j 6∈ I.
3. Finally, eliminate constant input gates through repeated replacements of 0∧ u by 0, 1∨ u

by 1, and 0 ∨ u, 1 ∧ u by u.
Schematically:

C(x, y, x, y) Step 17→ C(x, 0, x, 1) Step 27→ C(x, 0, 0, 1) Step 37→ C+(x) .

I Example 2.1. Consider the DeMorgan formula C = (x1∨x2∨x3)(x1∨x2∨x5)(x3∨x4∨x5),
and Y = {x1, x4}. After the first step, we obtain the formula (0∨x2∨x3)(1∨x2∨x5)(x3∨0∨x5).
After the second step, we obtain the formula (0 ∨ x2 ∨ 0)(1 ∨ 0 ∨ x5)(x3 ∨ 0 ∨ 0) and, after
the elimination of constants, the resulting monotone sub-formula of C is x2x3.

The following lemma is just a simple observation.

I Lemma 2.2. If a DeMorgan circuit C computes a monotone Boolean function f , then the
monotone Boolean function h computed by any monotone subcircuit of C satisfies h ≤ f .

Proof. Take an arbitrary subset Y = {xi : i ∈ I} of variables, and let C+ be a monotone
Y -subcircuit of C. Let h be the monotone Boolean function computed by C+. We have to
show that h ≤ f holds.

Let g be a monotone Boolean function computed by the circuit C ′ obtained from C by
setting all variables in Y to 0. Since the function f is monotone, we have g ≤ f , and even
PI(g) ⊆ PI(f). Now, the circuit C+ is obtained from C ′ by replacing by zeroes all remaining
(not yet set to constant 1) negated input variables. So, the set T (C+) of terms produced
by C+ is obtained from T (C ′) by removing all terms with at least one negated variable
(including all zero terms). Since g is the OR of all terms in T (C ′), and h is the OR of all
terms in T (C+), the inclusion T (C+) ⊆ T (C ′) yields h ≤ g. So, h ≤ g ≤ f , as desired. J

Let m ≥ 3 and w ≥ 1 be integers. A random (m,w)-subcircuit C of C is a monotone
Y -subcircuit of C for Y ⊆ {x1, . . . , xn} being a random subset of variables with each variable
included in Y independently with probability 1− ε, where

ε :=
{

1
w if w ≥ m,
1− 1

m if w < m.

The next lemma is just a refinement of [17, Lemma 3].

I Lemma 2.3. Let C be a DeMorgan circuit computing a monotone Boolean function f ,
and C be a random (m,w)-subcircuit of C for m ≥ 3 and w ≥ 1. If a prime implicant p of f
has length at most m, and has negation width at most w in C, then p is produced by C with
probability at least 1/K, where K ≤ 4mw for w = 1, 2, and K ≤ 4 ·min{mw, wm} for w ≥ 3.

Proof. Since the negation width of the prime implicant p in the (deterministic) circuit C is
at most w, the set T (C) of terms produced by C must contain a nonzero term p · r, where
term r consists solely of l ≤ w negated variables. The probability that all these negated l

S. Jukna and A. Lingas 41:7

variables are set to 0 (and hence, that the term r is set to 1) is at least (1− ε)l ≥ (1− ε)w.
The probability that none of the t ≤ m variables of p is set to 0 is εt ≥ εm. So, the prime
implicant p is produced by C with probability at least α := εm(1− ε)w. So, it remains to
show that α ≥ 1/K. When doing this, we will use two simple facts: (1− 1/t)t ≥ 1/4 holds
for all integers t ≥ 2, and ts ≥ st holds for all integers 3 ≤ t ≤ s.

Now, if w ≥ m, then ε = 1/w, and we obtain α = (1/w)m(1− 1/w)w ≥ 1
4w
−m ≥ 1

4m
−w,

where the last inequality holds because m ≥ 3. If w < m, then ε = 1− 1/m, and we obtain
α = (1− 1/m)m(1/m)w ≥ 1

4m
−w ≥ 1

4w
−m, where the last inequality holds, as long as w ≥ 3.

In both cases, we have that α is at least 1
4 ·max{m−w, w−m} ≥ 1/K, as desired. If w = 1 or

w = 2, then w < m, and we have α ≥ 1
4m
−w. J

3 Proof of Theorem 1.6

Theorem 1.6 is a direct consequence of the following lemma.

I Lemma 3.1 (Reduction lemma). Let f be a monotone Boolean function with all prime
implicants of length at most m. If C is a DeMorgan circuit of negation width w computing
f , then there exist at most K = 8 ·min{mw, wm} · log |PI(f)| monotone sub-circuits of C
whose OR also computes f .

In particular, if C has size s and depth d, then the resulting monotone circuit has size
s+ ≤ (s + 1)K and depth d+ ≤ d + logK. Hence, the lower bounds s ≥ s+/K − 1 and
d ≥ d+ − logK claimed in Theorem 1.6 follow.

Proof. Let C be a random (m,w)-subcircuit of C, and take K independent copies C1, . . . ,

CK of C. Since the circuit C has negation width w, every prime implicant of f must have
negation width at most w in C. By Lemma 2.3, we have Pr {p ∈ T (C)} ≥ 1/t for every
prime implicant p ∈ PI(f) of f , where t := 4 ·min{wm,mw}. Note that K/t = 2 · log |PI(f)|.
Hence, for every prime implicant p ∈ PI(f), we have

Pr {p 6∈ T (Ci) for all i = 1, . . . ,K} ≤ (1− 1/t)K ≤ e−K/t ≤ |PI(f)|−2 .

By the union bound, the probability that some prime implicant of f is produced by none of
the circuits C1, . . . ,CK is strictly smaller than 1. Consequently, there must be a sequence
C1, . . . , CK of realizations of these circuits such that every prime implicant of f is produced
by at least one of these circuits. Consider the monotone Boolean function h = h1 ∨ · · · ∨ hK ,
where hi is the (monotone) Boolean function computed by Ci. By Lemma 2.2, we have
h ≤ f . On the other hand, the inclusion PI(f) ⊆ T (C1) ∪ · · · ∪ T (CK) yields the converse
inequality f ≤ h. So, the OR of the circuits C1, . . . , CK computes h = f , as desired. J

4 Proof of Theorem 1.8

Let f be a monotone Boolean function with all prime implicants of length at most m. Let C
be a DeMorgan circuit of average negation width w computing f . Recall that a monotone
Boolean function h K-approximates a monotone Boolean function f if there is an OR g of at
least a 1/K portion of prime implicants of f such that g ≤ h ≤ f holds. Now suppose that
every monotone circuit K-approximating f for K = 8 ·min{m2w, (2w)m} requires t gates.
Our goal is to show that then the circuit C must have at least t gates.

STACS 2019

41:8 Circuits of Bounded Negation Width

Since the average negation width of C is w, some set P ⊆ PI(f) of |P | ≥ 1
2 |PI(f)| prime

implicants of f have negation width at most 2w in C. Let C be a random (m,w)-subcircuit
of C. By Lemma 2.3, we have Pr {p ∈ T (C)} ≥ 2/K for every prime implicant p ∈ P . So, the
expected number of prime implicants p ∈ P produced by C is at least 2|P |/K ≥ |PI(f)|/K.

There must therefore be a realization C+ of C such that the set P ′ = P ∩ T (C+) has
|P ′| ≥ |PI(f)|/K terms. Let g be the OR of the terms in P ′, and h be the monotone Boolean
function computed by C+. Since P ′ ⊆ T (C+), we have g ≤ h, while the second inequality
h ≤ f follows from Lemma 2.2. This means that the circuit C+ K-approximates f and, by
our assumption about the function f , the monotone circuit C+ and, hence, also the original
(non-monotone) circuit C must have at least t gates, as desired. J

5 Proof of Theorem 1.9

It is long known that DeMorgan formulas can be balanced: every DeMorgan formula of size
s can be simulated by a DeMorgan formula of depth at most c log s. This was first proved
by Spira [27] with c < 3.42, while the best currently known constant c < 1.73 is due to
Khrapchenko [14].

In our context (when the negation width of formulas is bounded), the following natural
question arises: can also DeMorgan formulas of bounded negation width be balanced without
increasing the negation width of the resulting (balanced) formulas? The question is nontrivial
because Spira’s argument, as well as subsequent ones introduce negation gates applied to
sub-formulas (not just to input variables), which may result in a much larger negation width.

We therefore will argue a bit differently: we first show that monotone formulas can be
turned into balanced formulas with an additional property that all terms produced by the
original formula are also produced by the balanced formula. As before, for a DeMorgan
circuit or formula F , T (F) denotes the set of terms produced by F . Two formulas are
equivalent if they compute the same function.

I Lemma 5.1. For every monotone formula F of size s, there is an equivalent monotone
formula F ′ of depth at most 3 log s such that T (F) ⊆ T (F ′).

Proof. Let F be a monotone formula of size s. Our goal is to show that there is an equivalent
monotone formula F ′ of depth at most 3 log s such that T (F ′) ⊇ T (F). That is, the balanced
formula F ′ produces all terms produced by the original formula F .

We argue by induction on s. The claim is trivially true for s = 2 (just take F ′ = F).
Now assume that the claim holds for all formulas with fewer than s leaves, and prove it for
formulas with s leaves. Take an arbitrary monotone formula F with s leaves. By walking
from the output-gate of F we can find a sub-formula H such that H has ≥ s/2 leaves but its
left and right sub-formulas each have < s/2 leaves. Now replace the sub-formula H of F by
constants 0 and 1, and let F0 and F1 be the resulting formulas. The key observation (already
made by Brent, Kuck and Maruyama [4], and Wegener [30]) is that, due to the monotonicity,
F1(x) = 0 implies F0(x) = 0. Thus the formula (H ∧ F1) ∨ F0 is equivalent to F .

The formulas F0 and F1 as well as the left and right sub-formulas of H each have at most
s/2 leaves. By the induction hypothesis, F0 and F1 can be replaced by formulas F ′0 and F ′1
of depth at most 3 log(s/2), and the formula H can be replaced by a formula H ′ of depth at
most 1 + 3 log(s/2) such that

T (F1) ⊆ T (F ′1) , T (F0) ⊆ T (F ′0) and T (H) ⊆ T (H ′) . (1)

S. Jukna and A. Lingas 41:9

Thus, the resulting entire formula

F ′ = (H ′ ∧ F ′1) ∨ F ′0 (2)

is equivalent to F and has depth at most 2 + 1 + 3 log(s/2) = 3 log s.
It remains to show that the set T (F ′) of terms produced by the (balanced) formula

F ′ satisfies T (F ′) ⊇ T (F). Let Fz be the formula obtained from F by replacing the sub-
formula H by a new variable z. Then the set of terms produced by Fz has the form
T (Fz) = ({z}∗Q)∪R, where Q is some set of terms, R consists of all terms in T (Fz) with no
occurrences of the variable z, and T1 ∗T2 stands for the set of terms {t1∧ t2 : t1 ∈ T1, t2 ∈ T2}.
This yields

T (F) = [T (H) ∗Q] ∪R , T (F1) = Q ∪R and T (F0) = R . (3)

So,

T (F ′) (2)= [T (H ′) ∗ T (F ′1)] ∪ T (F ′0)
(1)
⊇ [T (H) ∗ T (F1)] ∪ T (F0)

(3)= [T (H) ∗ (Q ∪R)] ∪R ⊇ [T (H) ∗Q] ∪R (3)= T (F) . J

Proof of Theorem 1.9. Let f be a monotone Boolean function, and w ≥ 0. Suppose that f
can be computed by a DeMorgan formula G = G(x, x) of size s and negation width w. Our
goal is to show that then f can be computed by a DeMorgan formula of negation width at
most w and depth at most 3 · log s.

Replace all negated input variables xi in G by new variables yi, and consider the monotone
formula F = G(x, y). Since the formula G has negation width w, we know that the monotone
formula F has the following property:

(a) for every prime implicant p =
∧
i∈S xi of f there is a term p · r ∈ T (F) with r =

∧
j∈T yj ,

T ∩ S = ∅ and |T | ≤ w.

Apply Lemma 5.1 to the formula F (x, y). This gives us a monotone formula F ′(x, y) of
depth at most 3 log s whose set T (F ′) of produced terms contains all terms produced by the
formula F . This latter property implies that the (balanced) formula F ′ also has property (a).
So, if we replace back in F ′(x, y) the input variables yi by negated variables xi, the obtained
(also balanced) DeMorgan formula F ′′(x, x) computes our function f and has negation width
w, as desired. J

6 Explicit lower bounds

For a monotone Boolean function f(x1, . . . , xn), Cw(f) will denote the minimum size of a
DeMorgan circuit of negation width w computing f , while C+(f) will denote the minimum
size of a monotone circuit computing f . In the case of DeMorgan formulas, these measures
are denoted by Lw(f) and L+(f); in this case, the size of a formula is the number of leaves
of the underlying tree. Let also Dw(f) denote the minimum depth of a DeMorgan circuit of
negation width w computing f , and let D+(f) denote the minimum depth of a monotone
circuit computing f .

Theorem 1.6 directly yields the following lower bounds on the size and depth of DeMorgan
circuits of bounded negation width. Let f(x1, . . . , xn) be a monotone Boolean function with
M prime implicants, each of length at most m. Then for any w ≥ 0, we have

Cw(f) ≥ C+(f)
K

− 1 , Lw(f) ≥ L+(f)
K

− 1 and Dw(f) ≥ D+(f)− logK , (4)

STACS 2019

41:10 Circuits of Bounded Negation Width

where

K = 8 ·min{mw, wm} · logM . (5)

The k-clique function CLIQUE(n, k) has
(
n
2
)
variables, one for each edge of the complete

graph Kn on [n] = {1, . . . , n}. Every assignment of Boolean values to these variables specifies
a subgraph of Kn, and the function accepts the assignment if and only if the specified graph
contains a complete graph on k or more vertices; note that we do not require k to be an
integer.

I Corollary 6.1 (Small cliques). There are absolute constants c1, c2 > 0 such that, if f =
CLIQUE(n, 3), and w ≤ nε for ε > 0, then

c1n
3−4ε ≤ Cw(f) ≤ c2n3−ε/4 .

Proof. Here we only show the lower bound; the proof of the upper bound Cw(f) = O(n3−ε/4)
is given in Appendix A.2 (see Claim A.4). As shown by Alon and Boppana [1, Lemma 3.14],
C+(f) = Ω

(
n3/ log3 n

)
holds. Since f has M =

(
n
3
)
≤ n3 prime implicants, each of length

m = 3, the parameter K in Equation (5) is at most a constant times wm · logM ≤ 3n3ε logn,
and Equation (4) yields the desired lower bound Cw(f) ≥ C+(f)/K − 1 = Ω(n3−4ε). J

Amano and Maruoka [2, Theorem 4.2] proved that, for any 3 ≤ k ≤ n2/3, DeMorgan
circuits of negation width w = o(

√
k) computing f = CLIQUE(n, k) require 2Ω(

√
k) gates.

(In their definition of the negation width [2, Definition 4.1], they use different terminology,
but it is not difficult to see that their measure coincides with that given in our Definition 1.2.)
Note, however, that here the allowed negation width w = o(

√
k) is much smaller than the

clique size k. When combined with the lower bound of Alon and Boppana [1] for cliques of
moderate (logarithmic) size, Equation (4) directly yields super-polynomial lower bounds also
when the allowed negation width is much larger, even exponential, in the cliques size.

I Corollary 6.2 (Moderate cliques). Let f = CLIQUE(n, k) with k = log1/3 n. Then Cw(f) =
nΩ(k) holds for w = 2k.

Proof. It is shown in [1, Theorem 3.16] that C+(f) ≥ nk/(8k2ek logn)k holds for any
3 ≤ k ≤ 1

4 logn. In particular, for k = log1/3 n, we have C+(f) = nΩ(k). On the other
hand, since f has |PI(f)| =

(
n
k

)
≤ nk prime implicants, each of length m =

(
k
2
)
≤ k2, the

parameter K in Equation (5) is at most a constant times wm · logM ≤ 2k3
k logn ≤ n log2 n,

and Equation (4) yields Cw(f) ≥ C+(f)/K − 1 = nΩ(k). J

I Corollary 6.3 (Large cliques). Let f = CLIQUE(n, n/2). If w ≤ εn/ logn for a sufficiently
small constant ε > 0, then Dw(f) = Ω(n).

Proof. Raz and Wigderson [22, Corollary 4.1] have proved that D+(f) = Ω(n). Since f has
M =

(
n
n/2
)
≤ 2n prime implicants, each of length m =

(
n/2
2
)
≤ n2, the logarithm of the

parameter K in Equation (5) is at most a constant times w logm+ log logM = O(w logn).
Equation (4) yields Dw(f) ≥ D+(f)− logK = D+(f)−O(w logn) = Ω(n), as desired. J

I Corollary 6.4. If f = CLIQUE(n, n/2), then Lw(f) = 2Ω(n) holds for DeMorgan formulas
of negation width w = o(n/ logn).

Proof. The desired lower bound follows directly from Corollary 6.3 and our refinement of
Spira’s depth-reduction given in Theorem 1.9. J

S. Jukna and A. Lingas 41:11

I Corollary 6.5 (Tardos’ function). There is a monotone Boolean function Tn of n variables
such that Tn can be computed by a DeMorgan circuit of polynomial in n size, but Cw(Tn) =
2Ω(n1/7) holds when the allowed negation width is w ≤ n1/7.

Proof. Tardos [29] observed that an efficient algorithm for computing the Lovász theta
function, designed by Grötschel, Lovász and Schrijver [8], gives us a monotone Boolean
function Tn of n =

(
v
2
)
variables which is computable by DeMorgan circuits of polynomial

in n size, and shares common properties with Clique functions sufficient for Alon and
Boppana [1] to yield a lower bound C+(Tn) = 2Ω(v/ log v)1/3 = 2Ω(n/ logn)1/6 . On the other
hand, the parameter K in Equation (5) is exponential in at most a constant times w logn ≤
n1/7 logn � (n/ logn)1/6. So, Equation (4) immediately yields the claimed lower bound
Cw(Tn) ≥ C+(Tn)/K − 1 = 2Ω(n1/7) for circuits of negation width w = n1/7. J

I Remark 6.6. Note that the total numberN of variables in each clique function CLIQUE(n, k)
is N =

(
n
2
)

= Θ(n2). The highest known lower bound on the monotone circuit complexity
of an explicit Boolean function of N variables was proved by Harnik and Raz [10], and is
exponential in (N/ logN)1/3 Recently, Pitassi and Robere [19] gave an explicit monotone
Boolean function f of N variables such that D+(f) = Ω(N). The lower bound in Equation (4)
implies that any (non-monotone) DeMorgan circuit of negation width w = εN for a sufficiently
small constant ε > 0 must have linear depth Ω(N). Together with Theorem 1.9, this result
implies a truly exponential lower bound Lw(f) = 2Ω(N) on the size of DeMorgan formulas of
negation width w = εN . Note that the ultimate goal is to prove lower bounds for DeMorgan
circuits of negation width w = N (or only w = N −m, where m is the minimum length of a
prime implicant): these bounds then would hold for unrestricted circuits.

Finally, let us give an application of our Theorem 1.8 concerning DeMorgan circuits of
bounded average negation width. As we already mentioned in Section 1.3, in order to apply
this theorem, we need lower bounds on the size of monotone circuits that only approximate a
given monotone Boolean function (see Definition 1.7).

Fortunately, known lower bound arguments for monotone circuits (see, for example, [13,
Chapter 9] and the literature cited herein) work also when the monotone circuits are only
required to produce a large enough subset of prime implicants (not necessarily all prime
implicants). Just to give an example, let us show the following simple consequence of [12,
Theorem 3.4].

I Lemma 6.7. Let 3 ≤ k ≤
√
n, and let f be a monotone Boolean function which rejects all

graphs of chromatic number at most k− 1, and accepts a 1/K-fraction of all k-cliques. Then
C+(f) ≥ 2Ω(

√
k)/K.

Proof. Every q-coloring h : [n] → [q] of the vertices of Kn defines the graph Gh whose
edges are pairs of vertices receiving the same color. Note that the chromatic number of the
complement of every Gh does not exceed q; so, for q := k− 1, the complements of graphs Gh
must be rejected by f . An s-forest is a forest with s edges.

As shown in [12, Theorem 3.4], if f can be computed by a monotone circuit of size t,
then for any integer parameters 1 ≤ r, s ≤ n− 1 there exist a family of t · (2s)2r r-cliques, a
family of t · (2r)2s s-forests, and a set E of r2 edges such that at least one of the following
two assertions holds:
(1) every k-clique accepted by f contains at least one of the given r-cliques;
(2) for every q-coloring h, the graph Gh either intersects E or contains at least one of the

given s-forests.

STACS 2019

41:12 Circuits of Bounded Negation Width

Every r-clique is contained in exactly
(
n−r
k−r
)
k-cliques. So, under the first alternative (1),

the size t of the circuit must be at least
(
n
k

)
/K divided by (2s)2r(n−r

k−r
)
, which is at least

(n/4ks2)r/K. On the other hand, out of all qn possible q-colorings h of the vertices of Kn,
at most qn−l of the graphs Gh can contain a fixed forest with l edges. This is directly shown
in the proof of Theorem 3.4 in [12], but also follows from the fact that random q-coloring
colors two vertices by the same color with probability 1/q, and these events are independent
for edges in a forest. So, under the second alternative (2), the size t of the circuit must be
at least qn − r2 · qn−1 = qn(1− r2/q) divided by (2r)2sqn−s which, for any r ≤

√
q/2, is at

least 1
2 (k/4r2)s.

By taking the parameters r := b
√
k/16b and s := b

√
n/8kc, the first alternative yields

a lower bound t ≥ 2r/K, while the second one yields t ≥ 1
24s ≥ 2s. Since our assumption

k ≤
√
n yields s ≥ r, the desired lower bound t ≥ 2r/K ≥ 2Ω(

√
k)/K follows. J

I Corollary 6.8. Let f = CLIQUE(n, k) for k ≤
√
n. Then every DeMorgan circuit of

average negation width w = o(
√
k/ log k) computing f must have 2Ω(

√
k) gates.

Proof. Lemma 6.7 implies that, for every K ≥ 1, every monotone circuit K-approximating
f requires at least t = 2Ω(

√
k)/K gates. The length of prime implicants of f is m =

(
k
2
)
. So,

by taking K := 8m2w = 2o(
√
k), Theorem 1.8 yields the desired lower bound on the size t of

any DeMorgan circuit of average negation width w computing f . J

The aforementioned result [12, Theorem 3.4] holds also for monotone circuits with
unbounded fanin AND and OR gates. The reduction lemma (Lemma 3.1) also holds for
DeMorgan circuits with unbounded fanin AND and OR gates. So, Corollary 6.8 holds for
DeMorgan circuits with unbounded fanin gates.

7 Final remarks

The measure of the orientation weight of a circuit over {∨,∧,¬}, considered by Koroth and
Sarma [16], is the minimum number w such that, for every gate u, the function fu computed
at u is monotone in at least n− w variables. In circuits of nonzero orientation w, negations
are allowed to be applied to inner gates (not only to input variables). On the other hand,
the (functional) use of such NOT gates is severely restricted: the function computed at each
NOT gate in such a circuit cannot depend on more than 2w variables.

To see this, let g = ¬h be the function computed at some NOT gate, and h the function
computed at its input. Let X be the set of variables on which g depends. We know that
neither g nor h can be non-monotone in more than w variables. If g is monotone in a
variable xi ∈ X, then h is non-monotone in xi. So, g cannot be monotone in more than w
variables of X. Since, due to the orientation width restriction, the function g itself cannot
be non-monotone in more than w variables, the desired upper bound |X| ≤ 2w follows.

Our relaxation (the negation width, see Definition 1.2) is of a more “syntactic” nature
than that of the orientation weight in Koroth and Sarma [16], but is also of a similar spirit.
Instead of requiring that the produced extensions of prime implicants can only use negated
variables from one fixed subset of ≤ w negated variables (as in [21, 9]), we now allow the
extensions to use different subsets of ≤ w negated variables for different prime implicants.
But, in contrast to [16], we have no restrictions on functions computed at intermediate gates:
only terms produced at the end do matter. And only nonzero terms do matter: produced
zero terms do not contribute to the negation width at all. The question of how (if at all) the
orientation width of DeMorgan circuits is related to their negation width remains open.

S. Jukna and A. Lingas 41:13

Finally, let us note that our reduction to monotone circuits works also for switching-and-
rectifier networks. Recall that such a network (known also as a nondeterministic branching
program) is a directed acyclic graph with one distinguished source node s of zero indegree,
and one distinguished target node t of zero outdegree. Every edge is either labeled by a literal
or is unlabeled. Every s-t path defines a (not necessarily nonzero) term: just take the AND
of all labels of edges along this path. So, the set of terms produced by the network is now
just the set of terms defined by the s-t paths. The function f computed by the network is the
OR of terms defined by all s-t paths. A network is monotone if it has no negated variables
as labels. In a switching network (or contact scheme) the underlying graph is undirected.

The negation width of the network can be analogously defined as the minimal number
w such that for every prime implicant p of f there is an s-t path defining an extension
of p by at most w negated variables. This means that for every input a ∈ f−1(1) with a
minimal number of 1s, there must be an s-t path along which all 1-positions and at most w
0-positions of a are tested. It is easy to see that the reduction lemma (Lemma 3.1) can be
immediately adapted (by just replacing the term “sub-circuit” by “sub-network”) to hold
also for switching networks as well as for switching-and-rectifier networks with the same
blow-up parameter K.

Potechin [20] has proved an interesting tradeoff between monotone switching networks
and monotone switching-and-rectifier networks computing the s-t connectivity function
STCON(n) on directed n-vertex graphs: every monotone switching network computing this
function must have at least nΩ(logn) nodes. On the other hand, although this was not
mentioned in [20], the well-known dynamic programming algorithm of Bellman and Ford
gives a monotone switching-and-rectifier network for STCON(n) with only O(n2) nodes and
O(n3) edges. Lemma 3.1 (adapted to switching networks) extends Potechin’s lower bound to
non-monotone switching networks of negation width w = o(logn): the blow-up parameter K
is in this case at most no(logn).

References

1 N. Alon and R. Boppana. The monotone circuit complexity of boolean functions. Combinatorica,
7(1):1–22, 1987.

2 K. Amano and A. Maruoka. The Potential of the Approximation Method. SIAM J. Comput.,
33(2):433–447, 2004.

3 E. Blais, C.L. Canonne, I.C. Oliveira, R.A. Servedio, and L.Y. Tan. Learning Circuits with few
Negations. In Approximation, Randomization, and Combinatorial Optimization. Algorithms
and Techniques, volume 40 of LIPIcs, pages 512–527, 2015.

4 R.P. Brent, D.J. Kuck, and K. Maruyama. The parallel evaluation of arithmetic expressions
without divisions,. IEEE Trans. Computers, C-22:523–534, 1973.

5 Y. Crama and P.L. Hammer, editors. Boolean Functions: Theory, Algorithms, and Applications,
volume 142 of Encyclopedia of Mathematics and Its Applications. Cambridge University Pess,
2011.

6 P.E. Dunne. Relationship between monotone and non-monotone network complexity. In M.S.
Paterson, editor, Boolean Function Complexity, volume 169 of London Math. Soc. Lect. Note
Series, pages 1–24. Cambridge University Press, 1992.

7 F. Le Gall. Powers of Tensors and Fast Matrix Multiplication. In Proc. of 39th Int. Symp. on
Symbolic and Algebraic Computation, pages 296–303, 2014.

8 M. Grötschel, L. Lovász, and A. Schrijver. The ellipsoid method and its consequences in
combinatorial optimization. Combinatorica, 1(2):169–197, 1981.

STACS 2019

41:14 Circuits of Bounded Negation Width

9 S. Guo, T. Malkin, I.C. Oliveira, and A. Rosen. The Power of Negations in Cryptography.
In Proc. of 12th Theory of Cryptography Conference, TCC, volume 9014 of Lect. Notes in
Comput. Sci., pages 36–65. Springer, 2015.

10 D. Harnik and R. Raz. Higher lower bounds on monotone size. In Proc. 32nd Ann. ACM
Symp. on Theory of Computing, pages 378–387, 2000.

11 J.E. Hopcroft and R.M. Karp. An n5/2 algorithm for maximum matching in bipartite graphs.
SIAM J. Comput., 2:225–231, 1973.

12 S. Jukna. Combinatorics of monotone computations. Combinatorica, 19(1):65–85, 1999.
Preliminary versions in: ECCC Report Nr. 26, 1996, and in Proc. of 12th Ann. IEEE Conf.
on Comput. Complexity. 1997, pp. 223-238.

13 S. Jukna. Boolean Function Complexity: Advances and Frontiers. Springer-Verlag, 2012.
14 V.M. Khrapchenko. On a relation between the complexity and the depth of formulas. In

Methods of Discrete Analysis in Synthesis of Control Systems, volume 32, pages 76–94. Institute
of Mathematics. Novosibirsk, 1978. (In Russian).

15 M. Kochol. Efficient monotone circuits for threshold functions. Inf. Process. Lett., 32:121–122,
1989.

16 S. Koroth and J. Sarma. Depth Lower Bounds against Circuits with Sparse Orientation.
Fundam. Inform., 152(2):123–144, 2017.

17 A. Lingas. Small Normalized Boolean Circuits for Semi-disjoint Bilinear Forms Require
Logarithmic Conjunction-depth. In Proc. of 33rd Comput. Complexity Conf., volume 102 of
LIPIcs, pages 26:1–26:10, 2018. Extended version in: ECCC Report Nr. 108, 2018.

18 E.A. Okol’nishnikova. On the influence of one type of restrictions to the complexity of
combinational circuits. Diskrete Analysis, 36:46–58, 1981. (In Russian).

19 T. Pitassi and R. Robere. Strongly exponential lower bounds for monotone computation. In
Proc. 49th Ann. ACM Symp. on Theory of Computing, STOC, pages 1246–1255, 2017.

20 A. Potechin. Bounds on Monotone Switching Networks for Directed Connectivity. J. ACM,
64(4):29:1–29:48, 2017.

21 R. Raz and Wigderson. Probabilistic Communication Complexity of Boolean Relations. In
Proc. of 30th Ann. Symp. on Foundations of Computer Sci., FOCS, pages 562–567, 1989.

22 R. Raz and A. Wigderson. Monotone circuits for matching require linear depth. JACM,
39(3):736–744, 1992.

23 A.A. Razborov. Lower bounds for the monotone complexity of some boolean functions. Soviet
Math. Dokl., 31:354–357, 1985.

24 A.A. Razborov. Lower bounds on monotone complexity of the logical permanent. Math. Notes
of the Acad. of Sci. of the USSR, 37(6):485–493, 1985.

25 A.A. Razborov. Applications of matrix methods to the theory of lower bounds in computational
complexity. Combinatorica, 10(1):81–93, 1990.

26 B. Rossman. Correlation Bounds Against Monotone NCˆ1. In Proc. of 30th Comput. Complexity
Conf., volume 33 of LIPIcs, pages 392—-411, 2015.

27 P.M. Spira. On time–hardware complexity tradeoffs for Boolean functions. In Proc. of 4th
Hawaii Symp. on System Sciences, pages 525–527. Western Periodicals Company, North
Hollywood, 1971.

28 V. Strassen. Gaussian elimination is not optimal. Numer. Math., 13:354–356, 1969.
29 É. Tardos. The gap between monotone and non-monotone circuit complexity is exponential.

Combinatorica, 7(4):141–142, 1987.
30 I. Wegener. Relating monotone formula size and monotone depth of Boolean functions. Infrom.

Process. Letters, 16:41–42, 1983.
31 I. Wegener. The complexity of Boolean functions. Wiley-Teubner, 1987.
32 V. Vassilevska Williams. Multiplying matrices faster than Coppersmith-Winograd. In Proc.

of 44th Symp. on Theory of Comput., STOC, pages 887–898, 2012.

S. Jukna and A. Lingas 41:15

A Motivating examples

We want explicit examples of monotone Boolean functions f(X) of |X| = n variables such
that f requires large monotone circuits, but has small circuits when a moderate negation
width w = nε for an arbitrarily small constant ε > 0 is allowed. Such functions can be
constructed using the following two simple observations: (1) negation width is always at
most the total number of input variables, and (2) OR gates cannot increase the negation
width.

A.1 Super-polynomial gaps
I Example A.1 (Logical permanent). The logical permanent function Perm is a monotone
Boolean function of m2 variables which takes a Boolean m × m matrix Y as input, and
outputs 1 if and only if Y contains m 1-entries no two of which lie in the same row or the
same column. Let 0 < ε < 1/2 be an arbitrarily small constant, and assume for simplicity
that both m = nε and r = n1−ε are integers. Consider the monotone Boolean function
f(X) whose variables are arranged into an n× n matrix X. Split X into r2 disjoint m×m
submatrices. The function f accepts X if and only if Perm(Y) = 1 holds for at least one of
these submatrices Y . The monotone circuit complexity of f is at least the monotone circuit
complexity of Perm which, as shown by Razborov [24], is mΩ(logm) = nΩ(logn).

On the other hand, it is well known that Perm can be computed by a DeMorgan circuit of
size polynomial in m; see, for example, Hopcroft and Karp [11]. The negation width of such
a circuit is clearly at most the number m2 of its input variables. So, since at OR gates the
negation width is not increased, we obtain a DeMorgan circuit for f of size r2 ·mO(1) = nO(1)

and negation width w ≤ m2 = n2ε.

I Example A.2 (Tardos’ function). Let 0 < ε < 1 be an arbitrarily small constant, and
assume for simplicity that both m = nε and r = n1−ε are integers. As we already mentioned
in the proof of Corollary 6.5, Tardos [29] exhibited a monotone Boolean function Tm of
m =

(
v
2
)
variables which can be computed by a DeMorgan circuit of polynomial in m size,

but the monotone circuit complexity of Tm is exponential in (v/ log v)1/3 = mΩ(1). Let fn
be a monotone Boolean function of n = r ·m variables defined as the OR of r copies of Tm
on disjoint m-element sets of variables. Then the monotone circuit complexity of fn is also
exponential in mΩ(1) = nΩ(1), but the function fn can be computed by a DeMorgan circuit
of size r · nO(1) = nO(1) if the negation width w = m (= nε) is allowed.

These two examples show that the size of monotone circuits (DeMorgan circuits of
negation width w = 0) can be substantially (even super-polynomially) reduced by allowing
moderate negation width w = nε. Our next two examples (of the triangle function and
threshold functions) show that non-trivial savings are also possible for monotone Boolean
functions that have small (polynomial) monotone circuits.

A.2 The triangle function
Our goal is to show that for every constant ε > 0, the triangle function CLIQUE(n, 3) can
be computed by a DeMorgan circuit of negation width w = nε using a sub-cubic number
O(n3−ε/4) of gates. The multi-output “cousin” of the triangle function is the Boolean matrix
multiplication operator BMM(n) : {0, 1}2n2 → {0, 1}n2 . This operator takes two n × n

Boolean matrices X = (xi,j) and Y = (yi,j) as inputs, and computes n2 monotone Boolean
functions fi,j =

∨n
k=1 xi,kyk,j . Note that now, instead of just one output gate, every circuit

computing BMM(n) has n2 output gates. The negation width of such a (multi-output)
circuit is just the maximum negation width of its sub-circuits computing the functions fi,j .

STACS 2019

41:16 Circuits of Bounded Negation Width

Fast algebraic algorithms for arithmetic matrix multiplication [28, 7, 32] yield circuits
over {∨,∧,¬} for the n × n Boolean matrix product with O(nω) gates, where ω is the
so-called matrix multiplication exponent; after the Strassen [28] breakthrough algorithm
showed that ω < 2.807, this exponent was pushed down by Vassilevska Williams [32] and
Le Gall [7] to ω < 2.373. This can be used to show that the circuit complexity of BMM(n)
remains sub-cubic also when the negation width of circuits is lowered from the trivial w = 2n
(unrestricted circuits) to w = nε for an arbitrarily small constant ε > 0.

B Claim A.3. For every 0 < ε ≤ 1, the operator BMM(n) can be computed by a DeMorgan
circuit of negation width w = n2ε and size O(n3−ε/2).

Proof. We will use essentially the same argument as was used in [17, Proposition 12] to show
an upper bound O(n3−c) for an unspecified constant c = cε > 0.

Set m := 1
2n

ε, and assume (for the sake of simplicity) that both m and r := n/m are
integers. Partition each of the given n×nmatricesX and Y into r2 disjointm×m submatrices.
The product of each pair of such submatrices can be computed by a DeMorgan circuit of size
O(mω); the negation width of each of these circuits is trivially at most 2m2 = n2ε. So, it is
enough to compute r3 products of m×m submatrices, and to use additional rn2 OR gates to
compute all n2 entries of the product matrix X ·Y . Since the negation width can only increase
at AND gates, the negation width of the resulting circuit remains the same, that is, remains at
most w = n2ε. Since r = n/m with m = 1

2n
ε, and since 3− ω ≥ 1/2, the size of the resulting

circuit is at most a constant times r3mω + rn2 = n3/m3−ω + n3/m ≤ 2n3/
√
m ≤ 3n3−ε/2,

as desired. C

B Claim A.4. For every 0 < ε ≤ 1, the triangle function f = CLIQUE(n, 3) can be computed
by a DeMorgan circuit of negation width w = n2ε and size O(n3−ε/2).

Proof. By Claim A.3, all n2 entries Y = (yi,j) of the Boolean matrix product Y = X ·X of the
adjacency n× n matrix of a given graph G can be simultaneously computed by a DeMorgan
circuit of negation width w = n2ε and size O(n3−ε/2). So, the function f =

∨
i<j yi,j ∧ xi,j

can be computed by taking a componentwise AND of Y and X, and computing the OR of
all entries of the resulting matrix. C

A.3 Threshold functions
Recall that the threshold-k function Thnk accepts a Boolean input of length n if and only
if it contains at least k ones. The smallest known monotone circuits for Thnk have size of
order n log k (see, for example, [15]). On the other hand, we will now show that Thnk can be
computed by a DeMorgan circuit of linear size O(n) if negation width w = k3 is allowed.

B Claim A.5. If w = k3, then Cw(Thnk) = O(n).

Proof. For the sake of simplicity of argumentation, assume that the number of variables
n is divisible by the parameter s ≥ k (to be chosen latter). Divide the sequence X of
|X| = n Boolean variables into m := n/s consecutive segments X1, . . . , Xm of length s, and
let Qjl = Thsl (Xj) be the threshold-l function on the s variables in the jth segment.

It is well known (see, for example, [31, Sect. 3.4]) that all functions Thn1 ,Thn2 , . . . ,Thnn
can be simultaneously computed by a (non-monotone) DeMorgan circuit of size O(n). So,
for every j = 1, . . . ,m, all the functions Qj0, Q

j
1, . . . , Q

j
k can be simultaneously computed

by a DeMorgan circuit of size O(s). It follows that all functions Qjl for j = 1, . . . ,m and
l = 1, . . . , k can be simultaneously computed by a DeMorgan circuit of size at most a constant

S. Jukna and A. Lingas 41:17

times s · (n/s) = n. We now use a simple dynamic program to compute all the Boolean
functions P jl such that P jl = 1 if and only if there are at least l ones in the first j segments.

As basis functions we take P j0 = Qj0 = 1 (constant 1 functions) for all j = 1, . . . ,m,
P 1
l = Q1

l for all l = 1, . . . , k, and construct a DeMorgan circuit C using the recurrences

P jl =
l∨

r=0
P j−1
l−r ∧Q

j
r . (6)

It is easy to see that the whole input sequence contains at least k ones iff Pmk = 1. For the jth
segment, we account O(k2) additional gates implementing the recurrences for P jl . Hence, the
size of the DeMorgan circuit C computing Pmk is at most a constant times mk2 = (n/s)k2.

To upper-bound the negation width of the resulting circuit, just expand the recursion (6).
We then see that Pmk is computed as the OR of ANDs Q1

r1
(X1) ∧Q2

r2
(X2) ∧ · · · ∧Qmrm

(Xm)
over all sequences r1, . . . , rm of nonnegative integers satisfying r1 + · · ·+ rm = k; recall that
Qj0 = 1 for all j. Since at most k of the rjs in each such sequence can be nonzero, at most
k of the functions Qjrj

can be not constant 1 functions. So, every term produced by the
circuit C is of the form q =

∧
j∈J qj for some subset J ⊆ [m] of size |J | ≤ k, where each qj is

a (not necessarily nonzero) term containing variables or their negations only from the jth
segment Xj . So, if q is a nonzero term, then it can have at most

∑
j∈J |Xj | ≤ ks distinct

literals and, hence also at most ks distinct negated variables. In particular, this means that
all nonzero terms produced by the circuit C including the extensions of prime implicants of
the computed by C function Pmk , have at most ks distinct negated variables.

So, the constructed circuit C for the threshold-k function Thnk has negation width w ≤ ks
and size of order (n/s)k2. It remains to take the segment-length s = k2. This gives us a
circuit of linear size O(n) and negation width at most k3, as desired. C

STACS 2019

Depth First Search in the Semi-streaming Model
Shahbaz Khan
Faculty of Computer Science, University of Vienna, Austria
shahbaz.khan@univie.ac.at

Shashank K. Mehta
Dept. of Computer Science and Engineering, Indian Institute of Technology Kanpur, India
skmehta@cse.iitk.ac.in

Abstract
Depth first search (DFS) tree is a fundamental data structure for solving various graph problems.
The classical algorithm for building a DFS tree requires O(m+ n) time for a given undirected graph
G having n vertices and m edges. In the streaming model, an algorithm is allowed several passes
(preferably single) over the input graph having a restriction on the size of local space used.

Now, a DFS tree of a graph can be trivially computed using a single pass if O(m) space is
allowed. In the semi-streaming model allowing O(n) space, it can be computed in O(n) passes over
the input stream, where each pass adds one vertex to the DFS tree. However, it remains an open
problem to compute a DFS tree using o(n) passes using o(m) space even in any relaxed streaming
environment.

We present the first semi-streaming algorithms that compute a DFS tree of an undirected graph
in o(n) passes using o(m) space. We first describe an extremely simple algorithm that requires at
most dn/ke passes to compute a DFS tree using O(nk) space, where k is any positive integer. For
example using k =

√
n, we can compute a DFS tree in

√
n passes using O(n

√
n) space. We then

improve this algorithm by using more involved techniques to reduce the number of passes to dh/ke
under similar space constraints, where h is the height of the computed DFS tree. In particular, this
algorithm improves the bounds for the case where the computed DFS tree is shallow (having o(n)
height). Moreover, this algorithm is presented in form of a framework that allows the flexibility
of using any algorithm to maintain a DFS tree of a stored sparser subgraph as a black box, which
may be of an independent interest. Both these algorithms essentially demonstrate the existence of a
trade-off between the space and number of passes required for computing a DFS tree. Furthermore,
we evaluate these algorithms experimentally which reveals their exceptional performance in practice.
For both random and real graphs, they require merely a few passes even when allowed just O(n)
space.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis; Theory of
computation → Data structures design and analysis; Theory of computation → Streaming, sublinear
and near linear time algorithms

Keywords and phrases Depth First Search, DFS, Semi-Streaming, Streaming, Algorithm

Digital Object Identifier 10.4230/LIPIcs.STACS.2019.42

Related Version Full version of the papers is available at https://arxiv.org/abs/1901.03689.

Funding Shahbaz Khan: This research work was supported by the European Research Council under
the European Union’s Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement no.
340506.

1 Introduction

Depth first search (DFS) is a well known graph traversal technique. Right from the seminal
work of Tarjan [35], DFS traversal has played an important role in the design of efficient
algorithms for many fundamental graph problems, namely, bi-connected components, strongly
connected components, topological sorting [38], dominators in directed graph [36], etc. Even

© Shahbaz Khan and Shashank K. Mehta;
licensed under Creative Commons License CC-BY

36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019).
Editors: Rolf Niedermeier and Christophe Paul; Article No. 42; pp. 42:1–42:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-9352-0088
mailto:shahbaz.khan@univie.ac.at
https://orcid.org/0000-0003-1830-2077
mailto:skmehta@cse.iitk.ac.in
https://doi.org/10.4230/LIPIcs.STACS.2019.42
https://arxiv.org/abs/1901.03689
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

42:2 DFS in Semi-streaming Model

in undirected graphs, DFS traversal have various applications including computing connected
components, cycle detection, edge and vertex connectivity [13] (via articulation points and
bridges), bipartite matching [23], planarity testing [24] etc. In this paper, we address the
problem of computing a DFS tree in the semi-streaming environment.

The streaming model [2, 17, 19] is a popular model for computation on large data sets
wherein a lot of algorithms have been developed [18, 22, 19, 25] to address significant problems
in this model. The model requires the entire input data to be accessed as a stream, typically
in a single pass over the input, allowing very small amount of storage (poly log in input size).
A streaming algorithm must judiciously choose the data to be saved in the small space, so
that the computation can be completed successfully. In the context of graph problems, this
model is adopted in the following fashion. For a given graph G = (V,E) having n vertices,
an input stream sends the graph edges in E using an arbitrary order only once, and the
allowed size of local storage is O(poly logn). The algorithm iteratively asks for the next
edge and performs some computation. After the stream is over, the final computation is
performed and the result is reported. At no time during the entire process should the total
size of stored data exceed O(poly logn).

In general only statistical properties of the graph are computable under this model,
making it impractical for use in more complicated graph problems [15, 20]. A prominent
exception for the above claim is the problem of counting triangles (3-cycles) in a graph [5].
Consequently, several relaxed models have been proposed with a goal to solve more complex
graph problems. One such model is called semi-streaming model [32, 16] which relaxes the
storage size to O(n poly logn). Several significant problems have been studied under this
model (surveys in [33, 41, 31]). Moreover, even though it is preferred to allow only a single
pass over the input stream, several hardness results [22, 10, 16, 9, 21] have reported the
limitations of using a single pass (or even O(1) passes). This has led to the development of
various multi-pass algorithms [16, 15, 30, 1, 27, 26] in this model. Further, several streaming
algorithms maintaining approximate distances [15, 6, 11] are also known to require O(n1+ε)
space (for some constant ε > 0) relaxing the requirement of O(n poly logn) space.

Now, a DFS tree of a graph can be computed in a single pass if O(m) space is allowed.
If the space is restricted to O(n), it can be trivially computed using O(n) passes over
the input stream, where each pass adds one vertex to the tree. This can also be easily
improved to O(h) passes, where h is the height of the computed DFS tree. Despite most
applications of DFS trees in undirected graphs being efficiently solved in the semi-streaming
environment [40, 16, 15, 3, 4, 14, 29], due to its fundamental nature DFS is considered a
long standing open problem [14, 33, 34] even for undirected graphs. Moreover, computing
a DFS tree in O(poly logn) passes is considered hard [14]. To the best of our knowledge,
it remains an open problem to compute a DFS tree using o(n) passes even in any relaxed
streaming environment.

In our results, we borrow some key ideas from recent sequential algorithms [8, 7] for
maintaining dynamic DFS of undirected graphs. Recently, similar ideas were also used
by Khan [28] who presented a semi-streaming algorithm that uses using O(n) space for
maintaining dynamic DFS of an undirected graph, requiring O(log2 n) passes per update.

1.1 Our Results

We present the first semi-streaming algorithms to compute a DFS tree on an undirected
graph in o(n) passes. Our first result can be described using the following theorem.

S. Khan and S. K. Mehta 42:3

I Theorem 1. Given an undirected graph G = (V,E), the DFS tree of the graph can be
computed by a semi-streaming algorithm in at most n/k passes using O(nk) space, requiring
O(mα(m,n)) time per pass.

As described earlier, a simple algorithm can compute the DFS tree in O(h) passes, where
h is the height of the DFS tree. Thus, for the graphs having a DFS tree with height h = o(n)
(see full paper for details), we improve our result for such graphs in the following theorem.

I Theorem 2. Given an undirected graph G, a DFS tree of G can be computed by a semi-
streaming algorithm using dh/ke passes using O(nk) space requiring amortized O(m+ nk)
time per pass for any integer k ≤ h, where h is the height of the computed DFS tree.1

Since typically the space allowed in the semi-streaming model is O(n poly logn), the
improvement in upper bounds of the problem by our results is considerably small (upto
poly logn factors). Recently, Elkin [12] presented the first o(n) pass algorithm for computing
Shortest Paths Trees. Using O(nk) local space, it computes the shortest path tree from a
given source in O(n/k) passes for unweighted graphs, and in O(n logn/k) passes for weighted
graphs. The significance of such results, despite improving the upper bounds by only small
factors, is substantial because they address fundamental problems. The lack of any progress
for such fundamental problems despite several decades of research on streaming algorithms
further highlights the significance of such results. Moreover, allowing O(n1+ε) space (as in
[15, 6, 11]) such results improves the upper bound significantly by O(nε) factors. Furthermore,
they demonstrate the existence of a trade-off between the space and number of passes required
for computing such fundamental structures.

Our final algorithm is presented in form of a framework, which can use any algorithm for
maintaining a DFS tree of a stored sparser subgraph, provided that it satisfies the property
of monotonic fall. Such a framework allows more flexibility and is hopefully much easier
to extend to better algorithms for computing a DFS tree or other problems requiring a
computation of DFS tree. Hence we believe our framework would be of independent interest.

We also augment our theoretical analysis with the experimental evaluation of our proposed
algorithms. For both random and real graphs, the algorithms require merely a few passes
even when the allowed space is just O(n). The exceptional performance and surprising
observations of our experiments on random graphs might also be of independent interest.

1.2 Overview
We now briefly describe the outline of our paper. In Section 2 we establish the terminology
and notations used in the remainder of the paper. In order to present the main ideas behind
our approach in a simple and comprehensible manner, we present the algorithm in four
stages. Firstly in Section 3, we describe the basic algorithm to build a DFS tree in n passes,
which adds a new vertex to the DFS tree in every pass over the input stream. Secondly in
Section 3.1, we improve this algorithm to compute a DFS tree in h passes, where h is the
height of the final DFS tree. This algorithm essentially computes all the vertices in the next
level of the currently built DFS tree simultaneously, building the DFS tree by one level in
each pass over the input stream. Thus, in the ith pass every vertex on the ith level of the
DFS tree is computed. Thirdly in Section 4, we describe an advanced algorithm which uses

1 Note that there can be many DFS trees of a graph having varying heights, say hmin to hmax. Our
algorithm does not guarantee the computation of DFS tree having minimum height hmin, rather it
simply computes a valid DFS tree with height h, where hmin ≤ h ≤ hmax.

STACS 2019

42:4 DFS in Semi-streaming Model

O(nk) space to add a path of length at least k to the DFS tree in every pass over the input
stream. Thus, the complete DFS tree can be computed in dn/ke passes. Finally, in Section 5,
we improve the algorithm to simultaneously add all the subtrees constituting the next k
levels of the final DFS tree starting from the leaves of the current tree T . Thus, k levels are
added to the DFS tree in each pass over the input stream, computing the DFS tree in dh/ke
passes. As described earlier, our final algorithm is presented in form of a framework which
uses as a black box, any algorithm to maintain a DFS tree of a stored sparser subgraph,
satisfying certain properties. In the interest of completeness, one such algorithm is described
in the full paper. Lastly in Section 6, we present the results of the experimental evaluation of
these algorithms. The details of this evaluation are deferred to the full version of the paper.

In our advanced algorithms, we employ two interesting properties of a DFS tree, namely,
the components property [7] and the min-height property. These simple properties of any
DFS tree prove crucial in building the DFS efficiently in the streaming environment.

2 Preliminaries

Let G = (V,E) be an undirected connected graph having n vertices and m edges. The DFS
traversal of G starting from any vertex r ∈ V produces a spanning tree rooted at r called
a DFS tree, in O(m+ n) time. For any rooted spanning tree of G, a non-tree edge of the
graph is called a back edge if one of its endpoints is an ancestor of the other in the tree, else
it is called a cross edge. A necessary and sufficient condition for any rooted spanning tree to
be a DFS tree is that every non-tree edge is a back edge.

In order to handle disconnected graphs, we add a dummy vertex r to the graph and
connect it to all vertices. Our algorithm computes a DFS tree rooted at r in this augmented
graph, where each child subtree of r is a DFS tree of a connected component in the DFS
forest of the original graph. The following notations will be used throughout the paper.

T : The DFS tree of G incrementally computed by our algorithm.
par(w) : Parent of w in T .
T (x) : The subtree of T rooted at vertex x.
root(T ′) : Root of a subtree T ′ of T , i.e., root

(
T (x)

)
= x.

level(v) : Level of vertex v in T , where level(root(T)) = 0 and level(v) = level(par(v))+1.

In this paper we will discuss algorithms to compute a DFS tree T for the input graph
G in the semi-streaming model. In all the cases T will be built iteratively starting from an
empty tree. At any time during the algorithm, we shall refer to the vertices that are not
a part of the DFS tree T as unvisited and denote them by V ′, i.e., V ′ = V \ T . Similarly,
we refer to the subgraph induced by the unvisited vertices, G′ = G(V ′), as the unvisited
graph. Unless stated otherwise, we shall refer to a connected component of the unvisited
graph G′ as simply a component. For any component C, the set of edges and vertices in the
component will be denoted by EC and VC . Further, each component C maintains a spanning
tree of the component that shall be referred as TC . We refer to a path p in a DFS tree T as
an ancestor-descendant path if one of its endpoints is an ancestor of the other in T . Since
the DFS tree grows downwards from the root, a vertex u is said to be higher than vertex v if
level(u) < level(v). Similarly, among two edges incident on an ancestor-descendant path p,
an edge (x, y) is higher than edge (u, v) if y, v ∈ p and level(y) < level(v).

We shall now describe two invariants such that any algorithm computing DFS tree
incrementally satisfying these invariants at every stage of the algorithm, ensures the absence
of cross edges in T and hence the correctness of the final DFS tree T .

S. Khan and S. K. Mehta 42:5

Invariants:
I1 : All non-tree edges among vertices in T are back edges, and
I2 : For any component C of the unvisited graph, all the edges from C to the

partially built DFS tree T are incident on a single ancestor-descendant
path of T .

We shall also use the components property by Baswana et al. [7], described as follows.

r

w

x1

x2

C1

C2

e1

e′1

e2

e′2

Figure 1 Edges e′
1 and e′

2 can be ignored during the DFS traversal (reproduced from [7]).

I Lemma 3 (Components Property [7]). Consider a partially completed DFS traversal where
T is the partially built DFS tree. Let the connected components of G′ be C1, .., Ck. Consider
any two edges ei and e′

i from Ci that are incident respectively on a vertex xi and some
ancestor (not necessarily proper) w of xi in T . Then it is sufficient to consider only ei during
the DFS traversal, i.e., the edge e′

i can be safely ignored.

Ignoring e′
i during the DFS traversal, as stated in the components property, is justified

because e′
i will appear as a back edge in the resulting DFS tree (refer to Figure 1). For each

component Ci, the edge ei can be found using a single pass over all the graph edges.

3 Simple Algorithms

We shall first briefly describe the trivial algorithm to compute a DFS tree of a (directed)
graph using n passes. Since we are limited to have only O(n poly logn) space, we cannot store
the adjacency list of the vertices in the graph. Recall that in the standard DFS algorithm [35],
after visiting a vertex v, we choose any unvisited neighbour of v and visit it. If no neighbour
of v is unvisited, the traversal retreats back to the parent of v and look for its unvisited
neighbour, and so on.

In the streaming model, we can use the same algorithm. However, we do not store the
adjacency list of a vertex. To find the unvisited neighbour of each vertex, we perform a
complete pass over the edges in E. The algorithm only stores the partially built DFS tree
and the status of each vertex (whether it is visited/added to T). Thus, for each vertex v
(except r) one pass is performed to add v to T and another is performed before retreating
to the parent of v. Hence, it takes 2(n − 1) passes to complete the algorithm since T is
initialized with the root r. Since, this procedure essentially simulates the standard DFS
algorithm [35], it clearly satisfies the invariants I1 and I2.

This procedure can be easily transformed to require only n−1 passes by avoiding an extra
pass for retreating from each vertex v. In each pass we find an edge e (from the stream) from
the unvisited vertices, V ′, to the lowest vertex on the ancestor-descendant path connecting r
and v, i.e., closest to v. Hence e would be an edge from the lowest (maximum level) ancestor
of v (not necessarily proper) having at least one unvisited neighbour. Recall that if v does

STACS 2019

42:6 DFS in Semi-streaming Model

not have an unvisited neighbour we move to processing its parent, and so on until we find an
ancestor having an unvisited neighbour. We can thus directly add the edge e to T . Hence,
retreating from a vertex would not require an additional pass and the overall procedure
can be completed in n− 1 passes, each pass adding a new vertex to T . Moreover, this also
requires O(1) processing time per edge and extra O(n) time at the end of the pass, to find
the relevant ancestor. Refer to the full paper for the pseudocode of the procedure. Thus, we
get the following result.

I Theorem 4. Given a directed/undirected graph G, a DFS tree of G can be computed by a
semi-streaming algorithm in n passes using O(n) space, using O(m) time per pass.

3.1 Improved algorithm

We shall now describe how this simple algorithm can be improved to compute a DFS tree of
an undirected graph in h passes, where h is the height of the computed DFS tree. The main
idea behind this approach is that each component of the unvisited graph G′ will constitute a
separate subtree of the final DFS tree. Hence each such subtree can be computed independent
of each other in parallel (this idea was also used by [28]).

Using one pass over edges in E, the components of the unvisited graph G′ can be found
by using Union-Find algorithm [37, 39] on the edges E′ of G′. Now, using the components
property we know that it is sufficient to add the lowest edge from each component to the DFS
tree T . At the end of the pass, for each component C we find the edge (xC , yC) incident from
the lowest vertex xC ∈ T to some vertex yC ∈ VC and add it to T . Note that in the next
pass, for each component of C \ {yC} the lowest edge connecting it to T would necessarily
be incident on yC as C was connected. Hence, instead of lowest edge incident on T , we
store ey from y ∈ V ′ only if ey is incident on some leaf of T . Refer to the full paper for the
pseudocode of the algorithm.

To prove the correctness of the algorithm, we shall prove using induction that the
invariants I1 and I2 hold over the passes performed on E. Since T is initialized as an isolated
vertex r, both invariants trivially hold. Now, let the invariants hold at the beginning of a
pass. Using I2, each component C can have edges to a single ancestor-descendant path from
r to xC . Thus, adding the edge (xC , yC) for each component C, would not violate I1 at the
end of the pass, given that I1 holds at the beginning of the pass. Additionally, from each
component C we add a single vertex yC as a child of xC to T . Hence for any component of
C \ {yC}, the edges to T can only be to ancestors of yC (using I2 of previous pass), and an
edge necessarily to yC , satisfying I2 at the end of the pass. Hence, using induction both I1
and I2 are satisfied proving the correctness of our algorithm.

Further, since each component C in any ith pass necessarily has an edge to a leaf xC of
T , the new vertex yC is added to the ith level of T . This also implies that every vertex at
ith level of the final DFS tree is added during the ith pass. Hence, after h passes we get a
DFS tree of the whole graph as h is the height of the computed DFS tree.

Now, the total time2 required to compute the connected components is O(mα(m,n)).
And computing an edge from each unvisited vertex to a leaf in T requires O(1) time using
O(n) space. Thus, we have the following theorem.

2 The Union-Find algorithm [37, 39] requires O(mα(m,n)) time, where α(m,n) is the inverse Ackermann
function.

S. Khan and S. K. Mehta 42:7

I Theorem 5. Given an undirected graph G, a DFS tree of G can be computed by a semi-
streaming algorithm in h passes using O(n) space, where h is the height of the computed DFS
tree, using O(mα(m,n)) time per pass.

4 Computing DFS in sublinear number of passes

Since a DFS tree may have O(n) height, we cannot hope to compute a DFS tree in sublinear
number of passes using the previously described simple algorithms. The main difference
between the advanced approaches and the simple algorithms is that, in each pass instead of
adding a single vertex (say y) to the DFS tree, we shall be adding an entire path (starting
from y) to the DFS tree. The DFS traversal gives the flexibility to chose the next vertex to
be visited as long as the DFS property is satisfied, i.e., invariants I1 and I2 are maintained.

Hence in each pass we do the following for every component C in G′. Instead of finding a
single edge (xC , yC) (see Section 3.1), we find a path P starting from yC in C and attach
this entire path P to T (instead of only yC). Suppose this splits the component C into
components C1, C2, . . . of C \ P . Now, each Ci would have an edge to at least one vertex
on P (instead of necessarily the leaf xC in Section 3.1) since C was a connected component.
Hence in this algorithm for each Ci, we find the vertex yi which is the lowest vertex of T (or
P) to which an edge from Ci is incident. Observe that yi is unique since all the neighbours
of Ci in T are along one path from the root to a leaf. Using the components property, the
selection of yi as the parent of the root of the subtree to be computed for Ci ensures that
invariant I2 continues to hold. Thus, in each pass from every component of the unvisited
graph, we shall extract a path and add it to the DFS tree T .

This approach thus allows T to grow by more than one vertex in each pass which is
essential for completing the tree in o(n) passes. If in each pass we add a path of length at
least k from each component of G′, then the tree will grow by at least k vertices in each pass,
requiring overall dn/ke passes to completely build the DFS tree. We shall now present an
important property of any DFS tree of an undirected graph, which ensures that in each pass
we can find a path of length at least k ≥ m/n.

I Lemma 6 (Min-Height Property). Given a connected undirected graph G having m edges,
any DFS tree of G from any root vertex necessarily has a height h ≥ m/n.

Proof. We know that each non-tree edge in a DFS tree of an undirected graph is a back edge.
We shall associate each edge to its lower endpoint. Thus, in a DFS tree each vertex will be
associated to a tree edge to its parent and back edges only to its ancestors. Now, each vertex
can have only h ancestors as the height of the DFS tree is h, Hence each vertex has only h
edges associated to it resulting in less than nh edges, i.e. m ≤ nh or h ≥ m/n. Note that
it is important for the graph to be connected otherwise from some root the corresponding
component and hence its DFS tree can be much smaller. J

4.1 Algorithm
We shall now describe our algorithm to compute a DFS tree of the input graph in o(n) passes.
Let the maximum space allowed for computation in the semi-streaming model be O(nk).
The algorithm is a recursive procedure that computes a DFS tree of a component C from
a root rC . For each component C we maintain a spanning tree TC of C. Initially we can
perform a single pass over E to compute a spanning tree of the connected graph G (recall the
assumption in Section 2) using the Union-Find algorithm. For the remaining components, its
spanning tree would already have been computed and passed as an input to the algorithm.

STACS 2019

42:8 DFS in Semi-streaming Model

We initiate a pass over the edge in E and store the first |VC | · k edges (if possible) from
the component C in the memory as the subgraph E′

C . Before proceeding with the remaining
stream, we use any algorithm for computing a DFS tree T ′

C rooted at rC in the subgraph
containing edges from TC and E′

C . Note that adding TC to E′
C is important to ensure that

subgraph induced by TC ∪ E′
C is connected. In case the pass was completed before E′

C

exceeded storing |VC | · k edges, T ′
C is indeed a DFS tree of C and we directly add it to T .

Otherwise, we find the longest path P from T ′
C starting from rC , i.e., path from rC to the

farthest leaf. The path P is then added to T .
Now, we need to compute the connected components of C \P and the new corresponding

root for each such component. We use the Union-Find algorithm to compute these components,
say C1, ..., Cf , and compute the lowest edge ei from each Ci on the path P . Clearly, there
exist such an edge as C was connected. In order to find these components and edges, we
need to consider all the edges in EC , which can be done by first considering E′

C and then
each edge from C in the remainder of input stream of the pass. Refer to the full paper for
the pseudocode of the algorithm.

Using the components property, choosing the new root yi corresponding to the lowest
edge ei ensures that the invariant I2 and hence I1 is satisfied. Now, in case |EC | < |VC | · k,
the entire DFS tree of C is constructed and added to T in a single pass. Otherwise, in each
pass we add the longest path P from T ′

C to the final DFS tree T . Since |E′
C | = |VC | · k and

E′
C ∪ TC is a single connected component, the min-height property ensures that the height of

any such T ′
C (and hence P) is at least k. Since in each pass, except the last, we add at least

k new vertices to T , this algorithm terminates in at most dn/ke passes. Now, the total time
required to find the components of the unvisited graph is again O(mα(m,n)). The remaining
operations clearly require O(|EC |) time for a component C, requiring overall O(m) time.
Thus, we get the following theorem.

I Theorem 1. Given an undirected graph G, a DFS tree of G can be computed by a semi-
streaming algorithm in at most dn/ke passes using O(nk) space, requiring O(mα(m,n)) time
per pass.

I Remark 7. Since, the algorithm adds an ancestor-descendant path for each component of
G′, it might seem that the analysis of the algorithm is not tight for computing DFS trees
with o(n) height. However, there exist a sequence of input edges where the algorithm indeed
takes Θ(n/k) passes for computing a DFS tree with height o(n). The details of the sequence
are described in the full version of the paper.

5 Final algorithm

We shall now further improve the algorithm so that the required number of passes reduces
to dh/ke while it continues to use O(nk) space, where h is the height of the computed DFS
tree and k is any positive integer. To understand the main intuition behind our approach,
let us recall the previously described algorithms. We first described a simple algorithm (in
Section 3) in which every pass over the input stream adds one new vertex as the child of some
leaf of T , which was improved (in Section 3.1) to simultaneously adding all vertices which
are children of the leaves of T in the final DFS tree. We then presented another algorithm
(in Section 4) in which every pass over the input stream adds one ancestor-descendant path
of length k or more, from each component of G′ to T . We shall now improve it by adding all
the subtrees constituting the next k levels of the final DFS tree starting from the leaves of
the current tree T (or fewer than k levels if the corresponding component of G′ is exhausted).

S. Khan and S. K. Mehta 42:9

Now, consider any component C of G′. Let rC ∈ C be a vertex having an edge e to a leaf
of the partially built DFS tree T . The computation of T can be completed by computing
a DFS tree of C from the root rC , which can be directly attached to T using e. However,
computing the entire DFS tree of C may not be possible in a single pass over the input
stream, due to the limited storage space available. Thus, using O(n · k) space we compute a
special spanning tree TC for each component C of G′ in parallel, such that the top k levels of
TC is same as the top k levels of some DFS tree of C. As a result, in the ith pass all vertices
on the levels (i − 1) · k + 1 to i · k of the final DFS tree are added to T . This essentially
adds a tree T ′

C representing the top k levels of TC for each component C of G′. This ensures
that our algorithm will terminate in dh/ke passes, where h is the height of the final DFS
tree. Further, this special tree TC also ensures an additional property, i.e., there is a one to
one correspondence between the set of trees of TC \ T ′

C and the components of C \ T ′
C . In

fact, each tree of TC \ T ′
C is a spanning tree of the corresponding component. This property

directly provides the spanning trees of the components of G′ in the next pass.

Special spanning tree TC

We shall now describe the properties of this special tree TC (and hence T ′
C) which is computed

in a single pass over the input stream. For T ′
C to be added to the DFS tree T of the graph,

a necessary and sufficient condition is that T ′
C satisfies the invariants I1 and I2 at the end

of the pass. To achieve this we maintain TC to be a spanning tree of C, such that these
invariants are maintained by the corresponding T ′

C throughout the pass as the edges are
processed. Let SC be the set of edges already visited during the current pass, which have
both endpoints in C. In order to satisfy I1, no edge in SC should be a cross edge in T ′

C , i.e.,
no edge having both endpoints in the top k levels of TC is a cross edge. In order to satisfy
I2, no edge in SC from any component C ′ ∈ C \ T ′

C to C \ C ′ should be a cross edge in TC .
Hence, using the additional property of TC , each edge from a tree τ in TC \ T ′

C to TC \ τ is
necessarily a back edge. This is captured by the two conditions of invariant IT given below.
Hence IT should hold after processing each edge in the pass. Observe that any spanning
tree, TC , trivially satisfies IT at the beginning of the pass as SC = ∅.

Invariant IT :
TC is a spanning tree of C with the top k levels being T ′

C such that:
IT1 : All non-tree edges of SC having both endpoints in T ′

C , are back edges.
IT2 : For each tree τ in TC \ T ′

C , all the edges of SC from τ to TC \ τ are back
edges.

Thus, IT is the local invariant maintained by TC during the pass, so that the global
invariants I1 and I2 are maintained throughout the algorithm. Now, in order to compute TC
(and hence T ′

C) satisfying the above invariant, we store a subset of SC along with TC . Let
HC denote the (spanning) subgraph of G formed by TC along with these additional edges.
Note that all the edges of SC cannot be stored in HC due to space limitation of O(nk). Since
each pass starts with the spanning tree TC of C and SC = ∅, initially HC = TC . As the
successive edges of the stream are processed, HC is updated if the input edge belongs to the
component C. We now formally describe HC and its properties.

Spanning subgraph HC

As described earlier, at the beginning of a pass for every component C of G′, HC = TC .
Now, the role of HC is to facilitate the maintenance of the invariant IT . In order to satisfy
IT1 and IT2 , we store in HC all the edges in SC that are incident on at least one vertex of

STACS 2019

42:10 DFS in Semi-streaming Model

T ′
C . Therefore, HC is the spanning tree TC along with every edge in SC which has at least

one endpoint in T ′
C . Thus, HC satisfies the following invariant throughout the algorithm.

Invariant IH :
HC comprises of TC and all edges from SC that are incident on at least one vertex of T ′

C .

We shall now describe a few properties of HC and then in the following section show
that maintaining IH for HC is indeed sufficient to maintain the invariant IT as the stream
is processed. The following properties of HC are crucial to establish the correctness of our
procedure to maintain TC and HC and establish a bound on total space required by HC .

I Lemma 8. TC is a valid DFS tree of HC .

Proof. In order to prove this claim it is sufficient to prove that all the non-tree edges stored in
HC are back edges in TC , i.e., the endpoints of every such edge share an ancestor-descendant
relationship. Now, invariant IT1 ensures that any edge in SC having both endpoints in T ′

C is
a back edge. And invariant IT2 ensures that any edge between a vertex in T ′

C and TC \ T ′
C is

a back edge. Hence, all the non-tree edges incident on T ′
C (and hence all non-tree edges in

HC) are back edges, proving our lemma. J

I Lemma 9. The total number of edges in HC , for all the components C of G′, is O(nk).

Proof. The size of HC can be analysed using invariant IH as follows. The number of tree
edges in TC (and hence in HC) is O(|VC |). The non-tree edges stored by HC have at least
one endpoint in T ′

C . Using Lemma 8 we know that all these edges are back edges. To bound
the number of such edges let us associate each non-tree edge to its lower endpoint. Hence
each vertex will be associated to at most k non-tree edges to its k ancestors in T ′

C (recall that
T ′
C is the top k levels of TC). Thus, HC stores O(|VC |) tree edges and O(|VC | · k) non-tree

edges, i.e., total O(|VC | · k) edges. Since
∑
C∈G′ |VC | ≤ n, the total number of edges in HC

is O(nk). J

5.1 Processing of Edges
We now describe how TC and HC are maintained while processing the edges of the input
stream such that IT and IH are satisfied. Since our algorithm maintains the invariants
I1 and I2 (because of IT), we know that any edge whose both endpoints are not in some
component C of G′, is either a back edge or already a tree edge in T . Thus, we shall only
discuss the processing of an edge (x, y) having both endpoints in C (now added to SC),
where level(x) ≤ level(y).

1. If x ∈ T ′
C then the edge is added to HC to ensure IH . In addition, if (x, y) is a cross

edge in TC it violates either IT1 (if y ∈ T ′
C) or IT2 (if y /∈ T ′

C). Thus, TC is required to
be restructured to ensure that IT is satisfied.

2. If x /∈ T ′
C and if x and y belong to different trees in TC \ T ′

C , then it violates IT2 . Again
in such a case, TC is required to be restructured to ensure that IT is satisfied.

Note that after restructuring TC we need to update HC such that IH is satisfied. Con-
sequently any non-tree edge in HC that was incident on a vertex in original T ′

C , has to be
removed from HC if none of its endpoints are in T ′

C after restructuring TC , i.e., one or both
of its endpoints have moved out of T ′

C . But the problem arises if a vertex moves into T ′
C

during restructuring. There might have been edges incident on such a vertex in SC and
which were not stored in HC . In this case we need these edges in HC to satisfy IH , which is

S. Khan and S. K. Mehta 42:11

not possible without visiting SC again. This problem can be avoided if our restructuring
procedure ensures that no new vertex enters T ′

C . This can be ensured if the restructuring
procedure follows the property of monotonic fall, i.e., the level of a vertex is never decreased
by the procedure. Let e be the new edge of component C in the input stream. We shall
show that in order to preserve the invariants IT and IH it is sufficient that the restructuring
procedure maintains the property of monotonic fall and ensures that the restructured TC is
a DFS tree of HC + e.

I Lemma 10. On insertion of an edge e, any restructuring procedure which updates TC to
be a valid DFS tree of HC + e ensuring monotonic fall, satisfies the invariants IT and IH .

Proof. The property of monotonic fall ensures that the vertex set of new T ′
C is a subset

of the vertex set of the previous T ′
C . Using IH we know that any edge of SC which is not

present in HC must have both its endpoints outside T ′
C . Hence, monotonic fall guarantees

that IH continues to hold with respect to the new T ′
C for the edges in SC \ {e}. Additionally,

we save e in the new HC if at least one of its endpoints belong to the new T ′
C , ensuring that

IH holds for the entire SC .
Since the restructuring procedure ensures that the updated TC is a DFS tree of HC , the

invariant IT1 trivially holds as a result of IH . In order to prove the invariant IT2 , consider
any edge e′ ∈ SC from a tree τ ∈ TC \ T ′

C to TC \ τ . Clearly, it will satisfy IT2 if e′ ∈ HC ,
as TC is a DFS tree of HC + e. In case e′ /∈ HC , it must be internal to some tree τ ′ in
the original TC \ T ′

C (using IT2 in the original TC). We shall now show that such an edge
will remain internal to some tree in the updated TC \ T ′

C as well, thereby not violating IT2 .
Clearly the endpoints of e′ cannot be in the updated T ′

C due to the property of monotonic
fall.

Assume that the endpoints of e′ belong to different trees of updated TC \ T ′
C . Now,

consider the edges e1, ..., et on the tree path in τ ′ connecting the endpoints of e′. Since the
entire tree path is in τ ′, the endpoints of each ei are not in original T ′

C , ensuring that they
are also not in the updated T ′

C (by monotonic fall). Since the endpoints of e′ (and hence
the endpoints of the path e1, ..., et) are in different trees in updated TC \ T ′

C , there must
exist some ei which also has endpoints belonging to different trees of updated TC \ T ′

C . This
makes ei a cross edge of the updated TC . Since ei is a tree edge of original TC , it belongs
to HC and hence ei being a cross edge implies that the updated TC is not a DFS tree of
HC + e, which is a contradiction. Hence e′ has both its endpoints in the same tree of the
updated Tc \ T ′

C , ensuring that IT2 holds after the restructuring procedure. J

Hence, any procedure to restructure a DFS tree TC of the subgraph HC on insertion of a
cross edge e, that upholds the property of monotonic fall and returns a new TC which is a
DFS tree of HC + e, can be used as a black box in our algorithm. One such algorithm is the
incremental DFS algorithm by Baswana and Khan [8], which precisely fulfils our requirement.
They proved the total update time of the algorithm to be O(n2). They also showed that any
algorithm maintaining incremental DFS abiding monotonic fall would require Ω(n2) time
even for sparse graphs, if it explicitly maintains the DFS tree. If the height of the DFS tree
is known to be h, these bounds reduces to O(nh+ ne) and Ω(nh+ ne) respectively, where
ne is the number of edges processed by the algorithm. Refer to the full paper for a brief
description of the algorithm.

STACS 2019

42:12 DFS in Semi-streaming Model

5.2 Algorithm
We now describe the details of our final algorithm which uses an incremental DFS algorithm [8]
for restructuring the DFS tree when a cross edge is inserted. Similar to the algorithm in
Section 4, for each component C of G′, a rooted spanning tree TC of the component is
required as an input to the procedure having the root rC .

Initially T = ∅ and G′ = G has a single component C, as G is connected (recall the
assumption in Section 2). Hence for the first pass, we compute a spanning tree TC of G
using the Union-Find algorithm. Subsequently in each pass we directly get a spanning tree
TC′ for each component C ′ of the new G′, which is the corresponding tree in TC \ T ′

C , where
C is the component containing C ′ in the previous pass. Also, observe that the use of these
trees as the new TC ensures that the level of no vertex ever rises in the context of the entire
tree T . This implies that the level of any vertex starting with the initial spanning tree TG
never rises, i.e., the entire algorithm satisfies the property of monotonic fall. We will use this
fact crucially in the analysis of the time complexity.

As described earlier, we process the edges of the stream by updating the TC and HC

maintaining IT and IH respectively. In case the edge is internal to some tree in TC \ T ′
C

(i.e., have both endpoint in the same tree in TC \ T ′
C), we simply ignore the edge. Otherwise,

we add it to HC to satisfy IH . Further, the incremental DFS algorithm [8] maintains TC to
be a DFS tree of HC , which restructures TC if the processed edge is added to HC and is a
cross edge in TC . Now, in case TC is updated we also update the subgraph HC , by removing
the extra non-tree edges having both endpoints in TC \ T ′

C . After the pass is completed, we
attach T ′

C (the top k levels of TC) to T . Now, IT2 ensures that each tree of TC \ T ′
C forms

the (rooted) spanning tree of the components of the new G′, and hence can be used for the
next pass. Refer to the full paper for the pseudocode of the algorithm.

5.3 Correctness and Analysis
The correctness of our algorithm follows from Lemma 10, which ensures that invariants IH
and IT (and hence I1 and I2) are maintained as a result of using the incremental DFS
algorithm which ensures monotonic fall of vertices. The total space used by our algorithm
and the restructuring procedure is dominated by the cumulative size of HC for all components
C of G′, which is O(nk) using Lemma 9. Now, in every pass of the algorithm, a DFS tree for
each component C of height k is attached to T . These trees collectively constitute the next
k levels of the final DFS tree T . Therefore, the entire tree T is computed in dh/ke passes.

Let us now analyse the time complexity of our algorithm. In the first pass O(mα(m,n))
time is required to compute the spanning tree TC using the Union-Find algorithm. Also, in
each pass O(m) time is required to process the input stream. Further, in order to update HC

we are required to delete edges having both endpoints out of T ′
C . Hence, whenever a vertex

falls below the kth level, the edges incident on it are checked for deletion from HC (if the
other endpoint is also not in T ′

C). Total time required for this is O(
∑
v∈V deg(v)) = O(m)

per pass. In the full paper we describe the details of an incremental DFS algorithm which
maintains the DFS tree in total O(nh+ ne) time, where ne = O(mh/k), for processing the
entire input stream in each pass.

Finally, we need to efficiently answer the query whether an edge is internal to some tree
in TC \T ′

C . For this we maintain for each vertex x its ancestor at level k as rep[x], i.e., rep[x]
is the root of the tree in TC \ T ′

C that contains x. If level(x) < k, then rep[x] = x. For an
edge (x, y) comparing the rep[x] and rep[y] efficiently answers the required query in O(1)
time. However, whenever TC is updated we need to update rep[v] for each vertex v in the

S. Khan and S. K. Mehta 42:13

modified part of TC , requiring O(1) time per vertex in the modified part of TC . We shall
bound the total work done to update rep[x] of such a vertex x throughout the algorithm to
O(nh) as follows.

Consider the potential function Φ =
∑
v∈V level(v). Whenever some part of TC is

updated, each vertex x in the modified TC necessarily incurs a fall in its level (due to
monotonic fall). Thus, the cost of updating rep[x] throughout the algorithm is proportional
to the number of times x descends in the tree, hence increases the value of Φ by at least one
unit. Hence, updating rep[x] for all x in the modified part of TC can be accounted by the
corresponding increase in the value of Φ. Clearly, the maximum value of Φ is O(nh), since
the level of each vertex is always less than h, where h is the height of the computed DFS
tree. Thus, the total work done to update rep[x] for all x ∈ V is O(nh). This proves our
main theorem described in Section 1.1 which is stated as follows.

I Theorem 2. Given an undirected graph G, a DFS tree of G can be computed by a semi-
streaming algorithm using dh/ke passes using O(nk) space requiring amortized O(m+ nk)
time per pass for any integer k ≤ h, where h is the height of the computed DFS tree.

I Remark 11. Note that the time complexity of our algorithm is indeed tight for our
framework. Since our algorithm requires dh/ke passes and any restructuring procedure
following monotonic fall requires Ω(nh+ ne) time, each pass would require Ω(m+ nk) time.

6 Experimental Evaluation

Most streaming algorithms deal with only O(n) space, for which our advanced algorithms
improve over the simple algorithms theoretically by just constant factors. However, their
empirical performance demonstrates their significance in the real world applications. The
evaluation of our algorithms on random and real graphs shows that in practice these algorithms
require merely a few passes even when allowed to store just 5n edges. The results of our
analysis can be summarized as follows (for details refer to the full paper).

The two advanced algorithms kPath (algorithmin Section 4) and kLev (algorithm in
Section 5 with an additional heuristic) perform much better than the rest even when O(n)
space is allowed. For both random and real graphs, kPath performs slightly worse as the
density of the graph increases. On the other hand kLev performs slightly better only in
random graphs with the increasing density. The effect of the space parameter is very large
on kPath from k = 1 to small constants, requiring very few passes even for k = 5 and k = 10.
However, kLev seems to work very well even for k = 1 and has a negligible effect of increasing
the value of k. Overall, the results suggest using kPath if nk space is allowed for k being a
small constant such as 5 or 10. However, if the space restrictions are extremely tight it is
better to use kLev.

7 Conclusion

We presented the first o(n) pass semi-streaming algorithm for computing a DFS tree for an
undirected graph, breaking the long standing presumed barrier of n passes. In our streaming
model we assume that O(nk) local space is available for computation, where k is any natural
number. Our algorithm computes a DFS tree in dn/ke passes. We improve our algorithm to
require only dh/ke passes without any additional space requirement, where h is the height of
the final tree. This improvement becomes significant for graphs having shallow DFS trees.
Moreover, our algorithm is described as a framework using a restructuring algorithm as a

STACS 2019

42:14 DFS in Semi-streaming Model

black box. This allows more flexibility to extend our algorithm for solving other problems
requiring a computation of DFS tree in the streaming environment.

Recently, in a major breakthrough Elkin [12] presented the first o(n) pass algorithm for
computing Shortest Paths Tree from a single source. Using O(nk) local space, it computes
the shortest path tree from a given source in O(n/k) passes for unweighted graphs and in
O(n logn/k) passes for weighted graphs.

Despite the fact that these breakthroughs provide only minor improvements (typically
poly logn factors), they are significant steps to pave a path in better understanding of such
fundamental problems in the streaming environment. These simple improvements come after
decades of the emergence of streaming algorithms for graph problems, where such problems
were considered implicitly hard in the semi-streaming environment. We thus believe that
our result is a significant improvement over the known algorithm for computing a DFS tree
in the streaming environment, and it can be a useful step in more involved algorithms that
require the computation of a DFS tree.

Moreover, the experimental evaluation of our algorithms revealed exceptional performance
of the advanced algorithms kPath and kLev (greatly affected by the additional heuristic).
Thus, it would be interesting to further study these algorithms theoretically which seem to
work extremely well in practice.

References
1 Kook Jin Ahn and Sudipto Guha. Linear programming in the semi-streaming model with

application to the maximum matching problem. Inf. Comput., 222:59–79, 2013.
2 Noga Alon, Yossi Matias, and Mario Szegedy. The Space Complexity of Approximating the

Frequency Moments. Journal of Computer and System Sciences, 58(1):137–147, 1999.
3 Giorgio Ausiello, Donatella Firmani, and Luigi Laura. Datastream computation of graph

biconnectivity: Articulation Points, Bridges, and Biconnected Components. In Theoretical
Computer Science, 11th Italian Conference, ICTCS 2009, Cremona, Italy, September 28-30,
2009, Proceedings., pages 26–29, 2009.

4 Giorgio Ausiello, Donatella Firmani, and Luigi Laura. Real-time monitoring of undirected
networks: Articulation points, bridges, and connected and biconnected components. Networks,
59(3):275–288, 2012. doi:10.1002/net.21450.

5 Ziv Bar-Yossef, Ravi Kumar, and D. Sivakumar. Reductions in Streaming Algorithms, with
an Application to Counting Triangles in Graphs. In Proceedings of the Thirteenth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA ’02, pages 623–632, 2002.

6 Surender Baswana. Streaming algorithm for graph spanners - single pass and constant
processing time per edge. Inf. Process. Lett., 106(3):110–114, 2008.

7 Surender Baswana, Shreejit Ray Chaudhury, Keerti Choudhary, and Shahbaz Khan. Dynamic
DFS in Undirected Graphs: breaking the O(m) barrier. In ACM-SIAM Symposium on Discrete
Algorithms, SODA, pages 730–739, 2016.

8 Surender Baswana and Shahbaz Khan. Incremental Algorithm for Maintaining a DFS Tree
for Undirected Graphs. Algorithmica, 79(2):466–483, 2017.

9 Glencora Borradaile, Claire Mathieu, and Theresa Migler. Lower bounds for testing digraph
connectivity with one-pass streaming algorithms. CoRR, abs/1404.1323, 2014.

10 Adam L. Buchsbaum, Raffaele Giancarlo, and Jeffery Westbrook. On finding common
neighborhoods in massive graphs. Theor. Comput. Sci., 299(1-3):707–718, 2003.

11 Michael Elkin. Streaming and fully dynamic centralized algorithms for constructing and
maintaining sparse spanners. ACM Trans. Algorithms, 7(2):20:1–20:17, 2011.

12 Michael Elkin. Distributed exact shortest paths in sublinear time. In Proceedings of the 49th
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC,
Canada, June 19-23, 2017, pages 757–770, 2017.

http://dx.doi.org/10.1002/net.21450

S. Khan and S. K. Mehta 42:15

13 Shimon Even and Robert Endre Tarjan. Network Flow and Testing Graph Connectivity.
SIAM J. Comput., 4(4):507–518, 1975.

14 Martin Farach-Colton, Tsan-sheng Hsu, Meng Li, and Meng-Tsung Tsai. Finding Articulation
Points of Large Graphs in Linear Time. In Algorithms and Data Structures, WADS, pages
363–372, Cham, 2015. Springer International Publishing.

15 Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian Zhang.
Graph Distances in the Streaming Model: The Value of Space. In Proceedings of the Sixteenth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’05, pages 745–754, 2005.

16 Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian Zhang. On
Graph Problems in a Semi-streaming Model. Theor. Comput. Sci., 348(2):207–216, December
2005.

17 Joan Feigenbaum, Sampath Kannan, Martin J. Strauss, and Mahesh Viswanathan. An
Approximate L1-Difference Algorithm for Massive Data Streams. SIAM J. Comput., 32(1):131–
151, January 2003.

18 Philippe Flajolet and G. Nigel Martin. Probabilistic counting algorithms for data base
applications. Journal of Computer and System Sciences, 31(2):182–209, 1985.

19 Sudipto Guha, Nick Koudas, and Kyuseok Shim. Data-streams and Histograms. In Proceedings
of the Thirty-third Annual ACM Symposium on Theory of Computing, STOC ’01, pages
471–475, 2001.

20 Venkatesan Guruswami and Krzysztof Onak. Superlinear Lower Bounds for Multipass Graph
Processing. Algorithmica, 76(3):654–683, November 2016.

21 Venkatesan Guruswami and Krzysztof Onak. Superlinear Lower Bounds for Multipass Graph
Processing. Algorithmica, 76(3):654–683, 2016.

22 Monika Rauch Henzinger, Prabhakar Raghavan, and Sridhar Rajagopalan. Computing on
data streams. In External Memory Algorithms, Proceedings of a DIMACS Workshop, New
Brunswick, New Jersey, USA, May 20-22, 1998, pages 107–118, 1998.

23 John E. Hopcroft and Richard M. Karp. An n5/2 Algorithm for Maximum Matchings in
Bipartite Graphs. SIAM J. Comput., 2(4):225–231, 1973.

24 John E. Hopcroft and Robert Endre Tarjan. Efficient Planarity Testing. J. ACM, 21(4):549–568,
1974.

25 Piotr Indyk. Stable Distributions, Pseudorandom Generators, Embeddings, and Data Stream
Computation. J. ACM, 53(3):307–323, May 2006.

26 Sagar Kale and Sumedh Tirodkar. Maximum Matching in Two, Three, and a Few More Passes
Over Graph Streams. In Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, APPROX/RANDOM 2017, August 16-18, 2017, Berkeley, CA,
USA, pages 15:1–15:21, 2017.

27 Michael Kapralov. Better bounds for matchings in the streaming model. In Proceedings of
the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2013, New
Orleans, Louisiana, USA, January 6-8, 2013, pages 1679–1697, 2013.

28 Shahbaz Khan. Near Optimal Parallel Algorithms for Dynamic DFS in Undirected Graphs.
In Proceedings of the 29th ACM Symposium on Parallelism in Algorithms and Architectures,
SPAA 2017, Washington DC, USA, July 24-26, 2017, pages 283–292, 2017.

29 Lasse Kliemann. Engineering a Bipartite Matching Algorithm in the Semi-Streaming Model.
In Algorithm Engineering - Selected Results and Surveys, pages 352–378. Springer International
Publishing, 2016.

30 Andrew McGregor. Finding Graph Matchings in Data Streams. In Approximation, Ran-
domization and Combinatorial Optimization, Algorithms and Techniques, 8th International
Workshop on Approximation Algorithms for Combinatorial Optimization Problems, APPROX
2005 and 9th InternationalWorkshop on Randomization and Computation, RANDOM 2005,
Berkeley, CA, USA, August 22-24, 2005, Proceedings, pages 170–181, 2005.

31 Andrew McGregor. Graph Stream Algorithms: A Survey. SIGMOD Rec., 43(1):9–20, May
2014.

STACS 2019

42:16 DFS in Semi-streaming Model

32 Shan Muthukrishnan. Data Streams: Algorithms and Applications. Foundations and Trends
in Theoretical Computer Science, 1(2):117–236, 2005.

33 Thomas C. O’Connell. A Survey of Graph Algorithms Under Extended Streaming Models of
Computation. In Fundamental Problems in Computing: Essays in Honor of Professor Daniel
J. Rosenkrantz, pages 455–476, 2009.

34 Jan Matthias Ruhl. Efficient Algorithms for New Computational Models. PhD Thesis,
Department of Computer Science, MIT, Cambridge, MA, 2003.

35 Robert Endre Tarjan. Depth-First Search and Linear Graph Algorithms. SIAM J. Comput.,
1(2):146–160, 1972.

36 Robert Endre Tarjan. Finding Dominators in Directed Graphs. SIAM J. Comput., 3(1):62–89,
1974.

37 Robert Endre Tarjan. Efficiency of a Good But Not Linear Set Union Algorithm. J. ACM,
22(2):215–225, April 1975.

38 Robert Endre Tarjan. Edge-Disjoint Spanning Trees and Depth-First Search. Acta Inf.,
6:171–185, 1976.

39 Robert Endre Tarjan and Jan van Leeuwen. Worst-case Analysis of Set Union Algorithms. J.
ACM, 31(2):245–281, 1984.

40 Jeffery Westbrook and Robert Endre Tarjan. Maintaining Bridge-Connected and Biconnected
Components On-Line. Algorithmica, 7(5&6):433–464, 1992.

41 Jian Zhang. A Survey on Streaming Algorithms for Massive Graphs. In Managing and Mining
Graph Data, pages 393–420. Springer US, 2010.

On Finite Monoids over Nonnegative Integer
Matrices and Short Killing Words
Stefan Kiefer
University of Oxford, UK

Corto Mascle
ENS Paris-Saclay, France

Abstract
Let n be a natural number andM a set of n× n-matrices over the nonnegative integers such that
M generates a finite multiplicative monoid. We show that if the zero matrix 0 is a product of
matrices inM, then there are M1, . . . ,Mn5 ∈M with M1 · · ·Mn5 = 0. This result has applications
in automata theory and the theory of codes. Specifically, if X ⊂ Σ∗ is a finite incomplete code, then
there exists a word w ∈ Σ∗ of length polynomial in

∑
x∈X
|x| such that w is not a factor of any

word in X∗. This proves a weak version of Restivo’s conjecture.

2012 ACM Subject Classification Theory of computation→ Formal languages and automata theory

Keywords and phrases matrix semigroups, unambiguous automata, codes, Restivo’s conjecture

Digital Object Identifier 10.4230/LIPIcs.STACS.2019.43

Funding Stefan Kiefer : Work supported by a Royal Society University Research Fellowship.

1 Introduction

Let N = {0, 1, 2, . . .}. In this paper we show the following theorem:

I Theorem 1. Let n ∈ N and M ⊆ Nn×n be a finite set of nonnegative integer matrices.
Denote byM the monoid generated byM under matrix multiplication. IfM is finite then
there are M1, . . . ,M` ∈ M with ` ≤ 1

16n
5 + 15

16n
4 such that the matrix product M1 · · ·M`

has minimum rank inM. Further, M1, . . . ,M` can be computed in time polynomial in the
description size ofM.

The mortality problem. Theorem 1 is related to the mortality problem for matrices: given
a finite setM of matrices, can the zero matrix (which is defined to have rank 0) be expressed
as a finite product of matrices inM? Paterson [14] showed that the mortality problem is
undecidable for 3×3 integer matrices, i.e.,M⊂ Z3×3. It remains undecidable forM⊂ Z3×3

with |M| = 7 and forM⊂ Z21×21 with |M| = 2, see [8]. Mortality for 2× 2 integer matrices
is NP-hard [1] and not known to be decidable, see [15] for recent work on the 2× 2 case.

The mortality problem for nonnegative matrices is much easier, as for each matrix entry
it only matters whether it is zero or nonzero, so one can assume M ⊆ {0, 1}n×n. This
version is naturally phrased in terms of automata. Let A = (Σ, Q, δ) be a nondeterministic
finite automaton (NFA) over a finite alphabet Σ, a finite set Q of states, and with transition
function δ : Q× Σ→ 2Q (initial and final states do not play a role here). A word w ∈ Σ∗
is called killing word for A if w does not label any path in A. Associate to A the monoid
morphism MA : Σ∗ → NQ×Q where for all a ∈ Σ we define MA(a)(p, q) = 1 if δ(p, a) 3 q and
0 otherwise. Then, for any word w ∈ Σ∗ we have thatMA(w)(p, q) is the number of w-labelled
paths from p to q. It follows that the mortality problem for nonnegative matrices is equivalent
to the problem whether an NFA has a killing word. The problem is PSPACE-complete [12],
and there are examples where the shortest killing word has exponential length in the number
of states of the automaton [6, 12]. This implies that the assumption in Theorem 1 that the

© Stefan Kiefer and Corto Mascle;
licensed under Creative Commons License CC-BY

36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019).
Editors: Rolf Niedermeier and Christophe Paul; Article No. 43; pp. 43:1–43:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.STACS.2019.43
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

43:2 On Finite Monoids over Nonnegative Integer Matrices and Short Killing Words

generated monoid M be finite cannot be dropped. Whether M is finite can be checked
in polynomial time [11], see also [21] and the references therein. If M is finite then the
mortality problem for nonnegative integer matrices is solvable in polynomial time:

I Proposition 2. LetM⊆ Nn×n be a finite set of nonnegative integer matrices, generating
a finite monoidM. One can decide in polynomial time if 0 ∈M.

Short killing words for unambiguous finite automata. In the central proofs of this paper,
the finiteness assumption can be further strengthened so that it corresponds to unambigu-
ousness of NFAs. More precisely, an NFA A = (Σ, Q, δ) is called an unambiguous finite
automaton (UFA) if for all states p, q all paths from p to q are labelled by different words,
i.e., for each word w ∈ Σ∗ there is at most one w-labelled path from p to q. Call a monoid
M ⊆ Nn×n an unambiguous monoid of relations if M ⊆ {0, 1}n×n. For any UFA A the
image MA(Σ∗) of the monoid morphism MA is an unambiguous monoid of relations, and
any unambiguous monoid of relations can be viewed in this way.

Proposition 2 provides a polynomial-time procedure for checking whether a UFA has a
killing word. Define ρ as the spectral radius of the rational matrix 1

|Σ|
∑

a∈ΣM(a). One can
show that A has a killing word if ρ < 1, and otherwise ρ = 1. Proposition 2 then follows
from the fact that one can compare ρ with 1 in polynomial time. Thus the spectral radius
tells whether there exists a killing word, but does not provide a killing word. Neither does
this method imply a polynomial bound on the length of a minimal killing word, let alone a
polynomial-time algorithm for computing a killing word. Theorem 1, which is proved purely
combinatorially, fills this gap: if there is a killing word, then one can compute a killing word
of length O(|Q|5) in polynomial time. NP-hardness results for approximating the length of
a shortest killing word were proved in [17], even for the case |Σ| = 2 and for partial DFAs,
which are UFAs with |δ(p, a)| ≤ 1 for all p ∈ Q and all a ∈ Σ.

Short minimum-rank words. Define the rank of a UFA A = (Σ, Q, δ) as the minimum rank
of the matrices MA(w) for w ∈ Σ∗. A word w such that the rank of MA(w) attains that
minimum is called a minimum-rank word. Minimum-rank words have been very well studied
for deterministic finite automata (DFAs). DFAs are UFAs with |δ(p, a)| = 1 for all p ∈ Q
and all a ∈ Σ. In DFAs of rank 1, minimum-rank words are called synchronizing because
δ(Q,w) is a singleton when w is a minimum-rank word. It is the famous Černý conjecture
that whenever a DFA has a synchronizing word then it has a synchronizing word of length at
most (n− 1)2 where n := |Q|. There are DFAs whose shortest synchronizing words have that
length, but the best known upper bound is cubic in n, see [20] for a survey on the Černý
conjecture.

In 1986 Berstel and Perrin generalized the Černý conjecture from DFAs to UFAs by
conjecturing [2] that in any UFA a shortest minimum-rank word has length O(n2). They
remarked that no polynomial upper bound was known. Then Carpi [4] showed the following:

I Theorem 3 (Carpi [4]). Let A = (Σ, Q, δ) be a UFA of rank r ≥ 1 such that the state
transition graph of A is strongly connected. Let n := |Q| ≥ 1. Then A has a minimum-rank
word of length at most 1

2rn(n− 1)2 + (2r − 1)(n− 1).

This implies an O(n4) bound for the case where r ≥ 1. Carpi left open the case r = 0, i.e.,
when a killing word exists. The main technical contribution of our paper concerns the case
r = 0. Combined with Carpi’s Theorem 3 we then obtain Theorem 1. Theorem 1 provides,
to the best of the authors’ knowledge, the first polynomial bound, O(n5), on the length of
shortest minimum-rank words for UFAs.

S. Kiefer and C. Mascle 43:3

q

x|X|
x1

x2

Figure 1 Given a finite language X ⊆ Σ∗, the flower automaton AX has one “petal” for each
word x ∈ X. Thus δ(q, w) 3 q holds if and only if w ∈ X∗. If X is a code then AX is unambiguous.

Restivo’s conjecture. Let X ⊆ Σ∗ be a finite set of words over a finite alphabet Σ, and
define k := maxx∈X |x|. A word v ∈ Σ∗ is called uncompletable in X if there are no words
u,w ∈ Σ∗ such that uvw ∈ X∗, i.e., v is not a factor of any word in X∗. In 1981 Restivo [16]
conjectured that if there exists an uncompletable word then there is an uncompletable word
of length at most 2k2. This strong form of Restivo’s conjecture has been refuted, with a lower
bound of 5k2−O(k), see [7]. A recent article [10] describes a sophisticated computer-assisted
search for sets X with long shortest uncompletable words. While these experiments do
not formally disprove a quadratic upper bound in k, they seem to hint at an exponential
behaviour in k. See also [5] for recent work and open problems related to Restivo’s conjecture.

A set X ⊆ Σ∗ is called a code if every word w ∈ X∗ has at most one decomposition
w = x1 · · ·x` with x1, . . . , x` ∈ X. See [3] for a comprehensive reference on codes. For a
finite code X ⊆ Σ∗ define m :=

∑
x∈X |x|. Given X one can construct a flower automaton [3,

Chapter 4.2], which is a UFA AX = (Σ, Q, δ) with m− |X|+ 1 states, see Figure 1. In this
UFA any word is killing if and only if it is uncompletable in X. Hence Theorem 1 implies an
O(m5) bound on the length of the shortest uncompletable word in a finite code. This proves
a weak (note that m5 may be much larger than k2) version of Restivo’s conjecture for finite
codes.

Is any product a short product? It was shown in [21] that ifM⊆ Nn×n is finite then for
every matrixM ∈M there areM1, . . . ,M` ∈M with ` ≤ de2n!e−2 such thatM = M1 · · ·M`.
It was also shown in [21] that such a bound on ` cannot be smaller than 2n−2. In view of
Theorem 1 one may ask if a polynomial bound on ` exists for low-rank matrices M . The
answer is no, even for unambiguous monoids of relations and even when M has rank 1 and
when 1 is the minimum rank inM:

I Theorem 4. There is no polynomial p such that the following holds:

Let n ∈ N, let M ⊆ {0, 1}n×n generate an unambiguous monoid of relations M ⊆
{0, 1}n×n. Let M ∈ M have rank 1, and let 1 be the minimum rank in M. Then
there are M1, . . . ,M` ∈M with ` ≤ p(n) such that M = M1 · · ·M`.

Thus, while Theorem 1 guarantees that some minimum-rank matrix in the monoid is a
short product, this is not the case for every minimum-rank matrix in the monoid.

By how much can the O(n5) upper bound be improved? A synchronizing 0-automaton
is a DFA A = (Σ, Q, δ) that has a state 0 ∈ Q and a word w ∈ Σ∗ such that δ(Q,wx) = {0}
holds for all x ∈ Σ∗. The shortest such synchronizing words w are exactly the shortest killing
words in the partial DFA obtained from A by omitting all transitions into the state 0. There
exist synchronizing 0-automata with n states where the shortest synchronizing word has
length n(n − 1)/2, and an n2

4 − 4 lower bound exists even for synchronizing 0-automata

STACS 2019

43:4 On Finite Monoids over Nonnegative Integer Matrices and Short Killing Words

with |Σ| = 2 [13]. This implies that the O(n5) upper bound from Theorem 1 cannot be
improved to o(n2), not even in the case that a killing word exists. One might generalize the
Černý conjecture by claiming Theorem 1 with an upper bound of (n− 1)2 (note that such a
conjecture would concern minimum-rank words, not minimum nonzero-rank words). To the
best of the authors’ knowledge, this vast generalization of the Černý conjecture has not yet
been refuted.

Organization of the paper. In the remaining three sections we prove Proposition 2, The-
orem 1, and Theorem 4, respectively.

2 Proof of Proposition 2

LetM⊆ Nn×n be a finite set of nonnegative integer matrices, generating a finite monoidM.
For notational convenience, throughout the paper, we associate toM a bijectionM : Σ→M
and extend it to the monoid morphism M : Σ∗ →M. Thus we may write M(Σ∗) forM.

Towards a proof of Proposition 2, define the rational nonnegative matrix A ∈ Qn×n by
A := 1

|Σ|
∑

a∈ΣM(a). Observe that for k ∈ N we have Ak = 1
|Σk|

∑
w∈Σk M(w), i.e., Ak is

the average of the M(w), where w ranges over all words of length k. Define ρ ≥ 0 as the
spectral radius of A.

I Lemma 5. We have ρ ≤ 1.

Proof. Since M(Σ∗) is finite, it is bounded. Hence (Ak)k∈N is bounded. By the Perron-
Frobenius theorem, A has a nonnegative left eigenvector u ∈ Rn with uA = ρu. So uAk = ρku.
It follows ρ ≤ 1. J

I Lemma 6. We have ρ < 1 if and only if there is w ∈ Σ∗ with M(w) = 0.

Proof. Suppose ρ < 1. Then limk→∞Ak = 0, and so there is k ∈ N such that the sum of all
entries of Ak is less than 1. It follows that there is w ∈ Σk such that the sum of all entries
of M(w) is less than 1. Since M(w) ∈ Nn×n it follows M(w) = 0.

Conversely, suppose there is w0 ∈ Σ∗ with M(w0) = 0. Since M(Σ∗) is finite, there is
B ∈ N such that all entries of all matrices in M(Σ∗) are at most B. For any k ∈ N define
W (k) := Σk \ (Σ∗w0Σ∗), i.e., W (k) is the set of length-k words that do not contain w0 as a
factor. Note that M(w) = 0 holds for all w ∈ Σk \W (k). It follows that any entry of Ak is
at most |W (k)|

|Σk| ·B. On the other hand, for any m ∈ N, if a word of length m|w0| is picked
uniformly at random, then the probability of picking a word in W (m|w0|) is at most(

1− 1
|Σ|w0||

)m

.

It follows that limk→∞
|W (k)|
|Σk| = 0. Hence limk→∞Ak = 0 and so ρ < 1. J

With these lemmas at hand, we can prove Proposition 2:

I Proposition 2. LetM⊆ Nn×n be a finite set of nonnegative integer matrices, generating
a finite monoidM. One can decide in polynomial time if 0 ∈M.

Proof. By Lemma 6, it suffices to check whether ρ < 1.
If ρ < 1 then the linear system xA = x does not have a nonzero solution. Conversely, if

ρ ≥ 1 then, by Lemma 5, we have ρ = 1 and thus, by the Perron-Frobenius theorem, the
linear system xA = x has a (real) nonzero solution.

S. Kiefer and C. Mascle 43:5

Hence it suffices to check if xA = x has a nonzero solution. This can be done in polynomial
time. J

As remarked in section 1, this algorithm does not exhibit a word w with M(w) = 0, even
when it proves the existence of such w.

3 Proof of Theorem 1

As before, let M : Σ∗ → Nn×n be a monoid morphism with finite image M(Σ∗). Call
M strongly connected if for all i, j ∈ {1, . . . , n} there is w ∈ Σ∗ with M(w)(i, j) ≥ 1. In
subsection 3.1 we consider the case where M is strongly connected. In subsection 3.2 we
consider the general case.

3.1 Strongly Connected
In this section we consider the case that M is strongly connected and prove the following
proposition, which extends Carpi’s Theorem 3:

I Proposition 7. Let M : Σ∗ → Nn×n be strongly connected with finite M(Σ∗). Given
M : Σ→ Nn×n, one can compute in polynomial time a word w ∈ Σ∗ with |w| ≤ 1

16n
5 + 15

16n
4

such that M(w) has minimum rank in M(Σ∗).

In the strongly connected case, M(Σ∗) does not have numbers larger than 1:

I Lemma 8. If M is strongly connected, then M(Σ∗) ⊆ {0, 1}n×n.

Proof. Let M be strongly connected. Suppose M(v)(i, j) ≥ 2 for some v ∈ Σ∗. Since M is
strongly connected, there is w ∈ Σ∗ with M(w)(j, i) ≥ 1. Hence M(vw)(i, i) ≥ 2. It follows
that M((vw)k)(i, i) ≥ 2k for all k ∈ N, contradicting the finiteness of M(Σ∗). J

Lemma 8 allows us to view the strongly connected case in terms of UFAs. Define a UFA
A = (Σ, Q, δ) with Q = {1, . . . , n} and δ(p, a) 3 q if and only if M(a)(p, q) = 1. For the rest
of the subsection we will mostly consider Q as an arbitrary finite set of n states. We extend
δ : Q × Σ → 2Q in the usual way to δ : 2Q × Σ∗ → 2Q by setting δ(P, a) :=

⋃
q∈P δ(q, a)

and δ(P, ε) := P and δ(P,wa) := δ(δ(P,w), a), where P ⊆ Q and a ∈ Σ and ε is the empty
word and w ∈ Σ∗. When there is no confusion, we may write pw for δ(p, w) and wq for
{p ∈ Q : pw 3 q}. We extend this to Pw :=

⋃
p∈P pw and wP :=

⋃
p∈P wp. We say a state

p is reached by a word w when wp 6= ∅, and a state p survives a word w when pw 6= ∅.
Note that Qw is the set of states that are reached by w, and wQ is the set of states that
survive w. Let q1 6= q2 be two different states. Then q1, q2 are called coreachable when
there is w ∈ Σ∗ with wq1 ∩ wq2 6= ∅ (i.e., there is p ∈ Q with pw ⊇ {q1, q2}), and they are
called mergeable when there is w ∈ Σ∗ with q1w ∩ q2w 6= ∅. For any q ∈ Q we define C(q)
as the set of states coreachable with q. Also, define c := max{|qw| : q ∈ Q, w ∈ Σ∗} and
m := max{|wq| : w ∈ Σ∗, q ∈ Q}. The following lemma says that one can compute short
witnesses for coreachability:

I Lemma 9. If states q 6= q′ are coreachable, then one can compute in polynomial time
wq,q′ ∈ Σ∗ with |wq,q′ | ≤ 1

2 (n+ 2)(n− 1) such that qwq,q′ ⊇ {q, q′}.

Proof. Let q 6= q′ be coreachable states. Then there are p ∈ Q and v ∈ Σ∗ with pv ⊇ {q, q′}.
Since M is strongly connected, there is u ∈ Σ∗ with qu 3 p, hence quv ⊇ {q, q′}. Define an
edge-labelled directed graph G = (V,E) with vertex set V = {{r, s} : r, s ∈ Q} and edge set

STACS 2019

43:6 On Finite Monoids over Nonnegative Integer Matrices and Short Killing Words

E = {(R, a, S) ∈ V ×Σ×V : Ra ⊇ S}. Since quv ⊇ {q, q′}, the graph G has a path, labelled
with uv, from {q} to {q, q′}. The shortest path from {q} to {q, q′} has at most |V | − 1 edges
and is thus labelled with a word w ∈ Σ∗ with |w| ≤ |V |−1 = 1

2n(n+1)−1 = 1
2 (n+2)(n−1).

For this w we have qw ⊇ {q, q′}. J

I Lemma 10. For each q ∈ Q one can compute in polynomial time a word wq ∈ Σ∗ with
|wq| ≤ 1

2 (c− 1)(n+ 2)(n− 1) such that no state q′ 6= q survives wq and is coreachable with q.

Proof. Let q ∈ Q. Consider the following algorithm:
1. w := ε (the empty word)
2. while there is q′ ∈ C(q) such that q′ survives w:

w := wq,q′w (with wq,q′ from Lemma 9)
3. return wq := w

The following picture visualizes aspects of this algorithm:

q

q′

qw

q′w

wq,q′

wq,q′

w

w

We argue that the computed word wq has the required properties. First we show that the
set qw increases in each iteration of the algorithm. Indeed, let w and wq,q′w be the words
computed by two subsequent iterations. Since qwq,q′ ⊇ {q, q′}, we have qwq,q′w ⊇ qw ∪ q′w.
The set q′w is nonempty, as q′ survives w. As can be read off from the picture above, the
sets qw and q′w are disjoint, as otherwise there would be two distinct paths from q to a
state in qw ∩ q′w, both labelled with wq,q′w, contradicting unambiguousness. It follows that
qwq,q′w) qw. Hence the algorithm must terminate.

Since in each iteration the set qw increases by at least one element (starting from {q}),
there are at most c− 1 iterations. Hence |wq| ≤ 1

2 (c− 1)(n+ 2)(n− 1). There is no state
q′ 6= q that survives wq and is coreachable with q, as otherwise the algorithm would not have
terminated. J

I Lemma 11. One can compute in polynomial time words z, y ∈ Σ∗ such that:
|z| ≤ 1

4 (c− 1)(n+ 2)n(n− 1) and there are no two coreachable states that both survive z;
|y| ≤ 1

4 (m− 1)(n+ 2)n(n− 1) and there are no two mergeable states that are both reached
by y.

Proof. As the two statements are dual, we prove only the first one. Consider the following
algorithm:
1. w := ε (the empty word)
2. while there are coreachable p, p′ that both survive w:

q := arbitrary state from pw

w := wwq (with wq from Lemma 10)
3. return z := w

We show that the set

B := {p ∈ Q : ∃ p′′ ∈ C(p) such that both p, p′′ survive w}

S. Kiefer and C. Mascle 43:7

loses at least two states in each iteration. First observe that

B′ := {p ∈ Q : ∃ p′′ ∈ C(p) such that both p, p′′ survive wwq}

is clearly a subset of B.
Let p ∈ B be the state from line 2 of the algorithm, and let q ∈ pw be the state from the

body of the loop. We claim that no p′′ ∈ C(p) survives wwq. Indeed, let p′′ ∈ C(p). The
following picture visualizes the situation:

p

p′′

q

p′′w

u

u

w

w wq

By unambiguousness and since q ∈ pw, we have q 6∈ p′′w. By the definition of wq and since
all states in p′′w are coreachable with q, we have p′′wwq = ∅, which proves the claim.

By the claim, we have p 6∈ B′. Let p′ ∈ B be the state p′ from line 2 of the algorithm.
We have p′ ∈ C(p). By the claim, p′ does not survive wwq. Hence p′ 6∈ B′.

So we have shown that the algorithm removes at least two states from B in every iteration.
Thus it terminates after at most n

2 iterations. Using the length bound from Lemma 10 we
get |z| ≤ 1

4 (c − 1)(n + 2)n(n − 1). There are no coreachable q, q′ that both survive z, as
otherwise the algorithm would not have terminated. J

For the following development, let q1, . . . , qk be the states that are reached by y and
survive z (with y, z from Lemma 11), see Figure 2.

q1

q2

qk

yq1

yq2

yqk

q1z

q2z

qkz

y

y

y

z

z

z

u

u

u′

u′

Figure 2 The states q1, . . . , qk are neither coreachable nor mergeable.

I Lemma 12. Let 1 ≤ i < j ≤ k. Then qi, qj are neither coreachable nor mergeable.

Proof. Immediate from the properties of y, z (Lemma 11). J

STACS 2019

43:8 On Finite Monoids over Nonnegative Integer Matrices and Short Killing Words

The following lemma restricts sets of the form qizxyz for i ∈ {1, . . . , k} and x ∈ Σ∗:

I Lemma 13. Let i ∈ {1, . . . , k} and x ∈ Σ∗. Then there is j ∈ {1, . . . , k} such that
qizxyz ⊆ qjz.

Proof. If qizxyz = ∅ then choose j arbitrarily. Otherwise, let q ∈ qizxyz. Then q is reached
by yz, so there is j with qizxy 3 qj and qjz 3 q. We show that qizxyz ⊆ qjz. To this end,
let q′ ∈ qizxyz. Then q′ is reached by yz, so there is j′ with qizxy 3 qj′ and qj′z 3 q′. Since
qizxy ⊇ {qj , qj′} and qj , qj′ are not coreachable (by Lemma 12), we have j′ = j. Hence
qjz = qj′z 3 q′. J

Provided that there is a killing word (which can be checked via Proposition 2 in polynomial
time), the following lemma asserts that for each i ∈ {1, . . . , k} one can efficiently compute a
short word xi such that no state in qiz survives xiyz. The proof hinges on a linear-algebra
based technique for checking equivalence of automata that are weighted over a field. This
technique goes back to Schützenberger [18] and has often been rediscovered, see, e.g., [19].

I Lemma 14. Suppose there exists w0 ∈ Σ∗ with M(w0) = 0 (this word w0 may not be
given). For each i ∈ {1, . . . , k} one can compute in polynomial time a word xi ∈ Σ∗ with
|xi| ≤ n such that qizxiyz = ∅.

Proof. Let i ∈ {1, . . . , k}. Since y{q1, . . . , qk} are the only states to survive yz, it suffices to
compute x ∈ Σ∗ with |x| ≤ n such that qizx ∩ y{q1, . . . , qk} = ∅.

Define e ∈ {0, 1}Q as the row vector with e(q) = 1 if and only if q ∈ qiz. Define
f ∈ {0, 1}Q as the row vector with f(q) = 1 if and only if q ∈ y{q1, . . . , qk}. First we show
that for any x ∈ Σ∗ we have eM(x)f> ≤ 1, where the superscript > denotes transpose.
Towards a contradiction suppose eM(x)f> ≥ 2. Then there are two distinct x-labelled paths
from qiz to y{q1, . . . , qk}. It follows that there are two distinct zxy-labelled paths from qi to
{q1, . . . , qk}. By unambiguousness, these paths end in two distinct states qj , qj′ . But then
qj , qj′ are coreachable, contradicting Lemma 12. Hence we have shown that eM(x)f> ≤ 1
holds for all x ∈ Σ∗.

Define the (row) vector space

V :=
〈(
eM(x) 1

)
: x ∈ Σ∗

〉
⊆ Rn+1 ,

i.e., V is spanned by the vectors
(
eM(x) 1

)
for x ∈ Σ∗. The vector space V can be

equivalently characterized as the smallest vector space that contains
(
e 1

)
and is closed

under multiplication with
(
M(a) 0

0 1

)
for all a ∈ Σ. Hence the following algorithm computes

a set B ⊆ Σ∗ such that
{(
eM(x) 1

)
: x ∈ B

}
is a basis of V :

1. B := {ε} (where ε is the empty word)
2. while there are u ∈ B and a ∈ Σ such that

(
eM(ua) 1

)
6∈
〈(
eM(x) 1

)
: x ∈ B

〉
:

B := B ∪ {ua}
3. return B
Observe that the algorithm performs at most n iterations of the loop body, as every iteration
increases the dimension of the space

〈(
eM(x) 1

)
: x ∈ B

〉
by 1, but the dimension cannot

grow larger than n+ 1. Hence |x| ≤ n holds for all x ∈ B. Since eM(w0)f> = 0 6= 1, the
space V is not orthogonal to

(
f −1

)
. So there exists x ∈ B such that eM(x)f> 6= 1. Since

eM(x)f> ≤ 1, we have eM(x)f> = 0. Hence qizx ∩ y{q1, . . . , qk} = ∅. J

Now we can prove the following lemma, which is our main technical contribution:

S. Kiefer and C. Mascle 43:9

I Lemma 15. Suppose there is w0 ∈ Σ∗ with M(w0) = 0 (this word w0 may not be given).
One can compute in polynomial time a word w ∈ Σ∗ with M(w) = 0 and |w| ≤ 1

16n
5 + 15

16n
4.

Proof. For any 1 ≤ j < j′ ≤ k the sets qjz and qj′z are disjoint by Lemma 12 and
nonempty. Hence any P ′ ⊆ Q has at most one set P ⊆ {q1, . . . , qk} with Pz = P ′, which
we call the generator of P ′. Note that all sets of the form Q′yz where Q′ ⊆ Q have a
generator. For any i ∈ {1, . . . , k}, let xi be the word from Lemma 14, i.e., qizxiyz = ∅. By
Lemma 13, for any j ∈ {1, . . . , k} the generator of qjzxiyz has at most one element. Thus,
if qi ∈ P ⊆ {q1, . . . , qk}, then the generator, P , of Pz has strictly more elements than the
generator of Pzxiyz.

Consider the following algorithm:
1. w := yz

2. while Qw 6= ∅ :
qi := arbitrary element of the generator of Qw
w := wxiyz

3. return w
It follows from the argument above that the size of the generator of Qw decreases in every
iteration of the loop. Hence the algorithm terminates after at most k iterations and computes
a word w such that Qw = ∅ and, using Lemmas 11 and 14,

|w| ≤ |yz|+k(n+ |yz|) ≤ n2 +(k+1)(|y|+ |z|) ≤ n2 + 1
4(k+1)(c+m−2)(n+2)n(n−1) .

Let q, q′ ∈ Q and u, u′ ∈ Σ∗ such that c = |qu| and m = |u′q′|. Clearly, qu ∪ u′q′ ∪
{q1, . . . , qk} ⊆ Q, and it follows from the inclusion-exclusion principle:

c+m+ k ≤ n+ |qu ∩ u′q′|+ |qu ∩ {q1, . . . , qk}|+ |{q1, . . . , qk} ∩ u′q′|

The sets qu and u′q′ overlap in at most one state by unambiguousness. The sets qu and
{q1, . . . , qk} overlap in at most one state by Lemma 12, and similarly for {q1, . . . , qk} and u′q′.
It follows c+m+k ≤ n+3, thus (k+1)+(c+m−2) ≤ n+2, hence (k+1)(c+m−2) ≤ 1

4 (n+2)2.
With the bound on the length of w above we conclude that |w| ≤ n2 + 1

16 (n+ 2)3n(n− 1),
which is bounded by 1

16n
5 + 15

16n
4 for n ≥ 1. J

We combine Lemma 15 and Carpi’s Theorem 3 to prove Proposition 7:

I Proposition 7. Let M : Σ∗ → Nn×n be strongly connected with finite M(Σ∗). Given
M : Σ→ Nn×n, one can compute in polynomial time a word w ∈ Σ∗ with |w| ≤ 1

16n
5 + 15

16n
4

such that M(w) has minimum rank in M(Σ∗).

Proof. One can check in polynomial time whether there is w0 ∈ Σ∗ with M(w0) = 0, see
Proposition 2. If yes, then the minimum rank is 0, and Lemma 15 gives the result.

Otherwise, the minimum rank r is between 1 and n, and hence n ≥ 1. Theorem 3 asserts
the existence of a word w such that M(w) has rank r and |w| ≤ 1

2n
4 − n3 + 5

2n
2 − 3n+ 1,

which is bounded by 1
16n

5 + 15
16n

4 for n ≥ 1. An inspection of Carpi’s proof [4] shows that
his proof is constructive and can be transformed into an algorithm that computes w in
polynomial time. J

3.2 Not Necessarily Strongly Connected
We prove Theorem 1:

STACS 2019

43:10 On Finite Monoids over Nonnegative Integer Matrices and Short Killing Words

I Theorem 1. Let n ∈ N and M ⊆ Nn×n be a finite set of nonnegative integer matrices.
Denote byM the monoid generated byM under matrix multiplication. IfM is finite then
there are M1, . . . ,M` ∈ M with ` ≤ 1

16n
5 + 15

16n
4 such that the matrix product M1 · · ·M`

has minimum rank inM. Further, M1, . . . ,M` can be computed in time polynomial in the
description size ofM.

In terms of the previous notions in the proof we can rephrase Theorem 1 as follows:

I Theorem 1 (rephrased). Let M : Σ∗ → Nn×n be a monoid morphism whose image M(Σ∗)
is finite. Given M : Σ → Nn×n, one can compute in polynomial time a word w ∈ Σ∗ with
|w| ≤ 1

16n
5 + 15

16n
4 such that M(w) has minimum rank in M(Σ∗).

Proof. For any matrix A denote by rk(A) its rank. For i, j ∈ {1, . . . , n} write i→ j if there
is u ∈ Σ∗ such that M(u)(i, j) > 0, and write i↔ j if i→ j and j → i. The relation ↔ is
an equivalence relation. Denote by C1, . . . , Ch ⊆ {1, . . . , n} its equivalence classes (h ≤ n).
We can assume that whenever i ∈ Ck and j ∈ C` and i→ j, then k ≤ `. Hence, without loss
of generality, M(u) for any u ∈ Σ∗ has the following block-upper triangular form:

M(u) =

M11(u) M12(u) · · · M1h(u)

0 M22(u) · · · M2h(u)
...

...
. . .

...
0 0 · · · Mhh(u)

 ,

where Mii(u) ∈ N|Ci|×|Ci| for all i ∈ {1, . . . , h}. For i ∈ {1, . . . , h} define
ri := minu∈Σ∗ rk(Mii(u)). For any u ∈ Σ∗ we have rk(M(u)) ≥

∑h
i=1 rk(Mii(u)) (see,

e.g., [9, Chapter 0.9.4]). It follows that the minimum rank among the matrices in M(Σ∗) is
at least

∑h
i=1 ri.

Let w1, . . . , wh ∈ Σ∗ be the words from Proposition 7 for M11, . . . ,Mhh, respectively, so
that rk(Mii(wi)) = ri holds for all i ∈ {1, . . . , h}. Define w := w1 · · ·wh. Then we have:

|w| ≤
h∑

i=1
|wi| ≤

h∑
i=1

1
16 |Ci|5 + 15

16 |Ci|4 ≤
1
16n

5 + 15
16n

4

It remains to show that rk(M(w)) ≤
∑h

i=1 ri. It suffices to prove that rk(Mk(w1 · · ·wk)) ≤∑k
i=1 ri holds for all k ∈ {1, . . . , h}, where Mk(u) for any u ∈ Σ∗ is the principal submatrix

obtained by restricting M(u) to the rows and columns corresponding to
⋃k

i=1 Ci. We proceed
by induction on k. For the base case, k = 1, we have rk(M1(w1)) = rk(M11(w1)) = r1. For
the induction step, let 1 < k ≤ h. Then there are matrices A1, A2, B1, B2 such that:

Mk(w1 · · ·wk) = Mk(w1 · · ·wk−1)Mk(wk)

=
(
Mk−1(w1 · · ·wk−1) A1

0 A2

)(
B1 B2
0 Mkk(wk)

)
=
(
Mk−1(w1 · · ·wk−1)

0

)(
B1 B2

)
+
(
A1
A2

)(
0 Mkk(wk)

)
(1)

By the induction hypothesis, we have rk(Mk−1(w1 · · ·wk−1)) ≤
∑k−1

i=1 ri. Further, we have
rk(Mkk(wk)) = rk. So the ranks of the two summands in (1) are at most

∑k−1
i=1 ri and rk,

respectively. Since for any matrices A,B it holds rk(A+B) ≤ rk(A) + rk(B), we conclude
that rk(Mk(w1 · · ·wk)) ≤

∑k
i=1 ri, completing the induction proof. J

S. Kiefer and C. Mascle 43:11

4 Proof of Theorem 4

In terms of the previous notions we can rephrase Theorem 4 as follows:

I Theorem 4 (rephrased). There is no polynomial p such that the following holds:

Let M : Σ∗ → {0, 1}Q×Q be a monoid morphism. Let w0 ∈ Σ∗ be such that M(w0)
has rank 1, and let 1 be the minimum rank in M(Σ∗). Then there is w ∈ Σ∗ with
|w| ≤ p(|Q|) such that M(w0) = M(w).

Proof. Denote by pi the ith prime number (so p1 = 2). Let m ≥ 1. Define:

Σ := {a, b1, . . . , bm}
Qi := {(i, 0), (i, 1), . . . , (i, pi − 1)} for every i ∈ {1, . . . ,m}

Q := {0} ∪
m⋃

i=1
Qi

Further, define a monoid morphism M : Σ∗ → NQ×Q by setting for all i ∈ {1, . . . ,m}

M(a)(0, (i, 0)) := 1
M(a)((i, j), (i, j + 1 mod pi)) := 1 for all j ∈ {0, . . . , pi − 1}

M(bi)(0, 0) := 1
M(bi)((i, j), 0) := 1 for all j ∈ {0, . . . , pi − 1}

and setting all other entries ofM(a),M(b1), . . . ,M(bm) to 0, see Figure 3. We haveM(Σ∗) ⊆
{0, 1}Q×Q, i.e., M(Σ∗) is an unambiguous monoid of relations. For all q ∈ Q and all
q′ ∈ Q \ {0} we have M(b1)(q, q′) = 0, i.e., M(b1) has rank 1. For all w ∈ Σ∗ there is q ∈ Q
with M(w)(0, q) = 1, i.e., 1 is the minimum rank in M(Σ∗). A shortest word w0 ∈ Σ∗ such
that M(w0) has rank 1 and M(w0)(0, (i, pi − 1)) = 1 holds for all i ∈ {1, . . . ,m} is the
word w0 = b1a

P where P =
∏m

i=1 pi ≥ 2m. On the other hand, we have |Q| = 1 +
∑m

i=1 pi ∈
O(m2 logm) by the prime number theorem.

Hence there is no polynomial p such that P ≤ p(|Q|) holds for all m. J

References
1 P.C. Bell, M. Hirvensalo, and I. Potapov. Mortality for 2 ×2 Matrices Is NP-Hard. In Pro-

ceedings of Mathematical Foundations of Computer Science (MFCS), pages 148–159. Springer,
2012.

2 J. Berstel and D. Perrin. Trends in the theory of codes. Bulletin of the EATCS, 29:84–95,
1986.

3 J. Berstel, D. Perrin, and C. Reutenauer. Codes and Automata. Cambridge University Press,
2009.

4 A. Carpi. On synchronizing unambiguous automata. Theoretical Computer Science, 60(3):285–
296, 1988.

5 A. Carpi and F. D’Alessandro. On incomplete and synchronizing finite sets. Theoretical
Computer Science, 664:67–77, 2017.

6 P. Goralčík, Z. Hedrlín, V. Koubek, and J. Ryšlinková. A game of composing binary relations.
R.A.I.R.O. Informatique théorique, 16(4):365–369, 1982.

7 V.V. Gusev and E.V. Pribavkina. On Non-complete Sets and Restivo’s Conjecture. In
Proceedings of Developments in Language Theory (DLT), pages 239–250. Springer, 2011.

STACS 2019

43:12 On Finite Monoids over Nonnegative Integer Matrices and Short Killing Words

!t
0

(1, 0)

(1, 1)

(2, 0)

(2, 1)

(2, 2)

(3, 0)

(3, 1)

(3, 2)

(3, 3)

(3, 4)

b1, b2, b3

a a

a

a

a

a

a

a

a

a

b1

b2

b3

a

Figure 3 Automaton representation of M for m = 3.

8 V. Halava, T. Harju, and M. Hirvensalo. Undecidability Bounds for Integer Matrices Using
Claus Instances. International Journal of Foundations of Computer Science, 18(5):931–948,
2007.

9 R.A. Horn and C.R. Johnson. Matrix analysis. Cambridge University Press, 2nd edition, 2013.
10 S. Julia, A. Malapert, and J. Provillard. A Synergic Approach to the Minimal Uncompletable

Words Problem. Journal of Automata, Languages and Combinatorics, 22(4):271–286, 2017.
11 R.M. Jungers, V. Protasov, and V.D. Blondel. Efficient algorithms for deciding the type of

growth of products of integer matrices. Linear Algebra and its Applications, 428(10):2296–2311,
2008.

12 J.-Y. Kao, N. Rampersad, and J. Shallit. On NFAs where all states are final, initial, or both.
Theoretical Computer Science, 410(47):5010–5021, 2009.

13 P.V. Martugin. A series of slowly synchronizing automata with a zero state over a small
alphabet. Information and Computation, 206(9-10):1197–1203, 2008.

14 M.S. Paterson. Unsolvability in 3 × 3 Matrices. Studies in Applied Mathematics, 49(1):105–107,
1970.

15 I. Potapov and P. Semukhin. Decidability of the Membership Problem for 2 × 2 integer
matrices. In Proceedings of the Symposium on Discrete Algorithms (SODA), pages 170–186.
SIAM, 2017.

16 A. Restivo. Some remarks on complete subsets of a free monoid. In Quaderni de “La Ricerca
Scientifica”. Non-Commutative Structures in Algebra and Geometric Combinatorics, volume
109, pages 19–25. Consiglio Nazionale Delle Ricerche, 1981.

17 A. Ryzhikov and M. Szykuła. Finding Short Synchronizing Words for Prefix Codes. In
Proceedings of Mathematical Foundations of Computer Science (MFCS), volume 117 of LIPIcs,
pages 21:1–21:14, 2018.

S. Kiefer and C. Mascle 43:13

18 M.-P. Schützenberger. On the definition of a family of automata. Information and Control,
4:245–270, 1961.

19 W. Tzeng. A Polynomial-Time Algorithm for the Equivalence of Probabilistic Automata.
SIAM Journal on Computing, 21(2):216–227, 1992.

20 M.V. Volkov. Synchronizing Automata and the Černý Conjecture. In Proceedings of Language
and Automata Theory and Applications (LATA), pages 11–27. Springer, 2008.

21 A. Weber and H. Seidl. On finitely generated monoids of matrices with entries in N. Inform-
atique Théorique et Applications, 25(1):19–38, 1991.

STACS 2019

Tight Complexity Lower Bounds for Integer Linear
Programming with Few Constraints
Dušan Knop
Algorithmics and Computational Complexity, Faculty IV, TU Berlin, Germany
Department of Theoretical Computer Science, Faculty of Information Technology,
Czech Technical University in Prague, Czech Republic
knop.dusan@fit.cvut.cz

Michał Pilipczuk
Institute of Informatics, University of Warsaw, Poland
michal.pilipczuk@mimuw.edu.pl

Marcin Wrochna
Institute of Informatics, University of Warsaw, Poland
University of Oxford, UK
m.wrochna@mimuw.edu.pl

Abstract

We consider the standard ILP Feasibility problem: given an integer linear program of the form
{Ax = b, x > 0}, where A is an integer matrix with k rows and ` columns, x is a vector of `

variables, and b is a vector of k integers, we ask whether there exists x ∈ N` that satisfies Ax = b.
Each row of A specifies one linear constraint on x; our goal is to study the complexity of ILP
Feasibility when both k, the number of constraints, and ‖A‖∞, the largest absolute value of an
entry in A, are small.

Papadimitriou [29] was the first to give a fixed-parameter algorithm for ILP Feasibility under
parameterization by the number of constraints that runs in time ((‖A‖∞ + ‖b‖∞) · k)O(k2). This
was very recently improved by Eisenbrand and Weismantel [9], who used the Steinitz lemma to
design an algorithm with running time (k‖A‖∞)O(k) · ‖b‖2

∞, which was subsequently improved by
Jansen and Rohwedder [17] to O(k‖A‖∞)k · log ‖b‖∞. We prove that for {0, 1}-matrices A, the
running time of the algorithm of Eisenbrand and Weismantel is probably optimal: an algorithm with
running time 2o(k log k) · (` + ‖b‖∞)o(k) would contradict the Exponential Time Hypothesis (ETH).
This improves previous non-tight lower bounds of Fomin et al. [10].

We then consider integer linear programs that may have many constraints, but they need to be
structured in a “shallow” way. Precisely, we consider the parameter dual treedepth of the matrix A,
denoted tdD(A), which is the treedepth of the graph over the rows of A, where two rows are adjacent
if in some column they simultaneously contain a non-zero entry. It was recently shown by Koutecký
et al. [24] that ILP Feasibility can be solved in time ‖A‖2O(tdD(A))

∞ · (k + ` + log ‖b‖∞)O(1). We
present a streamlined proof of this fact and prove that, again, this running time is probably optimal:
even assuming that all entries of A and b are in {−1, 0, 1}, the existence of an algorithm with
running time 22o(tdD(A))

· (k + `)O(1) would contradict the ETH.

2012 ACM Subject Classification Theory of computation → Integer programming; Theory of
computation → Fixed parameter tractability

Keywords and phrases integer linear programming, fixed-parameter tractability, ETH

Digital Object Identifier 10.4230/LIPIcs.STACS.2019.44

Related Version The full version of this paper is available as an arXiv preprint [23], http://arxiv.
org/abs/1811.01296.

© Dušan Knop, Michał Pilipczuk, and Marcin Wrochna;
licensed under Creative Commons License CC-BY

36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019).
Editors: Rolf Niedermeier and Christophe Paul; Article No. 44; pp. 44:1–44:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-2588-5709
mailto:knop.dusan@fit.cvut.cz
mailto:michal.pilipczuk@mimuw.edu.pl
mailto:m.wrochna@mimuw.edu.pl
https://doi.org/10.4230/LIPIcs.STACS.2019.44
http://arxiv.org/abs/1811.01296
http://arxiv.org/abs/1811.01296
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

44:2 Tight Lower Bounds for ILP with Few Constraints

Funding This work is a part of projects CUTACOMBS, PowAlgDO (M. Wrochna) and
TOTAL (M. Pilipczuk) that have received funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation programme (grant
agreements No. 714704, No 714532, and No. 677651). Dušan Knop is supported by DFG,
project “MaMu”, NI 369/19. Marcin Wrochna is supported by Foundation for Polish Science
(FNP) via the START stipend.

1 Introduction

Integer linear programming (ILP) is a powerful technique used in countless algorithmic
results of theoretical importance, as well as applied routinely in thousands of instances of
practical computational problems every day. Despite the problem being NP-hard in general,
practical ILP solvers excel in solving real-life instances with thousands of variables and
constraints. This can be partly explained by applying a variety of subroutines, often based
on heuristic approaches, that identify and exploit structure in the input in order to apply
the best suited algorithmic strategies. A theoretical explanation of this phenomenon would
of course be hard to formulate, but one approach is to use the paradigm of parameterized
complexity. Namely, the idea is to design algorithms that perform efficiently when certain
relevant structural parameters of the input have moderate values.

In this direction, probably the most significant is the classic result of Lenstra [25], who
proved that ILP Optimization is fixed-parameter tractable when parameterized by the
number of variables `. That is, it can be solved in time f(`) · |I|O(1), where f is some function
and |I| is the total bitsize of the input; we shall use the previous notation throughout the
whole manuscript. Subsequent work in this direction [11, 18] improved the dependence of
the running time on ` to f(`) 6 2O(` log `).

In this work we turn to a different structural aspect and study ILPs that have few
constraints, as opposed to few variables as in the setting considered by Lenstra. Formally,
we consider the parameterization by k, the number of constraints (rows of the input matrix
A), and ‖A‖∞, the maximum absolute value over all entries in A. The situation when the
number of constraints is significantly smaller than the number of variables appears naturally
in many relevant settings. For instance, to encode Subset Sum as an instance of ILP
Feasibility it suffices to introduce a {0, 1}-variable xi for every input number si, and then
set only one constraint:

∑n
i=1 sixi = t, where t is the target value. Note that the fact that

Subset Sum is NP-hard for the binary encoding of the input and polynomial-time solvable
for the unary encoding, explains why ‖A‖∞ is also a relevant parameter for the complexity
of the problem. Integer linear programs with few constraints and many variables arise most
often in the study of knapsack-like and scheduling problems via the concept of so-called
configuration ILPs, in the context of approximation and parameterized algorithms.

Parameterization by the number of constraints. Probably the first to study the complexity
of integer linear programming with few constraints was Papadimitriou [29], who already in
1981 observed the following. Consider an ILP of the standard form {Ax = b, x > 0}, where A
is an integer matrix with k rows (constraints) and ` columns (variables), x is a vector of integer
variables, and b is a vector of integers. Papadimitriou proved that assuming such an ILP is
feasible, it admits a solution with all variables bounded by B = ` · ((‖A‖∞ + ‖b‖∞) · k)2k+1,
which in turn can be found in time O((`B)k+1 · |I|) using simple dynamic programming.
Noting that by removing duplicate columns one can assume that ` 6 (2‖A‖∞ + 1)k, this
yields an algorithm with running time ((‖A‖∞+ ‖b‖∞) · k)O(k2). The approach can be lifted

D. Knop, Mi. Pilipczuk, and M. Wrochna 44:3

to give an algorithm with a similar running time bound also for the ILP Optimization
problem, where instead of finding any feasible solution x, we look for one that maximizes
the value wᵀx for a given optimization goal vector w.

The result of Papadimitriou was recently improved by Eisenbrand and Weismantel [9],
who used the Steinitz Lemma to give an amazingly elegant algorithm solving the ILP
Optimization problem (and thus also the ILP Feasibility problem) for a given instance
{max wᵀx : Ax = b, x > 0} with k constraints in time (k‖A‖∞)O(k) · ‖b‖2

∞. This running
time has been subsequently refined by Jansen and Rohwedder [17] to O(k‖A‖∞)2k · log ‖b‖∞
in the case of ILP Optimization, and to O(k‖A‖∞)k · log ‖b‖∞ in the case of ILP
Feasibility.

From the point of view of fine-grained parameterized complexity, this raises the question
of whether the parametric factor O(k‖A‖∞)k is the best possible. Jansen and Rohwedder [17]
studied this question under the assumption that k is a fixed constant and ‖A‖∞ is the relevant
parameter. They proved that assuming the Strong Exponential Time Hypothesis (SETH),
for every fixed k there is no algorithm with running time (k · (‖A‖∞ + ‖b‖∞))k−δ · |I|O(1),
for any δ > 0. Note that as k is considered a fixed constant, this essentially shows that the
degree of ‖A‖∞ needs to be at least k, but does not exclude algorithms with running time
of the form ‖A‖O(k)

∞ · |I|O(1), or 2O(k) · |I|O(1) when all entries in the input matrix A are
in {−1, 0, 1}. On the other hand, the algorithms of [9, 17] provide only an upper bound of
2O(k log k) · |I|O(1) in the latter setting. As observed by Fomin et al. [10], a trivial encoding of
3SAT as an ILP shows a lower bound of 2o(k) · |I|O(1) for instances with A having entries
only in {0, 1}, b having entries only in {0, 1, 2, 3}, and ` = O(k). This still leaves a significant
gap between the 2o(k) · |I|O(1) lower bound and the 2O(k log k) · |I|O(1) upper bound.

Parameterization by the dual treedepth. A related, recent line of research concerns ILPs
that may have many constraints, but these constraints need to be somehow organized in
a structured, “shallow” way. It started with a result of Hemmecke et al. [13], who gave a
fixed-parameter tractable algorithm for solving the so-called n-fold ILPs. An n-fold ILP is
an ILP where the constraint matrix is of the form

A =

B B . . . B

C 0 · · · 0
0 C · · · 0
...

...
. . .

...
0 0 · · · C

 ,

and the considered parameters are the dimensions of matrices B and C, as well as ‖A‖∞.
The running time obtained by Hemmecke et al. is ‖A‖O(k3)

∞ · |I|O(1) when all these dimensions
are bounded by k. See [13] and the recent improvements of Eisenbrand et al. [8] for more
refined running time bounds expressed in terms of particular dimensions.

The result of Hemmecke et al. [13] quickly led to multiple improvements in the best known
upper bounds for several parameterized problems, where the technique of configuration ILPs
is applicable [20, 21, 22]. Recently, the technique was also applied to improve the running
times of several approximation schemes for scheduling problems [16]. Chen and Marx [6]
introduced a more general concept of tree-fold ILPs, where the “star-like” structure of an
n-fold ILP is generalized to any bounded-depth rooted tree, and they showed that it retains
relevant fixed-parameter tractability results. This idea was followed on by Eisenbrand et al. [8]
and by Koutecký et al. [24], whose further generalizations essentially boil down to considering
a structural parameter called the dual treedepth of the input matrix A. This parameter,
denoted tdD(A), is the smallest number h such that the rows of A can be organized into

STACS 2019

44:4 Tight Lower Bounds for ILP with Few Constraints

a rooted forest of height h with the following property: whenever two rows have non-zero
entries in the same column, one is the ancestor of the other in the forest. As shown explicitly
by Koutecký et al. [24] and somewhat implicitly by Eisenbrand et al. [8], ILP Optimization
can be solved in fixed-parameter time when parameterized by ‖A‖∞ and tdD(A).

Our results. For the parameterization by the number of constraints k, we close the above
mentioned complexity gap by proving the following optimality result.

I Theorem 1. Assuming ETH, there is no algorithm that would solve any ILP feasibility
instance {Ax = b,x > 0} with A ∈ {0, 1}k×`, b ∈ Nk, and `, ‖b‖∞ = O(k log k) in
time 2o(k log k).

This shows that the algorithms of [9, 17] have the essentially optimal running time of
2O(k log k) · |I|O(1) also in the regime where ‖A‖∞ is a constant and the number of constraints
k is the relevant parameter.

The main ingredient of the proof of Theorem 1 is a certain quaint combinatorial con-
struction – detecting matrices introduced by Lindström [26] – that provides a general way
for compressing a system Ax = b with k equalities and bounded targets ‖b‖∞ 6 d into
O(k/ logd k) equalities (with unbounded targets). Each new equality is a linear combination
of the original ones; in fact, just taking O(k/ logd k) sums of random subsets of the original
equalities suffices, but we also provide a deterministic construction taking O(dk/ logd k)
such subsets. By composing such a compression procedure for d = 4 with a standard
reduction from (3,4)SAT – a variant of 3SAT where every variable occurs at most 4
times – to ILP Feasibility, we obtain a reduction that given an instance of (3,4)SAT
with n variables and m clauses, produces an equivalent instance of ILP Feasibility with
k = O((n + m)/ log(n + m)) constraints. Since 2o(k log k) = 2o(n+m), we would obtain a
2o(n+m)-time algorithm for (3,4)SAT, which is known to contradict ETH. We note that
detecting matrices were recently used by two of the authors in the context of different lower
bounds based on ETH [3].

For the parameterization by the dual treedepth, we first streamline the presentation of the
approach of Koutecký et al. [24] and clarify that the parametric factor in the running time is
doubly-exponential in the treedepth. The key ingredient here is the upper bound on `1-norms
of the elements of the Graver basis of the input matrix A, expressed in terms of ‖A‖∞ and
tdD(A). Using standard textbook bounds for Graver bases and the recursive definition of
treedepth, we prove that these `1-norms can be bounded by (2‖A‖∞ + 1)2tdD(A)−1. This,
combined with the machinery developed by Koutecký et al. [24], implies the following.

I Theorem 2. There is an algorithm that solves any given ILP Optimization instance
I = {max wᵀx : Ax = b, l 6 x 6 u} in time ‖A‖2O(tdD(A))

∞ · |I|O(1).

We remark that the running time as outlined above also follows from a fine analysis of the
reasoning presented in [24], but the intermediate step of using tree-fold ILPs in [24] makes
tracking parametric dependencies harder to follow.

We next show that the running time provided by Theorem 2 is probably optimal. Namely,
we have the following lower bound.

I Theorem 3. Assuming ETH, there is no algorithm that would solve any ILP Feasib-
ility instance I = {Ax = b,x > 0}, where all entries of A and b are in {−1, 0, 1}, in
time 22o(tdD(A)) · |I|O(1).

To prove Theorem 3 we reduce from the Subset Sum problem. The key idea is that we
are able to “encode” any positive integer s using an ILP with dual treedepth O(log log s).

D. Knop, Mi. Pilipczuk, and M. Wrochna 44:5

2 Parameterization by the number of constraints

2.1 Detecting matrices
Our main tool is the usage of so-called detecting matrices, first studied by Lindström [26].
They can be explained via the following coin-weighing puzzle: given m coins with weights
in {0, 1, . . . , d − 1}, we want the deduce the weight of each coin with as few weighings as
possible. We have a spring scale, so in one weighing we can exactly determine the sum of
weights of any subset of the coins. While the naive strategy – weigh coins one by one – yields
m weighings, it is actually possible to find a solution using O(m/ logdm) weighings. This
number is asymptotically optimal, as each weighing provides Θ(logm) bits of information,
so fewer weighings would not be enough to distinguish all dm possible weight functions.

Probably the easiest way to construct such a strategy is using the probabilistic method. It
turns out that querying O(m/ logdm) random subsets of coins with high probability provides
enough information to determine the weight of each coin. This is because a random subset
distinguishes any of the O(dm · dm) non-equal pairs of weight functions with probability at
least 1

2 , but pairs of weight functions that are close to each other are few, while pairs of
weight functions that are far from each other have a significantly better probability than 1

2
of being distinguished. Note that thus we construct a non-adaptive strategy: the subsets
of coins to be weighed can be determined and fixed at the very start. We refer the reader
to e.g. [12, Corollary 2] for full details, and we remark that the last two authors recently
used detecting matrices in the context of algorithmic lower bounds for the Multicoloring
problem [3].

Viewing each tuple of coin weights as a vector v ∈ {0, . . . , d− 1}m, each weighing returns
the value aᵀv for the characteristic vector a ∈ {0, 1}m of some subset of coins. Thus k
weighings give the vectors of valuesMv for some {0, 1}-matrixM with k rows and m columns.
An equivalent formulation is then to ask for a {0, 1}-matrix M with m columns, such that
knowing the vector Mv uniquely determines any v ∈ {0, . . . , d− 1}m. Such an M is called
a d-detecting matrix and we seek to minimize the number of rows/weighings k it can have.
Lindström gave a deterministic construction and proved the bound on k to be tight. See also
Bshouty [4] for a more direct and general construction using Fourier analysis.

I Theorem 4 ([26]). For all d,m ∈ N, there is a {0, 1}-matrix M with m columns and
k 6 2m log d

logm (1+o(1)) rows such that for any u,v ∈ {0, . . . , d−1}m, if Mu = Mv then u = v.
Moreover, such matrix M can be constructed in time polynomial in dm.

In other words, this allows us to check m equalities between values in {0, . . . , d − 1}
(i.e., corresponding coordinates of vectors u and v) using only O(m/ logdm) comparisons
of sums of certain subsets of these values (i.e., coordinates of vectors Mu and Mv). For
an ILP instance Ax = b with ‖b‖∞ 6 d and m constraints, we may use this idea to
check the equality on each of the m coordinates of Ax using only O(m/ logdm) constraints.
Indeed, the intuition is that if M is a d-detecting matrix, then we can rewrite Ax = b as
MAx = Mb and check the latter – which involves O(m/ logdm) {0, 1}-combinations of the
original constraints.

This is the core of our approach. However, there is one subtle caveat: in order to claim
that the assertions Ax = b and MAx = Mb are equivalent, we would need to ensure that
‖Ax‖∞ 6 d for an arbitrary vector x ∈ Nn. One solution is to use the fact that a uniformly
random {0, 1}-matrix has a stronger “detecting” property: it will, with high probability,
distinguish all vectors of low `1-norm, as shown by Grebinski and Kucherov [12].

STACS 2019

44:6 Tight Lower Bounds for ILP with Few Constraints

I Lemma 5 ([12]). For all d,m ∈ N, there exists a {0, 1}-matrix M with m columns and
k 6 4m log(d+1)

logm (1 + o(1)) rows such that for any u,v ∈ Nm satisfying ‖u‖1, ‖v‖1 6 dm, if
Mu = Mv then u = v. Moreover, such matrix M can be computed in randomized polynomial
time (in dm).

Note that in Lemma 5, we do not actually have to assume bounds on one of the two
vectors: it suffices to assume u ∈ Nm and ‖v‖1 6 dm, because simply adding a single row full
of ones to M guarantees ‖u‖1 = ‖v‖1. Therefore as long as A is non-negative and ‖b‖∞ 6 d,
it suffices to checkMAx = Mb. Unfortunately, to the best of our knowledge, no deterministic
construction is known for Lemma 5. We remark that Bshouty gave a deterministic, but
adaptive detecting strategy [4]; that is, in terms of coin weighing, consecutive queries on
coins may depend on results of previous weighings.

Instead, we show that a different, recursive construction by Cantor and Mills [5] for
2-detecting matrices can be adapted so that no bounds (other than non-negativity) are
assumed for one of the vectors, while the other must have all coefficients in {0, 1, . . . , d− 1}.
The proof is deferred to the full version [23], which we mark with (♠).

I Lemma 6 (♠). For all d,m ∈ N, there exists a {0, 1}-matrix M with m columns and
k 6 md log d

logm (1 + o(1)) rows such that for any u ∈ Nm and v ∈ {0, 1, . . . , d−1}m, ifMu = Mv
then u = v. Moreover, such matrix M can be computed in time polynomial in dm.

We remark that the bounds in Theorem 4 and Lemma 5 were also shown to be tight.
Lemma 6 gives matrices that are also d-detecting, in particular, hence the bound is tight for
d = 2 (and tight up to an O(d) factor in general).

Note also that we can relax the non-negativity constraint to requiring that u ∈ Zm is any
integer with all entries lower bounded by −bd2c and v ∈ {−bd2c, . . . , b

d
2c}

m. This is because
Mu = Mv is equivalent to M(u + c) = M(v + c) where c is the constant bd2c vector. This
allows to use the same detecting matrix for such pairs of vectors as well. However, note that
some lower bound on the coefficients of u is necessary, since even if we fix v = 0, the matrix
M has a non-trivial kernel, giving many non-zero vectors u ∈ Zm satisfying Mu = Mv.

2.2 Coefficient reduction
In further constructions, we will need a way to reduce coefficients in a given ILP Feasibility
instance with a nonnegative constraint matrix A to {0, 1}. We now prove that this can be
done in a standard way by replacing each constraint with O(log ‖A‖∞) constraints that check
the original equality bit by bit. Here and throughout this paper we use the convention that
for a vector x, by xi we denote the i-th entry of x.

I Lemma 7 (Coefficient Reduction). Consider an instance {Ax = b,x > 0} of ILP
Feasibility, where b ∈ Nk and A is a nonnegative integer matrix with k rows and
` columns. In polynomial time, this instance can be reduced to an equivalent instance
{A′x = b′,x > 0} of ILP Feasibility where A′ is a {0, 1}-matrix with k′ = O(k log ‖A‖∞)
rows and `′ = `+O(k log ‖A‖∞) columns, and b′ ∈ Nk′ is a vector with ‖b′‖∞ = O(‖b‖∞).

Proof. Denote δ = dlog(1 + ‖A‖∞)e = O(log ‖A‖∞). Consider a single constraint aᵀx = b,
where a ∈ N` is a row of A and b ∈ N is an entry of b. Let ai[j] be the j-th bit of ai, the
i-th entry of vector a; similarly for b. By choice of δ, ‖a‖∞ 6 2δ − 1, so each entry of a has
up to δ binary digits. Now, for x ∈ Zn, the constraint aᵀx = b is equivalent to

δ−1∑
j=0

2j
(

n∑
i=1

ai[j]xi

)
= b .

D. Knop, Mi. Pilipczuk, and M. Wrochna 44:7

We rewrite this equation into δ equations, each responsible for verifying one bit. For this,
we introduce δ − 1 carry variables y0, y1, . . . , yδ−2 and emulate the standard algorithm for
adding binary numbers by writing equations

yj−1 +
n∑
i=1

ai[j]xi = b[j] + 2yj for j = 0, . . . , δ − 1,

where y−1 and yδ−1 are replaced with 0 and b[δ−1] is replaced with the number whose binary
digits are (from the least significant): b[δ−1], b[δ], b[δ+1], . . . (we do this because b may have
more than δ digits). To get rid of the variable yj on the right-hand side, we let B = 2dlog be

and introduce two new variables y′j , y′′j for each carry variable yj , with constraints

yj + y′j = B and yj + y′′j = B for j = 0, . . . , δ − 2,

which is equivalent to y′j = y′′j = B − yj . Hence the previous equations can be replaced by

yj−1 +
n∑
i=1

ai[j]xi + y′j + y′′j = b[j] + 2B for j = 0, . . . , δ − 1.

We thus replace each row of A with 2(δ − 1) + δ rows and 3(δ − 1) auxiliary variables. J

2.3 Proof of Theorem 1
The Exponential Time Hypothesis states that for some 0 < c < 1, 3SAT with n variables
cannot be solved in time O?(2cn) (the O? notation hides polynomial factors). It was intro-
duced by Impagliazzio, Paturi, and Zane [15] and developed by Impagliazzo and Paturi [14]
to become a central conjecture for proving tight lower bounds for the complexity of various
problems. While the original statement considers the parameterization by the number of
variables, the Sparsification Lemma [14] allows us to assume that the number of clauses is
linear in the number of variables, and hence we have the following.

I Theorem 8 (see e.g. Theorem 14.4 in [7]). Unless ETH fails, there is no algorithm for
3SAT that runs in time 2o(n+m), where n and m denote the numbers of variables and clauses,
respectively.

We now proceed to the proof of Theorem 1. Our first step is to decrease the number of
occurrences of each variable. The (3,4)SAT is the variant of 3SAT where each clause uses
exactly 3 different variables and every variable occurs in at most 4 clauses. Tovey [30] gave a
linear reduction from 3SAT to (3,4)SAT, i.e., an algorithm that, given an instance of 3SAT
with n variables and m clauses, in linear time constructs an equivalent instance of (3,4)SAT
with O(n+m) variables and clauses. In combination with Theorem 8 this yields:

I Corollary 9. Unless ETH fails, there is no algorithm for (3,4)SAT that runs in time
2o(n+m), where n and m denote the numbers of variables and clauses, respectively.

We now reduce (3,4)SAT to ILP Feasibility. A (3, 4)SAT instance ϕ with n variables
and m clauses can be encoded in a standard way as an ILP Feasibility instance with
O(n+m) variables and constraints as follows. For each formula variable v we introduce two
ILP variables xv and x¬v with a constraint xv + x¬v = 1 (hence exactly one of them should
be 1, the other 0). For each clause c we introduce two auxiliary slack variables yc, zc and two
constraints: yc + zc = 2 and x`1 + x`2 + x`3 + yc = 3, where `1, `2, `3 are the three literals
in c. Since yc, zc will not appear in any other constraints, the first constraint is equivalent to

STACS 2019

44:8 Tight Lower Bounds for ILP with Few Constraints

ensuring that yc 6 2, so the second constraint is equivalent to x`1 + x`2 + x`3 > 1. This way,
one can reduce in polynomial time a (3, 4)SAT instance ϕ with n variables and m clauses
into an equivalent instance {x ∈ Z` | Ax = b,x > 0} of ILP feasibility where:

the constraint matrix A has k := n+ 2m rows and ` := 2n+ 2m columns;
each entry in A is zero or one;
each row and column of A contains at most 4 non-zero entries; and
the target vector b has all entries equal to 1, 2, or 3;

We now reduce the obtained instance to another ILP Feasibility instance containing
only O((n+m)/ log(n+m)) constraints. Let M be the detecting matrix given by Lemma 6
for d = 4 and the required number of columns (m in the notation of the statement of
Lemma 6) equal to the number or rows (constraints) in A, which is k. Then for any x ∈ N`,
we have Ax ∈ Nk (since A is non-negative) and b ∈ {0, . . . , d − 1}k, hence by Lemma 6
we have that Ax = b if and only if MAx = Mb. We conclude that the ILP Feasibility
instance {x ∈ Z` | A′x = b′,x > 0} with A′ = MA and b′ = Mb is equivalent to the
previous instance {x ∈ Z` | Ax = b,x > 0}.

The new instance has the same number `′ = ` = 2n + 2m of variables, but only
k′ = O(k/ log k) = O((n + m)/ log(n + m)) constraints. The entries of b′ = Mb are non-
negative and bounded by k · ‖b‖∞ = O(n + m). Similarly, the entries of A′ = MA are
non-negative, and since every column of A has at most 4 non-zero entries, we get ‖A′‖∞ 6 4.

To further reduce ‖A′‖∞, we apply Lemma 7, replacing each row of A′ by a constant
number of {0, 1}-rows and auxiliary variables. This way, we reduced in polynomial time a
(3, 4)SAT instance ϕ with n variables and m clauses into an equivalent ILP Feasibility
instance {x ∈ Z`′′ | A′′x = b′′,x > 0}, where A′′ is a {0, 1}-matrix with `′′ = `′ +O(k′) =
O(n+m) columns and k′′ = Θ(k′) = Θ((n+m)/ log(n+m)) rows, while ‖b′′‖∞ = O(n+m).
Hence `′′, ‖b′′‖∞ = O(k′′ log k′′).

We are now in position to finish the proof of Theorem 1. Suppose there is an algorithm
for ILP Feasibility that works in time 2o(k′′ log k′′) on instances with A ∈ {0, 1}k′′×`′′

and `′′, ‖b′′‖∞ = O(k′′ log k′′). Then applying the above reduction would solve (3,4)SAT
instances with N = n + m variables and clauses in time 2o((N/ logN)·log(N/ logN)) = 2o(N),
which contradicts ETH by Corollary 9. This concludes the proof of Theorem 1.

3 Parameterization by the dual treedepth

3.1 Preliminaries
Treedepth and dual treedepth. For a graph G, the treedepth of G, denoted td(G), can be
defined recursively as follows:

td(G) =

1 if G has one vertex;

max(td(G1), . . . , td(Gp)) if G is disconnected and G1, . . . , Gp

are its connected components;

1 + minu∈V (G) td(G− u) if G has more than one vertex
and is connected.

(1)

See e.g. [28]. Equivalently, treedepth is the smallest possible height of a rooted forest F on
the same vertex set as G such that whenever uv is an edge in G, then u is an ancestor of v
in F or vice versa.

D. Knop, Mi. Pilipczuk, and M. Wrochna 44:9

Since we focus on constraints, we consider, for a matrix A, the constraint graph or dual
graph GD(A), defined as the graph with rows of A as vertices where two rows are adjacent if
and only if in some column they simultaneously contain a non-zero entry. The dual treedepth
of A, denoted tdD(A), is the treedepth of GD(A).

The recursive definition (1) is elegantly reinterpreted in terms of row removals and
partitioning into blocks as follows. A matrix A is block-decomposable if after permuting its
rows and columns it can be presented in block-diagonal form, i.e., rows and columns can
be partitioned into intervals R1, . . . , Rp and C1, . . . , Cp, for some p > 2, such that non-zero
entries appear only in blocks B1, . . . , Bp, where Bi is the block of entries at intersections
of rows from Ri with columns from Ci. It is easy to see that A is block-decomposable if
and only if GD(A) is disconnected, and the finest block decomposition of A corresponds
to the partition of GD(A) into connected components. The blocks B1, . . . , Bp in this finest
partition are called the block components of A – they are not block-decomposable. Then the
recursive definition of treedepth provided in (1) translates to the following definition of the
dual treedepth of a matrix A:

tdD(A) =

1 if A has one row;

max(tdD(B1), . . . , tdD(Bp)) if A is block-decomposable and
B1, . . . , Bp are its block components;

1 + min
aᵀ : rows of A

tdD(A\aᵀ) if A has more than one row and
is not block decomposable.

(2)

Here A\aᵀ is the matrix obtained from A by removing the row aᵀ. Intuitively, dual treedepth
formalizes the idea that a block-decomposable matrix is as hard as the hardest of its block
components, and that adding a single row makes it a bit harder, but not uncontrollably so.

Graver bases. Two integer vectors a,b ∈ Zn are sign-compatible if ai · bi > 0 for all
i = 1, . . . , n. For a,b ∈ Zn we write a v b if a and b are sign-compatible and |ai| 6 |bi| for
all i = 1, . . . , n. Then v is a partial order on Zn; we call it the conformal order . Note that
v has a unique minimum element, which is the zero vector 0.

For a matrix A, the Graver basis of A, denoted G(A) is the set of conformally minimal
vectors in (kerA ∩ Zn) − {0}. It is easy to see by Dickson’s lemma that (Zn,v) is a well
quasi-ordering, hence there are no infinite antichains with respect to the conformal order. It
follows that the Graver basis of every matrix is finite, though it can be quite large. For a
matrix A and p ∈ [1,∞], we denote gp(A) = maxu∈G(A) ‖u‖p.

3.2 Upper bound
We start with the upper bound for the dual treedepth parameterization, that is, Theorem 2.
As explained in the introduction, this result easily follows from the work of Koutecký et
al. [24] and the following lemma bounding g1(A) in terms of tdD(A) and ‖A‖∞, for any
integer matrix A.

I Lemma 10. For any matrix A with integer entries, it holds that

g1(A) 6 (2‖A‖∞ + 1)2tdD(A)−1.

Before we prove Lemma 10, let us sketch how using the reasoning from Koutecký et
al. [24] one can derive Theorem 2. Using the bound on the `1-norm of vectors in the Graver

STACS 2019

44:10 Tight Lower Bounds for ILP with Few Constraints

basis of A, we can construct a Λ-Graver-best oracle for the considered ILP Optimization
instance. This is an oracle that given any feasible solution x, returns another feasible solution
x′ that differs from x only by an integer multiple not larger than Λ of a vector from the
Graver basis of A, and among such solution achieves the best goal value of wᵀx′. Such a
Λ-Graver-best oracle runs in time (‖A‖∞ · g1(A))O(twD(A)) · |I|O(1), where twD(A) is the
treewidth of the constraint graph GD(A), which is always upper bounded by tdD(A) + 1. See
the proof of Lemma 25 and the beginning of the proof of Theorem 3 in [24]; the reasoning
there is explained in the context of tree-fold ILPs, but it uses only boundedness of the dual
treedepth of A. Once a Λ-Graver-best oracle is implemented, we can use it to implement
a Graver-best oracle (Lemma 14 in [24]) within the same asymptotic running time, and
finally use the main theorem – Theorem 1 in [24] – to obtain the algorithm promised in
Theorem 2 above.

We now proceed to the proof of Lemma 10.

Proof of Lemma 10. We proceed by induction on the number of rows of A using the recursive
definition (2). For the base case – when A has one row – we may use the following well-known
bound.

B Claim 11 (Lemma 3.5.7 in [27]). If A is an integer matrix with one row, then

g1(A) 6 2‖A‖∞ + 1.

We note that the original bound of 2‖A‖∞ − 1, stated in [27], works only for non-zero A.
We now move to the induction step, so suppose the considered matrix A has more than

one row. We consider two cases: either A is block-decomposable, or it is not.
First suppose that A is block-decomposable. Let B1, . . . , Bp be the block components

of A, and let R1, . . . , Rp and C1, . . . , Cp be the corresponding partitions of rows and columns
of A into segments, respectively. Observe that integer vectors u from kerA are exactly
vectors of the form (v(1) | v(2) | . . . | v(p)), where each v(i) is an integer vector of length
|Ci| that belongs to kerBi. It follows that G(A) consists of vectors of the following form: for
some i ∈ {1, . . . , p} put a vector from G(Bi) on coordinates corresponding to the columns of
Ci, and fill all the other entries with zeroes. Consequently, we have

g1(A) 6 max
i=1,...,p

g1(Bi). (3)

On the other hand, by (2) we have

tdD(A) = max
i=1,...,p

tdD(Bi). (4)

Since each matrix Bi has fewer rows than A, we may apply the induction assumption to
matrices B1, . . . , Bp, thus inferring by (3) and (4) that

g1(A) 6 max
i=1,...,p

g1(Bi) 6 max
i=1,...,p

(2‖Bi‖∞ + 1)2tdD(Bi)−1 6 (2‖A‖∞ + 1)2tdD(A)−1.

We are left with the case when A is not block-decomposable. For this, we use the following
claim, which is essentially Lemma 3.7.6 and Corollary 3.7.7 in [27]. The statement there is
slightly different, but the same proof in fact proves the following bound; for convenience, we
repeat the argument in the full version.

B Claim 12 (♠). Let A be an integer matrix and let aᵀ be a row of A. Then

g1(A) 6 (2‖aᵀ‖∞ + 1) · g1(A\aᵀ) · g∞(A\aᵀ).

D. Knop, Mi. Pilipczuk, and M. Wrochna 44:11

Suppose then that A is not block-decomposable. By (2), there exists a row aᵀ of A such
that tdD(A\aᵀ) = tdD(A)− 1. Then, by Claim 12 and the inductive assumption, we have

g1(A) 6 (2‖aᵀ‖∞ + 1) · g1(A\aᵀ) · g∞(A\aᵀ) 6 (2‖A‖∞ + 1) · (g1(A\aᵀ))2

6 (2‖A‖∞ + 1)1+2·(2tdD(A)−1−1) = (2‖A‖∞ + 1)2tdD(A)−1.

This concludes the proof. J

3.3 Lower bound

We now move to the proof of the lower bound, Theorem 3. We will reduce from the Subset
Sum problem: given non-negative integers s1, . . . , sk, t, encoded in binary, decide whether
there is a subset of numbers s1, . . . , sk that sums up to t. The standard NP-hardness reduction
from 3SAT to Subset Sum takes an instance of 3SAT with n variables and m clauses, and
produces an instance (s1, . . . , sk, t) of Subset Sum with a linear number of numbers and
each of them of linear bit-length, that is, k 6 O(n+m) and 0 6 s1, . . . , sk, t < 2δ, for some
δ 6 O(n+m). See e.g. [1] for an even finer reduction, yielding lower bounds for Subset Sum
under Strong ETH. By Theorem 8, this immediately implies an ETH-based lower bound for
Subset Sum.

I Lemma 13. Unless ETH fails, there is no algorithm for Subset Sum that would solve
any input instance (s1, . . . , sk, t) in time 2o(k+δ), where δ is the smallest integer such that
s1, . . . , sk, t < 2δ.

The idea for our reduction from Subset Sum to ILP Feasibility is as follows. Given
an instance (s1, . . . , sk, t), we first construct numbers s1, . . . , sk using ILPs P1, . . . , Pk, where
each Pi uses only constant-size coefficients and has dual treedepth O(log δ). The ILP Pi will
have a designated variable zi and two feasible solutions: one that sets zi to 0 and one that
sets it to si. Similarly we can construct an ILP Q that forces a designated variable w to be set
to t. Having that, the whole input instance can be encoded using one additional constraint:
z1 + . . .+ zk − w = 0. To construct each Pi, we first create δ variables y0, y1, . . . , yδ−1 that
are either all evaluated to 0 or all evaluated to 20, 21, . . . , 2δ−1, respectively; this involves
constraints of the form yj+1 = 2yj . Then the number si (or 0) can be obtained on a new
variable zi using a single constraint that assembles the binary encoding of si. The crucial
observations is that the constraint graph GD(Pi) consists of a path on δ vertices and one
additional vertex, and thus has treedepth O(log δ).

We start implementing this plan formally by giving the construction for a single number s.

I Lemma 14. For all positive integers δ and s satisfying 0 6 s < 2δ, there exists an instance
P = {Ax = b, x > 0} of ILP Feasibility with the following properties:

A has all entries in {−1, 0, 1, 2} and tdD(A) 6 O(log δ);
b is a vector with all entries in {0, 1}; and
P has exactly two solutions x(1) and x(2), where x(1)

1 = 0 and x(2)
1 = s.

Moreover, the instance P can be constructed in time polynomial in δ + log s.

Proof. We shall use n+ 2 variables, denoted for convenience by y0, y1, . . . , yδ−1, z, u; these
are arranged into the variable vector x of length δ+ 2 so that x1 = z. Letting b0, b1, . . . , bδ−1
be the consecutive digits of the number s in the binary encoding, the instance P then looks

STACS 2019

44:12 Tight Lower Bounds for ILP with Few Constraints

as follows:

u + y0 = 1
2y0 − y1 = 0

2y1 − y2 = 0
.

...
2yδ−2 − yδ−1 = 0

b0y0 + b1y1 + . . . + bδ−2yδ−2 + bδ−1yδ−1 − z = 0

Since 0 6 u 6 1, it is easy to see that P has exactly two solutions in nonnegative integers:
If one sets u = 1, then all the other variables need to be set to 0.
If one sets u = 0, then yi needs to be set to 2i for all i = 0, 1, . . . , δ − 1, and then z needs
to be set to s by the last equation.

It remains to analyze the dual treedepth of A. Observe that the constraint graph GD(A)
consists of a path of length δ, plus one vertex corresponding to the last equation that may
have an arbitrary neighborhood within the path. Since the path on δ vertices has treedepth
dlog(δ + 1)e, it follows that GD(A) has treedepth at most 1 + dlog(δ + 1)e 6 O(log δ). J

We note that in the above construction one may remove the variable u and replace the
constraint u+ y0 = 1 with y0 = 1, thus forcing only one solution: the one that sets the first
variable to s. This will be used later.

We are ready to show the core part of the reduction.

I Lemma 15. An instance (s1, . . . , sk, t) of Subset Sum with 0 6 si, t < 2δ for i = 1, . . . , k,
can be reduced in polynomial time to an equivalent instance {Ax = b, x > 0} of ILP
Feasibility where the entries of A are in {−1, 0, 1, 2}, entries of b are in {0, 1}, and
tdD(A) 6 O(log δ).

Proof. For each i ∈ {1, . . . , k}, apply Lemma 14 to construct a suitable instance Pi =
{Aix = bi, x > 0} of ILP Feasibility for s = si. Also, apply Lemma 14 to construct a
suitable instance Q = {Cx = d, x > 0} of ILP Feasibility for s = t, and modify it as
explained after the lemma’s proof so that there is only one solution, setting the first variable
to t. Let

A =

cᵀ

A1
A2

. . .
Ak

C

where

cᵀ = (1 0 . . . 0 | 1 0 . . . 0 | . . . | 1 0 . . . 0 | (−1) 0 . . . 0)

with consecutive blocks of lengths equal to the numbers of columns of A1, . . . , Ak, and C,
respectively. Observe that

tdD(A) 6 1 + max(tdD(A1), . . . , tdD(Ak), tdD(C)) = O(log δ).

Further, let

bᵀ = (0 | bᵀ
1 | . . . | bᵀ

k | dᵀ).

D. Knop, Mi. Pilipczuk, and M. Wrochna 44:13

We now claim that the ILP {Ax = b, x > 0} is feasible if and only if the input instance of
Subset Sum has a solution. Indeed, if we denote by z1, . . . , zk, w the variables corresponding
to the first columns of blocks A1, . . . , Ak, C, respectively, then by Lemma 14 within each
block Ai there are two ways of evaluating variables corresponding to columns of Ai: one
setting zi = 0 and second setting zi = si. However, there is only one way of evaluating
the variables corresponding to columns of C, which sets w = t. The first row of A then
constitutes the constraint z1 + . . .+ zk −w = 0, which can be satisfied by setting zi-s and w
as above if and only if some subset of the numbers s1, . . . , sk sums up to t. J

It remains to reduce the entries in A equal to 2, simply by duplicating variables.

I Lemma 16 (♠). An instance {Ax = b, x > 0} of ILP Feasibility where the entries of
A are in {−1, 0, 1, 2} and the entries of b are in {0, 1} can be reduced in polynomial time to
an equivalent instance {A′x = b′, x > 0} of ILP Feasibility with all entries in {−1, 0, 1}
and tdD(A′) 6 tdD(A) + 1.

Theorem 3 now follows by observing that combining the reductions of Lemma 15 and
Lemma 16 with a hypothetical algorithm for ILP Feasibility on {−1, 0, 1}-input with
running time 22o(tdD(A)) · |I|O(1) would yield an algorithm for Subset Sum with running time
2o(k+δ), contradicting ETH by Lemma 13.

4 Conclusions

We conclude this work by stating two concrete open problems in the topic.
First, apart from considering the standard form {Ax = b, x > 0}, Eisenbrand and

Weismantel [9] also studied the more general setting of ILPs of the form {Ax = b, l 6 x 6 u},
where l and u are integer vectors. That is, instead of only requiring that every variable is
nonnegative, we put an arbitrary lower and upper bound on the values it can take. Note that
such lower and upper bounds can be easily emulated in the standard formulation using slack
variables, but this would require adding more constraints to the matrix A; the key here is
that we do not count these lower and upper bounds in the total number of constraints k. For
this more general setting, Eisenbrand and Weismantel [9] gave an algorithm with running
time kO(k2) · ‖A‖O(k2)

∞ · |I|O(1), which boils down to 2O(k2 log k) · |I|O(1) when ‖A‖∞ = O(1).
(A typo leading to a 2O(k2) · |I|O(1) bound has been fixed in later versions of the paper). Is
this running time optimal or could the 2O(k2 log k) factor be improved?

Second, in this work we studied the parameter dual treedepth of the constraint matrix A,
but of course one can also consider the primal treedepth. It can be defined as the treedepth
of the graph over the columns (variables) of A, where two columns are adjacent if they
have a non-zero entry in same row (the variables appear simultaneously in some constraint).
It is known that ILP Feasibility and ILP Optimization are fixed-parameter tractable
when parameterized by ‖A‖∞ and tdP (A), that this, there is an algorithm with running
time f(‖A‖∞, tdP (A)) · |I|O(1), for some function f [24]. Again, the key ingredient here
is an inequality on `∞-norms of the elements of the Graver basis of any integer matrix A:
g∞(A) 6 h(‖A‖∞, tdP (A)) for some function h. Unfortunately, the known proofs of this fact1,
see [2]2, use the theory of well quasi-orderings (in a highly non-trivial way) and consequently

1 Very recently, Klein [19] provided an alternative constructive proof for 2-stage and multistage IPs.
2 The work of Aschenbrenner and Hemmecke [2] considers the setting ofmulti-stage stochastic programming,
which is related to primal treedepth in the same way as tree-fold ILPs are related to dual treedepth.
The translation between MSSP and primal treedepth was formulated by Koutecký et al. [24].

STACS 2019

44:14 Tight Lower Bounds for ILP with Few Constraints

give no direct bounds on the function h. A good upper bound on h would directly lead to a
correspondingly efficient FPT algorithm for ILP Optimization parameterized by ‖A‖∞
and tdP (A). However, we conjecture that the function h has to be non-elementary in tdP (A).
If this was the case, an example could likely be used to prove a non-elementary lower bound
under ETH for ILP Feasibility under that tdP (A) parameterization (with ‖A‖ = O(1)).

References
1 Amir Abboud, Karl Bringmann, Danny Hermelin, and Dvir Shabtay. SETH-based lower

bounds for Subset Sum and Bicriteria Path. In SODA 2019, pages 41–57. SIAM, 2019.
2 Matthias Aschenbrenner and Raymond Hemmecke. Finiteness Theorems in Stochastic Integer

Programming. Foundations of Computational Mathematics, 7(2):183–227, 2007.
3 Marthe Bonamy, Łukasz Kowalik, Michał Pilipczuk, Arkadiusz Socała, and Marcin Wrochna.

Tight Lower Bounds for the Complexity of Multicoloring. In ESA 2017, volume 87 of LIPIcs,
pages 18:1–18:14. Schloss Dagstuhl — Leibniz-Zentrum für Informatik, 2017.

4 Nader H. Bshouty. Optimal Algorithms for the Coin Weighing Problem with a Spring Scale.
In COLT 2009, 2009.

5 David G Cantor and WHMills. Determination of a subset from certain combinatorial properties.
Canad. J. Math, 18:42–48, 1966.

6 Lin Chen and Dániel Marx. Covering a tree with rooted subtrees — parameterized and
approximation algorithms. In SODA 2018, pages 2801–2820. SIAM, 2018.

7 Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.

8 Friedrich Eisenbrand, Christoph Hunkenschröder, and Kim-Manuel Klein. Faster Algorithms
for Integer Programs with Block Structure. In ICALP 2018, volume 107 of LIPIcs, pages
49:1–49:13. Schloss Dagstuhl — Leibniz-Zentrum für Informatik, 2018.

9 Friedrich Eisenbrand and Robert Weismantel. Proximity results and faster algorithms for
Integer Programming using the Steinitz Lemma. In SODA 2018, pages 808–816. SIAM, 2018.

10 Fedor V. Fomin, Fahad Panolan, M. S. Ramanujan, and Saket Saurabh. On the Optimality of
Pseudo-polynomial Algorithms for Integer Programming. In ESA 2018, volume 112 of LIPIcs,
pages 31:1–31:13. Schloss Dagstuhl — Leibniz-Zentrum für Informatik, 2018.

11 András Frank and Éva Tardos. An application of simultaneous diophantine approximation in
combinatorial optimization. Combinatorica, 7(1):49–65, 1987.

12 Vladimir Grebinski and Gregory Kucherov. Optimal Reconstruction of Graphs under the
Additive Model. Algorithmica, 28(1):104–124, 2000.

13 Raymond Hemmecke, Shmuel Onn, and Lyubov Romanchuk. n-Fold integer programming in
cubic time. Math. Program., 137(1-2):325–341, 2013.

14 Russell Impagliazzo and Ramamohan Paturi. On the Complexity of k-SAT. J. Comput. Syst.
Sci., 62(2):367–375, 2001.

15 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which Problems Have Strongly
Exponential Complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001.

16 Klaus Jansen, Kim-Manuel Klein, Marten Maack, and Malin Rau. Empowering the
Configuration-IP — New PTAS Results for Scheduling with Setups Times. In ITCS 2019,
volume 124 of LIPIcs, pages 44:1–44:19. Schloss Dagstuhl — Leibniz-Zentrum für Informatik,
2019.

17 Klaus Jansen and Lars Rohwedder. On Integer Programming and Convolution. In ITCS 2019,
volume 124 of LIPIcs, pages 43:1–43:17. Schloss Dagstuhl — Leibniz-Zentrum für Informatik,
2019.

18 Ravi Kannan. Minkowski’s Convex Body Theorem and Integer Programming. Mathematics of
Operations Research, 12(3):415–440, 1987.

19 Kim-Manuel Klein. About the Complexity of Two-Stage Stochastic IPs. CoRR, abs/1901.01135,
2019.

D. Knop, Mi. Pilipczuk, and M. Wrochna 44:15

20 Dušan Knop and Martin Koutecký. Scheduling meets n-fold integer programming. J. Scheduling,
21(5):493–503, 2018.

21 Dušan Knop, Martin Koutecký, and Matthias Mnich. Combinatorial n-fold Integer Program-
ming and Applications. In ESA 2017, volume 87 of LIPIcs, pages 54:1–54:14. Schloss Dagstuhl
— Leibniz-Zentrum für Informatik, 2017.

22 Dušan Knop, Martin Koutecký, and Matthias Mnich. Voting and Bribing in Single-Exponential
Time. In STACS 2017, volume 66 of LIPIcs, pages 46:1–46:14. Schloss Dagstuhl — Leibniz-
Zentrum für Informatik, 2017.

23 Dušan Knop, Michał Pilipczuk, and Marcin Wrochna. Tight complexity lower bounds
for integer linear programming with few constraints. CoRR, abs/1811.01296, 2018. URL:
http://arxiv.org/abs/1811.01296.

24 Martin Koutecký, Asaf Levin, and Shmuel Onn. A Parameterized Strongly Polynomial
Algorithm for Block Structured Integer Programs. In ICALP 2018, volume 107 of LIPIcs,
pages 85:1–85:14. Schloss Dagstuhl — Leibniz-Zentrum für Informatik, 2018.

25 Hendrik W. Lenstra. Integer Programming with a Fixed Number of Variables. Mathematics
of Operations Research, 8(4):538–548, 1983.

26 Bernt Lindström. On a combinatorial problem in number theory. Canad. Math. Bull, 8(4):477–
490, 1965.

27 Jesús A. De Loera, Raymond Hemmecke, and Matthias Köppe. Algebraic and Geometric Ideas
in the Theory of Discrete Optimization, volume 14 of MOS-SIAM Series on Optimization.
SIAM, 2013.

28 Jaroslav Nešetřil and Patrice Ossona de Mendez. Sparsity — Graphs, Structures, and Al-
gorithms, volume 28 of Algorithms and combinatorics. Springer, 2012.

29 Christos H. Papadimitriou. On the complexity of integer programming. J. ACM, 28(4):765–768,
1981.

30 Craig A. Tovey. A simplified NP-complete satisfiability problem. Discrete Applied Mathematics,
8(1):85–89, 1984.

STACS 2019

http://arxiv.org/abs/1811.01296

The Set Cover Conjecture and Subgraph
Isomorphism with a Tree Pattern
Robert Krauthgamer
Weizmann Institute of Science, Rehovot, Israel
robert.krauthgamer@weizmann.ac.il

Ohad Trabelsi
Weizmann Institute of Science, Rehovot, Israel
ohad.trabelsi@weizmann.ac.il

Abstract
In the Set Cover problem, the input is a ground set of n elements and a collection of m sets, and the
goal is to find the smallest sub-collection of sets whose union is the entire ground set. The fastest
algorithm known runs in time O(mn2n) [Fomin et al., WG 2004], and the Set Cover Conjecture
(SeCoCo) [Cygan et al., TALG 2016] asserts that for every fixed ε > 0, no algorithm can solve
Set Cover in time 2(1−ε)npoly(m), even if set sizes are bounded by ∆ = ∆(ε). We show strong
connections between this problem and kTree, a special case of Subgraph Isomorphism where the input
is an n-node graph G and a k-node tree T , and the goal is to determine whether G has a subgraph
isomorphic to T .

First, we propose a weaker conjecture Log-SeCoCo, that allows input sets of size ∆ = O(1/ε·log n),
and show that an algorithm breaking Log-SeCoCo would imply a faster algorithm than the currently
known 2npoly(n)-time algorithm [Koutis and Williams, TALG 2016] for Directed nTree, which is
kTree with k = n and arbitrary directions to the edges of G and T . This would also improve the
running time for Directed Hamiltonicity, for which no algorithm significantly faster than 2npoly(n) is
known despite extensive research.

Second, we prove that if p-Partial Cover, a parameterized version of Set Cover that requires
covering at least p elements, cannot be solved significantly faster than 2npoly(m) (an assumption
even weaker than Log-SeCoCo) then kTree cannot be computed significantly faster than 2kpoly(n),
the running time of the Koutis and Williams’ algorithm.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis; Theory of
computation → Discrete optimization; Theory of computation → Parameterized complexity and
exact algorithms

Keywords and phrases Conditional lower bounds, Hardness in P, Set Cover Conjecture, Subgraph
Isomorphism

Digital Object Identifier 10.4230/LIPIcs.STACS.2019.45

Related Version This paper is based on two preliminary versions arXiv:1711.08041 and
arXiv:1708.07591.

Funding Robert Krauthgamer : Work supported in part by the Israel Science Foundation grant
#1086/18, ONR Award N00014-18-1-2364, a Minerva Foundation grant, and a Google Faculty
Research Award. Part of this work was done while was visiting the Simons Institute for the Theory
of Computing.

1 Introduction

Set Cover and Subgraph Isomorphism are two of the most well-researched problems in the-
oretical computer science. In this paper we show a strong connection between their time
complexity. We first discuss each, and then show our results.

© Robert Krauthgamer and Ohad Trabelsi;
licensed under Creative Commons License CC-BY

36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019).
Editors: Rolf Niedermeier and Christophe Paul; Article No. 45; pp. 45:1–45:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:robert.krauthgamer@weizmann.ac.il
mailto:ohad.trabelsi@weizmann.ac.il
https://doi.org/10.4230/LIPIcs.STACS.2019.45
https://arxiv.org/abs/1711.08041
https://arxiv.org/abs/1708.07591
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

45:2 The Set Cover Conjecture and Subgraph Isomorphism with a tree pattern

Set Cover

In the Set Cover problem, the input is a ground set [n] = {1, ..., n} and a collection of m sets,
and the goal is to find the smallest sub-collection of sets whose union is the entire ground
set. An exhaustive search takes O(n2m) time, and a dynamic-programming algorithm has
running time O(mn2n) [15], which is faster when m > n, a common assumption that we will
make throughout. In spite of extensive effort, no algorithm that runs in time O∗(2(1−ε)n) is
known, although some improvements are known in special cases [22, 9, 30, 10]. Here and
throughout, O∗(·) hides polynomial factors in the instance size, and unless stated otherwise,
ε > 0 denotes a fixed constant (and similarly ε′). Thus, it was conjectured that the above
running time is optimal [12], even if the input sets are small. To state this more formally, let
∆-Set Cover denote the Set Cover problem where all sets have size at most ∆ > 0.

I Conjecture 1.1 (Set Cover Conjecture (SeCoCo) [12]). For every fixed ε > 0 there is
∆(ε) > 0, such that no algorithm (even randomized) solves ∆-Set Cover in time O∗(2(1−ε)n).

This conjecture clearly implies that for every ∆ = ω(1), no algorithm solves ∆-Set Cover
in time O∗(2(1−ε)n). Several conditional lower bounds were based on this conjecture (by
reducing Set Cover to it) in the recent decade, including for Steiner Tree, Set Partitioning,
and more [12, 11, 8, 24, 25]. The authors of [12] asked whether the problems they reduce
Set Cover to can be reduced back to Set Cover, so that their running time complexity would
stand and fall with SeCoCo. They believed it would be hard to do, since it would probably
provide for those problems an alternative algorithm with running time that matches the
currently fastest one, which is very complex and took decades to achieve for some (e.g., for
Steiner Tree).

Connection to SETH

No formal connection is known to date between the SeCoCo conjecture and the Strong
Exponential Time Hypothesis (SETH) of [18], which asserts that for every ε > 0 there exists
k(ε), such that kSAT on N variables and M clauses cannot be solved in time O∗(2(1−ε)N).
Cygan et al. [12] provided a partial answer by showing a SETH-based lower bound for a
certain variant of Set Cover (that counts the number of solutions). It is known that the
weaker assumption ETH implies a 2Ω(n) time lower bound for Set Cover, even if ∆ = O(1),
and that SAT can be solved in time O∗(2(1−ε)N) if and only if Set Cover can be solved in
time O∗(2(1−ε′)m), see [12]. Some researchers hesitate to rely on SeCoCo as a conjecture,
and prefer other, more popular conjectures such as SETH. For example, a running time lower
bound for Subset Sum was recently shown [1] based on SETH, even though a lower bound
based on SeCoCo was already known [12].

We address the necessity of SeCoCo by proposing a weaker assumption, and showing an
independent justification for it. Our conjecture deals with ∆-Set Cover for ∆ = O(logn), as
follows.

I Conjecture 1.2 (Logarithmic Set Cover Conjecture (Log-SeCoCo)). For every fixed ε > 0,
there is ∆(ε, n) = O(1/ε · logn) such that no algorithm (even randomized) solves ∆-Set Cover
in time O∗(2(1−ε)n).

The fastest algorithm known for ∆-Set Cover runs in time O∗(2nλ∆) [22] for λ∆ =
(2∆ − 2)/

√
(2∆− 1)2 − 2 ln(2) ≤ 1 − 1/(2∆), where the inequality assumes ∆ ≥ 2, hence

this running time is slightly faster than for general Set Cover. All known hardness results
that are based on SeCoCo can be based also on our conjecture, with appropriate adjustments
related to the set sizes in Set Cover parameterized by the universe size plus the solution
size [12] and in Parity of Set Covers [8].

R. Krauthgamer and O. Trabelsi 45:3

Subgraph Isomorphism with a tree pattern

The Subgraph Isomorphism problem asks whether a host graph G contains a copy of a pattern
graph H as a subgraph. It is well known to be NP-hard since it generalizes hard problems
such as Maximum Clique and Hamiltonicity [21], but unlike many natural NP-hard problems,
it requires NΩ(N) time where N = |V (G)|+ |V (H)| is the total number of vertices, assuming
the exponential time hypothesis (ETH) [13]. Hence, most past research addressed its special
cases that are in P , including the case where the pattern graph is of constant size [28], or when
both graphs are trees [2], biconnected outerplanar graphs [26], two-connected series-parallel
graphs [27], and more [14, 29]. We will focus on a version called kTree, where the pattern is a
tree T on k nodes. In the directed version of the problem, denoted Directed kTree, the edges of
G and T are oriented, allowing also anti-parallel edges in G1. Throughout, unless accompanied
with the word directed, kTree and nTree refer to their undirected versions. Directed kTree can
only be harder than kTree - even when the directed tree T is an arborescence, as one can
reduce the undirected version to it with essentially no loss2. A couple of different techniques
were used in order to design algorithms for Directed kTree. The color-coding method, designed
by Alon, Yuster, and Zwick [3], yields an algorithm with running time O∗((2e)k). Later, a
new method utilized kMLD (stands for k Multilinear Monomial Detection – the problem of
detecting multilinear monomials of degree k in polynomials presented as circuits) to design a
Directed kTree algorithm with running time O∗(2k) [23].

Our Results

The first result connects our conjecture to the Directed nTree problem (see Figure 1), which
is Directed kTree with k = n. This problem includes as a special case the well known Directed
Hamiltonicity problem, which asks to determine whether a directed graph G contains a simple
path (or cycle) that visits all the nodes (the Hamiltonian cycle and path problems are easily
reducible to each other with only small overhead). Next, we show that an algorithm that
breaks Log-SeCoCo implies a fast algorithm for Directed nTree.

I Theorem 1.3. Suppose Log-SeCoCo fails, namely, there is ε > 0 such that for every
∆ = O(1/ε · logn), ∆-Set Cover can be solved in time O∗(2(1−ε)n). Then for some δ(ε) > 0,
Directed nTree on ñ nodes can be solved in time O∗(2(1−δ)ñ). This holds even when in ∆-Set
Cover, every optimal solution is of size O(εn/ logn) and consists of disjoint sets.

In the special case of Directed Hamiltonicity, we actually reduce to rather constrained
instances of Set Cover.

I Theorem 1.4. Suppose Log-SeCoCo fails, namely, there is ε > 0 such that for every
∆ = O(1/ε · logn), ∆-Set Cover can be solved in time O∗(2(1−ε)n). Then for some δ(ε) > 0,
Directed Hamiltonicity on ñ nodes can be solved in time O∗(2(1−δ)ñ). This holds even when in
∆-Set Cover, all sets are of the same size and every optimal solution is of size O(εn/ logn)
and consists of disjoint sets.

1 T need not be an arborescence, only its underlying undirected graph is a tree.
2 This could be done in the following way. Define the host graph G′ to be G with edges in both directions,

and direct the edges in T away from an arbitrary vertex v ∈ T to create the directed tree T ′, which
is thus an arborescence. Clearly, the directed instance is a yes-instance if and only if the undirected
instance also is.

STACS 2019

45:4 The Set Cover Conjecture and Subgraph Isomorphism with a tree pattern

We can also show that even moderate improvements to the fastest known running time
for ∆-Set Cover, namely, to the O∗(2(1−1/2∆)n) time algorithm of [22], implies improvements
for Directed nTree and for Directed Hamiltonicity (Section 4).

Thm 1.3

Open Problem 1.6

A Map of New and Known Reductions

immediate

immediate

cε-Set Cover � O∗(2(1−ε)n)

Set Partitioning � O∗(2n)

c′
ε′ -Set Partitioning � O∗(2(1−ε′)n)

[N
ed

16
]

[N
ed

16
]

[C
D
L
+
1
6
]

[N
ed

1
6
]

immediate

Set Cover � O∗(2n)

Directed nTree � O∗(2n)

(O(logn))-Set Cover � O∗(2n)

Directed Hamiltonicity � O∗(2n)

kTree � O∗(2k)p-Partial Cover � O∗(2p)
Thm

B.2

immediate

Thm 1.5

SeCoCo

Log-SeCoCo

Exact Cover � O∗(2n)

kHyperPath � O∗(21−1/(r−1)k)

im
m
ed

ia
te

[T
ra

18
]

[Tra18]

(O(logn))-Exact Cover � O∗(2n)

for m = nO(1),

Observation 1.7
immediate

Subset
Sum � O∗(2b)

[CDL+16]

Thm 1.3 [Tra18]

[CDL+16] with [Tra18]

[Ned16]

Figure 1 An arrow from a box with A � O∗(2nA) to B � O∗(2nB) represents a reduction from
problem A to problem B, such that if B can be solved in time O∗(2(1−ε)nB) then A can be solved
in time O∗(2(1−ε′(ε))nA). We denote by b the number of bits required to represent the integers in
Subset Sum, and by r the uniformity parameter in kHyperPath. The problems we focus on are drawn
in thick frames.

Our next result, whose proof appears in Section 3, shows that the 2kpoly(n) running time
of kTree by [23] is actually optimal (up to exponential improvements) even when considering
the undirected version, assuming SeCoCo or even weaker hypotheses such as Log-SeCoCo.

I Theorem 1.5. If for some fixed ε > 0, kTree can be solved in time O∗((2− ε)k), then for
some δ(ε) > 0, Set Cover on n elements and m sets can be solved in time O∗((2− δ)n).

In fact, our reduction also works from the more general p-Partial Cover problem, whose input
is similar to the Set Cover problem but with an additional integer p, and the goal is to find
the smallest sub-collection of sets whose union contains at least p elements (rather than all
elements). For simplicity, we first present the reduction from Set Cover to kTree (Section 3),
and then we show how to adjust it to be from p-Partial Cover (Subsection 3.1).

Discussion

Our first result (Theorem 1.3) supports the validity of Log-SeCoCo based on the Directed
nTree problem, which we believe does not admit an O∗(2(1−ε)n)-time algorithm, for two
reasons. First, this problem includes the well-known Directed Hamiltonicity problem, and in
the last 50 years no algorithm significantly faster than O∗(2n)-time was found for it, despite
extensive efforts [4, 17, 5, 33] and in contrast to progress on its undirected version [6]. Second,
for a generalization of nTree and kTree variants, namely, for Subgraph Isomorphism where the

R. Krauthgamer and O. Trabelsi 45:5

pattern is an arbitrary graph of arbitrary size, a time lower bound nΩ(n) is known assuming
ETH [13], even when the host and pattern graphs have the same number of nodes. We see
it as evidence that also Directed kTree does not become easier as the size k of the pattern
graph increases all the way to k = n, which would imply that the conditional lower bound
in Theorem 1.5 which shows that kTree cannot be solved in time O∗(2(1−ε)k), extends to
k = n. If true, then by our results, solving Set Cover significantly faster than O∗(2n)-time
is equivalent to achieving the same running time in the special case of ∆-Set Cover with
∆ = O(logn), which can be seen as an analogue to the SETH sparsification lemma [19].
Another interesting consequence of our results is that if kTree can be solved significantly
faster than O∗(2k) than Directed nTree can be solved significantly faster than O∗(2n). Such
a reduction from a directed problem to its undirected version is not obvious, even when the
latter has extra freedom in the form of parameterization. A potentially interesting conclusion
from the special instances of ∆-Set Cover produced in Theorem 1.4, where the goal could be
stated as finding a sub-collection of disjoint sets that covers the entire ground set, which we
call Exact Cover, is that Directed Hamiltonicity could be more closely related to Exact Cover
than to Set Cover. This is despite the fact that Set Cover and Exact Cover were shown to be
equivalent with respect to solvability in O∗(2(1−ε)n) time [30, 32], as there is an exponential
blowup in the number of sets in the reduction from Set Cover to Exact Cover. As we observe
below, Exact Cover with polynomially many sets can indeed be solved significantly faster
than O∗(2n). See Figure 1 for an overview of new and known reductions, where problem A

being drawn above problem B implies that there is a path, and a reduction, from A to B.
The following open problem formalizes the foregoing discussion.

IOpen Problem 1.6. Does an O∗(2(1−ε)n)-time algorithm for ∆-Set Cover with ∆ = O(logn)
imply an O∗(2(1−ε′(ε))n)-time algorithm for Set Cover?

Perhaps surprisingly, we can resolve the Exact Cover analogue of Open Problem 1.6 in
the special but common case m = nO(1), as follows. Here, O(c logn)-Exact Cover is Exact
Cover with sets of size bounded by O(c logn).

I Observation 1.7. If for some fixed ε > 0 and c > 0, O(c logn)-Exact Cover can be solved
in time O∗(2(1−ε)n), then for some δ(ε) > 0, Exact Cover with m = O(nc) can be solved in
time O∗(2(1−δ)n).

To see this, simply guess which sets of size larger than ∆ participate in an optimal solution,
using an exhaustive search over at most n ·

(
m
n/∆
)
choices, and then apply the assumed

algorithm for the remaining sets.
We note that the results can be easily generalized to weighted Directed Hamiltonicity (i.e.,

TSP) and Directed nTree by using a generalized conjecture about the weighted version of Set
Cover, whose input is similar to the Set Cover only with a positive weight for each set, and
the goal is to find a minimum-weight sub-collection whose union is the entire ground set.
The generalized conjecture then states that for every fixed ε > 0, weighted Set Cover with
the cardinality of every set bounded by O(1/ε · logn) cannot be solved in time O∗(2(1−ε)n).

Prior Work

Relevant state-of-the-art algorithms to Set Cover and Subgraph Isomorphism variants are as
follows. Set Cover can be solved in time (m+ 2n)poly(n) [9], which for m = nω(1) is faster
than the aforementioned O(mn2n) algorithm of [15]. The case where all sets are of size q
and the goal is to determine whether p pairwise-disjoint sets can be packed, can be solved in
time O∗(2(1−ε)pq) for ε(q) > 0 [10]. Determining whether a Set Cover instance has a solution

STACS 2019

45:6 The Set Cover Conjecture and Subgraph Isomorphism with a tree pattern

of size at most σn can be done in time O∗(2(1−Ω(σ4))n) [30]. The fastest known running
time for Directed Hamiltonicity is O∗(2n−Θ(

√
n/ logn)) [7]. Finally, several problems, including

Directed Hamiltonicity and Set Cover, were shown to belong to the class EPNL, defined as all
problems that can be solved by a non-deterministic turing machine with space n+O(logn)
bits [20].

Techniques

To demonstrate our basic technique for Theorems 1.3 and 1.4, let us present an extremely
simple reduction from Directed Hamiltonicity to ∆-Set Cover with ∆ = O(logn). Given a
directed graph G, first guess (by exhaustive search) a relatively small set of nodes (“rep-
resentatives”), and an ordering for them z1, z2, . . . in a potential Hamiltonian cycle. Then
construct a Set Cover instance whose ground set is the nodes of G and has the following
sets: for every possible path of length ∆ in G from some zi to zi+1 that does not visit any
representative in between, there is a set that contains all the nodes in this path except for
zi+1. A Hamiltonian cycle in G clearly corresponds to a set cover using exactly n/∆ sets, and
vice versa. The main challenge we deal with when reducing from the more general Directed
nTree is that the pattern tree does not decompose easily into appropriate subgraphs.

The intuition for Theorem 1.5 is as follows. In the reduction from Set Cover to kTree we
first guess a partition of n (the number of elements) that represents how an optimal solution
covers the elements, by exhaustive search over 2O(

√
n) unordered partitions of n. Then, we

represent the Set Cover instance using a Subgraph Isomorphism instance, whose pattern tree
T succinctly reflects the guessed partition of n, and the idea is that this tree is isomorphic to
a subgraph of the Set Cover graph if and only if the Set Cover instance has a solution that
agrees with our guess. The main difficulty here is that we reduce to the undirected version of
kTree, and thus additional attention is required to make the tree fit only in specific locations
in the host graph.

2 Reduction from Directed nTree to Set Cover

In this section we prove Theorem 1.3. The heart of the proof is actually the following lemma.

I Lemma 2.1. Directed nTree on ñ nodes can be reduced, for every ∆ ∈ [ñ], to O(ñ9ñ/∆)
instances of ∆-Set Cover, each with n ≤ ñ+ 9ñ/∆ elements, in time O(ñ∆+1 + ñ9ñ/∆).

Proof of Theorem 1.3. Assume there is an algorithm for ∆-Set Cover on n elements and
∆ = O(1/ε · logn) that runs in time O∗(2(1−ε)n). Given an instance of Directed nTree on ñ
nodes, apply Lemma 2.1 with

∆ = 81/ε · log ñ = O(1/ε · logn),

and then solve each of the resulting O(ñ9ñ/∆) = O∗(2εñ/9) instances of ∆-Set Cover, using
the assumed algorithm, in time

O∗(2(1−ε)n) ≤ O∗(2(1−ε)(ñ+9ñ/(81/ε·log ñ))) ≤ O∗(2(1−ε)(ñ+εñ/(9·log ñ))).

The total running time is

O∗(281/ε·log2 ñ+log ñ+εñ/9+(1−ε)(ñ+εñ/(9·log ñ))) ≤ O∗(2ñ−εñ/2),

which concludes the proof for δ(ε) = ε/2. J

R. Krauthgamer and O. Trabelsi 45:7

It remains to prove Lemma 2.1, and we start with an overview of this proof. Consider an
instance (G,T) of Directed nTree, and for this overview, assume that the tree T is rooted at
some node r, and all edges are directed away from it. The idea is to create roughly ñ9ñ/∆

instances of ∆-Set Cover on n ≤ ñ+ 9ñ/∆ elements each, such that at least one of them has
a solution of size t ≤ 9ñ/∆ if and only if the instance (G,T) has a solution. The first step is
to cover the tree T with t small subtrees, each of size at most ∆, such that the union of their
node sets is T and they may intersect only at their roots (the root of a subtree is the node
closest to r). Then guess, by enumerating over all possible choices, how the solution to (G,T)
maps the root of each subtree to a node in G, and create a corresponding an instance of
∆-Set Cover. For every such instance, perform an inner enumeration to further guess, what is
the (unordered) set of nodes in G that each subtree is mapped to, and add a corresponding
set to the ∆-Set Cover instance, but only if this guess does not violate the local and global
structure of T . That is, taking into account the edges within and between the subtrees,
by testing whether the set can be an isomorphic copy of the subtree, testing for the edges
between roots, respectively. For the correctness, we need to show that a solution of size t to
the ∆-Set Cover instance implies a one-to-one correspondence between the t sets and the
roots of the subtrees, and hence a copy of T in G. The general case where the edges of T
are orientated arbitrarily is similar, except that the edge orientations are taken into account
when comparing subtrees but not when computing a cover of T by small subtrees.

We proceed to the algorithm that computes the aforementioned cover of T by small
subtrees. This algorithm traverses the tree using DFS and add subtrees to the cover whenever
the DFS accumulates enough nodes, see Algorithm 1 for full details. Its output is a set S,
where each s ∈ S is a connected subset of the nodes of T , and thus we can refer to each such
s as a subtree of T , and let r(s) denote its root, i.e., its node that is closest to r in T . The
following lemma describes the guarantees of this algorithm and will be later used to prove
Lemma 2.1.

I Lemma 2.2. Given a tree T with root r on ñ nodes and an integer l ≤ ñ, Algorithm 1
finds in polynomial time a collection S of subtrees of T such that:
a. the number of nodes in each subtree is at most 2(l − 1);
b. every node in T is in some subtree;
c. two subtrees in S may only intersect in their roots; and
d. the number of subtrees is |S| ≤ 3ñ

l−1 .

Proof of Lemma 2.2. We first show that items (a)–(c) are satisfied by the output of Algo-
rithm 1. Since in the worst case Algorithm 1 adds a subtree in the first time the accumulated
number of nodes exceeds l, the number of nodes of each subtree is bounded by 2(l − 1). In
addition, every node v appears in some subtree, since at some point during the DFS it will
be the child, and then it will be passed up the tree and eventually added to S. To see why
the last requirement holds, observe that whenever an accumulated set is passed up the tree
and encounters an existing root, this set will be added to S.

To prove item (d), denote denote by Sbig the collection of sets in S of size at least l
(added in line 6), and by Ssml the collection of sets in S of size smaller than l (added in
lines 11 and 13). A set s ∈ Ssml was created only if r(s) at the time of its creation was the
root of at least one (other) set in Sbig (line 11) or was the last traversed node in the DFS
(line 13). Together with the fact that each root has at most one set from Ssml, we conclude
that each set s ∈ Ssml excluding at most one, can be associated with a distinct set in Sbig,
one that contains r(s). Hence, |Ssml| − 1 ≤ |Sbig|. The big sets have size at least l, and

STACS 2019

45:8 The Set Cover Conjecture and Subgraph Isomorphism with a tree pattern

Algorithm 1
Input: tree T rooted at r and size parameter l ∈ [n]
Output: cover S of T by subtrees of size at most 2(l − 1)
1: S ← ∅
2: for all v ∈ V do s(u)← {u}
3: traverse T using a DFS from r, and whenever returning from a node v to its parent p in
T , do the following:

4: let s(p)← s(p) ∪ s(v)
5: if |s(p)| ≥ l then
6: add s(p) to S
7: if p has unvisited children then
8: let s(p)← {p}
9: else let s(p)← ∅

10: else if p has no unvisited children and p ∈ s for some s ∈ S then
11: add s(p) to S and let s(p)← ∅
12: else if p is the last node traversed in the tree then
13: add s(p) to S
14: return S

except for their roots they have distinct vertices, hence |Sbig| ≤ ñ
l−1 . We conclude that

|S| = |Ssml|+ |Sbig| ≤ 2|Sbig|+ 1 ≤ 2ñ
l − 1 + 1 ≤ 3ñ

l − 1 ,

which completes the proof of Lemma 2.2. J

Proof of Lemma 2.1. We describe the reduction in stages.
Apply the aforementioned Algorithm 1 for partition T into subtrees that satisfy the
conditions in Lemma 2.2. By picking l = ∆/3 + 1, we obtain that each set is bounded by
∆ and that |S| ≤ 9ñ/∆. Hence, the cardinality of R := {r(s)}s∈S is bounded by 9ñ/∆.
For S returned by Algorithm 1, let RT = {r(s) : s ∈ S} (note that |RT | may be smaller
than |S|).
Then, guess |RT | nodes in G that will function as the image of the nodes in RT in a
potential subgraph isomorphism function and denote them by RG, and then guess a
bijection f from RT to RG. The guessing is done by exhaustive search over

(
ñ
|RT |

)
choices

of nodes, and together with the number of ways to choose a bijection it can be done in
time

(
ñ
|RT |

)
|RT |!.

Finally, enumerate all sets s′ of nodes of size at most ∆ in G, and denote by G(s′) the
graph induced from each on G. For every subtree s ∈ S, look by brute force for an
isomorphic copy of s in subgraphs G(s′) that contain f(r(s)) as a root and no other node
in RG, and that satisfy |s′| = |s|. For each one that was found, add to the constructed
Set Cover instance a set s′G with the root r′ labeled r′s where s corresponds to the
subtree s of T whose copy found to be in G(s′). Note that the number of elements
in the Set Cover instance is exactly ñ − |RT | + |S|, and that the time spent per each
subgraph isomorphism test is at most |s|! ≤ ∆!, and thus the total time spent in this step
is |S|

(
ñ
∆
)
∆! = |S|ñ · (ñ− 1) · · · (ñ−∆ + 1) ≤ 9ñ/∆ · ñ∆ ≤ ñ∆+1.

R. Krauthgamer and O. Trabelsi 45:9

Now we show that the size constraints follow. As |RT | ≤ 9ñ/∆, similar to before, the
number of Set Cover instances is bounded by(

ñ

9ñ/∆

)
(9ñ/∆)! = ñ · (ñ− 1) · · · (ñ− 9ñ/∆ + 1) ≤ ñ9ñ/∆

as required.
We now prove that at least one of the Set Cover instances has solution of size at most |S|

(in fact exactly |S| as no smaller solutions available) if and only if the Directed nTree instance
is a yes instance. For the first direction, assume that the Directed nTree instance is a yes
instance. Considering the isomorphic copy of T in G, its |S| subtrees as Algorithm 1 outputs
on T will be sets in the Set Cover instance the reduction outputs, and so it has a solution of
size at most |S|. For the second direction, if a Set Cover instance has a solution I of size at
most |S| and since the number of labeled roots is |S|, it must be that for each subtree s ∈ S
its labeled root is in exactly one set in I, and so |I| = |S|. Since I is a legal solution and S
covers all the nodes, no node in V (G) \RG appears twice in I. The conclusion is that these
sets together form the required tree, concluding the proof of Lemma 2.1. J

We note that in the case of Theorem 1.4 for Directed Hamiltonicity, we do not have to
use Algorithm 1, but simply guess n/∆ representative nodes in G and their ordering in
the potential cycle, and then enumerate all paths of size ∆ to represent paths between
consecutive representatives. Hence we obtain a ∆-Set Cover instance with the additional
constraints of Theorem 1.4.

3 Reduction from Set Cover to kTree

In this section we prove Theorem 1.5. In order to make the proof simpler, we will have
an assumption regarding the Set Cover instance, as follows. For a constant g > 0 to be
determined later, we can assume that all the sets in the Set Cover instance are of size at
most n/g2, as otherwise such instance can already be solved significantly faster than O∗(2n),
proving the theorem in a degenerate manner. We formalize it as follows.

I Assumption 3.1. All the sets in the Set Cover instance are of size at most n/g2.

To justify this assumption, notice that one can remove all sets of size more than n/g2 from
the Set Cover instance. Indeed, if some optimal solution for the Set Cover instance contains
a set of size at least n/g2, such optimal solution can be found by simply guessing one set of
at least this size (using exhaustive search over at most m choices) and then applying the
known dynamic programming algorithm on the still uncovered elements (at most n− n/g2

of them), and return the optimal solution in total time O∗(2(1−1/g2)n). We continue to the
following lemma, which is the heart of the proof.

I Lemma 3.2. For every fixed ε > 0, Set Cover on a ground set N = [n] and a collection
M of m sets that satisfies assumption 3.1, can be reduced to 2O(

√
n) instances of kTree with

k = (1 + ε)n+O(1).

We will use this lemma to prove Theorem 1.5, the proof of Lemma 3.2 will be given after.

I Theorem 1.5 (restated). If for some fixed ε > 0, kTree can be solved in time O∗((2− ε)k),
then for some δ(ε) > 0, Set Cover on n elements and m sets can be solved in time O∗((2−δ)n).

STACS 2019

45:10 The Set Cover Conjecture and Subgraph Isomorphism with a tree pattern

Proof of Theorem 1.5. Assume that for some ε′ ∈ (0, 1), kTree can be solved in time
O∗((2− ε′)k) ≤ O∗(2(1−ε′/2)k). We reduce the Set Cover instance by applying Lemma 3.2
with ε = ε′/4, and then solve each of the 2c1

√
n instances of kTree in the assumed time

of O∗(2(1−ε′/2)((1+ε)n+c2)), where c1, c2 > 0 are the constants implicit in the terms 2O(
√
n)

and O(1) in the lemma, respectively. The total running time is O∗(2(1−ε′/2)(1+ε)n+c1
√
n) =

O∗(2(1−ε′/4−ε′2/8)n+c1
√
n) ≤ O∗(2(1−ε′/4)n) ≤ O∗((2− ε′/4)n), which concludes the proof for

δ(ε′) = ε′/4. J

To outline the proof of Lemma 3.2, we will need the following definition. For an integer
a > 0, let p(a) be the set of all unordered partitions of a, where a partition of a is a way of
writing a as a sum of positive integers, and unordered means that the order of the summands
is insignificant. The asymptotic behaviour of |p(a)| (as a tends to infinity) is known [16] to
be

eπ
√

2a/3/(4a
√

3) = 2O(
√
a).

It is possible to enumerate all the partitions of a with constant delay between two consecutive
partitions, exclusive of the output [31, Chapter 9].

Now the intuition for our reduction of Set Cover to kTree is to first guess a partition of
n (the number of elements) that represents how an optimal solution covers the elements,
as follows. Associate each element arbitrarily with one of the sets that contain it (so in
effect, we assume each element is covered only once) and count how many elements are
covered by each set in the optimal solution. This guessing is done by exhaustive search over
p(n) ≤ 2O(

√
n) partitions of n. Then, we represent the Set Cover instance using a Subgraph

Isomorphism instance, whose pattern tree T succinctly reflects the guessed partition of n.
The idea is that the tree is isomorphic to a subgraph of the Set Cover graph if and only if
the Set Cover instance has a solution that agrees with our guess.

I Lemma 3.2 (restated). For every fixed ε > 0, Set Cover on a ground set N = [n] and a
collection M of m sets that satisfies assumptions 3.1, can be reduced to 2O(

√
n) instances of

kTree with k = (1 + ε)n+O(1).

Proof of Lemma 3.2. Given a Set Cover instance on n elements N = {ni : i ∈ [n]} and
m sets M = {Si}i∈[m] and an ε > 0, construct 2O(

√
n) instances of kTree as follows. For

a constant g(ε) to be determined later, the host graph Gg = (Vg, Eg) is the same for all
the instances, and is built on the bipartite graph representation of the Set Cover instance,
with some additions. This is done in a way that a constructed tree will fit in Gg if and
only if the Set Cover instance has a solution that corresponds to the structure of the tree,
as follows (see Figure 2). The set of nodes is Vg = N ∪M ∪Mg ∪R ∪ {rg, r1, r2, r}, where
Mg = {X ⊆M : |X| = g} and R = {vij : i ∈ [4], j ∈ [n/(g/2)]}. Intuitively, the role of Mg is
to keep the size of the trees small by representing multiple vertices in M (multiple sets in Set
Cover) at once as the "powering" technique for Set Cover done in [12]3, and the role of R and
{rg, r1, r2, r} is to enforce that the trees the reduction constructs will fit only in certain ways.

The set of edges is constructed as follows. Edges between N and M are the usual
bipartite graph representation of Set Cover (i.e., connect vertices nj ∈ N and Si ∈ M

whenever nj ∈ Si). Also, connect vertex X ∈Mg to vertex nj ∈ N if at least one of the sets

3 We can slightly simplify this step in the construction by using the equivalence from [12] between solving
Set Cover in time O∗(2(1−ε)n) and in time O∗(2(1−ε′)(n+t)) where t is the solution size. However, we
opted to reduce directly from Set Cover for compatibility with our parameters and for sake of generality.

R. Krauthgamer and O. Trabelsi 45:11

in X contains nj . Additionally, add edges between rg and every vertex in Mg, and v4
j ∈ R for

j ∈ [n/(g/2)], between ri and vij for every i ∈ {1, 2} and j ∈ [n/(g/2)], and finally between r
and every vertex v ∈ {rg, r1, r2}, Si ∈M , and v3

j ∈ R for j ∈ [n/(g/2)].

The Set Cover
Instance

N

M

Mg

R

r

r1

r2

N ′

Mα

Mα
g

R′

r′1

r′2

The Host Graph Gg The Pattern Tree Tαg

r′

rg r′g

Figure 2 An illustration of part of the reduction. The Set Cover instance is depicted in blue, and
sets of vertices are indicated by dashed curves.

Next, construct 2O(
√
n) trees such that identifying those that are isomorphic to a subgraph

of Gg will determine the optimum of the Set Cover instance.
For every partition α = (p1, p2, ..., pl) ∈ p(n) (with possible repetitions) where p(n) is

as defined above, construct a tree Tαg = (V αg , Eαg). This tree has the same set of edges and
vertices as Gg, except for the vertices in M ∪Mg and the edges incident to them, which are
replaced by a set of new verticesMα∪Mα

g , and these new vertices are connected to the rest in a
way that the resulting graph is a tree. In more detail, V αg = N ′∪Mα∪Mα

g ∪R′∪{r′g, r′1, r′2, r′}
where N ′, R′, r′g, r′1, r′2, r′ are tagged copies of the originals, and Mα,Mα

g are initialized to
be ∅.

We define αg to be a partition of n which is also a shrinked representation of α by
partitioning α into sums of g numbers for a total of bl/gc such sums, and a remaining of less
than g numbers. Formally,

αg = (
g∑
i=1

pi,

2g∑
i=g+1

pi, ...,

gbl/gc∑
i=(g−1)·bl/gc+1

pi, pgbl/gc+1, ..., pl)

Note that all the numbers in αg are a sum of g numbers in α, except (maybe) for the
last g′ := l − gbl/gc < g numbers in αg, a (multi)set which we denote s(αg). For every
i ∈ αg (with possible repetitions), add a star on i+ 1 vertices to the constructed tree Tαg .
If i ∈ αg \ s(αg), add the center vertex to Mα

g , connect it to r′g, and add the rest i vertices
to N ′. Else, if i ∈ s(αg), add the center vertex to Mα, connect it to r′, and again add
the rest i vertices to N ′. Return the minimum cardinality of α for which (Gg, Tαg) is a
yes-instance. To see that this construction is small enough, note that the size of Gg is at
most 4 + 4 · n/(g/2) +mg +m+ n which is polynomial in m, and the size of the tree Tαg is
at most

4 + 4 · n/(g/2) + n/g + g + n = n · (1 + 9/g) +O(1) = n · (1 + ε) +O(1)

where the last equality holds for g = 9/ε, and so the size constraint follows.

STACS 2019

45:12 The Set Cover Conjecture and Subgraph Isomorphism with a tree pattern

We now prove that at least one of the trees Tαg returns yes and satisfies |α| ≤ d, if and
only if the Set Cover instance has a solution of size at most d. For the first direction, assume
that the Set Cover instance has a solution I with |I| ≤ d. Consider a partition αI ∈ p(n) of n
that corresponds to I in the following way. Associate every element with exactly one of the
sets in I that contains it, and then consider the list of sizes of the sets in I according to this
association (eliminating zeroes). Clearly, (Gg, TαIg) is a yes-instance and so the reduction
will return a number that is at most |I|.

For the second direction, assume that every solution to the Set Cover instance is of size at
least d+ 1. We need to prove that for every tree Tαg with |α| ≤ d, (Gg, Tαg) is a no-instance.
Assume for the contrary that there exists such α for which (Gg, Tαg) is a yes-instance with
the isomorphism function f from Tαg to Gg. We will show that the only way f is feasible is
if f(r′) = r, f(Mα) ⊆M , f(Mα

g) ⊆Mg, and also f(N ′) = N , which together allows us to
extract a corresponding solution for the Set Cover instance, leading to a contradiction. We
start with the vertex r′ ∈ Tαg . Since its degree is at least n/(g/2) + 3 and by Assumption 3.1
and the construction of Gg, it holds that f(r′) /∈ {r1, r2} ∪R ∪M ∪Mg. Moreover, if it was
the case that f(r′) ∈ {rg} ∪ N then {f(r′1), f(r′2)} ∩ (M ∪Mg) 6= ∅, however, the degree
of r′1 and r′2 in Tαg is n/(g/2), and the degree of the vertices in M ∪Mg in Gg is at most
g · n/g2 = n/g, so it must be that f(r) = r. Our next claim is that f(r′g) = rg. Observe
that Assumption 3.1 implies that every solution for the Set Cover instance is of size at
least g2 and so Mα

g 6= ∅, which means r′g in the tree has vertices in distance 2 from it and
away from r′, a structural constraint that cannot be satisfied by any vertex in {r1, r2} ∪R.
Furthermore, the degree of r′g is at least n/(g/2) and so again by Assumption 3.1 it is also
impossible that f(r′g) ∈ Mα, and hence it must be that f(r′g) = rg. Finally, by the same
Assumption and the degrees of r1 and r2, f(r′1) and f(r′2) must be in {r1, r2}. Altogether, it
must be that f(Mα

g) ⊆Mg, f(Mα) ⊆M and that f(N ′) = N , and therefore it is possible to
extract a feasible solution to the Set Cover instance that has at most d sets in it, which is a
contradiction, concluding the proof of Lemma 3.2.

3.1 Reduction from p-Partial Cover
In this subsection we show that Theorem 1.5 is correct also assuming a weaker conjecture,
that p-Partial Cover cannot be solved significantly faster than O∗(2p). Notice that p-Partial
Cover can be solved in time O∗(2p) by a simple application of the method in [23], as pointed
out to us by Cornelius Brand and anonymous referees. We now reduce from p-Partial Cover
to Directed kTree by following Lemma 3.2 with the following adjustments.

Instead of enumerating over all the partitions of n, do it only for p and hence the number
of partitions is 2O(√p) with each partition α inducing a tree Tαg in a similar way to Lemma 3.2,
of size at most 2p/g + p. Note that Assumption 3.1 adjusted to the p-Partial Cover case hold
also here, since it is possible to use the O∗(2p)-time algorithm for p-Partial Cover mentioned
above after removing large sets of size ≥ p/g2. From here onwards, the proof of correctness
is similar to Lemma 3.2, and thus we omit it. Regarding running time, assume that for some
ε′ ∈ (0, 1), kTree can be solved in time O∗((2− ε′)k) ≤ O∗(2(1−ε′/2)k). Setting g = 8/ε′ for
ε′ = 64(1− log2(2− ε)) (without loss of generality, assume that ε′ is small enough), we get a
total running time of

O(mc1g2p−p/g2 + 2(p+2p/g)(1−ε′/2)+c2
√
p ·mc3g)

= O(mc18/ε′2p−ε
′p/64 + 2p+ε

′/4·p−ε′/2·p−ε′2/8·p+c1
√
p ·mc34/ε′)

≤ O(2(1−ε′/64)p ·mc14/ε′)

≤ O((2− ε)p ·mc14/ε),

R. Krauthgamer and O. Trabelsi 45:13

where c1 is the constant derived from the method of [23], c2 is the constant implicit in
the term 2O(√p), and c3 is the constant in the exponent of m implicit in the term O∗(2(1−)p),
as required.

I Lemma 3.3. For every fixed ε > 0, p-Partial Cover on a ground set N = [n] and a collection
M of m sets can be reduced to 2O(√p) instances of kTree with k = (1 + ε)p+O(1).

We thus proved the following theorem.

I Theorem 3.4. If for some fixed ε > 0, kTree can be solved in time O∗((2− ε)k), then for
some δ(ε) > 0, p-Partial Cover on n elements and m sets can be solved in time O∗((2− δ)p).

4 Moderate Improvements to ∆-Set Cover Imply New Algorithms
for Directed nTree and Directed Hamiltonicity

In this section we show how moderate improvements for variants of Set Cover imply new
algorithms for Directed nTree. Given any algorithm for ∆-Set Cover with runtime f(n,m,∆),
by Lemma 2.1 Directed nTree admits an algorithm with running time O(ñ∆+ññ/∆f(n,m,∆)).
We now demonstrate how this algorithm behaves with different regimes of ∆.

If there exists ε > 0 such that for every ∆ = poly(logn), f(n,m,∆) = O∗(2(1−1/∆1−ε)n)
then by considering ∆ = log(1+ε′)/ε n = poly(logn) for ε′ > 0, Directed nTree has an algorithm
with runtime

O(2log(1+ε′)/ε+1 ñ) +O∗(2ñ/ log(1+ε′)/ε−1 ñ · 2(1−1/(log(1+ε′)/ε ñ)1−ε)ñ)

= O∗(2(1−1/(log(1+ε′)/ε−2 ñ))ñ)

Considering larger regimes, if for some fixed ε > 0, δ ∈ (0, 1/2), and ∆ = O(nδ),
f(n,m,∆) = O∗(2(1− (1+ε) log ∆

δ∆)n) then Directed nTree can be solved in time

2ñ
δ log ñ + 2ñ

1−δ log ñ ·O∗(2(1− (1+ε) log ∆
δ∆)ñ) = O∗(2(1−ε/ñδ)ñ) = 2ñ−Θ(ñ1−δ)

Note that to break the fastest known 2ñ−Θ(
√
ñ/ log ñ) algorithm for Directed Hamiltonicity

by [7], it is enough to have either f(n,m,∆) = O∗(2(1− (2+ε) log ∆
∆)n) for ∆ = n1/2−δ′ with

every fixed δ′ > 0, or f(n,m,∆) = O(m · 2(1− (4+ε) log ∆
∆)n) for ∆ =

√
n, taking into account

that most algorithms for variants of Set Cover that have the factor m in their runtime, do
not have it with higher power than one. J

References
1 Amir Abboud, Karl Bringmann, Danny Hermelin, and Dvir Shabtay. SETH-Based Lower

Bounds for Subset Sum and Bicriteria Path. In 30th Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA ’19, pages 41–57, 2019. doi:10.1137/1.9781611975482.3.

2 Amir Abboud, Virginia Vassilevska-Williams, and Huacheng Yu. Matching Triangles and
Basing Hardness on an Extremely Popular Conjecture. In Proceedings of the Forty-seventh
Annual ACM Symposium on Theory of Computing, STOC ’15, pages 41–50. ACM, 2015.
doi:10.1145/2746539.2746594.

3 Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. J. ACM, 42(4):844–856, July 1995.
doi:10.1145/210332.210337.

4 Richard Bellman. Combinatorial processes and dynamic programming. In Combinatorial analy-
sis, Proceedings of Symposia in Applied Mathematics, pages 217–249. American Mathematical
Society, 1960. doi:10.1090/psapm/010.

STACS 2019

http://dx.doi.org/10.1137/1.9781611975482.3
http://dx.doi.org/10.1145/2746539.2746594
http://dx.doi.org/10.1145/210332.210337
http://dx.doi.org/10.1090/psapm/010

45:14 The Set Cover Conjecture and Subgraph Isomorphism with a tree pattern

5 Richard Bellman. Dynamic Programming Treatment of the Travelling Salesman Problem. J.
ACM, 9(1):61–63, 1962. doi:10.1145/321105.321111.

6 Andreas Bjorklund. Determinant sums for undirected hamiltonicity. SIAM Journal on
Computing, 43(1):280–299, 2014. doi:10.1137/110839229.

7 Andreas Björklund. Below All Subsets for Some Permutational Counting Problems . In 15th
Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2016), volume 53
of Leibniz International Proceedings in Informatics (LIPIcs), pages 17:1–17:11, 2016. doi:
10.4230/LIPIcs.SWAT.2016.17.

8 Andreas Björklund, Dell Holger, and Thore Husfeldt. The Parity of Set Systems under
Random Restrictions with Applications to Exponential Time Problems. In 42nd International
Colloquium on Automata, Languages and Programming (ICALP 2015), volume 9134, pages
231–242. Springer, 2015. doi:10.1007/978-3-662-47672-7_19.

9 Andreas Björklund, Thore Husfeldt, and Mikko Koivisto. Set Partitioning via Inclusion-
Exclusion. SIAM J. Comput., 39(2):546–563, July 2009. doi:10.1137/070683933.

10 Andreas Björklund, Thore Husfeldt, Kaski Ptteri, and Mikko Koivisto. Narrow Sieves for
Parameterized Paths and Packings. Journal of Computer and System Sciences, 87:119–139,
2017. doi:10.1016/j.jcss.2017.03.003.

11 Andreas Björklund, Petteri Kaski, and Lukasz Kowalik. Constrained Multilinear Detec-
tion and Generalized Graph Motifs. Algorithmica, 74(2):947–967, 2016. doi:10.1007/
s00453-015-9981-1.

12 Marek Cygan, Holger Dell, Daniel Lokshtanov, Dániel Marx, Jesper Nederlof, Yoshio Okamoto,
Ramamohan Paturi, Saket Saurabh, and Magnus Wahlström. On Problems As Hard As
CNF-SAT. ACM Transactions on Algorithms, 12(3):41:1–41:24, 2016. doi:10.1145/2925416.

13 Marek Cygan, Fedor V. Fomin, Alexander Golovnev, Alexander S. Kulikov, Ivan Mihajlin,
Jakub Pachocki, and Arkadiusz Socała. Tight Bounds for Graph Homomorphism and Subgraph
Isomorphism. In 27th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’16,
pages 1643–1649. SIAM, 2016. doi:10.1137/1.9781611974331.ch112.

14 Anders Dessmark, Andrzej Lingas, and Andrzej Proskurowski. Faster Algorithms for Subgraph
Isomorphism of k-Connected Partial k-Trees. Algorithmica, 27(3):337–347, January 2000.
doi:10.1007/s004530010023.

15 Fedor V. Fomin, Dieter Kratsch, and Gerhard J. Woeginger. Exact (Exponential) Algorithms
for the Dominating Set Problem. In 30th International Conference on Graph-Theoretic
Concepts in Computer Science, WG’04, pages 245–256. Springer-Verlag, 2004. doi:10.1007/
978-3-540-30559-0_21.

16 Godfrey H. Hardy and Srinivasa Ramanujan. Asymptotic Formulaæ in Combinatory Analysis.
Proceedings of the London Mathematical Society, s2-17(1):75–115, 1918. doi:10.1112/plms/
s2-17.1.75.

17 Michael Held and Richard M. Karp. A Dynamic Programming Approach to Sequencing
Problems. In Proceedings of 16th ACM National Meeting, ACM ’61, pages 71.201–71.204.
ACM, 1961. doi:10.1145/800029.808532.

18 Russell Impagliazzo and Ramamohan Paturi. On the Complexity of k-SAT. Journal of
Computer and System Sciences, 62(2):367–375, March 2001. doi:10.1006/jcss.2000.1727.

19 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which Problems Have Strongly
Exponential Complexity? Journal of Computer and System Sciences, 63(4):512–530, 2001.
doi:10.1006/jcss.2001.1774.

20 Yoichi Iwata and Yuichi Yoshida. On the Equivalence among Problems of Bounded Width. In
23rd Annual European Symposium on Algorithms (ESA 2015), pages 754–765. Springer, 2015.
doi:10.1007/978-3-662-48350-3_63.

21 Richard M. Karp. Reducibility among Combinatorial Problems, pages 85–103. The IBM
Research Symposia Series. Springer US, 1972. doi:10.1007/978-1-4684-2001-2_9.

http://dx.doi.org/10.1145/321105.321111
http://dx.doi.org/10.1137/110839229
http://dx.doi.org/10.4230/LIPIcs.SWAT.2016.17
http://dx.doi.org/10.4230/LIPIcs.SWAT.2016.17
http://dx.doi.org/10.1007/978-3-662-47672-7_19
http://dx.doi.org/10.1137/070683933
http://dx.doi.org/10.1016/j.jcss.2017.03.003
http://dx.doi.org/10.1007/s00453-015-9981-1
http://dx.doi.org/10.1007/s00453-015-9981-1
http://dx.doi.org/10.1145/2925416
http://dx.doi.org/10.1137/1.9781611974331.ch112
http://dx.doi.org/10.1007/s004530010023
http://dx.doi.org/10.1007/978-3-540-30559-0_21
http://dx.doi.org/10.1007/978-3-540-30559-0_21
http://dx.doi.org/10.1112/plms/s2-17.1.75
http://dx.doi.org/10.1112/plms/s2-17.1.75
http://dx.doi.org/10.1145/800029.808532
http://dx.doi.org/10.1006/jcss.2000.1727
http://dx.doi.org/10.1006/jcss.2001.1774
http://dx.doi.org/10.1007/978-3-662-48350-3_63
http://dx.doi.org/10.1007/978-1-4684-2001-2_9

R. Krauthgamer and O. Trabelsi 45:15

22 Mikko Koivisto. Partitioning into Sets of Bounded Cardinality. In Parameterized and Exact
Computation (IWPEC 2009), volume 5917 of Lecture Notes in Computer Science, pages
258–263. Springer-Verlag, 2009. doi:10.1007/978-3-642-11269-0_21.

23 Ioannis Koutis and Ryan Williams. LIMITS and applications of group algebras for parameter-
ized problems. ACM Trans. Algorithms, 12(3):31:1–31:18, May 2016. doi:10.1145/2885499.

24 Lukasz Kowalik and Juho Lauri. On Finding Rainbow and Colorful Paths. Theoretical
Computer Science, 628(C):110–114, 2016. doi:10.1016/j.tcs.2016.03.017.

25 R. Krithika, Abhishek Sahu, and Prafullkumar Tale. Dynamic Parameterized Problems. In 11th
International Symposium on Parameterized and Exact Computation (IPEC 2016), volume 63 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 19:1–19:14. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, 2017. doi:10.4230/LIPIcs.IPEC.2016.19.

26 Andrzej Lingas. Subgraph Isomorphism for Biconnected Outerplanar Graphs in Cubic Time.
Theoretical Computer Science, 63(3):295–302, 1989. doi:10.1016/0304-3975(89)90011-X.

27 László Lovász and Michael D Plummer. Matching theory, volume 367. American Mathematical
Society, 2009.

28 Dániel Marx and Michal Pilipczuk. Everything you always wanted to know about the parame-
terized complexity of Subgraph Isomorphism (but were afraid to ask). In 31st International
Symposium on Theoretical Aspects of Computer Science (STACS 2014), volume 25 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 542–553. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, 2014. doi:10.4230/LIPIcs.STACS.2014.542.

29 Jiří Matoušek and Robin Thomas. On the complexity of finding iso- and other morphisms
for partial k-trees. Discrete Mathematics, 108(1):343–364, 1992. doi:10.1016/0012-365X(92)
90687-B.

30 Jesper Nederlof. Finding Large Set Covers Faster via the Representation Method. In 24th
Annual European Symposium on Algorithms (ESA 2016), volume 57 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 69:1–69:15. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik, 2016. doi:10.4230/LIPIcs.ESA.2016.69.

31 Albert Nijenhuis and Herbert S. Will. Combinatorial Algorithms: For Computers and Hard
Calculators. Academic Press, 2nd edition, 1978.

32 Ohad Trabelsi. Nearly Optimal Time Bounds for kPath in Hypergraphs. CoRR, 2018. URL:
http://arxiv.org/abs/1803.04940.

33 Gerhard J. Woeginger. Exact Algorithms for NP-hard Problems: A Survey. In Michael Jünger,
Gerhard Reinelt, and Giovanni Rinaldi, editors, Combinatorial Optimization - Eureka, You
Shrink!, pages 185–207. Springer-Verlag, 2003. doi:10.1007/3-540-36478-1.

STACS 2019

http://dx.doi.org/10.1007/978-3-642-11269-0_21
http://dx.doi.org/10.1145/2885499
http://dx.doi.org/10.1016/j.tcs.2016.03.017
http://dx.doi.org/10.4230/LIPIcs.IPEC.2016.19
http://dx.doi.org/10.1016/0304-3975(89)90011-X
http://dx.doi.org/10.4230/LIPIcs.STACS.2014.542
http://dx.doi.org/10.1016/0012-365X(92)90687-B
http://dx.doi.org/10.1016/0012-365X(92)90687-B
http://dx.doi.org/10.4230/LIPIcs.ESA.2016.69
http://arxiv.org/abs/1803.04940
http://dx.doi.org/10.1007/3-540-36478-1

Algorithmic Properties of Sparse Digraphs
Stephan Kreutzer
Technische Universität Berlin, Germany
stephan.kreutzer@tu-berlin.de

Irene Muzi
University of Warsaw, Poland
imuzi@mimuw.edu.pl

Patrice Ossona de Mendez
Centre d’Analyse et de Mathématiques Sociales (CNRS, UMR 8557), Paris, France,
Computer Science Institute of Charles University (IUUK), Prague, Czech Republic
pom@ehess.fr

Roman Rabinovich
Technische Universität Berlin, Germany
roman.rabinovich@tu-berlin.de

Sebastian Siebertz
Humboldt-Universität zu Berlin, Germany
sebastian.siebertz@hu-berlin.de

Abstract

The notions of bounded expansion [56] and nowhere denseness [58], introduced by Nešetřil and
Ossona de Mendez as structural measures for undirected graphs, have been applied very successfully
in algorithmic graph theory. We study the corresponding notions of directed bounded expansion
and nowhere crownfulness on directed graphs, introduced by Kreutzer and Tazari [48]. The classes
of directed graphs having those properties are very general classes of sparse directed graphs, as
they include, on one hand, all classes of directed graphs whose underlying undirected class has
bounded expansion, such as planar, bounded-genus, and H-minor-free graphs, and on the other
hand, they also contain classes whose underlying undirected class is not even nowhere dense. We
show that many of the algorithmic tools that were developed for undirected bounded expansion
classes can, with some care, also be applied in their directed counterparts, and thereby we highlight
a rich algorithmic structure theory of directed bounded expansion and nowhere crownful classes.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms; Theory of
computation → Fixed parameter tractability

Keywords and phrases Directed graphs, graph algorithms, parameterized complexity, approximation

Digital Object Identifier 10.4230/LIPIcs.STACS.2019.46

Related Version A full version of the paper is available at [44], https://arxiv.org/abs/1707.01701.

Funding Stephan Kreutzer : Supported by ERC consolidator grant DISTRUCT, No. 648527.
Irene Muzi: Supported by ERC starting grant CUTACOMBS, agreement No. 714704.
Patrice Ossona de Mendez: Supported by grant ERCCZ LL-1201 and by the European Asso-
ciated Laboratory “Structures in Combinatorics” (LEA STRUCO), and partially supported
by ANR project Stint under reference ANR-13-BS02-0007.
Sebastian Siebertz: Supported by the National Science Centre of Poland via POLONEZ grant
agreement UMO-2015/19/P/ST6/03998, which has received funding from the European
Union’s Horizon 2020 research and innovation programme (Marie Skłodowska-Curie grant
agreement No. 665778).

© Stephan Kreutzer, Irene Muzi, Patrice Ossona de Mendez, Roman Rabinovich,
and Sebastian Siebertz;
licensed under Creative Commons License CC-BY

36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019).
Editors: Rolf Niedermeier and Christophe Paul; Article No. 46; pp. 46:1–46:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:stephan.kreutzer@tu-berlin.de
mailto:imuzi@mimuw.edu.pl
mailto:pom@ehess.fr
mailto:roman.rabinovich@tu-berlin.de
mailto:sebastian.siebertz@hu-berlin.de
https://doi.org/10.4230/LIPIcs.STACS.2019.46
https://arxiv.org/abs/1707.01701
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

46:2 Algorithmic Properties of Sparse Digraphs

1 Introduction

Structural graph theory has made a deep impact on the design of graph algorithms for hard
problems. It provides a wealth of different tools for dealing with the intrinsic complexity of NP-
hard problems on graphs and these methods have been applied very successfully in algorithmic
graph theory, in approximation theory, optimisation and the design of exact and parameterised
algorithms for problems on undirected graphs, see e.g. [11, 14, 16, 15, 17, 18, 28, 29, 66].

Concepts such as tree width or excluded (topological) minors as well as density based graph
parameters such as bounded expansion or nowhere denseness capture important properties of
graphs and make them applicable for algorithmic applications.

The notions of bounded expansion and nowhere denseness were introduced in [56] and [58]
to capture structural sparseness of undirected graphs. Classes of bounded expansion are very
general and properly generalise, for instance, planar graphs or more generally classes with
excluded (topological) minors. But the concept goes far beyond excluded minor classes.

Starting with [56, 58], many algorithmic results for problems on classes of graphs excluding
a fixed minor have been extended to the more general case of bounded expansion and nowhere
dense classes of graphs, see e.g. [9, 13, 20, 21, 23, 24, 25, 33, 38, 43, 45, 49, 55, 61, 69, 71].
Furthermore, Demaine et al. [19] and Nadara et al. [53] analysed a range of real-world
networks and showed that many of them indeed fall within the framework of bounded
expansion. This shows that this concept captures many types of real world instances.

An important aspect of classes of bounded expansion and classes which are nowhere dense
is that they can equivalently be defined in many different and seemingly unrelated ways:
by the density of bounded-depth minors, by low tree-depth colourings [56], by generalised
colouring numbers [73], by wideness properties such as uniformly quasi-wideness [57], by
sparse neighbourhood covers [37, 38], vc-density [62], and many more. Each of these different
aspects of the theory comes with its own set of algorithmic tools and many of the more
advanced algorithmic results on bounded expansion classes mentioned above crucially rely
on a combination of several of these techniques.

Developing a structural theory for directed graphs that yields classes of digraphs with
a similarly broad algorithmic impact has so far not seen a comparable success as for the
undirected case. The general goal is to identify structural parameters which define interesting
and general classes of digraphs for which there is a comparably rich set of algorithmic tools.
However, essentially all approaches, e.g. in [6, 7, 34, 40, 59, 67], of generalising even the
well-understood and fairly basic concept of tree width to digraphs have failed to produce
digraph parameters that come even near the wide spectrum of algorithmic applications that
tree width has found. This even has led to claims that this programme cannot be successful
and that such measures for digraphs cannot exist [35].

In this paper we exhibit examples of digraph parameters which we believe challenge this
negative outlook on the potential of digraph parameters. Our main conceptual contribution
is to give a positive example of a digraph parameter that satisfies the conditions of the
programme outlined above: we identify a very general type of digraph classes which have a
similar set of algorithmic tools available as their undirected counterparts. We believe that
these classes give a positive answer to the question whether interesting graph parameters can
successfully be generalised to the directed setting and we support this claim by algorithmic
applications described below.

The classes of digraphs we study are classes of directed bounded expansion and nowhere
crownful classes of digraphs which are modeled after the concepts of bounded expansion
and nowhere denseness for undirected graphs, respectively. They were originally defined

S. Kreutzer, I. Muzi, P. Ossona de Mendez, R. Rabinovich, and S. Siebertz 46:3

in [48], where basic properties of these classes were developed. In particular, it was shown
that nowhere crownful classes can equivalently be defined in terms of directed uniformly
quasi-wideness, analogous to its undirected counterpart, which easily implies fixed-parameter
tractability of the directed dominating set problem on these classes. See Section 2 for details.
The first improvement of these initial results appeared in [47], where structural properties of
classes of digraphs of bounded expansion were studied. The main contribution of [47] was to
establish their relation to a certain form of generalised colouring numbers, a concept which
in the undirected setting has had huge algorithmic impact on the development of algorithms
for nowhere dense and bounded expansion classes.

Our contributions.

These initial results are the starting point for our investigation in this paper. In addition
to directed bounded expansion and nowhere crownful classes, we also define a new type of
digraph classes which we call bounded crownless expansion.

Our main contributions are both structural and algorithmic. We show that classes
of digraphs of directed bounded expansion, and especially classes of bounded crownless
expansion, have structural properties very similar to their undirected counterpart. As a
consequence, we are able to show that many of the algorithmic tools that were developed
for undirected bounded expansion have their directed counterpart, resulting in a rich and
diverse set of algorithmic techniques that can be applied in the design of algorithms for
these classes. To the best of our knowledge, this is the first time that the generalisation
of one of the widely studied and very general undirected graph parameter to the digraph
setting has indeed led to a digraph concept with a similarly broad set of algorithmic tools
as its undirected counterpart. We are therefore optimistic that classes of directed bounded
expansion or crownless expansion will find a broad range of applications. We support this
belief by providing several algorithmic results we describe next.

As a test case for these algorithmic techniques we use the directed variant of the
(Distance-r) Dominating Set problem defined as follows. For a positive integer r,
a distance-r dominating set in a digraph G is set D ⊆ V (G) such that every v ∈ V (G) is
reachable by a directed path of length at most r from a vertex d ∈ D, i.e. N+

r (D) = V (G).
(Distance-r) Dominating Set is a common benchmark problem for the design of

(parameterised or approximation) algorithms on graph classes with structural restrictions.
It is NP-complete in general [42], and (under standard complexity theoretical assumptions)
cannot be approximated better than up to a factor O(logn) [64]. Better results can be
achieved, e.g., on sparse graph classes, see e.g. [3, 4, 10, 12, 21, 22, 36, 39], but these classes
do not contain classes of digraphs of bounded (crownless) expansion.

We study the complexity of the Directed (Distance-r) Dominating Set problem
from the point of view of approximation, exact parameterised algorithms and kernelisation.

Approximation on directed bounded expansion. In [21], Dvořák proves a linear duality
between distance-r dominating sets and r-scattered sets in classes of undirected bounded
expansion. From this he derives an elegant polynomial-time constant-factor approximation
algorithm on these classes of undirected graphs. Unfortunately, as we show in Section 3,
no such duality holds in digraph classes of bounded directed expansion. In Theorem 7, we
therefore use a different approach, inspired by recent results in [22], which is based on a
combination of an LP-based approach and the characterisation of directed bounded expansion
in terms of weak colouring numbers to obtain a constant-factor approximation algorithm for
Directed-r Dominating Set on classes of directed bounded expansion.

STACS 2019

46:4 Algorithmic Properties of Sparse Digraphs

Approximation on bounded crownless expansion. We then study classes of bounded crown-
less expansion. We first re-establish a polynomial duality between distance-r dominating sets
and r-scattered sets on these classes. Towards this aim, we employ methods from stability
theory, a branch of infinite model theory, developed in [50] in the digraph setting. The
application of stability theory in this context is not straightforward. It is known that a class
of (di)graphs which is closed under taking subgraphs is stable, if and only if, its underlying
class of undirected graphs is nowhere dense [1]. However, classes of bounded crownless
expansion in general are not nowhere dense and thus the stability theoretic techniques cannot
be applied as such. Therefore, we have to carefully establish a situation in which stability is
applicable, which then allows us to derive the polynomial duality theorem. As a consequence
of this duality we also obtain a polynomial-time approximation algorithm for distance-r
dominating sets (Corollary 11).

Parameterised complexity. We then study the parameterised complexity of the Distance-
r Dominating Set problem. It is known that the problem is fixed-parameter tractable on
nowhere crownful digraph classes [48] but the parameterised complexity of the problem on
directed bounded expansion classes was still open. We first establish that classes of directed
bounded expansion have bounded directed neighbourhood depth, a notion introduced in [26].
We then show that the methods developed in [26] can also be applied in the directed setting
and establish that the Distance-r Dominating Set problem on classes of directed bounded
expansion is fixed-parameter tractable (Theorem 14).

Kernelisation. Once fixed-parameter tractability is established, we turn our attention to
the kernelisation problem for Distance-r Dominating Set. Recall that a kernelisation
algorithm is a polynomial-time preprocessing algorithm that transforms a given instance into
an equivalent one whose size is bounded by a function of the parameter only, independently
of the overall input size. Fixed-parameter tractability implies the existence of a kernelisation
algorithm, however, its output may be exponential or even larger in the parameter.

Starting with the groundbreaking work of Alber et al. [2], kernelisation for the Domin-
ating Set and Distance-r Dominating Set problem on undirected graphs has received
significant attention in the literature, see e.g. [8, 30, 31, 32]. In particular, Dominating
Set admits polynomial kernels on graphs of bounded degeneracy [60]. The Distance-r
Dominating Set problem admits a linear kernel on classes of bounded expansion [20], and
an almost linear kernel on nowhere dense classes of graphs [45]. It is easy to observe that
the result of [60] extends to digraphs of bounded degeneracy.

We show that the Distance-r Dominating Set problem admits a polynomial kernel
on classes of bounded crownless expansion (Theorem 21). At a high level, our kernelisation
algorithm follows the overall approach of [20] for undirected bounded expansion classes. Using
our result above establishing the duality between distance-r dominating sets and r-scattered
sets on bounded crownless expansion classes, the key property that remains to be established
to apply the techniques from [20] are bounds on their distance-r neighbourhood complexity
(the number of different intersections of r-balls with a given set). To establish these properties,
we study the VC-dimension of set systems corresponding to r-neighbourhoods in digraphs
of bounded directed expansion. In Section 4.2, we show that it is bounded on all classes
of bounded crownless expansion which enables us to capture local separation properties in
classes of bounded expansion. With this in place we can complete our kernelisation algorithm.

Steiner trees. As a further indication that digraphs of bounded expansion constitute a very
useful notion, in Section 5 we consider the parameterised Directed Steiner Tree (Dst)
problem, which is defined as follows. As input we are given a digraph G, a root r ∈ V (G), a

S. Kreutzer, I. Muzi, P. Ossona de Mendez, R. Rabinovich, and S. Siebertz 46:5

set T ⊆ V (G) \ {r} of terminals and an integer k. The problem is to decide if there is a set
S ⊆ V (G) \ ({r} ∪ T) of size at most k such that in G[{r} ∪ S ∪ T] there is a directed path
from r to every terminal T . The Steiner Tree problem is an intensively studied graph
problem in computer science with many important applications. We refer to the textbook of
Prömel and Steger [63] for background information. It is known for this parameterisation
that both the directed and the undirected versions are W[2]-hard on general graphs [52],
and even on graphs of degeneracy two [41]. On the positive side, Jones et al. [41] proved
that the problem is fixed-parameter tractable on graphs excluding a topological minor when
parameterised by the number of non-terminals. Their result is based on a preprocessing rule
which allows to contract strongly connected subsets of terminal vertices to individual vertices.
The authors furthermore show that if the subgraph induced by the terminals is required
to be acyclic, then the problem becomes fixed-parameter tractable on graphs of bounded
degeneracy. In this case, the strongly connected subsets of terminals have diameter 0. This
suggests to consider the problem parameterised by the number k of non-terminals plus the
maximal diameter s of a strongly connected component in the subgraph induced by the
terminals. In fact, bounded expansion classes of digraphs are exactly those classes whose
graphs have bounded degeneracy after bounded radius contractions. Therefore, the Steiner
tree problem is fixed-parameter tractable on classes of bounded directed expansion under
this parameterisation. On the other hand, it is straightforward to modify the example in [41]
to show that the parameterisation k + s cannot be replaced by taking only k as parameter:
there exist classes of directed bounded expansion on which the directed Steiner tree problem
parameterised by solution size k is W[2]-hard. Hence, we show that the results of Jones
et al. [41] exactly identify classes of directed bounded expansion as those on which the
Directed Steiner Tree problem parameterised by the number of non-terminal vertices
and the maximal diameter of strongly connected components in the subgraph induced by
the terminals is fixed parameter tractable (Theorem 23). At the time of writing, Jones et al.
simply did not have the notions of bounded expansion available.

Connected dominating sets. Finally, we show that the restriction to classes of bounded
crownless expansion is not sufficient to find efficient algorithms for the Strongly Connected
Dominating Set problem and Strongly Connected Steiner Subgraph (Scss) problem,
which is defined as the Steiner tree problem but here we need to find a set S ⊆ V (G) of
size at most k such that G[S ∪ T] is strongly connected. We prove that there exist classes
of bounded crownless expansion on which the Strongly Connected Dominating Set
problem and the Strongly Connected Steiner Subgraph problem remain W[1]-hard
(Theorems 30 and 31).

Summary. The results reported above demonstrate that classes of bounded (crownless)
expansion indeed exhibit a very rich set of algorithmic tools, broad enough so that even recent
sophisticated algorithms for undirected bounded expansion can be extended to the digraph
setting. We therefore believe that these concepts are new and interesting digraph parameters
which hold the promise for further algorithmic applications. The hardness results for strongly
connected dominating sets, on the other hand, indicate that for problems which in addition
require control over strong connectivity, one may have to consider further restrictions, e.g. by
combining directed expansion with directed treewidth. We leave this for future research.

2 Directed Minors and Directed Bounded Expansion

We refer to [5] for standard notation and background on digraph theory. Let G be a
digraph, let v ∈ V (G) and let r ≥ 1 be an integer. The r-out-neighbourhood of v, denoted

STACS 2019

46:6 Algorithmic Properties of Sparse Digraphs

δ(v)

in(δ(v))

out(δ(v))

H

G

v

Figure 1 The graph H (left) is a directed minor of the graph G (right).

by N+
G,r(v), or just N+

r (v) if G is understood, is defined as the set of vertices u in G such
that G contains a directed path of length at most r from v to u. We write N+(v) for
N+

1 (v) \ {v}. The r-in-neighbourhood N−G,r(v) and N−(v) are defined analogously. The
out-degree of a vertex v ∈ V (G) is d+(v) := |N+(v)|, its in-degree is d−(v) := |N−(v)|
and its degree is d(v) := |N+(v)| + |N−(v)|. The minimum out-degree of G is defined as
δ+(G) := min{d+(v) : v ∈ V (G)}, minimum in-degree and minimum degree are defined
analogously. A set U ⊆ V (G) is r-scattered if there is no v ∈ V (G) and u1, u2 ∈ U

with u1 6= u2 and u1, u2 ∈ N+
r (v). If the arc relation of a digraph G is symmetric, i.e.

if (u, v) ∈ E(G) implies (v, u) ∈ E(G), then we speak of an undirected graph. If G is a
digraph, we write Ḡ for the underlying undirected graph of G, which has the same vertices
as G and for each arc (u, v) ∈ E(G) we have (u, v) ∈ E(Ḡ) and (v, u) ∈ E(Ḡ). Note that
|E(G)| ≤

∣∣E(Ḡ)
∣∣ ≤ 2 |E(G)|.

Directed minors. We are going to work with directed minors and directed topological
minors. The following definition of directed minors is from [48]. A digraph H has a directed
model in a digraph G if there is a function δ mapping vertices v ∈ V (H) of H to sub-graphs
δ(v) ⊆ G and arcs e ∈ E(H) to arcs δ(e) ∈ E(G) such that

1. if v 6= u, then δ(v) ∩ δ(u) = ∅;
2. if e = (u, v) and δ(e) = (u′, v′) then u′ ∈ δ(u) and v′ ∈ δ(v). For v ∈ V (H) let in(δ(v)) :=

V (δ(v)) ∩
⋃

e=(u,v)∈E(H) V (δ(e)) and out(δ(v)) := V (δ(v)) ∩
⋃

e=(v,w)∈E(H) V (δ(e));
3. we require that for every v ∈ V (H) (a) there is a directed path in δ(v) from every

u ∈ in(δ(v)) to every u′ ∈ out(δ(v)); (b) there is at least one source vertex sv ∈ δ(v) that
reaches (by a directed path in δ(v)) every element of out(δ(v)); (c) there is at least one
sink vertex tv ∈ δ(v) that can be reached (by a directed path in δ(v)) from every element
of in(δ(v)).

A digraph H has a directed model in a digraph G if there is a function δ mapping vertices
v ∈ V (H) of H to sub-graphs δ(v) ⊆ G and arcs e ∈ E(H) to arcs δ(e) ∈ E(G) such that

1. if v 6= u, then δ(v) ∩ δ(u) = ∅;
2. if e = (u, v) and δ(e) = (u′, v′) then u′ ∈ δ(u) and v′ ∈ δ(v).
3. Furthermore, we require that for each v ∈ V (H) there are non-empty sets in(δ(v)) and

out(δ(v)) such that in(δ(v)) contains the head of every arc δ((u, v)) and out(δ(v)) contains
the tail of every arc δ((v, u)) and for every s ∈ in(δ(v)) and t ∈ out(δ(v)) there is a path
in δ(v) from s to t.

S. Kreutzer, I. Muzi, P. Ossona de Mendez, R. Rabinovich, and S. Siebertz 46:7

We write H 4 G if H has a directed model in G and call H a directed minor of G. We call
the sets δ(v) for v ∈ V (H) the branch-sets of the model.

For r ≥ 0, a digraph H is a depth-r minor of a digraph G, denoted as H 4r G, if there
exists a directed model δ of H in G in which for all v ∈ V (H) and all s ∈ in(δ(v)) and
t ∈ out(δ(v)) there is a path from s to t in δ(v) of length ≤ r.

We write H 4 G if H has a directed model in G and call H a directed minor of G. We
call the sets δ(v) for v ∈ V (H) the branch-sets of the model.

For r ≥ 0, a digraph H is a depth-r minor of a digraph G, denoted as H 4r G, if there
exists a directed model of H in G in which the length of all the paths in the branch sets of
the model described in 3a)-c) above are bounded by r. Note that every subgraph of G is a
depth-0 minor of G.

Directed topological minors. A digraph H is a topological minor of a digraph G if there is
an injective function δ mapping vertices v ∈ V (H) to vertices of V (G) and arcs e ∈ E(H) to
directed paths in G such that if e = (u, v) ∈ E(H), then δ(e) is a path from δ(u) to δ(v) in G
which is internally vertex disjoint from all vertices δ(w) (for w ∈ V (H)) and all paths δ(e′)
(for e′ ∈ E(H), e′ 6= e). For r ≥ 0, H is a topological depth-r minor of G, written H 4top

r G,
if it is a topological minor and all paths δ(e) have length at most 2r.

Grads, bounded expansion and crowns. Let G be a digraph and let r ≥ 0. The greatest
reduced average density of rank r (short grad) of G is

∇r(G) := max
{
|E(H)|
|V (H)| : H 4r G

}
and its topological greatest average density of rank r (short top-grad) is

∇̃r(G) := max
{
|E(H)|
|V (H)| : H 4top

r G

}
.

I Definition 1. A class C of digraphs has bounded expansion if there is a function f : N→ N
such that for all r ≥ 0 we have ∇r(G) ≤ f(r) (or equivalently, ∇̃r(G) ≤ f(r)) for all G ∈ C.

A crown of order q is a 1-subdivision of a clique of order q with all arcs oriented away
from the subdivision vertices, that is, the digraph Sq with vertex set {v1, . . . , vq} ∪ {vij : 1 ≤
i < j ≤ q} and arc set {(vij , vi), (vij , vj) : 1 ≤ i < j ≤ q}.

I Definition 2. A class C of digraphs has bounded crownless expansion if there is a function
f : N→ N such that for all r ≥ 0 we have ∇r(G) ≤ f(r) and Sf(r) 64r G for all G ∈ C.

Generalised colouring numbers. We next review the definition of generalised colouring
numbers in the directed setting. Let G be a digraph. By Π(G) we denote the set of all
linear orders of V (G). For r ≥ 0, we say that u is weakly r-reachable from v with respect
to an order L ∈ Π(G) if there is a path P of length at most r, connecting u and v, in
either direction, such that u is minimum among the vertices of P with respect to L. By
WReachr [G,L, v] we denote the set of vertices that are weakly r-reachable from v with
respect to L. We define the weak r-colouring number wcolr (G) of G as

wcolr (G) := min
L∈Π(G)

max
v∈V (G)

∣∣WReachr [G,L, v]
∣∣ .

I Theorem 3 ([47]). A class C of digraphs has bounded expansion if, and only if, there is
f : N→ N such that wcolr (G) ≤ f(r) for all G ∈ C and all r ≥ 1.

STACS 2019

46:8 Algorithmic Properties of Sparse Digraphs

The next lemma shows that the weak r-colouring numbers are very useful to describe
local separation properties in graphs of bounded expansion. The lemma is immediate by the
definition of WReachr .

I Lemma 4. Let G be a digraph and let r ≥ 1. Let P be a path of length at most r with
endpoints u and v in either direction. Let L be an order of V (G) and let z be the minimal
vertex of P with respect to L. Then z ∈WReachr [G,L, u] ∩WReachr [G,L, v].

We will also need an efficient algorithm to compute good weak reachability orders. We
show in the full version that this is possible. All statements marked with (?) are proved in
the full version [44].

I Theorem 5 (?). Let C be a class of digraphs of bounded expansion. There exists a function
f : N → N and a polynomial-time algorithm which for an input graph G ∈ C and r ∈ N
computes an order L with |WReachr [G,L, v]| ≤ f(r) for all v ∈ V (G).

3 Approximation of distance-r dominating sets and duality between
distance-r dominating sets and r-scattered sets

In this section we study the duality between distance-r dominating sets and r-scattered sets
and prove that for every fixed value r ∈ N the Distance-r Dominating Set problem admits
a constant-factor approximation on every class of digraphs of bounded expansion. Given a
digraph G, a set U ⊆ V (G) is r-scattered if there is no v ∈ V (G) and u1, u2 ∈ U with u1 6= u2
and u1, u2 ∈ N+

r (v). We write γr(G) for the size of a minimum distance-r dominating set in
a digraph G and α2r(G) for the size of a maximum r-scattered set in G. Observe that in
undirected graphs an r-scattered set corresponds to a distance-2r independent set, which
explains the index in the notation α2r(G).

Clearly, every vertex v ∈ V (G) can dominate at distance r at most one vertex of an
r-scattered set. Hence we have α2r(G) ≤ γr(G) for every digraph G. In general, γr(G)
is not bounded in terms of α2r(G). Dvořák proved in [21] that on classes of undirected
graphs of bounded expansion γr(G) is linearly bounded by α2r(G), where the linear factor is
the undirected weak colouring number wcol2r(G)2, i.e., on undirected graphs the inequality
γr(G) ≤ wcol2r(G)2 · α2r(G) holds. Furthermore, he derived an elegant linear time constant-
factor approximation algorithm for the Distance-r Dominating Set problem.

As a first negative result we prove that no such duality theorem holds on digraphs of
bounded expansion.

I Theorem 6. There is a class of directed bounded expansion such that for every constant c
we have γ1(G) ≥ c for infinitely many G ∈ C and α2(G) = 2 for all G ∈ C.

Hence, we cannot follow the duality based approach to compute approximations for the
Distance-r Dominating Set problem on classes of directed bounded expansion. Instead,
we follow a very recent approach of Dvořák [22], which combines rounding of a linear program
and a greedy choice based on the generalised colouring numbers. We consider the following
linear programs. For each vertex v ∈ V (G) we have one variable xv.

Distance-r Dominating Set LP

Objective: minimise γ?
r =

∑
v∈V (G) xv

Subject to:
∑

u∈N−r [v] xu ≥ 1 for all v ∈ V (G)
Constraints: xv ≥ 0 for all v ∈ V (G).

S. Kreutzer, I. Muzi, P. Ossona de Mendez, R. Rabinovich, and S. Siebertz 46:9

The dual linear program is the following program for r-Scattered Set.

r-Scattered Set LP

Objective: maximise α?
2r =

∑
v∈V (G) xv

Subject to:
∑

u∈N−r [v] xu ≤ 1 for all v ∈ V (G)
Constraints: xv ≥ 0 for all v ∈ V (G).

Integer solutions for the Distance-r Dominating Set LP correspond to minimum size
distance-r dominating sets in G, and analogously, integer solutions for the r-Scattered
Set LP correspond to maximum size r-scattered sets in G. Observe that since the linear
programs are dual to each other, for every graph G and every positive integer r we have

α2r(G) ≤ α?
2r(G) = γ?

r (G) ≤ γr(G),

while in general γr(G) is not functionally bounded by α2r(G). Also note that α?
2r(G) and

γ?
r (G) can be determined exactly in polynomial time by solving the linear programs that

define them.
Dvořák in [22] proved that γr(G) is bounded linearly by γ?

r (G) on classes of undirected
graphs of bounded expansion. We are able to prove an analogous statement in digraphs of
bounded expansion. Furthermore, the theorem is constructive and yields a polynomial-time
approximation algorithm.

I Theorem 7 (?). Let C be a class of directed bounded expansion and let r ∈ N. Then there
exists a function f : N→ N and a polynomial-time algorithm which on input G ∈ C computes
a distance-r dominating set of G of size at most f(r) · γ?

r (G).

We show next that for classes of bounded crownless expansion the values γr and α2r

are polynomially related. Thus, for such classes we can re-establish the duality between
d-domination and r-scattered sets which we proved to fail in the general directed setting.
Our proof is algorithmic in the sense that we apply the directed analogue of the algorithm of
Dvořák [21] to the digraph G and prove that it finds both a distance-r dominating set and a
polynomially smaller r-scattered set. Without requiring the duality to be polynomial we could
have used standard Ramsey-type arguments. To establish a polynomial relation between the
two parameters, we facilitate tools from stability theory, related to those developed in [50]
and [46]. We first explain the stability theoretic tools used in the sequel.

Let T be a (rooted) binary tree, where each vertex (except the root) is marked as a left or
right successor of its predecessor. We call w a left (right) descendant of v if the first successor
on the unique v-w path in T is a left (right) successor.

Fix an enumeration a1, . . . , a` of a set A⊆ V (G). The r-independence tree of (a1, . . . , a`)
is a binary tree which is constructed recursively as follows. We make a1 the root of the tree.
Assume that a1, . . . , ai have already been inserted into the tree. In order to insert the next
element ai+1, we follow a root-leaf path to find a position for it. Starting from the root a1,
at each point we are at some node aj and we have to decide whether we continue along the
left or to the right branch at aj . If there is an element u such that aj , ai+1 ∈ N+

r (u), we
continue along the right branch at aj , otherwise we follow the left branch. If there is no right
successor (or left successor, respectively), we insert ai+1 as a right (or left) child of aj .

I Lemma 8 (?). Let T be a rooted binary tree and let t ≥ 1 be an integer. Assume that no
root-leaf path in T contains a sub-sequence a1, . . . , at (of pairwise distinct elements) such
that aj is a right descendant of ai for all 1 ≤ i < j ≤ t. If T has height at most h, then T
has at most ht+1 vertices.

STACS 2019

46:10 Algorithmic Properties of Sparse Digraphs

The following lemma is proved using the Finite Canonical Ramsey Theorem.

I Lemma 9 (?). For all integers r, c,K there exists an integer N such that the following
property holds. Let G be a digraph with maximum out-degree at most c and let S, T be subsets
of vertices of G, such that |T | ≥ N and for each t, t′ ∈ T there exist a vertex s = s(t, t′) ∈ S,
a directed path Ps,t of length at most r from s to t and a directed path Ps,t′ of length at
most r from s to t′. Then G contains a crown of order K as a depth-r minor.

We can now prove the polynomial duality theorem.

I Theorem 10. Let G be a digraph with wcolr(G) ≤ c and Sq 64r G. Then there exists
N = N(c, q, r) such that γr(G) ∈ O(αr(G)N).

Proof. The following algorithmic construction corresponds to the algorithm of Dvořák for
undirected graphs [21]. Fix an order L witnessing that wcolr(G) ≤ c. We compute a
distance-r dominating set D as follows. Initialise D := ∅, A := ∅ and M := V (G). While
there is a vertex v ∈M , the set of non-dominated vertices, pick the smallest such vertex v
with respect to L. Add v to A and WReach2r[G,L, v] to D. Mark all newly dominated
vertices, that is, remove N+

r [WReach2r[G,L, v]] from M . If M = ∅, return D. Clearly, D is
a distance-r dominating set of G.

We now prove that we find a large r-scattered subset of A. Construct the undirected
graph H with vertex set A such that two vertices a, b ∈ A are connected in H if there is
u ∈ V (G) such that a, b ∈ N+

r (u). An independent set in H corresponds to an r-scattered
subset of A in G.

We claim that every vertex u ∈ V (G) satisfies |N+
r (u) ∩A| ≤ c. Fix u ∈ V (G). Assume

towards a contradiction that |N+
r (u) ∩ A| > c. For each a ∈ N+

r (u) ∩ A fix a path Pua

of length at most r from u to a. For each path Pua, denote by mua its minimal element
with respect to L. Since wcolr(G) ≤ c, we have |{mua : N+

r (u) ∩ A}| ≤ c. Since we have
more than c paths Pua, there must be two paths Pua1 , Pua2 , a1 6= a2, which have the same
element m as their minimal element. Without loss of generality assume that a1 < a2. Since m
is the smallest vertex on the path Pua1 , the subpath of Pua1 between m and a1 certifies
that m is weakly r-reachable from a1. Hence, when a1 was added to A, the element m was
added to the set D. Now, the subpath of Pua2 between m and a2 shows that a2 is at distance
at most r from m, and hence a2 is marked as dominated at this point. This again proves
a2 6∈ A, a contradiction.

We now build the r-independence tree T of a1, . . . , a` (the enumeration of A with respect
to L). Using Lemma 9, we conclude that there is N ′(c, r, q) such that T does not contain a
path with s = N ′ right descendants. Let N := N ′ + 1.

Hence, by Lemma 8, if we have |A| > (m+N)N , then we find a sequence of length m
with all left descendants. This set is r-scattered, which proves the theorem. J

Clearly, the r-independence tree of a sequence of vertices can be computed in polynomial
time, which gives us the following corollary.

I Corollary 11. Let C be a class of digraphs which has bounded crownless expansion. Then
for every r ∈ N, there is a polynomial-time algorithm which computes a distance-r dominating
set D with |D| ≤ p(γr(G)) for some polynomial p.

4 Parameterised complexity of Distance-r Dominating Set

In this section we study the parameterised complexity of the Distance-r Dominating
Set problem on classes of directed bounded expansion. We follow the approach of [26]
and establish that digraphs of bounded expansion have bounded neighbourhood depth

S. Kreutzer, I. Muzi, P. Ossona de Mendez, R. Rabinovich, and S. Siebertz 46:11

(which corresponds to having bounded semi-ladder index in that paper). We then show
that a straight forward modification of the Semi-ladder-algorithm of [26] for the Distance-r
Dominating Set problem on undirected graphs of bounded neighbourhood depth is an
fpt-algorithm on digraphs of bounded expansion.

Let F be a family of subsets of some universe U . A chain in F is a family H ⊆ F such
that for all X,Y ∈ H, we have either X ⊆ Y or Y ⊆ X. The depth of F is the cardinality
of the longest chain in F . The intersection closure of F is the family of all sets of the
form X1 ∩ X2 ∩ . . . ∩ Xn for some n ∈ N and X1, X2, . . . , Xn ∈ F . For n = 0 we assume
by convention that the intersection of an empty sequence of sets is equal to U , thus the
intersection closure always contains the universe U .

I Definition 12. Let G be a digraph and r ∈ N. The r-neighbourhood depth of G, denoted
depthr(G), is the depth of the intersection closure of the family {N+

r (v) : v ∈ V (G)}. We say
that a graph class C has bounded neighbourhood depth if there is a function f : N→ N such
that for all G ∈ C we have depthr(G) ≤ f(r).

We show that classes of directed bounded expansion have bounded neighbourhood depth.

I Lemma 13 (?). Let C be a class of directed bounded expansion. Then C has bounded
neighbourhood depth.

4.1 Fixed-parameter tractability on bounded expansion classes
In this section we show that a straightforward modification of the so-called Semi-ladder-
algorithm of [26] is an fpt-algorithm on digraphs of bounded neighbourhood depth.

We say that a set of vertices A r-dominates another set of vertices B if B ⊆ N+
r (A).

The Semi-ladder-algorithm maintains two sets: D,S ⊂ V (G). Initially, both are empty, and
at each moment, D will have at most k elements. The algorithm proceeds in rounds, each
consisting of two steps: first the S-step and then the D-step.

S-step: Check whether D r-dominates V (G). If so, terminate and output D as an r-
dominating set of size at most k. Otherwise, pick any vertex u which is not r-dominated
by D and add it to S.

D-step: Check whether some set of at most k vertices r-dominates S. If so, set D to be any
such set and proceed to the next round. Otherwise, terminate and conclude that there is
no r-dominating set of size at most k.

As in the undirected case one can easily implement each D-step using standard dynamic
programming on subsets of S in time O(2|S| · |S| ·n). Since at each round the size of S grows
by exactly 1, it is not hard to see that the `th round of the algorithm can be implemented in
time O(2` · `n+ km), and hence the time needed to execute it for L rounds is bounded by
O(2L · Ln+ kLm).

Clearly, the algorithm correctly decides whether a graph contains a distance-r dominating
set of size at most k. It remains to show that it is in fact a fixed-parameter algorithm on
classes of directed bounded expansion. We prove this by showing that the neighbourhood
depth gives an upper bound on the number L of rounds executed by the algorithm.

I Theorem 14 (?). Let C be a class with bounded neighbourhood depth and let r ∈ N. Then
for every k ∈ N there is a constant L ∈ N, depending only on k, r, C and computable from k

for fixed r and C, such that the Semi-ladder-algorithm terminates after at most L rounds
when applied to any G ∈ C and k. In particular, if G has n vertices and m edges, then the
running time is bounded by f(k) ·m for some computable function f .

STACS 2019

46:12 Algorithmic Properties of Sparse Digraphs

4.2 VC-dimension and neighbourhood complexity
Towards the goal of developing a kernelisation algorithm for the Distance-r Dominating
Set problem on classes of bounded crownful expansion, we first study the VC-dimension
and neighbourhood complexity of radius-r balls in classes of directed bounded expansion.

Let F ⊆ 2A be a family of subsets of a set A. For a set X ⊆ A, we denote X ∩ F =
{X ∩ F : F ∈ F}. The set X is shattered by F if X ∩ F = 2X . The Vapnik-Chervonenkis
dimension, short VC-dimension, of F is the maximum size of a set X that is shattered by F .

Note that if F has VC-dimension d, then also B ∩ F for every subset B ⊆ A of the
ground set has VC-dimension at most d. The following theorem was first proved by Vapnik
and Chervonenkis [72], and rediscovered by Sauer [68] and Shelah [70]. It is often called the
Sauer-Shelah lemma in the literature.

I Theorem 15. If |A| ≤ n and F ⊆ 2A has VC-dimension d, then |F| ≤
∑d

i=0
(

n
i

)
∈ O(nd).

The study of the distance-r dominating set problem in context of bounded VC-dimension
motivates the following definition. Let G be a digraph and r ≥ 1. The distance-r VC-
dimension of G is the VC-dimension of the set family {N−r (v) : v ∈ V (G)} over the set V (G).
If X ⊆ V (G), the distance-r neighbourhood complexity of X in G, denoted ν−(G), is defined
by

ν−(G,X) :=
∣∣{N−r (v) ∩X : v ∈ V (G)}

∣∣ .
Analogously, one can define the distance-r out-neighbourhood complexity when using

N+
r (v) and the distance-r mixed neighbourhood complexity when using (N+

r (v) ∪N−r (v)) in
the above definition and our proofs can be analogously carried out for these measures.

It was proved in [65] that a class C of undirected graphs has bounded expansion, if and
only if, for every r ≥ 1 there is a constant cr such that for all G ∈ C and all X ⊆ V (G) we
have ν(G,X) ≤ cr · |X| (where ν denotes the undirected neighbourhood complexity). The
analogous statement for classes of directed graphs does not hold, not even for r = 1, as
pointed out in [47]. However, we prove that the distance-r neighbourhood complexity of a
digraph can be bounded in terms of its weak r-colouring numbers.

Using Lemma 4 we can well control the interaction of distance-r neighbourhoods with a
set X. Let G be a digraph and let L be a linear order on V (G) and let r ≥ 1. Let A ⊆ V (G)
be enumerated as a1, . . . , a|A|, consistently with the order. For v ∈ V (G) let D−r (v,A) denote
the distance-r vector of v and A, that is, the vector (d1, . . . , d|A|), where di = dist(ai, v) if
0 ≤ dist(ai, v) ≤ r, and ∞ otherwise. Here dist(ai, v) is the length of a shortest path from ai

to v.

I Lemma 16 (?). Let G be a digraph, let X ⊆ V (G) and let r ≥ 1. Let c := wcolr (G). Then
the number of distinct distance-r vectors D−r (v,X) is bounded by ((r + 2) · c · |X|)c, and in
particular, ν−r (G,X) ≤ ((r + 2) · c · |X|)c.

I Corollary 17. Let G be a digraph and r ≥ 1. Then the distance-r VC-dimension of G is
bounded by (r + 2) · (2wcolr (G))2.

4.3 Kernelisation on classes of bounded crownful expansion
Recall that a kernelisation algorithm is a polynomial-time preprocessing algorithm that
transforms a given instance into an equivalent one whose size is bounded by a function of
the parameter only, independently of the overall input size. We are mostly interested in
kernelisation algorithms whose output guarantees are polynomial in the parameter. In this

S. Kreutzer, I. Muzi, P. Ossona de Mendez, R. Rabinovich, and S. Siebertz 46:13

section we prove that for every fixed value of r ≥ 1, the distance-r dominating set problem
admits a polynomial kernel on every class of bounded crownless expansion.

Our strategy follows on a high level that of Drange et al. [20] for kernelisation on classes
of undirected bounded expansion. The first step is to compute a small domination core.

I Definition 18 (r-domination core). Let G be a digraph. A set Z ⊆ V (G) is an r-domination
core in G if every minimum-size set which r-dominates Z also r-dominates G.

Clearly, the set V (G) is an r-domination core. We will show how to iteratively remove
vertices from this trivial core, to arrive at smaller and smaller domination cores, until finally,
we arrive at a core of polynomial size in k. Observe that we do not require that every
r-dominating set for Z is also an r-dominating set for G; there can exist dominating sets
for Z which are not of minimum size and which do not dominate the whole graph.

I Lemma 19 (?). There exists a polynomial p and a polynomial-time algorithm that, given
an r-domination core Z ⊆ V (G) with |Z| > p(k), either correctly decides that G cannot be
dominated by k vertices, or finds a vertex z ∈ Z such that Z \ {z} is still an r-domination
core.

Hence, by gradually reducing |Z|, we arrive at the following theorem.

I Theorem 20. There exists a polynomial p and a polynomial-time algorithm that, given
an instance (G, k) where G ∈ C, either correctly decides that G cannot be dominated by k
vertices, or finds an r-domination core Z ⊆ V (G) with |Z| ≤ p(k).

Now that it remains to dominate a subset Z, we may keep one representative from each
equivalence class in the equivalence relation: u ∼=Z,r v ⇔ N+

r (u)∩Z = N+
r (v)∩Z. As before,

there are only polynomially many equivalence classes, hence from a polynomial domination
core we can construct a polynomial kernel.

I Theorem 21. Let C be a class of bounded expansion. There is a polynomial time algorithm
which on input G, k and r computes a subgraph G′ ⊆ G and a set Z ⊆ V (G′) such that G
can be r-dominated by k vertices if, and only if, Z can be r-dominated by k vertices in G′
and |Z| ≤ p(k).

5 Steiner trees

I Definition 22. The Directed Steiner Tree (DST) problem is defined as follows. The input is
a tuple (G, r, T, k) where G is a digraph, r ∈ V (G) is a vertex (a root), T ⊆ V (G)\{r} is a set
of terminals and k is an integer. The problem is to decide if there is a set S ⊆ V (G)\({r}∪T)
of size at most k such that in G[{r}∪S∪T] there is a directed path from r to every terminal T .

The Dst problem has been widely studied in the area of approximation algorithms as it
generalises several routing and domination problems. We are interested in the parameterised
complexity of this problem. It follows from an algorithm by Nederlof [54] and Misra et
al. [51], that the problem can be solved in time 2|T | · p(n), for some polynomial p(n). In
this paper, we are interested in the standard parameterisation in parameterised complexity,
where as parameter we take the solution size, i.e. we take the number k of non-terminals as
parameter. This models the case where we need to pay for any node we add to the solution
and we want to keep the bound k on these nodes as small as possible without any restriction
on the number of terminals to connect.

STACS 2019

46:14 Algorithmic Properties of Sparse Digraphs

In [41], Jones et al. show that Dst with this parameterisation is fixed-parameter tractable
on any class of digraphs such that the class of underlying undirected graphs excludes a fixed
graph H as an undirected topological minor, as well as on any class of degenerate graphs
if the set T of terminal vertices induces an acyclic graph. We immediately conclude the
following.

I Theorem 23 (?). Let C be a class of digraphs of bounded expansion. Dst is fixed-parameter
tractable on C parameterised by the number k of non-terminals in the solution plus the maximal
diameter s of the strongly connected components in the subgraph induced by the terminals.

The proof of the theorem has the following immediate consequences.

I Corollary 24. Let C be a class of digraphs closed under taking directed minors for which
∇0(G) ≤ c for a constant c for all G ∈ C. Then Dst(G, r, T, k) can be solved for all G ∈ C,
r ∈ V (G), T ⊆ V (G) \ {r} and k in time 2O(k) · p(n), for some fixed polynomial p(n).

Note that this strictly generalises classes of undirected graphs excluding a fixed minor.
Another consequence of this is the following result, which immediately follows from the

well-known observation in parameterised complexity (see e.g. [41, Lemma 7]), that for all
functions g(n) = o(logn) there is a function f(k) such that f(k) ≤ 2g(n)·k, for all k and all n.

I Corollary 25. Let C be a class of digraphs such that ∇|G|(G) · log∇|G|(G) ≤ o(logn) for
all G ∈ C. Then Dst is fixed-parameter tractable on C with parameter k.

Finally, the result also implies an fpt factor-2-approximation algorithm for the Strongly
Connected Steiner Subgraph problem, Scss, on classes of bounded directed expansion.
In the Scss we are given a digraph G, a number k, and a set T of terminals and we are asked
to compute a set S of at most k non-terminals such that G[T ∪ S] is strongly connected.

I Theorem 26 (?). Let C be a class of digraphs of bounded expansion. There is an fpt factor-
2-approximation algorithm for Scss on C parameterised by the number k of non-terminals in
the solution plus the maximal diameter s of a strongly connected component in the subgraph
of G induced by the terminal nodes.

We close the section by showing that for bounded expansion classes, the parameterisation
k + s in Theorem 23 cannot be replaced by taking only k as parameter. This follows
immediately from a result of [41] where it is shown that Set Cover can be reduced to Dst
on 2-degenerate graphs. It is straightforward to modify this example so that the resulting
class of graphs has bounded directed expansion.

I Theorem 27. The Dst-problem restricted to classes of digraphs of bounded expansion
parameterised by the solution size k is W [2]-hard.

6 Hardness Results

In this section, we investigate the problems of Dominating Set and Steiner Subgraph
in classes of digraphs of bounded crownless expansion when we require strong connectivity
for the graph induced by the output sets. We will show that both Strongly Connected
Dominating Set and Strongly Connected Steiner Subgraph are W[1]-hard.

The parameterised Strongly Connected Dominating Set problem (Scds) is the
problem to decide whether a given digraph G contains a dominating set D ⊆ V (G) of size
at most k such that the digraph induced by D is strongly connected, where k is an input

S. Kreutzer, I. Muzi, P. Ossona de Mendez, R. Rabinovich, and S. Siebertz 46:15

parameter. We prove that Scds parameterised by solution size is W[1]-hard even in graphs of
bounded crownless expansion. The proof is a reduction from the Multicoloured Clique
problem, which is known to be W[1]-hard [27]. Given an integer k and a graph G whose
vertex set is partitioned into k independent sets V1, V2, . . . , Vk called colour classes, the
Multicoloured Clique problem asks whether there exists a k-vertex clique in G with
exactly one vertex from every colour class.

The reduction. Let (G, k) be an instance of Multicoloured Clique and let V1, . . . , Vk

be the colour classes of G. We can assume that Vi is independent for each 1 ≤ i ≤ k. We
construct an instance (H, p) of Strongly Connected Dominating Set, for a parameter p
to be defined, starting from the graph G. For each class Vi we add two vertices s1

i , s
2
i and we

connect each vertex v ∈ Vi to both of these vertices with two edges vs1
i and vs2

i .
For each 1 ≤ i, j ≤ k with i 6= j, let Ei,j be the set of edges of G with one end in Vi and

the other in Vj . For each Ei,j we define Ci,j to be a set of |Ei,j | directed cycles of length
2k + 6 such that they intersect in a single vertex vi,j . Further, we index the set Ci,j by the
elements of Ei,j . For each cycle Ce of

⋃
1≤i,j≤k Ci,j we denote with xe the vertex of Ce such

that the length of the path starting in xe and ending in vi,j is k + 1. Similarly we define ye

to be the vertex such that the length of the path starting in vi,j and ending in ye is k + 1.
We further denote by ze the vertex of Ce in N−(xe).

For each i < j, with the exception of the pair (1, k), we replace each edge e = uv ∈ Ei,j

with u ∈ Vi and v ∈ Vj , with the two directed edges uxe and yev. The pair {V1, Vk} is
connected in the following way. For the pair (1, k) we replace each e′ = u′v′ ∈ E1,k with
u′ ∈ V1 and v′ ∈ Vk with the edges v′xe and yeu

′.
In addition, for each pair of classes {Vi, Vj} we add two vertices s1

i,j , s
2
i,j and draw

edges zes
1
i,j and zes

2
i,j for all Ce ∈ Ci,j . We call the vertices of the set {sl

i,j : l = 1, 2,
1 ≤ i, j ≤ k, i 6= j} ∪ {sl

i : 1 ≤ i ≤ k, l = 1, 2} the top vertices of H.
Lastly, we add one vertex q and we draw qv directed edges for each v in one of the colour

classes and an edge qv′ for each vertex v′ in one of the cycles C ∈
⋃
Ci,j . Since we want to

be able to maintain strong connectivity when q is in D, we must add some edges directed
towards q. In particular we add an edge vq for an arbitrary v in each cycle Ce with e ∈ E1,2.
This concludes the construction of (H, p).

k vertices

Vi Vj

vi,j

xe
ye

ze

s1ij s2ij

Figure 2 Each cycle Ce is connected to s1
ij and s2

ij with two edges incident to ze. All cycles
corresponding to edges of Eij intersect in the vertex vij .

Before we proceed with our proof of the hardness, we will prove that the graph obtained
is of bounded crownless expansion. We need the following easy lemma.

STACS 2019

46:16 Algorithmic Properties of Sparse Digraphs

I Lemma 28 (?). Let G be a graph of density |E(G)|
|V (G)| = D. Let G′ be a graph with

|V (G′)| = |V (G)|+ t and |E(G′)| = |E(G)|+d edges. The density D′ of G′ is greater than D
if and only if D < d/t.

I Lemma 29 (?). Let (G, k) be an instance of Multicoloured Clique and let (H, p) be
the correspondent instance of Strongly Connected Dominating Set constructed as
described above. We prove that ∇̃r(H) ≤ (r − 1)/2 and Sf(r) 64rH.

I Theorem 30. There exists a class C of digraphs of bounded crownless expansion such that
Strongly Connected Dominating Set parameterised by size of the solution is W[1]-hard
on C.

Proof. Let (G, k) be an instance of Multicoloured Clique and let (H, p) be the corres-
pondent instance of Strongly Connected Dominating Set with p = k+

(
k
2
)
(6 + 2k) + 1.

We claim that if a multicoloured clique Kk exists in G then there is strongly connected
dominating set D of size at most p in H. For each uv in Kk, let u′ and v′ be the corresponding
vertices in H and let Cuv be the cycle of Ci,j that they are connected to. Take S to be
the union of V (Cuv) and the vertices u′ and v′ over all uv ∈ E(Kk). Further, we take
D = S ∪ {q}. The size of D is equal to k +

(
k
2
)
(6 + 2k) + 1 which in turn is equal to the

parameter p of the instance (H, p). It is easy to see that D is a dominating set. The vertex q
dominates the vertices included in the colour classes. What is left to check are the top
vertices. By taking a vertex in each class Vi, we ensure that s1

i and s2
i are dominated. In

addition, for each edge uv of Kk, with u ∈ Vi and v ∈ Vj , we add the vertices of the cycle Cuv

which include the vertex zCuv
. Hence, the vertices s1

i,j , s
2
i,j are dominated. It is easy to see

that D is strongly connected. For every i < j, u ∈ Vi and v ∈ Vj , there is a directed path
starting in u and ending in v. The vertices on the cycles are connected through the cycles to
the same paths. The path starting in Vk and ending in Vi ensures the strong connectivity
for these vertices. Since we have added at least one cycle C ∈ C1,2, strong connectivity is
preserved for q ∈ D.

We will now prove that the existence of a strongly connected dominating set D of size at
most p in H implies the existence of a multicoloured clique Kk in G. We know that for each
pair i, j with 1 ≤ i, j ≤ k, D needs to dominate s1

i,j and s2
i,j . Hence D must contain at least

a vertex ze for some Ce ∈ Ci,j . Hence, since D is strongly connected G[D] must contain the
cycle Ce. In addition, for each pair of cycles Ce and Ce′ there must be a path connecting
them. It follows that D contains edges uxe and yeu for some u, v with u ∈ Vi and v ∈ Vj .
Let us assume that G does not contain a multicoloured clique Kk, we will prove that the
|D| > p. We know that for each pair i, j, D contains at least cycle Ce plus two vertices u, v.
Since there does not exist a multicoloured clique in G, there exists at least three vertices
u, v, w ∈ D in distinct colour classes, such that the corresponding vertices u′, v′, w′ of G are
such that u′v′ ∈ E(G) and u′w′ /∈ E(G). Hence, there exists at least one class Vi such that D
contains two vertices in that class. Further, D must dominate all the vertices contained in
cycles that are not in D and the vertex q. As a consequence, the vertex q must be in D and
|D| ≥ k +

(
k
2
)
(6 + 2k) + 2 which is larger than the parameter p. J

Similarly, we show that Strongly Connected Steiner Subgraph is hard.

I Theorem 31 (?). There exists a class C of digraphs of bounded crownless expansion such
that Strongly Connected Steiner Subgraph parameterised by size of the solution is
W[1]-hard on C.

S. Kreutzer, I. Muzi, P. Ossona de Mendez, R. Rabinovich, and S. Siebertz 46:17

References
1 Hans Adler and Isolde Adler. Interpreting nowhere dense graph classes as a classical notion of

model theory. European Journal of Combinatorics, 36:322–330, 2014.
2 Jochen Alber, Michael R Fellows, and Rolf Niedermeier. Polynomial-time data reduction for

dominating set. Journal of the ACM (JACM), 51(3):363–384, 2004.
3 Saeed Akhoondian Amiri, Patrice Ossona de Mendez, Roman Rabinovich, and Sebastian

Siebertz. Distributed Domination on Graph Classes of Bounded Expansion. In Proceedings of
the 30th on Symposium on Parallelism in Algorithms and Architectures, SPAA, pages 143–151,
2018.

4 Brenda S. Baker. Approximation algorithms for NP-complete problems on planar graphs.
Journal of the ACM (JACM), 41(1):153–180, 1994.

5 Jørgen Bang-Jensen and Gregory Z Gutin. Digraphs: theory, algorithms and applications.
Springer Science & Business Media, 2008.

6 János Barát. Directed path-width and monotonicity in digraph searching. Graphs and
Combinatorics, 22(2):161–172, 2006.

7 Dietmar Berwanger, Anuj Dawar, Paul Hunter, and Stephan Kreutzer. DAG-width and parity
games. In Annual Symposium on Theoretical Aspects of Computer Science, pages 524–536.
Springer, 2006.

8 Hans L Bodlaender, Fedor V Fomin, Daniel Lokshtanov, Eelko Penninkx, Saket Saurabh,
and Dimitrios M Thilikos. (Meta) kernelization. In Foundations of Computer Science, 2009.
FOCS’09. 50th Annual IEEE Symposium on, pages 629–638. IEEE, 2009.

9 Marthe Bonamy, Łukasz Kowalik, Michał Pilipczuk, and Arkadiusz Socała. Linear kernels for
outbranching problems in sparse digraphs. Algorithmica, pages 1–30, 2015.

10 Hervé Brönnimann and Michael T Goodrich. Almost optimal set covers in finite VC-dimension.
Discrete & Computational Geometry, 14(4):463–479, 1995.

11 Julia Chuzhoy and Shi Li. A Polylogarithmic Approximation Algorithm for Edge-Disjoint
Paths with Congestion 2. J. ACM, 63(5):45:1–45:51, November 2016. doi:10.1145/2893472.

12 Anuj Dawar, Martin Grohe, Stephan Kreutzer, and Nicole Schweikardt. Approximation
schemes for first-order definable optimisation problems. In 21st Annual IEEE Symposium on
Logic in Computer Science, 2006, pages 411–420. IEEE, 2006.

13 Anuj Dawar and Stephan Kreutzer. Domination Problems in Nowhere-Dense Classes. In
IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer
Science, FSTTCS 2009, December 15-17, 2009, IIT Kanpur, India, pages 157–168, 2009.

14 E. Demaine and M. Hajiaghayi. The bidimensionality theory and its algorithmic applications.
The Computer Journal, pages 332–337, 2008.

15 E. D. Demaine, M. Hajiaghayi, and K. Kawarabayashi. Algorithmic Graph Minor Theory:
Decomposition, Approximation, and Coloring. In 46th Annual Symposium on Foundations of
Computer Science (FOCS), pages 637–646, 2005.

16 Erik D Demaine, Fedor V Fomin, Mohammadtaghi Hajiaghayi, and Dimitrios M Thilikos.
Subexponential parameterized algorithms on bounded-genus graphs and H-minor-free graphs.
Journal of the ACM (JACM), 52(6):866–893, 2005.

17 Erik D. Demaine and Mohammad Taghi Hajiaghayi. Fast Algorithms for Hard Graph Prob-
lems: Bidimensionality, Minors, and Local Treewidth. In Graph Drawing, pages 517–533,
2004. URL: http://springerlink.metapress.com/openurl.asp?genre=article{&}issn=
0302-9743{&}volume=3383{&}spage=517.

18 Erik D. Demaine and Mohammad Taghi Hajiaghayi. Bidimensionality: new connections
between FPT algorithms and PTASs. In Symp. on Discrete Algorithms (SODA), pages
590–601, 2005. doi:10.1145/1070432.1070514.

19 Erik D. Demaine, Felix Reidl, Peter Rossmanith, Fernando Sánchez Villaamil, Somnath Sikdar,
and Blair D. Sullivan. Structural Sparsity of Complex Networks: Random Graph Models and
Linear Algorithms. CoRR, abs/1406.2587, 2014. URL: http://arxiv.org/abs/1406.2587,
arXiv:1406.2587.

STACS 2019

http://dx.doi.org/10.1145/2893472
http://springerlink.metapress.com/openurl.asp?genre=article{&}issn=0302-9743{&}volume=3383{&}spage=517
http://springerlink.metapress.com/openurl.asp?genre=article{&}issn=0302-9743{&}volume=3383{&}spage=517
http://dx.doi.org/10.1145/1070432.1070514
http://arxiv.org/abs/1406.2587
http://arxiv.org/abs/1406.2587

46:18 Algorithmic Properties of Sparse Digraphs

20 Pål Grønås Drange, Markus Sortland Dregi, Fedor V. Fomin, Stephan Kreutzer, Daniel
Lokshtanov, Marcin Pilipczuk, Michal Pilipczuk, Felix Reidl, Fernando Sánchez Villaamil,
Saket Saurabh, Sebastian Siebertz, and Somnath Sikdar. Kernelization and Sparseness: the
Case of Dominating Set. In STACS, volume 47 of LIPIcs, pages 31:1–31:14. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2016.

21 Zdeněk Dvořák. Constant-factor approximation of the domination number in sparse graphs.
European Journal of Combinatorics, 34(5):833–840, 2013.

22 Zdeněk Dvořák. On distance r-dominating and 2r-independent sets in sparse graphs. arXiv
preprint arXiv:1710.10010, 2017.

23 Zdeněk Dvořák, Daniel Král, and Robin Thomas. Testing first-order properties for subclasses
of sparse graphs. Journal of the ACM (JACM), 60(5):36, 2013.

24 Eduard Eiben, Mithilesh Kumar, Amer E. Mouawad, Fahad Panolan, and Sebastian Siebertz.
Lossy Kernels for Connected Dominating Set on Sparse Graphs. In 35th Symposium on
Theoretical Aspects of Computer Science, STACS 2018, February 28 to March 3, 2018, Caen,
France, pages 29:1–29:15, 2018.

25 Kord Eickmeyer, Archontia C Giannopoulou, Stephan Kreutzer, O-joung Kwon, Michał
Pilipczuk, Roman Rabinovich, Sebastian Siebertz, et al. Neighborhood complexity and
kernelization for nowhere dense classes of graphs. arXiv preprint arXiv:1612.08197, 2016.

26 Grzegorz Fabiański, Michał Pilipczuk, Sebastian Siebertz, and Szymon Toruńczyk. Progressive
Algorithms for Domination and Independence. CoRR, abs/1811.06799, 2018. arXiv:1811.
06799.

27 Michael R Fellows, Danny Hermelin, Frances Rosamond, and Stéphane Vialette. On the
parameterized complexity of multiple-interval graph problems. Theoretical Computer Science,
410(1):53–61, 2009.

28 Fedor V. Fomin, Daniel Lokshtanov, Venkatesh Raman, and Saket Saurabh. Bidimensionality
and EPTAS. In SODA, pages 748–759, 2011. URL: http://www.siam.org/proceedings/
soda/2011/SODA11_058_fominf.pdf.

29 Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Dimitrios M. Thilikos. Bidimensional-
ity and Kernels. In SODA, pages 503–510, 2010. URL: http://www.siam.org/proceedings/
soda/2010/SODA10_043_fominf.pdf.

30 Fedor V Fomin, Daniel Lokshtanov, Saket Saurabh, and Dimitrios M Thilikos. Bidimensionality
and kernels. In Proceedings of the twenty-first annual ACM-SIAM symposium on Discrete
Algorithms, pages 503–510. SIAM, 2010.

31 Fedor V Fomin, Daniel Lokshtanov, Saket Saurabh, and Dimitrios M Thilikos. Linear kernels
for (connected) dominating set on H-minor-free graphs. In Proceedings of the twenty-third
annual ACM-SIAM symposium on Discrete Algorithms, pages 82–93. Society for Industrial
and Applied Mathematics, 2012.

32 Fedor V Fomin, Daniel Lokshtanov, Saket Saurabh, and Dimitrios M Thilikos. Linear kernels
for (connected) dominating set on graphs with excluded topological subgraphs. In 30th
International Symposium on Theoretical Aspects of Computer Science, page 92, 2013.

33 Jakub Gajarský, Petr Hliněný, Jan Obdržálek, Sebastian Ordyniak, Felix Reidl, Peter Ross-
manith, Fernando Sanchez Villaamil, and Somnath Sikdar. Kernelization using structural
parameters on sparse graph classes. In European Symposium on Algorithms, pages 529–540.
Springer, 2013.

34 Robert Ganian, Petr Hliněný, Joachim Kneis, Alexander Langer, Jan Obdržálek, and Peter
Rossmanith. On digraph width measures in parameterized algorithmics. In International
Workshop on Parameterized and Exact Computation, pages 185–197. Springer, 2009.

35 Robert Ganian, Petr Hlinený, Joachim Kneis, Daniel Meister, Jan Obdrzálek, Peter Rossmanith,
and Somnath Sikdar. Are there any good digraph width measures? J. Comb. Theory, Ser. B,
116:250–286, 2016. doi:10.1016/j.jctb.2015.09.001.

36 Martin Grohe. Local tree-width, excluded minors, and approximation algorithms. Combinat-
orica, 23(4):613–632, 2003.

http://arxiv.org/abs/1811.06799
http://arxiv.org/abs/1811.06799
http://www.siam.org/proceedings/soda/2011/SODA11_058_fominf.pdf
http://www.siam.org/proceedings/soda/2011/SODA11_058_fominf.pdf
http://www.siam.org/proceedings/soda/2010/SODA10_043_fominf.pdf
http://www.siam.org/proceedings/soda/2010/SODA10_043_fominf.pdf
http://dx.doi.org/10.1016/j.jctb.2015.09.001

S. Kreutzer, I. Muzi, P. Ossona de Mendez, R. Rabinovich, and S. Siebertz 46:19

37 Martin Grohe, Stephan Kreutzer, Roman Rabinovich, Sebastian Siebertz, and Konstantinos
Stavropoulos. Colouring and covering nowhere dense graphs. In International Workshop on
Graph-Theoretic Concepts in Computer Science, pages 325–338. Springer, 2015.

38 Martin Grohe, Stephan Kreutzer, and Sebastian Siebertz. Deciding first-order properties of
nowhere dense graphs. In Proceedings of the 46th Annual ACM Symposium on Theory of
Computing, pages 89–98. ACM, 2014.

39 Sariel Har-Peled and Kent Quanrud. Approximation algorithms for polynomial-expansion and
low-density graphs. SIAM Journal on Computing, 46(6):1712–1744, 2017.

40 Paul Hunter and Stephan Kreutzer. Digraph measures: Kelly decompositions, games, and
orderings. Theoretical Computer Science, 399(3):206–219, 2008.

41 M. Jones, D. Lokshtanov, M.S. Ramanujan, S. Saurabh, and O. Suchy. Parameterized
Complexity of Directed Steiner Tree on Sparse Graphs. In Proceedings of European Symposium
on Algorithms (ESA 2013), 2013.

42 Richard M Karp. Reducibility among combinatorial problems. In Complexity of computer
computations, pages 85–103. Springer, 1972.

43 Wojciech Kazana and Luc Segoufin. Enumeration of first-order queries on classes of struc-
tures with bounded expansion. In Proceedings of the 32nd ACM SIGMOD-SIGACT-SIGAI
symposium on Principles of database systems, pages 297–308. ACM, 2013.

44 Stephan Kreutzer, Irene Muzi, Patrice Ossona de Mendez, Roman Rabinovich, and Sebastian
Siebertz. Algorithmic Properties of Sparse Digraphs. CoRR, abs/1707.01701, 2017.

45 Stephan Kreutzer, Roman Rabinovich, and Sebastian Siebertz. Polynomial Kernels and
Wideness Properties of Nowhere Dense Graph Classes. In Proceedings of the Twenty-Eighth
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1533–1545. SIAM, 2017.

46 Stephan Kreutzer, Roman Rabinovich, and Sebastian Siebertz. Polynomial Kernels and
Wideness Properties of Nowhere Dense Graph Classes. In Proceedings of the Twenty-Eighth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel
Porta Fira, January 16-19, pages 1533–1545, 2017. doi:10.1137/1.9781611974782.100.

47 Stephan Kreutzer, Roman Rabinovich, Sebastian Siebertz, and Grischa Weberstädt. Structural
Properties and Constant Factor-Approximation of Strong Distance-r Dominating Sets in
Sparse Directed Graphs. In 34th Symposium on Theoretical Aspects of Computer Science
(STACS 2017), volume 66 of Leibniz International Proceedings in Informatics (LIPIcs), pages
48:1–48:15, Dagstuhl, Germany, 2017. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.
doi:10.4230/LIPIcs.STACS.2017.48.

48 Stephan Kreutzer and Siamak Tazari. Directed nowhere dense classes of graphs. In Proceedings
of the twenty-third annual ACM-SIAM symposium on Discrete Algorithms, pages 1552–1562.
SIAM, 2012.

49 Daniel Lokshtanov, Amer E Mouawad, Fahad Panolan, MS Ramanujan, and Saket Saurabh.
Reconfiguration on sparse graphs. In Workshop on Algorithms and Data Structures, pages
506–517. Springer, 2015.

50 Maryanthe Malliaris and Saharon Shelah. Regularity lemmas for stable graphs. Transactions
of the American Mathematical Society, 366(3):1551–1585, 2014.

51 N. Misra, G. Philip, V. Raman, S. Saurabh, and S. Sikdar. FPT algorithms for connected
feedback vertex set. In WALCOM 2010, pages 269–280, 2010.

52 Daniel Mölle, Stefan Richter, and Peter Rossmanith. Enumerate and expand: Improved
algorithms for connected vertex cover and tree cover. Theory of Computing Systems, 43(2):234–
253, 2008.

53 Wojciech Nadara, Marcin Pilipczuk, Roman Rabinovich, Felix Reidl, and Sebastian Siebertz.
Empirical Evaluation of Approximation Algorithms for Generalized Graph Coloring and
Uniform Quasi-Wideness. In 17th International Symposium on Experimental Algorithms, SEA,
pages 14:1–14:16, 2018.

54 J. Nederlof. Fast polynomial-space algorithms using Möbius inversion: Improving on Steiner
tree and related problems. In Proc. of ICALP 2009, pages 713–725, 2009.

STACS 2019

http://dx.doi.org/10.1137/1.9781611974782.100
http://dx.doi.org/10.4230/LIPIcs.STACS.2017.48

46:20 Algorithmic Properties of Sparse Digraphs

55 Jaroslav Nešetřil and Patrice Ossona de Mendez. Linear time low tree-width partitions and
algorithmic consequences. In Proceedings of the thirty-eighth annual ACM Symposium on
Theory of Computing (STOC), pages 391–400. ACM, 2006.

56 Jaroslav Nešetřil and Patrice Ossona de Mendez. Grad and classes with bounded expansion I.
Decompositions. European Journal of Combinatorics, 29(3):760–776, 2008.

57 Jaroslav Nešetřil and Patrice Ossona de Mendez. First order properties on nowhere dense
structures. The Journal of Symbolic Logic, 75(03):868–887, 2010.

58 Jaroslav Nešetřil and Patrice Ossona de Mendez. On nowhere dense graphs. European Journal
of Combinatorics, 32(4):600–617, 2011.

59 Jan Obdržálek. DAG-width: connectivity measure for directed graphs. In Proceedings of the
seventeenth annual ACM-SIAM symposium on Discrete algorithm, pages 814–821. Society for
Industrial and Applied Mathematics, 2006.

60 Geevarghese Philip, Venkatesh Raman, and Somnath Sikdar. Polynomial kernels for dominating
set in graphs of bounded degeneracy and beyond. ACM Transactions on Algorithms (TALG),
9(1):11, 2012.

61 MichałPilipczuk and Sebastian Siebertz. Kernelization and approximation of distance-r
independent sets on nowhere dense graphs. arXiv preprint arXiv:1809.05675, 2018.

62 MichałPilipczuk, Sebastian Siebertz, and Szymon Torunczyk. On the number of types in
sparse graphs. arXiv preprint arXiv:1705.09336, 2017.

63 Hans Jürgen Prömel and Angelika Steger. The Steiner tree problem: a tour through graphs,
algorithms, and complexity. Springer Science & Business Media, 2012.

64 Ran Raz and Shmuel Safra. A sub-constant error-probability low-degree test, and a sub-
constant error-probability PCP characterization of NP. In Proceedings of the twenty-ninth
annual ACM symposium on Theory of computing, pages 475–484. ACM, 1997.

65 Felix Reidl, Fernando Sánchez Villaamil, and Konstantinos Stavropoulos. Characterising
bounded expansion by neighbourhood complexity. Eur. J. Comb., 75:152–168, 2019.

66 N. Robertson and P.D. Seymour. Graph minors XIII. The disjoint paths problem. Journal of
Combinatorial Theory, Series B, 63:65–110, 1995.

67 Mohammad Ali Safari. D-width: A more natural measure for directed tree width. In
International Symposium on Mathematical Foundations of Computer Science, pages 745–756.
Springer, 2005.

68 Norbert Sauer. On the density of families of sets. Journal of Combinatorial Theory, Series A,
13(1):145–147, 1972.

69 Luc Segoufin and Alexandre Vigny. Constant Delay Enumeration for FO Queries over
Databases with Local Bounded Expansion. In Michael Benedikt and Giorgio Orsi, editors, 20th
International Conference on Database Theory (ICDT 2017), volume 68 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 20:1–20:16, Dagstuhl, Germany, 2017. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.ICDT.2017.20.

70 Saharon Shelah. A combinatorial problem; stability and order for models and theories in
infinitary languages. Pacific Journal of Mathematics, 41(1):247–261, 1972.

71 Sebastian Siebertz. Reconfiguration on Nowhere Dense Graph Classes. Electr. J. Comb.,
25(3):P3.24, 2018.

72 VN Vapnik and A Ya Chervonenkis. On the Uniform Convergence of Relative Frequencies of
Events to Their Probabilities. Measures of Complexity, 16(2):11, 1971.

73 Xuding Zhu. Colouring graphs with bounded generalized colouring number. Discrete Mathem-
atics, 309(18):5562–5568, 2009.

http://dx.doi.org/10.4230/LIPIcs.ICDT.2017.20

Tree Automata with Global Constraints for
Infinite Trees
Patrick Landwehr
RWTH Aachen University, Germany
landwehr@cs.rwth-aachen.de

Christof Löding
RWTH Aachen University, Germany
loeding@cs.rwth-aachen.de

Abstract
We study an extension of tree automata on infinite trees with global equality and disequality
constraints. These constraints can enforce that all subtrees for which in the accepting run a state q

is reached (at the root of that subtree) are identical, or that these trees differ from the subtrees
at which a state q′ is reached. We consider the closure properties of this model and its decision
problems. While the emptiness problem for the general model remains open, we show the decidability
of the emptiness problem for the case that the given automaton only uses equality constraints.

2012 ACM Subject Classification Theory of computation → Automata over infinite objects

Keywords and phrases Tree automata, infinite trees, global constraints

Digital Object Identifier 10.4230/LIPIcs.STACS.2019.47

Acknowledgements We thank Arnaud Carayol for discussions on the subject.

1 Introduction

In this paper, we start the investigation of a model of finite automata on infinite trees with
global equality and disequality constraints. These constraints are specified over the state
space of the tree automaton: an equality constraint is of the form q1 ≈ q2 for states q1 and
q2 of the automaton, and a run satisfies the constraint if the subtrees at all nodes at which
q1 and q2 appear in the run are equal. Similarly, a disequaltiy constraint q1 6≈ q2 requires
that the subtrees at q1-positions in the run are all different from the subtrees at q2-positions.

Originally, such a model with global constraints has been defined in [7] over finite trees
for analysing a logic called TQL for querying semi-structured data [6]. The model (referred
to as TAGED, tree automata with global equality and disequality constraints) has then
been further investigated in [8, 9] because it turned out to be a useful tool for deciding
logics whose expressive power goes beyond that of monadic second-order logic (MSO), the
latter being equivalent to standard finite tree automata [21] (see also [23]). In [8, 9] closure
properties of TAGED are studied, and decidability results for emptiness on restricted classes
of TAGED have been obtained. These results have then been further generalised in [2] to the
full class of TAGED (even enriched with arithmetic constraints). Besides the use of TAGED
for the logic TQL, there are variants of monadic second-order logic (MSO) with equality and
disequality tests that characterise the class of TAGED, and the algorithmic results lead to
decision procedures for these versions of MSO [9, 2].

As mentioned above, we want to extend this theory to infinite trees. Automata on infinite
trees were originally introduced for solving decision problems for MSO over infinite trees
[18]. Since then, many algorithms and decision procedures based on these automata have
been developed for solving problems in verification, synthesis, language equations, and set
constraints (see [3, 14, 11, 1] for some examples).

© Patrick Landwehr and Christof Löding;
licensed under Creative Commons License CC-BY

36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019).
Editors: Rolf Niedermeier and Christophe Paul; Article No. 47; pp. 47:1–47:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:landwehr@cs.rwth-aachen.de
mailto:loeding@cs.rwth-aachen.de
https://doi.org/10.4230/LIPIcs.STACS.2019.47
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

47:2 Tree Automata with Global Constraints for Infinite Trees

While there are many extensions of finite automata over finite trees, e.g., automata with
global (dis)equality constraints as described above, automata with (dis)equality constraints
between siblings [4], automata over infinite alphabets [12, 25], or automata with counting
constraints [13, 20], there is not much work on extended models for infinite trees. One reason
for this is that extended automaton models over finite trees are motivated by problems
coming from term rewriting or from XML document processing, and thus an extension to
infinite trees does not seem to be useful. However, we believe that (dis)equality constraints
over infinite trees can be used to express some interesting properties. For example, tree
automata over infinite trees can represent sets word functions of the form f : Σ∗1 → Σ2 (for
alphabets Σ1,Σ2). Such a function corresponds to a tree of branching degree |Σ1| with nodes
labeled by Σ2 (a node u in the tree can be identified with the directions one has to take
from the root to reach this node, and thus corresponds to a word in Σ∗1; its label is then
the function value f(u)). This correspondence is used in algorithms for the synthesis of
such functions from logical specifications [19, 17, 14]. In this setting, one can use equality
constraints to model, for example, resets of synthesized functions (if w ∈ Σ∗ corresponds to
an input string that models a reset, then the function should behave the same as from the
root of the tree, which can be expressed by a global equality constraint in a tree automaton).

A first step for developing a theory of automata on infinite trees with (dis)equality
constraints (we only use the term constraints in the following to refer to (dis)equality
constraints) was made in [5], where automata on infinite trees with local constraints are
analyzed. It is shown that parity tree automata with constraints for direct subtrees of a
node have a decidable emptiness problem and the languages recognized by these automata
form a Boolean algebra. In [15] it is shown that these automata with a Büchi condition are
closed under projection, and that they can be used to decide satisfiability of MSO formulas
enriched with a predicate for testing (dis)equality of direct subtrees of a node.

We continue this line of research and analyze automata on infinite trees with global con-
straints. We show that (similar to the case of finite trees) the class of languages recognizable
by this model is closed under union and intersection, but not under complement. We compare
different acceptance conditions and prove - among other results - that the equivalence in
expressive power between parity- and Muller-acceptance (see [23]) extends to automata with
global constraints. We also consider a few decision problems. To be precise, we show the
undecidability of the universality- and the regularity-problem for tree automata with global
constraints. (Again, analogous results for finite trees have been shown in [9, 2].)

The main result of this paper is the decidability of the emptiness problem if we restrict the
automaton to only use equality constraints. It relies on a construction of a parity automaton
that only uses reflexive equality constraints of the form q ≈ q. This construction is the
core of the decidability result because the game-based emptiness algorithm for parity tree
automata (see [26] or [23]) also solves the emptiness problem in the case of reflexive equality
constraints (using memoryless determinacy of parity games).

For the whole class of tree automata with global constraints on infinite trees, the
decidability of the emptiness problem is still an open question. The approaches that have
been developed for finite trees do not work on infinite trees. For example, in infinite trees it
is possible that a tree is equal to one of its subtrees, which is impossible in finite trees.

This paper is structured as follows: In Section 2, we introduce basic notations and
formally define the automaton model. Then in Section 3, we discuss closure properties of the
classes of languages recognizable by tree automata with global constraints, and we analyze
the expressive power of different restricted models (with regard to acceptance condition and
the form of the constraints). In Section 4, we first present undecidability results for the
universality and regularity problem (which easily generalize from finite trees). We then show
that the emptiness problem for parity tree automata with only global equality constraints, is
decidable. We give some concluding remarks in Section 5.

P. Landwehr and C. Löding 47:3

2 Preliminaries

2.1 Trees, Languages and Tree Automata
An alphabet is a finite set Σ of letters, Σ∗ denotes the set of all finite words over Σ, whereas
Σω is the set of infinite words over Σ. The empty word is notated by ε.

Let Σ be some finite alphabet. An infinite Σ-labelled (binary) tree is a mapping t :
{0, 1}∗ → Σ. The elements of {0, 1}∗ are called nodes and the node ε is called the root. We
sometimes write domt instead of {0, 1}∗. For any node u the node u0 is called the left child
of u and u1 is the right child of u. A branch is an infinite word in {0, 1}ω. The set of all
infinite Σ-labelled trees is denoted by Tω

Σ .
Let t be a σ-labelled tree. And let u ∈ {0, 1}∗ be a node then t|u denotes the subtree of t

rooted at u. That is t|u(v) := t(uv) for all v ∈ {0, 1}∗.

A (non-deterministic) tree automaton for infinite trees over the alphabet Σ is a tuple
A = (Q,Σ,∆, q0,Acc) whereQ is a finite set of states, Σ is a finite alphabet, ∆ ⊆ Q×Σ×Q×Q
is the transition relation, q0 ∈ Q is the initial state and Acc ⊆ Qω is the acceptance condition.

Let t be an infinite Σ-labelled tree. A run of A on t is a Q-labelled tree ρ such that
ρ(ε) = q0 and for every node u ∈ {0, 1}∗, (ρ(u), t(u), ρ(u0), ρ(u1)) ∈ ∆. A run ρ is accepting
if for every branch α1α2 . . . ∈ {0, 1}ω, the sequence of states ρ(ε)ρ(α1)ρ(α1α2) . . . forms an
infinite word in Acc. A tree t is accepted by A if there exists an accepting run ρ of A on t.
The language recognized by A is defined as L(A) := {t ∈ Tω

Σ | A accepts t}.
Several forms of acceptance conditions appear in the literature. In this paper we mainly

focus on so called safety-, Büchi-, parity- and Muller-acceptance:
If the tree automaton has a safety acceptance condition, it holds Acc = Qω. That is
every run is accepting.
For a Büchi acceptance condition a subset F ⊆ Q of states is given and an infinite
sequence of states q1q2q3 . . . ∈ Qω is in Acc if and only if there are infinitely many
positions i ∈ N with qi ∈ F .
In the case of a parity acceptance condition a mapping p : Q→ N from states to natural
numbers is given and an infinite sequence of states q1q2q3 . . . ∈ Qω is in Acc if and only
if the highest number p(qi) that appears infinitely often for that sequence is even.
A Muller acceptance condition is given by a set F ⊆ 2Q and an infinite sequence of states
q1q2q3 . . . ∈ Qω is in Acc if and only if the set of states that appear infinitely often in
that sequence is an element of F .

A language L ⊆ Tω
Σ is called regular if it can be accepted by a parity tree automaton. As a

shortened notation, if A is an automaton, we write QA to denote the set of states of A and
∆A to denote the transition relation of A.

Even though we present our results only for binary trees, the statements in this paper
also hold true for ranked trees with higher branching degree.

2.2 Tree Automata with Global Equality Constraints
A tree automaton with global constraints (TAGC) is a tuple A = (Q,Σ,∆, q0,Acc, C), such
that (Q,Σ,∆, q0,Acc) is a tree automaton, denoted by ta(A), and C is a Boolean combination
of atomic constraints of the form q ≈ q′ or q 6≈ q′, where q, q′ ∈ Q.

A run ρ of the TAGC A on a tree t ∈ Tω
Σ is a run of ta(A) such that ρ satisfies CA

(denoted by (t, ρ) |= CA or ρ |= CA if t is clear from the context), where the satisfiability of
constraints is defined as follows: For atomic constraints ρ |= q ≈ q′ holds (resp. ρ |= q 6≈ q′

STACS 2019

47:4 Tree Automata with Global Constraints for Infinite Trees

holds), if and only if for all nodes u, u′ ∈ domt with u 6= u′, ρ(u) = q and ρ(u′) = q′, it
holds t|u = t|u′ (or t|u 6= t|u′ resp.). This notion of satisfiability is extended to Boolean
combinations as usual. In particular, a run satisfies a negated atomic constraint ¬(q ≈ q′) if
there exist two nodes u, u′ with ρ(u) = q, ρ(u′) = q′, and t|u = t|u′ . So it is important to
note that the semantics of (q 6≈ q′) is different from ¬(q ≈ q′) because of the quantifier over
the tree nodes.

A run ρ is accepting if it is accepting for ta(A). As usual, the language recognized by
A is the set L(A) of trees t ∈ Tω

Σ for which there exists a accepting run of A on t. Two
automata A and A′ are equivalent if they recognize the same language.

Before we give some examples, we define some classes of TAGC with restricted forms of
constraints that are used in the later sections. We follow the terminology for TAGC on finite
trees as presented in [2] (the model called TAGED in [9] has a slightly different definition, and
the notion of ’positive’ in [9] differs from the one in [2]). A TAGC is called positive (PTAGC)
if C is a positive Boolean combination (i.e. it does not use the negation symbol ¬ in the
Boolean combination of atomic constraints). Note that atomic constraints of the form (q 6≈ q′)
can be used in PTAGC because they do not use the negation symbol. In a conjunctive TAGC,
the constraint is a single conjunction of possibly negated atomic constraints. Accordingly, a
conjunctive PTAGC has only one conjunction of atomic constraints. A PTAGC is called
rigid if it is conjunctive and uses only reflexive equality constraints, that is, C is just a single
conjunction of atomic constraints, and for each atomic constraint of the form q ≈ q′, we
have q = q′ (the term rigid comes from [10]). For some constructions it is helpful if the
initial state does not appear in any of the constraints. We call a TAGC that satisfies this
restriction simplified.

I Example 1. Let Σ = {a, b}, then the set {t ∈ Tω
Σ | t|0 = t|1} is a tree language,

which is well known not to be regular. However it is recognized by the safety-PTAGC
A := ({q0, q1,,},Σ,∆, q0, q1 ≈ q1), where ∆ := {(q0, x, q1, q1) | x ∈ Σ} ∪ {(q, x,,,,) | q ∈
{q1,,}, x ∈ Σ}.

In example 1 the automaton did not make use of the “globality” of the constraints.
Therefore we present an additional example.

I Example 2. The language of all trees t ∈ Tω
Σ that do not contain themselves as a proper

subtree is recognized by the Büchi-PTAGC A := ({q0, q1},Σ,∆, q0, {q1}, q0 6≈ q1) where
∆ := {(q, x, q1, q1) | q ∈ {q0, q1}, x ∈ Σ}.

In both examples we presented PTAGC. The following example uses a negated constraint
and also illustrates an interesting interplay between constraints and acceptance conditions:

I Example 3. Consider the constraint formula ¬(q0 ≈ q1 ∧ q0 6≈ q1) and note that this
formula is not a tautology. If for example the state q1 does not appear in a run, then both
q0 ≈ q1 as well as q0 6≈ q1 are satisfied. Thus to satisfy the whole formula, both q0 and q1
have to appear in the run. We now use this constraint formula in an automaton:

A := ({q0, q1,,}, {a, b, c},∆, q0,¬(q0 ≈ q1 ∧ q0 6≈ q1)) , where

∆ :={(q0, x, q0,,), (q0, x,,, q0), (q0, x, q1,,), (q0, x,,, q1), (,, x,,,,) | x ∈ {a, b, c}}∪
{(q1, a,,,,)}.

This safety TAGC starts in q0, guesses a position at which q1 appears and checks whether
the label at that position is an a. Thus A accepts precisely those trees over the alphabet

P. Landwehr and C. Löding 47:5

{a, b, c}, that contain a position labelled with a. This regular language cannot be recognized
by a standard safety tree automaton, thus showing that negated constraints actually can
introduce stronger acceptance conditions even inside the class of regular languages.

The following examples show some possible applications of TAGC:

I Example 4. As explained in the introduction, infinite trees can be used to model functions
of the form f : Σ∗1 → Σ2 for alphabets Σ1,Σ2, referred to as input and output alphabets,
respectively. We can apply f to infinite input words α = a1a2 · · · obtaining f(α) = b0b1 · · ·
with bi = f(a1 · · · ai) (with the special case b0 = f(ε)). In the synthesis problem for such
functions, we are given a relation S ⊆ (Σ1 × Σ2)ω, called the specification. A function f
satisfies the specification if (α, f(α)) ∈ S for all input words α. The task is to automatically
synthesize a function satisfying S from a definition of S by a logical formula or an automaton.

Note that for Σ1 = {0, 1}, the function f has exactly the same shape as an infinite binary
tree (for larger alphabets Σ1, one can use trees of higher branching degree). Thus, we can
identify trees with the functions described above.

As shown in [19, 17] (see also [14]), a specification S defined in MSO logic or linear
temporal logic (LTL) over infinite words, can be translated into a tree automaton AS

accepting precisely those trees that satisfy the specification. The emptiness test for tree
automata then yields a tree (and thus a function) satisfying the specification.

Using TAGC, we can model additional properties of such functions. Assume, for example,
that we are given a regular language R ⊆ Σ∗1 of finite words over the input alphabet that
model a reset of the system. The requirement for the function to be synthesized could be that
it satisfies the specification S, and whenever the input string processed so far corresponds to
a reset in R, then the function should behave in the same way (it moves to a specific reset
state and forgets about the past). We can express this property by taking the product of the
tree automaton AS with a DFA DR for the reset words, and impose equality constraints for
all product states (q, p) such that p is a final state of DR. A tree accepted by this product
automaton corresponds to a function with the desired reset behavior, and can by synthesized
by the methods presented in Section 4.

I Example 5. Let L be a language of infinite words over the alphabet Σ = {a1, . . . , an}. We
say L is an ω-power if L = Uω for a regular language U of finite words. It is a deterministic
ω-power if U is prefix-free (i.e. for all u ∈ U and v strict prefix of u, v 6∈ U). Here the
term ‘deterministic’ is appropriate, because if U is prefix-free then every word in L has a
unique factorization into its U -factors. In general, regular ω-languages can be characterized
in terms of concatenations and ω-powers of regular languages of finite words (see [22]).
Similarly, deterministic ω-powers can be used to characterize the subclass of deterministic
Büchi languages, and are used in [16] to characterize certain regular liveness properties.

We can construct for a given ω-regular language L a PTAGC, whose recognized language
is non-empty if and only if L is a deterministic ω-power. We consider n-ary infinite {0, 1}-
labelled trees, where the directions correspond to the n letters of Σ. The constructed
parity-PTAGC A then verifies two conditions on such an input-tree:

the branches on which infinitely many 1 appear are precisely the words in L.
The whole tree is equal to all subtrees rooted at positions at which a 1 appears.

If L = Uω, then the tree tU is accepted by A, where tU (u) = 1 iff u ∈ U∗. If on the other
hand A accepts a tree, then it also accepts a regular tree t (see Corollary 23 in Section 4).
Define U to be the set of all minimal (wrt. prefix order) words u with t(u) = 1. Then L = Uω

since t is accepted by A. As a consequence, the problem whether a given regular ω-language
is a deterministic ω-power, is decidable (using Theorem 22).

STACS 2019

47:6 Tree Automata with Global Constraints for Infinite Trees

3 Properties

In this Section we first present some general properties of TAGC and then discuss their
closure properties.

3.1 Expressive Power of different Acceptance Conditions
We start by comparing the expressive power of TAGC with different acceptance conditions.
The following lemma is useful to convert between different acceptance conditions. The
construction is a straightforward adaption of the one for tree automata without constraints
commonly found in the literature.

I Lemma 6. For a TAGC A and a deterministic ω-word automaton B, one can construct
an automaton AnB that accepts all trees t ∈ Tω

Σ for which there is a run ρ of A on t such
that for each branch, the sequence of states along that branch in ρ are accepted by B. The
type of acceptance condition of AnB (Büchi, parity, Muller) is the one of B.

Since all regular ω-languages can be accepted by deterministic parity automata (see, e.g.,
[23, 24]), we obtain the equivalence of TAGC with parity and Muller conditions.

I Corollary 7. A language is recognizable by a parity-TAGC if and only if it is recognizable by
a Muller-TAGC. And from a given parity/Muller Automaton one can construct an equivalent
automaton with the other acceptance condition.

3.2 Restricted Constraints
We now consider constructions for simplifying the shape of the constraints. Remember that
we call a (P)TAGC conjunctive if its constraint formula is a conjunction of (possibly negated)
atomic constraints. And we call a (P)TAGC simplified if its initial state does not appear in
its constraint formula. Our goal in this section is to show the following lemma:

I Lemma 8. For every Büchi- or parity-TAGC one can construct an equivalent conjunctive
and simplified Büchi- or parity-PTAGC (respectively).

Proof. Let A be a TAGC. We separate A into a set of conjunctive TAGC. Wlog. the
constraint formula CA is a disjunction of conjunctions C1, . . . , Ck of possibly negated atomic
constraints. Then L(A) = L(A1) ∪ . . . ∪ L(Ak) where Aj is obtained from A by replacing
the constraint formula with Cj . Now all Aj are conjunctive. In the following we show in
Lemma 9 how to obtain from a given conjunctive TAGC a set of conjunctive PTAGC. After
that we show in Lemma 10 how to construct from a given conjunctive PTAGC a conjunctive
and simplified PTAGC. Finally, according to Lemma 11 in Section 3.3, which states effective
closure under union, we obtain the desired automaton. J

I Lemma 9. For every conjunctive Büchi- or parity-TAGC A one can construct conjunctive
Büchi- or parity-PTAGC B1, . . . ,Bn (respectively), such that L(A) = L(B1) ∪ . . . ∪ L(Bn).

Proof sketch. The proof follows a similar idea to [2], where an analogous statement was
proven for finite trees. The elimination of negated atomic constraints is based on the following
idea. If we want the automaton to check a negated constraint ¬(q ≈ q′), we can use copies q̂,
q̂′ of the states that the automaton can use in exactly one position of the run in place of q and
q′. With this modification, the constraint ¬(q ≈ q′) can be rewritten as (q̂ 6≈ q̂′). The general
construction is a bit more technical because the automaton has to guess which negated
constraints are checked, and then apply the above idea to these constraints in parallel. J

P. Landwehr and C. Löding 47:7

One can show, that the language of example 3, that is the language of all trees containing
a node labelled with a, is not recognizable by safety-PTAGC. Therefore, the statement in
Lemma 9 does not hold for safety automata.

I Lemma 10. For every conjunctive safety-, Büchi- or parity-PTAGC A one can construct
an equivalent conjunctive and simplified safety-, Büchi- or parity-PTAGC B (respectively).

Proof sketch. The basic idea is to delay the constraints that compare a subtree with the
full tree by one step. To be more precise, for a constraint q0 ≈ q′ involving the initial state
of A, the automaton B verifies that at each position u ∈ domt at which q′ appears, the label
t(u) is identical to t(ε), and it also verifies that the right subtree t|u0 is equal to t|0 as well
as that the left subtree t|u1 is equal to t|1 (similarly for disequality constraints). J

3.3 Closure Properties
We now analyze the closure properties of tree automata with global constraints for infinite
trees. As it turns out, the closure properties with regard to Boolean operations are identical
to the case of finite trees ([2]). But the proofs sometimes require a few extra steps, since we
use a model with a single initial state.

I Lemma 11. The class of languages recognizable by conjunctive and simplified PTAGC is
effectively closed under union.

Proof. Let A1 and A2 be conjunctive and simplified parity-PTAGC. Wlog. QA1 ∩QA2 =
∅. Define the automaton A∪ := (Q,Σ, qstart,∆, p, C), where Q := {qstart} ∪ QA1 ∪ QA2 ,
∆ := ∆A1 ∪∆A2 ∪{(qstart, a, q

′, q′′) | (qA1
0 , a, q′, q′′) ∈ ∆A1 ∨ (qA2

0 , a, q′, q′′) ∈ ∆A2}. For each
q ∈ QA1 , p(q) := pA1(q) and for each q ∈ QA2 , p(q) := pA2(q). (p(qstart) can be defined
arbitrarily.), and C := CA1 ∧ CA2 .

Note thatA∪ is indeed conjunctive and simplified and it holds that L(A∪) = L(A1)∪L(A2)
(since if Ai is positive, CAi

is satisfied if no state form QAi
appears in the run). Also note

that if A1 and A2 are safety- or Büchi-PTAGC, then so is A∪. J

I Theorem 12. The classes of languages recognizable by Büchi- and parity-TAGC are
effectively closed under union and intersection, but they are not closed under complement.

Proof sketch. The closure under union follows from Lemma 8 and Lemma 11. The closure
under intersection can be shown by a standard product construction. For showing the
non-closure under complement, we can closely follow the ideas from [9] for the corresponding
result on finite trees. The idea is to take a language, for which the automaton would have
to verify infinitely many independent equalities. On the other hand, to check membership
for the complement language it suffices to guess only a single disequality. Concretely, we
can show that for Σ = {a, b}, the language L := {t ∈ Tω

Σ | ∀i ∈ N : t|0i10 = t|0i11} is not
recognizable by a TAGC but its complement can be accepted by a Büchi-TAGC. J

Since Lemma 9 does not hold for safety automata, we have to prove closure properties in
a different way in this case.

I Theorem 13. The class of languages recognizable by safety-TAGC as well as the class
of languages recognizable by safety-PTAGC is closed under union and intersection, but not
under complement.

Proof sketch. The proof in the case of PTAGC follows exactly the proof of Theorem 12. In
the case of TAGC the we make use of the trick from example 3 (describing a reachability
condition with the constraint formula). J

STACS 2019

47:8 Tree Automata with Global Constraints for Infinite Trees

4 Decision Problems

In this section, we first present some undecidability results, and then show the decidability
of the emptiness problem for PTAGC, which only use equality constraints.

4.1 Undecidability Results
The universality problem is to decide, given a TAGC A over Σ whether L(A) = Tω

Σ .
The universality problem for tree automata with constraints on finite trees was shown

to be undecidable in [8]. Therefore the following theorem is not surprising. In principle,
we could give a reduction from the case of finite trees, using the results from [8] and [10].
However, one can also easily provide a direct proof by a reduction from the halting problem
of two-register machines.

I Theorem 14. The universality problem for Büchi-TAGC is undecidable, even for Büchi-
PTAGC without disequality constraints.

The regularity problem is to decide, given an automaton A, whether L(A) is regular.
Barguñó et. al. have shown the undecidability of the regularity problem on finite trees.

I Theorem 15 ([2]). The regularity problem is undecidable for tree automata with global
equality constraints for finite trees.

I Corollary 16. The regularity problem for Büchi-TAGC is undecidable.

Proof Sketch. From a given tree automaton A with global equality constraints on finite
trees (for a formal definition see eg. [8]) over the alphabet Σ construct a Büchi-TAGC A′ over
Σ ∪ {⊥} where ⊥ is a new symbol, such that A′ accepts precisely those trees t′ ∈ Tω

Σ∪{⊥} for
which there exists a tree t ∈ L(A) with t′(u) = t(u) for all u ∈ domt and t′(u) = ⊥ for all
u 6∈ domt. Then L(A′) is regular if and only if L(A) is regular. J

4.2 Emptiness Problem
We now discuss the decidability of the emptiness problem for TAGC. To be precise, we prove
that the emptiness problem for parity-PTAGC without 6≈-constraints is decidable. We do
this by a reduction to rigid equality constraints (recall that rigid PTAGC have only reflexive
≈-constraints).

We first note in Lemma 17 that for rigid parity-TAGC without 6≈-constraints, the
emptiness reduces to the case without constraints, which is known to be decidable (see,
e.g., [23, 24]). In Lemma 20 we then present a construction to obtain a rigid automaton
(this construction also works in the presence of non-reflexive disequality constraints, while
Lemma 17 only works without disequality constraints). The construction in Lemma 20 relies
on the existence of memoryless runs for conjunctive parity-PTAGC (to be defined below),
which we prove in Lemma 18.

I Lemma 17. For each rigid parity-TAGC A without 6≈-constraints, L(A) = ∅ if and only
if L(ta(A)) = ∅.

Proof. It trivially holds that L(A) ⊆ L(ta(A)). Thus we only have to show that L(ta(A)) 6= ∅
implies L(A) 6= ∅. Now let L(ta(A)) 6= ∅. Then the standard emptiness game (see [23, 24])
for parity tree automata gives us a tree t ∈ L(ta(A)) with accepting run ρ such that for all
u, u′ ∈ domt, ρ(u) = ρ(u′) implies t|u = t|u′ . Therefore ρ is an accepting run of A as well,
which implies L(A) 6= ∅. J

P. Landwehr and C. Löding 47:9

Let A be a parity-PTAGC and t ∈ Tω
Σ be a tree. Let ρ be a run of A on t. We say ρ

is memoryless if for all nodes u, u′ ∈ domt we have that ρ(u) = ρ(u′) and t|u = t|u′ implies
ρ|u = ρ|u′ . That is, if ρ is in the same state at two nodes with identical subtrees, then ρ is
the same on these two subtrees.

I Lemma 18. Let A be a parity-PTAGC and let t ∈ L(A) be a tree accepted by A. Then
there exists a memoryless run of A on t.

Proof sketch. A corresponding result is known for standard parity tree automata (see [26,
end of Section 7]). The idea is to modify the membership game for an automaton A and a
tree t (called coloring game in [26], Automaton-Pathfinder-Game in [24], and referred to as
ΓA,t in [23]) by quotienting the game graph w.r.t. equal subtrees. A memoryless (also called
positional) winning strategy for the player called “Automaton” in this new game then yields
a run of the desired form. In the presence of constraints, we additionally need to start from
an accepting run of A, and restrict the game to the positions corresponding to the run. J

I Example 19. Lemma 18 requires the automaton A to be positive. This requirement is
indeed neccessary, since there exists a TAGC that recognizes a non-empty language, but
does not have a memoryless run: Define the safety-TAGC A := ({q0, q1, q2}, {a}, q0,∆, C)
by setting ∆ := {(q0, a, q1, q0), (q0, a, q2, q0), (q1, a, q0, q0), (q2, a, q0, q0)} and C := ¬(q0 6≈
q1) ∧ ¬(q0 6≈ q2). For C to be satisfied on the only tree t over the alphabet {a}, both states
q1 and q2 have to appear. But there is no memoryless run of A in which both states appear.

I Lemma 20. For each conjunctive and simplified parity-PTAGC A without reflexive 6≈-
constraints, one can construct an equivalent rigid and simplified parity-PTAGC A′.

Proof. Let A be the given conjunctive and simplified parity-PTAGC. The automaton A′
that we construct basically guesses a memoryless run of A on the input tree and verifies
that it is indeed an accepting run. The difficulty is that A′ can only use reflexive equality
constraints in order to verify the equality constraints imposed by the guessed run of A.
Assume, for example, that q ≈ q′ is a constraint of A, and that q and q′ appear in the run
ρ of A that is guessed by A′. In order to check equality of the subtrees at the positions in
which q and q′ occur in ρ, A′ needs to go into the same state at all these positions. Thus, A′
cannot distinguish anymore between positions with q and q′. However, at the same time, A′
has to check that the parity condition is satisfied along all the branches of the guessed run
ρ. For this purpose, we use the existence of memoryless runs, as guaranteed by Lemma 18.
Since all subtrees at q positions in the run are the same, in a memoryless run, all subruns at
q positions are also the same. We can speak of the run from q. Intuitively, the automaton
A′ guesses how these subruns from the constrained states are connected. That is, if in the
run from q there is path that leads to q′, and k is the maximal priority on this path, then A′
stores this information. If, furthermore, in the run from q′ there is a path to q with maximal
priority k′, then the maximum of k, k′ has to be even (otherwise, the underlying run of A
would contain a rejecting path, and A′ has to guess an accepting run of A).

Obviously, the problems and ideas described above are not restricted to pairs of states: If
there is an additional constraint of the form q′ ≈ q′′, and q, q′, q′′ all occur in the run, then
the states q, q′, q′′ are in the same class. Formally, for a given subset X of the states, the
equality constraints of A naturally define a relation over X. We take the symmetric and
transitive closure of this relation. The class of a state q (in the set X) consists of all states
that are related with q in this closure. Note that the class of q is empty if and only if q is not
related to any other state from X by an equality constraint. We say that q is a constrained
state (again w.r.t. X) if its class is nonempty.

STACS 2019

47:10 Tree Automata with Global Constraints for Infinite Trees

The automaton A′ guesses the set X of states occurring in the run of A, for each class
a set S ⊆ X of states that can occur at a subtree corresponding to that class, and for all
(S, q) and (S′, q′) with q ∈ S and q′ ∈ S′, how these states are connected in the subruns on
the subtrees. The information about the connections is stored in a graph G. This is a fixed
information (X,G) that is guessed at the beginning of the run and does not change anymore.

Then A′ starts in the initial state of A and guesses a run of A. When the guessed run
enters a constrained state q, then A′ goes to a state that starts simulating runs from all the
states that can occur at the root of the subtree of q. Whenever one of the simulated runs
enters a constrained state, then this is only possible if the other simulated runs agree with
the information on the connection of subruns stored in G. In this case, the simulation is
restarted from the set of the new constrained state.

Formally, let A = (Q,Σ,∆, q0, p, C) be a conjunctive and simplified parity-PTAGC. We
start by defining the graphs that where informally explained above. GA is defined as the set
of vertex- and edge-labelled directed graphs G = (VG, EG, νG, µG) with
1A. vertex labels νG : VG → {(S, q) ∈ 2Q × Q | q ∈ S} (as explained above, a set S

corresponds to the set of states that appear at the root of some subtree that is constrained
by an equality constraint in the run of A).

1B. Each two vertices have different labels, and for each vertex with label (S, q) and each
q′ ∈ S there is a vertex labelled (S, q′).

1C. For each q ≈ q′ ∈ C, whenever labels (S, q) and (S′, q′) appear, then S = S′ (each
class is contained in a unique set). And for each vertex labelled (S, q) there are states
q′, q′′ ∈ S with q′ ≈ q′′ ∈ C (each set contains at least one class).

1D. For each q 6≈ q′ ∈ C with q 6= q′, there is no vertex labelled (S, q) with q′ ∈ S (states
with a disequality constraint cannot appear at the root of the same subtree).

2A. edge labels µG : EG → (2p(Q) \∅). (Intuitively, an edge label for an edge (S, q)→ (S′, q′)
encodes the allowed maximal priorities on the paths from q to q′ in the run of A.)

2B. for every cycle e1e2 . . . ek with ei ∈ EG, and all x1, x2, . . . , xk ∈ p(Q) with xi ∈ µG(ei),
we have max{xi | 1 ≤ i ≤ k} is even (concatenating the paths encoded in the edges of G
leads to an accepting path in the run of A).

Note that properties 1A. and 1B. imply that GA is finite. These graphs are used to define
“allowed transitions” such that the underlying guessed run of A satisfies the parity condition.

I Example 21. We give an example for such a graph G. Let A := (Q,Σ,∆, q0, p, C) be the
parity-PTAGC with

Q := {q0, q1, q
′
1, q2, q

′
2, q3, q4}

∆ :=
{

(q0, x, q1, q
′
1), (q1, x, q1, q4), (q′1, x, q4, q2), (q2, x, q3, q3),

(q3, x, q
′
2, q
′
2), (q′2, x, q3, q3) (q4, x, q4, q4) | x ∈ Σ

}
p(q0) = p(q1) = p(q′1) = p(q4) = 0 and p(q2) = p(q′2) = 1 and p(q3) = 2
C := (q1 ≈ q′1) ∧ (q2 ≈ q′2)

One possible graph in GA is depicted in Figure 1. The constructed automaton A′ then can
guess X = Q as the set of states that are allowed to appear in the run. And it can guess the
graph from Figure 1 to remember allowed transitions.

For the formal construction of A′, we use the following notation. For each S ⊆ Q we
enumerate the states as S = {qS

1 , . . . , q
S
|S|}, where qS

j < qS
j+1 for all j ≤ |S| and < is an

arbitrary but fixed total order on Q.
Now define A′ := (Q′,Σ,∆′, q′0,Acc′, C ′) where

P. Landwehr and C. Löding 47:11

(S1, q1)

(S1, q
′
1)

(S1, q4)

(S2, q2)

(S2, q
′
2)

(S2, q4)

{0}

{0}
{0}

{0}

{0}

{1, 2}

{2}

{0}

Figure 1 One possible graph from GA where A is the parity-PTAGC from example 21. Here
S1 is the set {q1, q′

1, q4} and S2 is the set {q2, q′
2, q4}. Note that every circle can produce only a

maximum priority which is even.

Q′ := {qI} ∪ (Qstate ×Qfix), where

Qstate ⊆ 2Q ×
⋃

k≤|Q|

(Q× p(Q))k and Qfix ⊆ 2Q ×GA

such that ((S,w), (X,G)) ∈ (Qstate × Qfix) if and only if the following properties are
satisfied (the intuition of the components is explained below):

Either S = {q0} or S ⊆ Q such that there is a vertex labelled (S, q) in G for some
(and therefore all) q ∈ S.
w ∈ (X × p(X))|S|.
For each vertex labelled (S′, q′) in G, we have q′ ∈ X (and thus also S′ ⊆ X).

Informally, Qstate contains two kinds of information: The set for the most recently visited
class, and a vector which contains for each element of that set a state and the highest
priority visited up to now. This information is updated in every step. As explained
earlier, Qfix contains information that is guessed once at the very beginning and then
remains unchanged for the remainder of the run.
q′0 := qI

∆′ := ∆init ∪ ∆trans, where ∆init contains the transitions that are applicable at the
initial state, and ∆trans contains all other transitions. We first define ∆trans: Let
((S,w), (X,G)) ∈ Q′ be a state and let a ∈ Σ be a letter. The automaton chooses for
each entry wj = (qj , pj) in w = (w1, . . . , w|S|) a transition (qj , a, q

0
j , q

1
j) ∈ ∆, such that

qi
j ∈ X for both i ∈ {0, 1}, and one of the following holds:
Either {qi

j | j ≤ |S|}∩{q ∈ X | ∃q′ ∈ X : q ≈ q′ ∈ C} = ∅. That is, none of the guessed
successor states in direction i is a constrained state in X. In this case, the i-successor
is ((S,w′), (X,G)), where w′ :=

((
qi
1,max(p1, p(qi

1))
)
, . . . ,

(
qi
|S|,max(p|S|, p(qi

|S|))
))
.

Or there is a constrained state qi
j and a vertex label (S′, qi

j) of G, such that
∗ S = {q0} (the run enters a class for the first time), or
∗ S 6= {q0}, and for each j ≤ |S|, the edge label µ(ej) of the edge from (S, qS

j) to
(S′, qi

j) contains the priority pj (the path segments of the simulated runs are encoded
in G).

In these cases, let wS′ :=
((
qS′

1 , p(qS′

1)
)
, . . . ,

(
qS′

|S′|, p(qS′

|S′|)
))
, and the i-successor be

the state ((S′, wS′), (X,G)). (The simulation of the runs is reset to the states in S′.)
This fully defines ∆trans. We conclude the definition of ∆′ by setting

∆init :=
{(
qI , a, P

′, P ′′
)
|
(((
{q0}, ((q0, p(q0)))

)
,
(
X,G

))
, a, P ′, P ′′

)
∈ ∆trans, (X,G) ∈ Qfix

}
.

STACS 2019

47:12 Tree Automata with Global Constraints for Infinite Trees

Let P ⊆ Q′ be the set of states ((S,wS), (X,G)) with wS :=
((
qS
1 , p(qS

1)
)
, . . . ,(

qS
|S|, p(qS

|S|)
))
, which are used when a class is entered (see the second case in the

definition of ∆trans). By a slight abuse of notation, we say for q ∈ Q and P ∈ Q′ that
q ∈ P if P = ((S,w), (X,G)) and w = ((q1, p1), . . . , (q|S|, p|S|)) with q ∈ {q1, . . . , q|S|}.
Then define C ′ :=

∧
P∈P P ≈ P ∧

∧
P,P ′∈Q′,q 6≈q′∈C,q∈P,q′∈P ′ P 6≈ P ′.

Acc′ should verify, that each branch is accepting. For each branch in a run, there are
two possibilities: Either there are infinitely many states in P or not. If there are, then
the allowed transitions in G verify that each branch of the run of A that is simulated in
this branch of the run of A′ was accepting. In the case that there are only finitely many
states from P, the acceptance condition has to verify that in each of the branches of the
run of A that are simulated along this branch of the run of A′, the maximum priority
visited infinitely often is even.
Instead of directly defining Acc′, we use an approach similar to Lemma 6. Here we have
to be very careful to not reintroduce new irreflexive constraints. First note that it is
possible to construct a deterministic parity word automaton, that reads the states along
the branches in a run of A′, and verifies that (assuming no additional states from P are
read) all described paths of A satisfy the acceptance condition of A. This can easily be
seen if one constructs a nondeterministic automaton for the complement language, i.e.
guess an index j ∈ 1, . . . , |Q|, and check whether the highest priority along this branch is
odd. This automaton then can be determinized and complemented (see [23]). Let this
deterministic word automaton be B = (S,Q, s0, δ, pB). Define the deterministic parity
word automaton B′ := (S ∪ {ŝ}, Q, s0, δB′ , pB′) where

δB′(s, q) :=

ŝ if q ∈ P
s0 if q 6∈ P and s = ŝ

δ(s, q) if q 6∈ P and s 6= ŝ

,

pB′(s) := pB(s) for all s ∈ S and pB′(ŝ) :=
{

max(p(S)) if max(p(S)) is even
max(p(S)) + 1 if max(p(S)) is odd.

That is, B′ behaves like B on states in Q \ P, and whenever a state from P is read, it
transitions into ŝ. Thus this automaton accepts precisely those sequences of states that
satisfy the acceptance condition Acc′. We then construct the automaton A′nB′ according
to Lemma 6. A closer look at the construction of A′nB′ reveals, that this did introduce
non-reflexive ≈-constraints of the form (q, s) ≈ (q, s′) for q ∈ P and s ∈ S ∪ {ŝ}. But by
the definition of B′, δB′(s, q) = ŝ for all q ∈ P, s ∈ S ∪{ŝ}, and therefore states (q, s) with
q ∈ P and s 6= ŝ are unreachable. Removing these states from A′nB′ does not change
the recognized language, but eliminates all non-reflexive ≈-constraints. J

It turns out that Lemma 20 does not hold, if we allow reflexive 6≈-constraints. One can
show, that the language {t ∈ Tω

Σ | t|0 = t|1 and t|0i 6= t|0j for all i 6= j} is not recognizable
by a PTAGC with reflexive ≈-constraints.

Lemma 8, Lemma 20 and Lemma 17 combined with the fact that the emptiness problem
for parity tree automata without constraints is decidable, imply the following theorem:

I Theorem 22. The emptiness problem for parity-PTAGC without 6≈-constraints is decidable.

In order to compute a concrete witness for the non-empiness, the following result is important.

P. Landwehr and C. Löding 47:13

Table 1 Summary of our closure and decidability results.

safety- Büchi- parity = Muller
PTAGC TAGC PTAGC = TAGC PTAGC = TAGC

Union (∪) X X X X

Intersection (∩) X X X X

Complement (¬) × × × ×
Emptiness (= ∅?) Xwithout 6≈ ? XPTAGC without 6≈ XPTAGC without 6≈

Universality (= T ω
Σ ?) ? × × ×

Regularity ? × × ×

I Corollary 23. Each nonempty language recognizable by a parity-PTAGC without disequality
constraints contains a regular tree.1

Proof. This Corollary follows from the proof of Lemma 17, since the regular tree obtained
from the membership game of standard tree automata (see [23, 24]) is also contained in the
language of the parity-PTAGC. J

5 Conclusion

We have made a first step in extending the theory of TAGC from finite to infinite trees. The
conversion of acceptance conditions works in the same way as for tree automata without
constraints. Our results on closure and decidability properties of TAGC are summarized
in Table 1. As shown in the table, the models of TAGC and PTAGC have the same
expressive power for Büchi- and parity conditions. Safety conditions are not preserved by
our construction of PTAGC. In particular, we conjecture that Lemma 9 does not hold for
safety-TAGC. In Example 3 we present a language that is recognizable by a safety-TAGC
that makes use of Boolean negation in its constraint formula. We are convinced that this
language is not recognizable by safety-PTAGC, but currently we only have a proof in the
case that we disallow reflexive 6≈-constraints. Showing that this language is not recognizable
by safety-PTAGC would also show that safety-PTAGC are not closed under complement.

The main open problem that remains, is the emptiness problem in the presence of
disequality constraints. The pumping arguments that are used in the case of finite trees [2],
do not (directly) generalize to infinite trees because an infinite tree can be equal to one of
its subtrees. So it seems that one needs to develop new methods to deal with disequality
constraints on infinite trees.

References
1 Franz Baader and Alexander Okhotin. Solving Language Equations and Disequations with

Applications to Disunification in Description Logics and Monadic Set Constraints. In Logic
for Programming, Artificial Intelligence, and Reasoning - 18th International Conference,
LPAR-18, volume 7180 of Lecture Notes in Computer Science, pages 107–121. Springer, 2012.
doi:10.1007/978-3-642-28717-6.

2 Luis Barguñó, Carles Creus, Guillem Godoy, Florent Jacquemard, and Camille Vacher. The
Emptiness Problem for Tree Automata with Global Constraints. In Proceedings of the 25th

1 A regular tree is the unfolding of a finite graph, see [23, 24] for more precise definitions.

STACS 2019

http://dx.doi.org/10.1007/978-3-642-28717-6

47:14 Tree Automata with Global Constraints for Infinite Trees

Annual IEEE Symposium on Logic in Computer Science, LICS 2010, pages 263–272. IEEE
Computer Society, 2010.

3 Orna Bernholtz, Moshe Y. Vardi, and Pierre Wolper. An Automata-Theoretic Approach
to Branching-Time Model Checking. In Proceedings of the 6th International Conference on
Computer Aided Verification, CAV ’94, volume 818 of Lecture Notes in Computer Science,
pages 142–155. Springer, 1994.

4 Bruno Bogaert and Sophie Tison. Equality and Disequality Constraints on Direct Subterms in
Tree Automata. In Proceedings of STACS 92, 9th Annual Symposium on Theoretical Aspects of
Computer Science, volume 577 of Lecture Notes in Computer Science, pages 161–171. Springer,
1992.

5 Arnaud Carayol, Christof Löding, and Olivier Serre. Automata on Infinite Trees with Equality
and Disequality Constraints Between Siblings. In Proceedings of the 31st Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS ’16, New York, NY, USA, July 5-8, 2016,
pages 227–236, 2016. doi:10.1145/2933575.2934504.

6 Luca Cardelli and Giorgio Ghelli. TQL: a query language for semistructured data based
on the ambient logic. Mathematical Structures in Computer Science, 14(3):285–327, 2004.
doi:10.1017/S0960129504004141.

7 Emmanuel Filiot, Jean-Marc Talbot, and Sophie Tison. Satisfiability of a Spatial Logic with
Tree Variables. In Proceedings of Computer Science Logic, 21st International Workshop, CSL
2007, 16th Annual Conference of the EACSL, volume 4646 of Lecture Notes in Computer
Science, pages 130–145. Springer, 2007. doi:10.1007/978-3-540-74915-8_13.

8 Emmanuel Filiot, Jean-Marc Talbot, and Sophie Tison. Tree Automata with Global Constraints.
In Proceedings of Developments in Language Theory, 12th International Conference, DLT
2008, volume 5257 of Lecture Notes in Computer Science, pages 314–326. Springer, 2008.
doi:10.1007/978-3-540-85780-8_25.

9 Emmanuel Filiot, Jean-Marc Talbot, and Sophie Tison. Tree Automata with Global Constraints.
Int. J. Found. Comput. Sci., 21(4):571–596, 2010. doi:10.1142/S012905411000743X.

10 Florent Jacquemard, Francis Klay, and Camille Vacher. Rigid tree automata and applications.
Inf. Comput., 209(3):486–512, 2011. doi:10.1016/j.ic.2010.11.015.

11 Barbara Jobstmann and Roderick Bloem. Optimizations for LTL Synthesis. In Formal Methods
in Computer-Aided Design, 6th International Conference, FMCAD 2006, pages 117–124. IEEE
Computer Society, 2006.

12 Michael Kaminski and Tony Tan. Tree Automata over Infinite Alphabets. In Pillars of
Computer Science, Essays Dedicated to Boris (Boaz) Trakhtenbrot on the Occasion of His 85th
Birthday, volume 4800 of Lecture Notes in Computer Science, pages 386–423. Springer, 2008.

13 Felix Klaedtke and Harald Rueß. Monadic Second-Order Logics with Cardinalities. In Automata,
Languages and Programming, 30th International Colloquium, ICALP 2003, Eindhoven, The
Netherlands, June 30 - July 4, 2003. Proceedings, volume 2719 of Lecture Notes in Computer
Science, pages 681–696. Springer, 2003.

14 Orna Kupferman and Moshe Y. Vardi. Safraless Decision Procedures. In 46th Annual IEEE
Symposium on Foundations of Computer Science, FOCS’05, Proceedings, pages 531–542. IEEE
Computer Society, 2005.

15 Patrick Landwehr and Christof Löding. Projection for Büchi Tree Automata with Constraints
Between Siblings. In Developments in Language Theory, DLT 2018, volume 11088 of Lecture
Notes in Computer Science, pages 478–490. Springer, 2018. doi:10.1007/978-3-319-98654-8.

16 Frank Nießner and Ulrich Ultes-Nitsche. A complete characterization of deterministic regular
liveness properties. Theor. Comput. Sci., 387(2):187–195, 2007. doi:10.1016/j.tcs.2007.07.
038.

17 Amir Pnueli and Roni Rosner. On the Synthesis of a Reactive Module. In Proceedings of the
Symposium on Principles of Programming Languages, POPL’89, pages 179–190, 1989.

18 Michael O. Rabin. Decidability of Second-Order Theories and Automata on Infinite Trees.
Transactions of the American Mathematical Society, 141:1–35, 1969.

http://dx.doi.org/10.1145/2933575.2934504
http://dx.doi.org/10.1017/S0960129504004141
http://dx.doi.org/10.1007/978-3-540-74915-8_13
http://dx.doi.org/10.1007/978-3-540-85780-8_25
http://dx.doi.org/10.1142/S012905411000743X
http://dx.doi.org/10.1016/j.ic.2010.11.015
http://dx.doi.org/10.1007/978-3-319-98654-8
http://dx.doi.org/10.1016/j.tcs.2007.07.038
http://dx.doi.org/10.1016/j.tcs.2007.07.038

P. Landwehr and C. Löding 47:15

19 Michael O. Rabin. Automata on Infinite Objects and Church’s Problem. American Mathematical
Society, Boston, MA, USA, 1972.

20 Helmut Seidl, Thomas Schwentick, and Anca Muscholl. Numerical document queries. In
Proceedings of the Twenty-Second ACM SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems, June 9-12, 2003, San Diego, CA, USA, pages 155–166. ACM, 2003.

21 James W. Thatcher and Jesse B. Wright. Generalized finite automata theory with an application
to a decision problem of second-order logic. Mathematical Systems Theory, 2(1):57–81, 1968.

22 Wolfgang Thomas. Automata on Infinite Objects. In Handbook of Theoretical Computer
Science, volume B: Formal Models and Semantics, pages 133–192. Elsevier Science Publishers,
Amsterdam, 1990.

23 Wolfgang Thomas. Languages, Automata, and Logic. In G. Rozenberg and A. Salomaa,
editors, Handbook of Formal Language Theory, volume III, pages 389–455. Springer, 1997.

24 Moshe Y. Vardi and Thomas Wilke. Automata: from logics to algorithms. In Logic and
automata - history and perspectives, volume 2 of Texts in Logic and Games, pages 629–724.
Amsterdam University Press, 2007.

25 Margus Veanes and Nikolaj Bjørner. Symbolic tree automata. Inf. Process. Lett., 115(3):418–
424, 2015. doi:10.1016/j.ipl.2014.11.005.

26 Wieslaw Zielonka. Infinite games on finitely coloured graphs with applications to automata
on infinite trees. Theoretical Computer Science, 200(1-2):135–183, 1998.

STACS 2019

http://dx.doi.org/10.1016/j.ipl.2014.11.005

Constructive Discrepancy Minimization with
Hereditary L2 Guarantees
Kasper Green Larsen
Department of Computer Science, Aarhus University, Denmark
larsen@cs.au.dk

Abstract
In discrepancy minimization problems, we are given a family of sets S = {S1, . . . , Sm}, with each
Si ∈ S a subset of some universe U = {u1, . . . , un} of n elements. The goal is to find a coloring
χ : U → {−1,+1} of the elements of U such that each set S ∈ S is colored as evenly as possible. Two
classic measures of discrepancy are `∞-discrepancy defined as disc∞(S, χ) := maxS∈S |

∑
ui∈S

χ(ui)|

and `2-discrepancy defined as disc2(S, χ) :=
√

(1/|S|)
∑

S∈S

(∑
ui∈S

χ(ui)
)2

. Breakthrough work

by Bansal [FOCS’10] gave a polynomial time algorithm, based on rounding an SDP, for finding
a coloring χ such that disc∞(S, χ) = O(lgn · herdisc∞(S)) where herdisc∞(S) is the hereditary
`∞-discrepancy of S. We complement his work by giving a clean and simple O((m + n)n2) time
algorithm for finding a coloring χ such disc2(S, χ) = O(

√
lgn · herdisc2(S)) where herdisc2(S) is the

hereditary `2-discrepancy of S. Interestingly, our algorithm avoids solving an SDP and instead relies
simply on computing eigendecompositions of matrices. To prove that our algorithm has the claimed
guarantees, we also prove new inequalities relating both herdisc∞ and herdisc2 to the eigenvalues of
the incidence matrix corresponding to S. Our inequalities improve over previous work by Chazelle
and Lvov [SCG’00] and by Matousek, Nikolov and Talwar [SODA’15+SCG’15]. We believe these
inequalities are of independent interest as powerful tools for proving hereditary discrepancy lower
bounds. Finally, we also implement our algorithm and show that it far outperforms random sampling
of colorings in practice. Moreover, the algorithm finishes in a reasonable amount of time on matrices
of sizes up to 10000× 10000.

2012 ACM Subject Classification Theory of computation

Keywords and phrases Discrepancy, Hereditary Discrepancy, Combinatorics, Computational Geo-
metry

Digital Object Identifier 10.4230/LIPIcs.STACS.2019.48

Funding This work is supported by a Villum Young Investigator Grant and an AUFF Starting
Grant.

Acknowledgements The author wishes to thank Nikhil Bansal for useful discussions and pointers
to relevant literature. The author also thanks an anonymous STOC reviewer for comments that
simplified the PartialColor algorithm.

1 Introduction

Combinatorial discrepancy minimization is an important field with numerous applications in
theoretical computer science, see e.g. the excellent books by Chazelle [9] and Matousek [16]. In
discrepancy minimization problems, we are typically given a family of sets S = {S1, . . . , Sm},
with each Si ∈ S a subset of some universe U = {u1, . . . , un} of n elements. The goal is
to find a red-blue coloring of the elements of U such that each set S ∈ S is colored as
evenly as possible. More formally, if we define the m× n incidence matrix A with ai,j = 1 if
uj ∈ Si and ai,j = 0 otherwise, then we seek a coloring x ∈ {−1,+1}n minimizing either the
`∞-discrepancy disc∞(A, x) := ‖Ax‖∞ or the `2-discrepancy disc2(A, x) = (1/

√
m)‖Ax‖2.

We say that the `∞-discrepancy of A is disc∞(A) := minx∈{−1,+1}n disc∞(A, x) and the
© Kasper G. Larsen;
licensed under Creative Commons License CC-BY

36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019).
Editors: Rolf Niedermeier and Christophe Paul; Article No. 48; pp. 48:1–48:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:larsen@cs.au.dk
https://doi.org/10.4230/LIPIcs.STACS.2019.48
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

48:2 Constructive Discrepancy Minimization with Hereditary L2 Guarantees

`2-discrepancy of A is disc2(A) := minx∈{−1,+1}n disc2(A, x). With this matrix view, it is
clear that discrepancy minimization makes sense also for general matrices and not just ones
arising from set systems.

Much research has been devoted to understanding both the `∞- and `2-discrepancy of
various families of set systems and matrices. In particular set systems corresponding to
incidences between geometric objects such as axis-aligned rectangles and points have been
studied extensively, see e.g. [17, 15, 1, 11]. Another fruitful line of research has focused
on general matrices, including the celebrated “Six Standard Devitations Suffice” result by
Spencer [21], showing that any n× n matrix with |ai,j | ≤ 1 admits a coloring x ∈ {−1,+1}n

such that disc∞(A, x) = O(
√
n). Finding low discrepancy colorings for set systems where

each element appears in at most t sets (the matrix A has at most t non-zeroes per column,
all bounded by 1 in absolute value) has also received much attention. Beck and Fiala [7] gave
a deterministic algorithm that finds a coloring x with disc∞(A, x) = O(t). Banaszczyk [2]
improved this to O(

√
t lgn) when t ≥ lgn. Determining whether a discrepancy of O(

√
t) can

be achieved remains one of the biggest open problems in discrepancy minimization.

Constructive Discrepancy Minimization. Many of the original results, like Spencer’s [21]
and Banaszczyk’s [2] were purely existential and it was not clear whether polynomial time
algorithms finding such colorings were possible. In fact, Charikar et al. [8] presented very
strong negative results in this direction. More concretely, they proved that it is NP-hard to
even distinguish whether the `∞- or `2-discrepancy of an n×n set system is 0 or Ω(

√
n). The

first major breakthrough on the upper bound side was due to Bansal [3], who amongst others
gave a polynomial time algorithm for finding a coloring matching the bounds by Spencer.
Brilliant follow-up work by Lovett and Meka [14] gave simpler randomized algorithms
achieving the same. A deterministic algorithm for Spencer’s result was later given by Levy
et al. [12]. A number of constructive algorithms were also given for the “sparse” set system
case, finally resulting in polynomial time algorithms [4, 6, 5] matching the existential results
by Banaszczyk.

Another very surprising result in Bansal’s seminal paper [3] shows that, given a matrix A,
one can find in polynomial time a coloring x achieving an `∞-discrepancy roughly bounded
by the hereditary discrepancy of A. Hereditary discrepancy is a notion introduced by Lovász
et al. [13] in order to prove discrepancy lower bounds. The hereditary `∞-discrepancy of
a matrix A is defined herdisc∞(A) := maxB disc∞(B), where B ranges over all matrices
obtained by removing a subset of the columns in A. In the terminology of set systems,
the hereditary discrepancy is the maximum discrepancy over all set systems obtained by
removing a subset of the elements in the universe. We also have an analogous definition
for hereditary `2-discrepancy: herdisc2(A) := maxB disc2(B). Based on rounding an SDP,
Bansal gave a polynomial time algorithm for finding a coloring x achieving disc∞(A, x) =
O(lgnherdisc∞(A)). This is quite surprising in light of the strong negative results by
Charikar et al. [8], since it shows that is is in fact possible to find a low discrepancy coloring
of an arbitrary matrix as long as all its submatrices have low discrepancy.

Our Results Overview. Our main algorithmic result is an `2 equivalent of Bansal’s algorithm
with hereditary guarantees. More concretely, we give a polynomial time algorithm for finding
a coloring x such that disc2(A, x) = O(

√
lgn · herdisc2(A)). We note that neither our result

nor Bansal’s approximately imply the other: In one direction, the coloring x we find might
have very low `2 discrepancy, but a very large value of ‖Ax‖∞. In the other direction,
herdisc∞(A) may be much larger than herdisc2(A), thus Bansal’s algorithm does not give
any guarantees wrt. herdisc2(A).

K.G. Larsen 48:3

Our algorithm takes a very different approach than Bansal’s in the sense that we com-
pletely avoid solving an SDP. Instead, we first prove a number of new inequalities relating
herdisc2(A) and herdisc∞(A) to the eigenvalues of ATA. Relating hereditary discrepancy to
the eigenvalues of ATA was also done by Chazelle and Lvov [10] and by Matoušek et al. [18].
However the result by Chazelle and Lvov is too weak for our applications as it degenerates
exponentially fast in the ratio between m and n. The result of Matoušek et al. could be used,
but can only show that we find a coloring such that disc2(A, x) = O(lg3/2 n ·herdisc2(A)). We
believe our new inequalities are of independent interest as strong tools for proving discrepancy
lower bounds.

With these inequalities established, we design a simple and efficient deterministic al-
gorithm, inspired by Beck and Fiala’s [7] algorithm for sparse set systems. Our key idea is
to find a coloring x that is almost orthogonal to all the eigenvectors of ATA corresponding
to large eigenvalues. This in turn means that ‖Ax‖2 becomes bounded by herdisc2(A).

We now proceed to present the previous results for proving lower bounds on the hereditary
discrepancy of matrices in order to set the stage for presenting our new results.

Previous Hereditary Discrepancy Bounds. One of the most useful tools in proving lower
bounds for hereditary discrepancy is the determinant lower bound proved in the original
paper introducing hereditary discrepancy:

I Theorem 1 (Determinant Lower Bound (Lovász et al. [13])). For an m× n real matrix A it
holds that

herdisc∞(A) ≥ max
k

max
B

1
2 |det(B)|1/k,

where k ranges over all positive integers up to min{n,m} and B ranges over all k × k

submatrices of A.

While it is easier to bound the max determinant of a submatrix B than it is to bound the
discrepancy of a matrix directly, it still requires one to argue that we can find some B where
all eigenvalues are non-zero. Chazelle and Lvov demonstrated how it suffices to bound the
k’th largest eigenvalue of a matrix in order to derive hereditary discrepancy lower bounds:

I Theorem 2 (Chazelle and Lvov [10]). For an m × n real matrix A with m ≤ n, let
λ1 ≥ · · · ≥ λn ≥ 0 denote the eigenvalues of ATA. For any integer k ≤ m, it holds that

herdisc∞(A) ≥ 1
218−n/k

√
λk.

The result of Chazelle and Lvov has two substantial caveats. First, it requires m ≤ n. Since
we will be using the partial coloring framework, we will end up with matrices having very
few columns but many rows. This completely rules out using the above result for analysing
our new algorithm. Since k ≤ m, the lower bound also goes down exponentially fast in the
gap between m and n (we note that Chazelle and Lvov didn’t explicitly state that one needs
k ≤ m, but since rank(A) ≤ m, we have λk = 0 whenever k > m).

Chazelle and Lvov used their eigenvalue bound to prove the following trace bound which
has been very useful in the study of set systems corresponding to incidences between geometric
objects:

I Theorem 3 (Trace Bound (Chazelle and Lvov [10])). For an m × n real matrix A with
m ≤ n, let M = ATA. Then:

herdisc∞(A) ≥ 1
4324−n tr M2/ tr2 M

√
trM/n.

STACS 2019

48:4 Constructive Discrepancy Minimization with Hereditary L2 Guarantees

Matoušek et al. [18] presented an alternative to the result of Chazelle and Lvov, relating
herdisc∞(A) and herdisc2(A) to the sum of singular values of A, i.e. they proved:

I Theorem 4 (Matoušek et al. [18]). For an m × n real matrix A, let λ1 ≥ · · · ≥ λn ≥ 0
denote the eigenvalues of ATA. Then

herdisc∞(A) ≥ herdisc2(A) = Ω
(

1
lgn

n∑
k=1

√
λk

mn

)
.

which for all positive integers k ≤ min{m,n} implies:

herdisc∞(A) ≥ herdisc2(A) = Ω
(

k

lgn

√
λk

mn

)
.

Comparing the bound to the result of Chazelle and Lvov, we see that the loss in terms of the
ratio between k and n is much better. However for k,m and n all within a constant factor of
each other, Chazelle and Lvov’s bound implies herdisc∞(A) = Ω(

√
λk) whereas the bound

of Matoušek et al. loses a lgn factor and gives herdisc∞(A) ≥ herdisc2(A) = Ω(
√
λk/ lgn)

(strictly speaking, the bound in terms of the sum of
√
λk’s is incomparable, but the bound

only in terms of the k’th largest eigenvalue does lose this factor).

Our Results. We first give a new inequality relating herdisc∞(A) to the eigenvalues of ATA,
simultaneously improving over the previous bounds by Chazelle and Lvov, and by Matoušek
et al.:

I Theorem 5. For an m×n real matrix A, let λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 denote the eigenvalues
of ATA. For all positive integers k ≤ min{n,m}, we have

herdisc∞(A) ≥ k

2e

√
λk

mn
.

Notice that our lower bound goes down as k/
√
mn whereas Chazelle and Lvov’s goes down

as 18−n/k and requires m ≤ n. Thus our loss is exponentially better than theirs. Compared
to the bound by Matoušek et al., we avoid the lgn loss (at least compared to the bound
of Matoušek et al. that is only in terms of the k’th largest eigenvalue and not the sum of
eigenvalues).

Re-executing Chazelle and Lvov’s proof of the trace bound with the above lemma in
place of theirs immediately gives a stronger version of the trace bound as well:

I Corollary 6. For an m× n real matrix A, let M = ATA. Then:

herdisc∞(A) ≥ tr2 M

8emin{n,m} trM2

√
trM

max{m,n} .

In establishing lower bounds on herdisc2(A) in terms of eigenvalues, we need to first prove
an equivalent of the determinant lower bound for non-square matrices (and for `2-discrepancy
rather than `∞):

I Theorem 7. For an m× n real matrix A, we have

herdisc∞(A) ≥ herdisc2(A) ≥
√

n

8πem det(ATA)1/2n.

K.G. Larsen 48:5

We remark that proving Theorem 7 for the `∞-case appears as an exercise in [16] and we
make no claim that the proof of Theorem 7 requires any new or deep insights (we suspect
that it is folklore, but have not been able to find a mentioning of the above theorem in the
literature). We finally arrive at our main result for lower bounding hereditary `2-discrepancy:

I Corollary 8. For an m×n real matrix A, let λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 denote the eigenvalues
of ATA. For all positive integers k ≤ min{n,m}, we have

herdisc2(A) ≥ k

e

√
λk

8πmn.

We note that Theorem 5 actually follows (up to constant factors) from Corollary 8 using
the fact that herdisc∞(A) ≥ herdisc2(A), but we will present separate proofs of the two
theorems since the direct proof of Theorem 5 is very short and crisp.

The exciting part in having established Corollary 8, is that it hints the direction for giving
an efficient algorithm for obtaining colorings x with disc2(A, x) being bounded by some
function of herdisc2(A). More concretely, we give an algorithm that is based on computing
an eigendecomposition of ATA and using this to perform partial coloring that is orthogonal
to the eigenvectors corresponding to the largest eigenvalues. Via Corollary 8, this gives a
coloring with hereditary `2 guarantees. The precise guarantees of our algorithm are given in
the following:

I Theorem 9. There is an O((m + n)n2) time algorithm that given an m × n matrix A,
computes a coloring x ∈ {−1,+1}n satisfying disc2(A, x) = O(

√
lgn · herdisc2(A)).

We implemented our algorithm and performed various experiments to examine its practical
performance. Section 4 shows that the algorithm far outperforms random sampling a coloring
x ∈ {−1,+1}n. In fact, it far outperforms random sampling, even if we repeatedly sample
vectors for as long time as our algorithm runs and use the best one sampled. Moreover,
the algorithm is efficient enough that it can be run on 1000 × 1000 matrices in less than
10 seconds and on matrices of sizes up to 10000 × 10000 in about 4 hours on a standard
laptop. While it is conceivable that Bansal’s SDP based approach can be modified to give `2
guarantees with a polynomial running time, it seems highly unlikely that it can process such
large matrices in a reasonable amount of time. Moreover, our algorithm is much simpler to
analyse and implement.

2 Eigenvalue Bounds for Hereditary Discrepancy

In this section, we prove new results relating the hereditary discrepancy of a matrix A to the
eigenvalues of ATA. The section is split in two parts, one studying hereditary `∞-discrepancy
and one studying hereditary `2-discrepancy.

2.1 Hereditary `∞-discrepancy
Our first result concerns hereditary `∞-discrepancy and is a strengthening of the previous
bound due to Chazelle and Lvov [10] (see Section 1). The simplest formulation is the
following:

I Restatement of Theorem 5. For an m × n real matrix A, let λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0
denote the eigenvalues of ATA. For all positive integers k ≤ min{n,m}, we have

herdisc∞(A) ≥ k

2e

√
λk

mn
.

STACS 2019

48:6 Constructive Discrepancy Minimization with Hereditary L2 Guarantees

Theorem 5 is an immediate corollary of the following slightly more general result:

I Theorem 10. For an m × n real matrix A, let λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 denote the
eigenvalues of ATA. For all positive integers k ≤ min{n,m}, we have

herdisc∞(A) ≥ 1
2

(∏k
i=1 λi(

n
k

)(
m
k

))1/2k

Theorem 5 follows from Theorem 10 by using that
(

n
k

)
≤ (en/k)k and that

∏k
i=1 λi ≥ λk

k.
Thus our goal is to prove Theorem 10. The first step of our proof uses the following linear
algebraic fact:

I Lemma 11. For an m×n real matrix A, let λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 denote the eigenvalues
of ATA. For all positive integers k ≤ n, there exists an m× k submatrix C of A such that
det(CTC) ≥ (

∏k
i=1 λi)/

(
n
k

)
.

Proof. The k’th symmetric function of λ1, . . . , λn is defined as (see e.g. the textbook [19] p.
494): sk =

∑
1≤i1<···<ik≤n λi1 · · ·λik

. Since all λi are non-negative, we have sk ≥
∏k

i=1 λi. If
we let Sk(ATA) denote the set of all k × k principal submatrices of ATA, then it also holds
that (see e.g. the textbook [19] p. 494): sk =

∑
B∈Sk(AT A) det(B). Since |Sk(ATA)| =

(
n
k

)
there must be a B ∈ Sk(ATA) for which det(B) ≥

(∏k
i=1 λi

)
/
(

n
k

)
. Since B is a k × k

principal submatrix of ATA, it follows that there exists an m × k submatrix C of A such
that B = CTC and thus det(CTC) ≥

(∏k
i=1 λi

)
/
(

n
k

)
. J

With Lemma 11 established, we are ready to present the proof of Theorem 10:

Proof of Theorem 10. Let A be a real m× n matrix and let λ1 ≥ · · · ≥ λn ≥ 0 denote the
eigenvalues of ATA. From Lemma 11, it follows that for every k ≤ n, there is an m × k
submatrix C of A such that det(CTC) ≥ (

∏k
i=1 λi)/

(
n
k

)
. If we also have k ≤ m, we can

let Sk(C) denote the set of all k × k principal submatrices of C and use the Cauchy-Binet
formula to conclude that: det(CTC) =

∑
D∈Sk(C) det(D)2. But Sk(C) ⊆ Sk(A) hence there

must exist a k × k matrix D ∈ Sk(A) such that

det(D)2 ≥ det(CTC)
|Sk(C)| ≥

∏k
i=1 λi(

n
k

)(
m
k

) ⇒ |det(D)| ≥

√∏k
i=1 λi(

n
k

)(
m
k

) .
It follows from the determinant lower bound for hereditary discrepancy (Theorem 1) that

herdisc∞(A) ≥ 1
2 |det(D)|1/k ≥ 1

2

(∏k
i=1 λi(

n
k

)(
m
k

))1/2k

. J

Having established a stronger connection between eigenvalues and hereditary discrepancy
than the one given by Chazelle and Lvov [10], we can also re-execute their proof of the trace
bound and obtain the following strengthening:

I Restatement of Corollary 6. For an m× n real matrix A, let M = ATA. Then:

herdisc∞(A) ≥ tr2 M

8emin{n,m} trM2

√
trM

max{m,n} .

K.G. Larsen 48:7

Proof. Let λ1 ≥ · · · ≥ λn ≥ 0 denote the eigenvalues of M . Chazelle and Lvov [10] proved
that if we choose k = tr2 M/(2 trM2) then λk ≥ trM/(4n). Examining their proof, one can
in fact strengthen it slightly to λk ≥ trM/(4 min{m,n}) (their proof of ([10] Lemma 2.4)
considers a uniform random eigenvalue λ amongst λ1, . . . , λn and uses that trM = nE[λ].
However, one needs only λ to be uniform random amongst the non-zero eigenvalues and
there are at most min{m,n} such eigenvalues yielding trM = min{n,m}E[λ]). Inserting
these bounds in Theorem 5 gives us

herdisc∞(A) ≥ tr2 M

8e trM2

√
trM

mnmin{m,n} = tr2 M

8emin{n,m} trM2

√
trM

max{m,n} . J

2.2 Hereditary `2-discrepancy
This section proves the following determinant result for hereditary `2-discrepancy of m× n
matrices:

I Restatement of Theorem 7. For an m× n real matrix A with det(ATA) 6= 0, we have

herdisc∞(A) ≥ herdisc2(A) ≥
√
nm

8πe det(ATA)1/2n.

The fact herdisc∞(A) ≥ herdisc2(A) is true for all A, thus the difficulty in proving
Theorem 7 lies in establishing that herdisc2(A) ≥

√
nm/(8πe) det(ATA)1/2n. Our proof uses

many of the ideas from the proof of the determinant lower bound (Theorem 1) in [13]. We
start by introducing the linear discrepancy in the `2 setting and summarize known relations
between linear discrepancy and hereditary discrepancy.

I Definition 12. Let A be an m×n real matrix. Then its linear `2-discrepancy is defined as:

lindisc2(A) := max
c∈[−1,+1]

min
x∈{−1,+1}n

1√
m
‖A(x− c)‖2.

The linear `2-discrepancy has a clean geometric interpretation (this is a direct translation
of the similar interpretation of linear `∞-discrepancy given e.g. in [13, 16]). For an m×n real
matrix A, let: UA := {x : ‖Ax‖2 ≤

√
m}. For t > 0, place 2n translated copies U1, . . . , U2n

of tUA such that there is one copy centered at each point in {−1,+1}n. Then lindisc2(A) is
the least number t for which the sets Uj cover all of [−1,+1]n.

We will need the following relationship between the hereditary and linear discrepancy:

I Lemma 13 (Lovász et al. [13]). For all m× n real matrices A, it holds that lindisc2(A) ≤
2 herdisc2(A).

We remark that [13] proved Lemma 13 only for the `∞-discrepancy, but their proof only
uses the fact that {x : ‖Ax‖∞ ≤ 1} is centrally symmetric and convex (see [13] Lemma 1).
The same is true for the UA defined above.

In light of Lemma 13, we set out to lower bound the linear discrepancy of an m × n
matrix A in terms of det(ATA). We will prove the following lemma using an adaptation of
the ideas in [13] (we have not been able to find a proof of this result elsewhere, but remark
that the case of m = n should follow by adapting the proof in [13]):

I Lemma 14. Let A be an m × n real matrix with det(ATA) 6= 0. Then lindisc2(A) ≥√
n/(2πem) det(ATA)1/2n.

STACS 2019

48:8 Constructive Discrepancy Minimization with Hereditary L2 Guarantees

Proof. From the geometric interpretation given earlier, we know that if we place a copy of
lindisc2(A)UA on each point in {−1,+1}n, then they cover all of [−1, 1]n hence
vol(lindisc2(A)UA) ≥ vol([−1, 1]n)/2n = 1. But

vol(lindisc2(A)UA) = (lindisc2(A))n vol(UA)
= (lindisc2(A))n vol({x : ‖Ax‖2 ≤

√
m})

= (lindisc2(A))n vol({x : xTATAx ≤ m}).

Observe now that {x : xTATAx ≤ m} = {x : xT (m−1ATA)x ≤ 1} is an ellipsoid. It is well-
known that the volume of such an ellipsoid equals vn/

√
det(m−1ATA)=vn/

√
m−n det(ATA)

where vn is the volume of the n-dimensional `2 unit ball. Since vn = πn/2/Γ(n/2 + 1) ≤
(2πe/n)n/2, we conclude:

1 ≤ (lindisc2(A))nvn√
m−n det(ATA)

⇒

1 ≤ (lindisc2(A))n

(
2πem
n

)n/2 1√
det(ATA)

⇒

lindisc2(A) ≥
√

n

2πem det(ATA)1/2n. J

Combining Lemma 13 and Lemma 14 proves Theorem 7.
Having establishes Theorem 7, we are ready to prove our last result on hereditary

`2-discrepancy:

I Restatement of Corollary 8. For an m× n real matrix A, let λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 de-
note the eigenvalues of ATA. For all positive integers k ≤ min{n,m}, we have herdisc2(A) ≥
(k/e)

√
λk/(8πmn).

Proof. Let A be an m × n real matrix and let λ1 ≥ · · · ≥ λn ≥ 0 be the eigenvalues of
ATA. From Lemma 11, we know that for all k ≤ n, there is an m × k submatrix C of
A such that det(CTC) ≥ (

∏k
i=1 λi)/

(
n
k

)
≥ (kλk/(en))k. From Theorem 7, we get that

herdisc2(C) ≥
√
k/(8πem) det(CTC)1/2k ≥ (k/e)

√
λk/(8πmn). Since C is obtained from A

by deleting a subset of the columns, it follows that herdisc2(A) ≥ herdisc2(C), completing
the proof. J

3 Discrepancy Minimization with Hereditary `2 Guarantees

This section gives our new algorithm for discrepancy minimization. The goal is to prove the
following:

I Restatement of Theorem 9. There is an O((m+n)n2) time algorithm that given an m×n
matrix A, computes a coloring x ∈ {−1,+1}n satisfying disc2(A, x) = O(

√
lgn ·herdisc2(A)).

Our algorithm follows the same overall approach as several previous algorithms. The
general setup is that we first give a procedure for partial coloring. This procedure takes a
matrix A and a partial coloring x ∈ [−1,+1]n. We say that coordinates i of x such that
|xi| < 1 are live. If there are k live coordinates prior to calling the partial coloring method,
then upon termination we get a new vector γ such that the number of live coordinates in
x̂ = x+ γ is no more than k/2. At the same time, all coordinates of x̂ are bounded by 1 in
absolute value and ‖Ax̂‖2 is not much larger than ‖Ax‖2.

We start by presenting the partial coloring algorithm and then show how to use it to get
the final coloring.

K.G. Larsen 48:9

3.1 Partial Coloring
In this section, we present our partial coloring algorithm. The algorithm takes as input an
m× n matrix A and a vector x ∈ [−1,+1]n. We think of the vector x as a partial coloring.
We call a coordinate xi of x live if |xi| < 1 and we let k denote the number of live coordinates
in x. For ease of notation, we let livex(i) denote the index of the i’th live coordinate in x
and we define ⊕x : Rn × Rk → Rn as the function such that a⊕x b for a ∈ Rn and b ∈ Rk,
is the vector obtained from a by adding the i’th coordinate of b to the coordinate of index
livex(i) in a (where livex(i) refers to the i’th live coordinate in x).

Upon termination, the algorithm returns another vector γ ∈ Rk. If we let x̂ = x⊕x γ be
the vector in Rn obtained from x by adding γi to xlivex(i), then the partial coloring algorithm
guarantees the following:
1. There are at most k/2 live coordinates in x̂.
2. For all i, we have |x̂i| ≤ 1.
3. ‖Ax̂‖2

2 − ‖Ax‖2
2 = O(m(herdisc2(A))2).

Thus upon termination, the new vector x̂ has half as many live coordinates, and the
discrepancy did not increase by much. In particular the change is related to the hereditary
`2-discrepancy of A.

The main idea in our algorithm is to use the connection between eigenvalues and hereditary
`2-discrepancy that we proved in Corollary 8. Our algorithm proceeds in iterations, where in
each step it finds a vector v and adds it to γ. The way we choose v is roughly to find the
eigenvectors of ATA and then pick v orthogonal to the eigenvectors corresponding to the
largest eigenvalues. This bounds the difference ‖A(x⊕x (γ + v))‖2 − ‖A(x⊕x γ)‖2 in terms
of the eigenvalues and thus hereditary `2-discrepancy. At the same time, we use the ideas by
Beck and Fiala (and many later papers) where we include constraints forcing v orthogonal
to ei for every coordinate i that is not live. The algorithm is as follows:

PartialColor(A, x):
1. Let k denote the number of live coordinates in x and let C denote the m × k matrix

obtained from A by deleting all columns corresponding to coordinates that are not live.
2. Initialize γ = 0 ∈ Rk.
3. Compute an eigendecomposition of CTC to obtain the eigenvalues λ1 ≥ · · · ≥ λk ≥ 0

and corresponding eigenvectors µ1, . . . , µk.
4. While True:

a. Compute the set S of coordinates i such that |γi + xlivex(i)| = 1. If |S| ≥ k/2, return
γ.

b. Find a unit vector v orthogonal to all ej with j ∈ S and to all µi with i ≤ k/4.
c. Let σ = − sign(〈Ax,A(0⊕x v)〉). Compute the largest β > 0 such that all coordinates

of x⊕x (γ + σβv) are less than or equal to 1 in absolute value. Update γ ← γ + σβv.

Correctness. We prove that the vector γ returned by the above PartialColor algorithm
satisfies the three claimed properties. First observe that in every iteration of the while loop,
we find a vector v that is orthogonal to ei whenever |γi +xlivex(i)| = 1. Hence if |γi +xlivex(i)|
becomes 1, it never changes again. Moreover, by maximizing β in each iteration, we guarantee
that at least one more coordinate satisfies |γi + xlivex(i)| = 1 after every iteration. Thus the
algorithm terminates after at most k/2 iterations of the while loop and no coordinate of
x⊕x γ is larger than 1 in absolute value. What remains is to bound ‖A(x⊕x γ)‖2

2 − ‖Ax‖2
2.

STACS 2019

48:10 Constructive Discrepancy Minimization with Hereditary L2 Guarantees

Let v(i) denote the vector v found during the i’th iteration of the while loop. Upon
termination, we have that γ = σ1β1v

(1) + · · ·+ σrβrv
(r) where σi = − sign(〈Ax, v(i)〉) and

each v(i) is orthogonal to µ1, . . . , µk/4. Thus γ is also orthogonal to µ1, . . . , µk/4. We therefore
have:
‖A(x⊕x γ)‖2

2 = ‖A(x+ (0⊕x γ))‖2
2

≤ ‖Ax‖2
2 + ‖A(0⊕x γ)‖2

2 + 2〈Ax,A(0⊕x γ)〉

= ‖Ax‖2
2 + ‖Cγ‖2

2 + 2
r∑

i=1

〈Ax,A(0⊕x σiβiv
(i))〉

≤ ‖Ax‖2
2 + λk/4‖γ‖2

2 − 2
r∑

i=1

sign(〈Ax,A(0⊕x v
(i))〉)〈Ax,A(0⊕x βiv

(i))〉

= ‖Ax‖2
2 + λk/4‖γ‖2

2 − 2
r∑

i=1

sign(〈Ax,A(0⊕x v
(i))〉)2|〈Ax,A(0⊕x βiv

(i))〉|

≤ ‖Ax‖2
2 + ‖γ‖2

∞kλk/4 − 0

≤ ‖Ax‖2
2 + 4kλk/4.

We would like to use Corollary 8 to relate kλk/4 to the hereditary discrepancy of A. Since
C is an m × k submatrix of A, we have herdisc2(A) ≥ herdisc2(C). Using Corollary 8 we
have herdisc2(C) ≥ (k/4e)

√
λk/4/mk = (1/4e)

√
kλk/4/(8π)m. Hence we conclude that

‖Ax̂‖2
2 − ‖Ax‖2

2 ≤ 128e2πm(herdisc2(A))2 = O(m(herdisc2(A))2).

Running Time. Step 1. of PartialColor takes O(mk) time and step 2. takes O(k). Step 3.
takes O(mk2) time to compute CTC (can be improved via fast matrix multiplication) and
O(k3) time to compute the eigendecomposition. As argued above, each iteration of the while
loop increases the size of S by at least one. Hence there are no more than k/2 iterations of
the loop. Computing S in step (a) takes O(k) time. Finding the unit vector v in step (b) can
be done in O(k2) time as follows: Whenever adding a coordinate i to S, use Gram-Schmidt
to compute the normalized (unit-norm) projection êi of ei onto the orthogonal complement
of µ1, . . . , µk/4 and all previous vectors êj . This takes O(k2) time per i. To find v, sample a
uniform random unit vector in Rk and run Gram-Schmidt to compute its projection onto
the orthogonal complement of êj for j ∈ S and µ1, . . . , µk/4. The expected length of the
projection is Ω(1) and we can scale it to unit length afterwards. This gives the desired
vector. The Gram-Schmidt step takes O(k2) time. Computing A(0⊕x v) in step (c) takes
O(mk) time and computing Ax can be done outside the while loop in O(mn) time. The
inner product takes O(m) time to compute. Computing β and adding σβv to γ takes O(k)
time. Overall, the PartialColor algorithm takes O(mn+mk2 + k3) time. If Ax is given as
argument to the algorithm, the time is further reduced to O((m+ k)k2).

3.2 The Final Algorithm
Now that we have the PartialColor algorithm, getting to a low discrepancy coloring is
straight forward. Given an m× n matrix A, we initialize x← 0. We then repeatedly invoke
PartialColor(A, x). Each call returns a vector γ. We update x← x+ γ and continue. We
stop once there are no live coordinates in x, i.e. all coordinates satisfy |xi| = 1.

In each iteration, the number of live coordinates of i decreases by at least a factor two,
and thus we are done after at most lgn iterations. This means that the final vector x satisfies

‖Ax‖2
2 ≤ lgn ·O(m(herdisc2(A))2)⇒

‖Ax‖2 = O(
√
m lgn · herdisc2(A))⇒

disc2(A, x) = O(
√

lgn · herdisc2(A)).

K.G. Larsen 48:11

For the running time, observe that after each call to PartialColor, we can compute A(x+γ)
from Ax in O(mk) time. Thus we can provide Ax as argument to PartialColor and thereby
reduce its running time to O((m+ k)k2). Since k halves in each iteration, we get a running
time of

O

(lg n∑
i=1

(m+ n/2i)(n/2i)2

)
= O((m+ n)n2).

This concludes the proof of Theorem 9.

4 Experiments

In this section, we present a number of experiments to test the practical performance of
our discrepancy minimization algorithm. We denote the algorithm by L2Minimize in
the following. We compare it to two base line algorithms Sample and SampleMany.
Sample simply picks a uniform random {−1,+1} vector as its coloring. SampleMany
repeatedly samples a uniform random {−1,+1} vector and runs for the same amount of time
as L2Minimize. It returns the best vector found within the time limit.

The algorithms were implemented in Python, using NumPy and SciPy for linear algebra
operations. All tests were run on a MacBook Pro (15-inch, Late 2013) running macOS Sierra
10.13.3. The machine has a 2 GHz Intel Core i7 and 8GB DDR3 RAM.

We tested the algorithms on three different classes of matrices:
Uniform matrices: Each coordinate is uniform random and independently chosen among
−1 and +1.
2D Corner matrices: Obtained by sampling two sets P = {p1, . . . , pn} and Q =
{q1, . . . , qm} of n and m points in the plane, respectively. The points are sampled
uniformly in the [0, 1]× [0, 1] unit square. The resulting matrix has one column per point
pj ∈ P and one row per point qi ∈ Q. The entry (i, j) is 1 if pj is dominated by qi,
i.e. qi.x > pj .x and qi.y > pj .y and it is 0 otherwise. Such matrices are known to have
hereditary `2-discrepancy O(lg1.5 n) [20].
2D Halfspace matrices: Obtained by sampling a set P = {p1, . . . , pn} of n points in the
unit square [0, 1] × [0, 1], and a set Q of m halfspace. Each halfspace in Q is sampled
by picking one point a uniformly on either the left boundary of the unit square or on
the top boundary, and another point b uniformly on either the right boundary or the
bottom boundary of the unit square. The halfspace is then chosen uniformly to be either
everything above the line through a, b or everything below it. The resulting matrix has
one column per point pj ∈ P and one row per halfspace hi ∈ Q. The entry (i, j) is 1 if pj

is in the halfspace hi and it is 0 otherwise. Such matrices are known to have hereditary
`2-discrepancy O(n1/4) [15].

Each test is run 10 times and the average `2 discrepancy and average runtime is reported.
The running times of the algorithms varied exclusively with the matrix size and not the type
of matrix, thus we only show one time column which is representative of all types of matrices.
The results are shown in Table 1.

The table clearly shows that L2Minimize gives superior colorings for all types of matrices
and all sizes. The tendency is particularly clear on the structured matrices 2D Corner and
2D Halfspace where the coloring found by L2Minimize on 10000 × 10000 matrices is a
factor 25-30 smaller than a single round of random sampling (Sample) and a factor 5-7
better than random sampling for as long time as L2Minimize runs (SampleMany).

STACS 2019

48:12 Constructive Discrepancy Minimization with Hereditary L2 Guarantees

Table 1 Results of experiments with our L2Minimize algorithm. The Matrix Size column gives
the size m × n of the input matrix. The Disc columns shows disc2(A, x) = ‖Ax‖2/

√
m for the

coloring x found by the algorithm on the given type of matrix. Time is measured in seconds. Each
entry is the average of 10 executions.

Algorithm Matrix Size Disc Uniform Disc 2D Corner Disc 2D Halfspace Time (s)
L2Minimize 200× 200 7.2 1.8 1.6 < 1

Sample 200× 200 13.8 7.6 11.0 < 1
SampleMany 200× 200 11.6 2.3 2.7 < 1
L2Minimize 1000× 1000 15.7 1.9 2.3 9

Sample 1000× 1000 31.6 16.0 18.3 < 1
SampleMany 1000× 1000 28.9 4.9 5.5 9
L2Minimize 4000× 4000 31.0 2.1 2.6 717

Sample 4000× 4000 63.1 21.0 34.0 < 1
SampleMany 4000× 4000 60.3 9.5 10.7 717
L2Minimize 10000× 10000 48.3 2.1 3.1 15260

Sample 10000× 10000 99.9 51.4 96.8 < 1
SampleMany 10000× 10000 96.8 14.2 15.6 15260
L2Minimize 10000× 2000 35.9 2.1 2.7 535

Sample 10000× 2000 44.7 20.6 24.1 < 1
SampleMany 10000× 2000 43.4 6.7 8.0 535
L2Minimize 2000× 10000 21.4 1.8 2.0 5809

Sample 2000× 10000 99.9 40.8 70.8 < 1
SampleMany 2000× 10000 92.2 13.8 16.4 5809

The O((m + n)n2) running time makes the algorithm practical up to matrices of size
about 10000× 10000, at which point the algorithm runs for 15260 seconds ≈ 4 hours and 15
minutes.

References

1 R. Alexander. Geometric methods in the study of irregularities of distribution. Combinatorica,
10(2):115–136, 1990.

2 Wojciech Banaszczyk. Balancing vectors and Gaussian measures of n-dimensional convex
bodies. Random Structures & Algorithms, 12:351–360, July 1998.

3 Nikhil Bansal. Constructive Algorithms for Discrepancy Minimization. In Proc. 51th Annual
IEEE Symposium on Foundations of Computer Science (FOCS’10), pages 3–10, 2010.

4 Nikhil Bansal, Daniel Dadush, and Shashwat Garg. An Algorithm for Komlós Conjecture
Matching Banaszczyk’s Bound. In Proc. 57th IEEE Annual Symposium on Foundations of
Computer Science (FOCS’16), pages 788–799, 2016.

5 Nikhil Bansal, Daniel Dadush, Shashwat Garg, and Shachar Lovett. The Gram-Schmidt Walk:
A Cure for the Banaszczyk Blues. CoRR, abs/1708.01079, 2017. arXiv:1708.01079.

6 Nikhil Bansal and Shashwat Garg. Algorithmic Discrepancy Beyond Partial Coloring. In Proc.
49th Annual ACM SIGACT Symposium on Theory of Computing (STOC), STOC 2017, pages
914–926, 2017.

7 J. Beck and T. Fiala. Integer-making theorems. Discrete Applied Mathematics, 3:1–8, February
1981.

8 Moses Charikar, Alantha Newman, and Aleksandar Nikolov. Tight Hardness Results for
Minimizing Discrepancy. In Proc. 22nd Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA ’11, pages 1607–1614, 2011.

http://arxiv.org/abs/1708.01079

K.G. Larsen 48:13

9 Bernard Chazelle. The Discrepancy Method: Randomness and Complexity. Cambridge
University Press, 2000.

10 Bernard Chazelle and Alexey Lvov. A Trace Bound for the Hereditary Discrepancy. In Proc.
16th Annual Symposium on Computational Geometry, SCG ’00, pages 64–69, 2000.

11 Kasper Green Larsen. On Range Searching in the Group Model and Combinatorial Discrepancy.
SIAM Journal on Computing, 43(2):673–686, 2014.

12 Avi Levy, Harishchandra Ramadas, and Thomas Rothvoss. Deterministic Discrepancy Minimiz-
ation via the Multiplicative Weight Update Method. In Integer Programming and Combinatorial
Optimization - 19th International Conference, IPCO 2017, Waterloo, ON, Canada, June 26-28,
2017, Proceedings, pages 380–391, 2017.

13 L. Lovász, J. Spencer, and K. Vesztergombi. Discrepancy of Set-systems and Matrices. European
Journal of Combinatorics, 7(2):151–160, 1986. doi:10.1016/S0195-6698(86)80041-5.

14 Shachar Lovett and Raghu Meka. Constructive Discrepancy Minimization by Walking on the
Edges. SIAM Journal on Computing, 44(5):1573–1582, 2015.

15 J. Matoušek. Tight Upper Bounds for the Discrepancy of Half-Spaces. Discrete and Computa-
tional Geometry, 13:593–601, 1995.

16 J. Matousek. Geometric Discrepancy: An Illustrated Guide. Algorithms and Combinatorics.
Springer Berlin Heidelberg, 1999.

17 Jirí Matoušek and Aleksandar Nikolov. Combinatorial Discrepancy for Boxes via the gamma_2
Norm. In 31st International Symposium on Computational Geometry (SoCG 2015), volume 34,
pages 1–15, 2015.

18 Jiří Matoušek, Aleksandar Nikolov, and Kunal Talwar. Factorization Norms and Hereditary
Discrepancy. CoRR, abs/1408.1376, 2014. arXiv:1408.1376.

19 Carl D. Meyer, editor. Matrix Analysis and Applied Linear Algebra. Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA, 2000.

20 Aleksandar Nikolov. Tighter bounds for the discrepancy of boxes and polytopes. Mathematika,
63:1091–1113, 2017.

21 Joel Spencer. Six standard deviations suffice. Trans. Amer. Math. Soc., 289:679–706, 1985.

STACS 2019

http://dx.doi.org/10.1016/S0195-6698(86)80041-5
http://arxiv.org/abs/1408.1376

Quantum Advantage for the LOCAL Model in
Distributed Computing
François Le Gall
Graduate School of Informatics, Kyoto University
Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan

Harumichi Nishimura
Graduate School of Informatics, Nagoya University
Chikusa-ku, Nagoya, Aichi 464-8601, Japan

Ansis Rosmanis
Centre for Quantum Technologies, National University of Singapore
Block S15, 3 Science Drive 2, 117543, Singapore

Abstract
There are two central models considered in (fault-free synchronous) distributed computing: the
CONGEST model, in which communication channels have limited bandwidth, and the LOCAL
model, in which communication channels have unlimited bandwidth. Very recently, Le Gall and
Magniez (PODC 2018) showed the superiority of quantum distributed computing over classical
distributed computing in the CONGEST model. In this work we show the superiority of quantum
distributed computing in the LOCAL model: we exhibit two computational tasks that can be solved
in a constant number of rounds in the quantum setting but require Ω(n) rounds in the classical
(randomized) setting, where n denotes the size of the network.

2012 ACM Subject Classification Theory of computation → Quantum computation theory

Keywords and phrases Quantum computing, distributed computing, LOCAL model

Digital Object Identifier 10.4230/LIPIcs.STACS.2019.49

Acknowledgements FLG was partially supported by the JSPS KAKENHI grants No. 15H01677,
No. 16H01705 and No. 16H05853. HN was partially supported by the JSPS KAKENHI grants
No. 26247016, No. 16H01705 and No. 16K00015. AR was partially supported by the Singapore
Ministry of Education and the National Research Foundation under grant R-710-000-012-135. Part
of this work was done while AR was visiting Kyoto University, and AR would like to thank FLG for
hospitality.

1 Introduction

Classical distributed computing

A central topic in distributed computing is the study of synchronous network algorithms. Here
processors and communication channels are modeled using nodes and edges, respectively, and
executions proceed with round-based synchrony, where each node can transfer one message
to each adjacent node per round. The main quantity of interest is typically the number of
rounds needed to solve a computational task. Two fundamental models considered in the
literature are the LOCAL model, introduced by Linial [19, 20], and the CONGEST model,
introduced by Peleg [22].

The LOCAL model does not put any limitation on the size of the messages sent at each
round, and thus mainly characterizes the locality of the problem considered and the hardness
of breaking symmetry between nodes. Obviously all computational problems can be solved
with O(D) rounds in the LOCAL model, where D is the diameter of the network, by first

© François Le Gall, Harumichi Nishimura, and Ansis Rosmanis;
licensed under Creative Commons License CC-BY

36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019).
Editors: Rolf Niedermeier and Christophe Paul; Article No. 49; pp. 49:1–49:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.STACS.2019.49
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

49:2 Quantum Advantage for the LOCAL Model in Distributed Computing

collecting all the information about the network (including the inputs of all nodes) at some
node. Many important problems have significantly more efficient algorithms – we refer to [22]
for examples and to [8] for a recent classification.

In the CONGEST model, on the other hand, each message has restricted length (the
length is typically restricted to O(logn) bits, where n is the number of nodes in the network).
This corresponds to the situation of communication channels with limited bandwidth, in
which case congestions can arise. A simple example showing the striking difference between
these two models is deciding whether the diameter of the network is 2 or 3. This problem
requires Θ(n) rounds in the CONGEST model [11, 16, 23], while in the LOCAL model it
can be trivially solved with a constant number of rounds.

Quantum distributed computing

Quantum versions of both models can be naturally defined by replacing classical channels
by quantum channels between the processors (which are now quantum processors, i.e.,
processors that can process quantum information). Gavoille, Kosowski and Markiewicz [12]
first considered quantum distributed computing in the LOCAL model, and showed that for
several fundamental problems, such as Graph Coloring or Maximal Independent Set, allowing
quantum communication cannot lead to any significant advantage. More recently, Arfaoui
and Fraigniaud [2] observed that several lower bound techniques for the classical LOCAL
model hold in the quantum model as well.

The power of distributed network computation in the CONGEST model, where each node
can send O(logn) qubits per round to each neighbor, has been first investigated by Elkin,
Klauck, Nanongkai and Pandurangan [10]. The main conclusions reached in that paper were
that for many fundamental problems in distributed computing, such as computing minimum
spanning trees or minimum cuts, quantum communication does not, again, offer significant
advantages over classical communication. Recently, Le Gall and Magniez nevertheless showed
the superiority of quantum distributed computing in the CONGEST model for a concrete
problem [18]: they showed that the diameter of the network can be computed in Õ(

√
nD)

rounds in the quantum setting, where n is the number of nodes of the network and D is
the diameter of the network. In comparison, as mentioned above Ω(n) rounds are necessary
in the classical setting even if D is constant. It should be mentioned that from a purely
complexity-theoretic perspective most known separations between two-party classical and
quantum communication complexities (e.g., separations in the bounded-error setting for
the disjointness function [1, 7, 17]) can be converted in a straightforward way into similar
separations in the CONGEST model. The contribution of [18] is actually to give a separation
for an important problem in distributed computing.

A pressing open question is to understand whether a similar quantum speedup in distrib-
uted computing can be obtained in the LOCAL model. The only known gap is a factor of 2:
for each integer t ≥ 1, Gavoille, Kosowski and Markiewicz [12] constructed a computational
problem (inspired by the work by Greenberger, Horne and Zeilinger [13]) that can be solved
in t rounds in the quantum setting but requires 2t rounds in the classical setting.1 The
quantum upper bound comes from the observation that t rounds are enough to create entan-
glement between two nodes at distance 2t from each other. In this perspective, as mentioned
in [12], the speed-up factor of 2 may “look like a natural limit”. Note that, contrary to

1 A much larger gap is shown in [12] for the setting where the nodes of the network initially share a
globally entangled state. In the present paper, however, we consider the arguably more natural setting
where no prior entanglement is allowed.

F. Le Gall, H. Nishimura, and A. Rosmanis 49:3

the CONGEST model, known separations between two-party (or multiparty) quantum and
classical communication complexities seem meaningless to prove separations in the LOCAL
model due to the unlimited bandwidth between nodes.

Our results

In this work we show the existence of a large gap between the round complexities of quantum
and classical (randomized) distributed computation in the LOCAL model.

I Theorem 1. There exists a computational problem that can be solved with 2 rounds in the
quantum LOCAL model, but requires Ω(n) rounds in the classical LOCAL model, where n
denotes the number of nodes in the network.

The computational problem we construct to prove Theorem 1 is inspired by a construction
from [3], which was initially used to show the non-locality of measurement outcomes of graph
states. The same construction was recently also used by Bravyi, Gosset and König [5] to
prove their separation between quantum and classical constant-depth circuit complexities.
The problem, defined in Section 4, can be informally described as follows: on an n-node ring,
the nodes should output one of the possible outcomes that arise when measuring the graph
state corresponding to the ring in a basis depending on the input each node receives. We are
currently not aware of any applications of Theorem 1 for constructing quantum algorithms
for problems of interest to the distributed computing community, but nevertheless consider
this result as a valuable proof of concept showing that the quantum LOCAL model can be
arbitrarily more powerful than the classical LOCAL model.

The computational problem considered in Theorem 1 is a relation (i.e., for each input
there are multiple valid outputs). It is fairly easy to show that for any function (i.e., for
each input there is only one valid output at each node) the quantum and classical round
complexities are equal in the LOCAL model: we give a proof of this property in Appendix B.
We then investigate whether a separation similar to the separation of Theorem 1 can be
obtained for a computational problem without input. Such kinds of computational problems
(seen as sampling problems or computations of probability distributions) are the main targets
of the field of quantum supremacy (see [14] for a recent survey). Indeed, a major open
problem left in the work by Bravyi, Gosset and König [5] mentioned above is to prove
the superiority of constant-depth quantum circuits for the computation of a probability
distribution. We show that in the LOCAL model of distributed computing such a goal can
be achieved.

I Theorem 2. There exists a sampling problem that can be solved with 2 rounds in the
quantum LOCAL model, but requires Ω(n) rounds in the classical LOCAL model. The
classical lower bound holds even for constant-error additive approximation.

Theorem 2 is proved by considering the same computational problem as used in Theorem 1
but replacing the inputs by random bits. The proof nevertheless requires several adjustments,
in particular a careful analysis of the classical randomness shared during the execution of
the protocol.

Other relevant works

It is well known that quantum communication can offer significant advantages over classical
communication in several settings such as communication complexity or quantum games (see,
e.g., [6, 9, 25]). Concerning problems of interest to the distributed computing community,

STACS 2019

49:4 Quantum Advantage for the LOCAL Model in Distributed Computing

the main works not already mentioned are quantum algorithms for byzantine agreements
[4] and for distributed computing over anonymous networks, and in particular the design of
zero-error quantum algorithms for leader election [24] (see also [9]).

2 Preliminaries

2.1 Notations and definitions
Quantum gates

We assume that the reader is familiar with the basis of quantum computation and refer
to [21] for a standard reference. We will use the Hadamard gate H and the phase gate S
acting on one qubit:

H = 1√
2

(
1 1
1 −1

)
, S =

(
1 0
0 i

)
,

where i denotes the imaginary unit of complex numbers. We will also use the CNOT gate
acting on two qubits (called the control qubit and the target qubit) that maps the basis state
|a〉|b〉, for any two bits a, b ∈ {0, 1}, to the state |a〉|a⊕ b〉 where ⊕ denotes the exclusive OR.
Finally, we will need the following two 2-qubit gates (Controlled-Z and Controlled-S gates):

CZ =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 , CS =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 i

 .

Note that for the gates CZ and CS the order of the qubits the gates act on is unimportant.

Graph-theoretic notation

In this work all the graphs will be undirected and unweighted. For any graph G = (V,E)
and any node u ∈ V , we use N(u) to denote the set of neighbors of u.

Graph states

Graph states are a special type of quantum states that are associated with graphs [15]. Let
G = (V,E) be any undirected graph. The graph state associated with G is the quantum
state on |V | qubits constructed in the following way. Let {Qu}u∈V denote the |V | registers
used to store the qubits of the graph state (each register stores one qubit). First construct
the quantum state⊗

u∈V
|0〉Qu

in these registers. Then apply a Hadamard gate on each register. Finally, for each edge
{u, v} ∈ E, apply the gate CZ on the pair of registers (Qu,Qv). The order in which these
CZ gates are applied is unimportant, as they all commute.

The total variation distance

Given two probability distributions p, q : X → [0, 1] over a finite set X, the total variation
distance (also called statistical distance) between p and q is defined as 1

2
∑
x∈X |p(x)− q(x)|.

F. Le Gall, H. Nishimura, and A. Rosmanis 49:5

2.2 Classical and quantum LOCAL models
In this paper we consider the LOCAL communication model in both the classical and
quantum scenarios. The topology of the network is represented by a graph. Executions
proceed with round-based synchrony and each node can transfer one message to each adjacent
node per round. Initially the nodes of the network share neither any randomness nor, in the
quantum scenario, any entanglement.2 In this paper all the networks are undirected and
unweighted. All links and nodes of the network (corresponding to the edges and nodes of the
graph, respectively) are reliable and suffer no faults. Each node has a distinct identifier (its
size is irrelevant for our purposes). Initially, each node knows nothing about its location in
the global topology of the network except the set of edges incident to itself and the number
of nodes of the graph.

The processors at each node operate probabilistically in the classical LOCAL model, and
they operate quantumly in the quantum LOCAL model. The messages exchanged between
them are, respectively, classical and quantum. We do not consider the running time of the
processors, as we are only interested in the round complexity. While the classical lower
bound of Theorem 2 is proved using a relatively informal definition of the classical LOCAL
model, we include its formal definition in Appendix A for completeness.

2.3 The construction from prior works
We now describe the construction introduced in [3], and also used in [5], that shows that
non-locality can arise when measuring graph states. For any even integer d ≥ 2, we define the
graph Gd as a ring consisting of 3d nodes, and denote the nodes v0, v1, . . . , v3d−1 (see Figure 1).
It will be convenient to consider this graph as a triangle, with the three nodes v0, vd and v2d
as corners. We define VR = {vi | i ∈ {1, . . . , d− 1}}, VB = {vi | i ∈ {d+ 1, . . . , 2d− 1}} and
VL = {vi | i ∈ {2d+ 1, . . . , 3d− 1}} as the set of nodes on the right side, bottom side and
left side, respectively, of the triangle. We also define Veven as the set of all nodes of the graph
with even index, and Vodd as the set of all nodes with odd index.

v0

v1

v2

v3

v4v5v6v7v8

v9

v10

v11

VB

VL VR

Figure 1 The graph Gd (illustrated for d = 4).

Given three bits b0, b1, b2 ∈ {0, 1}, consider the process Pd(b0, b1, b2) described in Figure 2.

2 The classical lower bound of our first result (Theorem 6) actually holds even if the nodes of the network
initially share arbitrary randomness.

STACS 2019

49:6 Quantum Advantage for the LOCAL Model in Distributed Computing

1. Create the graph state on the graph Gd.
2. For each i ∈ {0, 1, 2} apply the quantum gate Sbi to the qubit of node vdi (i.e.,

depending on the value of the three bits b0, b1 and b2, apply either the gate S or
the identity gate I on each of three corner nodes v0, vd and v2d of the graph).

3. Apply the Hadamard gate H to each qubit of the graph.
4. Measure all qubits in the computational basis. For each v ∈ V , let mv denote the

outcome of the measurement done at node v.

Figure 2 The process Pd(b0, b1, b2).

From the measurement outcome of the process Pd(b0, b1, b2), let us define four bits mE ,
mR, mB and mL as follows:

mE =
⊕

v∈Veven

mv, mR =
⊕

v∈VR∩Vodd

mv,

mB =
⊕

v∈VB∩Vodd

mv, mL =
⊕

v∈VL∩Vodd

mv.

Refs. [3, 5] characterized which combinations of these four bits can arise as an outcome of
the process Pd(b0, b1, b2):

I Proposition 3. ([3, 5]) For any bits b0, b1, b2 and any measurement outcome of the process
Pd(b0, b1, b2), the identity mR ⊕mB ⊕mL = 0 holds. Additionally, we have:

mE = 0 if (b0, b1, b2) = (0, 0, 0),
mE ⊕mR ⊕mL = 1 if (b0, b1, b2) = (0, 1, 1),
mE ⊕mR ⊕mB = 1 if (b0, b1, b2) = (1, 0, 1),
mE ⊕mB ⊕mL = 1 if (b0, b1, b2) = (1, 1, 0).

It will be convenient to represent a measurement outcome {mv}v∈V as the binary string
m ∈ {0, 1}3d where the i-th bit is mvi

for each i ∈ {0, . . . , 3d − 1}. We define the support
of the process Pd(b0, b1, b2), and denote it Λd(b0, b1, b2), as the set of all binary strings in
{0, 1}3d corresponding to measurement outcomes arising (with non-zero probability) from
the process Pd(b0, b1, b2).

Finally, our lower bounds will rely on the following lemma, which essentially shows that
the quantum correlations from the process Pd(b0, b1, b2) cannot be simulated classically by
local affine functions.

I Lemma 4. ([3, 5]) Consider any affine function qE : {0, 1}3 → {0, 1} and any three affine
functions qR : {0, 1}2 → {0, 1}, qL : {0, 1}2 → {0, 1}, qB : {0, 1}2 → {0, 1} such that

qR(b0, b1)⊕ qB(b1, b2)⊕ qL(b0, b2) = 0

holds for any (b1, b2, b3) ∈ {0, 1}3. Then at least one of the four following equalities does not
hold:

qE(0, 0, 0) = 0,
qE(0, 1, 1)⊕ qR(0, 1)⊕ qL(0, 1) = 1,
qE(1, 0, 1)⊕ qR(1, 0)⊕ qB(0, 1) = 1,
qE(1, 1, 0)⊕ qB(1, 0)⊕ qL(1, 0) = 1.

F. Le Gall, H. Nishimura, and A. Rosmanis 49:7

3 Efficient Construction of Graph States

In this section we consider the construction of graph states in the distributed setting. More
precisely, we consider the following problem that we call the subgraph state construction
problem. The problem is defined on an arbitrary network G = (V,E). Each node u ∈ V
receives a bit cu ∈ {0, 1} as input. Let G′ = (V ′, E′) denote the subgraph of G induced by
the node set V ′ = {v ∈ V |cv = 1}. The problem asks to create the graph state corresponding
to G′, shared over the nodes in V ′: each node v ∈ V ′ of the network should own the
corresponding 1-qubit register of the graph state (which is the register Qv in the notations of
Section 2.1).

The following theorem shows that this problem can be done efficiently, which is essential
for the separation results presented in Sections 4 and 5.

I Theorem 5. In the quantum LOCAL model, the subgraph state construction problem can
be solved in 2 rounds.

Proof. The protocol is presented in Figure 3 and illustrated, for a path of two nodes, in
Figure 4. This is clearly a 2-round protocol: one round is used at Step 1(c) and one round is
used at Step 2(b).

Input: each node u ∈ V receives a bit cu
1. Each node u ∈ V does the following:
(a) it prepares one 1-qubit register Qu and, for each neighbor v ∈ N(u), one 1-qubit

register denoted Rvu (all these registers are initialized to the quantum state |0〉);
(b) it applies a Hadamard gate on Qu, and then a CNOT gate on (Qu,Rvu) with Qu

as control qubit, for each v ∈ N(u);
(c) it sends, for each v ∈ N(u), the register Rvu and the bit cu to node v.

2. Each node u ∈ V (which now owns the registers Qu and the registers Ruv just
received) does the following:

(a) it applies the gate CS to the pair of registers (Qu,Ruv) for each v ∈ N(u) such
that cu ∧ cv = 1;

(b) it sends back the register Ruv to node v, for each v ∈ N(u).
3. Each node u ∈ V (which now owns the registers Qu and the registers Rvu) does the

following:
(a) it applies a CNOT gate on (Qu,Rvu) with Qu as control qubit, for each v ∈ N(u);
(b) it discards the registers Rvu for all v ∈ N(u).

Figure 3 The quantum distributed algorithm solving the subgraph state construction problem.

We now prove that the protocol is correct. At the end of Step 1(b), the state of the whole
network is:

|ϕ〉 =
⊗
u∈V

 1√
2

1∑
j=0

|j〉Qu

⊗
v∈N(u)

|j〉Rv
u

 .

Let us fix any two nodes u and v such that {u, v} ∈ E. The state |ϕ〉 can be rewritten as

1
2

1∑
j=0

1∑
k=0
|j〉Qu |k〉Qv |j〉Rv

u
|k〉Ru

v
|ψj,u,k,v〉|χu,v〉

STACS 2019

49:8 Quantum Advantage for the LOCAL Model in Distributed Computing

where |χu,v〉 is a quantum state independent from bits i and j and

|ψj,u,k,v〉 =
⊗

v′∈N(u)\{v}

|j〉Rv′
u

⊗
u′∈N(v)\{u}

|k〉Ru′
v
.

Note that, for the state |ϕ〉, applying the gate CS to the pair of registers (Qu,Ruv) or (Qv,Rvu)
has the same effect as applying it to the pair of registers (Qu,Qv), yet the former can be
done locally. Thus, when node u applies the gate CS to the pair of registers (Qu,Ruv) and
node v applies the gate CS to the pair of registers (Qv,Rvu), the state |ϕ〉 is mapped to the
quantum state

CZ(Qu,Qv)|ϕ〉,

where CZ(Qu,Qv) denotes the gate CZ applied to the pair of registers (Qu,Qv). Since cu∧cv = 1
if and only if {u, v} ∈ E′, at the end of Step 2, the whole state of the network is ∏

{u,v}∈E′

CZ(Qu,Qv)

 |ϕ〉.
Step 3(a) disentangles the registers Rvu for all {u, v} ∈ E, restoring each of them to state |0〉.
Therefore, discarding the registers Rvu at Step 3(b) does not introduce decoherence in the
remaining qubits and, at the end of Step 3, we obtain the desired graph state shared by the
nodes in V ′. J

u

v

|0〉Qu

|0〉Rv
u

|0〉Rv
u

|0〉Qv

|0〉Ru
v

|0〉Ru
v

Step 1 Step 2 Step 3

H

H

CS

CS

Figure 4 Our protocol illustrated for a 2-path graph G = (V, E) with V = {u, v}, E = {{u, v}}
and cu = cv = 1 (the classical messages are omitted from the figure). The global state after Step 1,
2 and 3 is, respectively, 1

2 (|0000〉+ |0101〉+ |1010〉+ |1111〉), 1
2 (|0000〉+ |0011〉+ |1100〉 − |1111〉)

and 1
2 (|00〉+ |01〉+ |10〉 − |11〉), where the order of qubits is as they appear in the circuit from the

top to the bottom.

4 Separation between the Classical and Quantum LOCAL Models

In this section we prove Theorem 1.
For any even integer d ≥ 2, recall the network Gd = (V,E) defined in Section 2.3,

where V = {v0, . . . , v3d−1}. In this section we will consider the network Gd with node set
V ∪ {w0, w1, w2} and edge set E ∪ {{v0, w0}, {vd, w1}, {v2d, w2}}, which is obtained from Gd
by adding one node to each corner (see Figure 5).

F. Le Gall, H. Nishimura, and A. Rosmanis 49:9

w0

w2 w1

v0

v1

v2

v3

v4v5v6v7v8

v9

v10

v11

VB

VL VR

Figure 5 The network Gd considered to prove the separation (illustrated for d = 4).

We now describe the computational problem used to prove our separation. The network
considered is Gd, for any even integer d ≥ 2. The input consists of three bits b0, b1 and b2:
node w0 is given b0, node w1 is given b1, and node w2 is given b2 (the other nodes have no
input). The output is defined as follows: for each i ∈ {0, 1, . . . , 3d− 1}, the node vi should
output one bit xi. The nodes w0, w1 and w2 do not output anything. The output can thus
be seen as a binary string (x0, . . . , x3d−1) of length 3d. We say that this string is valid if it
is in the set Λd(b0, b1, b2).

The following theorem shows an upper bound on the complexity of this problem in the
quantum LOCAL model and a lower bound in the classical LOCAL model.

I Theorem 6. There exists a 2-round quantum algorithm that always outputs a valid
string. For any integer T ≤ d/2, no T -round classical algorithm can output a valid string
with probability greater than 7/8 on all inputs (b0, b1, b2) ∈ {0, 1}3, even if arbitrary prior
randomness is allowed.

Proof. The considered computational problem can easily be solved in two rounds in the
quantum setting by implementing the following process.

I Process 1. The nodes of the network first apply the 2-round algorithm of Theorem 5 with
input cw0 = cw1 = cw2 = 0 and cv = 1 for each v ∈ V . This constructs the graph state over
the subgraph Gd of Gd. Moreover, for each i ∈ {0, 1, 2}, the node wi concurrently sends its
input bi to its neighbor vdi (the messages can be appended to the messages of the algorithm
of Theorem 5). Finally, the nodes of V implement Steps 2–4 of the process Pd(b0, b1, b2),
which can be done without communication, and output their measurement outcomes.

Note that implementing Process 1 requires each node to know whether it is an input node
(w0, w1 or w2), a corner node on the ring (v0, vd or v2d) or a non-corner node on the ring
(all the other nodes). This is not a problem since each node knows its degree and the type of
the nodes depends only on their degrees: the nodes w0, w1 and w2 are the nodes of degree 1,
the nodes v0, vd and v2d are the nodes of degree 3, and all the other nodes have degree 2.

We now show the classical lower bound, which uses the same argument as in [3] and
holds even if the nodes of the network share prior randomness. Consider any classical
distributed algorithm A and fix its randomness r (the string r represents both the shared

STACS 2019

49:10 Quantum Advantage for the LOCAL Model in Distributed Computing

prior randomness and the random bits used by the algorithm). This defines a deterministic
algorithm that we denote A(r). Let us write qv(b0, b1, b2) the bit output at node v by A(r),
for each v ∈ V . Let us define

qE(b0, b1, b2) =
⊕

v∈Veven

qv(b0, b1, b2), qR(b0, b1, b2) =
⊕

v∈VR∩Vodd

qv(b0, b1, b2),

qB(b0, b1, b2) =
⊕

v∈VB∩Vodd

qv(b0, b1, b2), qL(b0, b1, b2) =
⊕

v∈VL∩Vodd

qv(b0, b1, b2).

Assume that the algorithm uses at most d/2 rounds. Then, for each v ∈ V , qv(b0, b1, b2)
depends only on one of the bits b0, b1, b2. Since all single-input Boolean functions are affine
and so are their sums, qE , qR, qB and qL are affine functions of b0, b1, b2. Moreover, qR
can only depend on b0 and b1, qB can only depend on b1 and b2, and qL can only depend
on b0 and b2. From Proposition 3 and Lemma 4 we get that, at least for one choice of
(b0, b1, b2) ∈ {0, 1}3, the output of A(r) is not a valid string (i.e., does not correspond to a
possible measurement outcome of the process Pd(b0, b1, b2)). A simple counting argument
then shows that there exists at least one choice of (b0, b1, b2) for which the original randomized
protocol A fails to output a valid string with probability at least 1/8. J

We are now ready to prove Theorem 1.

Proof of Theorem 1. Theorem 6 implies that any classical algorithm that outputs a valid
string with probability greater than 7/8 requires a number of rounds linear in the size of the
network (since d is a linear function of the size of network Gd).

We now show how to reduce the success probability from 7/8 to an arbitrary small value:
for any constant ε > 0 we construct a new computational problem, which can still be solved
in two rounds in the quantum setting, such that any classical algorithm solving this problem
with probability at least ε requires a number of rounds linear in the size of the network.
Let k be an integer. The problem considered is simply k independent copies of the problem
considered so far: the network considered has 3k(d+ 1) nodes and consists of k copies of the
network Gd. Each copy receives three bits and outputs a string of 3d bits. The output of
the whole network is correct if the strings output by each copy are all valid. This problem
can obviously be solved using two rounds in the quantum setting by constructing the graph
state over the whole network. Theorem 6 implies that for any integer T ≤ d/2, no T -round
classical algorithm can give a correct output with probability greater than (7/8)k on all
inputs, even if arbitrary prior randomness is allowed. Setting k = Θ(log(1/ε)) concludes the
proof. J

5 Separation for a Distribution

In this section we prove Theorem 2. The idea is to convert the relation of the previous
section into a distribution by requiring that each input is taken uniformly at random (and
requiring that the three nodes with an input output their inputs as well).

Recall Process 1 in the proof of Theorem 6. There, the actions of every node of Gd depend
only on the degree of the node, namely, whether its degree is 1, 2 or 3. The same is true for
the 2-round sampling protocol in the quantum LOCAL model described below, which also
uses the same network Gd. Therefore, for notational convenience, let us assume that every
node knows its global location in Gd.

Consider the probability distribution Γd generated by the following 2-round quantum
protocol. First, for each i ∈ {0, 1, 2}, the node wi chooses an unbiased random bit bi. Then
Process 1 is implemented, at the end of which, as specified, nodes u ∈ V each return one bit.
Meanwhile, the nodes w0, w1, w2 output, respectively, b0, b1, b2.

F. Le Gall, H. Nishimura, and A. Rosmanis 49:11

Theorem 2 immediately follows from the following result.

I Theorem 7. Every T ≤ d/4 round algorithm on Gd in the classical LOCAL model generates
a probability distribution that is at least 1/11 away from Γd in the total variation distance.

Proof. The proof proceeds as follows. Starting from the classical LOCAL model, we present
a series of increasingly powerful models on the network Gd. Each model receives no input
and returns one bit per node. Then we show that the last, the most powerful among these
models cannot generate a probability distribution that has a total variation distance less
than 1/11 to Γd.

Consider the classical LOCAL model on the network Gd. We assume that the randomness
of each node stems from a finite random bit string that it receives as an input, and all further
operations of the node are deterministic (see Appendix A.1 for technical details). We now
present a series of steps where each step either strengthens the model or maintains its power
while making it easier to analyze.

1. We assume that all the nodes know their location in the global topology.
2. We allow certain nodes to share randomness. In particular, for each i ∈ {0, 1, 2}, let Vi

be the set consisting of wi and all the nodes u ∈ V at distance at most T away from wi.
And let V⊥ = V \ (V0 ∪ V1 ∪ V2). We assume that, for i ∈ {0, 1, 2,⊥}, all nodes within
Vi share randomness, namely, they all start with the same random string Qi, which we
think of as a random variable.

Here it is worth pausing the model-strengthening steps to note that, in a T -round protocol,
the bit bi output by the node wi depends only on Qi, thus we may write it as a function
bi(Qi). Let pi be the probability that bi = 1. If there exists i ∈ {0, 1, 2} with pi /∈ [5/11, 6/11],
then the marginal distribution over bi is already at total variation distance greater than 1/11
away from the corresponding marginal distribution in Γd, and the whole distributions (Γd
and the one generated by the classical protocol) can be only even farther apart. Thus let
us assume that pi ∈ [5/11, 6/11] for all i ∈ {0, 1, 2}. Since Q0, Q1, Q2 are independent, each
(b0, b1, b2) ∈ {0, 1}3 is output with probability at least (5/11)3 > 1/11.

3. For i ∈ {0, 1, 2}, let Bi be a random variable that takes value 1 with probability pi and
value 0 with probability 1− pi. For both β ∈ {0, 1}, let Qβi be a random variable that
equals each value q of Qi such that bi(q) = β with probability Pr[Qi = q]/Pr[Bi = β].
We replace the shared randomness Qi by (Q0

i , Q
1
i , Bi) – each of the three variables being

independent – with an extra requirement that the node wi always outputs Bi. This is
clearly without loss of power, because we can recover Qi as QBi

i , for which bi(Qi) = Bi.
4. We share all the randomness except B0, B1, B2 among all the nodes. More precisely, we

assume that all nodes start with the randomness r = (Q⊥, Q0
0, Q

1
0, Q

0
1, Q

1
1, Q

0
2, Q

1
2). In

addition, for each i ∈ {0, 1, 2}, nodes in Vi start with an additional random bit Bi and
we preserve the requirement that wi must output Bi.

Now we need to show that the final model cannot generate a probability distribution
that has a total variation distance at most 1/11 to Γd. Note that, at the beginning of the
protocol, the value Bi is only known to nodes at distance at most T − 1 away from vdi, and,
after the protocol, it can be known only to nodes at distance 2T − 1 < d/2 away from vdi.
In particular, at the end of the protocol, each node of the network will know no more than
one of the values B0, B1, B2. All other communicated information is useless, as, aside from
B0, B1, B2, all other randomness is global.

STACS 2019

49:12 Quantum Advantage for the LOCAL Model in Distributed Computing

The remainder of the proof is almost equivalent to that of the classical lower bound in
Theorem 6, with the sole difference of the counting argument: instead of each choice of
(b0, b1, b2) being given with probability exactly 1/8, now each choice of (b0, b1, b2) is given
with probability at least 1/11. J

References

1 Scott Aaronson and Andris Ambainis. Quantum Search of Spatial Regions. Theory of
Computing, 1(1):47–79, 2005. doi:10.4086/toc.2005.v001a004.

2 Heger Arfaoui and Pierre Fraigniaud. What can be computed without communications?
SIGACT News, 45(3):82–104, 2014. doi:10.1145/2670418.2670440.

3 Jonathan Barrett, Carlton M. Caves, Bryan Eastin, Matthew B. Elliott, and Stefano Pironio.
Modeling Pauli measurements on graph states with nearest-neighbor classical communication.
Physical Review A, 75:012103, 2007. doi:10.1103/PhysRevA.75.012103.

4 Michael Ben-Or and Avinatan Hassidim. Fast quantum byzantine agreement. In Proceedings
of the 37th Annual ACM Symposium on Theory of Computing, pages 481–485, 2005. doi:
10.1145/1060590.1060662.

5 Sergey Bravyi, David Gosset, and Robert König. Quantum advantage with shallow circuits.
Science, 362(6412):308–311, 2018. doi:10.1126/science.aar3106.

6 Anne Broadbent and Alain Tapp. Can quantum mechanics help distributed computing?
SIGACT News, 39(3):67–76, 2008. doi:10.1145/1412700.1412717.

7 Harry Buhrman, Richard Cleve, and Avi Wigderson. Quantum vs. Classical Communication
and Computation. In Proceedings of the 30th ACM Symposium on the Theory of Computing,
pages 63–68, 1998. doi:10.1145/276698.276713.

8 Yi-Jun Chang and Seth Pettie. A Time Hierarchy Theorem for the LOCAL Model. In
Proceedings of the 58th IEEE Annual Symposium on Foundations of Computer Science, pages
156–167, 2017. doi:10.1109/FOCS.2017.23.

9 Vasil S. Denchev and Gopal Pandurangan. Distributed quantum computing: a new frontier
in distributed systems or science fiction? SIGACT News, 39(3):77–95, 2008. doi:10.1145/
1412700.1412718.

10 Michael Elkin, Hartmut Klauck, Danupon Nanongkai, and Gopal Pandurangan. Can quantum
communication speed up distributed computation? In Proceedings of the 2014 ACM Symposium
on Principles of Distributed Computing, pages 166–175, 2014. doi:10.1145/2611462.2611488.

11 Silvio Frischknecht, Stephan Holzer, and Roger Wattenhofer. Networks cannot compute their
diameter in sublinear time. In Proceedings of the 23rd Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 1150–1162, 2012. doi:10.1137/1.9781611973099.91.

12 Cyril Gavoille, Adrian Kosowski, and Marcin Markiewicz. What Can Be Observed Locally?
In Proceedings of the 23rd International Symposium on Distributed Computing, pages 243–257,
2009. doi:10.1007/978-3-642-04355-0_26.

13 Daniel M. Greenberger, Michael A. Horne, and Anton Zeilinger. Going beyond Bell’s The-
orem. In Bell’s Theorem, Quantum Theory, and Conceptions of the Universe, volume 37
of Fundamental Theories of Physics, pages 69–72. Springer, Dordrecht, 1989. doi:10.1007/
978-94-017-0849-4_10.

14 Aram W. Harrow and Ashley Montanaro. Quantum computational supremacy. Nature,
549:203–209, 2017. doi:10.1038/nature23458.

15 Marc Hein, Jens Eisert, and Hans J. Briegel. Multiparty entanglement in graph states. Physical
Review A, 69:062311, June 2004. doi:10.1103/PhysRevA.69.062311.

16 Stephan Holzer and Roger Wattenhofer. Optimal Distributed All Pairs Shortest Paths and
Applications. In Proceedings of the 2012 ACM Symposium on Principles of Distributed
Computing, pages 355–364, 2012. doi:10.1145/2332432.2332504.

http://dx.doi.org/10.4086/toc.2005.v001a004
http://dx.doi.org/10.1145/2670418.2670440
http://dx.doi.org/10.1103/PhysRevA.75.012103
http://dx.doi.org/10.1145/1060590.1060662
http://dx.doi.org/10.1145/1060590.1060662
http://dx.doi.org/10.1126/science.aar3106
http://dx.doi.org/10.1145/1412700.1412717
http://dx.doi.org/10.1145/276698.276713
http://dx.doi.org/10.1109/FOCS.2017.23
http://dx.doi.org/10.1145/1412700.1412718
http://dx.doi.org/10.1145/1412700.1412718
http://dx.doi.org/10.1145/2611462.2611488
http://dx.doi.org/10.1137/1.9781611973099.91
http://dx.doi.org/10.1007/978-3-642-04355-0_26
http://dx.doi.org/10.1007/978-94-017-0849-4_10
http://dx.doi.org/10.1007/978-94-017-0849-4_10
http://dx.doi.org/10.1038/nature23458
http://dx.doi.org/10.1103/PhysRevA.69.062311
http://dx.doi.org/10.1145/2332432.2332504

F. Le Gall, H. Nishimura, and A. Rosmanis 49:13

17 Peter Høyer and Ronald de Wolf. Improved Quantum Communication Complexity Bounds
for Disjointness and Equality. In Proceedings of the 19th Annual Symposium on Theoretical
Aspects of Computer Science, pages 299–310, 2002. doi:10.1007/3-540-45841-7_24.

18 François Le Gall and Frédéric Magniez. Sublinear-Time Quantum Computation of the
Diameter in CONGEST Networks. In Proceedings of the 2018 ACM Symposium on Principles
of Distributed Computing, pages 337–346, 2018. doi:10.1145/3212734.3212744.

19 Nathan Linial. Distributive Graph Algorithms-Global Solutions from Local Data. In Proceedings
of the 28th Annual Symposium on Foundations of Computer Science, pages 331–335, 1987.
doi:10.1109/SFCS.1987.20.

20 Nathan Linial. Locality in Distributed Graph Algorithms. SIAM Journal on Computing,
21(1):193–201, 1992. doi:10.1137/0221015.

21 Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information.
Cambridge University Press, 2011. doi:10.1017/CBO9780511976667.

22 David Peleg. Distributed computing: a locality-sensitive approach. Society for Industrial and
Applied Mathematics, 2000. doi:10.1137/1.9780898719772.

23 David Peleg, Liam Roditty, and Elad Tal. Distributed Algorithms for Network Diameter and
Girth. In Proceedings of the 39th International Colloquium on Automata, Languages, and
Programming, pages 660–672, 2012. doi:10.1007/978-3-642-31585-5_58.

24 Seiichiro Tani, Hirotada Kobayashi, and Keiji Matsumoto. Exact Quantum Algorithms for
the Leader Election Problem. ACM Transactions on Computation Theory, 4(1):1:1–1:24, 2012.
doi:10.1145/2141938.2141939.

25 Ronald de Wolf. Quantum communication and complexity. Theoretical Computer Science,
287(1):337–353, 2002. doi:10.1016/S0304-3975(02)00377-8.

A Technical Definition of the Classical LOCAL Model

We formalize a T -round classical LOCAL network as follows. We model each node u ∈ V as
a special Turing machine with a work tape, a message tape Mu,v for each neighbor v ∈ N(u),
and a read-only random tape. Initially, the work tape contains the input of u (if there is
any), the message tapes are blank, and the random tape is initialized to unbiased random
bits, independent from one another and from the content of other tapes.

The set of states of each Turing machine is a disjoint union S0∪ . . .∪ST ∪{qfin}, with one
designated “starting” state qt ∈ St for each t ∈ {0, . . . , T}. The state qfin is the final state,
and, for convenience, we define qT+1 = qfin. The Turing machine starts in q0, and, for every
t ∈ {0, . . . , T}, we require that a state in St can only transition into a state in St ∪{qt+1}. In
addition, we require that the transition from St to qt+1 occurs with probability 1, regardless
of the content of the work and the message tapes when the Turing machine first enters qt.

We formalize the exchange of messages as follows. In round t ∈ {0, . . . , T}, all Turing
machines start in their corresponding state qt and run until they all have reached their
corresponding state qt+1. Then, if t < T , the configuration of message tapes Mu,v and Mv,u

are swapped for every {u, v} ∈ E, and all Turing machines start round t+ 1. Otherwise, if
t = T , the work tape of u ∈ V contains the output of that node.

A.1 Restriction to finite and initial randomness
In the proof of Theorem 2, we are essentially assuming that the random tapes are of finite
length. That is without loss of generality because, given any protocol on a finite network
and any ε > 0, there exists a positive integer L such that, with probability at least 1 − ε,
no Turing machine of the protocol ever visits more than L cells of its random tape. Thus,
since ε can be chosen arbitrarily small, we can assume all random tapes to be of some finite
length L. Via similar reasoning, we can assume that all the randomness is provided at the
beginning of the protocol, instead of fresh randomness being provided at each round.

STACS 2019

http://dx.doi.org/10.1007/3-540-45841-7_24
http://dx.doi.org/10.1145/3212734.3212744
http://dx.doi.org/10.1109/SFCS.1987.20
http://dx.doi.org/10.1137/0221015
http://dx.doi.org/10.1017/CBO9780511976667
http://dx.doi.org/10.1137/1.9780898719772
http://dx.doi.org/10.1007/978-3-642-31585-5_58
http://dx.doi.org/10.1145/2141938.2141939
http://dx.doi.org/10.1016/S0304-3975(02)00377-8

49:14 Quantum Advantage for the LOCAL Model in Distributed Computing

B The Case of Functions

A well-known fact in classical distributed computing is that randomness does not help when
computing functions in the LOCAL model. In this appendix we show that this argument
extends to the quantum case: we prove that any T -round quantum protocol computing a
function can be converted into a T -round classical protocol computing the same function.

Suppose, in the LOCAL model, we have a T -round quantum protocol P with the network
structure given by a graph G = (V,E). And suppose that P computes some function
f : D → Σ|V |, where Σ is the input-output alphabet and D ⊆ Σ|V |. More precisely, we
assume that, for every input x ∈ D, with probability strictly larger than 1/2 all nodes u ∈ V
output f(x)u.

For a node u ∈ V and an integer i ≥ 0, let the i-neighborhood of u, denoted Ni(u), be
the set of nodes in V at distance at most i away from u ∈ V . And, for an input x ∈ D, let
xu,i denote the restriction of x to Ni(u).

B Claim 8. For every x ∈ D and every u ∈ V , the output of node u is a random variable
Ou(x) whose probability distribution depends only on xu,T . (This holds true even in a more
powerful model where nodes are allowed to share any entanglement prior to receiving the
input.)

Since the quantum protocol P computes f , for every x ∈ D and every u ∈ V , the random
variable Ou(x) takes the value f(x)u with probability larger than 1/2. Now consider the
following classical T -round deterministic protocol: each node u ∈ V collects the inputs from
nodes in its T -neighborhood, which suffices to locally reproduce Ou(x), and then it outputs
the most probable value of Ou(x). The correctness of this protocol follows from Claim 8.

Proof of Claim 8. For t ∈ {0, 1, . . . , T}, let ρt be the reduced density state of the (T − t)-
neighborhood of u after t rounds of communication. By induction, we argue that the states
ρ0, ρ1, . . . , ρT – which we can think of forming the past light cone of ρT – all depend only on
xu,T , and no values of x outside NT (u). As the base case, it clearly holds for ρ0 (even in
the presence of prior entanglement). For the inductive step, let us assume that, for some
t ≥ 0, ρt depends only on xu,T . Then the reduced density state of the (T − t)-neighborhood
of u just before the (t+ 1)-th round of communication depends only on xu,T . In that round
of communication, nodes in the (T − t− 1)-neighborhood of u receive messages only from
within the (T − t)-neighbourhood of u, and thus the state ρt+1 also depends only on xu,T .
When ρT , the final state of the node u, is measured, the probabilities of various outcomes
are completely determined by ρT . Hence, these probabilities depend only on xu,T . C

Lifting Theorems for Equality
Bruno Loff
INESC-TEC and University of Porto, Porto, Portugal
bruno.loff@gmail.com

Sagnik Mukhopadhyay
Computer Science Institute of Charles University, Prague, Czech Republic
sagnik@kam.mff.cuni.cz

Abstract

We show a deterministic simulation (or lifting) theorem for composed problems f ◦ Eqn where the
inner function (the gadget) is Equality on n bits. When f is a total function on p bits, it is easy to
show via a rank argument that the communication complexity of f ◦ Eqn is Ω(deg(f) · n). However,
there is a surprising counter-example of a partial function f on p bits, such that any completion f ′

of f has deg(f ′) = Ω(p), and yet f ◦ Eqn has communication complexity O(n). Nonetheless, we are
able to show that the communication complexity of f ◦ Eqn is at least D(f) · n for a complexity
measure D(f) which is closely related to the AND-query complexity of f and is lower-bounded by
the logarithm of the leaf complexity of f . As a corollary, we also obtain lifting theorems for the
set-disjointness gadget, and a lifting theorem in the context of parity decision-trees, for the NOR
gadget.

As an application, we prove a tight lower-bound for the deterministic communication complexity
of the communication problem, where Alice and Bob are each given p-many n-bit strings, with the
promise that either all of the strings are distinct, or all-but-one of the strings are distinct, and they
wish to know which is the case. We show that the complexity of this problem is Θ(p · n).

2012 ACM Subject Classification Theory of computation → Circuit complexity; Theory of compu-
tation → Communication complexity; Theory of computation → Oracles and decision trees

Keywords and phrases Communication complexity, Query complexity, Simulation theorem, Equality
function

Digital Object Identifier 10.4230/LIPIcs.STACS.2019.50

Related Version https://eccc.weizmann.ac.il/report/2018/175/

Funding Bruno Loff : The research leading to these results has received funding from the Founda-
tion for Science and Technology (FCT), Portugal, grant number SFRH/BPD/116010/2016. This
work is partially funded by the ERDF through the COMPETE 2020 Programme within pro-
ject POCI-01-0145-FEDER-006961, and by National Funds through the FCT as part of project
UID/EEA/50014/2013.
Sagnik Mukhopadhyay: Most of the work is done while the author was a post-doctoral researcher at
KTH Royal Institute of Technology, Stockholm. The author is now supported by European Research
Council under the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC Grant
Agreement n. 616787.

Acknowledgements We are thankful to Suhail Sherif, Mark Vinyals, and Susanna de Rezende for
many helpful discussions, and Or Meir for pointing out an important bug in an earlier draft of the
paper. We also thank the anonymous referees whose insights improved the paper by a substantial
amount. We owe an extraordinary debt to Arkadev Chattopadhyay, an outstanding companion of
many tea-break conversations on the subject of this paper.

© Bruno Loff and Sagnik Mukhopadhyay;
licensed under Creative Commons License CC-BY

36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019).
Editors: Rolf Niedermeier and Christophe Paul; Article No. 50; pp. 50:1–50:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-7562-457X
mailto:bruno.loff@gmail.com
https://orcid.org/0000-0002-3722-4679
mailto:sagnik@kam.mff.cuni.cz
https://doi.org/10.4230/LIPIcs.STACS.2019.50
https://eccc.weizmann.ac.il/report/2018/175/
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

50:2 Lifting Theorems for Equality

1 Introduction

In the same paper of Karchmer and Wigderson [40], where the notion of formula depth
was shown to be equivalent to the communication complexity of their since-homonymous
games, was also the first proof separating monotone NC2 from monotone NC1. Although not
formulated explicitly in this way, their separation of these two circuit classes can be nowadays
be presented as a two-part argument: (I) one first shows that the monotone Karchmer–
Wigderson game for connectivity on nΘ(1)-node graphs is equivalent to a composition problem
in communication complexity, namely Switchn ◦ Indn, the composition of the Switch relation
on n bits with the Indexing gadget on logn bits (given to Alice) and n bits (given to Bob);
and (II) one then shows lower-bounds for Switchn ◦ Indn by lifting an Ω(logn) adversarial
lower-bound against decision trees trying to solve the Switchn relation, into an Ω((logn)2)
adversarial lower-bound against communication protocols for Switchn ◦ Indn. Formally, a
composed function f ◦g consisting of f on p-bits and g on n bits is defined on p·n bit long input
x = 〈x1, · · · , xp〉 (where each xi is n bit long) as follows: (f ◦ g)(x) = f(g(x1), · · · , g(xp)).

Their seminal paper led to the following general approach for proving lower-bounds
against a given complexity measure. One first (I) finds a composed problem f ◦ g whose
communication complexity is upper-bounded by the given complexity measure, and (II) one
then proves a lower-bound for the communication complexity of f ◦ g by arguing that a
lower-bound for f in a simple model (such as decision trees) will lift to a lower-bound against
protocols for f ◦ g.

Complexity theory has profited greatly from this approach. It appears in the celebrated
Raz-McKenzie separation of the monotone NC hierarchy, [57] but also in the best known
lower-bounds on monotone formula depth and monotone span programs [59, 54]. Several
lower-bounds on the length of proofs in various proof systems were first established using this
approach [14, 54, 19], and it is the only known way of proving various separations between
complexity classes in communication complexity [27, 26, 25, 24, 23, 68]. It may even be
used for proving lower-bounds against data-structure schemes [13], and lower-bounds on the
extension complexity of linear programs [42, 46, 22].

Owing partly to this long list of discoveries, and partly to the Karchmer-Raz-Wigderson
approach [39] for proving lower-bounds against (non-monotone) NC1 [30, 17, 21, 15], the
lower-bounds community developed a specific interest in understanding the computational
complexity of composition, and devoted a large effort to understanding composition problems.
Under this heading we should include Sherstov’s pattern matrix method [61], and the
closely related block-composition method of Shi and Zhu [65], which were developed further
in [10, 47, 11, 63, 64, 55], and resulted in many different applications. The problem of
understanding the communication complexity of XOR functions [56, 66, 31] is another
example of a composition problem, and particularly pertinent to our case since Equality
is itself an XOR function, Eqn = NORn ◦ XOR2. It is conjectured that the communication
complexity of a composition g ◦ XOR2 is approximately equal to the parity decision-tree
complexity of g, and in fact this has been shown to hold up to a polynomial if g is a total
function [31]. From this conjectured connection, it would follows that the communication
complexity of a composition with Equality, f ◦ Eqn, should equal the parity decision-tree
complexity of the composition with the NOR function, f ◦ NORn.

Work on the direct-sum and direct-product problems [35, 2, 29, 33, 16, 53, 34, 36, 1, 5, 6,
7, 4, 41, 32] is also a study of composition, where the outer function f in f ◦ g is the hardest
possible: the identity function; even this case remains unsolved in various settings.

B. Loff and S.Mukhopadhyay 50:3

The complexity of composition is a difficult problem – not just because, generally speaking,
lower-bounds are hard to establish, but also because the composition of two hard problems
is sometimes not as hard as one may expect: sometimes there is a “collapse” of hardness. A
classic example is the case of direct sum in communication complexity: a near-perfect direct
sum result holds in the non-deterministic case [49, 38], but fails to hold in the deterministic
model [52, 18], and is still an open problem in the randomized model. The following recent
example is also of great interest. In the case of deterministic decision-trees, the depth-
complexity of f ◦ g is the product of the complexities of f and g; this both intuitive and easy
to establish, and holds whether f is a total function, a partial function, or relation of any
kind. But already if we look into randomized decision-trees, Gavinsky et al. [20] and Sanyal
[60] show that the depth-complexity of the composition f ◦ g will be as high as the product of
the complexity of f with the square-root of the complexity of g; and, surprisingly, [20] exhibit
a relation f and a function g for which this bound is tight. This “collapse” of hardness when
composing relations or partial functions seems to make such problems difficult to understand.
As we will see, composition with Equality provides another instance of this phenomenon.

1.1 A tea-break puzzle
Alice and Bob, two renowned complexity theorists, get together during the conference’s
tea break: Communication complexity is the most successful area in complexity theory –
Alice says – at least the natural examples of functions are really well understood. Bob
raises his eyebrows – do you mean total functions, like Equality, or partial functions, like
Gap-Hamming-distance? – Both – replies Alice – Equality has been well understood since
the invention of the field [70], and even Gap-Hamming-Distance is at this point understood
for every gap – the constant gap case is a simple result [69], and even 1√

n
fraction gap was

eventually understood [9, 67, 62].
Ok – Bob replied, wryly – how about the “n, (n − 1)-Equality-Gap”? Suppose you are

given p-many n-bit strings x1, . . . , xp, and I am given y1, . . . , yp, and we are promised that
either all of the (xi, yi) pairs are different or exactly one of the (xi, yi) pairs is equal... show
me that we need to communicate Ω(n · p) bits in order to know which is the case. . .

Alice thinks for a while – I know, we can do it via a rank argument. Your “n, (n− 1)-
Equality-Gap” function is the composition F ◦ Eqn, where F is the partial function which is
1 on the all 0 string and 0 on the strings of Hamming weight 1, and Eqn is Equality on n
bits. The decision tree complexity of F is Ω(p) which can be seen by a simple adversarial
argument, and by the connection between degree and decision tree complexity [8, 51], we
can show that any completion F′ of F has degree Ω(p1/3). Also, Eqn has rank 2n, so the
rank of the communication matrix of F′ ◦ Eqn is 2Ω(p1/3n) (see Lemma 6), and hence the
communication complexity is Ω(p1/3n). This is not tight, but it’s close to what you want.

Bob nods – Your argument holds true, but it only implies that any protocol for F′ ◦ Eqn
needs Ω(n · p1/3) bits. However, even though a protocol for F ◦Eqn does give you a completion
of the partial communication matrix for F ◦ Eqn, this completion does not need to be in the
composed form F′ ◦ Eqn where F′ is a completion of F. So you did not answer my question,
not even if I disregard the polynomial loss. . .

At this point Alice does not know what to answer, and rightly so. We will see below
an example of a p-bit partial function f , such that any completion of f must have degree
Ω(p1/3), and yet the communication complexity of f ◦ Eqn is O(n), instead of Ω(n · p1/3),
which is what one would expect from a rank-degree argument. The protocol that shows this
will precisely take advantage of the fact that a completion of f ◦ g does not have to be of the
form f ′ ◦ Eqn for some completion of f ′ of f . We will also show that such a counter-example
does not exist if f is a partial function.

STACS 2019

50:4 Lifting Theorems for Equality

A solution to Bob’s tea-break puzzle appears as Corollary 18, in page 10. Using our
lifting theorem (Theorem 13, page 9) the desired tight lower-bound of Ω(n · p) is a 2-line
argument.

Interestingly, the counter-example provided below the problem of distinguishing the case
when all of the (xi, yi) pairs are equal, from the case when all but one of the (xi, yi) pairs are
equal, so it is strongly related to the example Alice and Bob were discussing above. However,
the communication complexity of the example is Ω(p · n), but the communication complexity
of the counter-example is only O(n).

1.2 Composition with Equality
In this work, we answer a question pertaining to the communication complexity of composition
of Boolean relations with the Equality gadget. Before stating the question and our main
results, we explain the context surrounding this question. We begin with some definitions.

Define the “Switch” relation: Switchp = {(z, i) ∈ {0, 1}p×{0, 1, . . . , p} | zi = 1, zi+1 = 0},
where we use z0 = 1 and zp+1 = 0, i.e., we are given p bits and wish to find a “switching
point”, a position i where a 1-bit flips into a 0-bit. If z = 0p we must output i = 0 and if
z = 1p we must output i = p.
Let Indn : [n] × {0, 1}n → {0, 1} denote the two-player Indexing function on n-bits, so
that Indn(x, y) = yx.
Then Switchp ◦ Indn denotes the composed Boolean relation:

Switchp ◦ Indn = {(x̄; ȳ; i) ∈ [n]p× ({0, 1}n)p×{0, 1, . . . , p} | (yi)xi
= 1, (yi+1)xi+1 = 0}.

Let Eqn : {0, 1}n × {0, 1}n → {0, 1} denote two-player Equality on n-bits, so that
Eqn(x, y) = 1 iff x = y.
Then Switchp ◦ Eqn denotes the composed Boolean relation:

Switchp ◦Eqn = {(x̄; ȳ; i) ∈ ({0, 1}n)p×({0, 1}n)p×{0, 1, . . . , p} | xi = yi, xi+1 6= yi+1}.

Let F ⊆ A × B × C be a relation. The deterministic communication complexity of F ,
Dcc(F), is the minimum communication cost of a protocol for solving the communication
problem where Alice is given a ∈ A, Bob is given b ∈ B, and they wish to find c such that
(a, b, c) ∈ F , whenever one such c exists (see [45], Chapter 5).
Let f ⊆ {0, 1}p × C be a relation. The deterministic query complexity of f , Ddt(f), is the
minimum number of queries made by a deterministic decision-tree which, given query
access to z ∈ {0, 1}p, finds a c ∈ C such that (z, c) ∈ F , whenever one such c exists.

In STOC’88, Karchmer and Wigderson [40] presented a proof that connectivity is not in
monotone NC1. At the heart of their result was an argument which may be reinterpreted as
a proof of the following theorem:

I Theorem 1 (Karchmer and Wigderson, [40]). Dcc(Switchp ◦ Indn) = Ω((logn) · log p).

In Structures’91, the conference now known as CCC, Grigni and Sipser [28] provided an
alternative proof that connectivity is not in monotone NC1. Their proof uses Eq in place of
Ind, and this allows for a simpler argument:

I Theorem 2 (Grigni and Sipser, [28]). Dcc(Switchp ◦ Eqn) = Ω(n · log p).

It is not hard to see that Theorem 2 implies Theorem 1, by reducing Eqlogn to Indn.
Later, in FOCS’97, Raz and McKenzie [57] separated the entire monotone NC hierarchy. At
the heart of their proof was an argument for a vast generalization of Theorem 1:

B. Loff and S.Mukhopadhyay 50:5

I Theorem 3 (Raz and McKenzie, [57]). For any Boolean relation f ⊆ {0, 1}p×C, whenever
n ≥ p20, Dcc(f ◦ Indn) = Ω

(
(logn) · Ddt(f)

)
.

Theorem 3 was not stated with such generality in [57], but appeared in this form in a
recent work of Göös, Pitasi and Watson [26]. Theorem 3 has been the basis of several papers
[26, 12, 44].

Knowing the above history, one naturally comes to the question of whether one can prove
a similar generalization for Grigni and Sipser’s Theorem 2, i.e., whether we can prove the
conjecture:

I Conjecture 4. For any Boolean relation f ⊆ {0, 1}p × C, Dcc(f ◦ Eqn) = Ω
(
n · Ddt(f)

)
.

Very general lifting theorems may be proven using rank arguments, and the current state
of the art [59, 54] is a lifting of the Nullstellensatz degree of any CNF-relation1 f to the rank
of f ◦ g, which works for a large class of gadgets g having a certain algebraic property2. The
equality gadget does possess the required property, however our lower-bound technique will
work for any relation, and not just CNF-relations.

In the case when f is a total function, however, there is an ad-hoc degree-to-rank lifting
theorem which works for the equality gadget, and which is in the same spirit as [59, 54]. It
uses the following characterization:

I Proposition 5 ([3]). If h is a Boolean function and F is the communication matrix of
h ◦ XOR2, then rank(F) = ‖h‖0.

Above, rank(F) is the real rank of the communication matrix of F , and ‖h‖0 is the Fourier
sparsity (the number of non-zero Fourier coefficients) of h. We can view f ◦ Eqn as an XOR2
function, f ◦ NORn ◦ XOR2. The following observation is easy to prove, but the proof is
omitted due to space constraints (see the ECCC version [48] for the proof).

I Lemma 6. For every f : {+1,−1}p → {+1,−1} with deg(f) ≥ 1, and every g :
{+1,−1}n → {+1,−1}, we have ‖f ◦ g‖0 ≥ (‖g‖0 − 1)deg(f).

Lemma 6 implies that ‖f ◦ NORn‖0 = Ω(2deg(f)·n), since ‖NORn‖0 = 2n. By the rank-lower
bound for communication complexity, we thus have Dcc(f ◦ Eq) ≥ Ω(deg(f) · n). Now we can
use the following connection between deg(f) and Ddt(f), which improves upon a theorem of
Nisan and Smolensky theorem [8].

I Proposition 7 ([51]). , deg(f) = Ω(Ddt(f)1/3).

Combining the three above facts, we get that when f is a total Boolean function, then
Dcc(f ◦Eqn) = Ω(Ddt(f)1/3 ·n). This easy-to-prove result is similar to Conjecture 4, except for
the 1/3 loss in the exponent, and works for all total functions. But surprisingly, when allow
f to be a partial function, Conjecture 4 is false! The following counter-example was given to
us by Arkadev Chattopadhyay, Suhail Sherif, and Mark Vinyals. Let f ⊆ {0, 1}p × {0, 1} be
the relation

f = {(z, 1) | |z| = p or |z| < p− 1} ∪ {(z, 0) | |z| = p− 1 or |z| < p− 1},

1 A CNF-relation fφ ⊆ {0, 1}n × [m] is defined for a given unsatisfiable CNF φ on n variables and m
clauses, by (x, i) ∈ fφ if x falsifies the i-th clause. Such relations appear prominently in the study of
monotone Karchmer–Wigderson games.

2 These results are explained in Robert Robere’s excellent PhD thesis [58]. The mentioned algebraic
property appears in Section 5.1.

STACS 2019

50:6 Lifting Theorems for Equality

i.e., we are given a Boolean string z ∈ {0, 1}p, and wish to distinguish the case when z has
Hamming weight p from the case when z has Hamming weight p− 1. It is easy to show that
Ddt(f) ≥ p: an adversary keeps answering 1 to all queries, and f(z) will remain unknown
until the very last query. This adversary also shows that Ddt(f ′) ≥ p for any “completion”
of f , i.e. any total function f ′ : {0, 1}p → {0, 1} which agrees with f on the inputs with
Hamming weight p or p− 1; and hence deg(f ′) = Ω(p1/4) for any such f ′, by Proposition 7.
So one might mistakenly hope, like Alice did in Section 1.1, that a rank/degree argument
would serve to prove a lower-bound of Ω(p1/4 · n) for f ◦ Eqn.

However, a protocol for f ◦ Eqn(x1, . . . , xp; y1, . . . , yp) may proceed as follows. Think of
each of Alice and Bob’s inputs for f ◦ Eqn as a matrix with p rows and n columns. Then let
a ∈ {0, 1}n be the XOR of each column of Alice’s input, and b ∈ {0, 1}n be the XOR of each
column of Bob’s input. Then Alice sends a to Bob, and Bob replies whether a = b. Now, if
every xi equals the corresponding yi, then clearly a = b; and if every xi equals yi, except for
a single value of i ∈ [p], then there must exist a j ∈ [n] such that aj 6= bj . It then holds that
Dcc(f ◦ Eqn) ≤ n+ 1, and so Conjecture 4 is false. Remarkably, this seems to suggest that
rank/degree arguments will fail to hold.

This counter-example also shows that Eqlogn behaves differently from Indn, when used as
the inner function in a composition – indeed Theorem 3 implies that Dcc(f ◦ Indn) ≥ p logn,
which is strictly higher when p = ω(1). The difference between Equality and Indexing may
be further explained with the help of a recent paper of Chattopadhyay, Koucký, and the
authors [12]. There it is shown that a theorem like Conjecture 4 will hold for any inner
function g, in place of Eqn, which admits certain hitting distributions3. As it turns out,
all gadgets for which we could prove a deterministic simulation theorem, namely, Indexing
[57], Inner-product and gap-Hamming [12], and several others [44], all admit such hitting
distributions. But it may be seen that although Equality has a 0-hitting distribution, it fails
to have any 1-hitting distribution.

The existence of such a counter-example was surprising to us, because in the case of the
Switch relation, the Karchmer–Wigderson theorem and Grigni–Sipser theorem behave the
same way (by lifting a decision-tree adversary for the Switch relation). The main purpose of
this work was to understand what is happening.

1.3 Almost Conjecture 4
We will be able to prove a simulation theorem for composition with Equality, but for a notion
different than decision-tree depth. In order to avoid long preliminaries for now, we postpone
the full list of our results until the end of Section 2. However, one of our results is sufficiently
close to what was already discussed, that it may be easily stated in the present section, and
may thus serve as motivation for the remainder.

For a given relation f ⊆ {0, 1}p×C, let Ldt(f) denote the smallest number of leaves of any
deterministic decision-tree which, given query access to z ∈ {0, 1}p, finds a c ∈ C such that
(z, c) ∈ F , whenever such a c exists. Notice that Ddt(f) ≥ log Ldt(f), and so if Conjecture
4 were true, a consequence would be that Dcc(f ◦ Eqn) = Ω

(
n · log Ldt(f)

)
. The following

theorem, thus, may be considered a weak variant of Conjecture 4:

3 A (δ, h)-hitting rectangle-distribution (for δ ∈ (0, 1) and h ∈ N) is a distribution over rectangles such
that a random rectangle from this distribution will intersect any 2−h-large rectangle with probability
≥ 1− δ. By a Boolean function g having (δ, h)-hitting monochromatic rectangle-distributions, we mean
that there are two (δ, h)-hitting rectangle-distributions σ0 and σ1, such that σc only samples rectangles
which are c-monochromatic with respect to g.

B. Loff and S.Mukhopadhyay 50:7

I Theorem 8 (Lifting for log Ldt). For any Boolean relation f ⊆ {0, 1}p × C, whenever
n ≥ 100 · log p,

Dcc(f ◦ Eqn) = Ω
(
n · log Ldt(f)

log p

)
.

1.4 Organization
In Section 2 we state the definitions required to understand the statements of our results,
and then state all our results in full; in this section we give the first new concept required
by our results, namely the notion of 0-query complexity. In Section 3, we introduce the
combinatorial invariants required to prove our main result, including the notion of thickness,
which comes from Raz and McKenzie [57, 26, 12], but also the notion of square, which is the
second new concept required by our proofs. In Section 4 we prove a projection lemma – the
crucial lemma required to prove the simulation theorem – which is then proven in Section 5.

2 Preliminaries, and precise statements of our results

In this section we provide basic notations and precise statements of all our results.
We will assume the reader is familiar with various basic concepts pertaining to complexity

of Boolean functions, namely: decision trees, query complexity, leaf complexity, protocol
trees, communication complexity, combinatorial rectangles, and Fourier analysis of Boolean
functions. See [45, 37] for reference.

We will be studying the decision-tree complexity of relations. A Boolean relation f is a
subset of {0, 1}p×C where C is a finite set; associated with f is the search problem where we
are given a string z ∈ {0, 1}p, and wish to find an element c ∈ C such that (z, c) ∈ C, if such
an element exists.4 If to each z corresponds exactly one c, we call f a total Boolean function.

For a given Boolean relation, we let Ddt(f), called the query complexity of f , be the
minimum height of T , taken over deterministic decision-trees T which solve the search
problem associated with f . We let Ldt(f), called the leaf complexity of f , be the minimum
number of leaves of T , again taken over deterministic decision-trees T which solve the search
problem associated with f .

We will also be interested in the communication complexity of relations. A two-player
relation F is a subset F ⊆ A× B × C where A,B, C are finite sets; associated with F is the
communication problem where Alice is given a ∈ A, Bob is given b ∈ B, and they wish to find
c ∈ C such that (a, b, c) ∈ F , if one such c exists. If g ⊆ A×B×{0, 1} is a two-player relation
such that to each pair (a, b) ∈ A × B corresponds exactly one c ∈ {0, 1} with (a, b, c) ∈ g,
we call g a gadget. The Equality and Indexing function defined in page 4 are examples of
gadgets. A third example is the Set-disjointness function Disjn : {0, 1}n × {0, 1}n → {0, 1},
where Disjn(x, y) = 0 iff xi = yi = 1 for some i ∈ [n].

For a given two-player relation F ⊆ A× B × C, we let Dcc(F), called the communication
complexity of F , be the height of the shortest deterministic protocol-tree for solving the
communication problem associated with F .

4 Although when considering functions the difference between a total function and a partial function (a
promise problem) is very important, this distinction is irrelevant when thinking more generally about
relations, at least in computational models which are guaranteed to produce an output. Indeed, a
partial Boolean relation f ⊆ {0, 1}n×C may be replaced by the total Boolean relation f ′ = f ∪{(x, c) ∈
{0, 1}n × C | (x, c′) /∈ f for any c′ ∈ C}, meaning if the input is outside the promise we allow the
algorithm to output anything.

STACS 2019

50:8 Lifting Theorems for Equality

The composition of a Boolean relation f ⊆ {0, 1}p × C with a gadget g : A× B → {0, 1}
is the two-player relation f ◦ g ⊆ Ap × Bp × C, given by

f ◦ g = {(a1, . . . , ap; b1, . . . , bp; c) | (g(a1, b1) . . . g(ap, bp), c) ∈ f}.

The following definition is crucial to our result and, to our knowledge, has not been used
prior to this work:

I Definition 9. Given a deterministic decision-tree T over {0, 1}p, the 0-depth of T is the
maximum number of queries which are answered 0, in any root-to-leaf path of T . The 0-query
complexity of f , denoted Ddt0 (f), to be the smallest 0-depth of T , taken over deterministic
decision-trees T which solve the search problem associated with f .

It is unusual to make a query complexity notion depend on the specific outcome of the
queries, instead of just the number of queries. However, the above notion is closely related
to a notion analogous to parity decision-trees. Indeed, we may define AND decision-trees to
be like parity decision-trees, but where the algorithm is allowed the query an AND of the
input bits, instead of a parity of the input bits:

I Definition 10. An AND decision-tree over {0, 1}p is a rooted tree where each internal node
v is labeled by a set of variables Qv ⊆ [p] and each edge is labeled 0 or 1. As in the case of
deterministic decision-tree, the execution of T on an input z ∈ {0, 1}p traces a path in this
tree: at each internal node v the execution is given the value of the conjunction q =

∧
i∈Qv

zi,
and follows the edge labeled q into one of v’s children. With each node v of the tree we may
associate the set Sv ⊆ {0, 1}p of those inputs whose execution follows the path down to the
node v; the set Sv is given by a system of conjunctive equations.

An AND decision-tree over {0, 1}p is said to solve the search problem associated with a
Boolean relation f ⊆ {0, 1}p × C if, for every leaf v, there exists a choice of c ∈ C such that
(z, c) ∈ f for every z ∈ Sv.

Then, the AND-query complexity of f , denoted DdtAND(f), is defined as the minimum depth
of T , taken over AND decision-trees T which solve the search problem associated with f .

We are then able to establish the following relationship:

I Lemma 11. Let f ⊆ {0, 1}p × C be any Boolean relation. Then

DdtAND(f) ≥ Ddt0 (f) ≥ DdtAND(f)
dlog(p+ 1)e

Since these measures are within a log p factor of each other, it is possible to think of the
more natural Ddt

AND(f) as a proxy for Ddt
0 (f). The proof is simple, but is omitted due to

space constraints (it appears in the full version of the paper [48]).
There is also a simple relation between 0-query complexity and leaf complexity. If a

decision-tree over p bits never makes more than d zero-queries, each root-to-leaf path may
be specified by the positions of the 0-answers along that path, so there are fewer than(
p
≤d
)
≤ 2(d+1) log p leaves. Hence it follows:

I Lemma 12. Let f ⊆ {0, 1}p × C be any Boolean relation. Then

Ddt0 (f) ≥ log Ldt(f)
log p − 1.

If log Ldt(f) = Ω(p), we have
(
p
≤d
)
≥ 2Ω(H2(d/p)·p), and so Ddt0 (f) = Ω(p) also.

B. Loff and S.Mukhopadhyay 50:9

Lifting theorems for Equality. Our main result is a simulation theorem which lifts 0-query
complexity of a Boolean relation f ⊆ {0, 1}p × C to the communication complexity f ◦ Eqn:

I Theorem 13 (Lifting for Ddt0). Let f ⊆ {0, 1}p×C be any Boolean relation. Then, whenever
n ≥ 100 · log p,

Dcc(f ◦ Eqn) = Ω
(
n · Ddt0 (f)

)
.

The proof of Theorem 13 uses the notion of thickness from Raz-McKenzie [57], and a
new invariant, called a square, which is inspired by Grigni-Sipser [28]. These notions are
presented in Section 3.

Our proof is similar in flavor to Or Meir’s lower-bound for the direct-sum of the universal
relation [50], although for that problem a rank argument will work [43].5

I Remark 14. It is not hard to verify that Ddt
0 (f) = 1 when f is the counter-example to

Conjecture 4, which we described in Section 1.2: a decision tree for f queries coordinates
one at a time until it finds the first 0. Then it follows from Theorem 13 that the protocol for
f ◦ Eqn appearing in page 5 is optimal, up to constant factors.

Theorem 8 follows from Theorem 13 and Lemma 12. Theorem 13 and Lemma 11 give us the
following:

I Corollary 15 (Lifting for Ddt
AND). Let f ⊆ {0, 1}p × C be any Boolean relation. Then,

whenever n ≥ 100 · log p, Dcc(f ◦ Eqn) = Ω
(
n · Ddt

AND(f)
log p

)
.

Lifting theorems for Set-disjointness. By a simple reduction, we are also able to show the
first lifting theorem known for set-disjointness. Indeed, we may reduce an instance of Eqn to
an instance of Disj2n. Alice maps each of her bits xi into the pair of bits ai = (1 − xi)xi,
and Bob maps each of his bits yi into bi = yi(1− yi); it now holds that xi = yi iff ai and bi
are disjoint, and hence Eqn(x, y) = Disj2n(a, b). As a corollary, we find:

I Corollary 16 (Lifting for disjointness). Let f ⊆ {0, 1}p × C be a Boolean relation and
n ≥ 100 · log p. Then Dcc(f ◦ Disjn) = Ω

(
n · Ddt0 (f)

)
.

Naturally, Theorem 8 and Corollary 15 will hold for Set-disjointness.

Lifting theorems for parity decision-trees. A composition with Equality, f ◦Eqn, is a XOR
function f ◦ NORn ◦ XOR2. It is well known and easy to see that Dcc(F ◦ XOR2) ≤ Ddt

⊕ (F)
[31], where Ddt⊕ (F) is the parity-query complexity of F . Hence a consequence of our lifting
theorem for Equality in communication complexity is also a lifting theorem for the NOR
function, with respect to parity decision-trees:

I Corollary 17. For any Boolean relation f ⊆ {0, 1}p × C, whenever n ≥ 100 · log p,
Ddt⊕ (f ◦ NORn) = Ω

(
n · Ddt0 (f)

)
.

It may be seen that Ddt0 (f) cannot be replaced by Ddt(f), by the same counter-example f of
page 5.

5 Or Meir’s proof is similar to what one would obtain if one were to carry out our proof when f is the
identity function, so our technique can be seen as a generalization of Meir’s. Of course in our case
composition with identity would be just a larger equality, so the lower-bound follows trivially, whereas
in the case of the universal relation the result is not trivial.

STACS 2019

50:10 Lifting Theorems for Equality

A solution to the tea-break puzzle. A lifting theorem such as Theorem 13 is a powerful
tool for proving lower-bounds in communication complexity. The theorem is very general
and many such results may be proven, but let us here give an example of lower-bound for a
concrete problem in communication complexity.

Consider the Bob’s example F ◦ Eqn from the tea-break puzzle where Alice and Bob are
each given p-many n-bit strings, with the promise that either all strings are different, or
exactly one pair of strings is equal, and they wish to know which is the case.

We have F(z) = 1 when its input, z, has Hamming weight 0, and F(z) = 0 when z has
Hamming weight 1. This is a partial function, so we may not use Lemma 6 to prove a
lower-bound on it. However (this is the two-line proof): an adversary may answer 0 p− 1
times before fixing F(z); hence Ddt0 (F) ≥ p− 1, and it follows immediately from Theorem 13:

I Corollary 18. Whenever n ≥ 100 · log p, Dcc(F ◦ Eqn) = Ω(n · p).

To the best of our knowledge, there is currently no other way to establish this lower-bound.

3 Thickness and squares

Notation . If p is a natural number, we write [p] for the set {1, . . . , p}. For sets A and B,
we use A → B to denote the set of total functions from A to B. We write f : A → B to
mean f ∈ (A→ B). We also use BA to denote the set of total functions from A to B, but
in this case we think of them as A-indexed sequences of elements from B, and if we first
write f ∈ BA, instead of f : A→ B, we will later write fa instead of f(a). If f : A→ B (or
f ∈ BA) and A′ ⊆ A, then f

∣∣
A′ is the restriction of f to A′. A disjoint union is denoted by

∪· , i.e. A ∪· B denotes the union of two disjoint sets A and B.
We will look at sets A ⊆ ({0, 1}n)[p], and we will often want to think of some set of

coordinates I ⊆ [p] as being alive, and the corresponding complement D = [p] \ I will be
the set of dead coordinates. We will be working with partial assignments of elements from
({0, 1}n)[p], which can be encoded as total functions from I to {0, 1}n. Hence the following
two definitions will be helpful.

I Definition 19 (Join). Let n ≥ 1 and p ≥ 2 be integers, ∅ 6= I ([p] and D = [p] \ I.
If s′ ∈ ({0, 1}n)I and s′′ : ({0, 1}n)D, then their join s′ × s′′ ∈ ({0, 1}n)[p] is given by:

(s′ × s′′)i =
{
s′i if i ∈ I
s′′i if i ∈ D.

This notation is extended to subsets of ({0, 1}n)I and ({0, 1}n)D in the natural way.
If i ∈ I ⊆ [p], s′ ∈ {0, 1}n and s′′ ∈ ({0, 1}n)I\{i}, then their join at i is the sequence

s′ ×i s′′ ∈ ({0, 1}n)I with (s′ ×i s′′)i = s′, and ∀j ∈ I \ {i} (s′ ×i s′′)j = s′′j .

I Definition 20. Let n ≥ 1 and p ≥ 2 be integers, I ⊆ [p], i ∈ I and S ⊆ ({0, 1}n)I .
We define the projections: Si = {si | s ∈ S} ⊆ {0, 1}n and S6=i = {s

∣∣
I\{i} | s ∈ S} ⊆

({0, 1}n)I\{i}.
Likewise if ∅ 6= E ⊂ I, we define SE = {s

∣∣
E
| s ∈ S} ⊆ ({0, 1}n)E and, for each s′′ ∈

({0, 1}n)I\E, the extensions of s′′ in S is the set ExtS(s′′) = {s′ ∈ ({0, 1}n)E | s′ × s′′ ∈ S}.
For a subset U ⊆ {0, 1}n, the restriction of S to U at coordinate i is the set Si,U = {s ∈

S | s(i) ∈ U}. We will also write Si,U6=i for the set (Si,U) 6=i (i.e. we first restrict the i-th
coordinate then project onto the remaining coordinates in I): Si,U6=i = {s

∣∣
I\{i} | s ∈ S, si ∈ U}.

B. Loff and S.Mukhopadhyay 50:11

3.1 Thickness and its properties
The notion of thickness was first used by Raz and McKenzie in [57], and is by now a
well-known notion. But whereas previously the notion of thickness was only looked at with
respect to all coordinates simultaneously, we will be interested in the notion of thickness
with respect to a subset of coordinates. This difference is non-essential, and all the relevant
properties are proven mutatis mutandis. Due to space constraints, the proofs are omitted
(but appear in the full version of the paper [48]).

I Definition 21 (Aux graph, average and min-degrees). Let n ≥ 1, p ≥ 2 be integers, I ⊆ [p],
and S ⊆ ({0, 1}n)I . For each i ∈ I, the aux graph G(S, i) is the bipartite graph with left-side
vertices Si, right-side vertices S6=i and edges corresponding to the set S, i.e., (s′, s′′) is an
edge iff s′ ×i s′′ ∈ S.

We define the average degree of G(S, i) to be the average right-degree: davg(S, i) = |S|
|S6=i| ,

and the min-degree of G(S, i), to be the minimum right-degree: dmin(S, i) = min
s′′∈S6=i

|ExtS(s′′)|.

I Definition 22 (Thickness and average thickness). Let n ≥ 1, p ≥ 2 be integers, ∅ 6= F ⊆
I ⊆ [p], and S ⊆ ({0, 1}n)I . Then S is called τ -thick on F if dmin(S, i) ≥ τ · 2n for all i ∈ F .
(By convention an empty set S is τ -thick.) Similarly, S is called ϕ-average-thick on F if
davg(S, i) ≥ ϕ · 2n for all i ∈ F . For p = 1, set S is τ -thick if |S| ≥ τ · 2n.

We will need the following two lemmas. The proofs are similar to the analogous lemmas in
[26].

I Lemma 23 (Average thickness implies thickness). Let n ≥ 1, p ≥ 2 be integers, ∅ 6= F ⊆
I ⊆ [p], and S ⊆ ({0, 1}n)I . If S is ϕ-average-thick on F , then for every δ ∈ (0, 1) there is a
subset S′ ⊆ S which is δ

pϕ-thick on F and has |S′| ≥ (1− δ) · |S|.

A recent example by Kozachinskiy [44] shows that the 1
p loss in Lemma 23 is needed. This

loss is the core reason why we need the gadget to have size n = Ω(log p) in Theorem 13.

I Lemma 24. Let n ≥ 1, p ≥ 2 be integers, i ∈ F ⊆ I ⊆ [p], and S ⊆ ({0, 1}n)I be τ -thick
on F . Then for any set U ⊆ {0, 1}n, Si,U6=i will also be τ -thick on F \ {i}, and Si,U6=i will be
empty iff U ∩ Si is empty.

3.2 Squares
We will be interested in rectangles R = A×B, where A,B both are subsets of ({0, 1}n)[p],
and which have a certain “square-like” structure. Such a “square-like” rectangle appears in
our proofs, and will always be a sub-rectangle of the rectangle induced by a protocol.

A “square-like” rectangle R = A × B, is one for which we have a set I ⊆ [p] of live
coordinates, with a corresponding set D = [p] \ I of dead coordinates, and also a family
S ⊆ ({0, 1}n)I , for which one can do the following:

For any s ∈ S, there exist α(s), β(s) ∈ ({0, 1}n)D, such that
A is exactly the set of all s× α(s) and B is exactly the set of all s× β(s),

and, furthermore, α(s)i 6= β(t)i for every s ∈ S, t ∈ S, i ∈ D.

i.e., given any s in S, which is a way of filling the live coordinates, there are two ways of
filling the dead coordinates, α(s) and β(s), such that the various s× α(s) will be Alice’s side
of the rectangle, and the various s× β(s) will be Bob’s side of the rectangle; furthermore,
α(s)i 6= β(t)i always holds. We will call such a configuration a square:

STACS 2019

50:12 Lifting Theorems for Equality

I Definition 25 (Square). A square is a tuple S = 〈n, p,R = A×B, I, S, α, β〉 where:
n ≥ 1, p ≥ 2 are integers;
R = A×B where A,B ⊆ ({0, 1}n)[p];
∅ 6= I ⊆ [p] is a non-empty set of so-called live coordinates, and
D = [p] \ I is the corresponding set of dead coordinates;
S ⊆ ({0, 1}n)I ;
α : S → ({0, 1}n)D and β : S → ({0, 1}n)D are such that A = {s×α(s) | s ∈ S} and B =
{s× β(s) | s ∈ S};
for every s ∈ S, t ∈ S, i ∈ D, we have α(s)i 6= β(t)i.

I Definition 26. The density of square S = 〈n, p,R = A × B, I, S, α, β〉 is given by
Density(S) = |S|

2n|I| .

I Definition 27. We say a square S = 〈n, p,R = A×B, I, S, α, β〉 is τ -thick on F ⊆ I if S
is τ -thick on F , and is ϕ-average-thick on F if S is ϕ-average-thick on F .

One may justify the name square by the observation that a square S = 〈n, p,R = A ×
B, I, S, α, β〉 induces a bijection between A and B, where s × α(s) ∈ A corresponds to
s× β(s) ∈ B.

4 The projection lemma

The main technical lemma of our simulation theorem is a projection lemma, which allow us to
constrain coordinates of a square while preserving thickness, in such a way that α(s)i 6= β(t)i
always holds.

I Lemma 28. Let S = 〈n, p,R = A × B, I, S, α, β〉 be a square and τ, ϕ ∈ [0, 1] be real
numbers. Suppose that p ≤ 1

12 · 2
τ ·2n . Suppose also that S is τ -thick, but not ϕ-average-thick,

on F ⊆ I.
Then, for any z ∈ {0, 1}F , there exists a non-empty set E = E(z) ⊆ F such that,

letting E0 = {i ∈ E | zi = 0}, we may construct a square S ′ = S ′(z) = 〈n, p,R′ =
A′ ×B′, I ′, S′, α′, β′〉, where:
(i) A′ ⊆ A and B′ ⊆ B;
(ii) I ′ = I \ E0;
(iii) Density(S ′) ≥ (1

2ϕ)|E0| · Density(S); and
(iv) S ′ is 1

2ϕ-average-thick on F \ E.
Furthermore, the set E = E(z) ⊆ F is obtained by a query procedure on the string z, and is
exactly the set of positions queried by this procedure.

Proof. We will explain the projection procedure in three steps. The entire procedure is
achieved by running Procedure 1, 2 and 3 one after another (see below).

To begin with, S is not ϕ-average-thick on F , and so we are assured we will add at least
one coordinate to E. Every time we add an index i to E we have, immediately prior to this,
that |SI\E0 |

|SI\(E0∪{i})|
≤ ϕ ·2n, and hence |SI\(E0∪{i})| ≥

|SI\E0 |
ϕ·2n . This means that if zi = 0 and we

then add i to E0, we will have |SI\E0 | grow by a factor of ϕ · 2n. By the end of this process,
SI\E0 must be ϕ-average-thick on F \E (otherwise we would add another coordinate to E),
and furthermore |SI\E0 | ≥

|S|
(ϕ·2n)|E0| , which is to say

|SI\E0 |
2|I\E0|·n

≥ 1
ϕ|E0|

· |S|
2|I|·n

. (∗)

This will later ensure our density increase.

B. Loff and S.Mukhopadhyay 50:13

I Procedure 1. Choosing E.
We start by letting E = ∅.
As long as SI\E0 is not ϕ-average-thick on F \ E, there exists some i ∈ F \ E such
that

|SI\E0 |
|SI\(E0∪{i})|

≤ ϕ · 2n.

We will then add i to E and query zi (to know if i ∈ E0 or not).

I Procedure 2. Choosing W = (Ui, Vi)i∈E0 , X and Y .
Independently for each i ∈ E0, choose a partition {0, 1}n = Ui ∪· Vi, so that each
string x ∈ {0, 1}n is placed in Ui with probability 1

2 , and is placed in Vi otherwise.
Let us use W = (Ui, Vi)i∈E0 to denote all the partitions chosen in this step.
Now let us start by letting X = Y = S.
Then for each index i ∈ E0 in turn, we change X to Xi,Ui

6=i and change Y to Y i,Vi

6=i .

Now consider the Procedure 2. At the end of its execution, we have both X,Y ⊆ SI\E0 .
Now we may ask how much of SI\E0 survived inside both X and Y . Let us first consider the
difficult case when |E0| ≥ 1. We make the following claim:

B Claim 29. If |E0| ≥ 1, then for some choice of the partitions (Ui, Vi)i∈E0 we will have
|X ∩ Y | ≥ 1

2 · |SI\E0 |.

Before proving this claim, let us see why it is enough to give us our new square S ′. Let U ⊆
({0, 1}n)E0 be the product of the various Ui sets, for i ∈ E0, and likewise let V ⊆ ({0, 1}n)E0

be the product of the various Vi sets, for i ∈ E0. The square S ′ is chosen thus:

I Procedure 3. Choosing the square S ′.
We set S′ = X ∩ Y .
For each s′ ∈ S′, we choose a string u(s′) ∈ U ∩ ExtS(s′) ⊆ ({0, 1}n)E0 ; such a
u(s′) exists because of how X was constructed; letting s = s′ × u(s′) ∈ S, for each
i ∈ [p] \ I ′ = ([p] \ I) ∪ E0, set

α′(s′)i =
{
u(s′)i if i ∈ E0,

α(s)i if i ∈ [p] \ I.

We proceed symmetrically to choose β′(s′).
A′ and B′ are simply the images of S′ under α′ and β′.

For any s ∈ S, t ∈ S and i ∈ ([p]\I)∪E0, we have α(s)i 6= β(t)i. This follows, on coordinates
i ∈ E0 because Ui and Vi are disjoint, and on coordinates i ∈ [p] \ I because square S has
the same property for α and β.

Properties (i) and (ii) are by construction. Property (iii) is a calculation using Claim 29
and (∗):

Density(S ′) = |S′|
2|I′|·n ≥

Claim 29

1
2 · |SI\E0 |
2|I\E0|·n

≥
Using (∗)

1
2 ·

1
ϕ|E0|

· |S|
2|I|·n

= 1
2 ·

1
ϕ|E0|

·Density(S).

STACS 2019

50:14 Lifting Theorems for Equality

Now Property (iii) follows using the fact that |E0| ≥ 1. Property (iv) follows by Claim 29,
because SI\E0 is ϕ-average-thick on F \E, and S′ is a subset of SI\E0 with |S′| ≥ 1

2 · |SI\E0 |.
In the simple case when |E0| = 0, we have X = Y = S, and so we set S ′ to be exactly S.

Properties (i) and (ii) are easy to check, and Property (iii) is trivial, and property (iii) holds
even without the 1/2 factor loss, by our choice of E.

Now to prove Claim 29. Let δ = 2−τ ·2n . Let us think of a matrix M where the rows
are indexed by the various possible s′ ∈ SI\E0 and the columns are indexed by the different
possible choices W = (Ui, Vi)i∈E0 . The entry M(s′,W) equals 1 if s′ ∈ X, where X is
obtained from S and (Ui)i∈E0 by Procedure 2. In other words, again denoting by U the
product of the various sets Ui, we have M(s′,W) = 1 iff U ∩ ExtS(s′) 6= ∅.

Now fix some s′ ∈ SI\E0 , and let us estimate the probability that M(s′,W) = 1, i.e.
that s′ ∈ X, over the randomized choice of W . At the beginning of Procedure 2, we
have X = S, and X is τ -thick on F . Then for each index i ∈ E0 ⊆ F in turn, we will
change X to Xi,Ui

6=i . Before we do this for the first time, s′ will have at least one extension
s ∈ ExtX(s′) ⊆ ({0, 1}n)E0 ; at this point X is τ -thick on F , and so, taking any extension
s′′ ∈ ExtX6=i

(s′) ⊆ ({0, 1}n)E\{i}, there will be at least τ · 2n strings s′′′ ∈ {0, 1}n such that
(s′ × s′′)×i s′′′ ∈ S. Each of these strings s′′′ is placed in Ui with probability 1/2; hence the
probability that (s′ × s′′) ∈ Xi,Ui

6=i is at least 1− 2−τ ·2n = 1− δ, i.e., some extension s′′ of
s′ survived with at least 1 − δ probability over the choice of this first Ui. By Lemma 24,
changing X to Xi,Ui

6=i gives us a set which is again thick on F \ {i}. Hence we may apply the
same reasoning to the next index in E0.

Changing X in this way |E0| times, we conclude that, in the end, Pr[M(s′,W) = 1] =
Pr[s′ ∈ X] ≥ (1− δ)|E0| ≥ 1− |E0|δ, where the probability is with respect to the distribution
of W given by the above process. Now call a certain choice of W X-good if the W -column
of M has at least a 1 − 3|E0|δ fraction of the rows s′ ∈ SI\E0 with M(s′,W) = 1. Then,
by a standard averaging argument, we must have Pr[W is X-good] > 1/2 (where again the
probability is with respect to the distribution of W).

Arguing in the same way with respect to Y , we conclude that the probability that W is
Y -good will also be more than 1

2 . Hence there must exist a choice ofW which is both X-good
and Y -good. For this choice of W we will have both |X|, |Y | ≥ (1− 3|E0|δ)|SI\E0 |, and given
that X,Y ⊆ SI\E0 , this implies that |X ∩ Y | ≥ (1 − 6|E0|δ) · |SI\E0 | ≥ (1 − 6pδ) · |SI\E0 |.
This is at least 1

2 |SI\E0 | by our assumed bound on p. The claim is thus proven. J

I Lemma 30. Let S = 〈n, p,R = A× B, I, S, α, β〉 be a square which is τ -thick on F ⊆ I,
and let z ∈ {0, 1}p be such that zi = 1 for every i ∈ I \ F , and zi = 0 for every i ∈ [p] \ I.
Then there exists some (x, y) ∈ A×B with Eqp(x, y) = z.

Proof. This is proven very similarly to Lemma 28. Instead of using Procedure 1 to choose
E and E0, we choose them directly based on z.

If there are no i0 ∈ I with zi0 = 0, then any s ∈ S will give Eqp(s× α(s), s× β(s)) = z.
Otherwise, let E = F \ {i0}, so that E0 = {i ∈ I | i 6= i0, zi = 0}. We may then use
Procedure 2 to construct sets X and Y such that X,Y ⊆ SI\E0 . Note now that Claim 29
will still hold, because it only requires that S be thick on F . We may then use Procedure 3
to construct S ′, and Properties (i) and (ii) will hold as before. S ′ is a square on coordinates
I \ E0 = {i | zi = 1} ∪ {i0}. By Lemma 24, we know that S ′ is τ -thick on {i0} and thus
there are two strings s ∈ S′ and t ∈ S′ with si0 6= ti0 but si = ti for all i ∈ I ′ \ {i0}. Then
x = s× α(s) and y = t× β(t) give us Eqp(x, y) = z. J

B. Loff and S.Mukhopadhyay 50:15

5 Lifting 0-query complexity

We now prove our main simulation theorem (Theorem 13). Suppose p ≤ 2n/100, and let us
fix τ = 2−n/10 and ϕ = 2−n/20. Suppose we are given a C-bit communication protocol π for
f ◦Eqn. We will then construct a decision-tree τ for f . On input z ∈ {0, 1}p, τ will find a leaf
v of the protocol-tree of π, such that the associated rectangle Rv has some (x, y) ∈ Rv with
Eqp(x, y) = z. The label of such a leaf then equals f(Eqp(x, y)) = f(z,). We now present an
informal description of τ , and in Algorithm 1 below we provide pseudocode for τ . We will
then show that the algorithm for τ is correct, i.e. that it is always able to find such a leaf
v, and then show that the number of 0-queries that τ makes is O(Cn), which completes the
proof of Theorem 13.

Given an input z ∈ {0, 1}p, τ starts traversing a path from the root of the protocol tree
of π. A variable v is maintained, indicating the node of the protocol tree of π which is
the current-node during the ongoing simulation; associated with v is the rectangle Rv of
inputs which cause the protocol to reach node v. The decision-tree τ , when traversing node
v, maintains a rectangle R = A×B and a square S = 〈n, p,R = A×B, I = F ∪O,S, α, β〉,
such that R is a sub-rectangle of Rv. The set F corresponds to coordinates of the input z
that were not queried yet, and O is set of coordinates i which have been queried and found
to have zi = 1. Throughout the execution of the algorithm, it is maintained as an invariant
that the square S is τ -thick in the coordinates F . At the beginning, I = F = [p], O = ∅,
and A = B = ({0, 1}n)[p], so the invariant is trivially true.

In each iteration of the simulation, the algorithm checks whether S is ϕ-average-thick on
F . If this fails to hold, the algorithm will use the projection lemma (Lemma 28) and change
S to ensure this requirement, as follows. Using Procedure 1 of Lemma 28, it chooses the
set E ⊆ F ; this requires querying zi for i ∈ E, and gives us the set E0 ⊆ E of coordinates
where zi = 0, and the set E1 = E \ E0 of coordinates where zi = 1. The algorithm then
uses Procedure 3 of Lemma 28 to construct a square S ′. Lemma 28 guarantees that S ′
is ϕ

2 -average-thick on F \ E, and that Density(S ′) grows by a factor of (2ϕ)−|E0|. If E0 is
non-empty, i.e. if we have made some 0 queries, the density will grow significantly; otherwise
the density will not change. The algorithm proceeds with S = S ′, I = I \ E0, O = O ∪ E1,
and F = F \ E.

Now the algorithm is promised to have a square S which is at least 1
2ϕ-average-thick. The

algorithm then proceeds to a child vc of v which has at least 1/2 fraction of the density of S,
as follows. Suppose Alice communicated in v, and for each c ∈ {0, 1}, let Rvc = Avc ×Bvc

be the rectangle which π associates with vc. We then fix a choice c ∈ {0, 1} such that
|R ∩ Rvc

| ≥ |R|/2. Now consider the set S′ = {s ∈ S | s × α(s) ∈ Avc
}. This set is still

1
4ϕ-average-thick. We may then apply Lemma 23, with δ = 1

2 , to S
′, which gives us a subset

S′′ ⊆ S′ which is τ -thick on F . The new square S is then given by restricting α and β to
the set S′′. By changing S in this way, we have preserved a 1

4 fraction of the density.
Eventually, when we reach a leaf node v of the protocol tree, we are left with a square S

which is τ -thick on F . The algorithm outputs the labeling of Rv in π, and we will now argue
that this must equal f(z).

Correctness. Because π correctly solves f ◦ Eqn, then for each leaf v of π we have
(x, y, π(v)) ∈ f for all (x, y) ∈ Rv; the rectangle R obtained at the termination of Al-
gorithm 1 is a sub-rectangle of Rv for a leaf of π, hence (x, y, π(v)) ∈ f for all (x, y) ∈ R. On
the other hand, we have preserved a square S = 〈n, p,R = A×B, I, S, α, β〉 which is τ -thick
on F ⊆ I, and such that zi = 1 for every i ∈ O = I \F , and zi = 0 for every i ∈ [p] \ I. Then
Corollary 30 tells us that some pair (x, y) ∈ R is such that Eqp(x, y) = z; hence (z, π(v)) ∈ f .

STACS 2019

50:16 Lifting Theorems for Equality

Algorithm 1 Decision-tree procedure τ .
Input: z ∈ {0, 1}p
Output: f(z)
1: Initialization: Set v to be the root of the protocol tree for π, I = F = [p], O = ∅, S =
〈n, p,R, I, S, α, β〉, where R = A × B, A = B = S = ({0, 1}n)[p], and α, β are the empty
functions.

2: while v is not a leaf do
3: if S is not ϕ-average-thick on F then
4: Use Lemmas 28 and 23, to get E ⊆ F , E0 ⊆ E, and
5: a square S ′ = 〈n, p,R′, I \ E0, S

′, α′, β′〉, such that
6: (1) S ′ is τ -thick on F \ E, and
7: (2) Density(S ′) ≥ 1

4
1

ϕ|E0| Density(S).
8: Update S = S ′, O = O ∪ (E \ E0),
9: F = F \ E, I = I \ E0.
10: end if
11: . At this point S is at least 1

2ϕ-average-thick on F .
12: Choose c ∈ {0, 1} such that |R ∩Rvc | ≥ 1

2 |R|.
13: Using Lemma 23, choose S ′ = 〈n, p,R′, I, S′, α′, β′〉, such that
14: (1) R′ ⊆ R ∩Rvc

15: (2) Density(S ′) ≥ 1
4 Density(S).

16: (3) S ′ is τ -thick on F .
17: Update S = S ′, and v = vc.
18: end while
19: Output π(v).

Number of queries. In each time when the simulation goes down the protocol tree of π,
Density(S) drops by a factor of at most 1

4 and hence, in total, by a factor of 4−C . For each
set E of queries that the algorithm makes in a round, the density of the current square
increases by a factor of (2ϕ)−|E0| – this is Property (iii) of Lemma 28. So, if Q0 is the
total number of queries which the algorithm makes, and which are answered 0, then the
total gain in Density(S) is at least (2ϕ)−Q0 . Since the density can be at most 1, we have,
4−C · (2ϕ)−Q0 ≤ 1, and so Q0 ≤ −2C

log(2ϕ) = 2C
n
20−1 = O

(
C
n

)
. This concludes the proof. J

References

1 Boaz Barak, Mark Braverman, Xi Chen, and Anup Rao. How to compress interactive
communication. SIAM Journal on Computing, 42(3):1327–1363, 2013.

2 Paul Beame, Toniann Pitassi, Nathan Segerlind, and Avi Wigderson. A direct sum theorem
for corruption and the multiparty NOF communication complexity of set disjointness. In
Proceedings of the 20th CCC, pages 52–66, 2005.

3 Anna Bernasconi and Bruno Codenotti. Spectral Analysis of Boolean Functions as a Graph
Eigenvalue Problem. IEEE Transactions on Computers, 48(3):345–351, 1999.

4 Mark Braverman and Anup Rao. Information Equals Amortized Communication. IEEE
Transactions on Information Theory, 60(10):6058–6069, 2014.

5 Mark Braverman, Anup Rao, Omri Weinstein, and Amir Yehudayoff. Direct Product via
Round-Preserving Compression. In Proceedings of the 40th ICALP, pages 232–243, 2013.

6 Mark Braverman, Anup Rao, Omri Weinstein, and Amir Yehudayoff. Direct Products in
Communication Complexity. In Proceedings of the 54th FOCS, pages 746–755, 2013.

B. Loff and S.Mukhopadhyay 50:17

7 Joshua Brody, Harry Buhrman, Michal Kouckỳ, Bruno Loff, Florian Speelman, and Nikolay
Vereshchagin. Towards a reverse Newman’s theorem in interactive information complexity. In
Proceedings of the 28th CCC, pages 24–33, 2013.

8 Harry Buhrman and Ronald de Wolf. Complexity measures and decision tree complexity: a
survey. Theoretical Computer Science, 288(1):21–43, 2002.

9 Amit Chakrabarti and Oded Regev. An Optimal Lower Bound on the Communication
Complexity of Gap-Hamming-Distance. SIAM Journal on Computing, 41(5):1299–1317, 2012.

10 Arkadev Chattopadhyay. Discrepancy and the Power of Bottom Fan-in in Depth-three Circuits.
In Proceedings of the 48th FOCS, pages 449–458, 2007.

11 Arkadev Chattopadhyay and Anil Ada. Multiparty Communication Complexity of Disjointness.
Technical Report TR08-002, ECCC, 2008.

12 Arkadev Chattopadhyay, Michal Koucký, Bruno Loff, and Sagnik Mukhopadhyay. Simulation
Theorems via Pseudorandom Properties. CoRR, abs/1704.06807, 2017.

13 Arkadev Chattopadhyay, Michal Kouckỳ, Bruno Loff, and Sagnik Mukhopadhyay. Simulation
beats richness: new data-structure lower bounds. In Proceedings of the 50th STOC, pages
1013–1020. ACM, 2018.

14 Susanna F. de Rezende, Jakob Nordström, and Marc Vinyals. How Limited Interaction Hinders
Real Communication. In Proceedings of the 56th FOCS, 2016.

15 Irit Dinur and Or Meir. Toward the KRW Composition Conjecture: Cubic Formula Lower
Bounds via Communication Complexity. Computational Complexity, 27(3):375–462, 2018.

16 Andrew Drucker. Improved direct product theorems for randomized query complexity. Com-
putational Complexity, 21(2):197–244, 2012.

17 Jeff Edmonds, Russell Impagliazzo, Steven Rudich, and Jirí Sgall. Communication complexity
towards lower bounds on circuit depth. Computational Complexity, 10(3):210–246, 2001.

18 Tomás Feder, Eyal Kushilevitz, Moni Naor, and Noam Nisan. Amortized Communication
Complexity. SIAM Journal on Computing, 24(4):736–750, 1995.

19 Ankit Garg, Mika Göös, Pritish Kamath, and Dmitry Sokolov. Monotone circuit lower bounds
from resolution. In Proceedings of the 50th STOC, pages 902–911, 2018.

20 Dmitry Gavinsky, Troy Lee, and Miklos Santha. On the randomised query complexity of
composition. CoRR, abs/1801.02226, 2018.

21 Dmitry Gavinsky, Or Meir, Omri Weinstein, and Avi Wigderson. Toward better formula
lower bounds: an information complexity approach to the KRW composition conjecture. In
Proceedings of the 46th STOC, pages 213–222, 2014.

22 Mika Göös, Rahul Jain, and Thomas Watson. Extension complexity of independent set
polytopes. SIAM Journal on Computing, 47(1):241–269, 2018.

23 Mika Göös, TS Jayram, Toniann Pitassi, and Thomas Watson. Randomized Communication
versus Partition Number. In Proceedings of the 44th ICALP, 2017.

24 Mika Göös, Pritish Kamath, Toniann Pitassi, and Thomas Watson. Query-to-communication
Lifting for PNP. In Proceedings of the 32nd CCC, 2017.

25 Mika Göös, Shachar Lovett, Raghu Meka, Thomas Watson, and David Zuckerman. Rectangles
are nonnegative juntas. In Proceedings of the 47th STOC, pages 257–266. ACM, 2015.

26 Mika Göös, Toniann Pitassi, and Thomas Watson. Deterministic communication vs. partition
number. In Proceedings of the 56th FOCS, 2015.

27 Mika Göös, Toniann Pitassi, and Thomas Watson. The landscape of communication complexity
classes. Computational Complexity, pages 1–60, 2015.

28 Michelangelo Grigni and Michael Sipser. Monotone Separation of Logspace from NC. In
Proceedings of the 6th Annual Structure in Complexity Theory Conference, pages 294–298,
1991.

29 Prahladh Harsha, Rahul Jain, David McAllester, and Jaikumar Radhakrishnan. The commu-
nication complexity of correlation. In Proceedings of the 22nd CCC, pages 10–23, 2007.

30 Johan Håstad and Avi Wigderson. Composition of the Universal Relation. In Proceedings of
the DIMACS Workshop, pages 119–134, 1990.

STACS 2019

50:18 Lifting Theorems for Equality

31 Hamed Hatami, Kaave Hosseini, and Shachar Lovett. Structure of Protocols for XOR Functions.
SIAM Journal on Computing, 47(1):208–217, 2018.

32 Rahul Jain. New strong direct product results in communication complexity. Journal of the
ACM, 62(3):20, 2015.

33 Rahul Jain, Hartmut Klauck, and Ashwin Nayak. Direct product theorems for classical
communication complexity via subdistribution bounds. In Proceedings of the 40th STOC,
pages 599–608, 2008.

34 Rahul Jain, Attila Pereszlényi, and Penghui Yao. A direct product theorem for the two-party
bounded-round public-coin communication complexity. In Proceedings of the 53rd FOCS,
pages 167–176, 2012.

35 Rahul Jain, Jaikumar Radhakrishnan, and Pranab Sen. A direct sum theorem in communication
complexity via message compression. In Proceedings of the 20th ICALP, pages 300–315, 2003.

36 Rahul Jain and Penghui Yao. A strong direct product theorem in terms of the smooth rectangle
bound. CoRR, abs/1209.0263, 2012.

37 Stasys Jukna. Boolean Function Complexity - Advances and Frontiers. Springer, 2012.
38 Mauricio Karchmer, Eyal Kushilevitz, and Noam Nisan. Fractional Covers and Communication

Complexity. SIAM Journal on Discrete Mathematics, 8(1):76–92, 1995.
39 Mauricio Karchmer, Ran Raz, and Avi Wigderson. Super-Logarithmic Depth Lower Bounds

Via the Direct Sum in Communication Complexity. Computational Complexity, 5(3/4):191–204,
1995.

40 Mauricio Karchmer and Avi Wigderson. Monotone Circuits for Connectivity Require Super-
Logarithmic Depth. SIAM Journal on Discrete Mathematics, 3(2):255–265, 1990.

41 Iordanis Kerenidis, Sophie Laplante, Virginie Lerays, Jérémie Roland, and David Xiao. Lower
bounds on information complexity via zero-communication protocols and applications. SIAM
Journal on Computing, 44(5):1550–1572, 2015.

42 Pravesh K Kothari, Raghu Meka, and Prasad Raghavendra. Approximating rectangles by
juntas and weakly-exponential lower bounds for LP relaxations of CSPs. In Proceedings of the
49th STOC, pages 590–603. ACM, 2017.

43 Alexander Kozachinskiy. Comment on Meir’s paper The Direct Sum of Universal Rela-
tions. Available at the address https://eccc.weizmann.ac.il/report/2017/128/comment/
1/download/.

44 Alexander Kozachinskiy. From Expanders to Hitting Distributions and Simulation Theorems.
In Proceedings of the 43rd MFCS, pages 4:1–4:15, 2018.

45 Eyal Kushilevitz and Noam Nisan. Communication complexity. Cambridge University Press,
1997.

46 James Lee, Raghu Meka, and Thomas Vidick. (Less) heavy lifting: from conic junta degree
to non-negative rank. Presented in the workshop Hardness Escalation in Communication
Complexity and Query Complexity, FOCS 2017.

47 Troy Lee, Adi Shraibman, and Robert Spalek. A Direct Product Theorem for Discrepancy. In
Proceedings of the 23rd CCC, pages 71–80, 2008.

48 Bruno Loff and Sagnik Mukhopadhyay. Lifting Theorems for Equality. Electronic Colloquium
on Computational Complexity (ECCC), 25:175, 2018.

49 László Lovász. On the ratio of optimal integral and fractional covers. Discrete mathematics,
13(4):383–390, 1975.

50 Or Meir. The direct sum of universal relations. Information Processing Letters, 136:105–111,
2018.

51 Gatis Midrijanis. Exact quantum query complexity for total Boolean functions. CoRR,
abs/quant-ph/0403168, 2004.

52 Alon Orlitsky. Worst-case interactive communication. I. Two messages are almost optimal.
IEEE Transactions on Information Theory, 36(5):1111–1126, 1990.

53 Denis Pankratov. Direct sum questions in classical communication complexity. Master’s thesis,
University of Chicago, 2012.

https://eccc.weizmann.ac.il/report/2017/128/comment/1/download/
https://eccc.weizmann.ac.il/report/2017/128/comment/1/download/

B. Loff and S.Mukhopadhyay 50:19

54 Toniann Pitassi and Robert Robere. Lifting nullstellensatz to monotone span programs over
any field. In Proceedings of the 50th STOC, pages 1207–1219, 2018.

55 Anup Rao and Amir Yehudayoff. Simplified Lower Bounds on the Multiparty Communication
Complexity of Disjointness. In Proceedings of the 30th CCC, pages 88–101, 2015.

56 Ran Raz. Fourier analysis for probabilistic communication complexity. Computational
Complexity, 5(3-4):205–221, 1995.

57 Ran Raz and Pierre McKenzie. Separation of the Monotone NC Hierarchy. Combinatorica,
19(3):403–435, 1999.

58 Robert Robere. Unified Lower Bounds for Monotone Computation. PhD thesis, University of
Toronto, 2018.

59 Robert Robere, Toniann Pitassi, Benjamin Rossman, and Stephen A Cook. Exponential lower
bounds for monotone span programs. In Proceedings of the 57th FOCS, pages 406–415, 2016.

60 Swagato Sanyal. A Composition Theorem via Conflict Complexity. CoRR, abs/1801.03285,
2018. arXiv:1801.03285.

61 Alexander A Sherstov. The pattern matrix method. SIAM Journal on Computing, 40(6):1969–
2000, 2011.

62 Alexander A. Sherstov. The Communication Complexity of Gap Hamming Distance. Theory
of Computing, 8(1):197–208, 2012.

63 Alexander A. Sherstov. The multiparty communication complexity of set disjointness. In
Proceedings of the 44th STOC, pages 525–548, 2012.

64 Alexander A. Sherstov. Communication lower bounds using directional derivatives. In
Proceedings of the 45th STOC, pages 921–930, 2013.

65 Yaoyun Shi and Yufan Zhu. Quantum communication complexity of block-composed functions.
Quantum Information & Computation, 9(5):444–460, 2009.

66 Hing Yin Tsang, Chung Hoi Wong, Ning Xie, and Shengyu Zhang. Fourier Sparsity, Spectral
Norm, and the Log-Rank Conjecture. In Proceedings of the 54th FOCS, pages 658–667, 2013.

67 Thomas Vidick. A concentration inequality for the overlap of a vector on a large set, with
application to the communication complexity of the Gap-Hamming-Distance problem. Chicago
Journal of Theoretical Computer Science, 2013, 2013.

68 Thomas Watson. A ZPPNP Lifting Theorem. Unpublished preprint, 2017.
69 David P. Woodruff. Efficient and private distance approximation in the communication and

streaming models. PhD thesis, Massachusetts Institute of Technology, 2007.
70 Andrew Chi-Chih Yao. Some Complexity Questions Related to Distributive Computing

(Preliminary Report). In Proceedings of the 11h STOC, pages 209–213, 1979.

STACS 2019

http://arxiv.org/abs/1801.03285

Car-Sharing on a Star Network: On-Line
Scheduling with k Servers
Kelin Luo
School of Management, Xi’an Jiaotong University, Xi’an, China
luokelin@stu.xjtu.edu.cn

Thomas Erlebach
Department of Informatics, University of Leicester, Leicester, United Kingdom
te17@leicester.ac.uk

Yinfeng Xu
School of Management, Xi’an Jiaotong University, Xi’an, China
yfxu@xjtu.edu.cn

Abstract
We study an on-line scheduling problem that is motivated by applications such as car-sharing for
trips between an airport and a group of hotels. Users submit ride requests, and the scheduler aims
to accept requests of maximum total profit using k servers (cars). Each ride request specifies the
pick-up time, the pick-up location, and the drop-off location, where one of the two locations must
be the airport. A request must be submitted a fixed amount of time before the pick-up time. The
scheduler has to decide whether or not to accept a request immediately at the time when the request
is submitted (booking time). In the unit travel time variant, the travel time between the airport and
any hotel is a fixed value t. We give a 2-competitive algorithm for the case in which the booking
interval (pick-up time minus booking time) is at least t and the number of servers is even. In the
arbitrary travel time variant, the travel time between the airport and a hotel may have arbitrary
length between t and Lt for some L ≥ 1. We give an algorithm with competitive ratio O(log L) if
the number of servers is at least dlog Le. For both variants, we prove matching lower bounds on the
competitive ratio of any deterministic on-line algorithm.

2012 ACM Subject Classification Theory of computation → Online algorithms

Keywords and phrases Car-Sharing System, On-Line Scheduling, Competitive Analysis, Star Net-
work

Digital Object Identifier 10.4230/LIPIcs.STACS.2019.51

Funding Kelin Luo: This work was partially supported by the China Postdoctoral Science Foundation
(Grant No. 2016M592811), and the China Scholarship Council (Grant No. 201706280058).

1 Introduction

In a car-sharing system, customers can hire a car from a company for a period of time.
They can pick up a car in one location, drive it to another location, and return it there.
Customer requests for car bookings arrive over time, and the decision about each request
must be made immediately, without knowledge of future requests. The goal is to maximize
the profit obtained from satisfied requests. We refer to this problem as the car-sharing
problem. Similar problems arise in car rental or taxi dispatching. In this paper, we consider
the setting where all car booking requests are for travel between a central location (e.g., an
airport, shopping mall or central business district) and one of a group of nearby locations
(e.g., hotels, or residential areas), but can be in either direction. The connections between
the central location and the nearby locations can therefore be viewed as a star network.

© Kelin Luo, Thomas Erlebach, and Yinfeng Xu;
licensed under Creative Commons License CC-BY

36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019).
Editors: Rolf Niedermeier and Christophe Paul; Article No. 51; pp. 51:1–51:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-2006-0601
mailto:luokelin@stu.xjtu.edu.cn
https://orcid.org/0000-0002-4470-5868
mailto:te17@leicester.ac.uk
mailto:yfxu@xjtu.edu.cn
https://doi.org/10.4230/LIPIcs.STACS.2019.51
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

51:2 Car-Sharing on a Star Network: On-Line Scheduling with k Servers

The car-sharing problem bears some resemblance to interval scheduling, but in addition
the pick-up and drop-off locations play an important role: The server (car) that serves a
request must be at the pick-up location at the start time of the request and will be at the
drop-off location at the end time of the request.

A server can serve two consecutive requests, where the pick-up time of the second is no
earlier than the drop-off time of the first, only if the drop-off location of the first request is
the same as the pick-up location of the second request, or if there is enough time to travel
between the two locations otherwise. We allow empty movements, i.e., a server can be moved
from one location to another while not serving a request. Such empty movements could be
implemented by having company staff drive a car from one location to another, or in the
future by self-driving cars.

1.1 Related work
On-line car-sharing problem. The car-sharing problem has been studied in several previous
papers. In [9], we considered the special case with two locations and a single server, considering
both fixed booking times and variable booking times, and presented tight results for the
competitive ratio. The optimal competitive ratio was shown to be 2 for fixed booking times
and 3 for variable booking times. In [10], we dealt with the car-sharing problem with two
locations and two servers, considering only the case of fixed booking times, and showed
that the optimal competitive ratio is 2. In [11], we studied the car-sharing problem with
two locations and k servers, where k can be arbitrarily large. We considered both fixed
booking times and variable booking times. The results showed that, surprisingly, 3 servers
(in one case) and 5 servers (in another case) already allow us to get the best competitive
ratio, and no improvement is possible with more servers. In contrast to the previous work on
car-sharing that has only considered two locations, in this paper we study the car-sharing
problem for fixed booking time in the setting with k servers and m+ 1 locations that are
arranged in a star network.

Off-line car-sharing problem. Böhmová et al. [4] showed that if all customer requests for
car bookings are known in advance, the problem of maximizing the number of accepted
requests is solvable in polynomial time. Furthermore, they considered the problem variant
with two locations where each customer requests two rides (in opposite directions) and the
scheduler must accept either both or neither of the two. They proved that this variant is
NP-hard and APX-hard. In contrast to their work, we consider the on-line version of the
problem with m+ 1 locations.

On-line dial-a-ride problem. A closely related problem is the on-line dial-a-ride problem
(OLDARP). Versions of OLDARP with the objective of serving all requests while minimizing
the makespan [1, 3] or the maximum flow time [7] have been widely studied in the literature.
Versions of OLDARP where not all requests need to be served include the setting where
each request must be served before its deadline or rejected [12], and the setting with a given
common time limit where the goal is to maximize the revenue from requests served before
the time limit [6]. In OLDARP, transportation requests between locations in a metric space
arrive over time, but typically it is assumed that requests want to be served “as soon as
possible” rather than at a specific time as in our problem.

On-line interval scheduling problem. The on-line car-sharing problem can be interpreted
as a variation of the on-line interval scheduling problem. If all the pick-up and drop-off
locations are the same, the car-sharing problem becomes an on-line interval scheduling

K. Luo, T. Erlebach, and Y. Xu 51:3

problem. Lipton and Tomkins [8] defined the basic on-line interval scheduling problem:
intervals with a given length are presented in the order of their start time and the scheduler
aims to accept intervals of maximum total length. The scheduler has to decide whether to
accept each interval before the next interval is presented and ensure that no pair of accepted
intervals overlap. They showed that no (randomized) algorithm can achieve competitive ratio
O(log ∆) (where ∆ denotes the ratio between the longest and the shortest interval, and ∆ is
unknown to the algorithm), and gave an O((log ∆)1+ε)-competitive randomized algorithm.

1.2 Problem description and preliminaries
We consider a setting with m+ 1 locations in a star network and denote the central location
by 0 and the other locations by i for i ∈ {1, 2, . . . ,m}. There are k servers, denoted by
S = {s1, s2, . . . , sk}, that are initially located at 0. We assume that m ≥ 2 since, if m = 1,
the problem turns into the car-sharing problem between two locations that has been studied
before [9, 10, 11]. The length of the edge between 0 and i, for 1 ≤ i ≤ m, is denoted by
d(0, i) = d(i, 0). The travel time from 0 to i, i ∈ {1, 2, . . . ,m}, is d(0, i) · t, where t is a fixed
positive constant, and is the same as the travel time from i to 0, d(i, 0) · t. In the variant
with unit travel times, all edges have length 1 and the travel time between 0 and i is t for all
i ∈ {1, 2, . . . ,m} (see Fig. 1 for an example). In the variant with arbitrary travel times, we
only assume that the edge lengths satisfy 1 ≤ d(0, i) ≤ L for all 1 ≤ i ≤ m (Fig. 2 shows an
example).

Figure 1 Unit travel times. Figure 2 Arbitrary travel times.

Let R denote a sequence of requests that are released over time. The requests with the
same release time are released one by one in arbitrary order. The i-th request is denoted
by ri = (t̃ri , tri , pri , ṗri) and specifies the booking time or release time t̃ri , the start time
or pick-up time tri , the pick-up location pri ∈ {0, 1, . . . ,m}, and the drop-off location
ṗri ∈ {0, 1, . . . ,m}. We also say that request ri drops off at ṗri . We require ṗri 6= pri and
min{pri , ṗri} = 0, i.e., for all requests ri ∈ R, either the pick-up location pri or the drop-off
location ṗri is 0. We assume that the booking interval tri − t̃ri is equal to a fixed value a for
all requests ri ∈ R. For the variant with unit travel times (resp. the variant with arbitrary
travel times), if ri is accepted, a server must pick up the customer at pri at time tri and
drop off the customer at ṗri at time ṫri = tri + t (resp. at time ṫri = tri + d(pri , ṗri) · t), the
end time (or drop-off time) of the request.

Each server can only serve one request at a time. If two requests are such that they cannot
both be served by one server, we say that the requests are in conflict. For the variant with
unit travel times (resp. arbitrary travel times), serving a request ri yields profit Pri = r (resp.
Pri = d(pri , ṗri) · r). An empty movement has no cost. We denote the requests accepted by
an algorithm by R′. The i-th request in R′, in order of request start times, is denoted by
r′i. We denote the profit of serving the requests in R′ by PR′ =

∑|R′|
i=1 Pr′i . The goal of the

car-sharing problem is to accept a set of requests R′ that maximizes the profit PR′ .

STACS 2019

51:4 Car-Sharing on a Star Network: On-Line Scheduling with k Servers

We use kSmL-U to refer to the problem with k servers and m + 1 locations with unit
travel times. The problem variant with arbitrary travel times is called the kSmL-A problem.
For the kSmL-A problem, we assume that a ≥ 2Lt, where Lt is the travel time of the longest
edge of the star. This ensures that any free server always has enough time to travel from its
current location to the pick-up location of a newly accepted request. We do not require that
the algorithm assigns an accepted request to a server immediately, provided that it ensures
that one of the k servers will serve the request.

We forbid “unprompted” moves, i.e., the algorithm is allowed to make an empty move to
another location only if it does so in order to serve a request that was accepted before the
current time and whose pick-up location is the other location. If the length of the booking
interval (recall that the booking interval is the interval between booking time and start
time) is greater than the maximum travel time of any two locations in the two problems
defined above, we observe that there is never a need for a server to make an unprompted
movement. Therefore, if a ≥ 2t for kSmL-U or a ≥ 2Lt for kSmL-A, whether or not we
forbid unprompted movements affects neither lower bounds nor the algorithm performance.

The performance of an algorithm for kSmL-U or kSmL-A is measured using competitive
analysis [5]. For any request sequence R, let PRA denote the objective value produced by
an on-line algorithm A, and PR∗ that obtained by an optimal scheduler OPT that has full
information about the request sequence in advance. Like for the algorithm, we also require
that OPT does not make unprompted moves, i.e., OPT is allowed to make an empty move
starting at time t0 with some server sj from location p to location q only if there is an
accepted request ri assigned to sj with t̃ri ≤ t0, pri = q and tri ≥ t0 + d(p, q) · t. The
competitive ratio of A is defined as ρA = supR

PR∗
PRA

. We say that A is ρ-competitive if
PR∗ ≤ ρ · PRA for all request sequences R. Let ON be the set of all on-line algorithms for
a problem. We only consider deterministic algorithms in this paper. A value β is a lower
bound on the best possible competitive ratio if ρA ≥ β for all A in ON .

The asymptotic competitive ratio (asymptotic performance ratio) of A is defined to
be ρ′A = limn→∞ supR{

PR∗
PRA
|PR∗ = n}. A value β′ is a lower bound on the best possible

asymptotic competitive ratio if ρ′A ≥ β′ for all A in ON . We write N = {0, 1, 2, . . .}.

1.3 Paper outline

Table 1 Lower and upper bounds on the competitive ratio for the kSmL problem.

Problem Booking constraint Lower bound Upper bound

kSmL-U a < t k
bk/mc

k
bk/mc

kSmL-U t ≤ a < 2t 2 2 (for even k)
kSmL-U a ≥ 2t 2− 1

2m−1 2 (for even k)
kSmL-A a ≥ 2Lt Ω(log L) O(log L) (for k ≥ log L)

In Section 2, we present lower bounds on the competitive ratio for the kSmL-U problem.
In Section 3, we propose two greedy algorithms, the m-partition greedy algorithm and the
bi-partition greedy algorithm, that achieve the best possible competitive ratio for kSmL-U for
different ranges of a. In Section 4, we study kSmL-A and give an algorithm with competitive
ratio O(logL) and show that no deterministic on-line algorithm can achieve competitive
ratio smaller than Ω(logL). Section 5 concludes the paper. An overview of our results is
shown in Table 1. All our lower bounds hold even in the seemingly simpler case where the
start time of every request is a multiple of t.

K. Luo, T. Erlebach, and Y. Xu 51:5

2 Lower bounds for kSmL-U

In this section, we present lower bounds for the kSmL-U problem. We use ALG to denote
any on-line algorithm and OPT to denote an optimal scheduler. The set of requests accepted
by ALG is denoted by R′, and the set of requests accepted by OPT by R∗.

I Theorem 1. For a < t, no deterministic on-line algorithm for kSmL-U can achieve
asymptotic competitive ratio smaller than k

bk/mc .

Proof. Consider a sequence of requests that consists of γ phases where phase i, for 1 ≤ i ≤ γ,
consists of li groups of requests, with each group consisting of k identical requests. Let
σ(u, v) be the number of request groups that the adversary has released by the time when
the requests in phase u, group v have just been released, i.e., σ(u, v) =

∑u−1
i=1 li + v.

The adversary releases requests based on the release rule for kSmL-U shown in Algorithm 1.

Algorithm 1 Release Rule for kSmL-U with a < t.
Initialization: The adversary presents the requests in phase 1 group 1: k copies of the
request (ν · t− a, ν · t, 0, 1) for some ν such that ν ∈ N and ν · t− a ≥ 0.
i = 1, j = 1. Let l be a large, positive, odd integer.
While i ≤ m do

if j < l then
if |R′i,j | > bk/mc then

li = j, i = i+ 1, j = 1 and the adversary releases the requests in Ri,j ;
else if |R′i,j | ≤ bk/mc then

j = j + 2 and the adversary releases the requests in Ri,j−1 and Ri,j ;
if j ≥ l then

break.
Output: γ = i and li = j.
(1) Let Ri,j denote the set of requests in phase i group j. If i > 1 and j = 1, Ri,j consists of k copies of
the request (t̃rσ(i−1,li−1)k + t, trσ(i−1,li−1)k + t, 0, i); if i > 0, j > 1 and j = 2e where e ∈ N, Ri,j consists
of k copies of the request (t̃rσ(i,j−1)k + t, trσ(i,j−1)k + t, i, 0); if i > 0, j > 1 and j = 2e + 1 where e ∈ N,
Ri,j consists of k copies of the request (t̃rσ(i,j−1)k + t, trσ(i,j−1)k + t, 0, i).
(2) Let R′i,j denote the set of requests accepted by ALG in phase i group j.

We make four observations:
(a) For each i < γ, li < l. This holds because, as soon as j reaches value l, the While-loop is

exited and γ is set to i.
(b) For each i ≤ γ, ALG accepts no more than bk/mc(li − 1) requests in total among the

requests in phase i excluding the requests in phase i group li. This can be seen as follows:
The algorithm accepts at most bk/mc requests from phase i group j for any odd j, j < li.
Moreover, the total number of requests from phase i group j for all even j together
cannot be larger than the total number of requests from phase i group j for all odd j,
j < li.

(c) ALG accepts no more than k requests in total among the requests in phase 1 group
l1, phase 2 group l2, . . . , phase γ group lγ . This holds because any server accepting a
request in phase i group li will remain at i and not be able to serve any further requests.

(d) ALG accepts more than (bk/mc + 1)(γ − 1) requests in total among the requests in
phase 1 group l1, phase 2 group l2, . . . , phase γ − 1 group lγ−1. This holds because the
algorithm accepts strictly more than bk/mc requests in each of these γ − 1 groups.

STACS 2019

51:6 Car-Sharing on a Star Network: On-Line Scheduling with k Servers

According to (d), more than (bk/mc+ 1) · (γ − 1) servers are not in location 0 or γ when
the requests in phase γ are released. These servers cannot accept requests in phase γ because
the release time of a request is too late for such a server to be able to serve it with empty
movement. If γ = m, k − (bk/mc+ 1)(γ − 1) ≤ bk/mc, and hence the adversary stops to
release requests in phase m only after group l. Therefore, lγ = l no matter whether γ < m

or γ = m.
By (b) and (c), we have that ALG accepts no more than (bk/mc

∑γ
i=1(li − 1)) + k

requests.
OPT accepts all the requests except the requests in phase 1 group l1, phase 2 group

l2, . . ., phase γ − 1 group lγ−1. We have PR∗ = (kr
∑γ−1
i=1 (li − 1)) + krl. Since PR′ ≤

kr+bk/mc
∑γ
i=1(li−1)r and liml→∞ inf li≤l

kl+k
∑γ−1

i=1
(li−1)

k+bk/mc
∑γ

i=1
(li−1)

= k
bk/mc , where the infimum

is taken over all possible values of li for 1 ≤ i ≤ γ−1, we get limPR∗→∞ PR∗/PR′ ≥ k
bk/mc . J

I Theorem 2. For t ≤ a < 2t, no deterministic on-line algorithm for kSmL-U can achieve
asymptotic competitive ratio smaller than 2.

Proof. Let l be a large, positive integer. Consider a sequence of requests that consists
of 2 phases where phase i, for i = 1, 2, consists of li groups of requests, with each group
consisting of k identical requests. Let Ri,j denote the set of requests in phase i group j.
Initially, the adversary releases Ri,j with i = 1 and j = 1, consisting of k copies of the request
r1 = (ν · t− a, ν · t, 0, 1) for some ν such that ν ∈ N and ν · t− a ≥ 0. Let R′i,j denote the set
of requests accepted by ALG in phase i group j. The adversary releases further requests
based on the following rules: If |R′1,j | ≤ k

2 and j < l , let j = j+ 1 and release R′1,j consisting
of k copies of the request (t̃r1 + 2(j − 1)t, tr1 + 2(j − 1)t, 0, 1); otherwise, set l1 = j and
stop to release requests in phase 1. Note that either l1 = l, or l1 < l and |R′1,l1 | >

k
2 . We

distinguish two cases.
Case 1: l1 = l. Observe that |R′1,j | ≤ k

2 for all 1 ≤ j < l1. In this case, OPT accepts all
requests in R1,j for all 1 ≤ j ≤ l. We have PR∗ = l · kr and PR′ =

∑l1
j=1 |R′1,j |r ≤

k
2 · (l − 1)r + kr, and hence limPR∗→∞ PR∗/PR′ ≥ 2.

Case 2: l1 < l and |R′
1,l1
| > k

2 . Observe that |R′1,j | ≤ k
2 for all 1 ≤ j < l1. The adversary

then releases R2,j for all 1 ≤ j ≤ l2, where each R2,j consists of k copies of the
request (t̃r1 + 2(l1 − 1 + j)t, tr1 + 2(l1 − 1 + j)t, 2, 0). Observe that |R′1,l1 | servers
of the algorithm are in location 1 when the requests in R2,j for all 1 ≤ j ≤ l2 are
released. The release time of a request with pick-up location 2 is too late for a server in
location 1 to be able to serve it with empty movement because the travel time between
location 1 and the pick-up location 2 is 2t, which is greater than the booking interval
a. From this it follows that the |R′1,l1 | servers of ALG cannot accept any requests
in phase 2. OPT accepts all requests in phase 2. We have PR∗ ≥ l2 · kr. Since
PR′ ≤

∑l1−1
j=1 |R′1,j |r + |R′1,l1 |r + (k − |R′1,l1 |)l

2r ≤ k
2 · (l

2 + l1 − 1)r + |R′1,l1 |r, we have
limPR∗→∞ PR∗/PR′ ≥ 2. J

I Theorem 3. For a ≥ 2t, no deterministic on-line algorithm for kSmL-U can achieve
competitive ratio smaller than 2 − 1

2m−1 . Furthermore, if k < 2(m − 1), no deterministic
on-line algorithm for kSmL-U can achieve competitive ratio smaller than 2.

Proof. The adversary releases a number of request sequences. We use ki (0 ≤ ki ≤ k) to
denote the number of requests that ALG accepts from the ith request sequence.

Initially, the adversary releases the 1st request sequence, consisting of k copies of the
request (ν · t − a, ν · t, 0, 1) for some ν such that ν ∈ N and ν · t − a ≥ 0. There are two
options that the adversary can adopt:

K. Luo, T. Erlebach, and Y. Xu 51:7

Option 1. The adversary does not release any more requests. In this case, OPT accepts all
requests in the 1st request sequence. We have PR∗ = k · r and PR′ = k1 · r, and hence
PR∗/PR′ ≥ k

k1
.

Option 2. The adversary releases the 2nd request sequence, consisting of k copies of the
request (t̃r1 , tr1 , 1, 0), and then releases m − 1 further request sequences (from the 3rd
request sequence to the (m + 1)th request sequence), where the ith (3 ≤ i ≤ m + 1)
request sequence consists of k copies of the request (t̃r1 + t, tr1 + t, 0, i− 1). Then, the
adversary releases the (m+ 2)th request sequence, consisting of k copies of the request
(t̃r1 + 2t, tr1 + 2t, %− 1, 0) where % = arg min{ki, 3 ≤ i ≤ m+ 1}. Since the requests in the
1st request sequence are in conflict with the requests in the ith (2 ≤ i ≤ m+ 2) request
sequence, k1 servers of ALG accept at most one request each. OPT accepts all requests
in the 2nd request sequence, the %th request sequence and the (m+ 2)th request sequence,
i.e., PR∗ = 3kr.
Observe that k% ≤ k−k1

m−1 . Furthermore, the requests in the (m+ 2)th request sequence
are in conflict with the requests in the ith (3 ≤ i ≤ m+ 1 and i 6= %) request sequence.
Therefore, at most k% servers accept requests both in the (m+ 2)th request sequence and
the ith (3 ≤ i ≤ m+ 1) request sequence. From this it follows that k% servers accept at
most three requests each (in the 2nd, the %th, and the (m+ 2)th request sequence) and
the remaining servers of ALG, i.e., k − k1 − k% servers, each accept at most two requests
(in the 2nd and the ith request sequence where 3 ≤ i ≤ m + 1 and i 6= %). Thus, we
have PR′ ≤ k1r + 2(k − k1)r + k% · r and hence PR′ ≤ k1r + 2(k − k1)r + k−k1

m−1 · r. Since
PR∗ = 3kr, PR∗/PR′ ≥ 3k

2k−k1+(k−k1)/(m−1) .

If we choose the option (from Option 1 and Option 2) that maximizes PR∗
PR′

, we have
PR∗
PR′
≥ max{ kk1

, 3k
2k−k1+(k−k1)/(m−1)}. As k1 increases, k

k1
decreases and 3k

2k−k1+(k−k1)/(m−1)
increases. Since 3k

2k−k1+(k−k1)/(m−1) = k
k1

= 2 − 1
2m−1 when k1 = 2m−1

4m−3 · k, we have
PR∗/PR′ ≥ 2− 1

2m−1 . The claimed lower bound of 2− 1
2m−1 follows.

Furthermore, if k < 2(m − 1), we can argue as follows. If k1 ≤ k
2 , we choose Option 1

and get PR∗/PR′ = k
k1
≥ 2. If k1 >

k
2 , then k% ≤

k−k1
m−1 < 1 and hence k% = 0. We choose

Option 2 and have PR′ ≤ k1r + 2(k − k1)r and thus PR∗/PR′ ≥ 3k
2k−k1

> 2. The claimed
lower bound of 2 follows. J

3 Upper bounds for kSmL-U

In this section, we prove the upper bounds for the kSmL-U problem. Denote the requests
accepted by OPT by R∗ = {r∗1 , r∗2 , . . . , r∗|R∗|} and the requests accepted by an algorithm by
R′ = {r′1, r′2, . . . , r′|R′|}, indexed in the order in which they are released (and hence also in
order of non-decreasing pick-up times).

Let R∗(e, p, d) denote the set of requests in R∗ which start at time e at location p and
drop off at location d. Observe that ∀e, p, d, |R∗(e, p, d)| ≤ k. Let R∗(p, d) denote the
set of requests in R∗ which start at location p and drop off at location d. Furthermore,
let R∗(e, 0, X) denote the set of requests in R∗ which start at time e at location 0, i.e.,
R∗(e, 0, X) =

⋃m
d=1R

∗(e, 0, d), and let R∗(e,X, 0) denote the set of requests in R∗ which
start at time e and drop off at location 0, i.e., R∗(e,X, 0) =

⋃m
d=1R

∗(e, d, 0). Similarly, define
R∗(0, X) =

⋃m
d=1R

∗(0, d) and R∗(X, 0) =
⋃m
d=1R

∗(d, 0). The subsets R′(e, p, d), R′(p, d),
R′(e, 0, X), R′(e,X, 0) R′(0, X) and R′(X, 0) of R′ are defined analogously.

STACS 2019

51:8 Car-Sharing on a Star Network: On-Line Scheduling with k Servers

3.1 Upper bound for 0 ≤ a < t

We propose an m-Partition Greedy Algorithm (m-PGA) for the kSmL-U problem when
0 ≤ a < t, shown in Algorithm 2. The k servers are divided into m groups S1, S2, . . . , Sm.
From group S1 to group Sm−1, each group has bk/mc servers; group Sm has k−bk/mc(m−
1) ≥ dk/me servers. The servers in group Si, 1 ≤ i ≤ m, only serve requests whose pick-up
or drop-off location is i.

Algorithm 2 m-Partition Greedy Algorithm (m-PGA).
Input: k servers, requests arrive over time.
Step: When request ri arrives, if it is acceptable to a server in group Sg(ri), where
g(ri) = max{pri , ṗri}, assign it to that server; otherwise, reject it.

(1) rn
i,j denotes the newest request which is assigned to sj before ri is released. Set ṗrn

i,j
= 0 and ṫrn

i,j
= 0

if server sj has not accepted any request before ri is released.
(2) ri is acceptable to a server sj (sj ∈ S) if and only if pri = ṗrn

i,j
and tri ≥ ṫrn

i,j
.

We refer to the servers of m-PGA as s′1, s′2, . . . , s′k, and the servers of OPT as s∗1, s∗2, . . . , s∗k.
For an arbitrary request sequence R = (r1, r2, . . . , rn), note that we have tri ≤ tri+1 for
1 ≤ i < n because tri − t̃ri = a is fixed.

I Observation 4. m-PGA only accepts requests without empty movement because the
release time of a request is too late for a server to be able to serve it with empty movement
in kSmL-U with a < t. Therefore, each m-PGA server accepts requests with alternating
pick-up location, starting with a request with pick-up location 0.

I Observation 5. OPT only accepts requests without empty movement because the release
time of a request is too late for a server to be able to serve it with empty movement in
kSmL-U with a < t. Therefore, each OPT server accepts requests starting with a request
with pick-up location 0, and any two consecutive requests accepted by a server of OPT have
the following property: the drop-off location of the first request is the pick-up location of the
second request.

For simplification of the analysis, we suppose that for each d, 1 ≤ d ≤ m, OPT has k
separate servers for serving requests for travel between location 0 and location d, and those
k servers only serve such requests. This simplification does not decrease the profit gained by
OPT . In this way we can analyse the requests for travel between location 0 and location
d for different d independently. In the following, we focus on an arbitrary value of d and
assume that Sd contains bk/mc servers.

The analysis of the algorithm is divided into two parts. First, we reassign the requests in
R′(0, d), R′(d, 0), R∗(0, d) and R∗(d, 0) by repeated application of two reassignment rules,
and then we show that the profit accrued by the algorithm is within a certain factor of the
profit accrued by OPT .

Suppose OPT accepts k∗0 requests that start at location 0 and drop off at location d, i.e.,
R∗(0, d) = {r∗01 , r∗02 , . . . , r∗0k∗0

}, and OPT accepts k∗1 requests that start at location d and drop
off at location 0, i.e., R∗(d, 0) = {r∗d1 , r∗d2 , . . . , r∗dk∗1

}. The subsets R′(0, d) = {r′01 , r′02 , . . . , r′0k′0}
and R′(d, 0) = {r′d1 , r′d2 , . . . , r′dk′1} of R

′ are defined analogously.

Reassignment Rule 1. Consider the case that requests r∗0o and r∗do are both assigned to the
same server for o < i and r∗0i and r∗di are assigned to different servers. Suppose r∗0i
is assigned to s∗j and r∗di is assigned to s∗l where l 6= j. We reassign r∗di to server s∗j ,

K. Luo, T. Erlebach, and Y. Xu 51:9

reassign all requests in R∗ \ ({r∗01 , r∗02 , . . . , r∗0i }
⋃
{r∗d1 , r∗d2 , . . . , r∗di }) that are assigned

to s∗j (denote the set of these requests by <j) to server s∗l , and reassign all requests in
R∗ \ ({r∗01 , r∗02 , . . . , r∗0i }

⋃
{r∗d1 , r∗d2 , . . . , r∗di }) that are assigned to s∗l (denote them by <l)

to server s∗j .

As each server accepts requests with alternating pick-up location, starting with a request
with pick-up location 0, we have ṫr′0

i
≤ tr′d

i
(for all i ≤ k′1) and ṫr∗0

i
≤ tr∗d

i
(for all i ≤ k∗1).

Thus, for i ≤ k∗1 , r∗0i and r∗di are not in conflict, and hence reassigning r∗di to server s∗j is
valid. Furthermore, any two consecutive requests in <l are not in conflict, so reassigning
all requests of <l to server s∗j is valid. Observe that server s∗l is at location d at time tr∗d

i
.

Because the first request in <j , say, request x, has pick-up location d and starts after tr∗d
i
,

reassigning request x to server s∗l is valid. As any two consecutive requests in <j are not in
conflict, reassigning all requests of <j to server s∗l is valid. From this it follows that R∗(0, d)
and R∗(d, 0) are still a valid solution with the same profit after the reassignment.

Reassignment Rule 2. Consider the case that requests r∗0o and r∗do are both assigned to
the server so mod k for o < i and r∗0i and r∗di are not assigned to the server si mod k
(the case where r∗di does not exist can be handled similarly). Suppose r∗0i and r∗di are
assigned to s∗j , j 6= i mod k. We reassign r∗0i and r∗1i to server si mod k, reassign all
requests in R∗ \ ({r∗01 , r∗02 , . . . , r∗0i }

⋃
{r∗d1 , r∗d2 , . . . , r∗di }) that are assigned to s∗j (denote

the set of these requests by <j) to server s∗i mod k, and reassign all requests in R∗ \
({r∗01 , r∗02 , . . . , r∗0i }

⋃
{r∗d1 , r∗d2 , . . . , r∗di }) that are assigned to s∗i mod k (denote them by

<i mod k) to server s∗j .

Since the requests r∗0o and r∗do are both assigned to the server so mod k for o < i, the last
request rl accepted by s∗i mod k whose pick-up time is earlier than tr∗0

i
ends not later than the

last request accepted by s∗j whose pick-up time is earlier than tr∗0
i

if j 6= i mod k. Reassigning
all requests of <j to server s∗i mod k is valid. Because the first request in <i mod k accepted by
s∗i mod k starts later than tr∗0

i
and starts at location pr∗0

i
, and any two consecutive requests

in <i mod k are not in conflict, reassigning all requests of <i mod k to server s∗j is valid. From
this it follows that R∗(0, d) and R∗(d, 0) are still a valid solution with the same profit after
the reassignment.

Similarly, we reassign the requests in R′(0, d) and R′(d, 0) based on the above process until
both requests r′0i and r′di are assigned to s′i mod bk/mc for i ≤ k′1. Note that this reassignment
does not affect the validity of R′(0, d) and R′(d, 0), and PR′(0,d) and PR′(d,0) do not change.

I Theorem 6. m-PGA is k
bk/mc -competitive for kSmL-U if 0 ≤ a < t.

Proof. We bound the competitive ratio of m-PGA by analyzing the requests between 0
and d for each d independently. As

⋃m
d=1R

′(0, d) ∪
⋃m
d=1R

′(d, 0) = R′ and
⋃m
d=1R

∗(0, d) ∪⋃m
d=1R

∗(d, 0) = R∗, it is clear that, for any α ≥ 1, PR∗/PR′ ≤ α follows if we can show that
PR∗(0,d)/PR′(0,d) ≤ α and PR∗(d,0)/PR′(d,0) ≤ α for all d, 1 ≤ d ≤ m. Consider an arbitrary
value of d from now on.

The proof uses similar ideas to the one used for the case a < t of car-sharing between two
locations (Theorem 2 in [9] and Theorem 2 in [10]), but there one can easily show that R∗
can be transformed into R′ without reducing its profit, whereas we encounter the additional
difficulty that m-PGA has only bk/mc servers while OPT has k servers.

Let R̄∗(0, d) (resp. R̄∗(d, 0)) be the subset of R∗(0, d) (resp. R∗(d, 0)) that contains
the requests from the (ik + 1)th to the (ik + bk/mc)th, for all 0 ≤ i ≤ |R∗(0,d)|

k (resp.
0 ≤ i ≤ |R

∗(d,0)|
k). In other words, R̄∗(0, d) and R̄∗(d, 0) contain the requests that are accepted

by the first bk/mc servers of OPT . Suppose the first bk/mc servers of OPT accept k∗0 requests

STACS 2019

51:10 Car-Sharing on a Star Network: On-Line Scheduling with k Servers

that start at location 0 and drop off at location d, i.e., R̄∗(0, d) = {r∗01 , r∗02 , . . . , r∗0k∗0
}, and the

first bk/mc servers of OPT accept k∗1 requests that start at location d and drop off at location 0,
i.e., R̄∗(d, 0) = {r∗d1 , r∗d2 , . . . , r∗dk∗1

}. Suppose m-PGA accepts k0 requests that start at location
0 and drop off at location d, i.e., R′(0, d) = {r′01 , r′02 , . . . , r′0k0

}, and m-PGA accepts k1 requests
that start at location d and drop off at location 0, i.e., R′(d, 0) = {r′d1 , r′d2 , . . . , r′dk1

}. We
claim that R̄∗(0, d) (resp. R̄∗(d, 0)) can be transformed into R′(0, d) (resp. R′(d, 0)) without
reducing its profit, thus showing that PR̄∗(0,d) ≤ PR′(0,d) (resp. PR̄∗(d,0) ≤ PR′(d,0)), and
hence PR∗(0,d) ≤ k

bk/mcPR′(0,d) (resp. PR∗(d,0) ≤ k
bk/mcPR′(d,0)).

By Observation 5, when R̄∗(d, 0) consists of w requests, R̄∗(0, d) consists of at least w
requests and of at most w + bk/mc requests, i.e., k∗1 ≤ k∗0 ≤ k∗1 + bk/mc.

As m-PGA accepts the request rγ which is the first acceptable request that starts at
location 0 and the request rδ which is the first acceptable request that starts at location
d (rδ is the first request in R that starts at location d and starts after ṫrγ), it is clear that
tr′01
≤ tr∗0

1
and tr′d1 ≤ tr∗d1

. If r′01 6= r∗01 , we can replace r∗01 by r′01 in R̄∗(0, d), and if r′d1 6= r∗d1 ,
we can replace r∗d1 by r′d1 in R̄∗(d, 0). Similarly, if i ≤ bk/mc, request r′0i (resp. r′di) starts
earlier than request r∗0i (resp. r∗di). Otherwise, server s′i accepts request r∗0i and r∗di instead
of r′0i and r′di . If r′0i 6= r∗0i , we can replace r∗0i by r′0i in R̄∗(0, d), and if r′d1 6= r∗di , we can
replace r∗di by r′di in R̄∗(d, 0).

Now assume, that the first i (i ≥ bk/mc) requests in R̄∗(0, d) are identical to the first i
requests in R′(0, d), and the first i requests in R̄∗(d, 0) are identical to the first i requests
in R′(d, 0) where 1 ≤ i ≤ k∗1 . Note that server s′(i+1) mod bk/mc and s∗i+1 mod bk/mc are at
location 0 at time ṫr′(i+1)−bk/mc

. If there are two requests r∗0i+1 and r∗di+1 accepted by server
s∗(i+1) mod bk/mc, there must also be two requests r′0i+1 and r′di+1 accepted by s′(i+1) mod bk/mc
and request r′0i+1 (resp. r′di+1) starts earlier than request r∗0i+1 (resp. r∗di+1). If r′0i+1 6= r∗0i+1,
we can replace r∗0i+1 by r′0i+1 in R̄∗(0, d), and if r′d1 6= r∗di+1, we can replace r∗di+1 by r′di+1 in
R̄∗(d, 0). If there are no such requests r∗0i+1 and r∗di+1 accepted by server s∗(i+1) mod bk/mc, then
i+ 1 > k∗1 , and hence it follows that R̄∗(d, 0) is identical to R′(d, 0) (or R′(d, 0) even contains
additional requests).

If k∗0 = k∗1 , the claim thus follows. If k∗0 6= k∗1 (k∗0 − k∗1 = τ where 1 ≤ τ ≤ bk/mc),
then R̄∗(d, 0) is already identical to R′(d, 0), and the first k∗1 requests of R̄∗(0, d) are already
identical to the first k∗1 requests of R′(0, d) by the argument above. Observe that server s′j
and s∗j , 1 ≤ j ≤ bk/mc, are at location 0 at time ṫr′

k∗1 +j−bk/mc
. If there is a request r∗0k∗1 +o

(1 ≤ o ≤ τ) accepted by server s∗j , there must also be a request r′0k∗1 +o accepted by server s′j
and it starts no later than request r∗0k∗1 +o. If r′0k∗1 +o 6= r∗0k∗1 +o, we can replace r∗0k∗1 +o by r′0k∗1 +o

in R̄∗(0, d) making R̄∗(0, d) identical to R′(0, d). If there is no request r∗0k∗1 +o accepted by
server s∗j , then k∗1 + o > k∗0 , and hence it follows that R̄∗(0, d) is identical to R′(0, d) (or
R′(0, d) even contains additional requests). As R̄∗(d, 0) is already identical to R′(d, 0), we
have that R̄∗(0, d) ∪ R̄∗(d, 0) is identical to R′(0, d) ∪ R′(d, 0) (or R′(0, d) ∪ R′(d, 0) even
contains additional requests). J

3.2 Upper bound for a ≥ t

We propose a Bi-Partition Greedy Algorithm (Bi-PGA) for the kSmL-U problem when a ≥ t,
shown in Algorithm 3. We assume that k ≥ 2. The k servers are divided into two groups: a
group Sc of bk/2c servers and a group Sn of dk/2e servers. The bk/2c servers in Sc serve
requests that start at location 0, and the dk/2e servers in Sn serve requests that drop off at
location 0.

K. Luo, T. Erlebach, and Y. Xu 51:11

Algorithm 3 Bi-Partition Greedy Algorithm (Bi-PGA).
Input: k servers, requests arrive over time.
Step: When request ri arrives, if pri = 0 and ri is acceptable to a server in Sc, assign it to
that server; otherwise, if ṗri = 0 and ri is acceptable to a server in Sn, assign it to that
server; otherwise, reject it.

(1) R′j (1 ≤ j ≤ k) is the list of requests accepted by server sj before ri is released.
(2) ri is acceptable to a server sj if and only if ri is not in conflict with the requests in R′j , i.e., ∀r′q ∈ R′j ,
|tri − tr′q

| ≥ 2t.

I Theorem 7. Bi-PGA is k
bk/2c -competitive for kSmL-U if a ≥ t. In particular, Bi-PGA is

2-competitive for kSmL-U if a ≥ t and k is even.

Proof. For simplification of the analysis, we suppose that OPT can use k servers to serve
requests that start at location 0 and another k servers to serve requests that drop off at
location 0. This simplification does not decrease the profit gained by OPT . With this we
can analyse the requests in R′(0, X) and R′(X, 0) independently. In the following analysis,
we focus on the requests that start at location 0. Let R′(0, X) = {r′1, . . . , r′|R′(0,X)|} and
R∗(0, X) = {r∗1 , . . . , r∗|R∗(0,X)|}, indexed in the order in which the requests are released.

Similar to the proof of Theorem 6, the analysis of the algorithm is divided into two
parts. First, we reassign the requests in R′(0, X) and R∗(0, X) by repeated application
of the following reassignment rule so that servers are assigned to the accepted requests in
round-robin fashion. Then we show that the profit gained by the algorithm is within a certain
factor of the profit accrued by OPT .

Reassignment Rule Assume that request r∗o is assigned to server s∗o mod k for o < i and r∗i is
not assigned to the server s∗i mod k. Suppose r∗i is assigned to s∗j , j 6= i mod k. We reassign
r∗i to server si mod k, reassign all requests in R∗ \ {r∗1 , r∗2 , . . . , r∗i } that are assigned to s∗j
(denote the set of these requests by <j) to server s∗i mod k, and reassign all requests in
R∗ \ {r∗1 , r∗2 , . . . , r∗i } that are assigned to s∗i mod k (denote them by <i mod k) to server s∗j .

Since request r∗o is assigned to server s∗o mod k for o < i, the latest request rl with pick-up
time earlier than tr∗

i
that is accepted by s∗i mod k ends no later than the latest request with

pick-up time earlier than tr∗
i
that is accepted by s∗j if j 6= i mod k. Reassigning all requests

of <j to server s∗i mod k is valid. Because the first request in <i mod k accepted by s∗i mod k
starts no earlier than tr∗

i
and any two consecutive requests in <i mod k are not in conflict,

reassigning all requests of <i mod k to server s∗j is valid as well. From this it follows that
R∗(0, X) is still a valid solution with the same profit after the reassignment. Similarly, we
reassign the requests in R′(0, X) based on the above process until request r′i is assigned to
s′i mod bk/2c for i ≤ |R′(0, X)|. Note that this reassignment does not affect the validity of
R′(0, X), and PR′(0,X) does not change.

The remainder of the proof proceeds similarly as the proof of Theorem 6, but here we
have that Bi-PGA has bk/2c servers while OPT has k servers and all requests accepted by
OPT and Bi-PGA start at location 0.

Let R̄∗(0, X) be the subset of R∗(0, X) that contains the requests from the (ik + 1)th
to the (ik + bk/2c)th, for all i. In other words, R̄∗(0, X) contains the requests that are
accepted by the first bk/2c servers of OPT . Suppose the first bk/2c servers of OPT accept
k∗0 requests that start at location 0, i.e., R̄∗(0, X) = {r∗1 , r∗2 , . . . , r∗k∗0}. Suppose Bi-PGA
accepts k0 requests that start at location 0, i.e., R′(0, X) = {r′1, r′2, . . . , r′k0

}. We claim that
R̄∗(0, X) can be transformed into R′(0, X) without reducing its profit, thus showing that
PR̄∗(0,X) ≤ PR′(0,X), and hence PR∗(0,X) ≤ k

bk/2cPR′(0,X).

STACS 2019

51:12 Car-Sharing on a Star Network: On-Line Scheduling with k Servers

As Bi-PGA accepts the request rγ which is the first acceptable request that starts at
location 0, it is clear that tr′1 ≤ tr∗1 . If r

′
1 6= r∗1 , we can replace r∗1 by r′1 in R̄∗(0, X). Similarly,

if i ≤ bk/2c, request r′i starts earlier than request r∗i . Otherwise, server s′i accepts request r∗i
instead of r′i. If r′i 6= r∗i , we can replace r∗i by r′i in R̄∗(0, X).

Now assume, that the first i (i ≥ bk/2c) requests in R̄∗(0, X) are identical to the first i
requests in R′(0, X), where 1 ≤ i ≤ k∗0 . Note that server s′(i+1) mod bk/2c and s∗i+1 mod bk/2c
are at location ṗr′(i+1)−bk/2c

(ṗr′(i+1)−bk/2c
6= 0) at time ṫr′(i+1)−bk/2c

. If there is a request
r∗i+1 accepted by server s∗(i+1) mod bk/2c, there must also be a request r′i+1 accepted by
s′(i+1) mod bk/2c and request r′i+1 starts no later than request r∗i+1. If r′i+1 6= r∗i+1, we
can replace r∗i+1 by r′i+1 in R̄∗(0, X). If there is no such request r∗i+1 accepted by server
s∗(i+1) mod bk/2c, then i+ 1 > k∗0 , and hence it follows that R̄∗(0, X) is identical to R′(0, X)
(or R′(0, X) even contains additional requests). J

4 kSmL-A: Arbitrary travel times

I Theorem 8. For a ≥ 2Lt and an arbitrary number k of servers, no deterministic on-line
algorithm for kSmL-A can achieve competitive ratio smaller than 1

2 lnL.

Proof. Consider a star with m+ 1 nodes and d(0, v) = v for 1 ≤ v ≤ m. Note that L = m

and hence lnL = lnm. The adversary presents requests in γ phases, where phase i, for
1 ≤ i ≤ γ, consists of k identical requests. The requests are released based on the release
rule for kSmL-A shown in Algorithm 4. All requests appear at the same time.

Algorithm 4 Release Rule for kSmL-A.
Initialization: The adversary presents the requests in phase 1: k copies of the request
(ν · t− a, ν · t, 1, 0) for some ν such that ν ∈ N and ν · t− a ≥ 0.
i = 1;
While i < m do

Let ki be the number of servers used in phase i.
if

∑i
j=1(j · kj) ≤ 2ki

lnm , then break;
else i = i+ 1 and the adversary releases the requests in phase i;

γ = i;
(1) Phase i (1 < i ≤ m) consists of k copies of the request (t̃r1 , tr1 , i, 0).

We make four observations.

(a) The requests in any two different phases are in conflict.
(b) For all i < γ,

∑i
j=1(j · kj) > 2ki

lnm ;
(c) If γ > 1, k1 >

2k
lnm ;

(d) For all i < γ,
∑i
j=1 kj >

2k
lnm ·

∑i
j=1

1
j . (This follows from (b) and (c).)

If γ < m, the adversary has stopped releasing requests because
∑γ
j=1(j · kj) ≤ 2kγ

lnm .
In this case, OPT accepts all requests in phase γ, and we have PR∗ = γkr. Since PR′ =
r ·

∑γ
j=1(j · kj) ≤ 2krγ

lnm , PR∗/PR′ ≥ 1
2 · lnm.

Now assume γ = m. Using (d) for i = m − 1, we have
∑m−1
j=1 kj >

2k
lnm ·

∑m−1
j=1

1
j >

2k
lnm · lnm = 2k, a contradiction because the algorithm has only k servers and by (a) no
server can serve requests from different phases. Therefore, the case γ = m cannot occur. J

K. Luo, T. Erlebach, and Y. Xu 51:13

The Classified Greedy Algorithm

We use a deterministic version of the “Classify and Randomly Select” paradigm, which has
been widely used in on-line interval scheduling and many other problems [2, 8], to design
a classified greedy algorithm (CGA). We partition the requests into classes based on their
travel time, and we assign a number of servers to each class of the requests. Given k servers
and a star of m+ 1 locations whose edge lengths satisfy 1 ≤ d(0, i) ≤ L for all 1 ≤ i ≤ m, we
use λ = dlogLe groups of servers. We require that k ≥ λ, and for ease of presentation we
assume that k is an integer multiple of λ. Group j, 1 ≤ j ≤ dlogLe, contains k/λ servers that
only serve requests whose travel time is between 2j−1t and 2jt (we say that those requests
are in class j).

The classified greedy algorithm (CGA) can now be stated in a simple way: When a
request ri arrives, let j = dlog d(pri , ṗri)e be the class of ri (if d(pri , ṗri) = 1, set j = 1). If
ri is acceptable to any server from group j, accept ri with that server. Otherwise reject it.

To simplify the analysis, we suppose that for each j, 1 ≤ j ≤ dlogLe, OPT can use k
separate servers to serve the requests whose travel times are between 2j−1t and 2jt. This
simplification does not decrease the profit gained by OPT . In this way we can analyse the
requests in different classes independently. In the following analysis, we focus on an arbitrary
class j. For class j, let OPTj be the requests of class j that are accepted by OPT , and
let CGAj be the requests of class j accepted by CGA. It is clear that PR∗/PR′ = O(logL)
follows if we can show that |OPTj ||CGAj | = O(logL) for each j.

I Lemma 9. For each j, |OPTj ||CGAj | = O(logL).

Proof. For the purpose of the analysis, partition the set of k servers of OPT j into k/λ sets
of size λ arbitrarily, where λ = dlogLe as above. Each of these sets is assigned to a distinct
server s′i among the k/λ servers of CGAj . For 1 ≤ i ≤ k/λ, let Ai be the set of λ servers of
OPT j that is assigned to s′i, and let R′(i) denote the set of requests accepted by s′i.

For each OPT j server s∗e ∈ Ai, let R∗(e) be the set of requests accepted by s∗e and R̄∗(e) be
the set of requests accepted by s∗e that are not accepted by CGAj . Let R̄∗(Ai) =

⋃
s∗e∈Ai

R̄∗(e).
We claim that |R̄∗(e)| ≤ α|R′(j)| for some constant α. If this claim holds, we get that
|OPT j | ≤ |CGAj |+

∑
i |R̄∗(Ai)| ≤ |CGAj |+

∑
i λα|R′(i)| = (1+λα)|CGAj | = O(λ)·|CGAj |,

proving the lemma.
It remains to prove the claim. Consider any request rh in R̄∗(e). As s′i did not accept rh,

s′i must have accepted another request rc with start time in (trh − 3 · 2jt, trh]; otherwise, the
3 · 2jt time units would have been sufficient for s′i to serve the previous request and make an
empty move to the pick-up location of rh. We charge rh to rc. In this way, every request in
R̄∗(e) is charged to a request in R′(i).

We bound the number of requests that can be charged to a single request rc in R′(i). By
the above charging scheme, every request that was accepted by s∗e and charges rc has a start
time in [trc , trc + 3 · 2jt). As all requests in class j have travel time at least 2j−1t, the start
times of consecutive requests accepted by s∗e differ by at least 2j−1t. A half-open interval of
length 3 · 2jt can therefore contain at most 3·2jt

2j−1t = 6 request start times, and hence rc is
charged by at most 6 requests from R̄∗(e). This establishes the claim, with α = 6. J

I Theorem 10. CGA is O(logL)-competitive for kSmL-A if a ≥ 2Lt and the number of
servers is at least dlogLe.

5 Conclusion

We have studied an on-line problem with k servers and m+ 1 locations in a star network that
is motivated by applications such as car sharing between an airport and hotels. In particular,

STACS 2019

51:14 Car-Sharing on a Star Network: On-Line Scheduling with k Servers

we have analyzed the effects that different constraints on the booking time of requests have
on the competitive ratio that can be achieved. We have given matching lower and upper
bounds on the competitive ratio. It would be interesting to extend our results to the case of
other networks.

References
1 Norbert Ascheuer, Sven Oliver Krumke, and Jörg Rambau. Online Dial-a-Ride Problems:

Minimizing the Completion Time. In Proceedings of the 17th Annual Symposium on Theoretical
Aspects of Computer Science (STACS ’00), volume 1770 of LNCS, pages 639–650. Springer,
2000. doi:10.1007/3-540-46541-3_53.

2 Baruch Awerbuch, Yair Bartal, Amos Fiat, and Adi Rosén. Competitive Non-Preemptive Call
Control. In Proceedings of the Fifth Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA ’94), pages 312–320. ACM/SIAM, 1994. URL: http://dl.acm.org/citation.cfm?
id=314464.314510.

3 Antje Bjelde, Yann Disser, Jan Hackfeld, Christoph Hansknecht, Maarten Lipmann, Julie
Meißner, Kevin Schewior, Miriam Schlöter, and Leen Stougie. Tight Bounds for Online TSP
on the Line. In Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA ’17), pages 994–1005. SIAM, 2017. doi:10.1137/1.9781611974782.63.

4 Katerina Böhmová, Yann Disser, Matús Mihalák, and Rastislav Srámek. Scheduling Transfers
of Resources over Time: Towards Car-Sharing with Flexible Drop-Offs. In Proceedings of
the 12th Latin American Symposium on Theoretical Informatics (LATIN’16), volume 9644 of
LNCS, pages 220–234. Springer, 2016. doi:10.1007/978-3-662-49529-2_17.

5 Allan Borodin and Ran El-Yaniv. Online computation and competitive analysis. Cambridge
University Press, 1998.

6 Ananya Christman, William Forcier, and Aayam Poudel. From theory to practice: Max-
imizing revenues for on-line dial-a-ride. J. Comb. Optim., 35(2):512–529, 2018. doi:
10.1007/s10878-017-0188-z.

7 Sven Oliver Krumke, Willem de Paepe, Diana Poensgen, Maarten Lipmann, Alberto Marchetti-
Spaccamela, and Leen Stougie. On Minimizing the Maximum Flow Time in the Online
Dial-a-Ride Problem. In Proceedings of the 3rd International Workshop on Approximation
and Online Algorithms (WAOA 2005), volume 3879 of LNCS, pages 258–269. Springer, 2006.
doi:10.1007/11671411_20.

8 Richard J. Lipton and Andrew Tomkins. Online Interval Scheduling. In Proceedings of the
Fifth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA ’94), pages 302–311.
ACM/SIAM, 1994. URL: http://dl.acm.org/citation.cfm?id=314464.314506.

9 Kelin Luo, Thomas Erlebach, and Yinfeng Xu. Car-Sharing Between Two Locations: Online
Scheduling with Flexible Advance Bookings. In Proceedings of the 24th International Conference
on Computing and Combinatorics (COCOON 2018), volume 10976 of LNCS, pages 242–254.
Springer, 2018. doi:10.1007/978-3-319-94776-1_21.

10 Kelin Luo, Thomas Erlebach, and Yinfeng Xu. Car-Sharing between Two Locations: Online
Scheduling with Two Servers. In Proceedings of the 43rd International Symposium on Mathem-
atical Foundations of Computer Science (MFCS 2018), volume 117 of LIPIcs, pages 50:1–50:14.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.MFCS.2018.50.

11 Kelin Luo, Thomas Erlebach, and Yinfeng Xu. Online Scheduling of Car-Sharing Requests
between Two Locations with Many Cars and Flexible Advance Bookings. In Proceedings of
the 29th International Symposium on Algorithms and Computation (ISAAC 2018), volume
123 of LIPIcs, pages 64:1–64:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.
doi:10.4230/LIPIcs.ISAAC.2018.64.

12 Fanglei Yi and Lei Tian. On the Online Dial-A-Ride Problem with Time-Windows. In
Proceedings of the 1st International Conference on Algorithmic Applications in Management
(AAIM ’05), volume 3521 of LNCS, pages 85–94. Springer, 2005. doi:10.1007/11496199_11.

http://dx.doi.org/10.1007/3-540-46541-3_53
http://dl.acm.org/citation.cfm?id=314464.314510
http://dl.acm.org/citation.cfm?id=314464.314510
http://dx.doi.org/10.1137/1.9781611974782.63
http://dx.doi.org/10.1007/978-3-662-49529-2_17
http://dx.doi.org/10.1007/s10878-017-0188-z
http://dx.doi.org/10.1007/s10878-017-0188-z
http://dx.doi.org/10.1007/11671411_20
http://dl.acm.org/citation.cfm?id=314464.314506
http://dx.doi.org/10.1007/978-3-319-94776-1_21
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.50
http://dx.doi.org/10.4230/LIPIcs.ISAAC.2018.64
http://dx.doi.org/10.1007/11496199_11

Beyond Boolean Surjective VCSPs
Gregor Matl
Department of Informatics, Technical University of Munich, Germany
matlg@in.tum.de

Stanislav Živný
Department of Computer Science, University of Oxford, UK
standa.zivny@cs.ox.ac.uk

Abstract

Fulla, Uppman, and Živný [ACM ToCT’18] established a dichotomy theorem for Boolean surjective
general-valued constraint satisfaction problems (VCSPs), i.e., VCSPs on two-element domains in
which both labels have to be used in a solution. This result, in addition to identifying the complexity
frontier, features the discovery of a new non-trivial tractable case (called EDS) that does not appear
in the non-surjective setting.

In this work, we go beyond Boolean domains. As our main result, we introduce a generalisation of
EDS to arbitrary finite domains called SEDS (similar to EDS) and establish a conditional complexity
classification of SEDS VCSPs based on a reduction to smaller domains. This gives a complete
classification of SEDS VCSPs on three-element domains. The basis of our tractability result is a
natural generalisation of the Min-Cut problem, in which only solutions of certain size (given by a
lower and upper bound) are permitted. We show that all near-optimal solutions to this problem can
be enumerated in polynomial time, which might be of independent interest.

2012 ACM Subject Classification Theory of Computation→ Problems, reductions and completeness

Keywords and phrases constraint satisfaction problems, valued constraint satisfaction, surjective
constraint satisfaction, graph cuts

Digital Object Identifier 10.4230/LIPIcs.STACS.2019.52

Related Version A full version of the paper is available at [19], https://arxiv.org/abs/1901.07107.

Funding This project has received funding from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme (grant agreement No 714532).
The paper reflects only the authors’ views and not the views of the ERC or the European Commission.
The European Union is not liable for any use that may be made of the information contained therein.
Gregor Matl: Work done while at the University of Oxford.
Stanislav Živný: Supported by a Royal Society University Research Fellowship.

1 Introduction

Constraint satisfaction problems (CSPs) are fundamental computer science problems studied
in artificial intelligence, logic (as model checking of the positive primitive fragment of
first-order logic), graph theory (as homomorphisms between relational structures), and
databases (as conjunctive queries) [13]. A vast generalisation of CSPs is that of general-
valued CSPs (VCSPs) [21], see also [6]. Recent years have seen some remarkable progress
on our understanding of the computational complexity of CSPs and VCSPs, as will be
discussed later in related work. We start with a few definitions to state existing as well as
our new results.

© Gregor Matl and Stanislav Živný;
licensed under Creative Commons License CC-BY

36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019).
Editors: Rolf Niedermeier and Christophe Paul; Article No. 52; pp. 52:1–52:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:matlg@in.tum.de
https://orcid.org/0000-0002-0263-159X
mailto:standa.zivny@cs.ox.ac.uk
https://doi.org/10.4230/LIPIcs.STACS.2019.52
https://arxiv.org/abs/1901.07107
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

52:2 Beyond Boolean Surjective VCSPs

We consider regular, surjective and lower-bounded VCSPs on the extended rationals
Q = Q ∪ {∞}. An instance I = (V,D, φI) of either of these problems is given by a finite set
of variables V = {x1, . . . , xn}, a finite set of labels D called the domain, and an objective
function φI : Dn → Q. The objective function is of the form

φI (x1, . . . , xn) =
t∑
i=1

wi · γi (xi) ,

where t ∈ N and, for each 1 ≤ i ≤ t, γi : Dar(γi) → Q is a weighted relation of arity ar (γi) ∈ N,
wi ∈ Q≥0 is a weight and xi ∈ V ar(γi) is a tuple of variables from V called the scope of γi.

Regular, surjective and lower-bounded VCSPs differ only in their solution space, although
this makes a big difference in complexity. If I is an instance of a regular VCSP, an assignment
is a map s : V → D assigning a label from D to each variable. In the surjective setting, only
a surjective map s : V → D is an assignment. For lower-bounded VCSPs, a lower bound
l : D → N0 is provided and an assignment is a map s : V → D such that

∣∣s−1 (d)
∣∣ ≥ l (d) for

every label d ∈ D. In other words, a lower bound l (d) on the number of occurrences of each
label d ∈ D is imposed. The value of an assignment s is given by φI (s (x1) , . . . , s (xn)). An
assignment is called feasible if its value is finite, and is called optimal if it is of minimal value
among all assignments for the instance. The objective is to obtain an optimal assignment.

While finding an optimal assignment is NP-hard in general, valued constraint languages
impose a natural restriction on the types of instances that are allowed. A valued constraint
language, or simply a language, is a possibly infinite set of weighted relations. In this paper,
we only consider languages of bounded arity, that is languages admitting a fixed upper bound
on the arity of all weighted relations contained in them. Weighted relations in any VCSP
instance will be stored explicitly.

We denote the class of regular VCSP instances with objective functions using only weighted
relations from a language Γ by VCSP (Γ). Similarly, VCSPs (Γ) is the class of surjective
VCSP instances with weighted relations from Γ and, for some lower bound l : D → N0,
VCSPl (Γ) is the class of lower-bounded VCSP instances over Γ with bound l.

A language Γ is globally tractable if there is a polynomial-time algorithm for solving
each instance of VCSP (Γ), or globally intractable if VCSP (Γ) is NP-hard. Analogously,
Γ is globally s-tractable if there is a polynomial-time algorithm for VCSPs (Γ), or globally
s-intractable if VCSPs (Γ) is NP-hard. And Γ is globally `-tractable if VCSPl (Γ) is solvable in
polynomial time for every fixed lower bound l : D → N0, or globally `-intractable if VCSPl (Γ)
is NP-hard for at least one fixed lower bound l : D → N0. Thus, global `-tractability implies
global s-tractability, and global s-intractability implies global `-intractability.

The following examples show how well-studied variants of the Min-Cut problem can be
modelled in the VCSP frameworks we have defined.

I Example 1 (r-Terminal Min-Cut). Given a graph G = (V,E) with non-negative edge
weights w : E → Q≥0 and designated terminal vertices s1, . . . , sr ∈ V , the r-Terminal
Min-Cut problem asks to partition V into subsets X1, . . . , Xr such that sd ∈ Xd for all
d ∈ [r] := {1, . . . , r}, while the accumulated weight of all edges going between distinct sets Xi

and Xj is minimised. For r = 2, this problem is also known as the (s, t)-Min-Cut problem.
We show how this problem can be represented as a regular VCSP. Let γr-cut denote the

binary weighted relation defined for x, y ∈ [r] by γr-cut (x, y) = 0 if x = y and γr-cut (x, y) = 1
otherwise. Furthermore, for each label d ∈ [r], let ρd denote the constant relation given by
ρd (d) = 0 and ρd (x) =∞ for d 6= x ∈ [r] . Let Γr-cut = {γr-cut, ρ1, . . . , ρr}.

G. Matl and S. Živný 52:3

Finding an optimal r-terminal cut is equivalent to solving the VCSP (Γr-cut) instance
I = (V, [r] , φ) with objective function

φ (x1, . . . , xn) = ρ1 (s1) + · · ·+ ρr (sr) +
∑

(u,v)∈E

w (u, v) · γr-cut (u, v) .

To see this, observe that there is a correspondence between feasible assignments s : V → [r]
and r-terminal cuts X1, . . . , Xr by setting Xd = {v ∈ V : s (v) = d}, with the objective value
remaining equal. Hence, an optimal assignment induces an optimal cut.

The r-Terminal Min-Cut problem can be solved in polynomial time if r = 2, but it
is NP-hard for any r ≥ 3 [8]. Since every VCSP (Γr-cut) instance can also be reduced to an
instance of the r-Terminal Min-Cut problem, the language Γr-cut is globally tractable if
r = 2 and globally intractable for r ≥ 3. ♦

I Example 2 (r-Way Min-Cut). Without setting out any terminals, the r-Way Min-Cut
problem asks to partition V into non-empty subsets X1, . . . , Xr such that weight of the
induced cut is minimised. Finding an optimal r-way min-cut is equivalent to solving the
VCSPs ({γr-cut}) instance I = (V, [r] , φ) with objective function

φ (x1, . . . , xr) =
∑

(u,v)∈E

w (u, v) · γr-cut (u, v) .

The r-Way Min-Cut problem can be solved in polynomial time for every fixed integer r [11].
Since every VCSPs ({γr-cut}) instance can be reduced to a r-Way Min-Cut problem as well,
the language {γr-cut} is globally s-tractable. ♦

For a fixed l : D → V , VCSPl ({γr-cut}) allows to model a generalisation of the r-Way
Min-Cut problem where a partition X1, . . . , Xr of V minimising the induced cut is sought
under the condition that |Xd| ≥ l (d) for every d ∈ D. As far as we know, the complexity of
both VCSPl ({γr-cut}) and the lower-bounded r-Way Min-Cut problem is unknown.

Related Work

Early results on CSPs include the fundamental results of Schaefer on Boolean CSPs [20]
and of Hell and Nešetřil on graph CSPs [12]. The computational complexity of CSPs
has drawn a lot of attention following the seminal paper of Feder and Vardi [9]. Using
the algebraic approach [15, 3], the complexity of CSPs on finite domains was resolved
in two independent papers by Bulatov [4] and Zhuk [24]. The computational complexity
of the problem of minimising the number of unsatisfied constraints (and more generally
rational-valued weighted relations) was obtained by Thapper and Živný in [23]. Finally, the
computational complexity of general-valued CSPs on finite domains was obtained by the
work of Kozik and Ochremiak [18] and Kolmogorov, Krokhin, and Rolínek [16].

In addition to constraints that apply locally to the variables specified as arguments, forms
of VCSPs have been considered where global conditions are imposed. Among those are CSPs
with global cardinality constraints, or CCSPs, where it is specified how often exactly each
label has to occur in an assignment. A dichotomy theorem for CCSPs on finite domains was
established by Bulatov and Marx [5].

Surjective VCSPs, which can be seen as imposing a global condition as well, have been
studied by Fulla, Uppman, and Živný [10], following earlier results on CSPs by Creignou and
Hébrard [7] and Bodirsky, Kára, and Martin [1]. Unfortunately, the algebraic approach that
has proved pivotal in the understanding of the computational complexity of regular CSPs
and VCSPs is not applicable in the surjective setting.

STACS 2019

52:4 Beyond Boolean Surjective VCSPs

The following two facts are easy to show (see, e.g, [10]): (i) intractable languages are also
s-intractable; (ii) a tractable language Γ is also s-tractable if Γ includes all constant relations.
Consequently, new s-tractable languages can only occur (if at all) as subsets of tractable
languages that do not contain all constant relations. [10] identified the first example of such
languages. In particular, [10] identified languages on the Boolean domain that are essentially
a downset, or EDS, as a new class of efficiently solvable problems and, in doing so, provided
a classification of surjective VCSPs on the Boolean domain.

The tractability result of EDS languages is based on the Generalised Min-Cut (GMC)
problem for graphs, also introduced in [10]. In a GMC instance, the goal is to find a non-
trivial subset of the vertices such that the weight of the induced cut and a superadditive set
function are minimised simultaneously. [10] showed how the objective function of surjective
VCSPs that are EDS can be approximated by an instance of the GMC problem. In addition,
they provided a polynomial-time algorithm to enumerate all solutions to the GMC problem
that are optimal up to a constant factor, which in combination results in an efficient algorithm
for surjective VCSPs that are EDS.

Contributions

This paper extends the class EDS to arbitrary finite domains. We introduce a class SIM of
languages that exhibit properties similar to Boolean languages. Based on this class, we define
the class SEDS as a natural extension of EDS and classify languages from this extension based
on two criteria. Firstly, we give a subclass SDS of SEDS that guarantees global `-tractability
without additional requirements. Secondly, we prove that the complexity of lower-bounded
VCSPs over any remaining SEDS languages is equivalent to the complexity over a particular
language on a smaller domain, which can be constructed by including all possible ways to
assign a certain label (formally defined in Section 3). This is illustrated in Figure 1 (left).

SDSSDS

SEDS

SIM

fix0 (Γ) globally
`-tractable

fix0 (Γ) globally
s-intractable

SDSSDS

SEDSSEDS

SIM

fix0 (Γ) globally
`-tractable

fix0 (Γ) globally
`-intractable

Figure 1 Classification of SEDS languages on arbitrary finite domains (left) and on three-element
domains (right). A language Γ is globally `-tractable when marked by horizontal (blue) lines
and globally s-intractable when marked by vertical (red) lines, depending on the language fix0 (Γ)
on a smaller domain. (Recall that global s-intractability implies global `-intractability.) In case
of three-element domains, the Boolean language fix0 (Γ) is either globally `-tractable or globally
`-intractable, while this is not known for larger domains.

One implication of our results is a dichotomy theorem for lower-bounded VCSPs on the
Boolean domain; every Boolean language is either globally `-tractable or globally `-intractable.
Although lower-bounded VCSPs are more general than surjective VCSPs, this classification
coincides with the dichotomy theorem for surjective VCSPs given by [10]. (Details are given
in the full version of this paper [19].)

In addition, combining our reduction of SEDS languages to a smaller domain and the
dichotomy theorem for the Boolean domain leads to a classification of all SEDS languages on
three-element domains with respect to `-tractability, which is featured on the right-hand side
of Figure 1.

G. Matl and S. Živný 52:5

The foundation of our results is an extension of the Generalised Min-Cut problem that
might be of independent interest. Given integers p, q ∈ N0, a graph with non-negative edge
weights and a superadditive set function defined on its vertices, the goal in the Bounded
Generalised Min-Cut problem is, just like in the GMC problem, to find a subset of the
vertices such that the sum of the induced cut and the superadditive set function evaluated
on it are minimal among all possible solutions. The solution space, however, is restricted to
subsets containing at least q and at most all but p vertices.

If an optimal solution has value 0, there can be exponentially many optimal solution,
e.g. when there are no edges and the superadditive function always evaluates to 0. Our
main algorithmic result is that, for all other instances and any constant bounds p, q ∈ N0, all
solutions that are optimal up to a constant factor can be enumerated in polynomial time
(and thus, in particular, there are only polynomially many of them).

2 The Bounded Generalised Min-Cut Problem

We begin by presenting our algorithm for the Bounded Generalised Min-Cut problem. The
problem is based on the notion of superadditive set functions, which we define first.

I Definition 3. A set function on a finite set V is a function f : 2V → Q defined on subsets
of V ; it is normalised if it satisfies f (∅) = 0 and f (X) ≥ 0 for all X ⊆ V .

A set function f on V is increasing if it is normalised and f (X) ≤ f (Y) for all
X ⊆ Y ⊆ V . It is superadditive if it is normalised and, for all disjoint X,Y ⊆ V , it holds
that

f (X) + f (Y) ≤ f (X ∪ Y) . (SUP)

Since equation (SUP) implies that f (X) ≤ f (X) + f (Y \X) ≤ f (Y) for all X ⊆ Y ⊆ V ,
every superadditive set function must also be increasing.

I Definition 4. For q, p ∈ N0, the Bounded Generalised Min-Cut problem with lower bound
q an upper bound p is denoted by GMCpq .

A GMCpq instance h is given by an undirected graph G = (V,E) with edge weights
w : E → Q≥0 ∪{∞} and an oracle defining a superadditive set function f on V . For X ⊆ V ,
let w (X) =

∑
|{u,v}∩X|=1 w ({u, v}) denote the weight of the cut induced by X.

A solution for instance h is any set X ⊆ V such that |X| ≥ q and |X| ≤ |V | − p. The
objective is to minimise the value h (X) = f (X) + w (X). A solution X is optimal if the
value h (X) is minimal among all solutions for this instance. We denote the value of an
optimal solution by λ. For any α ≥ 1, a solution X is α-optimal if h (X) ≤ αλ.

The Generalised Min-Cut problem, simply denoted by GMC, is the Bounded Generalised
Min-Cut problem with lower and upper bound 1. All α-optimal solutions of a GMC instance
can be enumerated in polynomial time according to [10, Theorem 5.11], which we restate
here.

I Theorem 5. For any instance h of the GMC problem on n vertices with optimal value
0 < λ <∞ and any constant α ∈ N, the number of α-optimal solutions is at most n20α−15.
There is an algorithm that finds all of them in polynomial time.

We will assume that all edges are positive-valued, as they can be ignored otherwise. To
simplify the problem further, observe that it can be determined in polynomial time whether
the optimal value of a GMCpq instance is λ = 0 or λ =∞. If λ = 0, an optimal solution can

STACS 2019

52:6 Beyond Boolean Surjective VCSPs

be found by checking all connected components, because a solution of value 0 cannot cut
any edges and because the superadditive set function f is increasing. Moreover, in order
to determine whether λ = ∞ it is sufficient to check all solutions of size q. When these
solutions all have infinite value, each one must either contain an edge of infinite weight or
the superadditive set function must evaluate to infinity. In either case, all supersets will have
infinite value as well, implying λ =∞.

Consequently, our goal is to provide a polynomial-time algorithm for enumerating near-
optimal solutions in the case that the optimal value is both positive and finite. Before doing
so, we give two auxiliary lemmas. The first one is based on [10, Lemma 5.6].

I Lemma 6. For any p, q ∈ N0, any GMCpq instance h on a graph G = (V,E) and any
subset V ′ ⊆ V , there is a GMCpq instance h′ on the induced subgraph G [V ′] that preserves
the objective value of all solutions X ⊆ V ′. In particular, any α-optimal solution X of h
such that X ⊆ V ′ is α-optimal for h′ as well.

Proof. Edges with exactly one endpoint in V ′ need to be taken into account separately
because they do not appear in the induced subgraph. We accomplish that by defining the
new set function f ′ by

f ′ (X) = f (X) +
∑
u∈X

∑
v∈V \V ′

w (u, v)

for all X ⊆ V ′. By the construction, f ′ is superadditive, and the objective value h′ (X) for
any solution X ⊆ V ′ equals h (X).

Note that the minimum objective value for h′ is greater than or equal to the minimum
objective value for h. Therefore, any solution X ⊆ V ′ that is α-optimal for h is also α-optimal
for h′. J

The next lemma, which is based on [10, Lemma 5.10], can be deduced from the superad-
ditivity of f and the posimodularity of the cut function w.

I Lemma 7. Let h be a GMCpq instance over vertices V with optimal value λ and let
X,Y ⊆ V such that h (X) ≤ αλ and w (Y) ≤ βλ for some α ≥ 1 and β ≥ 0. Then it holds

h (X\Y) + h (X ∩ Y) < (α+ 2β)λ.

We now proceed with our main algorithmic result. We only sketch the proof here but full
details are given in the full version [19].

I Theorem 8. For some constant q ≥ 2, let h be a GMC1
q instance on a graph G = (V,E)

of size n = |V | with optimal value 0 < λ < ∞. Let Y ∪ Z = V be a partition of V and let
Y1 ∪ · · · ∪Yk = Y for some k ∈ N0 be a partition of Y satisfying 0 < |Yi| < q and h (Yi) ≤ λ

3q
for all 1 ≤ i ≤ k.

Then for every constant α ≥ 1, at most |Z|n · n
τ(q,α) α-optimal solutions X ⊆ V of h

satisfy |X ∩ Y | < q, where τ (q, α) = 60qα+ 41q + 7. These solutions can all be enumerated
in polynomial time.

Note that with Y = ∅ and Z = V , this theorem states for any GMC1
q instance that the

number of α-optimal solutions is bounded by nτ(q,α).

Proof sketch. We give a proof by induction over n+ |Z|
n+1 . For n ≤ q or Z = ∅, there are no

solutions of the described form and hence, the statement holds.

G. Matl and S. Živný 52:7

Now, fix some n > q, some GMC1
q instance h on a graph G = (V,E) of size n with

optimum value 0 < λ < ∞ and partitions Y ∪ Z = V and Y1 ∪ · · · ∪ Yk = Y as described.
By the induction hypothesis, we can assume that the theorem holds for every graph of size
n′ < n as well as for every partition Ỹ ∪ Z̃ = V of graph G satisfying

∣∣Z̃∣∣ < |Z|.
According to Lemma 6, there exists a GMC1

q instance hZ on the induced subgraph G [Z]
that preserves the objective value of every solution X ′ (Z with respect to h. In the following,
we treat hZ as a GMC instance (i.e. with lower bound 1). Let λZ denote the optimal value
of hZ and let Yk+1 (Z be an optimal solution of hZ , i.e. hZ (Yk+1) = λZ .

Consider any α-optimal solution X ⊆ V of h satisfying |X ∩ Y | < q. For some integer
t, let i1, . . . , it denote indices such that X ∩ Y = X ∩ (Yi1 ∪ · · · ∪ Yit), i.e. such that X
has vertices only in Yi1 , . . . , Yit and Z. Since |X ∩ Y | < q, we require that t < q. Let
U = Yi1 ∪ · · · ∪ Yit . We distinguish two cases, which are illustrated in Figure 2.

Y1

Y2

Y3

. . .
Yk

YZ

Yk+1

X

Y1

Y2

Y3

. . .
Yk

YZ′

Yk+1

X

Figure 2 Given a partition V = Y ∪Z with Y = Y1 ∪ · · · ∪ Yk of the vertices of a GMC1
q instance

h, we want to find every solution X such that h (X) ≤ αλ and |X ∩ Y | < q. Consider the GMC
instance hZ on G [Z] with optimal solution Yk+1. If h (Yk+1) ≥ λ

3q , X ∩ Z must be a near-optimal
solution of h (left, first case). Otherwise, we apply the induction hypothesis either on the partition
V = Z′ ∪ (Y1 ∪ · · · ∪ Yk+1) or on the subgraph G [Z′], where Z′ = Z\Yk+1 (right, second case).

In the first case, we assume that λZ ≥ λ
3q . From our assumption that h (Yi) ≤ λ

3q for all
1 ≤ i ≤ k, it can be deduced that w (U) < λ

3 . By Lemma 7 with β = 1
3 , it must hold that

h (X\U) + h (X ∩ U) ≤
(
α+ 2

3

)
λ.

Since X ∩ Z = X\U , our assumption λZ ≥ λ
3q then implies that h (X ∩ Z) ≤ (3qα+ 2q)λZ .

Hence, if X ∩ Z (Z, then X ∩ Z is a (3qα+ 2q)-optimal solution of hZ when treated as a
GMC instance. The number of choices for X ∩ Z can then be bounded by Theorem 5.

At the same time, there are less than nq ways to pick at most q − 1 vertices from Y and
therefore less than nq choices for X ∩ Y . By pairing up all choices for X ∩ Z with those for
X ∩ Y , we can conclude that there are at most 1

n · n
τ(q,α) choices for X in this case.

In the second case, we assume λZ ≤ λ
3q . Note that hZ (Yk+1) = λZ < λ implies |Yk+1| < q.

Let Y ′ = Y ∪ Yk+1, Z ′ = Z\Yk+1 and U ′ = U ∪ Yk+1.
If |X ∩ Y ′| < q, we can apply the induction hypothesis for instance h with the partitions

Y ′ ∪Z ′ = V and Y ′ = Y1 ∪ · · · ∪ Yk ∪ Yk+1. Consequently, the number of such solutions is at
most |Z

′|
n · n

τ(α) ≤ |Z|−1
n · nτ(α).

Therefore, we now assume that |X ∩ Y ′| ≥ q and need to show that there are at most
1
n · n

τ(α) choices for X in this case. Given that λZ ≤ λ
3q , we can deduce that w (U ′) ≤ λ

3 .
Thus, Lemma 7 implies that

h (X\U ′) + h (X ∩ U ′) ≤
(
α+ 2

3

)
λ.

STACS 2019

52:8 Beyond Boolean Surjective VCSPs

Being a solution of h, the set X ∩U ′ = X ∩ Y ′ must have value h (X ∩Q′) ≥ λ. It therefore
holds that

h (X ∩ Z ′) = h (X\U ′) ≤
(
α+ 2

3

)
λ− h (X ∩Q′) ≤

(
α− 1

3

)
λ.

Let hZ′ denote the GMC1
q instance on the induced subgraph G [Z ′] that preserves the value

of h as detailed in Lemma 6. There are roughly nq choices for X such that |X ∩ Z ′| < q

or X = Z ′. Otherwise, the set X ∩ Z ′ must be an
(
α− 1

3
)
-optimal solution of hZ′ . By

applying the induction hypothesis on hZ′ with the trivial partition ∅ ∪ Z ′ = Z ′, the number
of
(
α− 1

3
)
-optimal solutions can be bounded by nτ(q,α−

1
3).

Next, we limit the number of choices for X ∩ Y ′. Since X contains at most q − 1 vertices
from Y (less than nq choices) and since Yk+1 contains at most q − 1 vertices (at most 2q−1

choices), the number of possible choices for X ∩ Y ′ is limited by nq · 2q−1 ≤ n2q.
Pairing up each possible choice for X ∩ Z ′ with each choice for X ∩ Y ′ gives a total of at

most 1
n · n

τ(q,α) solutions, as required.
A polynomial-time algorithm to enumerate all such solutions follows immediately from

these calculations. To see this, note that only the second case is defined recursively. Therefore,
checking both the first and the second case does not increase the overall complexity of nO(q+α).
In particular, it is not necessary to know the value λ beforehand. J

I Corollary 9. For any p, q ∈ N0 and α ≥ 1, where q and α are constants, and for any
GMCpq instance h with optimal value 0 < λ <∞, all α-optimal solutions can be enumerated
in polynomial time.

Proof. Let h = f + w be a GMCpq instance with 0 < λ < ∞. First, we assume that p ≥ 1
and q ≥ 2. The superadditive set function

f ′ (X) =
{
∞ if |X| > |V | − p
f (X) otherwise

defines a GMC1
q instance h′ = f ′ + w where every solution X ⊆ V of size |X| > |V | − p

is infeasible so that the set of feasible solutions and their values are identical for h and
h′. Therefore, it is sufficient to enumerate all α-optimal solutions of h′, which can be
accomplished in polynomial time according to Theorem 8

If p = 0 or q < 2, there are up to |V |+ 2 additional solutions that can all be checked in
polynomial time. J

3 Extending EDS to Larger Domains

In this section, we formally introduce the classes SIM, SEDS and SDS. In order to simplify our
notation, we will subsequently always consider the (k + 1)-element domain D = {0, 1, . . . , k}
for some integer k. Any other domain of size k+ 1 can simply be relabelled without affecting
its properties. One label from the domain will play a special role; without loss of generality
(due to relabellings), it will be 0.

3.1 k-Set Functions
It will be convenient to go back and forth between weighted relations and k-set functions,
which is, subject to a minor technical assumption, always possible.

G. Matl and S. Živný 52:9

I Definition 10. Let k ∈ N and let V be a finite set. A k-set function on V is a function
f : (k + 1)V → Q defined on k-tuples of pairwise disjoint subsets of V . A k-set function f
over V is normalised if it satisfies f (∅, . . . , ∅) = 0 and f (X1, . . . , Xk) ≥ 0 for all disjoint
X1, . . . , Xk ⊆ V .

Note that a 1-set function is simply a set function as defined in Section 2.

I Definition 11. Let γ be an n-ary weighted relation on the (k + 1)-element domain D =
{0, 1, . . . , k}, and let f be the k-set function on V = [n] that is defined for disjoint sets
X1, . . . , Xk ⊆ V by f (X1, . . . , Xk) = γ (x), where the i-th coordinate of x is given by xi = d

if i ∈ Xd for some 0 6= d ∈ D and xi = 0 otherwise. Then γ corresponds to f .
Furthermore, we say that γ corresponds under normalisation to a k-set function if

γ (0n) <∞ and γ (0n) ≤ γ (x) for all x ∈ Dn. In this case, the k-set function corresponding
under normalisation to γ is the normalised k-set function corresponding to γ − γ (0n), i.e.
the weighted relation with offset such that the assignment 0n evaluates to 0.

According to this definition, there is a unique k-set function corresponding to every
weighted relation on the (k + 1)-element domain, and vice versa. Furthermore, assuming
that γ (0n) <∞, a weighted relation γ corresponds under normalisation to a k-set function
precisely if it admits multimorphism 〈c0〉 (the definition of which can be found in [6]).

I Definition 12. Let f be a k-set function and g a set function on V . We say that g
α-approximates f if, for all disjoint X1, . . . , Xk ⊆ V , it holds that

g (X1 ∪ · · · ∪Xk) ≤ f (X1, . . . , Xk) ≤ α · g (X1 ∪ · · · ∪Xk) .

3.2 Fixing a Label: Reduced Languages
Reducing a language to a smaller domain by fixing all possible occurrences of a certain label,
as defined subsequently, will be a central tool in our classification.

I Definition 13. Let f be a k-set function on V , let 0 ≤ d ≤ k be a label from the
domain and let U ⊆ V . Then fixd=U [f] is the (k − 1)-set function defined for disjoint sets
X1, . . . , Xd−1, Xd+1, . . . , Xk ⊆ V \U by

fixd=U [f] (X1, . . . , Xd−1, Xd+1, . . . , Xk) = f (X1, . . . , Xd−1, U,Xd+1, . . . , Xk) .

Let γ be the weighted relation on domain D corresponding to f . Then fixd=U [γ] denotes
the weighted relation of arity |V \U | on domain D\ {d} corresponding to fixd=U [f].

In other words, fixd=U [γ] takes an assignment from the domain D\ {d} to all variables
except for those with index in U , and evaluates it through γ by assigning label d to the
remaining variables. In Definition 14, we generalise this concept in order to express the
language that is generated by fixing every possible assignment of a certain label.

I Definition 14. Let Γ be a language on domain D and let d ∈ D. For any γ ∈ Γ,
let fixd (γ) = {fixd=U [γ] : U ⊆ V }. We define the language fixd (Γ) on domain D\ {d} by
fixd (Γ) =

⋃
γ∈Γ fixd (γ) .

3.3 Extending EDS to Larger Domains
The class EDS, or essentially a downset, has been introduced in [10] for the Boolean domain.

STACS 2019

52:10 Beyond Boolean Surjective VCSPs

I Definition 15. For any α ≥ 1, a normalised set function f on V is α-EDS if, for all
X,Y ⊆ V , it holds that

f (X\Y) ≤ α · (f (X) + f (Y)) . (EDS)

A weighted relation is α-EDS if it corresponds under normalisation to a set function that
is α-EDS. Moreover, a language Γ is EDS if there is some α ≥ 1 such that every weighted
relation γ ∈ Γ is α-EDS.

Fulla et al. showed [10] that EDS languages are globally s-tractable. We improve upon
this result by proving that such languages are in fact globally `-tractable, and we extend the
idea of being essentially a downset to larger domains through the classes SIM, SEDS and
SDS.

Intuitively, a language is SIM, or similar to a Boolean language, if, for every weighted
relation, the value of any two assignments that assign label 0 to precisely the same set of
variables is equal up to a constant factor.

I Definition 16. Let f be a normalised k-set function on set V . For any α ≥ 1, f is
called α-SIM if, for all disjoint X1, . . . , Xk ⊆ V and all disjoint Y1, . . . , Yk ⊆ V such that
X1 ∪ · · · ∪Xk = Y1 ∪ · · · ∪ Yk, it holds that

f (X1, . . . , Xk) ≤ α · f (Y1, . . . , Yk) . (SIM)

A weighted relation is α-SIM if it corresponds under normalisation to a k-set function
that is α-SIM. Moreover, a language Γ is SIM if there is some α ≥ 1 such that every weighted
relation γ ∈ Γ is α-SIM.

Note that every normalised set function is 1-SIM. Hence, EDS is a subclass of SIM. Going
beyond the Boolean domain, the class SEDS of languages similar to EDS arises as a natural
generalisation of EDS.

I Definition 17. For any α ≥ 1, a normalised k-set function f on V is α-SEDS if it is
α-SIM and, for all disjoint X1, . . . , Xk ⊆ V and all disjoint Y1, . . . , Yk ⊆ V , it holds that

f (X1\Y1, . . . , Xk\Yk) ≤ α · (f (X1, . . . , Xk) + f (Y1, . . . , Yk)) . (SEDS)

A weighted relation is α-SEDS if it corresponds under normalisation to a k-set function
that is α-SEDS. Moreover, a language Γ is SEDS if there is some α ≥ 1 such that every
weighted relation γ ∈ Γ is α-SEDS.

The class SDS, or similar to a downset, imposes a stricter requirement than SEDS. When
any arguments of a weighted relation are changed to label 0, the value should decrease, stay
equal or increase by at most a constant factor.

I Definition 18. For any α ≥ 1, a normalised k-set function f on V is α-SDS if it is α-SIM
and in addition, for all disjoint X1, . . . , Xk, Y1, . . . , Yk ⊆ V , it holds that

f (X1, . . . , Xk) ≤ α · f (X1 ∪ Y1, . . . , Xk ∪ Yk) . (SDS)

A weighted relation is α-SDS if it corresponds under normalisation to a k-set function
that is α-SDS, and a language Γ is SDS if there is some α ≥ 1 such that every weighted
relation γ ∈ Γ is α-SDS.

Note that SDS is a subclass of SEDS. To see this, consider any α-SDS k-set function f
on V . Then it holds for all disjoint X1, . . . , Xk ⊆ V and all disjoint Y1, . . . , Yk ⊆ V that

f (X1\Y1, . . . , Xk\Yk) ≤ α · f (X1, . . . , Xk) ≤ α · (f (X1, . . . , Xk) + f (Y1, . . . , Yk)) ,

proving that f is α-SEDS.

G. Matl and S. Živný 52:11

4 Classifying SEDS and SDS Languages

In this section, we first show that a SEDS language Γ is globally `-tractable if it is SDS or if the
reduced language fix0 (Γ) is globally `-tractable. Afterwards, we prove global s-intractability
of the remaining SEDS languages conditioned on global s-intractability of fix0 (Γ).

We begin by restating [10, Theorem 5.17] concerning EDS languages and then devise
similar approximations for SEDS and SDS languages.

I Theorem 19. For any α-EDS set function f on V , there exists a GMC instance h that
αn+2 (n3 + 2n

)
-approximates f , where n = |V |.

I Lemma 20. For any α-SEDS k-set function f on V , there exists an α-EDS set function g
that α2-approximates f .

Proof. We define the set function g on V by g (X) = 1
αf (X, ∅, . . . , ∅). Observe that, since

f is normalised, it holds g (∅) = f (∅, . . . , ∅) = 0 and g (X) = 1
αf (X, ∅, . . . , ∅) ≥ 0 for every

X ⊆ V . Thus, g is normalised as well. In addition, for all X,Y ⊆ V , it holds that

α · (g (X) + g (Y)) = f (X, ∅, . . . , ∅) + f (Y, ∅, . . . , ∅)≥ 1
α
· f (X\Y, ∅, . . . , ∅) = g (X\Y) ,

where the second step uses equation (SEDS). Hence, g is α-EDS.
It remains to show that g α2-approximates f . For this purpose, consider any disjoint

X1, . . . , Xk ⊆ V and let X =
⋃k
i=1Xi denote their union. Since f is α-SIM, it holds that

g (X) = 1
α
f (X, ∅, . . . , ∅) ≤ f (X1, . . . , Xk) ≤ α · f (X, ∅, . . . , ∅) = α2 · g (X) . J

By combining Lemma 20 and Theorem 19, we can deduce the following result.

I Theorem 21. For any α-SEDS k-set function f on V , there exists a GMC instance h that
αn+4 (n3 + 2n

)
-approximates f , where n = |V |.

For SDS languages, we can provide an even tighter result.

I Theorem 22. For any α-SDS k-set function f on V , there exists a superadditive set
function g that nαn+1-approximates f , where n = |V |.

Based on these approximations, we now show our main tractability theorem, which in
places closely follows the proof of [10, Theorem 5.18].

I Theorem 23. Let Γ be a SEDS language. Then Γ is globally `-tractable if it is SDS or if
the reduced language fix0 (Γ) is globally `-tractable.

Proof. Let Γ be an SEDS language on domain D. Then every weighted relation γ ∈ Γ
corresponds under normalisation to a k-set function fγ . Furthermore, weighted relations
in Γ are of bounded arity. If Γ is SDS, Theorem 22 implies that for some α ∈ N, every
such k-set function fγ can be α-approximated by a superadditive set function hγ . In the
following, we treat hγ as a GMC instance without any edge weights. If Γ is not SDS, we can
still α-approximate every k-set function fγ by a GMC instance hγ according to Theorem 21,
but there is no restriction on the edge weights.

Let l : D → N0 be a fixed lower bound and consider any VCSPl (Γ) instance I with
objective function

φI (x1, . . . , xn) =
t∑
i=1

wi · γi
(
xi
)
.

STACS 2019

52:12 Beyond Boolean Surjective VCSPs

Let fI be the k-set function corresponding under normalisation to the objective function φI .
We construct a GMC instance h that α-approximates fI .

For i ∈ [t], we relabel the vertices of hγi
to match the variables in the scope xi of the

i-th constraint (i.e., vertex j is relabelled to xij) and identify vertices in case of repeated
variables. As the constraint is weighted by a non-negative factor wi, we also scale the weights
of the edges of hγi and the superadditive set function by wi (note that non-negative scaling
preserves superadditivity). Instance h is then obtained by adding up GMC instances hγi

for
all i ∈ [t]. In the following, we treat h as a GMCl(0)

l∗ instance, where l∗ =
∑k
i=1 l (i). Note

that if Γ is SDS, h has zero edge weights.
Let X0, . . . , Xk be a partition of [n] such that fI (X1, . . . , Xk) is minimal among all

partitions satisfying |Xd| ≥ l (d) for all d ∈ D. In other words, X0, . . . , Xk corresponds to
an optimal assignment for instance I. Let X =

⋃k
d=1Xd denote all indices with non-zero

labels. In addition, let Y ⊆ [n] denote an optimal solution of the GMCl(0)
l∗ instance h and let

λ = h (Y).
Since |Y | ≥ l∗, there must exist some partition Y1, . . . , Yk of Y such that |Yd| ≥ l (d) for

all 1 ≤ d ≤ k. Because h α-approximates fI , it holds that

λ ≤ h (X) ≤ fI (X1, . . . , Xk) ≤ fI (Y1, . . . , Yk) ≤ α · h (Y) = α · λ.

Hence, X is an α-optimal solution of h.
As discussed in Section 2, it can be determined in polynomial time whether λ = 0, λ =∞

or 0 < λ < ∞. Furthermore, if λ = 0, a solution Z such that h (Z) = 0 can be found.
Because Z must have size |Z| ≥ l∗ as a solution of GMCl(0)

l∗ instance h, we can select some
partition Z1, . . . , Zk of Z such that |Zd| ≥ l (d) for all 1 ≤ d ≤ k. Since h α-approximates fI ,
it must hold fI (Z1, . . . , Zk) ≤ α · h (Z) = 0, meaning that Z1, . . . , Zk represents an optimal
assignment for instance I.

If λ =∞, then obviously there are no feasible solutions.
Otherwise, it holds 0 < λ <∞. In this case, we distinguish whether Γ is SDS or fix0 (Γ)

is globally `-tractable.
First, we assume that Γ is SDS and hence, that h has zero edge weights. We claim

that the size of X is bounded by a constant. For the sake of contradiction, assume that
|X| ≥ (α+ 1) l∗. Then there are disjoint subsets Z1, Z2, . . . , Zα+1 ⊆ X such that |Zi| ≥ l∗

for all 1 ≤ i ≤ α + 1. Being a solution of h, every Zi must have value at least h (Zi) ≥ λ.
Based on the superadditivity of h, we arrive at the contradiction

(α+ 1) · λ ≤ h (Z1) + · · ·+ h (Zα+1) ≤ h (X) ≤ α · λ.

Thus, it must hold |X| < (α+ 1) l∗. This leaves less than O
(
n(α+1)l∗) possible choices

for X, each of which admits at most O
(
k(α+1)l∗) partitions of the form X1 ∪ · · · ∪Xk = X.

By checking all of these, we can retrieve the sets X1, . . . , Xk in polynomial time.
Now, we assume that fix0 (Γ) is globally `-tractable. According to Corollary 9, there are

only polynomially many α-optimal solutions of h, all of which can be computed in polynomial
time. X must be among those solutions. By repeating the following process for all of them,
we can assume that X is known, and so is X0 = [n] \X.

Let D∗ = D\ {0} and let l�D∗ : D∗ → N denote the restriction of l to D∗. We can
efficiently find a minimal assignment for the VCSPl�D∗

(fix0 (Γ)) instance IX = (X,D∗, φX)
with objective function φX = fix0=X0 [φI]. The sets X1, . . . , Xk represent an assignment for
IX and, by assigning label 0 to the variables in X0, every assignment for IX induces an
assignment for I with the same objective value. Thus, an optimal assignment for IX induces
an optimal assignment for I. J

G. Matl and S. Živný 52:13

I Remark 24. If Γ is SDS, the algorithm presented in Theorem 23 can in fact, for every fixed
lower bound l : D → N0 and every VCSPl (Γ) instance I with optimal value 0 < λ < ∞,
enumerate all optimal solutions of I in polynomial time.

If Γ is SEDS and fix0 (Γ) is globally `-tractable, this property holds true under the
condition that for every VCSPl (fix0 (Γ)) instance with optimal value 0 < λ <∞, all optimal
solutions can be enumerated in polynomial time.

To complete our analysis of SEDS languages, we will now focus on the case that a language
is not SDS and that fix0 (Γ) is globally s-intractable. Going even beyond SEDS, our main
hardness result is that SIM languages are globally s-intractable under those circumstances.
We only give a brief sketch of the proof here and provide the full proof in the full version of
the paper [19].

I Theorem 25. Let Γ be a valued constraint language over domain D that is SIM, but not
SDS, and let fix0 (Γ) be globally s-intractable. Then Γ is globally s-intractable.

Proof sketch. Since Γ is not SDS, there must exist a weighted relation γ ∈ Γ of some arity r
and disjoint X1, . . . , Xk, Y1, . . . , Yk ⊆ [r] such that, in violation of equation (SDS), the k-set
function f corresponding under normalisation to γ satisfies

f (X1, . . . , Xk)� f (X1 ∪ Y1, . . . , Xk ∪ Yk) .

Given any VCSPs (fix0 (Γ)) instance I∗ = (V,D∗, φ∗I) on domain D∗ = D\ {0}, we
construct a VCSPs (Γ) instance I = (V ∪ {z} , D, φI) instance as follows. Let z denote
an additional variable. The objective function φI consists of two components. The first
component utilises the relation γ to ensure that any optimal assignment s for I must satisfy
s (z) = 0 and s (x) 6= 0 for all x ∈ V . The second component models φ∗I by replacing the
constraints by corresponding weighted relations from Γ, where pinning values to label 0 is
simulated by plugging in z.

This way, a solution for I∗ can be obtained by solving I, thereby reducing VCSPs (fix0 (Γ))
to VCSPs (Γ). J

On the Boolean domain, we obtain a complete classification of lower-bounded VCSPs,
which coincides with the classification of Boolean surjective VCSPs provided by [10].

I Theorem 26. Let Γ be a Boolean language. Then Γ is globally `-tractable if and only it is
globally s-tractable. Otherwise, Γ is globally `-intractable.

Moreover, we can now classify lower-bounded VCSPs over SEDS languages on three-
element domains.

I Theorem 27. Let Γ be a SEDS language on domain D = {0, 1, 2}. Then Γ is globally
`-tractable if it is SDS or if fix0 (Γ) is globally `-tractable, and globally `-intractable otherwise.

Proof. If Γ is SDS or fix0 (Γ) globally `-tractable, the statement follows from Theorem 23.
Otherwise, fix0 (Γ) must be globally s-intractable by Theorem 26 and the dichotomy from [10,
Theorem 3.2]. Hence, Γ is globally s-intractable by Theorem 25, which gives the result. J

STACS 2019

52:14 Beyond Boolean Surjective VCSPs

5 Conclusions

Based on the newly introduced Bounded Generalised Min-Cut problem and its tractability,
which might be of independent interest, we have provided a conditional complexity classifica-
tion of surjective and lower-bounded SEDS VCSPs on non-Boolean domains. Consequently,
we obtained a dichotomy theorem with respect to `-tractability for Boolean domains as well
as, more interestingly, for SEDS languages on three-element domains.

While our results only pertain to languages that admit multimorphism 〈cd〉 for some
label d we expect our results and techniques to be useful in identifying new s-tractable and
`-tractable languages going beyond those admitting 〈cd〉.

As mentioned in Section 1, globally tractable languages that include constant relations
are also s-tractable. It is easy to show the same for global `-tractability. For example,
this shows that well-studied sources of tractability such as submodularity [22] and its
generalisation k-submodularity [14], which are known to be globally tractable [17], are also
globally `-tractable.

What other non-Boolean languages are s-tractable and `-tractable? Our results are a first
step in this direction. In all cases we encountered global s-(in)tractability coincides with
global `-(in)tractability. We do not know whether this is true in general.

The natural next step is to consider languages on three-element domains. As is often
the case in the (V)CSP literature, languages on three-element domains are significantly
more complex than Boolean languages; for instance, compare two-element CSPs [20] and
three-element CSPs [2]. As a concrete open problem (of a surjective VCSP on a three-element
domain), the 3-No-Rainbow-Colouring problem [1] asks to colour the vertices of a three-
regular hypergraph such that every colour is used at least once, while no hyperedge attains
all three colours. The complexity of this problem is open both the in the decision setting (is
there a colouring) and also in the optimisation setting (what is the maximum number of
properly colourable hyperedges/minimum number of improperly colourable hyperedges).

References

1 Manuel Bodirsky, Jan Kára, and Barnaby Martin. The complexity of surjective homomorphism
problems – a survey. Discrete Applied Mathematics, 160(12):1680–1690, 2012. doi:10.1016/
j.dam.2012.03.029.

2 Andrei Bulatov. A dichotomy theorem for constraint satisfaction problems on a 3-element set.
Journal of the ACM, 53(1):66–120, 2006. doi:10.1145/1120582.1120584.

3 Andrei Bulatov, Peter Jeavons, and Andrei Krokhin. Classifying the Complexity of Constraints
using Finite Algebras. SIAM Journal on Computing, 34(3):720–742, 2005. doi:10.1137/
S0097539700376676.

4 Andrei A. Bulatov. A Dichotomy Theorem for Nonuniform CSPs. In Proceedings of the 58th
Annual IEEE Symposium on Foundations of Computer Science (FOCS’17), pages 319–330,
2017. doi:10.1109/FOCS.2017.37.

5 Andrei A. Bulatov and Dániel Marx. The complexity of global cardinality constraints. Logical
Methods in Computer Science, Volume 6, Issue 4, 2010. doi:10.2168/LMCS-6(4:4)2010.

6 David A. Cohen, Martin C. Cooper, Peter G. Jeavons, and Andrei A. Krokhin. The Complexity
of Soft Constraint Satisfaction. Artificial Intelligence, 170(11):983–1016, 2006. doi:10.1016/
j.artint.2006.04.002.

7 Nadia Creignou and Jean-Jacques Hébrard. On Generating All Solutions of Generalized
Satisfiability Problems. Informatique Théorique et Applications, 31:499–511, November 1997.
URL: http://www.numdam.org/article/ITA_1997__31_6_499_0.pdf.

http://dx.doi.org/10.1016/j.dam.2012.03.029
http://dx.doi.org/10.1016/j.dam.2012.03.029
http://dx.doi.org/10.1145/1120582.1120584
http://dx.doi.org/10.1137/S0097539700376676
http://dx.doi.org/10.1137/S0097539700376676
http://dx.doi.org/10.1109/FOCS.2017.37
http://dx.doi.org/10.2168/LMCS-6(4:4)2010
http://dx.doi.org/10.1016/j.artint.2006.04.002
http://dx.doi.org/10.1016/j.artint.2006.04.002
http://www.numdam.org/article/ITA_1997__31_6_499_0.pdf

G. Matl and S. Živný 52:15

8 Elias Dahlhaus, David S. Johnson, Christos H. Papadimitriou, Paul D. Seymour, and Mihalis
Yannakakis. The complexity of multiterminal cuts. SIAM Journal on Computing, 23(4):864–
894, 1994. doi:10.1137/S0097539792225297.

9 Tomás Feder and Moshe Y Vardi. The computational structure of monotone monadic SNP
and constraint satisfaction: A study through Datalog and group theory. SIAM Journal on
Computing, 28(1):57–104, 1998. doi:10.1137/S0097539794266766.

10 Peter Fulla, Hannes Uppman, and Stanislav Živný. The complexity of Boolean surjective
general-valued CSPs. ACM Transactions on Computation Theory, 11(1), 2018. Article No. 4.
doi:10.1145/3282429.

11 Olivier Goldschmidt and Dorit S. Hochbaum. A Polynomial Algorithm for the k-cut Problem for
Fixed k. Mathematics of Operations Research, 19(1):24–37, 1994. doi:10.1287/moor.19.1.24.

12 Pavol Hell and Jaroslav Nešetřil. On the complexity of H-coloring. Journal of Combinatorial
Theory, Series B, 48(1):92–110, 1990. doi:10.1016/0095-8956(90)90132-J.

13 Pavol Hell and Jaroslav Nešetřil. Colouring, constraint satisfaction, and complexity. Computer
Science Review, 2(3):143–163, 2008. doi:10.1016/j.cosrev.2008.10.003.

14 Anna Huber and Vladimir Kolmogorov. Towards Minimizing k-Submodular Functions. In
Proceedings of the 2nd International Symposium on Combinatorial Optimization (ISCO’12),
volume 7422 of Lecture Notes in Computer Science, pages 451–462. Springer, 2012. doi:
10.1007/978-3-642-32147-4_40.

15 Peter Jeavons, David Cohen, and Marc Gyssens. Closure Properties of Constraints. Journal
of the ACM, 44(4):527–548, July 1997. doi:10.1145/263867.263489.

16 Vladimir Kolmogorov, Andrei Krokhin, and Michal Rolínek. The complexity of general-valued
CSPs. SIAM Journal on Computing, 46(3):1087–1110, 2017. doi:10.1137/16M1091836.

17 Vladimir Kolmogorov, Johan Thapper, and Stanislav Živný. The power of linear programming
for general-valued CSPs. SIAM Journal on Computing, 44(1):1–36, 2015. doi:10.1137/
130945648.

18 Marcin Kozik and Joanna Ochremiak. Algebraic Properties of Valued Constraint Satisfaction
Problem. In Proceedings of the 42nd International Colloquium on Automata, Languages and
Programming (ICALP’15), volume 9134 of Lecture Notes in Computer Science, pages 846–858.
Springer Berlin Heidelberg, 2015. doi:10.1007/978-3-662-47672-7_69.

19 Gregor Matl and Stanislav Živný. Beyond Boolean Surjective VCSPs. Technical report, arXiv,
January 2019. arXiv:1901.07107.

20 Thomas J. Schaefer. The Complexity of Satisfiability Problems. In Proceedings of the 10th
Annual ACM Symposium on Theory of Computing (STOC’78), pages 216–226. ACM, 1978.
doi:10.1145/800133.804350.

21 Thomas Schiex, Hélène Fargier, and Gérard Verfaillie. Valued Constraint Satisfaction Problems:
Hard and Easy Problems. In Proceedings of the 14th International Joint Conference on Artificial
Intelligence (IJCAI’95), pages 631–637, 1995. URL: http://ijcai.org/Proceedings/95-1/
Papers/083.pdf.

22 Alexander Schrijver. Combinatorial optimization: polyhedra and efficiency, volume 24. Springer
Science & Business Media, 2003.

23 Johan Thapper and Stanislav Živný. The Complexity of Finite-Valued CSPs. Journal of the
ACM, 63(4):37:1–37:33, September 2016. doi:10.1145/2974019.

24 D. Zhuk. A Proof of CSP Dichotomy Conjecture. In Proceedings of the 58th Annual IEEE
Symposium on Foundations of Computer Science (FOCS’17), pages 331–342, 2017. doi:
10.1109/FOCS.2017.38.

STACS 2019

http://dx.doi.org/10.1137/S0097539792225297
http://dx.doi.org/10.1137/S0097539794266766
http://dx.doi.org/10.1145/3282429
http://dx.doi.org/10.1287/moor.19.1.24
http://dx.doi.org/10.1016/0095-8956(90)90132-J
http://dx.doi.org/10.1016/j.cosrev.2008.10.003
http://dx.doi.org/10.1007/978-3-642-32147-4_40
http://dx.doi.org/10.1007/978-3-642-32147-4_40
http://dx.doi.org/10.1145/263867.263489
http://dx.doi.org/10.1137/16M1091836
http://dx.doi.org/10.1137/130945648
http://dx.doi.org/10.1137/130945648
http://dx.doi.org/10.1007/978-3-662-47672-7_69
http://arxiv.org/abs/1901.07107
http://dx.doi.org/10.1145/800133.804350
http://ijcai.org/Proceedings/95-1/Papers/083.pdf
http://ijcai.org/Proceedings/95-1/Papers/083.pdf
http://dx.doi.org/10.1145/2974019
http://dx.doi.org/10.1109/FOCS.2017.38
http://dx.doi.org/10.1109/FOCS.2017.38

The Containment Problem for Unambiguous
Register Automata
Antoine Mottet
Department of Algebra, Faculty of Mathematics and Physics, Charles University, Czech Republic

Karin Quaas
University of Oldenburg, Germany

Abstract
We investigate the complexity of the containment problem “Does L(A) ⊆ L(B) hold?”, where B is
an unambiguous register automaton and A is an arbitrary register automaton. We prove that the
problem is decidable and give upper bounds on the computational complexity in the general case,
and when B is restricted to have a fixed number of registers.

2012 ACM Subject Classification Theory of computation → Automata over infinite objects

Keywords and phrases Data words, Register automata, Unambiguous Automata, Containment
Problem, Language Inclusion Problem

Digital Object Identifier 10.4230/LIPIcs.STACS.2019.53

Funding Antoine Mottet: This author received funding from DFG Graduiertenkolleg 1763 (QuantLA)
and from the European Research Council (ERC) under the European Union’s Horizon 2020 research
and innovation programme (grant agreement No 771005, “CoCoSym”).
Karin Quaas: Supported by DFG, QU 316/1-2.

1 Introduction

Register automata [10] are a widely studied model of computation that extend finite automata
with finitely many registers that are able to hold values from an infinite domain and perform
equality comparisons with data from the input word. This allows register automata to accept
data languages, i.e., sets of data words over Σ× D, where Σ is a finite alphabet and D is an
infinite set called the data domain. The study of register automata is motivated by problems
in formal verification and database theory, where the objects under study are accompanied by
annotations (identification numbers, labels, parameters, ...), see the survey by Ségoufin [18].
One of the central problems in these areas is to check whether a given input document or
program complies with a given input specification. In our context, this problem can be
formalized as a containment problem: given two register automataA and B, does L(A) ⊆ L(B)
hold, i.e., is the data language accepted by A included in the data language accepted by
B? Here, B is understood as a specification, and one wants to check whether A satisfies the
specification. For arbitrary register automata, the containment problem is undecidable [14, 4].
It is known that one can recover decidability in two different ways. First, the containment
problem is known to be PSPACE-complete when B is a deterministic register automaton [4].
This is a severe restriction on the expressive power of B, and it is of practical interest to find
natural classes of register automata that can be tackled algorithmically and that can express
more properties than deterministic register automata. Secondly, one can recover decidability
of the containment problem when B is a non-deterministic register automaton with a single
register [10, 4]. However, in this setting, the problem is Ackermann-complete [6]; it can
therefore hardly be considered tractable.

© Antoine Mottet and Karin Quaas;
licensed under Creative Commons License CC-BY

36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019).
Editors: Rolf Niedermeier and Christophe Paul; Article No. 53; pp. 53:1–53:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-3517-1745
https://doi.org/10.4230/LIPIcs.STACS.2019.53
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

53:2 Containment for Unambiguous Register Automata

This motivates the study of unambiguous register automata, which are non-deterministic
register automata for which every data word has at most one accepting run. Such automata
are strictly more expressive than deterministic register automata [10, 11].

In the present paper, we investigate the complexity of the containment problem when B is
restricted to be an unambiguous register automaton. We prove that the problem is decidable
with a 2-EXPSPACE complexity, and is even decidable in EXPSPACE if the number of registers
of B is a fixed constant. This is a striking difference to the non-deterministic case, where even
for a fixed number of registers greater than 1 the problem is undecidable. Classically, one way
to approach the containment problem (for general models of computation) is to reduce it to a
reachability problem on an infinite state transition system, called the synchronized state space
of A and B, cf. [15]. Proving decidability or complexity upper bounds for the containment
problem then amounts to finding criteria of termination or bounds on the complexity of a
reachability algorithm on this space. In this paper, our techniques also rely on the analysis of
the synchronized state space of A and B, where our main contribution is to provide a bound
on the size of synchronized states that one needs to explore before being able to certify that
L(A) ⊆ L(B) holds. This bound is found by identifying elements of the synchronized state
space whose behaviour is similar, and by showing that every element of the synchronized
state space is equivalent to a small one. In the general case, where B is unambiguous and A
is an arbitrary non-deterministic register automaton, we bound the size of the graph that
one needs to inspect by a triple exponential in the size of A and B. In the restricted case
that B has a fixed number of registers, we proceed to give a better bound that is only doubly
exponential in the size of A and B.

Related Literature. A thorough study of the current literature on register automata re-
veals that there exists a variety of different definitions of register automata, partially with
significantly different semantics. In this paper, we study register automata as originally
introduced by Kaminski and Francez [10]. Such register automata process data words over
an infinite data domain. The registers can take data values that appear in the input data
word processed so far. The current input datum can be compared for (in)equality with the
data that is stored in the registers. Kaminski and Francez study register automata mainly
from a language-theoretic point of view; more results on the connection to logic, as well
as the decidability status and computational complexity of classical decision problems like
emptiness and containment are presented, e.g., in [17, 14, 4]. In [7], register automata over
ordered data domains are studied.

Kaminski and Zeitlin [11] define a generalisation of the model in [10], in the following called
register automata with guessing. The registers in such automata can non-deterministically
reassign, or “guess”, the datum of a register. In particular, such register automata can
store data values that have not appeared in the input data word before, in contrast to the
register automata in [10]. Register automata with guessing are strictly more expressive
than register automata; for instance, there exists a register automaton with guessing that
accepts the complement of the data language accepted by the register automaton in Figure
1 (Example 4 in [11]). Figueira [5] studies an alternating version of this model, also over
ordered data domains. Colcombet [2, 1] considers unambiguous register automata with
guessing. In Theorem 12 in [2], it is claimed that this automata class is effectively closed
under complement, so that universality, containment and equivalence are decidable; however,
to the best of our knowledge, this claim remains unproved.

Finally, unambiguity has become an important topic in automata theory, as witnessed by
the growing body of literature in the recent years [8, 13, 3, 16]. In addition to the motivations
mentioned above, unambiguous automata form an important model of computation due to

A. Mottet and K. Quaas 53:3

their succinctness compared to their deterministic counterparts. For example, it is known that
unambiguous finite automata can be exponentially smaller than deterministic automata [12]
while the fundamental problems (such as emptiness, universality, containment, equivalence)
remain tractable.

2 Main Definitions

We study register automata as introduced in the seminal paper by Kaminski and Francez [10].
Throughout the paper, Σ denotes a finite alphabet, and D denotes an infinite set of data
values. In our examples, we assume D = N, the set of non-negative integers. A data word is
a finite sequence (σ1, d1) . . . (σk, dk) ∈ (Σ× D)∗. A data language is a set of data words. We
use ε to denote the empty data word. The length k of a data word w is denoted by |w|. Given
a data word w as above and 0 ≤ i ≤ k, we define the infix w(i, j] := (σi+1, di+1) . . . (σj , dj).
Note that w(i, i] = ε. We use data(w) to denote the set {d1, . . . , dk} of all data occurring in
w. We use proj(w) to denote the projection of w onto Σ∗, i.e., the word σ1 . . . σk.

Let D⊥ denote the set D ∪ {⊥}, where ⊥ 6∈ D is a fresh symbol not occurring in D. A
partial isomorphism of D⊥ is an injection f : S → D⊥ with finite domain S ⊂ D⊥ such that
if ⊥ ∈ S, then f(⊥) = ⊥. We use boldface lower-case letters like a, b, . . . to denote tuples in
Dn⊥, where n ∈ N. Given a tuple a ∈ Dn⊥, we write ai for its i-th component, and data(a)
denotes the set {a1, . . . , an} ⊆ D⊥ of all data occurring in a.

Let R = {r1, . . . , rn} be a finite set of registers. A register valuation is a mapping
a : R → D⊥; we may write ai as shorthand for a(ri). Let DR⊥ denote the set of all
register valuations. Given λ ⊆ R and d ∈ D, define the register valuation a[λ ← d] by
(a[λ← d])(ri) := d if ri ∈ λ, and (a[λ← d])(ri) := ai otherwise.

A register constraint over R is defined by the grammar

φ ::= true |= r | ¬φ | φ ∧ φ ,

where r ∈ R. We use Φ(R) to denote the set of all register constraints over R. We may use
6= r or φ1 ∨ φ2 as shorthand for ¬(= r) and ¬(¬φ1 ∧ ¬φ2), respectively. The satisfaction
relation |= for Φ(R) on DR⊥ × D is defined by structural induction in the obvious way; e.g.,
a, d |= (= r1 ∧ 6= r2) if a1 = d and a2 6= d.

A register automaton over Σ is a tuple A = (R,L, `in,Lacc, E), where
R is a finite set of registers,
L is a finite set of locations,
`in ∈ L is the initial location,
Lacc ⊆ L is the set of accepting locations, and
E ⊆ L× Σ× Φ(R)× 2R × L is a finite set of edges. We may write ` σ,φ,λ−−−→ `′ to denote
an edge (`, σ, φ, λ, `′) ∈ E. Here, σ is the label of the edge, φ is the register constraint of
the edge, and λ is the set of updated registers of the edge. A register constraint true is
vacuously true and may be omitted; likewise we may omit λ if λ = ∅.

A state of A is a pair (`,a) ∈ L × DR⊥, where ` is the current location and a is the current
register valuation. Given two states (`,a) and (`′,a′) and some input letter (σ, d) ∈ (Σ×D),
we postulate a transition (`,a) σ,d−−→A (`′,a′) if there exists some edge ` σ,φ,λ−−−→ `′ such
that a, d |= φ and a′ = a[λ ← d]. If the context is clear, we may omit the index A and
write (`,a) σ,d−−→ (`′,a′) instead of (`,a) σ,d−−→A (`′,a′). We use −→∗ to denote the reflexive
transitive closure of −→. A run of A on the data word (σ1, d1) . . . (σk, dk) is a sequence
(`0,a

0) σ1,d1−−−→ (`1,a
1) σ2,d2−−−→ . . .

σk,dk−−−→ (`k,ak) of transitions. We say that a run starts in

STACS 2019

53:4 Containment for Unambiguous Register Automata

(`,a) if (`0,a
0) = (`,a). A run is initialized if it starts in (`in, {⊥}R), and a run is accepting

if `k ∈ Lacc. The data language accepted by A, denoted by L(A), is the set of data words
w ∈ (Σ× D)∗ such that there exists an initialized accepting run of A on w.

We classify register automata into deterministic register automata (DRA), unambiguous
register automata (URA), and non-deterministic register automata (NRA). A register auto-
maton is a DRA if for every data word w there is at most one initialized run. A register
automaton is a URA if for every data word w there is at most one initialized accepting
run. A register automaton without any restriction is an NRA. We say that a data language
L ⊆ (Σ× D)∗ is DRA-recognizable (URA-recognizable and NRA-recognizable, respectively),
if there exists a DRA (URA and NRA, respectively) A over Σ such that L(A) = L. We
write DRA, URA, and NRA for the class of DRA-recognizable, URA-recognizable, and
NRA-recognizable, respectively, data languages. Note that DRA ⊆ URA ⊆ NRA. Also
note that, albeit a semantical property, the unambiguity of a register automaton can be
decided using a simple extension of a product construction, cf. [2].

The containment problem is the following decision problem: given two register automata
A and B, does L(A) ⊆ L(B) hold? We consider two more decision problems that stand in
a close relation to the containment problem (namely, they both reduce to the containment
problem): the universality problem is the question whether L(B) = (Σ × D)∗ for a given
register automaton B. The equivalence problem is to decide, given two register automata A
and B, whether L(A) = L(B).

3 Some Facts about Register Automata

For many computational models, a straightforward approach to solve the containment
problem is by a reduction to the emptiness problem using the equivalence: L(A) ⊆ L(B)
if, and only if, L(A) ∩ L(B) = ∅. This approach proves useful for DRA, which is closed
under complementation. Using the decidability of the emptiness problem for NRA, as well
as the closure of NRA under intersection [10], we obtain the decidability of the containment
problem for the case where A is an NRA and B is a DRA. More precisely, and using results
in [4], the containment problem for this particular case is PSPACE-complete.

In contrast to DRA, the class NRA is not closed under complementation [10] so that
the above approach must fail if B is an NRA. Indeed, it is well known that the containment
problem for the case where B is an NRA is undecidable [4]. The proof is a reduction from
the halting problem for Minsky machines: an NRA is capable to accept the complement of a
set of data words encoding halting computations of a Minsky machine.

In this paper, we are interested in the containment problem for the case where A is an
NRA and B is a URA. When attempting to solve this problem, an obvious idea is to ask
whether the class URA is closed under complementation. Kaminski and Francez [10] proved
that URA is not closed under complementation, and this even holds for the class of data
languages that are accepted by URA that only use a single register. In Figure 1, we show a
standard example of a URA for which the complement of the accepted data language cannot
even be accepted by an NRA [11]. Intuitively, this automaton is unambiguous because it is
not possible for two different runs of the automaton on some data word to reach the location
`1 with the same register valuation at the same time. Therefore, at any time only one run
can proceed to the accepting location `2. Note that this also implies DRA (URA.

An alternative approach for solving the containment problem is to explore the (possibly
infinite) synchronized state space of A and B, cf. [15]. Intuitively, the synchronized state
space of A and B stores for every state (`,a) that A is in after processing a data word w

A. Mottet and K. Quaas 53:5

`0 `1 `2
{r} = r

6= r

{(`0,⊥)}

{(`0,⊥), (`1, 1)} {(`0,⊥), (`1, 2)}

{(`0,⊥), (`1, 1), (`2, 1)} {(`0,⊥), (`1, 1), (`1, 2)}

{(`0,⊥), (`1, 1), (`2, 1)} . . . {(`0,⊥), (`1, 3), (`1, 2), (`1, 1)} . . .

.

. . .1 2

1

1

1

3

Figure 1 On the left we depict a URA with a single register r and over a singleton alphabet (we
omit the labels at the edges). The complement of the data language accepted by this URA cannot
be accepted by any NRA. On the right we show a finite part of the infinite state space of the URA.

the set of states that B is in after processing the same data word w. For an example, see
the computation tree on the right side of Figure 1, where the leftmost branch shows the set
of states that the URA on the left side of Figure 1 reaches after processing the data word
(σ, 1)(σ, 1)(σ, 1), and the rightmost branch shows the set of states that the URA reaches after
processing the data word (σ, 2)(σ, 1)(σ, 3). The key property of the synchronized state space
of A and B is that it contains sufficient information to decide whether for every data word
for which there is an initialized accepting run in A there is also an initialized accepting run
in B. We formalize this intuition in the following paragraphs.

We start by defining the state space of a given NRA. Fix an NRA A = (R,L, `in,Lacc, E)
over Σ. A configuration of A is a finite set C ⊆ (L × DR⊥) of states of A; if C = {(`,a)}
is a singleton set, in slight abuse of notation and if the context is clear, we may omit the
parentheses and write (`,a). Given a configuration C and an input letter (σ, d) ∈ (Σ×D), we
use SuccA(C, (σ, d)) to denote the successor configuration of C on the input (σ, d), formally
defined by

SuccA(C, (σ, d)) := {(`,a) ∈ (L × DR⊥) | ∃(`′,a′) ∈ C.(`′,a′) σ,d−−→A (`,a)}.

In order to extend this definition to data words, we define inductively SuccA(C, ε) := C and
SuccA(C,w ·(σ, d)) := SuccA(SuccA(C,w), (σ, d)). We say that a configuration C is reachable
in A if there exists some data word w such that C = SuccA((`in, {⊥}R), w). We say that a
configuration C is coverable in A if there exists some configuration C ′ ⊇ C such that C ′ is
reachable in A. We say that a configuration C is accepting if there exists (`,a) ∈ C such that
` ∈ Lacc; otherwise we say that C is non-accepting. We define data(C) :=

⋃
(`,a)∈C data(a)

as the set of data occurring in configuration C.
The following proposition follows immediately from the definition of URA.

I Proposition 1. If A is a URA and C,C ′ are two configurations of A such that C ∩C ′ = ∅
and C ∪ C ′ is coverable, then for every data word w the following holds: if SuccA(C,w) is
accepting, then SuccA(C ′, w) is non-accepting.

Let C,C ′ be two configurations of A. Consider two data words w = (σ1, d1) . . . (σk, dk)
and w′ = (σ1, d

′
1) . . . (σk, d′k) such that proj(w) = proj(w′). Recall that a partial func-

tion f : D⊥ → D⊥ with finite domain is a partial isomorphism if it is an injection such
that if ⊥ ∈ dom(f) then f(⊥) = ⊥. Let f be a partial isomorphism of D⊥ and let C
be a configuration with data(C) ⊆ dom(f). We define f(C) := {(`, f(d1), . . . , f(d|R|)) |
(`, d1, . . . , d|R|) ∈ C}; likewise, if {d1, . . . , dk} ⊆ dom(f), we define f((σ1, d1) . . . (σk, dk)) :=
(σ1, f(d1)) . . . (σk, f(dk)). We say that C,w and C ′, w′ are equivalent with respect to f ,
written C,w ∼f C ′, w′, if

f(C) = C ′ and f(w) = w′. (?)

STACS 2019

53:6 Containment for Unambiguous Register Automata

If w = w′ = ε, then we may simply write C ∼f C ′. We write C ∼ C ′ if C ∼f C ′ for some
partial isomorphism f of D⊥.

I Proposition 2. If C,w ∼ C ′, w′, then SuccA(C,w(0, i]), w(i, k] ∼ SuccA(C ′, w′(0, i]),
w′(i, k] for all 0 ≤ i ≤ k, where k = |w|.

Proof. The proof is by induction on i. For the induction base, let i = 0. But then
SuccA(C,w(0, 0])) = SuccA(C, ε) = C and w(0, k] = w, and similarly for C ′ and w′, so
that the statement holds by assumption. For the induction step, let i > 0. Define Ci−1 :=
SuccA(C,w(0, i−1]) and similarly C ′i−1. By induction hypothesis, there exists some bijective
mapping

fi−1 : data(Ci−1) ∪ data(w(i− 1, k])→ data(C ′i−1) ∪ data(w′(i− 1, k])

satisfying (?) fi−1(Ci−1) = C ′i−1 and fi−1(w(i − 1, k]) = w′(i − 1, k]. Define Ci :=
SuccA(Ci−1, (σi, di)) and C ′i := SuccA(C ′i−1, (σi, d′i)). Note that data(Ci) ⊆ data(Ci−1) ∪
{di}, and similarly for data(C ′i). Let fi be the restriction of fi−1 to data(Ci) ∪ data(w(i, k]).
We are going to prove that Ci, w(i, k] ∼fi

C ′i, w
′(i, k]. Note that fi(w(i, k]) = w′(i, k]

holds by definition of fi and (2). We prove fi(Ci) ⊆ C ′i. Suppose (`,a) ∈ Ci. Hence
there exists (`i−1, b) ∈ Ci−1 such that (`i−1, b) σi,di−−−→ (`,a). Thus there exists an edge
`i−1

σi,φ,λ−−−−→ ` such that b, di |= φ and a = b[λ ← di]. By induction hypothesis, there
exists (`i−1, b

′) ∈ C ′i−1 such that fi−1(b) = b′. By induction on the structure of φ, one
can easily prove that b, di |= φ if, and only if, b′, d′i |= φ. Define a′ := b′[λ ← d′i]. We
prove fi(a) = a′: there are two cases: (i) If r ∈ λ, then fi(a(r)) = fi(di) = d′i = a′(r).
(ii) If r 6∈ λ, then fi(a(r)) = fi(b(r)) = fi−1(b(r)) = a′(r). Hence, fi(a) = a′. Altogether
(`, fi(a)) ∈ C ′i, and thus fi(Ci) ⊆ C ′i. The proof for C ′i ⊆ fi(Ci) is analogous. Altogether,
Ci, w(i, k] ∼fi

C ′i, w
′(i, k]. J

As an immediate consequence of Proposition 2, we obtain that ∼ preserves the configura-
tion properties of being accepting respectively non-accepting.

I Corollary 3. Let C and C ′ be two configurations of A. If C,w ∼ C ′, w′ and SuccA(C,w)
is non-accepting (accepting, respectively), then SuccA(C ′, w′) is non-accepting (accepting,
respectively).

Combining the last corollary with Proposition 1, we obtain

I Corollary 4. If A is a URA and C,C ′ are two configurations such that C ∩ C ′ = ∅ and
C∪C ′ is coverable in A, then for every data word w such that C,w ∼ C ′, w, the configurations
SuccA(C,w) and SuccA(C ′, w) are non-accepting.

For the rest of this paper, let A = (RA,LA, `Ain,LAacc, EA) be an NRA over Σ, and
let B = (RB,LB, `Bin,LBacc, EB) be a URA over Σ. Without loss of generality, we assume
RA ∩RB = ∅ and LA ∩ LB = ∅. We let m be the number of registers of A, and we let n be
the number of registers of B.

A synchronized configuration of A and B is a pair ((`,d), C), where (`,d) ∈ (LA × DRA

⊥)
is a single state of A, and C ⊆ (LB × DRB

⊥) is a configuration of B. Given a synchronized
configuration S, we use data(S) to denote the set data(d) ∪ data(C) of all data occurring in
S. We define Sin := ((`Ain, {⊥}m), {(`Bin, {⊥}n)}) to be the initial synchronized configuration
of A and B. We define the synchronized state space of A and B to be the (infinite) state
transition system (S,⇒), where S is the set of all synchronized configurations of A and B,
and ⇒ is defined as follows. If S = ((`,d), C) and S′ = ((`′,d′), C ′), then S ⇒ S′ if there

A. Mottet and K. Quaas 53:7

exists a letter (σ, d) ∈ (Σ× D) such that (`,d) σ,d−−→A (`′,d′), and SuccB(C, (σ, d)) = C ′. We
say that a synchronized configuration S reaches a synchronized configuration S′ in (S,⇒) if
there exists a path in (S,⇒) from S to S′. We say that a synchronized configuration S is
reachable in (S,⇒) if Sin reaches S. We say that a synchronized configuration S = ((`,d), C)
is coverable in (S,⇒) if there exists some synchronized configuration S′ = ((`,d), C ′) such
that C ′ ⊇ C and S′ is reachable in (S,⇒).

We aim to reduce the containment problem L(A) ⊆ L(B) to a reachability problem in
(S,⇒). For this, call a synchronized configuration ((`,d), C) bad if ` ∈ LAacc is an accepting
location and C is non-accepting, i.e., `′ 6∈ LBacc for all (`′,a) ∈ C. The following proposition
is easy to prove, cf. [15].

I Proposition 5. L(A) ⊆ L(B) does not hold if, and only if, some bad synchronized
configuration is reachable in (S,⇒).

We extend the equivalence relation ∼ defined above to synchronized configurations in
a natural manner, i.e, given a partial isomorphism f of D⊥ such that data(d) ∪ data(C) ⊆
dom(f), we define ((`,d), C) ∼f ((`,d′), C ′) if f(C) = C ′ and f(d) = d′. We shortly write
S ∼ S′ if there exists a partial isomorphism f of D⊥ such that S ∼f S′. Clearly, an analogon
of Proposition 2 holds for this extended relation. In particular, we have the following:

I Proposition 6. Let S, S′ be two synchronized configurations of (S,⇒) such that S ∼ S′.
If S reaches a bad synchronized configuration, so does S′.

Note that the state transition system (S,⇒) is infinite. First of all, (S,⇒) is not finitely
branching: for every synchronized configuration S = ((`,d), C) in S, every datum d ∈ D may
give rise to its own individual synchronized configuration Sd such that S ⇒ Sd. However,
it can be easily seen that for every two different data values d, d′ ∈ D\data(S), if inputting
(σ, d) gives rise to a transition S ⇒ Sd and inputting (σ, d′) gives rise to a transition S ⇒ Sd′

(for some σ ∈ Σ), then Sd ∼ Sd′ . Hence there exist synchronized configurations S1, . . . , Sk
for some k ∈ N such that S ⇒ Si for all i ∈ {1, . . . , k}, and such that for all S′ ∈ S with
S ⇒ S′ there exists i ∈ {1, . . . , k} such that Si ∼ S′. This is why we define in Section 4.3 the
notion of abstract configuration, representing synchronized configurations up to the relation
∼. Second, and potentially more harmful for the termination of an algorithm to decide
the reachability problem from Proposition 5, the configuration C of B in a synchronized
configuration may grow unboundedly. As an example, consider the URA on the left side
of Figure 1. For every k ≥ 1, the configuration {(`0,⊥), (`1, d1), (`1, d2) . . . , (`1, dk)} with
pairwise distinct data values d1, . . . , dk is reachable in this URA by inputting the data word
(σ, d1)(σ, d2) . . . (σ, dk). In the next section, we prove that we can solve the reachability
problem from Proposition 5 by focussing on a subset of configurations of B that are bounded
in size, thus reducing to a reachability problem on a finite graph.

4 The Containment Problem for Register Automata

4.1 Types
Given k ∈ N, a k-type1 of D⊥ is a quantifier-free formula ϕ(y1, . . . , yk) formed by a conjunction
of (positive or negative) literals of the form yi = yj and yi = ⊥ that is satisfiable in
D⊥. A k-type is complete if for any other quantifier-free formula ψ(y1, . . . , yk), either

1 Types are a standard notion of model theory (see, e.g., [9] for a definition). The definition that we give
here coincides with the standard notion of types when applied to D⊥.

STACS 2019

53:8 Containment for Unambiguous Register Automata

∀y1, . . . , yk.(ϕ(y1, . . . , yk)⇒ ψ(y1, . . . , yk)) holds or ϕ ∧ ψ is unsatisfiable. It is easy to see
that given a ∈ Dk, there is a unique complete k-type ϕ such that ϕ(a) holds in D⊥. We call
ϕ the type of a and denote it by tp(a). It may be observed that a, b ∈ Dk⊥ have the same
type if, and only if, there exists a partial isomorphism f of D⊥ such that f(a) = b.

Recall that m and n denote the number of registers of A and B. For every a ∈ Dn⊥ and
for every complete (2n+m)-type ϕ(y), where y = (y1, . . . , y2n+m), we define the set

Lϕ(a) = {`′ ∈ LB | ∃b ∈ Dn⊥ such that (`′, b) ∈ C and ϕ(a, b,d) holds in D⊥}.

Let S = ((`,d), C) be a synchronized configuration and let a, b ∈ Dn⊥ be two register
valuations occurring in C, i.e., there exist `a, `b ∈ LB such that (`a,a), (`b, b) ∈ C. We say
that a and b are indistinguishable in S, written a ≡S b, if Lϕ(a) = Lϕ(b) for every complete
(2n+m)-type ϕ(y).

I Example 7. Let (`A, 3) be a state in some NRA with a single register, and let C ′ =
{(`, 1, 3), (`, 2, 3), (`′, 1, 2)} be a configuration of a URA with two registers. Let S′ =
((`A, 3), C ′) be the corresponding synchronized configuration of A and B. Consider a = (1, 3)
and b = (2, 3). For the 5-type

ϕ1 = (y1 6= y2) ∧ (y1 6= y3) ∧ (y2 = y4) ∧ (y4 = y5) ∧ (y3 6= y2)

we have Lϕ1(a) = {`} as ϕ1(a, b,d) holds in (N,=), and similarly, Lϕ1(b) = {`} as ϕ1(b,a,d)
holds in (N,=). However, we have Lϕ2(a) = {`′} and Lϕ2(b) = ∅ for the 5-type

ϕ2 = (y1 6= y2) ∧ (y1 = y3) ∧ (y2 6= y4) ∧ (y2 = y5) ∧ (y4 6= y1).

Hence a ≡S′ b does not hold. However, a ≡S b for S = ((`A, 3), C) with C := C ′∪{(`′, 2, 1)}.

I Proposition 8. Let S = ((`A,d), C) be a coverable synchronized configuration of A and
B. Let a, b be such that a ≡S b. Then the map f : data(a)→ data(b) defined by f(ai) := bi
is a partial isomorphism of D⊥. Moreover, if we let Ca := {(`,a) ∈ C | ` ∈ LB} and
Cb := {(`, b) ∈ C | ` ∈ LB}, then Ca ∼f Cb.

Proof. Let ϕ be the complete (2n+m)-type of (a,a,d). Note that for two vectors u,v ∈ Dn⊥,
ϕ(u,v,d) holds in D⊥ iff u = v and tp(a,d) = tp(u,d) = tp(v,d).

Let now (`,a) be in Ca. By definition, this means that ` ∈ Lϕ(a). By indistinguishibility,
` ∈ Lϕ(b) so that

ϕ(b, c,d) holds in D⊥ (†)

for some (`, c) ∈ C. Now, (†) implies b = c and tp(b) = tp(a). The former implies that
(`, b) ∈ Cb, while the latter implies that f is a partial isomorphism. Conversely, we obtain
that (`, b) ∈ Cb implies (`,a) ∈ Ca. Hence f(Ca) = Cb and thus Ca ∼f Cb. J

4.2 Collapsing Configurations
As we pointed out in the introduction, the crucial ingredient of our algorithm for deciding
whether L(A) ⊆ L(B) holds is to prevent configurations C in a synchronized configuration
((`,d), C) to grow unboundedly. We do this by collapsing two subconfigurations Ca, Cb ⊆ C
that behave equivalently with respect to reaching a bad synchronized configuration in (S,⇒)
into a single subconfiguration. The key notions for deciding when two subconfigurations
can be collapsed into a single one are k-types and indistinguishability from the previous
subsection.

A. Mottet and K. Quaas 53:9

I Proposition 9. Let S′ = ((`,d), C ′) be a coverable synchronized configuration of A and B.
Let a and b be two distinct register valuations in C ′ such that a ≡S′ b. Let Cb := {(`, b) ∈
C ′ | ` ∈ LB}. Then S := ((`,d), C ′ \ Cb) reaches a bad synchronized configuration if, and
only if, S′ reaches a bad synchronized configuration.

Proof. The “if” direction follows from the simple observation that for every data word w,
if SuccB(C ′, w) is non-accepting, then so is SuccB(D,w) for every subset D ⊆ C ′. For the
“only if” direction, let Ca := {(`,a) ∈ C ′ | ` ∈ LB} and C := C ′ \ (Ca ∪ Cb). Let m be the
number of registers of A and n be the number of registers of B. Suppose that there exists
a data word w such that there exists an accepting run of A on w that starts in (`,d), and
SuccB(Ca∪C,w) is non-accepting. We assume in the following that SuccB(Cb, w) is accepting;
otherwise we are done. Without loss of generality, we assume that data(w) ∩ data(S′) ⊆
data(b) ∪ data(d). Otherwise, pick for every d ∈ data(w) ∩ (data(a) ∪ data(C)) such that
d 6∈ data(b) ∪ data(d), a fresh datum d′ ∈ D not occurring in data(w) ∪ data(S′), and
simultaneously replace every occurrence of d in w by d′. Let w′ be the resulting data
word. Then (`,d), w ∼ (`,d), w′ and Cb, w ∼ Cb, w

′. By Corollary 3, SuccA((`,d), w′) is
accepting, and SuccB(Cb, w

′) is accepting, too. Then there must exist some accepting run of
A on w′ starting in (`,d), and, by Proposition 1, SuccB(Ca ∪ C,w′) must be non-accepting.
Hence, we could continue the proof with w′ instead of w. Let us assume henceforth that
data(w) ∩ data(S′) ⊆ data(b) ∪ data(d) holds.

Let now w′′ be the data word obtained from w as follows: for every bi ∈ data(w) with
bi 6= ai, pick some fresh datum ei ∈ D not occurring in data(w) ∪ data(S′). Then replace
every occurrence of the letter bi in w by ei.

Note that (`,d), w ∼ (`,d), w′′: the key argument for this is that by a ≡S′ b we have
bi 6∈ data(d) whenever bi 6= ai. By Corollary 3, SuccA((`,d), w′′) is accepting. Hence there
must exist some accepting run of A on w′′ starting in (`,d).

Further note that Ca, w
′′ ∼ Cb, w

′′: by Proposition 8, Ca ∼f Cb, where f : data(a) →
data(b) is the bijective mapping defined by f(ai) = bi for all 1 ≤ i ≤ n. Now let g :
data(a)∪ data(w′′)→ data(b)∪ data(w′′) be the bijective mapping that agrees with f on all
data in data(a), and that maps each datum d ∈ data(w′′)\data(a) to d. One can easily see
that g is a bijection such that g(Ca) = Cb and g(w′′) = w′′ so that indeed Ca, w

′′ ∼g Cb, w
′′.

By Corollary 4, SuccB(Ca, w
′′) and SuccB(Cb, w

′′) are non-accepting.
Finally, we prove that SuccB(C,w′′) is non-accepting, too. For this, let (`′, c) ∈ C; we

prove that SuccB((`′, c), w′′) is non-accepting. We distinguish the following two cases:
For all 1 ≤ i ≤ n with ai 6= bi we have bi 6∈ data(c). Then (`′, c), w ∼ (`′, c), w′′,
as witnessed by the bijection f such that f(bi) = ei for all bi ∈ data(w) such that
bi 6= ai, and that is the identity otherwise. Recall that by assumption SuccB((`′, c), w) is
non-accepting. By Corollary 3, SuccB((`′, c), w′′) is non-accepting.
There exists 1 ≤ i ≤ n such that ai 6= bi and bi ∈ data(c).
Let ϕ(y) be the (2n + m)-type of (b, c,d), and note that `′ ∈ Lϕ(b). By assumption
`′ ∈ Lϕ(a) and there exists a state (`′, c′) ∈ C such that ϕ(a, c′,d) holds. Note that
for all 1 ≤ j ≤ n such that bi = cj we have ai = c′j . By assumption, bi = cj for some
1 ≤ j ≤ n. Since ai 6= bi, we can infer cj 6= c′j , and hence (`′, c) 6= (`′, c′). Next we
prove (`′, c), w′′ ∼ (`′, c′), w′′. We define f : data(c) ∪ data(w′′) → data(c′) ∪ data(w′′)
as follows:

f :
{
cp 7→ c′p 1 ≤ p ≤ n
e 7→ e e ∈ data(w′′)

STACS 2019

53:10 Containment for Unambiguous Register Automata

A

`A
{r} 6= r {r}

B
{r1}

{r1 }

6= r1, {r2}

6= r1, {r1}

6= r1

`′

`
{r2}

= r1∨ = r2

6= r1∧ 6= r2

6= r1
= r1

Figure 2 An NRA A and a URA B over a singleton alphabet for which L(A) ⊆ L(B).

We prove below that
(i) for all 1 ≤ p, q ≤ n, cp = cq iff c′p = c′q;
(ii) for all 1 ≤ p ≤ n, for all e ∈ data(w′′), e = cp iff e = c′p;
note that this implies that f is well-defined and f is a bijective mapping, and hence
(`′, c), w′′ ∼f (`′, c′), w′′. By Proposition 2, SuccB((`′, c), w′′) ∼ SuccB((`′, c′), w′′). By
Corollary 4, SuccB((`′, c), w′′) and SuccB((`′, c′), w′′) are non-accepting. We now prove the
two items from above: (i) Follows directly from the fact that ϕ(a, c′,d) and ϕ(b, c,d) hold,
which implies that c′ and c have the same type. For (ii), recall that data(w)∩data(S′) ⊆
data(b) ∪ data(d). This, the definition of w′′, and a ≡S′ b yield the claim.

Altogether, we proved that SuccB(C ′, w′′) is non-accepting, while there exists some accepting
run (`,d) −→∗ (`′′,d′′) of A on w′′. This finishes the proof for the “only if” direction. J

When S is obtained from S′ by applying Proposition 9 to some pair of register valuations,
we say that S′ collapses to S. We say that S is maximally collapsed if for all pairs a and
b of distinct register valuations appearing in C we have that a ≡S b does not hold. Note
that in Proposition 9, the synchronized configuration S is again coverable. By iterating
Proposition 9, one obtains that a coverable synchronized configurations reaches a bad
synchronized configuration if, and only if, it collapses in finitely many steps to a maximally
collapsed synchronized configuration that also reaches a bad synchronized configuration.

Before we present our algorithm for deciding the containment problem, we would like
to point out that the intuitive notion of types alone is not sufficient for deciding whether
synchronized configurations can be collapsed. More precisely, given a coverable synchronized
configuration S′ = ((`A,d), C ′) and two register valuations a and b that occur in C ′ and for
which tp(a,d) = tp(b,d), it is in general not the case that S′ reaches a bad synchronized
configuration if S := ((`,d), C ′\Cb), where Cb := {(`, b) ∈ C ′ | ` ∈ LB}, reaches a bad
synchronized configuration. To see that, consider Figure 2, where two register automata
over a singleton alphabet (we omit the labels at the edges) are depicted: an NRA A with
a single register r on the left side, and a URA B with two registers r1 and r2 on the right
side. Note that L(A) ⊆ L(B). After processing the input data word w = (σ, 1)(σ, 2)(σ, 3),
the synchronized configuration S′ = ((`A, 3), C ′), where C ′ := {(`, 1, 3), (`, 2, 3), (`′, 1, 2)}), is
reached in the synchronized state space of A and B. For a = (1, 3) and b = (2, 3), we have
tp(a,d) = tp(b,d), but a ≡S′ b does not hold (cf. Example 7). Indeed, SuccB(C ′\Cb, (σ, 2))
is non-accepting, while C ′ cannot reach any non-accepting configuration.

4.3 Abstract Configurations
In this section, we study synchronized configurations up to the equivalence relation ∼. Recall
that m is the number of registers of A and n is the number of registers of B. An abstract
synchronized configuration of A and B is a tuple (`,Γ, ϕ) where ϕ is a complete (sn+m)-type
for some s ∈ N, Γ is an s-tuple of subsets of LB, and ` ∈ LA.

A. Mottet and K. Quaas 53:11

The size of an abstract synchronized configuration is defined to be (sn+m) log(sn+m) +
s|LB|+ log(|LA|), which corresponds to the size needed on the tape of a Turing machine to
encode an abstract synchronized configuration (where one encodes, for example, an (sn+m)-
type by giving for each of the sn+m variables, a number in {1, . . . , sn+m} in a way that
yi = yj is a conjunct in ϕ iff yi and yj are assigned the same number).

Every synchronized configuration S = ((`A,d), C) gives rise to an abstract synchronized
configuration in the following way: let a1, . . . ,as be the distinct register valuations in C,
listed in some arbitrary order. Let ϕ be the complete (sn + m)-type of (a1, . . . ,as,d).
Let Cai := {` ∈ LB | (`,ai) ∈ C}. We obtain an abstract synchronized configuration
(`A, (Ca1 , . . . , Cas), ϕ). Different enumerations of the register valuations of C can yield
different abstract configurations. We let abs(S) be the set of all abstract synchronized
configurations that can be obtained from S. Every two abstract synchronized configurations
in abs(S) can be obtained from one another by permuting the variables from the type and
the entries from the tuple accordingly. It is easy to prove that S ∼ S′ if, and only if,
abs(S) = abs(S′).

An abstract configuration (`,Γ, ϕ) is said to be maximally collapsed if there exists a
synchronized configuration S such that (`,Γ, ϕ) ∈ abs(S) and such that S is maximally
collapsed (equivalently, one could ask that every S such that (`,Γ, ϕ) ∈ abs(S) is maximally
collapsed). The main result of this section is that the number of different register valuations
in a maximally collapsed synchronized configuration is bounded. Let Br ≤ rr be the number
of complete r-types, which is also called the Bell number of order r.

I Proposition 10. Let S = ((`A,d), C) be a maximally collapsed synchronized configuration
of A and B. The number of different register valuations appearing in C is bounded by
(B2n+m · 2|L

B|)(2n+m)n .

Proof. We first prove a slightly worse upper bound, to give an idea of the proof. Let
K := B2n+m. We prove that the number of different register valuations is bounded by 2|LB|K .
Associate with every register valuation a appearing in C the K-tuple (Lϕ1(a), . . . ,LϕK

(a))
of subsets of LB, where ϕ1, . . . , ϕK is an enumeration of all the complete (2n + m)-types.
Note that there are at most 2|LB|K such tuples. Suppose by contradiction that S contains
more than 2|LB|K different register valuations. By the pigeonhole principle there are two
different register valuations a and b that have the same associated K-tuple. Note that if a

and b share the same K-tuple, then a ≡S b. By Proposition 9, S could be collapsed further,
contradiction. Hence, we proved an upper bound of 2|LB|K on the number of different register
valuations appearing in a given maximally collapsed synchronized configuration.

We now proceed to prove the actual bound. The important fact is that when a and d

are fixed in S, then few (i.e., ≤ (2n + m)n) entries in the tuple (Lϕ1(a), . . . ,LϕK
(a)) are

non-empty. Indeed, in a given (2n + m)-type, each of the variables yn+1, . . . , y2n can be
constrained to be equal to one of y1, . . . , yn, y2n+1, . . . , y2n+m, or constrained to be different
than all of them.

Therefore, it remains to bound the number of K-tuples with entries in 2LB and with
at most (2n + m)n non-empty entries. Each such tuple is characterised by the subset
T ⊆ {1, . . . ,K} of entries that are non-empty, together with a |T |-tuple of non-empty
subsets of LB. Since |T | can be bounded by (2n + m)n, we obtain that there are at most
K(2n+m)n · 2|LB|(2n+m)n possible tuples, and thus at most (B2n+m · 2|L

B|)(2n+m)n different
register valuations. J

Note that the bound in Proposition 10 is doubly exponential in n and exponential in
|LB| and m. As a direct corollary, we obtain a bound on the number of maximally collapsed
abstract synchronized configurations.

STACS 2019

53:12 Containment for Unambiguous Register Automata

I Proposition 11. The number of maximally collapsed abstract configurations is bounded by
a triple exponential in |A| and |B|. If the number of registers of B is fixed, then the number of
maximally collapsed abstract configurations is bounded by a double exponential in |A| and |B|.

Proof. Recall that m is the number of registers of A and n is the number of registers of B.
By Proposition 10, a maximally collapsed synchronized configuration S = ((`A,d), C) is such
that C contains at most K := (B2n+m · 2|L

B|)(2n+m)n different register valuations. Therefore,
any abstract synchronized configuration in abs(S) is described by an (sn + m)-type with
s ≤ K. For a given s, there are at most Bsn+m · |LB|s · |LA| different abstract synchronized
configurations. Summing up from s = 0 to K, we obtain that there are at most

K∑
s=0

Bsn+m · |LB|s · |LA| ≤ |LA| ·
(
Bm +Bn+m|LB|+ · · ·+BnK+m · |LB|K

)
≤ |LA| · (1 +K) ·BnK+m · |LB|K

≤ |LA| · (1 +K) · (nK +m)(nK+m) · |LB|K

maximally collapsed abstract synchronized configurations. Since K is doubly exponential in
|A| and |B|, this gives the first result. The second result follows from the fact that for fixed
n, K only depends exponentially on m and |LB|. J

Given abstract synchronized configurations (`A,Γ, ϕ) and (`′A,Γ′, ϕ′), define (`A,Γ, ϕ)
(`′A,Γ′, ϕ′) if there exist synchronized configurations S and S′ such that:

S ⇒ S′,
(`A,Γ, ϕ) is in abs(S),
S′ can be maximally collapsed to some S′′ such that (`′A,Γ′, ϕ′) is in abs(S′′).

I Lemma 12. Given two abstract synchronized configurations (`A,Γ, ϕ) and (`′A,Γ′, ϕ′),
deciding whether (`A,Γ, ϕ) (`′A,Γ′, ϕ′) holds can be done in polynomial space.

Proof. In this proof, we assume without loss of generality that D = N. Let s be such that ϕ
is an (sn+m)-type. Note that there is a synchronized configuration S of the form ((`A,d), D)
such that data(D) ∪ data(d) ⊆ {1, . . . , sn+m} and such that (`A,Γ, ϕ) ∈ abs(S). This S is
moreover computable in polynomial space.

To decide whether (`A,Γ, ϕ) (`′A,Γ′, ϕ′) holds, one simply:
guesses a letter σ ∈ Σ and a datum d in {1, . . . , sn+m+ 1},
computes a synchronized configuration S′ obtained by firing the transition corresponding
to (σ, d) from S,
guesses a sequence (a1, b1), . . . , (ar, br) of register valuations such that Proposition 9 can
be applied r times to obtain a maximally collapsed configuration S′′,
checks that (`′A,Γ′, ϕ′) is in abs(S′′).

At the second step, the size of S′ is polynomially bounded by the size of A, B, and of S.
Moreover, the maximal length of a collapsing sequence in the third step is also polynomially
bounded, as the number of distinct register valuations decreases after each application of
Proposition 9. Therefore, this algorithm uses a polynomial amount of space. J

As for synchronized configuration, an abstract synchronized configuration (`A,Γ, ϕ) is
called bad if `A is an accepting location and none of the states in Γ contains an accepting
location.

I Proposition 13. A bad synchronized configuration is reachable in (S,⇒) if, and only if, a
bad abstract synchronized configuration is reachable from abs(Sin).

A. Mottet and K. Quaas 53:13

Proof. We prove that for every coverable synchronized configuration S and every n ≥ 0, a
bad synchronized configuration is reachable in n steps from S if, and only if, a bad abstract
synchronized configuration is reachable in n steps from abs(S). The statement then follows
by taking S := Sin. The proof goes by induction on n, where the case n = 0 is trivial in both
directions.

Suppose now that S reaches a bad synchronized configuration in n steps. Let S′ be such
that S ⇒ S′ and such that S′ reaches a bad synchronized configuration in n− 1 steps. Let
S′′ be such that S′ can be maximally collapsed to S′′. By iterating Proposition 9, we have
that S′′ reaches a bad synchronized configuration in n− 1 steps (the fact that the length
of the path is unchanged can be seen from the proof of Proposition 9). It follows from the
induction hypothesis that some (`′,Γ′, ϕ′) ∈ abs(S′′) reaches a bad abstract synchronized
configuration in n− 1 steps. Let (`,Γ, ϕ) be an arbitrary abstraction in abs(S). We have
by definition (`,Γ, ϕ) (`′,Γ′, ϕ′), so that (`,Γ, ϕ) reaches a bad abstract synchronized
configuration in n steps. The converse direction is proved similarly. J

Finally, we are able to present the main theorem.

I Theorem 14. The containment problem L(A) ⊆ L(B), where A is a non-deterministic
register automaton and B is an unambiguous register automaton, is in 2-EXPSPACE. If the
number of registers of B is fixed, the problem is in EXPSPACE.

Proof. The algorithm checks whether a bad abstract synchronized configuration is reachable
from abs(Sin), using the classical non-deterministic logspace algorithm for reachability. Every
node of the graph can be stored using double-exponential space (see the second paragraph
at the beginning of Section 4.3), and the size of the graph is triply exponential in the size
of A and B by Proposition 11. Moreover, the relation is decidable in polynomial space
by Lemma 12. Therefore, we obtain that the algorithm uses at most a double-exponential
amount of space. In case the number of registers of B is fixed, Proposition 11 implies that the
size of the graph is doubly exponential in the size of A and B. We obtain that the algorithm
uses at most an exponential amount of space. J

As an immediate corollary of Theorem 14, we obtain that the universality problem is
in 2-EXPSPACE and in PSPACE for fixed number of registers. Similarly, the equivalence
problem for unambiguous register automata is in 2-EXPSPACE.

5 Open Problems

The most obvious problem is to figure out the exact computational complexity of the
containment problem L(A) ⊆ L(B), when B is an URA. Finding lower bounds for unam-
biguous automata is a hard problem. Techniques for proving lower complexity bounds of
the containment problem (respectively the universality problem) for the case where B is a
non-deterministic automaton rely heavily on non-determinism (cf. Theorem 5.2 in [4]); as
was already pointed out in [2], we are lacking techniques for finding lower computational
complexity bounds for the case where B is unambiguous, even for the class of finite automata.
Concerning the upper bound, computer experiments revealed that maximally collapsed
synchronized configurations seem to remain small. Based on these experiments, we believe
that the bound in Proposition 10 is not optimal and can be improved to O(2poly(n,m,|LB|)).
If this is correct, we would obtain an EXPSPACE upper-bound for the general containment
problem.

STACS 2019

53:14 Containment for Unambiguous Register Automata

We also would like to study to what extent our techniques can be used to solve the
containment problem for other computation models. In particular, we are interested in the
following:

One can extend the definition of register automata to work over an ordered domain,
where the register constraints are of the form < r and > r. Proposition 9 turns out to be
false in this setting, but it seems plausible that there exists a collapsibility notion that
would work for this model.
An automaton B is said to be k-ambiguous if it has at most k accepting runs for every
input data word, and polynomially ambiguous if the number of accepting runs for some
input data word w is bounded by p(|w|) for some polynomial p. Again, it is likely
that simple modifications of Proposition 9 would give an algorithm for the containment
problem for k-ambiguous register automata.
Last but not least, we would like to point out that our techniques cannot directly be
applied to the class of unambiguous register automata with guessing which we mentioned
in the introduction. Thus, the respective containment problem remains open for future
research.

References
1 Thomas Colcombet. Forms of Determinism for Automata (Invited Talk). In Christoph

Dürr and Thomas Wilke, editors, 29th International Symposium on Theoretical Aspects of
Computer Science, STACS 2012, February 29th - March 3rd, 2012, Paris, France, volume 14
of LIPIcs, pages 1–23. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2012. doi:
10.4230/LIPIcs.STACS.2012.1.

2 Thomas Colcombet. Unambiguity in Automata Theory. In Jeffrey Shallit and Alexander
Okhotin, editors, Descriptional Complexity of Formal Systems - 17th International Workshop,
DCFS 2015, Waterloo, ON, Canada, June 25-27, 2015. Proceedings, volume 9118 of Lecture
Notes in Computer Science, pages 3–18. Springer, 2015. doi:10.1007/978-3-319-19225-3_1.

3 Laure Daviaud, Marcin Jurdzinski, Ranko Lazic, Filip Mazowiecki, Guillermo A. Pérez, and
James Worrell. When is Containment Decidable for Probabilistic Automata? In Ioannis
Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Donald Sannella, editors, 45th
International Colloquium on Automata, Languages, and Programming, ICALP 2018, July 9-13,
2018, Prague, Czech Republic, volume 107 of LIPIcs, pages 121:1–121:14. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2018. doi:10.4230/LIPIcs.ICALP.2018.121.

4 Stéphane Demri and Ranko Lazic. LTL with the freeze quantifier and register automata. ACM
Trans. Comput. Log., 10(3), 2009. doi:10.1145/1507244.1507246.

5 Diego Figueira. Alternating register automata on finite words and trees. Logical Methods in
Computer Science, 8(1), 2012. doi:10.2168/LMCS-8(1:22)2012.

6 Diego Figueira, Santiago Figueira, Sylvain Schmitz, and Philippe Schnoebelen. Ackermannian
and Primitive-Recursive Bounds with Dickson’s Lemma. In Proceedings of the 26th Annual
IEEE Symposium on Logic in Computer Science, LICS 2011, June 21-24, 2011, Toronto,
Ontario, Canada, pages 269–278. IEEE Computer Society, 2011. doi:10.1109/LICS.2011.39.

7 Diego Figueira, Piotr Hofman, and Slawomir Lasota. Relating timed and register automata. In
Sibylle B. Fröschle and Frank D. Valencia, editors, Proceedings 17th International Workshop on
Expressiveness in Concurrency, EXPRESS’10, Paris, France, August 30th, 2010., volume 41
of EPTCS, pages 61–75, 2010. doi:10.4204/EPTCS.41.5.

8 Nathanaël Fijalkow, Cristian Riveros, and James Worrell. Probabilistic Automata of Bounded
Ambiguity. In Roland Meyer and Uwe Nestmann, editors, 28th International Conference on
Concurrency Theory, CONCUR 2017, September 5-8, 2017, Berlin, Germany, volume 85 of
LIPIcs, pages 19:1–19:14. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017. doi:
10.4230/LIPIcs.CONCUR.2017.19.

http://dx.doi.org/10.4230/LIPIcs.STACS.2012.1
http://dx.doi.org/10.4230/LIPIcs.STACS.2012.1
http://dx.doi.org/10.1007/978-3-319-19225-3_1
http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.121
http://dx.doi.org/10.1145/1507244.1507246
http://dx.doi.org/10.2168/LMCS-8(1:22)2012
http://dx.doi.org/10.1109/LICS.2011.39
http://dx.doi.org/10.4204/EPTCS.41.5
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2017.19
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2017.19

A. Mottet and K. Quaas 53:15

9 Wilfrid Hodges. A shorter model theory. Cambridge University Press, Cambridge, 1997.
10 Michael Kaminski and Nissim Francez. Finite-Memory Automata. Theor. Comput. Sci.,

134(2):329–363, 1994. doi:10.1016/0304-3975(94)90242-9.
11 Michael Kaminski and Daniel Zeitlin. Finite-memory automata with non-deterministic reas-

signment. International Journal of Foundations of Computer Science, Volume 21, Issue 05,
2010.

12 Hing Leung. Descriptional complexity of nfa of different ambiguity. Int. J. Found. Comput.
Sci., 16(5):975–984, 2005. doi:10.1142/S0129054105003418.

13 Michał Skrzypczak. Unambiguous Languages Exhaust the Index Hierarchy. In Ioannis
Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Donald Sannella, editors, 45th
International Colloquium on Automata, Languages, and Programming, ICALP 2018, July 9-13,
2018, Prague, Czech Republic, volume 107 of LIPIcs, pages 140:1–140:14. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2018. doi:10.4230/LIPIcs.ICALP.2018.140.

14 Frank Neven, Thomas Schwentick, and Victor Vianu. Finite state machines for strings over
infinite alphabets. ACM Trans. Comput. Log., 5(3):403–435, 2004. doi:10.1145/1013560.
1013562.

15 Joël Ouaknine and James Worrell. On the Language Inclusion Problem for Timed Automata:
Closing a Decidability Gap. In 19th IEEE Symposium on Logic in Computer Science (LICS
2004), 14-17 July 2004, Turku, Finland, Proceedings, pages 54–63. IEEE Computer Society,
2004. doi:10.1109/LICS.2004.1319600.

16 Mikhail Raskin. A Superpolynomial Lower Bound for the Size of Non-Deterministic Com-
plement of an Unambiguous Automaton. In Ioannis Chatzigiannakis, Christos Kaklamanis,
Dániel Marx, and Donald Sannella, editors, 45th International Colloquium on Automata,
Languages, and Programming, ICALP 2018, July 9-13, 2018, Prague, Czech Republic, volume
107 of LIPIcs, pages 138:1–138:11. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018.
doi:10.4230/LIPIcs.ICALP.2018.138.

17 Hiroshi Sakamoto and Daisuke Ikeda. Intractability of decision problems for finite-memory
automata. Theor. Comput. Sci., 231(2):297–308, 2000. doi:10.1016/S0304-3975(99)00105-X.

18 Luc Segoufin. Automata and Logics for Words and Trees over an Infinite Alphabet. In Zoltán
Ésik, editor, Computer Science Logic, 20th International Workshop, CSL 2006, 15th Annual
Conference of the EACSL, Szeged, Hungary, September 25-29, 2006, Proceedings, volume 4207
of Lecture Notes in Computer Science, pages 41–57. Springer, 2006. doi:10.1007/11874683_3.

STACS 2019

http://dx.doi.org/10.1016/0304-3975(94)90242-9
http://dx.doi.org/10.1142/S0129054105003418
http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.140
http://dx.doi.org/10.1145/1013560.1013562
http://dx.doi.org/10.1145/1013560.1013562
http://dx.doi.org/10.1109/LICS.2004.1319600
http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.138
http://dx.doi.org/10.1016/S0304-3975(99)00105-X
http://dx.doi.org/10.1007/11874683_3

Stabilization Time in Weighted Minority Processes
Pál András Papp
ETH Zürich, Switzerland
apapp@ethz.ch

Roger Wattenhofer
ETH Zürich, Switzerland
wattenhofer@ethz.ch

Abstract
A minority process in a weighted graph is a dynamically changing coloring. Each node repeatedly
changes its color in order to minimize the sum of weighted conflicts with its neighbors. We study
the number of steps until such a process stabilizes. Our main contribution is an exponential lower
bound on stabilization time. We first present a construction showing this bound in the adversarial
sequential model, and then we show how to extend the construction to establish the same bound
in the benevolent sequential model, as well as in any reasonable concurrent model. Furthermore,
we show that the stabilization time of our construction remains exponential even for very strict
switching conditions, namely, if a node only changes color when almost all (i.e., any specific fraction)
of its neighbors have the same color. Our lower bound works in a wide range of settings, both for
node-weighted and edge-weighted graphs, or if we restrict minority processes to the class of sparse
graphs.

2012 ACM Subject Classification Mathematics of computing → Graph coloring; Mathematics of
computing → Graph algorithms; Theory of computation → Distributed computing models; Theory
of computation → Self-organization

Keywords and phrases Minority process, Benevolent model

Digital Object Identifier 10.4230/LIPIcs.STACS.2019.54

Related Version The full version of the paper is available online as arXiv preprint https://arxiv.
org/abs/1902.01228.

1 Introduction

Given a simple graph and an initial coloring of its nodes, a minority process is a sequence of
states (colorings) such that each state is obtained from the previous state by some of the
nodes deciding to change their color. Each node, when it has the opportunity to act, switches
to the least frequent color in its neighborhood. This may then prompt other neighbors of the
node to switch their color, too, leading to a sequence of steps and a dynamically changing
coloring. A state is stable when no node in the graph wants to change its color anymore,
and the number of steps until a stable state is reached is known as the stabilization time of
the process.

Minority processes have numerous applications in different areas where agents in a system
are motivated to anti-coordinate with their neighbors. Assume, for instance, a set of wireless
devices, each using a given frequency from a predefined set of frequencies for communication.
In order to minimize interference with their neighbors, each device may repeatedly decide
to switch to the frequency which is the least used in its neighborhood. In another setting,
assume that some companies need to decide which product or commodity to produce, and
they repeatedly adjust their strategy to avoid competition with specific other companies
(that are e.g. geographically close, or share the same costumer base) [16]. Minority processes
also appear in a wide range of other areas, including cellular biology [10], physics [6, 7] and
social sciences [9].

© Pál András Papp and Roger Wattenhofer;
licensed under Creative Commons License CC-BY

36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019).
Editors: Rolf Niedermeier and Christophe Paul; Article No. 54; pp. 54:1–54:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:apapp@ethz.ch
mailto:wattenhofer@ethz.ch
https://doi.org/10.4230/LIPIcs.STACS.2019.54
https://arxiv.org/abs/1902.01228
https://arxiv.org/abs/1902.01228
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

54:2 Stabilization Time in Weighted Minority Processes

It is often quite natural to model such settings not only as graphs, but as weighted graphs,
since in many applications, either the nodes or edges of the graphs naturally exhibit some
kind of weights that define their importance in the minority setting. For example, when
selecting products, some competitors may be larger or more resourceful than others, and
thus it is more crucial for their neighbors to differentiate from these specific nodes. In the
frequency allocation setting, some nodes may handle much more traffic than others, and
thus it is more important to avoid interference with such neighbors. Frequency allocation
also provides a natural example for edge weights, since the severity of interference can also
depend on the distance between neighboring devices, and thus it might be more imperative
for nodes to avoid interference with closer neighbors.

The paper considers minority processes in these weighted cases, when the cost function of
a node to minimize is not simply the number of its conflicts, but the sum of these conflicts
multiplied by the weight of the neighboring node or by the weight of the connecting edge.
In such a weighted setting, the only straightforward upper bound on the number of steps
is exponential. In this paper, we prove an asymptotically matching lower bound of 2Θ(n),
showing that there are weighted graphs where stabilization can indeed last for an exponential
number of steps.

For a realistic analysis of stabilization time in applications, some further aspects of the
processes are also worth studying. To avoid unreasonably many switches, nodes may decide
not to switch color if this benefit is too small. Thus it is often more reasonable to assume a
proportional switching rule in the weighted setting, i.e. that a node only decides to change its
color if this reduces its cost at least by a given fraction of its weighted degree (or, equivalently,
if a large fraction of its neighborhood has the same color). Note that this is a significantly
stricter switching rule, and thus proving a lower bound on the number of steps under this
rule is a stronger result. Furthermore, in most application areas, the underlying graphs
are sparse, i.e. contain only O(n) edges, so it is also interesting to study if the behavior is
different when restricting ourselves to sparse graph instances.

There are multiple different models to study minority processes, sequential and concurrent
alike. Even in the sequential setting, when only one node switches in each step, we can
observe different behaviors depending on the order in which the nodes are selected. For
example, this order may be chosen by a benevolent player who aims to minimize stabilization
time, or an adversarial player aiming to maximize it. While stabilization time in these models
have been studied thoroughly in the related area of majority processes, stabilization time in
minority processes has remained open.

In the paper, we present weighted graph constructions that prove an exponential lower
bound on stabilization time. Our lower bound holds both for node-weighted and edge-
weighted graphs, for any number of colors, and also if we restrict the process to the class of
sparse graphs.

The main contributions of the paper are as follows. We first present a construction that
shows an exponential lower bound in the adversarial model. Then with further improvements
to the construction, we prove that the same bound also holds in the benevolent model. This
shows that there are graphs where not only one, but every possible run of the process takes
exponential time. Moreover, we also show that the lower bound holds not only for the
sequential process, but also in any reasonable concurrent setting. Our lower bounds are
shown for a very strict switching rule, when a node is only allowed to switch if a given fraction
of its neighbors have the same color. Most surprisingly, our results show that even with this
rule, the exponential lower bound holds for any non-trivial fraction of the neighborhood.

P.A. Papp and R. Wattenhofer 54:3

2 Related Work

The question of stabilization time has only been studied in detail for majority processes. In
[15], the authors devise a weighted graph construction, which exhibits a majority process
with 2Θ(n) stabilization time both in the synchronous and the adversarial sequential models
(benevolent models are not discussed in this paper). For the unweighted case, the stabilization
time of majority processes has been characterized by [11] in the synchronous, sequential
adversarial and sequential benevolent models. The study of [15] also shows further results on
some slightly different variants of majority processes in unweigthed graphs. On the other
hand, apart from a straightforward O(n2) upper bound in the unweighted case [14, 15], to
our knowledge, the stabilization time of minority processes in these models has remained
open so far.

However, for unweighted graphs, there are numerous theoretical studies that focus on
different properties of stable states, both in case of minority [16, 3, 21, 1, 8] and majority
[3, 12, 13, 20, 4, 2, 5] processes.

Minority processes have also been thoroughly studied in special classes of graphs, such
as grids, trees or cycles, by the cellular automata community [17, 18, 19]. However, these
results work with unweighted graphs, and a different variant of the minority process which
considers the closed neighborhood of nodes. Besides the theoretical results, some of these
studies also include an experimental analysis of the process on grids.

Papers working with minority processes almost always consider the basic switching rule,
i.e. when nodes switch color for any small amount of improvement (although they sometimes
assume different rules for tie-breaking). Some slightly different switching rules, based on
distance-2 neighborhood of nodes, are examined in [14]; however, the aim of these modified
rules is not to achieve earlier stabilization, but to reduce the number of conflicts in the final
(stable) state. To our knowledge, however, minority processes have not yet been studied
under the proportional switching rule.

3 Models and Notation

Preliminaries and notation

In the paper, we consider simple, undirected graphs, denoted by G = (V,E), with V being
the set of nodes and E the set of edges. The number of nodes is denoted by n, the edge
between vertices u and v is denoted by e(u, v). In case of node-weighted graphs, we assume
a positive weight function w : V → IR+ on the nodes of the graph, while for edge-weighted
graphs, we assume w : E → IR+ on the edges.

For a specific node v ∈ V , we denote by N(v) the neighborhood of v. In case of
node-weighted graphs, for a set S ⊆ V , we denote by WS the sum of weights

∑
u∈S w(u).

Specifically, we use WN(v) to denote the sum of weights in v’s neighborhood.
Given a set of colors Γ, a coloring is a function C : V → Γ. If for some edge e(u, v) we

have C(u) = C(v), then we have a conflict, and the edge in question is a conflicting edge.
Generally, the goal of graph coloring is to minimize the number of conflicts in the graph.

We also use the notation NS(v) := {u | u ∈ N(v) and C(u) = C(v)} and NO(v) :=
N(v) \NS(v) for a node v under a coloring C (the same-color and other-color neighborhood
of v, respectively). Note that since we will use these notions in regard to a state of the
process (a current coloring of G), we assume that the coloring function C is clear from the
context, and thus it is not included in the above notation for simplicity.

STACS 2019

54:4 Stabilization Time in Weighted Minority Processes

In both weighted settings, we have a natural cost function f for each node v of the graph.
In node-weighted graphs, we define f(v) =

∑
u∈NS(v) w(u), while in the edge-weighted setting,

we define the cost function as f(v) =
∑
u∈NS(v) w(e(u, v)). The aim of nodes in the minority

process is to minimize this cost function. For a color c ∈ Γ, let fc(v) denote the cost that
node v would have if it was recolored to color c, with the colors of all nodes in N(v) remaining
unchanged. Let us denote the preferred color of v by c∗ = argminc fc(v); in case of multiple
minimal values, we select an arbitrary one of them as c∗. When v switches, it changes its
color to c∗. If f(v)− fc∗(v) is above a given threshold, or more generally, if the relation of
f(v) and fc∗(v) satisfies a specific condition known as the switching rule, then v is switchable.

A minority process on G is a sequence of colorings S0, S1, ..., known as states, where,
except for S0, each state Si can be obtained from Si−1 by switching a set of nodes that are
switchable in Si−1. The state S0 is referred to as the initial state. Given a graph and an
initial state, the set of nodes to be switched in each step (and thus the entire sequence of
states) is determined by the model, as discussed below.

We say that a state Si is stable if there are no switchable nodes in Si. A process stabilizes
if it reaches a stable state; the number of steps until the process stabilizes is the stabilization
time of the process.

While presenting our construction, we assume node-weighted graphs and |Γ| = 2 available
colors. Section 4 discusses how to generalize our lower bound to edge-weighted graphs or
more than 2 colors.

Models

We consider minority processes in the following models:
Sequential Adversarial (SA): In each step, only one node switches. This node is
chosen by an adversarial player, who aims to maximize the stabilization time.
Sequential Benevolent (SB): In each step, only one node switches. This node is
chosen by a benevolent player, who aims to minimize the stabilization time.
Concurrent Benevolent (CB): In each step, the benevolent player can switch any set
of switchable nodes concurrently, in order to minimize the stabilization time.

There are many further popular models of minority processes, for example, with synchron-
ous or randomized behavior. However, these models always exhibit a larger stabilization time
than model CB, since in model CB, the benevolent player is free to choose any sequence of
(possibly concurrent) steps to minimize stabilization time, and thus he can also simulate the
behavior of any of these additional models. Therefore, a lower bound for model CB also
implies the same bound in these various other models.

Note that in concurrent models, it is possible that neighboring nodes repeatedly force each
other to switch at the same step, cycling through the same colors infinitely. Because of this,
related studies in the synchronous model often use an alternative definition of stabilization,
also considering a periodically repeating process to be stable. However, the design of our
benevolent construction ensures that connected nodes can never be switchable at the same
time, and thus in our graphs, even in concurrent models, the process always terminates in a
fixed state. Nonetheless, our lower bound also holds with this alternative, more permissive
definition of stabilization.

Our lower bound construction for model SA is shown in Section 5. Then Section 6
describes how to extend this construction to the case of model SB. Once we present our
construction for model SB, it will follow that this same construction also proves the lower
bound in model CB. As the construction heavily restricts the set of selectable sequences,

P.A. Papp and R. Wattenhofer 54:5

always allowing only a few switchable nodes in the graph, even in model CB, the benevolent
player has no other option than to execute exactly the same steps as in the sequential case,
possibly some of them at the same time. On the other hand, the construction will have
specific nodes that alone switch 2Θ(n) times, and thus even with some of the steps executed
simultaneously, stabilization takes 2Θ(n) steps.

Switching rules

Most of the related work studies the following switching rule:

Rule I (Basic Switching): v is switchable if WNS(v) −WNO(v) > 0.

Here we introduce a stricter switching rule, based on a real parameter λ (where 0 < λ < 1):

Rule II (Proportional Switching): v is switchable if WNS(v) −WNO(v) ≥ λ ·WN(v).

This alternative switching condition is reasonable in many settings where switching comes
with a certain cost for the node, and therefore, it is only beneficial when this allows the node to
reduce its cost considerably, i.e. by a given factor ofWN(v). Since we haveWNS(v)+WNO(v) =
WN(v) in the case of two colors, this condition is equivalent to WNS(v) ≥ 1+λ

2 ·WN(v), i.e.
that a node is only allowed to switch if 1+λ

2 fraction of its (weighted) neighborhood has the
same color. Therefore, if λ is close to 1, then Rule II intuitively means that in order to
switch v twice, we also have to switch almost every neighbor of v in the meantime to make v
switchable again for the second time.

While the above definition of Rule II is more intuitive, for the analysis, it is often convenient
to express Rule II in another alternative form: v is switchable if WNS(v) ≥ Λ ·WNO(v), for
some other constant Λ. One can show that this is equivalent to the definition with a choice
of Λ := 1+λ

1−λ . We will mostly use this alternative Λ parameter throughout our analysis.
Our technique proves the lower bound for Rule II with any λ < 1. However, for ease of

presentation, we are first going to describe our construction for a specific parameter value
of λ ≈ 2

3 . Note that λ = 2
3 corresponds to 5 in the Λ-notation; let us introduce the new

notation ΛB := 5 for this base value. We need this extra notation because the construction
we present is actually not for Λ = 5, but in fact only for Λ = 5− ε with any ε > 0, hence
proving the lower bound for Rule II with any Λ < 5 (or, using the λ-notation, for any λ < 2

3).
Note that we have specifically chosen λ > 1

2 for demonstration because some challenges in
the construction are easier if λ ≤ 1

2 .
Given the proof of the lower bound for Λ = 5− ε with any ε > 0, we then discuss how

to generalize the same construction technique for any other odd integer ΛB as a base value.
This proves the lower bound for Λ = 7− ε, Λ = 9− ε, and so on, with any ε > 0.

Note that limΛB→∞λ = 1, that is, as ΛB goes to infinity, the λ value corresponding to
ΛB − ε gets arbitrarily close to 1 (this follows from the fact that λ can be expressed as Λ−1

Λ+1 ,
by the definition of Λ). Therefore, we can obtain any λ < 1 value with an appropriate odd
integer ΛB and appropriate ε > 0, and since our construction can be generalized for ΛB − ε
with any such ΛB and ε, this already establishes the lower bound for every λ ∈ (0, 1).

While it is not required for our lower bound proof, the full version of the paper also
presents a general method to prove the monotonicity of the lower bound: that is, for any λ0
and λ < λ0 values, given a construction for λ0, there is a straightforward way to convert it
into a construction for λ. Note that this monotonicity is trivial in the adversarial case: since
any node that is switchable for Rule II with λ0 is also switchable for the rule with λ, the
construction for λ0 is, without any change, also a valid construction for λ, exhibiting the
same stabilization time. The case is, however, not this simple for benevolent models, where a

STACS 2019

54:6 Stabilization Time in Weighted Minority Processes

lower λ value may allow a wider set of moves for the benevolent player, which might reduce
the stabilization time significantly. Monotonicity in this model can be shown using so-called
fixed nodes; see the full version for a discussion.

Helpful tools and definitions

We say that a node v is dominated by a subset S ⊆ N(v) if WS ≥ Λ
Λ+1 ·WN(v), that is, if S

having the same color as v is enough to make v switchable. If v is dominated by a single-node
subset {u}, then we say that v is a follower node, and u is the dominant node of v; this
implies that the preferred color of v is always simply the opposite of u’s color.

One tool we will frequently use in our constructions is the addition of so-called fixed node
neighbors. A fixed node is a node that is added to the graph construction in a way that
ensures it can never become switchable throughout the process, and thus always keeps its
initial color. This can easily be achieved by adding a black and a white stabilizer node to
the graph, and connecting each fixed node to the stabilizer of the opposite color. If we then
assign significantly larger weights to the stabilizer nodes than to all other nodes in the graph
(i.e., sufficiently large weights such that each fixed node is a followers of its (opposite-colored)
stabilizer node neighbor), then the fixed nodes can indeed never switch throughout the
process.

In our construction, each fixed node we add is only connected to one specific node v,
and its only purpose is to influence the behavior of v in the process (i.e., make it easier or
harder to switch v to a specific color). We may add a separate black and a white fixed node
neighbor (with any desired weight) to every node v of the construction. However, note that
it makes no sense to add more than two fixed neighbors to a node v: if we were to add two
same-colored fixed neighbors to v, we could simply combine the two into one fixed neighbor
with the sum of the two weights. Therefore, the use of fixed node neighbors adds at most
2n+ 2 extra nodes to the graph, only changing the magnitude of n by a constant factor, and
thus it does not affect the exponential nature of stabilization time.

4 Basic Observations

Node or edge weights

We consider minority processes on both node-weighted and edge-weighted graphs. Note
that edge weights have at least as much (in fact, more) expressive power than node weights:
assume that we have a graph G with some node weights w(v), and consider the edge-
weighted graph that consist of the same nodes and edges, and edge weights are defined as
w(e(u, v)) = w(u) · w(v). A minority process in this derived graph behaves the exact same
way as in the original, node-weighted graph: for any node v, each neighbor u ∈ N(v) stands
for a w(u)

WN(v)
portion of WN(v) in the node-weighted case, and u contributes exactly the same

w(u)·w(v)
WN(v)·w(v) portion in the derived edge-weighted graph.

This implies that for any node-weighted graph, we can create a corresponding edge-
weighted graph with the same stabilization time, regardless of the model. Therefore, when
showing the lower bounds of the paper, we only consider node-weighted graph construc-
tions. Our observations imply that the same lower bound will then also hold for edge-
weighted graphs.

P.A. Papp and R. Wattenhofer 54:7

Number of colors

The constructions in the paper assume there are only two available colors: black and white.
However, it is simple to generalize the lower bound to any number of colors. The main idea
is to take the lower bound construction for 2 colors, and for each node of the graph and
for every additional color, add an extra neighbor with high weight having this color. The
process in the resulting graph will behave as if the graph only consisted of the original nodes
and the original two colors. A detailed discussion of the technique is available in the full
version of the paper. The method allows us to generalize the lower bound not only to any
constant number of, but also up to Θ(n) colors.

Matching upper bound

While the proof of exponential lower bound is quite involved, it is straightforward to show an
exponential upper bound on stabilization time in sequential models. To discuss this upper
bound, we briefly return to the case of edge-weighted graphs, as they can exhibit a wider set
of behaviors. Since for each node-weighted graph there exists an edge-weighted graph with
the same stabilization time, the upper bound on edge-weighted graphs immediately implies
the same upper bound on node-weighted graphs.

In an edge-weighted graph, for each state (i.e., coloring of the graph), we can define a
potential value as the sum of w(e) for all edges e in the graph that are currently conflicting.
In sequential models when only one node switches in one step, this potential strictly decreases
after every step, since the incentive of the nodes is exactly to reduce the potential in their
neighborhood. This allows for a simple upper bound on stabilization time in sequential
models: since each state has a fixed potential value and potential is monotonously decreasing
throughout the process, each state can be visited at most once. For the case of 2 colors, there
are 2n distinct possible states, which implies that stabilization time is upper bounded by 2n.

5 Construction for the Adversarial Case

We first present a graph construction to show the exponential lower bound in model SA.

I Theorem 1. For Switching Rule II with any λ < 1, there exists a class of (sparse) weighted
graphs with 2Θ(n) stabilization time in model SA.

While the theorem holds for any λ < 1, recall that we present the construction for a
concrete value of λ ≈ 2

3 (that is, Λ = 5− ε for some small ε > 0).
Throughout the presentation of our construction, nodes that are shown vertically higher

in figures will always have larger weight than nodes that are placed below. Based on this, we
also refer to neighbors of nodes as upper or lower neighbors. We will define the weight of
each node in the graph as a function of the weights of the nodes below. As such, one can
determine a concrete set of node weights for the construction by following these rules in a
bottom-to-top fashion, with the lowermost weights chosen arbitrarily.

The basic idea behind our construction is recursive, and as such, the resulting graph
consists of multiple levels. Given a construction that exhibits a sequence which switches
some specific nodes of the graph s times at least, we show how to extend this graph with
a constant number of new nodes (a next level) to obtain another construction where, with
the correct choice of sequence, a specific new set of nodes switch 3

2s times. With a repeated
application of this step, after adding ` levels, we obtain a set of nodes that switch

(3
2
)` · s

times. Since each new level consists of only O(1) nodes, our graph can contain linearly many
levels, yielding a final construction with 2Θ(n) switches.

STACS 2019

54:8 Stabilization Time in Weighted Minority Processes

Figure 1 A 6-tuple of base nodes (be-
low) and control nodes (above). The sym-
bol × denotes a complete bipartite connec-
tion.

Figure 2 Final structure of a level, with
two distinct 6-tuples of base and control
nodes.

control nodes
Color of

afterwards
Color of vb

Figure 3 A control sequence of 6 steps, each
time switching a 4-node subset of the control
nodes (marked by a dotted line). The resulting
switch of the base nodes is shown on the right.

The key nodes of our graph are the base nodes, which appear in 6-tuples with the same
weight and same initial color. Each 6-tuple of base nodes has 6 common upper neighbors,
known as the control nodes for these base nodes, forming a complete bipartite graph. The
two 6-tuples together comprise a level of our construction (see Figure 1).

The 6 control nodes in a level also all have the same weight; let us denote this weight
by w(vc). The main idea of the construction is to choose w(vc) sufficiently large such that
5 of the 6 control nodes already dominate each of the base nodes below. Assuming that
one of the base node vb has further (lower) neighbors of weight wL altogether, this requires
5 · w(vc) ≥ Λ · (w(vc) + wL) to hold, which can be ensured by a choice of w(vc) ≥ 5−ε

ε · wL
for our current Λ = 5− ε. Thus we can select sufficiently large weights such that a base node
vb is indeed switchable whenever 5 out of 6 control nodes have the same color as vb.

Note that from the initial state shown in Figure 1, we only need to switch 4 of the 6
control nodes (from white to black) in order to force a base node vb below to switch to white.
In fact, we can specify a sequence of 4-node subsets of the control nodes such that every
time we switch the next subset in the sequence, we once again have 5 control nodes with the
same color that vb currently has, and therefore vb can be switched again. A possible such
sequence is shown in Figure 3; we refer to this as the control sequence. The sequence has a
couple of convenient properties: each control node is switched exactly 4 times throughout
the sequence, and each control node (and also vb) returns to its initial color at the end of the
sequence.

This is exactly the technique that allows us to increase the number of switches by a factor
of 3

2 within each level of the construction. If the upper levels provide a way to switch each of
the 6 control nodes in the current level s times, then this allows us to execute the control
sequence s

4 times, and each such execution switches the base nodes in the current level 6
times, adding up to 6

4s switches for each of the 6 base nodes.
It only remains to connect the different levels of our recursive construction. It comes as a

natural first idea that the 6-tuple of base nodes in a level could also directly take the role
of the control nodes in the level below. The first difficulty to overcome with this approach

P.A. Papp and R. Wattenhofer 54:9

Figure 4 When a conflict is
created at the top of the chain,
then switching the nodes one
by one propagates this conflict
down through the chain.

(a) (b)

Figure 5 When charging (a), we propagate each new con-
flict to the next position (Figure 4 shows the first step of
(a) in detail). When unloading (b), we always propagate the
lowermost stored conflict to the bottom.

is the color of the nodes in question: while all 6 base nodes of a level have the same color
(say, initially black), the control nodes initially have mixed color (5 white and 1 black) in
the control sequence. We can overcome this by duplicating the structure in Figure 1 in the
opposite initial color, and redefining a level as these two bipartite graphs together. Since a
level now consists of 12 base nodes, 6 white and 6 black initially, we can reorganize these
nodes into two appropriate groups (5 white + 1 black, 5 black + 1 white) to act as the
control nodes of the next level (see Figure 2).

There is a further problem with using the base nodes directly as the control nodes of the
level below: our level design only provides a way to switch a 6-tuple of base nodes together
(that is, consecutively in any order). However, in order to execute the control sequence, we
need to be able to switch specific subsets of the control nodes. For example, in the sequence
of Figure 3, the second node from the left has already switched twice before the rightmost
node ever switches. Thus, the fact that we can switch both 6-tuples of base nodes s times
does not yet imply that we can switch specific 4-node subsets of them in the given order, as
needed for the control sequence.

To provide a way to switch the control nodes in any order of our choice, we connect the
levels of the construction with tools known as storage chains. A storage chain is a path of 5
nodes, initially colored in an alternating fashion. The weights of the nodes in the chain are
chosen such that each node is a follower node of its upper neighbor (this can be ensured by
defining node weights in a bottom-to-top fashion, always choosing sufficiently large weight
for the next node). The uppermost and lowermost nodes may have other upper and lower
neighbors outside of the chain, respectively.

Assume now that the topmost node in the chain is switched by some external condition
(i.e., its upper neighbors outside of the chain). This introduces a conflict into the chain
between the uppermost two nodes, as shown in Figure 4. However, recall that by our
definition of node weights, the second node (from the top) is a follower of the uppermost
node, and therefore this conflict makes the second node switchable. Switching the second
node (to black) resolves the original conflict, but creates a new conflict between the second
and third nodes instead (now making the third node switchable). Generally, whenever there
is a conflicting pair of subsequent nodes above an alternating-colored (part of the) chain, we
are able to switch the lower node, and thus move the conflict down to the next node pair in
the chain. We can use this method to move a conflict down to any point in the chain, as
shown in the figure; we refer to this process as propagating down the conflict in the chain.

STACS 2019

54:10 Stabilization Time in Weighted Minority Processes

upper level

lower level

Figure 6 Two levels of the construction, connected by storage chains (edges within a level are
shown in dashed). For simpler illustration, the two sides of the lower level are horizontally swapped.

With this technique, we can accumulate and store conflicts in the chain “for later use”. If
the uppermost node is forced to switch 4 times, then we can propagate down each of the
emerging conflicts to a different position (i.e., pair of nodes) in the chain, ending up with
4 conflicts in a completely monochromatic chain. This process (see Figure 5a) is referred
to as charging the chain. In another sequence of steps, we can then unload the chain and
propagate these conflicts one by one to the bottom of the chain, essentially using the stored
conflicts to switch the lowermost node 4 times in a timing of our own choice (see Figure 5b).
When the sequence is finished, each node in the chain once again has its original color.

We use such storage chains to connect subsequent levels of our construction, with the base
nodes and control nodes being the uppermost and lowermost nodes in the chains, respectively,
as shown in Figure 6. This way, every time after the 6-tuple of base nodes in the upper level
switch (together), we can execute the next step in charging each of the storage chains. After
each of the base nodes switch 4 times, each of the storage chains are charged. Then, by
unloading each chain in 4 steps in the order of our choice, we can switch each of the control
nodes below 4 times, in any preferred order; this enables us to execute the control sequence
on the lower level. Thus, if the upper-level base nodes are switched 4 times, we can indeed
switch the lower-level base nodes 6 times.

For a high-level overview of the process, the execution of the adversarial sequence on a
given level L could be summarized by the following recursive pseudocode:

Function ProcessLevel(L)
For each of the 6 steps of the control sequence:

On both sides, switch the next subset of 4 control nodes
Switch all 6 + 6 base nodes
Propagate down the conflict in each chain as far as possible
If the chains below are fully charged:

Call ProcessLevel(L+ 1) (execution continues on level below)
Return (execution continues on level above)

Even with the storage chain connections, the addition of each new level increases the
number of nodes only by a constant value. This implies that a graph on n nodes can contain
Θ(n) levels, and thus each node in the lowermost level indeed switches 2Θ(n) times.

P.A. Papp and R. Wattenhofer 54:11

There is one more detail to discuss: for convenience, we assumed that the number of
switches s in an upper level is always divisible by 4. However, s switches in each control
node in fact allows for only b s4c complete executions of the control sequence, and hence
b s4c · 6 switches for the base nodes. Nonetheless, this still implies exponential increase for s
large enough (for example, b s4c · 6 ≥

6
5s holds if s ≥ 20). Thus to overcome this problem,

we ensure that the control nodes in the uppermost level already switch 20 times; this is
achieved by adding an initially charged storage chain of 21 nodes above each uppermost
control node. Unloading the chains allows us to switch these top-level control nodes 20 times
in the preferred order, and thus the exponential increase of switches is guaranteed.

This proves our lower bound in model SA for the case of Rule II with Λ = 5− ε for any
ε > 0. However, the construction is straightforward to generalize to any other odd integer
ΛB: for most of the analysis, one only needs to replace the value 4 by (ΛB − 1) and the
value 6 by (ΛB + 1). This provides a construction with (ΛB + 1)-tuples of control and base
nodes, and a ΛB+1

ΛB−1 factor of increase in switches for every new level. The control sequence
can also be generalized for other ΛB values; details of the generalization are discussed in the
full version of the paper.

6 Benevolent Case

It is significantly more difficult to show an exponential lower bound for benevolent models,
since such a construction needs to guarantee that every possible sequence lasts for an
exponential number of steps. We overcome this problem by heavily restricting the set of
selectable sequences in the graph. Specifically, we start from the construction of Section
5, and we show how to add a set of extra nodes which ensure that the previously defined
sequence is the only possible sequence the benevolent player can choose. In this section, we
outline the main ideas of this benevolent construction; a detailed discussion of the technique
is provided in the full version of the paper.

I Theorem 2. For Switching Rule II with any λ < 1, there exists a class of (sparse) weighted
graphs that have 2Θ(n) stabilization time in the benevolent models (models SB and CB).

We basically use two tools (gadgets) to ensure that the player, when selecting the sequence,
has to follow the procedure described in the pseudocode above. On the one hand, we show
how to build logical and gates and or gates, in order to check that a given step of the
procedure is reached, and use these gates to allow the player to proceed to the next step
of the procedure. On the other hand, we devise a state chain in order to keep track of the
current phase of the procedure, which can then be used as a condition in the logical gates
that control the execution of the procedure.

With the appropriate combination of these two gadgets, we can ensure that the benevolent
player has no other option than to switch the control nodes, base nodes and storage chain
nodes in the order described by the recursive procedure. We add a separate such combination
of these gadgets to each level of the construction of Section 5. However, since in our recursive
procedure, each level of the graph executes the same sequence of steps multiple times (the
lower levels exponentially many times), the design of these gadgets also needs to ensure
that the gadget can execute its task multiple times. This is achieved through introducing a
method to repeatedly “reset” the gadgets to their initial state.

For the purpose of resetting these gadgets, we introduce another tool, the third main
ingredient of our benevolent construction, known as a pacer system. The main idea of the
resetting technique is to connect each gadget (logical gate or state chain) to so-called pacer

STACS 2019

54:12 Stabilization Time in Weighted Minority Processes

nodes higher in the graph, and to ensure that each such pacer node switches at least twice
between two consecutive times of using the gadget. The gadgets are designed in a way which
guarantees that this pacer node switching twice results in the gadget being reset to its default
state (i.e., each node to its initial color).

Such a pacer node essentially “recharges” the gadget with conflicts: since the weighted
sum of conflicts in the graph monotonically decreases, the gadget can only return to the same
(initial) state repeatedly if it “acquires” new conflicts from some other part of the graph.
This is achieved through the connection to the pacer node, which is in a higher level of the
graph (with larger weights), and thus has significantly more conflicts to “push down” into
the gadget as a byproduct of its switching.

The simplest way to add pacer nodes to our construction is to place a pair of them
between a set of control and base nodes, as shown in Figure 7. In this modified level version,
the steps of the control sequence do not switch the base nodes directly. Instead, this happens
indirectly: after 5 of the 6 control nodes are black, first the upper pacer node, and then the
lower pacer node switches, followed by the base nodes in the end. Thus, the addition of pacer
nodes leaves the general behavior of the level unchanged: the base nodes will still switch
eventually after each step of the control sequence. However, in this new level construction,
the newly added pacer nodes will also both switch in each of these steps.

The actual pacer systems used in our construction are more sophisticated constructions
based on this idea. They consist of multiple pacer nodes in order to be able to recharge
gadgets of both colors, and they are also responsible for checking that the recharging process
has indeed been executed on the connected gadgets.

Given the technique to reset gadgets, it only remains to briefly present the behavior of
the two gadgets (logical gates and state chains), and to outline how they are used in the
construction. For the convenient description of gadgets, we first introduce two special kinds
of node concepts. Essentially, these are methods to carefully select the weight of some specific
neighbors of nodes such that they fulfill the following roles:

Observer node: given a set of nodes U0, we can add a new common neighbor vo to these
nodes such that the behavior of vo depends on the nodes in U0, but the behavior of U0 is
unaffected by the addition of vo
Enabler node: given a node u1 dominated by another node ud, we can add a new neighbor
ve to u1, such that u1 is no longer dominated by {ud}, but it is dominated by the subset
{ud, ve}

Given a set of input nodes U0 and an output node u1, we can use these concepts to build
an and gate which only enables the switching of u1 if all nodes in U0 are colored with a given
color. This gadget connects to each of the input nodes in U0 through a common observer
node, and connects to the output u1 through an enabler node. Besides the observer and
enabler node, the gadget only requires an extra relay node (and an appropriate choice of
weights) to connect these two nodes, and an extra upper neighbor for each node in order
to connect the gadget to a pacer system which resets it after use. A brief illustration of
the gadget is available in Figure 8. In a very similar fashion, we can also create and gates
for inputs of the other color, or gates, or even multi-layer gates that allow us to combine
different conditions.

Besides logical gates, the other key gadget in our benevolent construction is the state
chain. For each level of the construction, we add a separate state chain in order to indicate
the current state (i.e., point in the execution) of the procedure on this level. Essentially, a
state chain is a vertical chain of nodes, where every node in the chain is dominated by its
upper neighbor, similarly to the case of a storage chain. However, while storage chains are

P.A. Papp and R. Wattenhofer 54:13

Figure 7 Adding a pair of pacers between
a layer of control nodes and base nodes.

no
de
s

ob
se
rv
ed

pacers

en
ab
le
d

no
de

observer enabler

Figure 8 Logical (e.g. and) gate.

first
state

second
state

third
state

fourth
state

Figure 9 Simplified illustration of a state chain on 4 states (see the full version of the paper for a
more detailed illustration). The position of the conflict in the chain shows our current state of the
procedure. When propagating the conflict down by one step, the chain proceeds to the next state.

used to accumulate conflicts, a state chain will, on the other hand, always contain exactly
one conflict, which we propagate down step by step. The different possible positions of the
conflict can then correspond to different states of the procedure, and at a given point in time,
our current state in the procedure is determined by the current position of the conflict in the
chain (as illustrated in Figure 9).

One such state chain is added to each level of our benevolent construction. The node
pairs in the chain that express a state are included in the conditions of the logical gates that
control the execution of the recursive procedure on the level, ensuring that certain steps are
only available to the benevolent player at certain points in the process. Furthermore, the
nodes in the state chain are also connected to enabler nodes, and thus proceeding to the next
state is always based on a given condition. Therefore, the benevolent player has no other
option than to simultaneously proceed through the steps of the recursive process and the
states of the state chain, in the appropriate order. With a couple of auxiliary nodes at the
top of the chain, we can also connect the state chain to a pacer node, allowing us to reset
the chain and jump back to the first state whenever the last state of the chain is reached.

Given these gadgets, let us now briefly reflect on the states and conditions we need to
encode in order to ensure that the player has to follow the recursive sequence. The main idea
is to use the logical gates to control the flow of execution within a given level: through the
enabler nodes of the gates, we ensure that the switching of the next 2× 4 control nodes (i.e.,
the next step of the control sequence) is only enabled after the previous switching of the base
nodes is finished. In practice, this means that, after the base nodes have switched, when the
newly added conflicts are propagated down far enough in each of the 2× 6 storage chains
below, the gates enable the further down-propagation of the appropriate 2× 4 conflicts in
the storage chains above, which will in turn make the next subset of 2 × 4 control nodes
switchable. That is, the input (observer) nodes of these logical gates are connected to specific
nodes of the storage chains below the level, while their output (enabler) nodes are connected
to nodes of the storage chains above the level.

STACS 2019

54:14 Stabilization Time in Weighted Minority Processes

However, recall that charging the storage chains below takes 4 steps, while executing the
control sequence above consist of 6 steps, so the two processes do not remain in synchrony.
Thus in different phases of the procedure, the same set of storage chain nodes below have to
enable different subsets of the control nodes above. Because of this, our construction encodes
these different phases of the procedure as states in the state chain, and the appropriate state
is also included in the condition of the logical gate that enables the next set of control nodes.
When a cycle is finished (i.e., the two processes return to their default state at the same
time), the state chain is reset and iteration starts again from the first state of the chain.

Furthermore, note that throughout the recursion, execution repeatedly leaves the current
level and continues on the level above (or below), so the state chain of each level also has
specific states indicating that the execution is currently on a level above (or below).

Altogether, these benevolent-case modifications only add constantly many gadgets (each
of constant-size) to each level of the construction. Therefore, the modified construction still
has only O(1) nodes in a level, allowing for Θ(n) levels and thus 2Θ(n) stabilization time.
This establishes our lower bound for model SB. By design, the construction only has a few
(at most constantly many) switchable nodes at every point in time, and thus even in model
CB, it allows for only very limited concurrency for the benevolent player. Specifically, since
there are concrete nodes in the construction that switch 2Θ(n) times, the number of steps is
still exponential in model CB.

Also, note that even with the gadgets added in the benevolent case, each node of the
graph still has a constant degree, and thus our bound is also valid for sparse graphs.

References
1 Ron Aharoni, Eric C Milner, and Karel Prikry. Unfriendly partitions of a graph. Journal of

Combinatorial Theory, Series B, 50(1):1–10, 1990.
2 Cristina Bazgan, Zsolt Tuza, and Daniel Vanderpooten. On the existence and determination of

satisfactory partitions in a graph. In International Symposium on Algorithms and Computation,
pages 444–453. Springer, 2003.

3 Cristina Bazgan, Zsolt Tuza, and Daniel Vanderpooten. Complexity and approximation of
satisfactory partition problems. In International Computing and Combinatorics Conference,
pages 829–838. Springer, 2005.

4 Cristina Bazgan, Zsolt Tuza, and Daniel Vanderpooten. The satisfactory partition problem.
Discrete applied mathematics, 154(8):1236–1245, 2006.

5 Cristina Bazgan, Zsolt Tuza, and Daniel Vanderpooten. Satisfactory graph partition, variants,
and generalizations. European Journal of Operational Research, 206(2):271–280, 2010.

6 Olivier Bodini, Thomas Fernique, and Damien Regnault. Quasicrystallization by stochastic
flips. HAL online archives, 2009.

7 Olivier Bodini, Thomas Fernique, and Damien Regnault. Stochastic flips on two-letter words.
In 2010 Proceedings of the Seventh Workshop on Analytic Algorithmics and Combinatorics
(ANALCO), pages 48–55. SIAM, 2010.

8 Henning Bruhn, Reinhard Diestel, Agelos Georgakopoulos, and Philipp Sprüssel. Every rayless
graph has an unfriendly partition. Combinatorica, 30(5):521–532, 2010.

9 Zhigang Cao and Xiaoguang Yang. The fashion game: Network extension of matching pennies.
Theoretical Computer Science, 540:169–181, 2014.

10 Jacques Demongeot, Julio Aracena, Florence Thuderoz, Thierry-Pascal Baum, and Olivier
Cohen. Genetic regulation networks: circuits, regulons and attractors. Comptes Rendus
Biologies, 326(2):171–188, 2003.

11 Silvio Frischknecht, Barbara Keller, and Roger Wattenhofer. Convergence in (social) influence
networks. In International Symposium on Distributed Computing, pages 433–446. Springer,
2013.

P.A. Papp and R. Wattenhofer 54:15

12 Michael U Gerber and Daniel Kobler. Algorithmic approach to the satisfactory graph parti-
tioning problem. European Journal of Operational Research, 125(2):283–291, 2000.

13 Michael U Gerber and Daniel Kobler. Classes of graphs that can be partitioned to satisfy all
their vertices. Australasian Journal of Combinatorics, 29:201–214, 2004.

14 Sandra M Hedetniemi, Stephen T Hedetniemi, KE Kennedy, and Alice A Mcrae. Self-stabilizing
algorithms for unfriendly partitions into two disjoint dominating sets. Parallel Processing
Letters, 23(01):1350001, 2013.

15 Barbara Keller, David Peleg, and Roger Wattenhofer. How Even Tiny Influence Can Have a
Big Impact! In International Conference on Fun with Algorithms, pages 252–263. Springer,
2014.

16 Jeremy Kun, Brian Powers, and Lev Reyzin. Anti-coordination games and stable graph
colorings. In International Symposium on Algorithmic Game Theory, pages 122–133. Springer,
2013.

17 Damien Regnault, Nicolas Schabanel, and Éric Thierry. Progresses in the Analysis of Stochastic
2D Cellular Automata: A Study of Asynchronous 2D Minority. In Luděk Kučera and Antonín
Kučera, editors, Mathematical Foundations of Computer Science 2007, pages 320–332. Springer
Berlin Heidelberg, 2007.

18 Damien Regnault, Nicolas Schabanel, and Éric Thierry. On the analysis of “simple” 2d
stochastic cellular automata. In International Conference on Language and Automata Theory
and Applications, pages 452–463. Springer, 2008.

19 Jean-Baptiste Rouquier, Damien Regnault, and Éric Thierry. Stochastic minority on graphs.
Theoretical Computer Science, 412(30):3947–3963, 2011.

20 Khurram H Shafique and Ronald D Dutton. On satisfactory partitioning of graphs. Congressus
Numerantium, pages 183–194, 2002.

21 Saharon Shelah and Eric C Milner. Graphs with no unfriendly partitions. A tribute to Paul
Erdös, pages 373–384, 1990.

STACS 2019

Finite Sequentiality of Unambiguous Max-Plus
Tree Automata
Erik Paul
Institute of Computer Science, Leipzig University, 04109 Leipzig, Germany
epaul@informatik.uni-leipzig.de

Abstract
We show the decidability of the finite sequentiality problem for unambiguous max-plus tree automata.
A max-plus tree automaton is called unambiguous if there is at most one accepting run on every
tree. The finite sequentiality problem asks whether for a given max-plus tree automaton, there exist
finitely many deterministic max-plus tree automata whose pointwise maximum is equivalent to the
given automaton.

2012 ACM Subject Classification Theory of computation → Quantitative automata; Theory of
computation → Tree languages

Keywords and phrases Weighted Tree Automata, Max-Plus Tree Automata, Finite Sequentiality,
Decidability, Ambiguity

Digital Object Identifier 10.4230/LIPIcs.STACS.2019.55

Funding This work was supported by Deutsche Forschungsgemeinschaft (DFG), Graduiertenkolleg
1763 (QuantLA).

1 Introduction

A max-plus automaton is a finite automaton which assigns real numbers to words over a
given alphabet. The transitions of a max-plus automaton each carry a weight from the real
numbers. To every run of the automaton, a weight is associated by summing over the weights
of the transitions which constitute the run. The weight of a word is given by the maximum
over the weights of all runs on this word.

More generally, max-plus automata and their min-plus counterparts are weighted automata
[31, 30, 22, 5, 11] over the max-plus or min-plus semiring. Min-plus automata were originally
introduced by Imre Simon as a means to show the decidability of the finite power property
[34, 35]. Since their introduction, max-plus and min-plus automata enjoy a continuing
interest [21, 14, 18, 10, 12, 6] and they have been employed in many different contexts. To
only name some examples, they can be used to determine the star height of a language [13],
to prove the termination of some string rewriting systems [36], and to model certain discrete
event systems [19]. Additionally, they appear in the context of natural language processing
[24], where for reasons of numerical stability, probabilities are often computed in the min-plus
semiring as negative log-likelihoods.

A very prominent open question about max-plus automata is the sequentiality problem, the
problem of deciding whether for an arbitrary max-plus automaton there exists a deterministic
equivalent. A max-plus automaton is called deterministic or sequential if for each pair of a
state and an input symbol, there is at most one valid transition into a next state. Although
the decidability of this problem is unknown for max-plus automata in general, it is known
to be decidable for the subclasses of unambiguous [24], finitely ambiguous [18], and even
polynomially ambiguous [17] automata. A max-plus automaton is called unambiguous if
there exists at most one accepting run on every word. It is called finitely ambiguous if the
number of runs on each word is bounded by a global constant. If on every word the number
of accepting runs is bounded polynomially in the length of the word, the automaton is said to

© Erik Paul;
licensed under Creative Commons License CC-BY

36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019).
Editors: Rolf Niedermeier and Christophe Paul; Article No. 55; pp. 55:1–55:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:epaul@informatik.uni-leipzig.de
https://doi.org/10.4230/LIPIcs.STACS.2019.55
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

55:2 Finite Sequentiality of Unambiguous Max-Plus Tree Automata

be polynomially ambiguous. Note that the ambiguity of a max-plus automaton is a decidable
property, as it is easily reduced to deciding the ambiguity of a finite automaton. Deciding
the sequentiality of a finite automaton is trivial, polynomial time algorithms for deciding
the unambiguity, the finite ambiguity, and the polynomial ambiguity of a finite automaton
can be found in [7, 37, 33]. Furthermore, the classes of functions definable by deterministic,
unambiguous, finitely ambiguous, polynomially ambiguous, and arbitrary max-plus automata
form a strictly ascending hierarchy [18, 15, 23].

A decidability problem which is closely related to the sequentiality problem is the finite
sequentiality problem. The finite sequentiality problem asks whether a given max-plus
automaton can be represented as a pointwise maximum of deterministic max-plus automata.
In [14], it was left as an open question to determine the decidability of the finite sequentiality
problem for finitely ambiguous max-plus automata. It was shown only recently that for the
classes of unambiguous as well as finitely ambiguous automata, the finite sequentiality problem
is decidable [3, 2]. The class of functions which allow a finitely sequential representation by
max-plus automata lies strictly between the classes of functions definable by deterministic
and by finitely ambiguous max-plus automata, and it is incomparable to the class of functions
definable by unambiguous max-plus automata [18].

In this paper, we show that the finite sequentiality problem is decidable for unambiguous
max-plus tree automata. Max-plus tree automata are a generalization of max-plus automata
and operate on trees instead of words. Applications for max-plus tree automata include
proving the termination of certain term rewriting systems [20], and they are also commonly
employed in natural language processing [27] in the form of probabilistic context-free grammars.
Our approach to show the decidability of the finite sequentiality problem employs ideas
from [3]. In [3], the fork property is shown to be a decidable criterion to determine the
existence of a finitely sequential equivalent. More precisely, a max-plus word automaton is
shown to possess a finitely sequential representation if and only if it does not satisfy the fork
property. It is shown elementarily that an automaton satisfying the fork property cannot
possess a finitely sequential equivalent. The proof for the existence of a finitely sequential
representation in case that the fork property is not satisfied, on the other hand, relies on the
construction of finitely many unambiguous max-plus automata whose pointwise maximum is
equivalent to the original automaton, and which all satisfy the twins property. It was shown
by Mohri [24] that an unambiguous max-plus automaton which satisfies the twins property
is determinizable. A finitely sequential representation is thus found by determinizing the
unambiguous automata.

For tree automata, we generalize the fork property to the tree fork property by adding
a condition which accounts for the nonlinear structure of trees. We then prove that an
unambiguous max-plus tree automaton possesses a finitely sequential representation if and
only if it does not satisfy the tree fork property. As in the word case, the most challenging
part of the proof is to show the existence of a finitely sequential representation whenever
the tree fork property is not satisfied. Like in the proof for word automata, we construct
finitely many unambiguous max-plus tree automata which possess a deterministic equivalent.
However, we need to take a different approach in order to obtain these automata. In [3], a
modified Schützenberger covering [32, 29] is first constructed from the unambiguous max-plus
automaton, from which in turn an automaton is constructed which monitors the occurrence
of certain states of the modified Schützenberger covering. This latter automaton is then
decomposed into the finitely many unambiguous automata. This approach, however, is not
applicable to trees, as the monitoring of states requires all relevant states to occur linearly.
This happens trivially for word automata due to the inherent linear structure of words, but for

E. Paul 55:3

tree automata examples can be found where relevant states occur nonlinearly. The approach
we use here relies on constructing a max-plus automaton which tracks certain pairs of states
of the original automaton. When applied to word automata, this immediately yields an
automaton which can be decomposed into the desired unambiguous automata. Unfortunately,
for tree automata this tracking of pairs of states again fails due to states occurring nonlinearly.
Surprisingly however, our construction can be applied to the Schützenberger covering of
the original tree automaton, as the states relevant for tracking all occur pairwise linearly
in the Schützenberger covering. The most difficult part of our proof is to show that the
Schützenberger covering indeed has the property we just indicated.

2 Preliminaries

For a set X, we denote the power set of X by P(X) and the cardinality of X by |X|. For
two sets X and Y and a mapping f : X → Y , we call X the domain of f , denoted by
dom(f), and Y the range of f , denoted by range(f). For a subset X ′ ⊆ X, we call the set
f(X ′) = {y ∈ Y | ∃x ∈ X ′ : f(x) = y} the image or range of X ′ under f . For an element
y ∈ Y , we call the set f−1(y) = {x ∈ X | f(x) = y} the preimage of y under f . For a second
mapping g : X → Y , we write f = g if for all x ∈ X we have f(x) = g(x).

Let N = {0, 1, 2, . . .}. By N∗ we denote the set of all finite words over N. The empty word
is denoted by ε, and the length of a word w ∈ N∗ by |w|. The set N∗ is partially ordered
by the prefix relation ≤p and totally ordered with respect to the lexicographic ordering ≤l.
Two words from N∗ are called prefix-dependent if they are in prefix relation, and otherwise
they are called prefix-independent.

A ranked alphabet is a pair (Γ, rkΓ), often abbreviated by Γ, where Γ is a finite set
and rkΓ : Γ → N a mapping which assigns a rank to every symbol. For every m ≥ 0 we
define Γ(m) = rk−1

Γ (m) as the set of all symbols of rank m. The rank of Γ is defined as
rk(Γ) = max{rkΓ(a) | a ∈ Γ}. The set of (finite, labeled, and ordered) Γ-trees, denoted
by TΓ, is the set of all pairs t = (pos(t), labelt), where pos(t) ⊂ N∗ is a finite non-empty
prefix-closed set of positions, labelt : pos(t) → Γ is a mapping, and for every w ∈ pos(t)
we have wi ∈ pos(t) iff 1 ≤ i ≤ rkΓ(labelt(w)). We write t(w) for labelt(w) and |t| for
|pos(t)|. We also refer to the elements of pos(t) as nodes, to ε as the root of t, and to
prefix-maximal nodes as leaves. The height of t is defined as height(t) = maxw∈pos(t) |w|. For
a leaf w ∈ pos(t), the set {v ∈ pos(t) | v ≤p w} is called a branch of t.

Now let s, t ∈ TΓ and w ∈ pos(t). The subtree of t at w, denoted by t�w, is a Γ-tree
defined as follows. We let pos(t�w) = {v ∈ N∗ | wv ∈ pos(t)} and for v ∈ pos(t�w), we let
labelt�w

(v) = t(wv). The substitution of s into w of t, denoted by t〈s → w〉, is a Γ-tree
defined as follows. We let pos(t〈s → w〉) = {v ∈ pos(t) | w 6≤p v} ∪ {wv | v ∈ pos(s)}.
For v ∈ pos(t〈s → w〉), we let labelt〈s→w〉(v) = s(u) if v = wu for some u ∈ pos(s), and
otherwise labelt〈s→w〉(v) = t(v).

For a ∈ Γ(m) and trees t1, . . . , tm ∈ TΓ, we also write a(t1, . . . , tm) to denote the tree t
with pos(t) = {ε} ∪ {iw | i ∈ {1, . . . ,m}, w ∈ pos(ti)}, labelt(ε) = a, and labelt(iw) = ti(w).

For a ranked alphabet Γ, a tree over the alphabet Γ� = (Γ ∪ {�}, rkΓ ∪ {� 7→ 0}) is called
a Γ-context. Let t ∈ TΓ� be a Γ-context and let w1, . . . , wn ∈ pos(t) be a lexicographically
ordered enumeration of all leaves of t labeled �. Then we call t an n-Γ-context and define
♦i(t) = wi for i ∈ {1, . . . , n}. For an n-Γ-context t and contexts t1, . . . , tn ∈ TΓ� , we define
t(t1, . . . , tn) = t〈t1 → ♦1(t)〉 . . . 〈tn → ♦n(t)〉 by substitution of t1, . . . , tn into the �-leaves of
t. A 1-Γ-context is also called a Γ-word. For a Γ-word s, we define s1 = s and sn+1 = s(sn)
for n ≥ 1.

STACS 2019

55:4 Finite Sequentiality of Unambiguous Max-Plus Tree Automata

A commutative semiring is a tuple (K,⊕,�,0,1), abbreviated by K, with operations sum
⊕ and product � and constants 0 and 1 such that (K,⊕,0) and (K,�,1) are commutative
monoids, multiplication distributes over addition, and κ� 0 = 0� κ = 0 for every κ ∈ K. In
this paper, we only consider the max-plus semiring Rmax = (R∪{−∞},max,+,−∞, 0) where
the sum and the product operations are max and +, respectively, extended to R ∪ {−∞} in
the usual way.

A max-plus weighted bottom-up finite state tree automaton (short: max-plus-WTA) over
Γ is a tuple A = (Q,Γ, µ, ν) where Q is a finite set (of states), Γ is a ranked alphabet (of
input symbols), µ :

⋃rk(Γ)
m=0 Q

m × Γ(m) ×Q→ Rmax (the function of transition weights), and
ν : Q→ Rmax (the function of final weights). We define ∆A = dom(µ). A tuple (p̄, a, q) ∈ ∆A
is called a transition and (p̄, a, q) is called valid if µ(p̄, a, q) 6= −∞. A state q ∈ Q is called
final if ν(q) 6= −∞.

For a tree t ∈ TΓ, a mapping r : pos(t) → Q is called a quasi-run of A on t. For a
quasi-run r on t and a position w ∈ pos(t) with t(w) = a ∈ Γ(m), the tuple t(t, r, w) =
(r(w1), . . . , r(wm), a, r(w)) is called the transition at w. The quasi-run r is called a (valid)
run if for every w ∈ pos(t) the transition t(t, r, w) is valid with respect to A. We call a
run r accepting if r(ε) is final. By RunA(t) and AccA(t) we denote the sets of all runs
and all accepting runs of A on t, respectively. Similar to trees, we define restrictions of
runs as follows. Let t ∈ TΓ, r ∈ RunA(t), and w ∈ pos(t). We define r�w ∈ RunA(t�w) by
r�w(v) = r(wv) for v ∈ pos(t�w).

For r ∈ RunA(t), the weight of r is defined by wtA(t, r) =
∑

w∈pos(t) µ(t(t, r, w)). The
behavior of A, denoted by JAK, is the mapping defined for every t ∈ TΓ by JAK(t) =
maxr∈AccA(t)(wtA(t, r) + ν(r(ε))), where the maximum over the empty set is −∞ by con-
vention.

For a max-plus-WTA A = (Q,Γ, µ, ν), a run of A on a Γ-context t is a run of the
max-plus-WTA A′ = (Q,Γ�, µ′, ν) on t, where µ′(�, q) = 0 for all q ∈ Q and µ′(d) = µ(d) for
d ∈ ∆A. We denote Run�A(t) = RunA′(t) and for r ∈ Run�A(t) write wt�A(t, r) = wtA′(t, r).
For a Γ-word s, we write p s|x−−→ q if there exists a run r ∈ Run�A(s) with r(♦1(s)) = p,
r(ε) = q, and wt�A(s, r) = x. In this case, r is said to realize p s|x−−→ q. Note that r ∈ Run�A(s)
implies x 6= −∞.

For a max-plus-WTA A, we define a relation ≤ on Q by q ≤ p iff p s|x−−→ q for some Γ-word
s ∈ TΓ� . We call A trim if for every p ∈ Q there exists t ∈ TΓ, r ∈ Acc(t), and w ∈ pos(t)
with r(w) = p. The trim part of A is the automaton obtained by removing all states p ∈ Q
for which no such t, r, and w exist. This process obviously has no influence on JAK.

A max-plus-WTA A is called deterministic or sequential if for every m ≥ 0, a ∈ Γ(m),
and p̄ ∈ Qm, there exists at most one q ∈ Q with µ(p̄, a, q) 6= −∞. We call A unambiguous
if |AccA(t)| ≤ 1 for every t ∈ TΓ. We call the behavior JAK of A finitely sequential if there
exist deterministic max-plus-WTA A1, . . . ,An over Γ with JAK = maxn

i=1JAiK, where the
maximum is taken pointwise.

3 Main Result

We will show that for an unambiguous max-plus-WTA A, it is decidable whether its behavior
JAK is finitely sequential. Moreover, if it is finitely sequential, we will obtain that the
deterministic max-plus-WTA A1, . . . ,An can be effectively constructed. For this, we follow
ideas from [3], where the decidability of the finite sequentiality problem was proved for
unambiguous max-plus word automata. The general outline of our proof is similar to that
of [3] and presents itself as follows. We introduce the tree fork property and show that it

E. Paul 55:5

is decidable whether an unambiguous max-plus-WTA A satisfies this property. Then we
show that the behavior of an unambiguous max-plus-WTA is finitely sequential if and only if
it does not satisfy the tree fork property. In conclusion, we obtain the decidability of the
finite sequentiality problem for unambiguous max-plus-WTA. Elementary proof methods
can be used to show that JAK is not finitely sequential if A satisfies the tree fork property.
On the other hand, if A does not satisfy the tree fork property, we show how to construct
finitely many unambiguous max-plus-WTA whose pointwise maximum is JAK, and which all
satisfy the twins property [24]. Every unambiguous max-plus-WTA which satisfies the twins
property possesses an effectively constructable deterministic equivalent [9]. Thus, we obtain
finitely many deterministic max-plus-WTA whose pointwise maximum is JAK, which is hence
finitely sequential.

In the following, we recall the twins property and introduce the tree fork property. Let Γ
be a ranked alphabet. We begin with the concepts of siblings and twins. Intuitively, two
states are called siblings if they can be “reached” by the same tree. Two siblings are called
twins if for every Γ-word which can “loop” in both states, the maximal weight for the loop is
the same in both states.

I Definition 1. Let A = (Q,Γ, µ, ν) be a max-plus-WTA. Two states p, q ∈ Q are called
siblings if there exists a tree u ∈ TΓ and runs rp, rq ∈ RunA(u) with rp(ε) = p and rq(ε) = q.
We recall that RunA(u) contains only valid runs.

Two siblings p, q are called twins if for every Γ-word s and weights

x = max
r∈Run�A(s)

r(ε)=r(♦1(s))=p

wt�A(s, r) y = max
r∈Run�A(s)

r(ε)=r(♦1(s))=q

wt�A(s, r),

we have x = y whenever x 6= −∞ and y 6= −∞ holds.

A max-plus-WTA is said to satisfy the twins property if all of its siblings are twins. For
unambiguous max-plus-WTA, the twins property is a criterion to decide the sequentiality
problem. An unambiguous max-plus-WTA possesses a deterministic equivalent if and only if
it satisfies the twins property. For words, this result is due to [24, Theorem 12], for trees, we
cite the following theorem.

I Theorem 2 ([9, Lemma 5.10], [26, Lemma 17]). Let A be a trim unambiguous max-plus-
WTA. There exists a deterministic max-plus-WTA A′ with JAK = JA′K if and only if A
satisfies the twins property. If it exists, it can be effectively constructed.

It is intuitive that the twins property is a necessary condition if we consider the following
Lipschitz property which every deterministic max-plus word automaton A satisfies [18, End
of Section 2.4][24, Section 3.2]. If A is deterministic and L is the largest weight, in terms of
absolute value, occurring in A (excluding −∞), then for two words w1 = uv1 and w2 = uv2
which have an accepting run in A, the difference between JAK(w1) and JAK(w2) can be at
most |L|(|v1| + |v2| + 2). This is clear since the unique runs of A on w1 and w2 will be
identical on the prefix u, and then with every remaining letter of each word the difference
between both runs cannot grow more than |L|.

If an unambiguous max-plus word automaton A does not satisfy the twins property, we can
find states p and q which are siblings and not twins. We assume that our witnesses for this are
u and s as above. We consider words of the form w1 = usNvp and w2 = usNvq, where vp and
vq are two fixed words which lead from p and q, respectively, to some final state. For every fixed
L, we can choose N sufficiently large to ensure that |JAK(w1)− JAK(w2)| > |L|(|vp|+ |vq|+ 2).
It is thus not possible to determinize A if it does not satisfy the twins property.

STACS 2019

55:6 Finite Sequentiality of Unambiguous Max-Plus Tree Automata

The twins property is decidable for both max-plus word automata [1, 4, 24, 25, 16] and
max-plus tree automata [8, Section 3]. Deciding whether a max-plus word automaton satisfies
the twins property is PSPACE-complete [16]. For max-plus tree automata, the problem is
thus PSPACE-hard, but no upper complexity bound is stated in [8]. Note that in general,
it is undecidable whether two given siblings are twins [16], but for unambiguous max-plus
automata, it was shown to be decidable on both words [1, Section 4] and trees [8, Section 3].

There exist unambiguous max-plus automata which cannot be determinized, but whose
behavior is finitely sequential [18, Section 3.1], see also Figure 1. Thus, for the finite

p0 0 q0

00

a | 0

a | 0

a | 1

a | 1

Figure 1 A max-plus word automaton A over the alphabet {a} which is unambiguous, whose
behavior is finitely sequential, but which does not satisfy the twins property as p and q are siblings
but not twins. The behavior JAK of A assigns 0 to all words of odd length and |w| to all words w of
even length.

sequentiality problem we inevitably have to deal with unambiguous automata in which not
all siblings are twins. In the following, we will call two such states rivals. For unambiguous
automata, which are the only type of max-plus-WTA we consider in this paper, the following
definition is equivalent to being siblings and not twins.

I Definition 3. Let A = (Q,Γ, µ, ν) be a max-plus-WTA. Two states p, q ∈ Q are called
rivals if there exists a tree u ∈ TΓ, runs rp, rq ∈ RunA(u) with rp(ε) = p and rq(ε) = q, and
a Γ-word s such that p s|x−−→ p and q s|y−−→ q with x 6= y.

We do not have to consider a maximum over runs here since A is unambiguous. Also note
that by our definition of Run�A(s), we have x 6= −∞ and y 6= −∞ above.

We now come to the tree fork property which, as we will show, is satisfied by an
unambiguous max-plus-WTA if and only if its behavior is not finitely sequential. The
property consists of two separate conditions. The first condition intuitively states that
there exist two rivals p and q and a Γ-word t which can loop in p, and which can also lead
from p to q. The second condition states that there exist two rivals which can occur at
prefix-independent positions.

I Definition 4. Let A = (Q,Γ, µ, ν) be a max-plus-WTA. We say that A satisfies the tree
fork property if at least one of the following two conditions is satisfied.
(i) There exist rivals p, q ∈ Q and a Γ-word t with p t|zp−−→ p and p t|zq−−→ q for some weights

zp, zq ∈ R. In this case, t is also called a p-q-fork.
(ii) There exist rivals p, q ∈ Q, a 2-Γ-context t ∈ TΓ� , and a run r ∈ Run�A(t) with

r(♦1(t)) = p and r(♦2(t)) = q.
The tree fork property can be regarded as an extension of the fork property which was
introduced in [3] and which for max-plus word automata plays the same role as the tree
fork property does for max-plus tree automata. Condition (i) is essentially a tree version
of the fork property. Casually put, if we take only condition (i) and replace “Γ-word” by
“word”, we obtain the fork property. The automaton depicted in Figure 2 is unambiguous
and satisfies the fork property. Condition (ii) is new and possesses no counterpart in the
fork property. We have the following theorem which relates the tree fork property to the
finite sequentiality problem.

E. Paul 55:7

p0 q 0
a | 0

b | 1, a | 0 b | −1

Figure 2 An unambiguous max-plus word automaton A over the alphabet {a, b} which satisfies
the fork property. With u = a and s = b, we see that p and q are rivals, and a is a p-q-fork. All
b’s after the last a in a word are treated differently from the b’s before the last a. A deterministic
automaton cannot “guess” which a is the last in the word, and since there may be arbitrarily many
a’s in a word, even finitely many deterministic automata cannot compensate this inability to guess.

I Theorem 5. Let A = (Q,Γ, µ, ν) be a trim unambiguous max-plus-WTA over Γ. Then
there exist deterministic max-plus-WTA A1, . . . ,An over Γ with JAK = maxn

i=1JAiK if and
only if A does not satisfy the tree fork property. In particular, the finite sequentiality problem
is decidable for unambiguous max-plus-WTA.

Proof. Here, we only show that it is decidable whether A satisfies the tree fork property.
The rest of the proof is deferred to Sections 4 and 5, where we show that the behavior of A
is finitely sequential if and only if A does not satisfy the tree fork property.

To decide whether A satisfies condition (i), we first show that if there exists a p-q-fork t
for two rivals p and q, then there exists a p-q-fork t′ of height at most |Q|2. If t is a p-q-fork
with height(t) > |Q|2 and rp and rq are runs that realize p t|zp−−→ p and p t|zq−−→ q for some
weights zp, zq ∈ R, then by pigeon hole principle there are positions w1 <p w2 in s with
rp(w1) = rp(w2) and rq(w1) = rq(w2). Thus, by removing the part of t between w1 and w2,
we obtain that t′ = t〈t�w2 → w1〉 is a p-q-fork as well. Iterating this process, we obtain a
p-q-fork of height at most |Q|2.

Next, we identify all pairs of rivals, which is possible since for unambiguous max-plus
tree automata, we can decide for every pair of states whether they are siblings and not twins
[8, Section 3]. Then, for every pair of rivals p, q and all Γ-words t of height at most |Q|2, we
check whether t is a p-q-fork. If this yields no p-q-fork, A does not satisfy condition (i).

In order to decide whether A satisfies condition (ii), we first compute the relation ≤ on Q.
This is possible since Q is a finite set and ≤ is the smallest transitive and reflexive relation
satisfying µ(q1, . . . , qm, a, q0) 6= −∞ → q0 ≤ qi for all transitions (q1, . . . , qm, a, q0) ∈ ∆A
and i ∈ {1, . . . ,m}. Then, by the trimness of A, condition (ii) is satisfied if and only if there
exist two rivals p and q, a transition (q1, . . . , qm, a, q0) ∈ ∆A with µ(q1, . . . , qm, a, q0) 6= −∞,
and indices i, j ∈ {1, . . . ,m} with i 6= j, qi ≤ p, and qj ≤ q. J

The following two sections are dedicated to completing the proof of Theorem 5.

4 Necessity

In this section, we show that if an unambiguous max-plus-WTA A satisfies either condition (i)
or condition (ii) of the tree fork property, then its behavior JAK is not finitely sequential. For
condition (i), we adapt the corresponding proof from the word case [3, Theorem 2]. The proof
relies on the Lipschitz property of deterministic max-plus automata and its approach is similar
to the above outline that the twins property is a necessary condition for determinizability.
We omit the proof here as it is a straightforward generalization of the proof from [3].

I Theorem 6. Let A be a trim unambiguous max-plus-WTA over Γ. If A satisfies con-
dition (i) of the tree fork property, then there do not exist deterministic max-plus-WTA
A1, . . . ,An over Γ with JAK = maxn

i=1JAiK.

STACS 2019

55:8 Finite Sequentiality of Unambiguous Max-Plus Tree Automata

We consider condition (ii) of the tree fork property. On words, states cannot occur in
prefix-independent positions. Thus, this condition is new for the tree case. Intuitively, the
reason that the behavior of an unambiguous max-plus-WTA A cannot be finitely sequential
if it satisfies condition (ii) is as follows. Assume we have a 2-Γ-context t and two rivals p and
q as in condition (ii) and let u and s be as in the definition of rivals. Then we can construct
trees of the form t(sn(u), sn(u)) such that, by increasing n, the difference between the weights
on the two subtrees sn(u) is arbitrarily large. However, a deterministic automaton necessarily
assigns the same weight to both subtrees.

I Theorem 7. Let A be a trim unambiguous max-plus-WTA over Γ. If A satisfies con-
dition (ii) of the tree fork property, then there do not exist deterministic max-plus-WTA
A1, . . . ,An over Γ with JAK = maxn

i=1JAiK.

Proof (Sketch). For contradiction, we assume that A satisfies condition (ii) of the tree
fork property and that there exist deterministic max-plus-WTA A1, . . . ,An over Γ with
JAK = maxn

i=1JAiK. We write Ai = (Qi,Γ, µi, νi) and let N = maxn
i=1 |Qi|. Let p, q, t be as

in condition (ii) of the tree fork property and for the rivals p and q, let u and s be as in the
definition of rivals.

By assumption, u can reach both p and q, and s can loop both in p and in q. In particular,
the tree sN (u) can reach p by looping s in p and q by looping s in q. Due to our assumption
on t, there hence exists a run on the tree t′ = t(sN (u), sN (u)) which loops s in p on the left
branch and in q on the right branch. Since A is trim, we may even assume that this run is
accepting, as on top of t we can always add a Γ-word which leads to a final state.

We assume that JAK(t′) = maxn
i=1JAiK(t′), so there must be some j with JAK(t′) =

JAjK(t′). As Aj is deterministic, the unique accepting run of Aj on t′ is identical on both
sN (u)-subtrees. Furthermore, since N ≥ |Qj |, we find that by pigeon hole principle some
sub-Γ-word sm of sN loops in a state of Aj in the subtrees sN (u), say with weight z.

We let x and y be the weights such that A loops sm in p with weight x and in q with
weight y. By choice of s, we have x 6= y. We may assume that x < y. We consider two cases.
First, if z ≥ x+y

2 , then for the tree t+ = t(sN+m(u), sN (u)) we obtain

nmax
i=1

JAiK(t+) ≥ JAjK(t+) = JAjK(t′) + z ≥ JAjK(t′) + x+ y

2 > JAjK(t′) + x = JAK(t+).

Note that this follows because A and Aj are both unambiguous, i.e., if we construct an
accepting run on a given tree, we know that the weight of this run must be the weight
assigned to the tree by the automaton. For the other case, namely that z ≤ x+y

2 , we see that
for the tree t− = t(sN (u), sN−m(u)) we obtain

nmax
i=1

JAiK(t−) ≥ JAjK(t−) = JAjK(t′)− z ≥ JAjK(t′)−
x+ y

2 > JAjK(t′)− y = JAK(t−).

In both cases, we see that JAK = maxn
i=1JAiK does not hold, which is a contradiction. J

Together, Theorems 6 and 7 show that if a trim unambiguous max-plus-WTA satisfies
the tree fork property, then its behavior is not finitely sequential.

5 Sufficiency

In this section, we show that the behavior of an unambiguous max-plus-WTA A which
does not satisfy the tree fork property is finitely sequential. For simplicity, we begin with a
description of our method of proof on max-plus word automata and compare it to the proof
method of Bala and Koniński [3].

E. Paul 55:9

Both proofs work by distributing the runs of A across a finite set of unambiguous max-plus
word automata such that all of these automata satisfy the twins property. This distribution
essentially has the aim of separating the rivals of A. By Theorem 2, these unambiguous
automata can then be determinized. The major difference between our approach and that of
[3] lies in way we obtain these unambiguous automata. To understand our approach, let p
and q be two rivals of A. Furthermore, let u = u1 · · ·un be a word for which there exist valid
runs rp = p0 u1−→ p1 u2−→ . . . un−1−−−→ pn−1 un−−→ p and rq = q0 u1−→ q1 u2−→ . . . un−1−−−→ qn−1 un−−→ q of
A on u.

We now show that the first occurrence of either p or q in the runs rp and rq serves as a
“distinguisher” between the two runs. We let i be the smallest index with the property that
pi ∈ {p, q}. Similarly, we let j be the smallest index with the property that qj ∈ {p, q}. We
obtain valid runs pi

ui+1···un−−−−−−→ p and qj
uj+1···un−−−−−−→ q.

Now assume it would hold that i = j and pi = qj , i.e., the first occurrence is at the same
position in the word, and also the state at this position is the same in both runs. Then with
t = ui+1 · · ·un, we see that we have valid runs pi t−→ p and pi t−→ q, where pi ∈ {p, q}. Thus,
A would satisfy the fork property. Since our assumption is that A does not satisfy the fork
property, we have either i 6= j or pi 6= qj .

This fundamental property is also used in the corresponding proof of [3], but our way
of exploiting it differs from [3]. In their proof for word automata, Bala and Koniński use
this property implicitly to show that certain states of a modified Schützenberger covering
of A occur at most once in every run [3, Lemma 6]. They can therefore construct a new
max-plus automaton which for each run keeps a record of all occurrences of these states.
The above mentioned unambiguous automata are then obtained by separating runs with
differing records into different automata. For tree automata, the number of these occurrences
is unfortunately not bounded, for reasons which we will also indicate below.

For now, we continue outlining our new approach, which is to construct an automaton
which adds a distinguishing marker to every run when first encountering one of the rivals p
or q. This marker consists of a number, which is used to distinguish occurrences at different
positions, and the state from {p, q} which was visited first. Whenever reading a letter which
causes some valid run to visit p or q for the first time, the automaton selects the smallest
marker which was not used by any valid run on the prefix read so far, and annotates it to
the run. For example, assume that neither p nor q occur in any valid run the word u, but
that our run r on ua leads to p. Then r obtains the marker 1p. Now assume there is a valid
run on uaa which leads to p and which visited neither p nor q before that. Then this run
obtains the marker 2p, since 1p is already assigned to r. Next, assume that after reading
uaaa another marker for p has to be assigned, and that r cannot be extended to a valid
run on uaa. Then we assign the marker 1p, as now no valid run on uaa exists to which the
marker 1p is assigned. See Figure 3 for an example of this annotation process on the word
aaa for the automaton depicted there.

With this procedure, runs like rp and rq above receive different markers since either one
run obtains a marker later than the other, and therefore a different marker, or at least the
states they visit first are different, which also leads to a different marker. To separate the
rivals of A, we can thus make a copy of A for every marker, and only allow runs which carry
the respective automaton’s marker. Whenever a different marker would be assigned, the
execution of the run is blocked.

Note here that the number of markers we need for this annotation process is bounded.
Since the automaton A is unambiguous, the number of valid runs on every given word is
bounded by the number of states in A. If this were not the case, there would exist two distinct

STACS 2019

55:10 Finite Sequentiality of Unambiguous Max-Plus Tree Automata

q0

00

p

00

q 0

00

a | 0

a | 0

a | 0

b | 1 b | −1
q0 q0 q0 q0

p, 1p p, 2p p, 3p p, 1p

q, 1q q, 1p q, 2p q, 3p

a a a

Figure 3 On the left, an unambiguous max-plus word automaton over the alphabet {a, b} which
does not satisfy the twins property but whose behavior is finitely sequential. On the right, an
illustration of the runs of the automaton on the words ε, a, aa, and aaa together with appropriate
markers. Arrows indicate a transition. The states p and q are rivals with witnesses u = ε and s = b.

valid runs on the same word which lead to the same state, from which a counterexample to
the unambiguity of A could be constructed. In particular, the number of markers assigned
at any given “time” is bounded by the number of states of A.

All of this can easily be generalized to the situation where there is more than one pair of
rivals. Then, runs simply obtain a marker for each pair of rivals of the automaton, and the
copies of A allow a distinguished marker for each of these pairs.

Unfortunately, these ideas do not translate to trees as easily. For example, consider the
runs in Figure 4. Intuitively, both runs should obtain the marker 1p. However, since p and q
are rivals, this marker does not serve the purpose of distinguishing runs as it does in the word
case. The first p occurs in different subtrees of both runs, thus the annotation of distinct
markers is not possible. Also, it is easy to construct an automaton where a rival p can
occur at arbitrarily many pairwise prefix-independent positions, thus a simple lexicographic
distinction is not possible. This is also the reason why the approach from [3] does not work
for tree automata.

ν(q) = 0
µ(p, a, q) = 0

µ(p, b, p) = 1
µ(q, b, q) = −1

µ(p, q0, c, p) = µ(q0, p, c, q) = 0
µ(d, p) = µ(d, q0) = 0

a

b

c

d d

b

b

c

d d

q

p

p

p q0

q

q

q

q0 p

Figure 4 Two accepting runs of the max-plus tree automaton A = ({q0, p, q},Γ, µ, ν) over the
ranked alphabet Γ = {a, b, c, d} where c ∈ Γ(2), a, b ∈ Γ(1), d ∈ Γ(0). All unspecified weights are
assumed to be −∞. The states p and q are rivals.

Our solution is to distribute not the runs of the automaton A, but the runs of its
Schützenberger covering. The Schützenberger covering of a max-plus automaton A is a
max-plus automaton which possesses the same behavior as A. It has already been employed
in a number of decidability results for max-plus automata [18, 3, 2, 26]. Its construction is
inspired by a paper of Schützenberger [32] and was made explicit by Sakarovitch in [29].

To better explain the idea behind its construction, we first point out a certain aspect
of the classical powerset construction for finite automata [28]. Assume that D is the result
of applying the powerset construction to an NFA B. Then we might say that for a word

E. Paul 55:11

w = w1w2, the state which D is in after reading the prefix w1 is the set of all states which B
could be in after reading w1. Similarly, the Schützenberger covering of a max-plus automaton
A annotates to every state of a run of A on a word w the set of all states which “A could be
in” at this point, i.e., which can be reached by some valid run on the considered prefix of w.
Like the powerset construction, these ideas easily carry over to trees.

The reason we consider the Schützenberger covering of A is that each pair p,q of its rivals
satisfies the following property. For every tree t, either (1) p and q do not occur together
in any run on t or (2) p and q occur only linearly, i.e., there is a distinguished branch of t
such that for every run on t, all occurrences of p and q lie on this branch. In particular, the
situation of Figure 4 is not possible. All pairs which satisfy the first condition can simply
be separated into different automata, all pairs which satisfy the second condition can be
handled like in the word case. The proof of this is non-trivial and needs some preparation.
We begin with the formal definition of the Schützenberger covering.

For the rest of this section, let A = (Q,Γ, µ, ν) be a trim unambiguous max-plus-WTA
which does not satisfy the tree fork property.

I Definition 8 (Schützenberger covering, [29]). The Schützenberger covering S = (QS ,Γ, µS ,
νS) of A is the trim part of the max-plus-WTA (Q× P(Q),Γ, µ′, ν′) defined for a ∈ Γ with
rkΓ(a) = m and (p0, P0), . . . , (pm, Pm) ∈ Q× P(Q) by

µ′((p1, P1), . . . , (pm, Pm), a, (p0, P0)) =
µ(p1, . . . , pm, a, p0) if P0 = {q0 ∈ Q | ∃(q1, . . . , qm) ∈ P1 × . . .× Pm with

µ(q1, . . . , qm, a, q0) 6= −∞}
−∞ otherwise

ν′(p0, P0) = ν(p0).

We let π1 : Q × P(Q) → Q, (p, P) 7→ p and π2 : Q × P(Q) → P(Q), (p, P) 7→ P be the
projections.

It is elementary to show that for a run of S on a tree t, the second entry of the state at
a position w consists of all states of A which can be reached by a valid run of A on t�w.
In particular, two runs on the same tree coincide on their second entries. Furthermore,
projecting all states of a run of S to their first coordinate yields a run of A, and the weights
of these runs coincide. It follows that S is unambiguous and satisfies JSK = JAK. Also, S is
trim by definition.

We can make the following observation about the rivals of S. Let p and q be rivals of
S and let u and s be as in the definition of rivals. Since all runs of S on u coincide on the
second entry of the state at the root, p and q also coincide on their second entry. Moreover,
as projecting the runs of S on u and s to their first entries yields runs of A on u and s,
respectively, we additionally see that the first entries of p and q are rivals in A. Thus, if two
states p,q ∈ QS are rivals in S, then p = (p, P) and q = (q, P) for some set P ⊆ Q and two
states p, q ∈ Q which are rivals in A.

In order to prove some deeper results about the rivals of S, we need two preparatory
lemmata. As a first simplification, we show that we may assume that two rivals p and q of A
are always comparable with respect to the relation ≤. To see this, note that by condition (ii)
of the tree fork property, p and q may not occur in prefix-independent positions in a run. If
in addition, p and q can also not appear in prefix-dependent positions in a run, they never
appear in the same run of A. Thus, we can create two copies of A, one in which we remove
p and one in which we remove q, and the pointwise maximum of these two automata will be
equivalent to the behavior of A.

STACS 2019

55:12 Finite Sequentiality of Unambiguous Max-Plus Tree Automata

I Lemma 9. For all rivals p, q ∈ Q, we may assume that either p ≤ q or q ≤ p, or both.

Next, we note an elementary statement about self-maps f : X → X. Namely, if X is a
finite set and f : X → X a mapping, then for every a ∈ X there exists some element b ∈ X
and an integer n ≥ 1 such that after n iterations of f , both a and b are mapped to b. To
see this, consider the elements a, f(a), f2(a), . . . , f |X|(a). By pigeon hole principle, there
are numbers 0 ≤ m1 < m2 ≤ |X| with fm1(a) = fm2(a). Then if we choose n ≥ m1 as a
multiple of m2 −m1 and b = fn(a), we see that fn(a) = b = fn(b).

I Lemma 10. Let X be a finite set and f : X → X a mapping. Then for every a ∈ X, there
exists an element b ∈ X and an integer n ≥ 1 with fn(a) = b = fn(b). Here, fn is the n-th
iterate of f , i.e., f0 = idX and fm+1 = f ◦ fm.

We come to the first important property which all rivals of S satisfy. Namely, if P ⊆ Q is
the second entry of some rival, then it cannot occur in the form of a “triangle” in any valid
run of S. More precisely, if we have a run r and positions w, wv1, and wv2 such that the
second entry of r(w), r(wv1), and r(wv2) is P , then wv1 and wv2 are prefix-dependent.

I Lemma 11. Let (p, P), (q, P) ∈ QS be rivals in S. Furthermore, let t′ ∈ TΓ be a tree,
r′ ∈ RunS(t′) a run of S on t′, and w1, w2 ∈ pos(t′) be positions in t′. If π2 ◦ r′(ε) =
π2 ◦ r′(w1) = π2 ◦ r′(w2) = P , then w1 and w2 are prefix-dependent.

Proof (Sketch). We proceed by contradiction and assume that t′, r′, w1, w2 as in the state-
ment of the lemma exist such that w1 and w2 are prefix-independent. We show that then, A
satisfies condition (i) of the tree fork property. For the rivals (p, P) and (q, P), let u and s
be as in the definition of rivals and let v = ♦1(s).

By assumption, u can reach (p, P) and s can loop in (p, P), thus the trees s|P |(u) and
s|P |

|P |(u) can reach (p, P). Due to the construction of S, this means both of these trees can
also reach the states of r′ at w1 and w2. In particular, there exists a run of S on the tree
t = t′〈s|P |(u) → w1〉〈s|P |

|P |(u) → w2〉 and for this run, the second entry of every state at
the beginning or end of an s-loop is P . In addition, t leads to a state with second entry P ,
so there in fact exist |P | runs of S on t, one for each state in P . We let r1, . . . , r|P | be the
projections of these runs to their first entry and obtain |P | runs of A on t where the state at
the root and all states at the beginning or end of an s-loop are from P .

By pigeonhole principle, there is some subloop sn below w2 which loops in all runs at the
same time, i.e., where for some n1 we have ri(w2v

n1) = ri(w2v
n1+n) for all runs ri. For each

ri, we let qi = ri(w2v
n1) ∈ P be the state which ri loops in and let xi be the weight of this

loop.
If xi 6= xj for some i and j, the states qi and qj are rivals in A with witnesses u and sn.

By Lemma 9, we may therefore assume qi ≤ qj . Again by pigeon hole principle, the run
ri loops below w1 in sm for some m ≥ 1 with some state pi ∈ P , say with weight yi. Due
to xi 6= xj , we have mxi 6= nyi or mxj 6= nyi. Since u can reach every state from P , the
state pi is thus a rival of qi or qj with witnesses u and snm. From the existence of ri and
the assumption that qi ≤ qj , we see that pi can occur prefix-independently both from qi

and from qj . This is a contradiction to the assumption that A does not satisfy the tree fork
property. It must therefore hold that x1 = . . . = x|P |.

We let x and y be the weights such that A loops s in p with weight x and in q with
weight y. Then from x 6= y it follows that nx 6= x1 or ny 6= x1, so the states qi are either
all rivals of p or all rivals of q with witnesses u and sn. We assume all qi to be rivals of p
and apply Lemma 10 to the mapping f : P → {q1, . . . , q|P |}, ri(ε) 7→ qi with a = p to obtain
qj ∈ P and m ≥ 1 such that fm(p) = qj = fm(qj). Then with s̃ = t〈� → w2v

n1〉, we see
that the Γ-word s̃m is a qj-p-fork, i.e., A satisfies condition (i) of the tree fork property. J

E. Paul 55:13

The previous lemma showed that if P is the second entry of some rival from S, states
with second entry P do not occur in the form of a triangle. The next lemma shows that even
prefix-independent occurrences are restricted to a certain degree. Namely, if we have two
rivals (p, P) and (q, P) with p ≤ q, then all occurrences of P are prefix-dependent on (p, P).

I Lemma 12. Let (p, P), (q, P) ∈ QS be rivals in S with p ≤ q. Furthermore, let t′ ∈ TΓ be
a tree, r′ ∈ RunS(t′) a run of S on t′, and w1 ∈ pos(t′) a position in t′ with r′(w1) = (p, P).
Then all positions w2 ∈ pos(t′) with π2 ◦ r′(w2) = P are prefix-dependent on w1.

Proof (Sketch). We proceed by contradiction and take (p, P), (q, P), t′, r′, w1 as in the
statement of the lemma and assume that there exists a position w2 ∈ pos(t′) which is
prefix-independent from w1 and for which π2 ◦ r′(w2) = P . We show that under these
assumptions, A satisfies condition (ii) of the tree fork property. For the rivals (p, P) and
(q, P), let u and s be as in the definition of rivals.

As we have seen in the proof of Lemma 11, the tree s|P |(u) can reach (p, P), so due to
the construction of S, it can also reach the state of r′ at w2. Thus, there exists a run of S
on the tree t = t′〈s|P |(u)→ w2〉 for which the state at w1 is (p, P) and for which the second
entry of every state at the beginning or end of an s-loop is P . We let r be the projection of
this run to the first entries of the states.

By pigeonhole principle, we find some subloop sn below w2 in r which loops in a state
p′ ∈ P . Let z be the weight of this loop and let x and y be the weights such that A loops
s in p with weight x and in q with weight y. Due to x 6= y, we have nx 6= z or ny 6= z.
Since u can reach every state from P , the state p′ is a rival of p or q with witnesses u and
sn. From the fact that r(w1) = p and the assumption that p ≤ q, we see that p′ can occur
prefix-independently both from p and from q. This is a contradiction to the assumption that
A does not satisfy the tree fork property. J

We can now prove that every run of S satisfies at least one of the following two conditions.
If (p, P) and (q, P) are rivals with p ≤ q, then for every run r on a tree t either (i) (p, P)
does not occur in r or (ii) all states with second entry P occur along a distinguished branch
of t. This property enables us to apply the idea from the word case of using markers to
indicate the first visit of a rival in a run. If u is a witness for (p, P) and (q, P) to be siblings,
there is in particular a run on u which leads to (p, P). This run then satisfies condition (ii)
and since the second entries of runs on the same tree coincide, all states with second entry
P occur along a distinguished branch of u in every run of S on u. This is true in particular
for the two rivals (p, P) and (q, P).

I Theorem 13. Let (p, P), (q, P) ∈ QS be rivals in S with p ≤ q. Then for every tree t ∈ TΓ
and every run r ∈ RunS(t) of S on t, at least one of the following two conditions holds.
(i) The state (p, P) does not occur in r, i.e., r(w) 6= (p, P) for all w ∈ pos(t).
(ii) All states with second entry P occur linearly in r, i.e., for all w1, w2 ∈ pos(t) with

π2 ◦ r(w1) = π2 ◦ r(w2) = P we have w1 ≤p w2 or w2 ≤p w1.

Proof. Let (p, P), (q, P), t, r be as in the statement of the theorem. Assume that (i) does
not hold, i.e., there is a position w ∈ pos(t) with r(w) = (p, P). Let w1, w2 ∈ pos(t) be two
positions with π2 ◦ r(w1) = π2 ◦ r(w2) = P . By Lemma 12, we see that then w1 and w2
are prefix-dependent on w. From the definition of the prefix relation, we see that if either
w1 ≤p w or w2 ≤p w, then all three positions are in prefix relation. We thus consider the
case that w ≤p w1 and w ≤p w2. In this case, we see from Lemma 11 that w1 and w2 are
prefix-dependent. J

STACS 2019

55:14 Finite Sequentiality of Unambiguous Max-Plus Tree Automata

We now construct the automaton which tracks the first occurrences of rivals, and whose
runs we distribute across multiple automata in order to separate all rivals.

I Construction 14. Let R1, . . . , Rn ⊆ QS be an enumeration of all (unordered) pairs of rivals
of S, i.e., for all i ∈ {1, . . . , n} we have Ri = {(pi, Pi), (qi, Pi)} such that (pi, Pi) and (qi, Pi)
are rivals in S and for every two rivals (p, P), (q, P) ∈ QS , we have Ri = {(p, P), (q, P)} for
some i ∈ {1, . . . , n}. Since by Lemma 9, we may assume that all rivals in A are in ≤-relation,
we assume in the following that pi and qi are named such that pi ≤ qi for all i ∈ {1, . . . , n}.

For each pair of rivals Ri, we define a set of markers by Ii = {0, |Q|+1}∪({1, . . . , |Q|}×Ri).
The set of all combined records of markers is defined by I = I1 × . . . × In. For ā ∈ I, we
denote by ā[i] the i-th entry of ā.

Intuitively, the states of our new automaton will consist of a state from S together
with a record of markers from I. However, in order to properly update markers, we need
to know in each step the records of all other runs as well. Thus, our states will be from
QS × I × P(QS × I). In order to define the transition function of our new automaton, we
first define how markers are updated. Assume we transition into the state q ∈ QS , we have
m subtrees below our current position in the tree, the runs we consider on these subtrees
have obtained markers ā1, . . . , ām ∈ I, and the sets of states we could be in on these trees,
together with their markers, are given by A1, . . . , Am ⊆ QS × I.

Every pair (p, ā) ∈ Ak corresponds to exactly one run of S on the k-th subtree together
with its markers. Since S is unambiguous, we can therefore assume that |Ak| ≤ |Q|. Also,
since āk is the marker of a run on the k-th subtree, we may assume that (QS×{āk})∩Ak 6= ∅.

For k ∈ {1, . . . ,m} and i ∈ {1, . . . , n}, we define the sets of unassigned counters Bk[i] ⊆
{1, . . . , |Q|} by Bk[i] = {1, . . . , |Q|} \ {j | ∃(p, ā) ∈ Ak with ā[i] ∈ {j} × Ri}. Then if for
all k ∈ {1, . . . ,m} we have |Ak| ≤ |Q| and (QS × {āk}) ∩ Ak 6= ∅, we define the record of
markers b̄ for our current position by (explanations below)

b̄[i] =

0 if m = 0 and q /∈ Ri

(1,q) if m = 0 and q ∈ Ri

āk[i] if k ∈ {1, . . . ,m} satisfies: āl[i] = 0 for all l 6= k and
either āk[i] 6= 0 or q /∈ Ri

(minBk[i],q) if q ∈ Ri and k ∈ {1, . . . ,m} satisfies:
āk[i] = 0 and for all l 6= k and all (p, ā) ∈ Al : ā[i] = 0

|Q|+ 1 otherwise

for i ∈ {1, . . . , n}. If |Ak| > |Q| or QS × {āk} ∩ Ak = ∅ for some k, we let b̄[1] = . . . =
b̄[n] = |Q| + 1. Note that minBk[i] in above case distinction always exists since |Ak| ≤
|Q|, (QS × {āk}) ∩ Ak 6= ∅, and in the case in question we have āk[i] = 0. We define
I(q, ā1, . . . , ām, A1, . . . , Am) = b̄.

Case 1 of the definition above means our current position is a leaf and q is not from Ri,
so we assign the dummy marker 0. Case 2 means our current position is a leaf and q is from
Ri, so we assign the marker (1,q). Case 3 means that either (1) there is exactly one subtree
below our current position which already obtained a marker different from 0 and we keep
this marker for our current position, or (2) the markers of all subtrees are 0 and q is also not
from Ri, so we continue with the dummy marker 0.

Case 4 means the markers of all subtrees below our current position are 0, the state q is
from Ri, and there is at most one subtree on which runs exist that obtained a marker for Ri.
Then, we take the smallest number which is not already used in a marker for Ri in any run
on this subtree, and use this number together with q as the marker for our current position.

E. Paul 55:15

Case 5, the “otherwise-case”, applies in two situations. This case means that either (1)
two distinct subtrees below our current position have already obtained a marker, or that (2)
all markers below our current position are 0 and q is from Ri, but we cannot apply case 4
as there are two distinct subtrees on which runs exist which obtained markers for Ri. In
other words, markers were assigned nonlinearly, and our run satisfies only condition (i) of
Theorem 13. In this case, we assign the dummy marker |Q|+ 1.

The extra case covers the situation where in case 4, the set Bk[i] would be empty. This
case is necessary to ensure our definition is formally complete, but in our applications of the
operator I it will not actually occur.

We define our “run-marking” max-plus-WTA B = (Q̃,Γ, µ̃, ν̃) as follows. We let Q̃′ =
QS × I ×P(QS × I) and let B be the trim part of the automaton B′ = (Q̃′,Γ, µ̃′, ν̃′) defined
for a ∈ Γ with rkΓ(a) = m and (p0, ā0, A0), . . . , (pm, ām, Am) ∈ QS × I × P(QS × I) by

µ̃′((p1, ā1, A1), . . . , (pm, ām, Am), a, (p0, ā0, A0)) =

µS(p1, . . . ,pm, a,p0) if ā0 = I(p0, ā1, . . . , ām, A1, . . . , Am) and
A0 = {(q0, b̄0) ∈ QS × I | ∃((q1, b̄1), . . . , (qm, b̄m)) ∈
A1 × . . .×Am with µS(q1, . . . ,qm, a,q0) 6= −∞ and
b̄0 = I(q0, b̄1, . . . , b̄m, A1, . . . , Am)}

−∞ otherwise

ν̃′(p0, ā0, A0) = νS(p0).

The automaton B is trim, unambiguous, and satisfies JBK = JAK. Furthermore, if (p, ā, A)
and (q, b̄, B) are rivals in B, we have ā[i] 6= b̄[i] for some i ∈ {1, . . . , n}.

We come to our final construction where we distribute the runs of B across multiple
automata. For every record of markers c̄ ∈ I, we construct one automaton Bc̄ which for
each pair of rivals Ri admits only runs using the markers 0 and c̄[i]. All runs in which rivals
occur nonlinearly are covered by admitting the marker |Q|+ 1. All other runs are covered by
admitting an appropriate marker from {1, . . . , |Q|} ×Ri.

I Construction 15. For every tuple c̄ ∈ I, we define a max-plus-WTA Bc̄ = (Q̃c̄,Γ, µ̃, ν̃) by
removing states from B through

Q̃c̄ = {(p, ā, A) ∈ Q̃ | for all i ∈ {1, . . . , n} it holds: if c̄[i] = |Q|+ 1 then p 6= (pi, Pi),
and if c̄[i] 6= |Q|+ 1 then ā[i] ∈ {0, c̄[i]}}.

The automata Bc̄ are unambiguous, their pointwise maximum is equivalent to the behavior
of A, and they all satisfy the twins property, which means that they can be determinized.

I Theorem 16. We have JAK = maxc̄∈IJBc̄K and for every c̄ ∈ I, the automaton Bc̄ is
unambiguous and satisfies the twins property.

We now obtain a finitely sequential representation of A by applying Theorem 2 to the
automata Bc̄. In particular, we see that the behavior of a trim unambiguous max-plus-WTA
is finitely sequential if it does not satisfy the tree fork property. This concludes the proof of
Theorem 5. J

STACS 2019

55:16 Finite Sequentiality of Unambiguous Max-Plus Tree Automata

References
1 Cyril Allauzen and Mehryar Mohri. Efficient Algorithms for Testing the Twins Property.

Journal of Automata, Languages and Combinatorics, 8(2):117–144, 2003.
2 Sebastian Bala. Which Finitely Ambiguous Automata Recognize Finitely Sequential Func-

tions? In Krishnendu Chatterjee and Jiří Sgall, editors, 38th International Symposium on
Mathematical Foundations of Computer Science (MFCS), volume 8087 of Lecture Notes in
Computer Science, pages 86–97. Springer, 2013.

3 Sebastian Bala and Artur Koniński. Unambiguous Automata Denoting Finitely Sequential
Functions. In Adrian-Horia Dediu, Carlos Martín-Vide, and Bianca Truthe, editors, 7th
International Conference on Language and Automata Theory and Applications (LATA), volume
7810 of Lecture Notes in Computer Science, pages 104–115. Springer, 2013.

4 Marie-Pierre Béal, Olivier Carton, Christophe Prieur, and Jacques Sakarovitch. Squaring
transducers: an efficient procedure for deciding functionality and sequentiality. Theoretical
Computer Science, 292(1):45–63, 2003.

5 Jean Berstel and Christophe Reutenauer. Rational Series and Their Languages. Springer,
1988.

6 Johanna Björklund, Frank Drewes, and Niklas Zechner. An Efficient Best-Trees Algorithm for
Weighted Tree Automata over the Tropical Semiring. In Adrian-Horia Dediu, Enrico Formenti,
Carlos Martín-Vide, and Bianca Truthe, editors, 9th International Conference on Language
and Automata Theory and Applications (LATA), volume 8977 of Lecture Notes in Computer
Science, pages 97–108. Springer, 2015.

7 Meera Blattner and Tom Head. Automata That Recognize Intersections of Free Submonoids.
Information and Control, 35(3):173–176, 1977.

8 Matthias Büchse and Anja Fischer. Deciding the Twins Property for Weighted Tree Automata
over Extremal Semifields. In Frank Drewes and Marco Kuhlmann, editors, Proceedings of
the Workshop on Applications of Tree Automata Techniques in Natural Language Processing
(ATANLP), pages 11–20. Association for Computational Linguistics, 2012.

9 Matthias Büchse, Jonathan May, and Heiko Vogler. Determinization of Weighted Tree Auto-
mata Using Factorizations. Journal of Automata, Languages and Combinatorics, 15(3/4):229–
254, 2010.

10 Laure Daviaud, Pierre Guillon, and Glenn Merlet. Comparison of Max-Plus Automata and
Joint Spectral Radius of Tropical Matrices. In Kim G. Larsen, Hans L. Bodlaender, and
Jean-François Raskin, editors, 42nd International Symposium on Mathematical Foundations
of Computer Science (MFCS), volume 83 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 19:1–19:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017.

11 Manfred Droste, Werner Kuich, and Heiko Vogler, editors. Handbook of Weighted Automata.
EATCS Monographs in Theoretical Computer Science. Springer, 2009.

12 Emmanuel Filiot, Ismaël Jecker, Nathan Lhote, Guillermo A. Pérez, and Jean-François Raskin.
On delay and regret determinization of max-plus automata. In 32nd Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS), pages 1–12. IEEE Computer Society, 2017.

13 Kōsaburō Hashiguchi. Algorithms for Determining Relative Star Height and Star Height.
Information and Computation, 78(2):124–169, 1988.

14 Kōsaburō Hashiguchi, Kenichi Ishiguro, and Shūji Jimbo. Decidability of The Equivalence
Problem for Finitely Ambiguous Finance Automata. International Journal of Algebra and
Computation, 12(3):445–461, 2002.

15 Daniel Kirsten. A Burnside Approach to the Termination of Mohri’s Algorithm for Polynomially
Ambiguous Min-Plus-Automata. Informatique Théorique et Applications, 42(3):553–581, 2008.

16 Daniel Kirsten. Decidability, undecidability, and PSPACE-completeness of the twins property
in the tropical semiring. Theoretical Computer Science, 420:56–63, 2012.

E. Paul 55:17

17 Daniel Kirsten and Sylvain Lombardy. Deciding Unambiguity and Sequentiality of Polynomially
Ambiguous Min-Plus Automata. In Susanne Albers and Jean-Yves Marion, editors, 26th
International Symposium on Theoretical Aspects of Computer Science (STACS), volume 3 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 589–600. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2009.

18 Ines Klimann, Sylvain Lombardy, Jean Mairesse, and Christophe Prieur. Deciding unambiguity
and sequentiality from a finitely ambiguous max-plus automaton. Theoretical Computer Science,
327(3):349–373, 2004.

19 Jan Komenda, Sébastien Lahaye, Jean-Louis Boimond, and Ton van den Boom. Max-plus
algebra in the history of discrete event systems. Annual Reviews in Control, 45:240–249, 2018.

20 Adam Koprowski and Johannes Waldmann. Max/Plus Tree Automata for Termination of
Term Rewriting. Acta Cybernetica, 19(2):357–392, 2009.

21 Daniel Krob. The Equality Problem for Rational Series with Multiplicities in the tropical
Semiring is Undecidable. International Journal of Algebra and Computation, 4(3):405–426,
1994.

22 Werner Kuich and Arto Salomaa. Semirings, Automata, Languages. Springer, 1986.
23 Filip Mazowiecki and Cristian Riveros. Pumping Lemmas for Weighted Automata. In Rolf

Niedermeier and Brigitte Vallée, editors, 35th Symposium on Theoretical Aspects of Computer
Science (STACS), volume 96 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 50:1–50:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.

24 Mehryar Mohri. Finite-State Transducers in Language and Speech Processing. Computational
Linguistics, 23(2):269–311, 1997.

25 Mehryar Mohri. Weighted automata algorithms. In Manfred Droste, Werner Kuich, and
Heiko Vogler, editors, Handbook of Weighted Automata, EATCS Monographs in Theoretical
Computer Science, chapter 6, pages 213–254. Springer, 2009.

26 Erik Paul. The Equivalence, Unambiguity and Sequentiality Problems of Finitely Ambiguous
Max-Plus Tree Automata are Decidable. In Kim G. Larsen, Hans L. Bodlaender, and Jean-
François Raskin, editors, 42nd International Symposium on Mathematical Foundations of
Computer Science (MFCS), volume 83 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 53:1–53:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017.

27 Slav Petrov. Latent Variable Grammars for Natural Language Parsing. In Coarse-to-Fine
Natural Language Processing, chapter 2, pages 7–46. Springer, 2012.

28 Michael O. Rabin and Dana S. Scott. Finite Automata and Their Decision Problems. IBM
Journal of Research and Development, 3(2):114–125, 1959.

29 Jacques Sakarovitch. A Construction on Finite Automata that has Remained Hidden. Theor-
etical Computer Science, 204(1-2):205–231, 1998.

30 Arto Salomaa and Matti Soittola. Automata-Theoretic Aspects of Formal Power Series.
Springer, 1978.

31 Marcel-Paul Schützenberger. On the definition of a family of automata. Information and
Control, 4(2–3):245–270, 1961.

32 Marcel-Paul Schützenberger. Sur les Relations Rationnelles Entre Monoïdes Libres. Theoretical
Computer Science, 3(2):243–259, 1976.

33 Helmut Seidl. On the Finite Degree of Ambiguity of Finite Tree Automata. Acta Informatica,
26(6):527–542, 1989.

34 Imre Simon. Limited Subsets of a Free Monoid. In 19th Annual Symposium on Foundations
of Computer Science (FOCS), pages 143–150. IEEE Computer Society, 1978.

35 Imre Simon. Recognizable Sets with Multiplicities in the Tropical Semiring. In Michal Chytil,
Ladislav Janiga, and Václav Koubek, editors, Mathematical Foundations of Computer Science
(MFCS), volume 324 of Lecture Notes in Computer Science, pages 107–120. Springer, 1988.

36 Johannes Waldmann. Weighted Automata for Proving Termination of String Rewriting.
Journal of Automata, Languages and Combinatorics, 12(4):545–570, 2007.

37 Andreas Weber and Helmut Seidl. On the Degree of Ambiguity of Finite Automata. Theoretical
Computer Science, 88(2):325–349, 1991.

STACS 2019

Paging with Dynamic Memory Capacity
Enoch Peserico
Univ. Padova, Italy
enoch@dei.unipd.it

Abstract
We study a generalization of the classic paging problem that allows the amount of available memory
to vary over time – capturing a fundamental property of many modern computing realities, from
cloud computing to multi-core and energy-optimized processors.

It turns out that good performance in the “classic” case provides no performance guarantees
when memory capacity fluctuates: roughly speaking, moving from static to dynamic capacity can
mean the difference between optimality within a factor 2 in space and time, and suboptimality by an
arbitrarily large factor. More precisely, adopting the competitive analysis framework, we show that
some online paging algorithms, despite having an optimal (h, k)−competitive ratio when capacity
remains constant, are not (3, k)−competitive for any arbitrarily large k in the presence of minimal
capacity fluctuations.

In this light it is surprising that several classic paging algorithms perform remarkably well even
if memory capacity changes adversarially – in fact, even without taking those changes into explicit
account! In particular, we prove that LFD still achieves the minimum number of faults, and that
several classic online algorithms such as LRU have a “dynamic” (h, k)−competitive ratio that is the
best one can achieve without knowledge of future page requests, even if one had perfect knowledge
of future capacity fluctuations. Thus, with careful management, knowing/predicting future memory
resources appears far less crucial to performance than knowing/predicting future data accesses.

We characterize the optimal “dynamic” (h, k)−competitive ratio exactly, and show it has a
somewhat complex expression that is almost but not quite equal to the “classic” ratio k

k−h+1 , thus
proving a strict if minuscule separation between online paging performance achievable in the presence
or absence of capacity fluctuations.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases paging, cache, adaptive, elastic, online, competitive, virtual, energy

Digital Object Identifier 10.4230/LIPIcs.STACS.2019.56

Related Version Some of these results were presented at the poster session of SIGMetrics’13 [25].
An older version of this work can be found on arXiv [26].

Acknowledgements We are indebted to Federica Bogo and Michele Scquizzato for their relentless
encouragement and a number of fruitful discussions on this topic; and to the anonymous referees of
STACS 2019 for their insightful, in-depth review of our work.

1 Introduction

This work examines a generalization of the classic paging problem that allows the amount of
available memory to vary over time. After briefly reviewing the paging problem (Subsec-
tion 1.1) this section motivates paging with dynamic capacity (Subsection 1.2) and provides
an overview of our results and of the organization of the rest of the article (Subsection 1.3).

1.1 The paging problem
The memory/data storage system of modern computing devices is almost always organized
as a hierarchy of several layers of progressively larger capacity but also higher access cost
(in terms of both time and energy); efficiently orchestrating the flow of information across

© Enoch Peserico;
licensed under Creative Commons License CC-BY

36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019).
Editors: Rolf Niedermeier and Christophe Paul; Article No. 56; pp. 56:1–56:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:enoch@dei.unipd.it
https://doi.org/10.4230/LIPIcs.STACS.2019.56
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

56:2 Paging with Dynamic Memory Capacity

the memory hierarchy is crucial for performance. The most widely used model for studying
this paging problem is that of a two-layer system: a smaller memory layer with a capacity
of k pages (data blocks), and a larger layer of infinite capacity whose pages can only be
accessed by first copying them into memory – an operation termed a (page) fault. Given any
sequence of pages that must be accessed in order, an algorithm for the paging problem must
choose which page(s) to “evict” from memory, whenever a new page must be copied into it,
so as to minimize the total number of faults.

The simple algorithm LFD (Longest Forward Distance) that evicts the page accessed
furthest in the future has long been known to be optimal [4]. However, paging is often studied
as an online problem, i.e. an algorithm can decide evictions only on the basis of past requests.
A popular framework for evaluating the performance of online paging algorithms is that
of competitive analysis [20]. A paging algorithm is said to have an (h, k)−competitive ratio
of (no more than) ρ if, for every request sequence, it incurs in expectation with a memory
of capacity k at most ρ times as many faults as an optimal offline algorithm incurs with a
memory of capacity h ≤ k, plus a number of faults independent of the request sequence. The
ratio k

h is called the resource augmentation. Resource augmentation and competitive ratio
capture, respectively, the space and access cost overheads incurred by an online algorithm.

Many simple, deterministic algorithms including LRU1, FIFO2, FWF3 and CLOCK4

have an (h, k)-competitive ratio of k
k−h+1 [30, 8]; and the same ratio holds for RAND5 [29].

This ratio is optimal for deterministic algorithms, and even for randomized ones if page
requests can depend on previous choices of the paging algorithm (the “adaptive adversary”
model [29] which we adopt throughout the article6). Since k

k−k/2+1 < 2, many simple online
algorithms never fare worse than the optimal offline algorithm would on a memory system
with half the capacity and twice the access cost. This justifies the use of competitive analysis
for preliminary performance evaluation of paging algorithms. Its “worst-case” approach may
be somewhat pessimistic, but it is not overly so for many popular online paging algorithms –
for which it provides guarantees of performance within a factor 2 of the optimal under any
workload (in terms of faults and required memory capacity). In contrast, the finer granularity
evaluation provided by experimental benchmarking is inevitably tied to specific workloads.

[8] and [10] provide two excellent surveys of the many variants of competitive analysis
for the paging problem: these include somehow limiting the choice of the adversarial
request sequence [9, 13, 14, 21], amortizing the performance evaluation over a spectrum of
sequences [1, 2, 5] or of memory capacities [32], considering pages of different size and access
cost [19, 32], and accounting for the non-zero cost of non-fault requests [31].

1 Least Recently Used – evict the least recently accessed page.
2 First In First Out – evict the page brought least recently into memory.
3 Flush When Full – evict all pages whenever memory is full and space is needed.
4 Mark any page accessed; to evict a page, cycle through pages, unmarking those found marked and

evicting the first found unmarked.
5 Evict a page chosen uniformly at random.
6 More precisely, in the online adaptive adversary model, the choices of the reference offline algorithm can

depend only on the past random choices of the online algorithm; in the offline adaptive adversary model
they can depend on the random choices of the online algorithm over the entire request sequence. The
bounds above – and in fact all the bounds in this article – hold for both models, with one exception:
the upper bound on the competitive ratio of RAND above, and the corresponding upper bound we
provide for RAND in Theorem 10, only hold in the adaptive online model.

E. Peserico 56:3

1.2 Memory capacity often varies over time

In all variants of the paging problem, until a few years ago memory capacity was always
fixed throughout the request sequence. This no longer reflects many computing realities. In
a cloud computing environment, the amount of physical memory available to an individual
virtual machine varies considerably over time depending on the virtual machine’s load and
on the number, load and relative class of service of other virtual machines hosted on the
same hardware. Even on a simple PC, most modern operating systems have and use the
option of declaring some critical virtual pages temporarily “unswappable”, pinning them in
main memory and thus reducing the amount of main memory available to user processes.
Memory fluctuations also take place when considering the cache-RAM interface – in which
case memory represents cache memory and pages represent cache lines. In many multi-core
processor designs cache capacity is partitioned dynamically between different cores [28]. And
low-power chip designs can often dynamically disable underutilized portions of the cache to
save energy [18], again resulting in a capacity that can vary over time.

Note that, although there exists a large body of work on servicing the same request
sequence with a policy that is simultaneously “good” on memories of different [32] and
perhaps unknown [15] but unchanging capacity, allowing capacity to vary dynamically during
the course of the computation is an entirely different problem; as we shall see, a solution to
the former does not guarantee even an approximate solution to the latter.

A seminal work considering memory fluctuations in a hierarchical memory system is [3],
that presents efficient algorithms for problems such as sorting or FFT assuming each algorithm
can explicitly choose which pages to keep in memory. A slightly different approach is that
taken by the recent literature on cache-adaptive algorithms for sorting, FFT and many other
problems [6, 7], where management of the memory is devolved to an “automatic optimal” page
replacement policy; the choice is justified by showing that a LRU policy is O(1)-competitive
with O(1) resource augmentation.

Our work instead focuses on the page replacement policy itself, assuming as in classic
paging that the request sequence is provided by an adversary. The adversary also controls
how memory capacity fluctuates between 1 and k pages; these fluctuations may be either
known beforehand to the paging algorithm (an “offline” problem), or unknown until they take
place (an “online” problem). We stress that, when comparing different paging algorithms, we
take a slightly different approach from that of [7]: we assume identical/proportional memory
capacity when servicing the same page request, whereas [7] assumes identical/proportional
capacity after an identical/proportional number of faults. As [7] itself notes when referencing
this work (the preliminary version of which predates [7]), both models are natural and reflect
a different emphasis on what may initiate capacity changes.

Another related, but fundamentally different, paradigm is that of RAM rental [11, 23],
where memory capacity fluctuates under control of the paging algorithm and the goal is to
minimize a linear combination of average capacity and fault rate over time. In practice there
are very strong constraints on the set of admissible capacity values, on how they can change
over time, and on their relative costs (which may themselves fluctuate). Also, a number of
architectural approaches (e.g. [12]) decouple the portion of the system responsible for page
replacement from that responsible for capacity allocation. Then, assuming as we do that
capacity fluctuations are not controlled by the paging algorithm (in fact, that they may be
unknown beforehand and even chosen adversarially) leads to a more robust evaluation of
page replacement policies.

STACS 2019

56:4 Paging with Dynamic Memory Capacity

1.3 Our results
The rest of this article is organized as follows. Section 2 introduces some formalism and
terminology. In particular, it extends the notion of “online vs. offline” problem to encompass
the extra dimension of future memory capacity, and it extends the notion of (h, k)−resource
augmentation to the dynamic capacity scenario (in a nutshell, restricting the offline algorithm
to at most a fraction h

k of the online algorithm’s current memory capacity).
Section 3 shows the existence of online paging algorithms that have an (optimal)

(h, k)-competitive ratio of k
k−h+1 in the “classic” paging model, and yet are no longer

(3, k)−competitive for any arbitrarily large k if their memory capacity is subject to single
page fluctuations. This very negative result provides strong justification for our inquiry, as
one cannot infer performance in the presence of (even minimal) memory fluctuations from
performance in their absence.

In this light, it is surprising that many well-known algorithms perform remarkably well
in the presence of memory fluctuations even if those fluctuations are chosen adversarially.
In Section 4 we show that the classic LFD algorithm remains strictly optimal for all possible
memory capacity fluctuations even though it does not explicitly take those fluctuations into
account (i.e. it is an online algorithm in terms of memory fluctuations). We also show that
in the dynamic capacity framework every online algorithm that is either marking [14] like
LRU, FWF or MARK7, or dynamically conservative (a simple refinement of the notion of
“conservative algorithm”[33]), like LRU, CLOCK or FIFO, has an (h, k)−competitive ratio
no larger than ρEL(h, k) = maxk′≤k,k′∈N

k′

k′−bh k′
k −

h
k c

8. Exactly the same bound holds for
RAND (against an online adaptive adversary).

Section 5 analyses ρEL(h, k). We show that it is a lower bound to the (h, k)−competitive
ratio achievable by any online paging algorithm in the presence of memory fluctuations,
proving the optimality of marking and dynamically conservative algorithms. We also
show that ρEL(h, k) almost, but not quite, matches the “classic” bound of k

k−h+1 on the
(h, k)−competitive ratio. More precisely, ρEL(h, k) is always less than (1 + 1

k) times the
classic k

k−h+1 ratio – and if h > k −
√
k the two quantities actually coincide. However,

ρEL(h, k) is also at least 1 + (1
k −

2
k2) times as large as k

k−h+1 for any odd h and k = 2h,
which proves a strict if minuscule separation between performance achievable in the presence
and absence of memory fluctuations.

Section 6 briefly looks at the implications of our results for the RAM rental problem. In a
nutshell, since many simple replacement are near optimal regardless of capacity fluctuations,
RAM rental is simplified into the problem of just choosing a “good” capacity sequence
without worrying about replacement.

Finally, Section 7 summarizes our results and looks at their significance and at possible
directions of future work.

2 Some formalism/terminology

We can easily extend the notion of request sequence σ = r1, r2, . . . to the case of memory
fluctuations. We simply assume that, interleaved with standard page requests, it is possible
to have two additional types of requests, growths and shrinks. On a growth, memory capacity
increases by 1 page; on a shrink, it decreases by 1 – and if the memory was full a page must

7 Mark any page accessed; evict a random unmarked page, first unmarking all pages if all are marked.
8 The “EL” in ρEL stood for “elastic” in an early, poster version of this work titled “Elastic paging” [25].

E. Peserico 56:5

be evicted. We assume that initially memory capacity is 0. Throughout the rest of the
article, we denote a growth request by the symbol + and a shrink request by the symbol −,
and we denote k consecutive growths / shrinks by +k and −k. Thus, a standard request
sequence p1, . . . , pn on a memory of capacity k simply becomes +k, p1, . . . , pn in the more
general dynamic capacity framework.

The request sequence automatically induces a page sequence π =< p1, p2, · · · > (the
sequence of requested pages p1, p2, . . . , as in the classic paging problem) and a capacity
sequence µ = m1,m2, . . . where mi is the memory capacity immediately before the request
for pi (i.e. it is equal to the number of +s minus the number of −s in the request prefix
ending with pi). Note that the presence of growths and shrinks introduces a second aspect
of “onlineness”. More formally:

I Definition 1. A paging algorithm ALG is online relative to the page sequence if its eviction
choices before servicing a request are independent of any future page requests; otherwise it is
offline relative to the page sequence. Similarly, ALG is online relative to the capacity sequence
if its eviction choices before servicing a request are independent of any subsequent growths
and shrinks; otherwise it is offline relative to the capacity sequence. ALG is a fully online,
partially offline and fully offline paging algorithm if it is online relative to (respectively) both,
one, or neither of the page and the capacity sequence.

Thus, in the dynamic capacity model, all well-known paging algorithms such as LRU,
FIFO, FWF, CLOCK, RAND and MARK are fully online, and LFD is partially offline, being
offline relative to the page sequence but online relative to the capacity sequence.

We can easily extend the notion of (h, k)−competitive ratio to the dynamic capacity
model by comparing the cost (i.e. number of faults) incurred by an online algorithm whose
memory capacity never exceeds k to the cost incurred by an offline algorithm whose memory
capacity never exceeds h

k times that of the online algorithm. More formally, denote by OPT
the optimal offline algorithm, and by cALG(π, µ) the cost incurred by an algorithm ALG
when servicing a page sequence π = p1, . . . , pn with a capacity sequence µ = m1, . . . ,mn.
Also, given a capacity sequence µ = m1, . . . ,mn and a non-negative number a, denote by
ba · µc the capacity sequence m′1, . . . ,m′n with m′i = ba ·mic. Then:

I Definition 2. A paging algorithm ALG has a dynamic (h, k)−competitive ratio of (at
most) ρ if there exists some constant d such that, for any page sequence π = p1, . . . , pn and
any capacity sequence µ = m1, . . . ,mn such that, ∀i, mi ≤ k:

cALG(π, µ) ≤ ρ · cOPT (π, bh
k
· µc) + d

Note that the dynamic (h, k)−competitive ratio of an algorithm is always an upper
bound to its (h, k)−competitive ratio. Thus online paging with dynamic capacity is in some
sense “harder” than classic online paging, and no online algorithm can have a dynamic
(h, k)−competitive ratio lower than the “classic” ratio k

k−h+1 .

3 Minimal capacity fluctuations can lead to arbitrarily large
performance degradation

This section shows that there exist online paging algorithms that do not depend explicitly
on memory capacity, and that have an optimal (h, k)-competitive ratio in the classic setting
of fixed memory capacity, but are not competitive at all, even with arbitrary resource
augmentation, when faced with even slight fluctuations in memory capacity. Consider the

STACS 2019

56:6 Paging with Dynamic Memory Capacity

online paging algorithm LFRU (Least Frequently / Recently Used) that starts as LRU and
then alternates between LFU and LRU – switching from LRU to LFU after any palindrome
subsequence incurring more faults in its second half, and switching from LFU to LRU after
any palindrome subsequence incurring more faults in its first half:

Algorithm 1 LFRU: service p0, . . . , pn as follows.
at p0 POLICY ← LRU

for i = 1 . . . n do

if at pi POLICY = LRU AND ∃j < i:
< pj . . . pi > is palindrome AND faults(pj . . . pb i+j

2 c
) < faults(pd i+j

2 e
. . . pi)

then at pi+1 POLICY ← LFU

else if at pi POLICY = LFU AND ∃j < i:
< pj . . . pi > is palindrome AND faults(pj . . . pb i+j

2 c
) > faults(pd i+j

2 e
. . . pi)

then at pi+1 POLICY ← LRU

end for

We would convince the reader that LFRU, while undoubtedly artificial and difficult to
implement in practice, is not too different from many real-world paging heuristics designed for
static memory capacity (note that the behaviour of LFRU, like that of LRU and LFU, does
not depend explicitly on memory capacity). In fact, pure LRU tends to be outperformed in
practice by various LRU/LFU hybrids [22, 24]. The main reason is the common coexistence
of “local” or “temporal” computations sporting a high degree of temporal locality and data
reuse, and “streaming” computations that access long sequences of sequential data without
any temporal locality. In such cases, under LRU and similar policies such as CLOCK,
streaming data not only gain no benefit from being kept in the fast memory layer (since
every new access is a fault) but actively pollute it, forcing the eviction of temporal data and
preventing the temporal computation from deriving more than a minimal benefit from the
fast memory layer. One possible solution is to combine LRU with eviction schemes biased,
like LFU, against data that have no reuse history even if their last (and only) access was
very recent. And since LRU performs best when future requests are a “mirror image” of the
past, it may seem reasonable to switch to it when such palindrome sequences sport good
data-reuse behaviour, and switch to LFU when such palindrome sequences exhibit sport poor
data-reuse behaviour – which is what LFRU does.

It turns out that LFRU has an optimal (h, k)−competitive ratio in the classic paging
model where memory capacity is fixed. At the same time, even if faced with capacity
fluctuations of just a single page, and even if allowed the use of an arbitrarily large amount
of memory, LFRU’s fault rate can be arbitrarily larger than that of an offline algorithm
running with just 3 pages of memory. More formally we prove:

I Theorem 3. LFRU has an (h, k)−competitive ratio equal to k
k−h+1 if memory capacity is

constant, but has no finite dynamic (h, k)−competitive ratio for any h ≥ 3 and any arbitrarily
large k.

Proof. Let us first prove that LFRU has an (h, k)−competitive ratio equal to k
k−h+1 if

memory maintains an arbitrary but fixed capacity k. We need only prove that, as long as
LFRU keeps behaving as LRU, on no page request sequence a palindrome subsequence incurs
more faults in its second half: then LFRU keeps behaving exactly as LRU and shares its
(h, k)-competitive ratio of k

k−h+1 .

E. Peserico 56:7

Consider a palindrome page subsequence π = pi1 , . . . , pi` , pi` , . . . , pi1 of even length 2`,
containing λ ≤ ` distinct pages p1, . . . , pλ. Note that, if λ ≤ k, by the end of the first half of
π the λ most recently requested pages are pi, . . . , pλ, which are then in memory and prevent
any fault from taking place during the second half of π. Then, we need only consider the
case λ > k.

Let us focus on the first half of π. For each distinct page, we analyse separately the first
request to it (which we call a cold request), and the remaining requests, if any (which we
call hot requests). The ith cold request is certainly a fault for any i > k, since at least k
distinct pages have been requested before it in pi1 , . . . , pi` ; so the number of cold requests
incurring faults is at least `− k. Let us now look at hot requests, and let ri be the number
of hot requests of pi in the first half of π. For 1 ≤ i ≤ λ and 1 ≤ j ≤ ri, let Dj

i be the set of
distinct pages requested between the jth hot request for pi and the previous request for pi,
inclusive (so Dj

i always includes pi). Then the jth hot request to pi is a fault if and only if
|Dj

i | > k, and the total number of faults in pi1 , . . . , pi` is:

f
1
2
π ≥ (`− k) + |{(i, j) : |Dj

i | > k}| (1)

Let us now focus on the second half of π. Again, we divide requests for any distinct page
into a cold request (the first) and hot requests (subsequent ones, if any). The first k cold
requests of pi` , . . . , pi1 are for the last k distinct pages requested in pi1 , . . . , pi` , which are
then present in memory at the beginning of pi` , . . . , pi1 . So in pi` , . . . , pi1 none of the first k
cold requests incurs a fault, yielding and at most λ− k faults on cold requests. Let us now
look at the hot requests of pi` , . . . , pi1 ; those for pi are obviously ri, as in the first half of π.
For 1 ≤ i ≤ λ and 1 ≤ j ≤ ri, let D̄i

j be set of distinct pages between the jth hot request for
pi and its previous request, including pi itself; then the jth hot request for pi is a fault if and
only if |D̄j

i | > k, and the total number of faults in pi` , . . . , pi1 is:

f̄
1
2
π ≤ (`− k) + |{(i, j) : |D̄j

i | > k}| (2)

It is crucial to observe that, since π is palindrome, D̄i
j = Di

ri−j+1. Then |{(i, j) : |D̄j
i | >

k}| = |{(i, j) : |Dj
i | > k}| and f

1
2
π ≥ f̄

1
2
π . The analysis is virtually identical for palindrome

subsequences of odd length; and thus with static memory capacity LFRU incurs no more
faults on the second half of any palindrome subsequence than in the first half and has an
(h, k)−competitive ratio equal to k

k−h+1 .
To prove that LFRU can incur arbitrarily more faults than an optimal offline algorithm

OPT when memory capacity fluctuates – even if OPT is limited to a capacity fluctuating
between capacity 3 and 2, while LFRU’s fluctuates between 3m and 3m− 1 for an arbitrarily
large m – we show how LFRU can be coaxed into, and kept in, LFU behaviour, and how
that behaviour can result in arbitrarily more faults than OPT even with arbitrarily larger
capacity.

Denoting by rm the concatenation of m consecutive copies of r, consider a page sequence
formed by a prefix π1 =< p1, p2, p

`
3 . . . , p

`
3m, p1, p2, p3, . . . , p3m, p3m, . . . , p2, p1 > followed by

a suffix p2 = (p2, p1)`−1. Assume LFRU’s memory capacity while servicing π1 remains equal
to 3m except for the last 3m requests, during which it drops by 1 to 3m− 1; and assume it
then remains equal to 3m− 1 while servicing π2. It is immediate to see that when capacity
drops p1 is evicted, and that the last 6m requests of π1 form a palindrome subsequence
experiencing a fault (only) on the last request. Thus, on that request, LFRU switches to
LFU behaviour, and evicts p2 (which, like p1, has experienced `− 1 fewer requests than every
other page pi, i ≥ 3). Then LFRU services π2 = (p2, p1)`−1 with memory capacity 3m− 1

STACS 2019

56:8 Paging with Dynamic Memory Capacity

by alternatively evicting p2 and p1 in turn, since p1 and p2 remain until the end of π2 the
two pages having experienced the fewest requests so far; thus LFRU incurs at least 2`− 2
faults to service π2.

An optimal algorithm (or even just LRU) with memory capacity 3 throughout all but
the last 3m requests of π1, and with memory capacity 2 thereafter, would instead incur no
more than 3m+ 3m+ 3m = 9m faults during π1, and no faults at all during π2 (retaining
only p1 and p2 in memory). Thus, since ` can be chosen arbitrarily larger than m, LFRU
cannot have a finite (3, 3m)−competitive ratio for any arbitrarily large m. J

4 Dealing with adversarial fluctuations efficiently – and “implicitly”

In the light of Theorem 3 it may be surprising that many well-known “good” paging algorithms
still perform remarkably well in the dynamic capacity setting – even though they do not take
memory fluctuations into explicit account. It is very easy to prove:

I Theorem 4. LFD incurs the minimal number of faults on any request sequence.

Proof. We can safely ignore algorithms leaving unoccupied space in memory after an eviction,
as such an eviction could be delayed without incurring additional faults. Let a page be
close if it will be accessed before another page currently in memory, far otherwise. LFD is
the algorithm evicting no close pages. We prove the theorem showing that one can always
eliminate the earliest close eviction without altering previous evictions or increasing the
number of faults.

Let p be the close page evicted earliest, at time t, by an algorithm ALG servicing a request
sequence. Consider the algorithm ALG that operates as ALG until t, when it instead evicts
a far page p, and then operates as follows. Denote by M and M the sets of pages respectively
in ALG’s and ALG’s memory. When both ALG and ALG must incur an eviction, ALG
evicts the same page as ALG if possible; otherwise, when ALG must incur an eviction, it
evicts a page not in M (as soon as M = M , ALG and ALG coincide). After t, let t′ be the
time of the first request or eviction of either p or p. Until t′ ALG and ALG incur exactly
the same faults and evictions, and thus M \M = {p} and M \M = {p}. At t′ ALG evicts p
if and only if ALG evicts p – in which case M and M converge. Otherwise p is requested at
t′ and ALG, but not ALG, incurs a fault; and since ALG never evicts a page unless ALG
also has evicted it, |M \M | never increases after t, and drops to 0 no later than the first
fault incurred by ALG and not by ALG. In both cases ALG incurs no more misses than
ALG. J

It is interesting to note that Theorem 4 yields as an immediate corollary Theorem 4.1
in [17] – in a nutshell, for a given, dynamically changing, partition of the memory space
between different processes, using LFD for each process on its own partition yields the
minimum total number of faults. It is not, however, immediately obvious that the result
in [17] implies the thesis of Theorem 4. Furthermore, the result in [17] is only stated, and
not proved – the proof is deferred to the full version of the article because of its complexity
compared to the “classic” proof of LFD’s optimality.

Let us now focus on online paging algorithms. It turns out that the dynamic (h, k)−compe-
titive ratio achievable by many well-known online algorithms is almost, but not quite, as
good as the “plain” (h, k)−competitive ratio k

k−h+1 – and in particular equal to:

ρEL(h, k) = max
k′≤k,k′∈N

k′

k′ − bhk′

k −
h
k c

E. Peserico 56:9

The formula for ρEL is more complex, but vaguely reminiscent of the formula for the
“classic” (h, k)-competitive ratio; and indeed it is easy to verify that for h = k both equal k.
A detailed analysis of the behaviour of ρEL, including a proof that it is a lower bound on the
dynamic (h, k)−competitive ratio of any online algorithm, can be found in the following Sec-
tion 5. The remainder of this section is devoted to proving that a dynamic (h, k)−competitive
ratio ρEL(h, k) is indeed achieved by all marking algorithms9 (including MARK, LRU and
FWF), by RAND, and by all dynamically conservative algorithms. The latter form a class
of algorithms that is slightly narrower than that of conservative algorithms10[33] but still
includes LRU, FIFO and CLOCK. The cornerstone of the analysis lies in the notion of short
subsequence, which is the “correct” extension of the concept of k−phase to dynamic capacity:

I Definition 5. Given a generic (sub)sequence of consecutive requests, its width is the
number of distinct pages in it.

I Definition 6. Consider a generic request sequence σ, and a subsequence σ′ of consecutive
requests in σ (including page requests, growths and shrinks). σ′ is short if, for every prefix π
of σ′, the width of π does not exceed the memory capacity at the end of π.

I Definition 7. A dynamically conservative algorithm never incurs more than w faults on
any short subsequence of width w.

Note that a dynamically conservative algorithm is also always a conservative algorithm
according to the definition of [33] since with a memory of fixed capacity k every short
subsequence involves access to at most k pages, and thus incurs at most k faults. The
converse is not true: LFRU from Section 3 is conservative but not dynamically conservative.
However, we can easily prove:

I Theorem 8. LRU, FIFO and CLOCK are dynamically conservative.

Proof. It is not difficult to verify that all three algorithms have the following property: if a
page p is brought into memory at time t, and a page p′ already in memory at time t and is
never accessed again, then p′ will be evicted before p. This holds for LRU because p is more
recently accessed than p′. It holds for FIFO because p′ entered the memory before p. It holds
for CLOCK because after t the unmark/evict process will encounter p′ before encountering p
– thus either evicting or at least unmarking p′ before unmarking p, and thus certainly evicting
it before evicting p. Then none of the three algorithms evicts a page accessed during a short
sequence before the end of the sequence (since there is always sufficient memory to hold all
pages accessed during the sequence), and thus none can incur more faults than the width of
the sequence. J

The main result of this section is then:

I Theorem 9. The dynamic (h, k)−competitive ratio of any online paging algorithm that is
either marking or dynamically conservative is no larger than ρEL(h, k).

Proof. Let us begin with marking algorithms. The proof bears some resemblance to that
of the static case, with a number of subtle but profound differences. One such difference is
that, instead of partitioning the request sequence into maximal length phases each involving

9 A marking algorithm marks a page in memory whenever it accesses it, never evicts a marked page, and
unmarks all pages if all are marked and one must be evicted (e.g. in response to a fault or a shrink).

10A conservative algorithm never incurs more than k faults on a sequence of accesses involving at most k
distinct pages and a memory of capacity k.

STACS 2019

56:10 Paging with Dynamic Memory Capacity

access to k distinct pages, we partition it into maximal short sequences π1, . . . , πn where
πi is the longest short sequence beginning immediately after the end of πi−1. Furthermore,
the strategy of analysing each short subsequence in isolation does not work, and we can
only bound the ratio over the whole sequence, through careful accounting and a potential
argument.

Denote by wi the width of πi. We can assume without loss of generality that the request
sequence ends with a page request, so wi > 0 ∀i. Note that, for i > 1, the first request πi,1
of πi must be either a shrink or a request for a page not in πi−1; in the first case we say that
πi−1 is capacity bound, in the second that it is page bound.

It is easy to verify by simultaneous induction the following claims hold for all i:
1. All pages in memory are unmarked when πi,1 is serviced.
2. Every one of the wi pages accessed during πi (and no other page) remains marked and

thus in memory until the end of πi.
3. Immediately before πi+1,1 is serviced, the memory is full and holds wi pages, all marked.

Claim 1 holds trivially for i = 1. If Claim 1 holds for i, Claim 2 also holds for i, since
until the end of πi the memory is large enough to accommodate all pages accessed so far
during πi, which are the only ones marked. If Claim 2 holds for i, Claim 3 also holds for i,
since immediately before πi+1,1 is serviced the memory capacity exactly matches the number
of distinct pages accessed in πi. If Claim 3 holds for i, Claim 1 holds for i+ 1 (proving the
inductive step), since the first request of πi+1 must be either a shrink or a request for a page
not in πi, and thus causes all pages in memory to become unmarked.

From Claim 2 it is obvious that a marking algorithm incurs a number of faults at most
equal to wi during short sequence πi, for a total number of faults equal to at most:

cALG ≤
n∑
i=1

wi (3)

Let us compute the number of faults incurred by any other algorithm ALG with a
memory of capacity at most h

k times that of the marking algorithm, in the interval π′i from
immediately after the first request σ of πi is serviced, to immediately after the first request
of πi+1 is serviced or to the end of the request sequence if i = n. Let ri be equal to 1 if πi
is page bound, and to 0 if it is capacity bound, for 1 ≤ i < n, and let r0 = 0 and rn = 0.
Remember that the first request of a short phase πi is a shrink if πi−1 is capacity bound,
and a page not in πi−1 if πi−1 is page bound – and a growth if i = 1. Denoting by w′i the
number of distinct pages in π′i after removing the page involved in the first request of πi if
any (i.e. if πi−1 is page bound), we can then write for 1 ≤ i ≤ n:

w′i = −ri−1 + wi + ri (4)

The subset of these pages in the memory of ALG immediately before servicing the first
request of π′i is then at most:

mi =
{

0 if i = 1,
bhk (wi−1 − 1)c if i > 1.

(5)

Equation 5 is immediate if i = 1 or if πi−1 is capacity bound - since then the first
request of πi shrinks the memory available to ALG from wi−1 to wi−1 − 1. If instead
πi−1 is page bound, of the bhkwi−1c pages ALG’s memory can hold, one must be the first

E. Peserico 56:11

page of πi that has just been requested and that does not contribute to mi – leaving only
bhkwi−1c− 1 ≤ bhk (wi−1− 1)c. Then the total number of faults incurred by ALG is at least:

∑
(w′i −mi) ≥

n∑
i=1

(−ri−1 + wi + ri)−
n∑
i=2
bh
k

(wi−1)− 1)c ≥
n∑
i=1

(wi − b
h

k
(wi − 1)c) (6)

Remembering that both wi and wi − bhk (wi − 1)c with h ≤ k are positive, and that
∀a, b, c, d > 0 we have that a+b

c+d = c
c+d ·

a
c + d

c+d ·
b
d ≤ max(ac ,

b
d), the dynamic (h, k)−competi-

tive ratio of ALG is at most:∑n
i=1 wi∑n

i=1(wi − bhk (wi − 1)c)
≤ max

i

wi

wi − bhk (wi − 1)c
≤ max
k′∈{1,...,k}

k′

k′ − bhk′

k −
h
k c

(7)

This proves the theorem for marking algorithms. The proof for dynamically conservative
algorithms proceeds identically, except for the fact that in this case one can immediately
obtain, from Definition 7, the bound given by Equation 3 on the cost incurred by the online
algorithm. J

The analysis of RAND faces similar difficulties similar to those in the proof of Theorem 9
in terms of “compartimentalization of costs”; but they can be addressed in a different way
due to the randomized nature of the algorithm, by exploiting its lack of memory. In this
sense it may be somewhat surprising that exactly the same bound obtained in Theorem 9
also applies to RAND, particularly because in the (very slightly different) cache-adaptive
model RAND is not competitive at all, regardless of resource augmentation11. Instead, we
prove:

I Theorem 10. RAND’s dynamic (h, k)−competitive ratio is no larger than ρEL(h, k) in
the adaptive online adversary model.

Proof. We cannot apply the “classic” paging analysis of RAND due to the fact that, if h < k,
cache shrinks may not be “synchronized” and RAND may incur shrinks when the optimal
offline algorithm OPT does not. Instead of comparing the number of faults cRAND and
cOPT incurred, respectively, by RAND and OPT, we then begin by comparing the number
of page evictions eRAND and eOPT . For simplicity, assume that, after any given request (for
a page, or for a capacity change), the request is served in the following order. OPT performs
any page eviction; then it loads into memory any requested page not yet there; then RAND
does the same; finally, OPT adjusts its memory capacity, and then RAND does the same.
Note that since capacity is adjusted one page at a time (see Section 2), evictions are always
performed one page at a time.

Let the garbage of RAND at any given point in time be the set G of pages in its memory
and not in the memory of OPT. First of all, note that G can increase only when OPT incurs
an eviction (and at most by 1 page for each eviction), since RAND never brings into memory
a page not requested by OPT – which at that point must then be in OPT’s memory.

11This can be easily seen by the reader familiar with the cache-adaptive model. Consider, for an arbitrarily
large c ≥ 2, the memory sequence p2c, . . . , p0, (p1, p0)3c2

. OPT can service the sequence with memory 2
incurring only 2c+ 1 faults. RAND with memory 2c has a non-zero probability of evicting p1 on every
request for p0 and viceversa, and thus incurring more than 3c2 > (2c+ 1)c faults – so in the worst case
it completes the sequence after OPT even with the advantage of c−speed and c−memory augmentation.
While this simple example leverages the worst-case accounting of the standard cache-adaptive model,
even more sophisticated accounting “in expectation” faces similar difficulties – informally because in
the cache-adaptive model even a minuscule probability of missing a shrink deadline can be catastrophic.

STACS 2019

56:12 Paging with Dynamic Memory Capacity

Immediately before RAND incurs an eviction, its memory must be full; denote by k′ and
h′ the memory capacity of RAND and OPT at that point. If the eviction is the result of a
shrink, then the number of pages in RAND’s memory that are not garbage are at most:

h′ = bh
k

(k′ − 1)c (8)

Note that at this point OPT has adjusted its memory capacity to the shrink but RAND
has not. If the eviction is the result of a page fault, then the requested page at this point is
in OPT’s memory but not in RAND’s, and the number of pages in RAND’s memory that
are not garbage are at most:

h′ − 1 = bh
k
k′c − 1 ≤ bh

k
(k′ − 1)c (9)

Thus the probability that, when RAND incurs an eviction, |G| decreases by 1 is at least:

pRAND = min
k′∈{1,...,k}

k′ − bhk (k′ − 1)c
k′

(10)

and at any given time we have that, in expectation:

|G| ≤ eOPT − eRAND · pRAND (11)

Appending to any request sequence sufficient shrinks to bring RAND’s memory capacity
to 0 obviously brings |G| to 0, without increasing the number of faults incurred by RAND
or OPT . For any algorithm that evicts a single page at a time, when the memory holds no
pages the number of faults and evictions incurred must coincide. Setting |G| to 0, as well
as cOPT = eOPT and cRAND = eRAND, in Equation 11 then yields for RAND a dynamic
(h, k)−competitive ratio equal at most to:

cRAND
cOPT

≤ 1
pRAND

= max
k′∈{1,...,k}

k′

k′ − bhk′

k −
h
k c

(12)

J

5 An exact characterization of the competitive ratio

The upper bound ρEL(h, k) obtained in Section 4 for the dynamic (h, k)−competitive ratio
of many online paging algorithms is actually tight. In fact, no paging algorithm that is online
relative to the page request sequence can achieve a better (h, k)−competitive ratio, even if it
has from the start full knowledge of the entire capacity sequence. More formally we can prove:

I Theorem 11. No paging algorithm that is online relative to the page sequence has a dynamic
(h, k)−competitive ratio (against any online or offline adaptive adversary if randomized)
lower than:

ρEL(h, k) = maxk′∈{1,...,k}
k′

k′ − bhk′

k −
h
k c

Proof. Let k = argmaxk′∈{1,...,k}
k′

k′−bh k′
k −

h
k c
, and let ALG be a generic paging algorithm

online relative to the page sequence. Consider a request sequence σn =< +(k−1), π1, . . . , πn >,
where:

πi =< +(k−k+1), pi,1,−(k−k+1), . . . ,+(k−k+1), pi,k,−
(k−k+1) > (13)

E. Peserico 56:13

and pi,j is any one page, from the set p1, . . . , pk, that is not in ALG’s memory just before it
is requested – note that immediately before any page request ALG’s memory holds at most
k − 1 pages, so there always exists one such page. ALG then incurs a fault on every page
request, for a total number of faults equal to:

cALG(σn) = n · k (14)

Also, note that the capacity sequence associated to σn does not depend on ALG, so we
can freely assume that the design of ALG incorporates full knowledge of it.

Consider an offline algorithm ALG with access to a memory that has at most h
k times

the capacity of ALG’s at any given time; in particular, ALG’s memory capacity grows to h
immediately before any page request, and immediately afterwards drops to capacity:

bh
k

(k − 1)c = bhk
k
− h

k
c < h (15)

ALG can easily maintain in its “permanent” bhkk −
h
k c memory locations the bhkk −

h
k c

pages with most expected accesses in σn, incurring for each only one initial fault. Note that the
total number of accesses to these pages is, in expectation, at least nk · bh

k
k−

h
k c

k
= nbhkk −

h
k c.

Every other page, when requested, is brought into the “temporary” location(s) immediately
eliminated by the following shrink. ALG then incurs an expected number of faults equal to:

cALG(σn) ≤ bhk
k
− h

k
c+ n(k − bhk

k
− h

k
c) (16)

Then the competitive ratio of ALG can be no lower than:

lim
n→∞

cALG(σn)
cALG(σn) = lim

n→∞

nk

bhkk −
h
k c+ n(k − bhkk −

h
k c)

= max
k′∈{1,...,k}

k′

k′ − bhk′

k −
h
k c

(17)

It is important to observe that, if ALG is randomized, ALG need only know ALG’s
probabilistic behaviour to choose which pages to keep in its own memory; and it can choose
which page to request next based only on ALG’s current memory contents. Thus the lower
bound we proved holds for deterministic and randomized algorithms both in the adaptive
offline and in the adaptive online adversary models. J

As noted in Section 4 the expression of the optimal dynamic (h, k)-competitive ratio
ρEL(h, k) appears considerably more complex than, but vaguely reminiscent of, that of the
“classic” bound on the (h, k)−competitive ratio, k

k−h+1 . It is natural to ask whether the two
are actually different, and if so to what extent. We show that ρEL(h, k) is, in fact, a factor
≈ 1 + 1

k larger for some “natural” values of h and k – though it is never more than a factor
1 + 1

k larger, and actually coincides with k
k−h+1 if h is equal or very close to k. This is stated

more formally in the following two theorems:

I Theorem 12. For any odd h and k = 2h, ρEL(h, k) ≥ (1 + 1
k −

2
k2) k

k−h+1 .

Proof. For any integer i ≥ 0, choosing h = 2i + 1, k = 2h, and k′ = k − 1, we obtain
immediately:

ρEL(h, k) ≥ 4i+ 1
4i+ 1− b(2i+ 1) 4i+1

4i+2 −
2i+1
4i+2c

= 4i+ 1
4i+ 1− b 4i+1

2 − 1
2c

= 4i+ 1
2i+ 1

= k − 1
k
2

= k − 1
k
2
·
k
2 + 1
k
· k

k − h+ 1 = (1 + 1
k
− 2
k2) k

k − h+ 1 (18)

J

STACS 2019

56:14 Paging with Dynamic Memory Capacity

I Theorem 13. k
k−h+1 ≤ ρEL(h, k) < (1 + 1

k) k
k−h+1 for all h, k ∈ Z+ with h ≤ k, and

ρEL(h, k) = k
k−h+1 if k ≥ h > k −

√
k.

Proof. It is immediate to verify that, for k′ = k:

ρEL(h, k) ≥ k′

k′ − bhk′

k −
h
k c

= k

k − h+ 1 (19)

And since, if k′ ≤ h, we have that:

k′

k′ − bhk′

k −
h
k c
≤ k′

k′ − (hk′

k −
h
k)

=
k′ kk′

k′ kk′ − hk
′

k
k
k′ + h

k
k
k′

≤ k

k − h+ 1 (20)

then values of k′ ≤ h can be disregarded in the max operation. To prove that, for all h ≤ k,
ρEL(h, k) ≤ (1 + 1

k) k
k−h+1 , note that:

ρEL(h, k) = maxk′∈{1,...,k}
k′

k′ − bhk′

k −
h
k c

≤ maxk′∈{1,...,k}
k′

k′ − (hk′

k −
h
k)

= k

k − (hkk −
h
k)

= k

k − h+ h
k

(21)

Then we obtain:

ρEL(h, k)
k

k−h+1
≤ k − h+ 1
k − h+ h

k

= 1 +
k−h
k

k − h+ h
k

= 1 + 1
k + h

k−h
< 1 + 1

k
(22)

To prove that ρEL(h, k) coincides with k
k−h+1 for h > k −

√
k let us rewrite h and k′ as

h = k − a and k′ = k − b, with a > b and a, b ∈ Z+
0 . We obtain:

ρEL(h > (k −
√
k), k) = max√

k>a>b

k − b
k − b− b (k−a)(k−b)

k − k−a
k c

= max√
k>a>b

k − b
k − b− bk − (a+ b) + ab

k − 1 + a
k c

= max√
k>a>b

k − b
k − b− k + (a+ b) + 1− ba(b+1)

k c

< max√
k>a>b

k

k − h+ 1− ba(b+1)
k c

= k

k − h+ 1 (23)

where the last equality follows from the fact that, since a = k−h <
√
k and b ≤ a−1 <

√
k−1,

then a(b+ 1) < k. J

The complex expression of ρEL(h, k) is in part due to the “rounding” of the memory
capacity of the optimal offline algorithm. However, it is important to note that this rounding
is not sufficient to explain why ρEL(h, k) can be strictly larger than the “classic” ratio k

k−h+1
obtained when capacity is fixed at its maximum value: at smaller capacities rounding can
only favour the online algorithm, and for any fixed ratio k′

h′ , k′

k′−h′+1 strictly decreases with k′,
again favouring the online algorithm at smaller capacities. Capacity fluctuations (rather than
simply the choice between different, constant capacities) are then the source of the separation
between ρEL(h, k) and the “classic” (h, k)-competitive ratio k

k−h+1 .

E. Peserico 56:15

6 Decoupling replacement from capacity in RAM rental

The results from Section 4 can be readily applied to the RAM rental problem, in which a
paging algorithm ALG can choose the capacity sequence (with maximum capacity k), and
the cost it incurs and must minimize on a request sequence σ is:

RkALG(σ) =
|σ|∑
i=1

(αf(i) + βw(i)) (24)

where w(i) is the capacity when serving the ith request of σ, and f(i) is 1 if that request is a
fault and 0 otherwise. The fundamental consequence of our results from Section 4 is that to
a large extent the replacement policy can be decoupled from the choice of capacities. More
precisely, Theorem 9 yields:

I Corollary 14. Consider a paging algorithm ALG, servicing each request σi of a sequence
σ with capacity w(i) ≤ h and an arbitrary (even offline) replacement policy; and a second
paging algorithm ALG′ servicing σi with capacity 2w(i) and a replacement policy that can
be any marking or dynamically conservative algorithm. Then, for any choice of α, β and
w(·) ≤ h:

R2h
ALG′(σ) ≤ 2 ·RhALG(σ). (25)

which follows immediately from the fact that the sum of all faults incurred by ALG′ is at
most twice that by ALG as long as ALG′ maintains twice the capacity of ALG. In other
words, RAM rental is all about choosing the correct capacity at any given time; and any of
the “classic” replacement policies analysed in the previous section will be close to optimal for
any choice of α, of β, and of the capacity sequence.

7 Conclusions

Good performance in the case of constant memory capacity provides no performance guaran-
tees whatsoever in the case of fluctuating memory capacity: moving from a scenario where
capacity remains constant to one where it can fluctuate by a single page can mean the
difference between performance optimal within a factor 2, and performance suboptimal by
an arbitrarily large factor. This suggests the need of extreme caution when evaluating with
classic methodologies the performance of paging algorithms meant for memory systems with
dynamic capacity.

A counterpoint to this very “negative” result is that several extremely simple classic
paging algorithms achieve optimal or nearly optimal performance even in the dynamic
capacity framework - which is surprising because none of those algorithms is designed to take
memory capacity fluctuations into explicit account. Counterintuitively then, while knowledge
of future page requests provides an advantage, knowledge of future memory capacity does
not. A practical corollary is that, in the design of memory architectures, one can efficiently
decouple the problem of allocating memory resources to different cores/processes/threads
from the problem of managing the allocated memory – greatly simplifying system design
and analysis and providing a strong (a posteriori!) theoretical justification for the exokernel
approach [12].

As in classic paging, in the dynamic capacity framework competitive analysis fails to
distinguish between the performance of LRU, of FIFO, and of more naive algorithms such
as RAND or FWF – at least without resorting to more sophisticated approaches such as

STACS 2019

56:16 Paging with Dynamic Memory Capacity

access graphs. While each of these algorithms is still guaranteed to outperform an optimal
offline algorithm (and thus any other online algorithm) whose memory system has half the
capacity and twice the access cost, there are probably differences within those factors of 2
that would be important to characterize in practice. It is by no means clear whether the
winner in the dynamic capacity scenario would be the same as in the classic one, or whether
models designed a posteriori to explain the superiority of e.g. LRU over FIFO would still
provide correct predictions.

In this sense we are not aware of any experimental benchmarks specifically designed
to assess the impact of memory capacity fluctuations. A fundamental obstacle in their
development seems to be the difficulty of characterizing “typical” fluctuation patterns
encountered in practice. An interesting line of inquiry would be to investigate whether one
can obtain, from the performance numbers of a black box algorithm under a small “basis”
of specific fluctuation patterns, sufficient information to compute a good assessment of the
algorithm’s performance numbers under any other pattern.

Finally, the impact of resource fluctuation on how efficiently a task can be solved is a
line of inquiry obviously not limited to memory management. There are a number of other
problems where the amount of resources available can realistically vary over time. Examples
include call admission [16] (with variable circuit capacity) and the numerous variants of
online scheduling [27] (with e.g. variable number or speed of servers). In addition to studying
each problem individually, it would be extremely interesting to identify broad classes sharing
similar characteristics. For example, which problems can be solved optimally or almost
optimally without knowledge of the amount of resources available in the future (as in the
case of paging with dynamic memory capacity)?

References
1 Susanne Albers, Lene M. Favrholdt, and Oliver Giel. On paging with locality of reference. J.

Comput. Syst. Sci., 70(2):145–175, 2005. doi:10.1016/j.jcss.2004.08.002.
2 Spyros Angelopoulos, Reza Dorrigiv, and Alejandro López-Ortiz. On the separation and equi-

valence of paging strategies. In Proceedings of the Eighteenth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2007, New Orleans, Louisiana, USA, January 7-9, 2007, pages
229–237, 2007. URL: http://dl.acm.org/citation.cfm?id=1283383.1283408.

3 Rakesh D. Barve and Jeffrey Scott Vitter. A Theoretical Framework for Memory-Adaptive
Algorithms. In 40th Annual Symposium on Foundations of Computer Science, FOCS ’99, 17-18
October, 1999, New York, NY, USA, pages 273–284, 1999. doi:10.1109/SFFCS.1999.814599.

4 Laszlo A. Belady. A Study of Replacement Algorithms for Virtual-Storage Computer. IBM
Systems Journal, 5(2):78–101, 1966. doi:10.1147/sj.52.0078.

5 Shai Ben-David and Allan Borodin. A New Measure for the Study of On-Line Algorithms.
Algorithmica, 11(1):73–91, 1994. doi:10.1007/BF01294264.

6 Michael A. Bender, Erik D. Demaine, Roozbeh Ebrahimi, Jeremy T. Fineman, Rob Johnson,
Andrea Lincoln, Jayson Lynch, and Samuel McCauley. Cache-Adaptive Analysis. In Proceedings
of the 28th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA 2016,
Asilomar State Beach/Pacific Grove, CA, USA, July 11-13, 2016, pages 135–144, 2016.
doi:10.1145/2935764.2935798.

7 Michael A. Bender, Roozbeh Ebrahimi, Jeremy T. Fineman, Golnaz Ghasemiesfeh, Rob
Johnson, and Samuel McCauley. Cache-Adaptive Algorithms. In Proceedings of the Twenty-
Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon,
USA, January 5-7, 2014, pages 958–971, 2014. doi:10.1137/1.9781611973402.71.

8 Allan Borodin and Ran El-Yaniv. Online computation and competitive analysis. Cambridge
University Press, 1998.

http://dx.doi.org/10.1016/j.jcss.2004.08.002
http://dl.acm.org/citation.cfm?id=1283383.1283408
http://dx.doi.org/10.1109/SFFCS.1999.814599
http://dx.doi.org/10.1147/sj.52.0078
http://dx.doi.org/10.1007/BF01294264
http://dx.doi.org/10.1145/2935764.2935798
http://dx.doi.org/10.1137/1.9781611973402.71

E. Peserico 56:17

9 Allan Borodin, Sandy Irani, Prabhakar Raghavan, and Baruch Schieber. Competitive Paging
with Locality of Reference. J. Comput. Syst. Sci., 50(2):244–258, 1995. doi:10.1006/jcss.
1995.1021.

10 Joan Boyar, Sandy Irani, and Kim S. Larsen. A Comparison of Performance Measures for
Online Algorithms. Algorithmica, 72(4):969–994, 2015. doi:10.1007/s00453-014-9884-6.

11 Marek Chrobak. SIGACT news online algorithms column 17. SIGACT News, 41(4):114–121,
2010. doi:10.1145/1907450.1907547.

12 Dawson R. Engler, M. Frans Kaashoek, and James O’Toole. Exokernel: An Operating System
Architecture for Application-Level Resource Management. In Proceedings of the Fifteenth
ACM Symposium on Operating System Principles, SOSP 1995, Copper Mountain Resort,
Colorado, USA, December 3-6, 1995, pages 251–266, 1995. doi:10.1145/224056.224076.

13 Amos Fiat and Anna R. Karlin. Randomized and multipointer paging with locality of
reference. In Proceedings of the Twenty-Seventh Annual ACM Symposium on Theory of
Computing, 29 May-1 June 1995, Las Vegas, Nevada, USA, pages 626–634, 1995. doi:
10.1145/225058.225280.

14 Amos Fiat, Richard M. Karp, Michael Luby, Lyle A. McGeoch, Daniel Dominic Sleator,
and Neal E. Young. Competitive Paging Algorithms. J. Algorithms, 12(4):685–699, 1991.
doi:10.1016/0196-6774(91)90041-V.

15 Matteo Frigo, Charles E. Leiserson, Harald Prokop, and Sridhar Ramachandran. Cache-
Oblivious Algorithms. ACM Trans. Algorithms, 8(1):4:1–4:22, 2012.

16 Juan A. Garay, Inder S. Gopal, Shay Kutten, Yishay Mansour, and Moti Yung. Efficient
On-Line Call Control Algorithms. J. Algorithms, 23(1):180–194, 1997.

17 Avinatan Hassidim. Cache Replacement Policies for Multicore Processors. In ICS, pages
501–509. Tsinghua University Press, 2010.

18 Houman Homayoun, Mohammad A. Makhzan, and Alexander V. Veidenbaum. Multiple sleep
mode leakage control for cache peripheral circuits in embedded processors. In Proceedings of
the 2008 International Conference on Compilers, Architecture, and Synthesis for Embedded
Systems, CASES 2008, Atlanta, GA, USA, October 19-24, 2008, pages 197–206, 2008. doi:
10.1145/1450095.1450125.

19 Sandy Irani. Page Replacement with Multi-Size Pages and Applications to Web Caching.
Algorithmica, 33(3):384–409, 2002.

20 Anna R. Karlin, Mark S. Manasse, Larry Rudolph, and Daniel Dominic Sleator. Competitive
Snoopy Caching. Algorithmica, 3:77–119, 1988. doi:10.1007/BF01762111.

21 Elias Koutsoupias and Christos H. Papadimitriou. Beyond Competitive Analysis. SIAM J.
Comput., 30(1):300–317, 2000.

22 Donghee Lee, Jongmoo Choi, Jong-Hun Kim, Sam H. Noh, Sang Lyul Min, Yookun Cho, and
Chong-Sang Kim. LRFU: A spectrum of policies that subsumes the least recently used and
least frequently used policies. IEEE Trans. Computers, 50(12):1352–1361, 2001.

23 Alejandro López-Ortiz and Alejandro Salinger. Minimizing Cache Usage in Paging. In WAOA,
volume 7846 of Lecture Notes in Computer Science, pages 145–158. Springer, 2012.

24 Nimrod Megiddo and Dharmendra S. Modha. Outperforming LRU with an Adaptive Replace-
ment Cache Algorithm. IEEE Computer, 37(4):58–65, 2004. doi:10.1109/MC.2004.1297303.

25 Enoch Peserico. Elastic Paging. SIGMETRICS Perform. Eval. Rev., 41(1):349–350, June
2013. doi:10.1145/2494232.2479781.

26 Enoch Peserico. Paging with dynamic memory capacity. CoRR, abs/1304.6007, 2013. arXiv:
1304.6007v1.

27 Kirk Pruhs. Competitive online scheduling for server systems. SIGMETRICS Performance
Evaluation Review, 34(4):52–58, 2007. doi:10.1145/1243401.1243411.

28 Moinuddin K. Qureshi and Yale N. Patt. Utility-Based Cache Partitioning: A Low-Overhead,
High-Performance, Runtime Mechanism to Partition Shared Caches. In MICRO, pages 423–432.
IEEE Computer Society, 2006.

STACS 2019

http://dx.doi.org/10.1006/jcss.1995.1021
http://dx.doi.org/10.1006/jcss.1995.1021
http://dx.doi.org/10.1007/s00453-014-9884-6
http://dx.doi.org/10.1145/1907450.1907547
http://dx.doi.org/10.1145/224056.224076
http://dx.doi.org/10.1145/225058.225280
http://dx.doi.org/10.1145/225058.225280
http://dx.doi.org/10.1016/0196-6774(91)90041-V
http://dx.doi.org/10.1145/1450095.1450125
http://dx.doi.org/10.1145/1450095.1450125
http://dx.doi.org/10.1007/BF01762111
http://dx.doi.org/10.1109/MC.2004.1297303
http://dx.doi.org/10.1145/2494232.2479781
http://arxiv.org/abs/1304.6007v1
http://arxiv.org/abs/1304.6007v1
http://dx.doi.org/10.1145/1243401.1243411

56:18 Paging with Dynamic Memory Capacity

29 Prabhakar Raghavan and Marc Snir. Memory versus randomization in on-line algorithms.
IBM Journal of Research and Development, 38(6):683–708, 1994.

30 Daniel Dominic Sleator and Robert Endre Tarjan. Amortized Efficiency of List Update and
Paging Rules. Commun. ACM, 28(2):202–208, 1985. doi:10.1145/2786.2793.

31 Eric Torng. A Unified Analysis of Paging and Caching. Algorithmica, 20:194–203, 1998.
32 Neal E. Young. On-Line Caching as Cache Size Varies. In Proceedings of the Second Annual

ACM/SIGACT-SIAM Symposium on Discrete Algorithms, 28-30 January 1991, San Francisco,
California, USA., pages 241–250, 1991. URL: http://dl.acm.org/citation.cfm?id=127787.
127832.

33 Neal E. Young. The K-Server Dual and Loose Competitiveness for Paging. Algorithmica,
11:525–541, 1994.

http://dx.doi.org/10.1145/2786.2793
http://dl.acm.org/citation.cfm?id=127787.127832
http://dl.acm.org/citation.cfm?id=127787.127832

Random Noise Increases Kolmogorov Complexity
and Hausdorff Dimension
Gleb Posobin
Computer Science department, Columbia University, New York, USA
posobin@gmail.com

Alexander Shen
LIRMM CNRS & University of Montpellier, 161 rue Ada, 34095, Montpellier, France,
On leave from IITP RAS, Moscow
https://www.lirmm.fr/~ashen
alexander.shen@lirmm.fr

Abstract
Consider a bit string x of length n and Kolmogorov complexity αn (for some α < 1). It is always
possible to increase the complexity of x by changing a small fraction of bits in x [2]. What happens
with the complexity of x when we randomly change each bit independently with some probability τ?
We prove that a linear increase in complexity happens with high probability, but this increase is
smaller than in the case of arbitrary change considered in [2]. The amount of the increase depends
on x (strings of the same complexity could behave differently). We give exact lower and upper
bounds for this increase (with o(n) precision).

The same technique is used to prove the results about the (effective Hausdorff) dimension of
infinite sequences. We show that random change increases the dimension with probability 1, and
provide an optimal lower bound for the dimension of the changed sequence. We also improve a
result from [5] and show that for every sequence ω of dimension α there exists a strongly α-random
sequence ω′ such that the Besicovitch distance between ω and ω′ is 0.

The proofs use the combinatorial and probabilistic reformulations of complexity statements and
the technique that goes back to Ahlswede, Gács and Körner [1].

2012 ACM Subject Classification Theory of computation → Randomness, geometry and discrete
structures

Keywords and phrases Kolmogorov complexity, effective Hausdorff dimension, random noise

Digital Object Identifier 10.4230/LIPIcs.STACS.2019.57

Related Version An extended version of the paper is available as https://arxiv.org/abs/1808.
04626.

Funding Supported by RaCAF ANR-15-CE40-0016-01 grant.
Gleb Posobin: The work was done when G. Posobin was at the Laboratory of Theoretical Computer
Science, National Research University Higher School of Economics, Moscow, Russia, and was sup-
ported by Russian Academic Excellence Project 5–100 and MK-5379.2018.1 grant. The preparation
of the final version was supported by NSF CAREER Award CCF-1844887 and CCF-1563155 grants.
Alexander Shen: Supported in part by RFBR 19-01-00563A grant. Part of the work done while
visiting Toyota Technological University, Chicago.

Acknowledgements Authors are grateful to the participants and organizers of the Heidelberg
Kolmogorov complexity program where the question of the complexity increase was raised, and
to all colleagues (from the ESCAPE team, LIRMM, Montpellier, Kolmogorov seminar and HSE
Theoretical Computer Science Group, and other places) who participated in the discussions, in
particular to B. Bauwens, N. Greenberg, K. Makarychev, Yu. Makarychev, J. Miller, A. Milovanov,
F. Nazarov, I. Razenshteyn, A. Romashchenko, N. Vereshchagin, L. B. Westrick, and, last but not
least, to Peter Gács who explained us how the tools from [1] can be used to provide the desired
result about Kolmogorov complexity.

© Gleb Posobin and Alexander Shen;
licensed under Creative Commons License CC-BY

36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019).
Editors: Rolf Niedermeier and Christophe Paul; Article No. 57; pp. 57:1–57:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-8538-153X
mailto:posobin@gmail.com
https://orcid.org/0000-0001-8605-7734
https://www.lirmm.fr/~ashen
mailto:alexander.shen@lirmm.fr
https://doi.org/10.4230/LIPIcs.STACS.2019.57
https://arxiv.org/abs/1808.04626
https://arxiv.org/abs/1808.04626
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

57:2 Random Noise Increases Kolmogorov Complexity and Hausdorff Dimension

1 Introduction

The Kolmogorov complexity C(x) of a binary string x is defined as the minimal length of
a program that generates x, assuming that we use an optimal programming language that
makes the complexity function minimal up to an O(1) additive term (see [8, 12] for details).
There are several versions of Kolmogorov complexity; we consider the original version, called
plain complexity. In fact, for our considerations the difference between different versions of
Kolmogorov complexity does not matter, since they differ only by O(logn) additive term for
n-bit strings, but we restrict ourselves to plain complexity for simplicity.

The complexity of n-bit strings is between 0 and n (we omit O(1) additive terms).
Consider a string x of length n that has some intermediate complexity, say 0.5n. Imagine
that we are allowed to change a small fraction of bits in x, say, 1% of all bits. Can we
decrease the complexity of x? Can we increase the complexity of x? What happens if we
change randomly chosen 1% of bits?

In other words, consider a Hamming ball with center x and radius 0.01n, i.e., the set of
strings that differ from x in at most 0.01n positions. What can be said about the minimal
complexity of strings in this ball? the maximal complexity of strings in this ball? the typical
complexity of strings in this ball?

The answer may depend on x: different strings of the same complexity may behave
differently if we are interested in the complexities of neighbor strings. For example, if the
first half of x is a random string, and the second half contains only zeros, the string x has
complexity 0.5n and it is easy to decrease its complexity by shifting the boundary between
the random part and zero part: to move the boundary to 0.48n from 0.5n we need to change
about 0.01n bits, and the complexity becomes close to 0.48n. On the other hand, if x is a
random codeword of an error-correcting code with 20.5n codewords of length n that corrects
up to 0.01n errors, then x also has complexity 0.5n, but no change of 0.01n (or less) bits can
decrease the complexity of x, since x can be reconstructed from the changed version.

The question about the complexity decrease is studied by algorithmic statistics (see [14]
or the survey [13]), and the full answer is known. For each x one may consider the function

d 7→ (the minimal complexity of strings in the d-ball centered at x).

It starts at C(x) (when d = 0) and then decreases, reaching 0 at d = n/2 (since we can
change all bits to zeros or to ones). The algorithmic statistic tells us which functions may
appear in this way (see [13, section 6.2] or [12, theorem 257]).1

The question about the complexity increase is less studied. It is known that some
complexity increase is always guaranteed, as shown in [2]. The amount of this increase
may depend on x. If x is a random codeword of an error-correcting code, then the changed
version of x contains all the information both about x itself and the places where it was
changed. This leads to the maximal increase in complexity. The minimal increase, as
shown in [2], happens for x that is a random element of the Hamming ball of some radius
with center 0n. However, the natural question: which functions may appear as d 7→
(the maximal complexity of strings in the d-ball centered at x), remains open.

In our paper we study the typical complexity of a string that can be obtained from x by
changing a fraction of bits chosen randomly. Let us return to our example and consider again
a string x of length n and complexity 0.5n. Let us change about 1% of bits in x, changing

1 Note that algorithmic statistics uses a different language. Instead of a string y in the d-ball centered at
x, it speaks about a d-ball centered at y and containing x. This ball is considered as a statistical model
for x.

G. Posobin and A. Shen 57:3

each bit independently2 with probability 0.01. Does this change increase the complexity
of x? It depends on the changed bits, but it turns out that random change increases the
complexity of the string with high probability: we get a string of complexity at least 0.501n
with probability at least 99%, for all large enough n (the result is necessarily asymptotic,
since the Kolmogorov complexity function is defined up to O(1) terms).

Of course, the parameters above are chosen only as an example, and the following general
statement is true. For some τ ∈ (0, 1) consider the random noise Nτ that changes each
position in a given n-bit string independently with probability τ .

I Theorem 1. There exists a strictly positive function δ(α, τ) defined for α, τ ∈ (0, 1) with
the following property: for all sufficiently large n, for every α ∈ (0, 1), for every τ ∈ (0, 1),
for β = α + δ(α, τ), and for every x such that C(x) > αn, the probability of the event
“ C(Nτ (x)) > βn” is at least 1− 1/n.

I Remark 2. We use the inequality C(x) > αn (and not an equality C(x) = αn) to avoid
technical problems: the complexity C(x) is an integer, and αn may not be an integer.
I Remark 3. One may consider only τ 6 1/2 since reversing all bits does not change
Kolmogorov complexity (so τ and 1− τ give the same increase in complexity). For τ = 1/2
the variable Nτ (x) is uniformly distributed in the Boolean cube Bn, so its complexity is close
to n, and the statement is easy (for arbitrary β < 1).
I Remark 4. We use α, τ as parameters while fixing the probability bound as 1− 1/n. As
we will see, the choice of this bound is not important: we could use a stronger bound (e.g.,
1− 1/nd for arbitrary d) as well.

Now a natural question arises: what is the optimal bound in Theorem 1, i.e., the maximal
possible value of δ(α, τ)? In other words, fix α and τ . Theorem 1 guarantees that there exists
some β > α such that every string x of length n (sufficiently large) and complexity at least
αn is guaranteed to have complexity at least βn after τ -noise Nτ (with high probability).
What is the maximal value of β for which such a statement is true (for given α and τ)?

Before answering this question, we should note that the guaranteed complexity increase
depends on x: for different strings of the same complexity the typical complexity of Nτ (x)
could be different. Here are the two opposite examples (with minimal and maximal increase,
as we will see).

I Example 5. Consider some p ∈ (0, 1) and the Bernoulli distribution Bp on the Boolean
cube Bn (bits are independent; every bit equals 1 with probability p). With high probability
the complexity of a Bp-random string is o(n)-close to nH(p) (see, e.g., [12, chapter 7]), where
H(p) is the Shannon entropy function H(p) = −p log p− (1− p) log(1− p). After applying
τ -noise the distribution Bp is transformed into BN(τ,p), where N(τ, p) = p(1−τ)+(1−p)τ =
p+τ−2pτ is the probability to change the bit if we first change it with probability p and then
(independently) with probability τ .3 The complexity of Nτ (x) is close (with high probability)
to H(N(τ, p))n since the Bp-random string x and the τ -noise are chosen independently. So
in this case we have (with high probability) the complexity increase H(p)n→ H(N(τ, p))n.
Note that N(τ, p) is closer to 1/2 than p, and H is strictly increasing on [0, 1/2], so indeed
some increase happens.

2 From the probabilistic viewpoint it is more naturally to change all the bits independently with the same
probability 0.01. Then the number of changed bits is not exactly 0.01n, but is close to 0.01n with high
probability.

3 We use the letter N (for “noise”) both in Nτ (x) (random change with probability τ , one argument)
and in N(τ, p) (the parameter of the Bernoulli distribution Bp after applying Nτ , no subscript, two
arguments).

STACS 2019

57:4 Random Noise Increases Kolmogorov Complexity and Hausdorff Dimension

I Example 6. Now consider an error-correcting code that has 2αn codewords and corrects
up to τn errors (this means that the Hamming distance between codewords is greater than
2τn). Such a code may exist or not depending on the choice of α and τ . The basic result in
coding theory, Gilbert’s bound, guarantees that such a code exists if α and τ are not too
large. Consider some pair of α and τ for which such a code exist; moreover, let us assume
that it corrects up to τ ′n errors for some τ ′ > τ . We assume also that the code itself (the
list of codewords) has small complexity, say, O(logn). This can be achieved by choosing the
first (in some ordering) code with required parameters.

Now take a random codeword of this code; most of the codewords have complexity close
to αn. If we randomly change each bit with probability τ , then with high probability we get
at most τ ′n errors, therefore, decoding is possible and the pair (x,noise) can be reconstructed
from Nτ (x), the noisy version of x. Then the complexity of Nτ (x) is close to the complexity of
the pair (x, noise), which (due to independence) is close to αn+ H(τ)n with high probability.
So in this case we have the complexity increase αn→ (α+ H(τ))n.

I Remark 7. Note that this increase is the maximal possible not only for random independent
noise but for any change in x that changes a τ -fraction of bits. See below about the difference
between random change and arbitrary change.

Now we formulate the result we promised. It says that the complexity increase observed
in Example 5 is the minimal possible: such an increase is guaranteed for every string of given
complexity.

I Theorem 8. Let α = H(p) for some p 6 1/2. Let τ be an arbitrary number in (0, 1). Let
β = H(N(p, τ)). Then for sufficiently large n the following is true: for every string x of
length n with C(x) > αn, we have Pr[C(Nτ (x)) > βn− o(n)] > 1− 1

n .

Here o(n) denotes some function such that o(n)/n→ 0 as n→∞. This function does not
depend on α, β, and τ . As the proof will show, we may take o(n) = c

√
n log3/2 n for some c.

0.0 0.2 0.4 0.6 0.8 1.0
H(p)

0.0

0.2

0.4

0.6

0.8

1.0

H(p′)

τ

0.3
0.2
0.1
0.05
0.01
0.003

Figure 1 The curves (H(p),H(p′)) where p′ = N(p, τ). Six different values of τ are shown.

G. Posobin and A. Shen 57:5

Figure 1 shows the values of (α, β) where Theorem 8 can be applied, for six different
values of τ . Example 5 shows that the value of β in this theorem is optimal.

In the next section we explain the scheme of the proof of Theorem 8. Then we explain
the details of the proof. It starts with the Shannon information counterpart of our com-
plexity statement that is proven in [15]. In Section 3 we derive two different combinatorial
counterparts following [1]. Finally, in Section 4 we consider the details of the conversion of a
combinatorial statement to a complexity one and finish the proof. In Section 5 we extend
our techniques to infinite sequences and improve some results obtained in [5].

2 Proof sketch

2.1 Three ways to measure the amount of information

Kolmogorov’s first paper on algorithmic information theory [7] was called “Three approaches
to the Quantitative Definition of Information”. These three approaches can be summarized
as follows:

(Combinatorial): an element of a set of cardinality N carries logN bits of information.
(Algorithmic): a binary string x carries C(x) bits of information, where C(x) is the
minimal bit length of a program that produces x.
(Shannon information theory, or probabilistic approach): a random variable ξ that has k
values with probabilities p1, . . . , pk, carries H(ξ) bits of information, where H(ξ) is the
Shannon entropy of ξ, defined as H(ξ) = p1 log 1

p1
+ . . .+ pk log 1

pk

One cannot compare directly these three quantities since the measured objects are different
(sets, strings, random variables). Still these quantities are closely related, and many statements
that are true for one of these notions can be reformulated for other two. Several examples of
this type are discussed in [12, chapters 7 and 10], and we use this technique in our proof.

2.2 Arbitrary change

We start by recalling an argument from [2] for the case when we are allowed to change
arbitrary bits (only the number of changed bits is bounded) and want to increase complexity.
(A similar reduction will be a part of our argument.)

Fix some parameters α (determining the complexity of the original string), τ (the maximal
fraction of changed bits), and β (determining the complexity of the changed string). Let us
repeat the complexity statement and give its combinatorial equivalent.

(Complexity version) Every string x of length n and complexity at least αn can be
changed in at most τn positions to obtain a string of complexity at least βn.
(Combinatorial version) For every subset B of the Boolean cube Bn of cardinality at most
2βn, its τn-interior has cardinality at most 2αn.

Here by d-interior of a set X ⊂ Bn we mean the set of strings x ∈ Bn such that the entire
ball of radius d centered at x belongs to X. In other words, a string x does not belong to
the d-interior of X if x can be changed in at most d positions to get a string outside X.

I Remark 9. The combinatorial statement can be reformulated in a dual way: for every set
A ⊂ Bn of cardinality greater than 2αn, its d-neighborhood has cardinality greater than 2βn.

These two statements (combinatorial and complexity versions) are almost equivalent: one of
them implies the other if we allow a small change in α and β (in fact, O(logn)/n change
is enough). Indeed, assume first that the combinatorial statement is true. Consider the
set B of all n-bit strings that have complexity less than βn. Then #B < 2βn, so we can

STACS 2019

57:6 Random Noise Increases Kolmogorov Complexity and Hausdorff Dimension

apply the combinatorial statement.4 It guarantees that the τn-interior of B (we denote it by
A) has at most 2αn elements. The set A can be enumerated given n, βn and τn. Indeed,
knowing n and βn, one can enumerate elements of B (by running in parallel all programs of
length less than βn; note that there are less than 2βn of them). Knowing also τn, we may
enumerate A (if a ball is contained in B entirely, this will become known at some stage of
the enumeration of B). Then every element of A can be encoded by its ordinal number in
this enumeration. This guarantees that the complexity of all elements of A does not exceed
αn+O(logn) (the additional O(logn) bits are needed to encode n, βn, and τn). Therefore,
if some x has complexity greater that αn+O(logn), it is not in A, i.e., x can be changed in
at most τn positions to get a string outside B. By the definition of B, this changed string
has complexity at least βn, as required. The term O(logn) can be absorbed by a small
change in α.

Let us explain also (though this direction is not needed for our purpose) why the complexity
statement implies the combinatorial one. Assume that there are some sets B that violate
the combinatorial statement, i.e., contain at most 2βn strings but have τn-interior of size
greater than 2αn. Such a set can be found by exhaustive search, and the first set B that
appears during the search has complexity O(logn). Its elements, therefore, have complexity
βn+O(logn): to specify an element, we need to specify B and the ordinal number of the
element in B. From this we conclude, using the complexity statement (and changing β
slightly) that all elements of the τn-interior of B have complexity at most αn. Therefore,
there are at most O(2αn) of them, and the size of the interior is bounded by 2αn (again up
to a small change in α).

Now we return to the result from [2]. Let x be a string of length n and complexity at least
αn+O(logn), where α = H(p) for some p 6 1/2. Let τ be a real such that p+ τ 6 1/2, and
β = H(p+ τ). Then x can be changed in at most τn positions to get a string of complexity at
least βn. As we have seen, this statement from [2] is a corollary of the following combinatorial
result.

I Proposition 10. Let p 6 1/2 be some number and let α = H(p). Let τ be some positive
number so that p+ τ 6 1/2, and let β = H(p+ τ). Let B be an arbitrary subset of Bn of
size at most 2βn. Let A be a subset of Bn, and for every x ∈ A the Hamming ball of radius
τn with center x is contained in B. Then the cardinality of A does not exceed poly(n)2αn.

This proposition is a direct consequence of Harper’s theorem (see, e.g., [4]) that says that
for a subset of Bn of a given size, its d-interior (for some fixed d) is maximal when the subset
is a Hamming ball (formally speaking, is between two Hamming balls of sizes k and k + 1
for some k). Or, in dual terms, Harper’s theorem says that the d-neighborhood of a set of a
given size is minimal if this set is a Hamming ball. The relation between 2αn and 2βn in
the proposition is just the relation between the sizes of balls of radii pn and (p+ τ)n (if we
ignore factors that are polynomial in n). Note that p+ τ 6 1/2 is needed since otherwise
the radius exceeds n/2 and then the log-size of the ball is close to n and not to H(p+ τ)n.
The poly(n) factor is needed due to the polynomial factor in the estimate for the ball size in
terms of Shannon entropy (the ball of radius γn has size poly(n)2H(γ)n).

We do not go into details here (and do not reproduce the proof of Harper’s theorem)
since we need this result only to motivate the corresponding relation between combinatorial
and complexity statements for the case of a random noise we are interested in.

4 For simplicity we assume that αn, βn, and τn are integers. This is not important, since we have O(logn)
term anyway.

G. Posobin and A. Shen 57:7

2.3 Random noise: four versions
For the random noise case we need a more complicated argument. First, we need to consider
also the probabilistic version of the statement (in addition to the complexity and combinatorial
versions). Second, we need two combinatorial versions (strong and weak). Fix some α, β
and τ . Here are the four versions we are speaking about; all four statements are equivalent
(are true for the same parameters α, τ , and β, up to o(1)-changes in the parameters):

(Shannon information version, [15]) For every random variable P with values in Bn such
that H(P) > αn, the variable Nτ (P) that is obtained from P by applying independent
noise changing each bit with probability τ , has entropy H(Nτ (P)) > βn.
(Complexity version) For every string x of length n and complexity C(x) > αn, the
probability of the event “C(Nτ (x)) > βn” is at least 1 − 1/n. (Again, Nτ is random
noise that independently changes each bit with probability τ , but now it is applied to the
string x and not to a random variable)
(Strong combinatorial version) For every set B ⊂ Bn of size at most 2βn the set A of all
strings x such that Pr[Nτ (x) ∈ B] > 1/n has size #A 6 2αn.
(Weak combinatorial version) For every set B ⊂ Bn of size at most 2βn the set A of all
strings x such that Pr[Nτ (x) ∈ B] > 1− 1/n has size #A 6 2αn.

The difference between weak and strong combinatorial versions is due to the different
thresholds for the probability. In the weak version the set A contains only strings that get
into B after the noise almost surely (with probability at least 1− 1/n). In the strong version
the set A is bigger and includes all strings that get into B with non-negligible probability (at
least 1/n), so the upper bound for #A becomes a stronger statement.

I Remark 11. In the case of arbitrary changes (the result from [2]) we consider the τn-interior
of B, the set of points that remain in B after arbitrary change in (at most) τn positions. If
a point is not in the interior, it can be moved outside B by changing at most τn bits. Now
we consider (in the strong version) the set of points that get into B with probability at least
1/n. If a point is not in this set, the random τ -noise will move it outside B almost surely
(with probability at least 1− 1/n). Again the complexity and (strong) combinatorial versions
are equivalent up to o(1) changes in parameters, for the same reasons.

This explains why we are interested in the strong combinatorial statement. The weak
one is used as an intermediate step in the chain of arguments. This chain goes as follows:

First the Shannon entropy statement is proven using tools from information theory
(one-letter characterization and inequalities for Shannon entropy); this was done in [15].
Then we derive the weak combinatorial statement from the entropy statement using a
simple coding argument from [1].
Then we show that weak combinatorial statement implies the strong one, using a tool
that is called the “blowing-up lemma” in [1] (now it is more popular under the name of
“concentration inequalities”).
Finally, we note that the strong combinatorial statement implies the complexity statement
(using the argument sketched above).

2.4 Tools used in the proof
Let us give a brief description of the tools used in these arguments.

To prove the Shannon entropy statement, following [15], fix some τ . Consider the set
Sn of all pairs (H(P),H(Nτ (P))) for all random variables with values in Bn. For each n

we get a subset of the square [0, n] × [0, n]. For n = 1 it is a curve made of all points

STACS 2019

57:8 Random Noise Increases Kolmogorov Complexity and Hausdorff Dimension

(H(p),H(N(p, τ))) (shown in Figure 1 for six different values of τ). We start by showing that
this curve is convex (performing some computation with power series). Then we show, using
the convexity of the curve and some inequalities for entropies, that for every n the set Sn is
above the same curve (scaled by factor n), and this is the entropy statement we need. (See
the arxiv version of this paper for details.)

To derive the weak combinatorial statement from the entropy statement, we use a coding
argument. Assume that two sets A and B are given, and for every point x ∈ A the random
point Nτ (x) belongs to B with probability at least 1 − 1/n. Consider a random variable
UA that is uniformly distributed in A. Then H(UA) = log #A, and if #A > 2αn, then
H(UA) > αn and H(Nτ (UA)) > βn (assuming the entropy statement is true for given α, β,
and τ). On the other hand, the variable Nτ (UA) can be encoded as follows:

one bit (flag) says whether Nτ (UA) is in B or not;
if yes, then log #B bits are used to encode an element of B;
otherwise n bits are used to encode the value of Nτ (UA) (trivial encoding).

The average length of this code for Nτ (UA)) does not exceed

1 +
(

1− 1
n

)
log #B + 1

n
· n 6 log #B +O(1).

(Note that if the second case has probability less than 1/n, the average length is even smaller.)
The entropy of a random variable Nτ (UA) does not exceed the average length of the code.
So we get βn 6 H(Nτ (UA)) 6 log #B + O(1) and log #B > βn − O(1), assuming that
log #A > αn.

The next step is to derive the strong combinatorial version from the weak one. Assume
that two sets A,B ⊂ Bn are given, and for each x ∈ A the probability of the event Nτ (x) ∈ B
is at least 1/n. For some d consider the set Bd, the d-neighborhood of B. We will prove
(using the concentration inequalities) that for some d = o(n) the probability of the event
Nτ (x) ∈ Bd is at least 1− 1/n (for each x ∈ A). So one can apply the weak combinatorial
statement to Bd and get a lower bound for #Bd. On the other hand, there is a simple upper
bound: #Bd 6 #B × (the size of d-ball); combining them, we get the required bound for
#B. See Section 3 for details.
I Remark 12. One may also note (though it is not needed for our purposes) that the
entropy statement is an easy corollary of the complexity statement, and therefore all four
are equivalent up to small changes in parameters. This can be proven in a standard way.
Consider N independent copies of random variable P and independently apply noise to all
of them. Then we write the inequality for the typical values of the complexities; in most
cases they are close to the corresponding entropies (up to o(N) error). Therefore, we get the
inequality for entropies with o(N) precision (for N copies) and with o(1) precision for one
copy (the entropies are divided by N). As N →∞, the additional term o(1) disappears and
we get an exact inequality for entropies.

3 Combinatorial version

Recall the entropy bound from [15] discussed above (we reproduce its proof in the arxiv
version for reader’s convenience):

I Proposition 13. Let P be an arbitrary random variable with values in Bn, and let P ′ =
Nτ (P) be its noisy version obtained by applying Nτ independently to each bit in P . Choose
p 6 1/2 in such a way that H(P) = nH(p). Then consider q = N(p, τ), the probability to
get 1 if we apply Nτ to a variable that equals 1 with probability p. Then H(P ′) > nH(q).

G. Posobin and A. Shen 57:9

In this section we use this entropy bound to prove the combinatorial bounds. We start
with the weak one and then amplify it to get the strong one, as discussed in Section 2. First,
let us formulate explicitly the weak bound that is derived from Proposition 13 using the
argument of Section 2.

I Proposition 14. Let α = H(p) and β = H(N(p, τ)). Let A,B ⊂ Bn and for every
x ∈ A the probability of the event “Nτ (x) ∈ B” is at least 1 − 1/n. If log #A > αn, then
log #B > βn−O(1).

In fact, this “O(1)” is just 2, but we do not want to be too specific here.

Now we need to extend the bound to the case when the probability of the event Nτ (x) ∈ B
is at least 1/n. We already discussed how this is done. Consider for some d (depending on n)
the Hamming d-neighborhood Bd of B. We need to show that

Pr[Nτ (x) ∈ B] > 1
n
⇒ Pr[Nτ (x) ∈ Bd] > 1− 1

n
.

for every x ∈ Bn (for a suitable d). In fact, x does not matter here: we may assume that
x = 0. . .0 (flipping bits in x and B simultaneously). In other terms, we use the following
property of the Bernoulli distribution with parameter τ : if some set B has probability not
too small according to this distribution, then its neighborhood Bd has probability close to 1.
We need this property for d = o(n), see below about the exact value of d.

Such a statement is called a blowing-up lemma in [1]. There are several (and quite
different) ways to prove statements of this type. The original proof in [1] used a result of
Margulis from [9] that says that the (Bernoulli) measure of a boundary of an arbitrary set
U ⊂ Bn is not too small compared to the measure of a boundary of a ball of the same
size. Iterating this statement (a neighborhood is obtained by adding boundary layer several
times), we get the lower bound for the measure of the neighborhood. Another proof was
suggested by Marton [10]; it is based on the information-theoretical considerations that
involve transportation cost inequalities for bounding measure concentration. In this paper
we provide a simple proof that uses the McDiarmid inequality [11], a simple consequence of
the Azuma–Hoeffding inequality [6]. This proof works for d = O(

√
n logn).

Let us state the blowing-up lemma in a slightly more general version than we need. Let
X1, . . . , Xn be (finite) probability spaces. Consider the space X = X1 × . . . × Xn with
the product measure µ (so the coordinates are independent) and Hamming distance d (the
number of coordinates that differ). In our case X = Bn and µ is the Bernoulli measure
with parameter τ . The blowing-up lemma says, informally speaking, that if a set is not
too small, then its neighborhood has small complement (the size is measured by µ). It can
be reformulated in a more symmetric way: if two sets are not too small, then the distance
between them is rather small. (Then this symmetric statement is applied to the original set
and the complement of its neighborhood.) Here is the symmetric statement:

I Proposition 15 (Blowing-up lemma, symmetric version). Let B,B′ be two subsets of X =
X1 × . . .×Xn with the product measure µ. Then

d(B,B′) 6
√

(n/2) ln(1/µ(B)) +
√

(n/2) ln(1/µ(B′)).

To prove the blowing-up lemma, we use the McDiarmid concentration inequality:

I Proposition 16 (McDiarmid’s inequality, [11]). Consider a function f : X1 × . . .×Xn →
R. Assume that changing the i-th coordinate changes the value of f at most by some ci:
|f(x)− f(x′)| 6 ci, if x and x′ coincide everywhere except for the ith coordinate. Then

Pr[f − E f > z] 6 exp
(
− 2z2∑n

i=1 c
2
i

)
for arbitrary z > 0.

STACS 2019

57:10 Random Noise Increases Kolmogorov Complexity and Hausdorff Dimension

Here the probability and expectation are considered with respect to the product distribution
µ (the same as in the blowing-up lemma, see above). This inequality shows that f cannot
be much larger than its average on a big set. Applying this inequality to −f , we get the
same bound for the points where the function is less than its average by z or more. (For
the reader’s convenience we reproduce the proof of the McDiarmid inequality in the arxiv
version of this paper.)

Now let us show why it implies the blowing-up lemma (in the symmetric version).

Proof of the blowing-up lemma. Let f(x) = d(x,B) be the distance between x and B, i.e.,
the minimal number of coordinates that one has to change in x to get into B. This function
satisfies the bounded differences property with ci = 1, so we can apply the McDiarmid
inequality to it. Let m be the expectation of f . The function f equals zero for arguments in
B and therefore is below its expectation at least by m (everywhere in B), so

µ(B) 6 exp
(
−2m2

n

)
, or m 6

√
(n/2) ln(1/µ(B))

On the other hand, the function f is at least d(B,B′) for arguments in B′, so it exceeds its
expectation at least by d(B,B′)−m (everywhere in B′), therefore the McDiarmid inequality
gives

d(B,B′)−m 6
√

(n/2) ln(1/µ(B′)),

and it remains to combine the last two inequalities. J

Here is the special case of the blowing-up lemma we need:

I Corollary 17. If µ is a distribution on Bn with independent coordinates, and B ⊂ Bn has
measure µ(B) > 1/n, then for d = O(

√
n logn) we have µ(Bd) > 1− 1/n.

Indeed, we may apply the blowing-up lemma to B and B′, where B′ is a complement of Bd.
If both B and B′ have measures at least 1/n, we get a contradiction for d > 2

√
(n/2) lnn

(the distance between B and the complement of its neighborhood Bd exceeds d).

I Remark 18. In the same way we get a similar result for probabilities 1/nc and 1− 1/nc for
arbitrary constant c (only the constant factor in O(

√
n logn) will be different).

Now we are ready to prove the strong combinatorial version:

I Proposition 19. Let α = H(p) and β = H(N(p, τ)). Let A,B ⊂ Bn and for every
x ∈ A the probability of the event “Nτ (x) ∈ B” is at least 1/n. If log #A > αn, then
log #B > βn−O(

√
n log3/2 n).

Proof. As we have seen, the weak combinatorial version (Proposition 14) can be applied
to the neighborhood Bd for d = O(

√
n logn). The size of Bd can be bounded by the size

of B multiplied by the size of a Hamming ball of radius d. The latter is poly(n)2nH(d/n).
Combining the inequalities, we get

log #B > log #Bd − nH(d/n)−O(logn) > βn− nH(d/n)−O(logn).

For small p we have H(p) = p log 1
p + (1 − p) log 1

1−p = p log 1
p + p + o(p) = O

(
p log 1

p

)
.

We have p = d/n = O(
√

logn/n), so nH(d/n) = nO(
√

logn/n logn) = O(
√
n log3/2 n), as

promised. J

G. Posobin and A. Shen 57:11

4 Complexity statement

Now we combine all pieces and prove Theorem 8. It states:

Let α = H(p) for some p 6 1/2. Let τ be an arbitrary number in (0, 1). Let
β = H(N(p, τ)). Then for sufficiently large n the following is true: for every string x
of length n with C(x) > αn, we have Pr[C(Nτ (x)) > βn− o(n)] > 1− 1

n .

Here o(n) is actually O(
√
n log3/2 n).

We already have all the necessary tools for the proof, but some adjustments are needed.
We already know how to convert a combinatorial statement into a complexity one. For that we
consider the set B of all strings in Bn that have complexity less than βn−c

√
n log3/2 n for some

c (to be chosen later). Then we consider the set A of all x such that Pr[Nτ (x) ∈ B] > 1/n.
The combinatorial statement (strong version, Proposition 19) guarantees that #A 6 2αn.
We would like to conclude that all elements of A have complexity only slightly exceeding
αn. (Then we have to deal with this excess, see below.) For that we need an algorithm
that enumerates A. First, we need to enumerate B, and for that it is enough to know n

and the complexity bound for elements of B. But now (unlike the case of arbitrary change
where we need to know only the maximal number of allowed changes) we need to compute
the probability Pr[Nτ (x) ∈ B], and the value of τ may not be computable, and an infinite
amount of information is needed to specify τ . How can we overcome this difficulty?

Note that it is enough to enumerate some set that contains A but has only slightly larger
size. Consider some rational τ ′ that is close to τ and the set A′ = {x : Pr[Nτ ′(x) ∈ B] > 1/2n}
The combinatorial statement remains true (as we noted in Remark 18, even 1/nc would be
OK, not only 1/2n), so we may still assume that #A′ 6 2αn. We want A′ ⊃ A. This will be
guaranteed if the difference between Pr[Nτ (x) ∈ B] and Pr[Nτ ′(x) ∈ B] is less than 1/2n.
To use the coupling argument, let us assume that Nτ (x) and Nτ ′(x) are defined on the same
space: to decide whether the noise changes ith bit, we generate a fresh uniformly random
real in [0, 1] and compare it with thresholds τ and τ ′. This comparison gives different results
if this random real falls into the gap between τ and τ ′. Using the union bound for all bits,
we conclude that Pr[Nτ (x) 6= Nτ ′(x)] in this setting is bounded by n|τ ′ − τ |. Therefore, if
the approximation error |τ ′ − τ | is less than 1/2n2, we get the desired result, and to specify
τ ′ that approximates τ with this precision we need only O(logn) bits. This gives us the
following statement:

for every string x of length n with C(x) > αn+O(logn), we have
Pr[C(Nτ (x)) > βn− o(n)] > 1− 1

n .

The only difference with the statement of Theorem 8 is that we have a stronger requirement
C(x) > αn+O(logn) instead of C(x) > αn. To compensate for this, we need to decrease α a
bit and apply the statement we have proven to α′ = α−O(logn/n). Then the corresponding
value of β also should be changed, to get a point (α′, β′) on the curve (Figure 1) on the left
of the original point (α, β). Note that the slope of the curve is bounded by 1 (it is the case
at the right end where the curve reaches (1, 1), since the curve is above the diagonal α = β,
and the slope increases with α due to convexity). Therefore, the difference between β and β′
is also O(logn/n) and is absorbed by the bigger term O(

√
n log3/2 n).

Theorem 8 is proven.

In the next section we apply our technique to get some related results about infinite bit
sequences and their effective Hausdorff dimension. We finish the part about finite strings
with the following natural question.

STACS 2019

57:12 Random Noise Increases Kolmogorov Complexity and Hausdorff Dimension

I Question 1. Fix some x and apply random noise Nτ . The complexity of Nτ (x) becomes a
random variable. What is the distribution of this variable? The blowing-up lemma implies
that it is concentrated around some value. Indeed, if we look at strings below 1%-quantile and
above 99%-quantile, the blowing-up lemma guarantees that the Hamming distance between
these two sets is at most O(

√
n), and therefore the thresholds for Kolmogorov complexity

differ at most by O(
√
n logn) (recall that for two strings of length n that differ in i positions,

their complexities differ at most by O(i logn), since it is enough to add information about i
positions and each position can be encoded by logn bits).

So with high probability the complexity of Nτ (x) is concentrated around some value (defined
up to O(

√
n logn) precision). For each τ we get some number (expected complexity, with

guaranteed concentration) that depends not only on n and C(x), but on some more specific
properties of x. What are these properties? Among the properties of this type there exists a
Vitanyi–Vereshchagin profile curve for balls, the minimal complexity in the neighborhood as
function of the radius (see [12, section 14.4]); is it somehow related?

As we have mentioned, this question is open also for maximal complexity in d-balls
around x, not only for typical complexity after τ -noise.

5 Infinite sequences and Hausdorff dimension

Let X = x1x2x3 . . . be an infinite bit sequence. The effective Hausdorff dimension of X
is defined as lim infn→∞(C(x1 . . . xn)/n). A natural question arises: what happens with the
Hausdorff dimension of a sequence when each its bit is independently changed with some
probability τ? The following result states that the dimension increases with probability 1
(assuming the dimension was less than 1, of course), and the guaranteed increase follows the
same curve as for finite sequences.

I Theorem 20. Let p, τ ∈ (0, 1/2) be some reals, α = H(p) and β = H(N(p, τ)). Let X be
an infinite sequence that has effective Hausdorff dimension at least α. Then the effective
Hausdorff dimension of the sequence Nτ (X) that is obtained from X by applying random
τ -noise independently to each position, is at least β with probability 1.

Proof. It is enough to show, for every β′ < β, that the dimension of Nτ (X) is at least β′
with probability 1. Consider α′ < α so that the pair (α′, β′) lies on the boundary curve.
By definition of the effective Hausdorff dimension, we know that C(x1 . . . xn) > α′n for all
sufficiently large n. Then Theorem 8 can be applied to α′ and β′. It guarantees that with
probability at least 1− 1/n the changed string has complexity at least β′n− o(n). Moreover,
as we have said, the same is true with probability at least 1− 1/n2. This improvement is
important for us: the series

∑
1/n2 converges, so the Borel–Cantelli lemma says that with

probability 1 only finitely many prefixes have complexity less than β′n− o(n), therefore the
dimension of Nτ (X) is at least β′ with probability 1. J

In the next result we randomly change bits with probabilities depending on the bit
position. The probability of change in the nth position converges to 0 as n → ∞. This
guarantees that with probability 1 we get a sequence that is Besicovitch-close to a given one.
Recall that the Besicovitch distance between two bit sequences X = x1x2 . . . and Y = y1y2 . . .

is defined as lim supn→∞(d(x1 . . . xn, y1 . . . yn)/n), where d stands for the Hamming distance.
So d(X,Y) = 0 means that the fraction of different bits in the n-bit prefixes of two sequences
converges to 0 as n → ∞. The strong law of large numbers implies that if we start with
some sequence X and change ith bit independently with probability τi with limn τn = 0, we
get (with probability 1) the sequence X ′ such that the Besicovitch distance between X and
X ′ is 0. This allows us to prove the following result using a probabilistic argument.

G. Posobin and A. Shen 57:13

I Theorem 21. Let X = x1x2 . . . be a bit sequence whose effective Hausdorff dimension is
at least γ for some γ < 1. Let δn be a sequence of positive reals such that limn δn = 0. Then
there exists a sequence X ′ = x′1x

′
2 . . . such that:

the Besicovitch distance between X and X ′ is 0;
C(x′1 . . . x′n) is at least n(γ + δn) for all sufficiently large n.

Proof. For this result we use some decreasing sequence τi → 0 and change ith bit with
probability τi. Since τi → 0, with probability 1 the changed sequence is Besicovitch-equivalent
(distance 0) to the original one. It remains to prove that the probability of the last claim
(the lower bound for complexities) is also 1 for the changed sequence, if we choose τi → 0 in
a suitable way.

To use different τi for different i, we have to look again at our arguments. We start with
Proposition 13: the proof remains valid if each bit is changed independently with probability
τi > τ depending on the bit’s position (see the arxiv version of the paper for details). Indeed,
for every τ ′ > τ the corresponding τ ′-curve is above the τ -curve, so the pairs of entropies
(original bit, bit with noise) are above the τ -curve and we may apply the same convexity
argument.

The derivation of the combinatorial statement (first the weak one, then the strong one)
also remains unchanged. The proof of the weak version does not mention the exact nature
of the noise at all; in the strong version we use only that different bits are independent (to
apply the McDiarmid inequality and the blowing-up lemma). The only problem arises when
we derive the complexity version from the combinatorial one. In our argument we need to
know τ (or some approximation for τ) to enumerate A. If for each bit we have its own value
of τ , even one bit to specify this value is too much for us.

To overcome this difficulty, let us agree that we start with τi = 1/2, then change them to
1/4 at some point, then to 1/8 etc. If for nth bit we use τn = 2−m, then to specify all the τi
for i 6 n we need to specify O(m logn) bits (each moment of change requires O(logn) bits).
For τ = 2−m we choose a pair (α, β) on the τ -curve such that α < γ < β. To decide when we
can start using this value of τ , we wait until C(x1 . . . xn) > αn+O(m logn) becomes true
and stays true forever, and also γ + δn < β −O(

√
n log3/2 n) becomes and stays true. Note

that m is fixed when we decide when to start using τ = 2−m, so such an n can be found. In
this way we guarantee that the probability that x′1 . . . x′n will have complexity more than
(γ + δn) is at least 1− 1/n2 (we need a converging series, so we use the bound with n2), and
it remains to apply the Borel–Cantelli lemma. J

Theorem 21 implies that for every X that has effective Hausdorff dimension α there
exist a Besicovitch equivalent X ′ that is α-random (due to the complexity criterion for
α-randomness, see [5]), and we get the result of [5, Theorem 2.5] as a corollary. Moreover,
we can get this result in a stronger version than in [5], since for slowly converging sequence
δn, for example, δn = 1/ logn, we get strong α-randomness instead of weak α-randomness
used in [5]. (For the definition of weak and strong α-randomness and for the complexity
criteria for them see [3, Section 13.5].)

Final remarks

In fact, if we are interested only in some increase of entropy when applying noise, and do
not insist on the optimal lower bound, some simpler arguments (that do not involve entropy
arguments and just prove the combinatorial statement with a weaker bound) are enough.
One of them uses Fourier transform and was suggested by Fedor Nazarov; one can also
use the hypercontractivity argument to improve this bound, but the resulting bound is not
optimal either. Both arguments are explained in the arxiv version of the paper.

STACS 2019

57:14 Random Noise Increases Kolmogorov Complexity and Hausdorff Dimension

The arxiv version also contains the proof of the result from [1] (about the increase in
entropy caused by random noise) for reader’s convenience, and also because we need a slightly
more general version for non-constant noise probability. Short (and quite standard) proofs
of the McDiarmid inequality as a corollary of the Azuma–Hoeffding inequality, and of the
Azuma–Hoeffding inequality itself are also given there to make the paper self-contained.

References
1 Rudolf Ahlswede, Peter Gács, and János Körner. Bounds on conditional probabilities with

applications in multi-user communication. Zeitschrift für Wahrscheinlichkeitstheorie und
verwandte Gebiete, 34(2):157–177, 1976.

2 Harry Buhrman, Lance Fortnow, Ilan Newman, and Nikolai K. Vereshchagin. Increasing
Kolmogorov Complexity. In Volker Diekert and Bruno Durand, editors, STACS 2005, 22nd
Annual Symposium on Theoretical Aspects of Computer Science, Stuttgart, Germany, February
24-26, 2005, Proceedings, volume 3404 of Lecture Notes in Computer Science, pages 412–421.
Springer, 2005. doi:10.1007/978-3-540-31856-9_34.

3 Rodney G. Downey and Denis R. Hirschfeldt. Algorithmic Randomness and Complexity. Theory
and Applications of Computability. Springer, 2010. doi:10.1007/978-0-387-68441-3.

4 Peter Frankl and Zoltán Füredi. A short proof for a theorem of Harper about Hamming-spheres.
Discrete Mathematics, 34(3):311–313, 1981. doi:10.1016/0012-365X(81)90009-1.

5 Noam Greenberg, Joseph S. Miller, Alexander Shen, and Linda Brown Westrick. Dimension
1 sequences are close to randoms. Theoretical Computer Science, 705:99–112, 2018. doi:
10.1016/j.tcs.2017.09.031.

6 Wassily Hoeffding. Probability inequalities for sums of bounded random variables. Journal of
the American statistical association, 58(301):13–30, 1963.

7 Andrei N. Kolmogorov. Three approaches to the quantitative definition of information.
Problems of Information Transmission, 1(1):3–11, 1965.

8 Ming Li and Paul M. B. Vitányi. An Introduction to Kolmogorov Complexity and Its
Applications, Third Edition. Texts in Computer Science. Springer, 2008. doi:10.1007/
978-0-387-49820-1.

9 Grigory A. Margulis. Probabilistic properties of highly connected graphs. Problems of
Information Transmission, 10(2):174–179, 1974.

10 Katalin Marton. A simple proof of the blowing-up lemma. IEEE Transactions on Information
Theory, 32(3):445–446, 1986. doi:10.1109/TIT.1986.1057176.

11 Colin McDiarmid. On the method of bounded differences, pages 148–188. London Math-
ematical Society Lecture Note Series. Cambridge University Press, 1989. doi:10.1017/
CBO9781107359949.008.

12 Alexander Shen, Vladimir A. Uspensky, and Nikolay Vereshchagin. Kolmogorov complexity
and algorithmic randomness, volume 220. American Mathematical Society, 2017.

13 Nikolai K. Vereshchagin and Alexander Shen. Algorithmic statistics: forty years later. In
Computability and Complexity. Essays Dedicated to Rodney G. Downey on the Occasion of
His 60th Birthday. Lecture Notes in Computer Science, v. 10010, pages 669–737. Springer,
July 2017. arXiv:1607.08077.

14 Nikolai K. Vereshchagin and Paul M. B. Vitányi. Rate Distortion and Denoising of Individual
Data Using Kolmogorov Complexity. IEEE Transactions on Information Theory, 56(7):3438–
3454, 2010.

15 Aaron D. Wyner and Jacob Ziv. A Theorem on the Entropy of Certain Binary Sequences
and Applications: Part I. IEEE Transactions on Information Theory, 19(6):769–772, 1973.
doi:10.1109/TIT.1973.1055107.

http://dx.doi.org/10.1007/978-3-540-31856-9_34
http://dx.doi.org/10.1007/978-0-387-68441-3
http://dx.doi.org/10.1016/0012-365X(81)90009-1
http://dx.doi.org/10.1016/j.tcs.2017.09.031
http://dx.doi.org/10.1016/j.tcs.2017.09.031
http://dx.doi.org/10.1007/978-0-387-49820-1
http://dx.doi.org/10.1007/978-0-387-49820-1
http://dx.doi.org/10.1109/TIT.1986.1057176
http://dx.doi.org/10.1017/CBO9781107359949.008
http://dx.doi.org/10.1017/CBO9781107359949.008
http://arxiv.org/abs/1607.08077
http://dx.doi.org/10.1109/TIT.1973.1055107

A Unified Approach to Tail Estimates for
Randomized Incremental Construction
Sandeep Sen
Department of CSE, I.I.T. Delhi, India
ssen@cse.iitd.ac.in

Abstract
By combining several interesting applications of random sampling in geometric algorithms like point
location, linear programming, segment intersections, binary space partitioning, Clarkson and Shor
[4] developed a general framework of randomized incremental construction (RIC). The basic idea is
to add objects in a random order and show that this approach yields efficient/optimal bounds on
expected running time. Even quicksort can be viewed as a special case of this paradigm. However,
unlike quicksort, for most of these problems, sharper tail estimates on their running times are not
known. Barring some promising attempts in [15, 3, 20], the general question remains unresolved.

In this paper we present a general technique to obtain tail estimates for RIC and and provide
applications to some fundamental problems like Delaunay triangulations and construction of Visibility
maps of intersecting line segments. The main result of the paper is derived from a new and careful
application of Freedman’s [9] inequality for Martingale concentration that overcomes the bottleneck
of the better known Azuma-Hoeffding inequality. Further, we explore instances, where an RIC based
algorithm may not have inverse polynomial tail estimates. In particular, we show that the RIC time
bounds for trapezoidal map can encounter a running time of Ω(n logn log logn) with probability
exceeding 1√

n
. This rules out inverse polynomial concentration bounds within a constant factor of

the O(n logn) expected running time.

2012 ACM Subject Classification Theory of Computation → Computational Geometry

Keywords and phrases ric, tail estimates, martingale, lower bound

Digital Object Identifier 10.4230/LIPIcs.STACS.2019.58

1 Introduction

One of the most natural and elegant paradigm for designing geometric algorithms is ran-
domized incremental construction or RIC for short. It can be viewed as generalization of
Quicksort and evolved over a sequence of papers [18, 2] eventually culminating in a very
general framework of configuration space by Clarkson and Shor [4]. The basic procedure is
described in Figure 1. Quicksort itself can be viewed through this paradigm as refinement of
the current partially ordered set (partitions) by inserting the next splitter and updating the
partitions.

An abstract configuration space, that we will refer to as Π(S) is defined by the given
set S of n elements. A configuration σ is a subset of the Euclidean space that is defined
by O(1) objects of S denoted by d(σ). The conflict list of a configuration σ is denoted by
`(σ) = σ ∩ {S − d(σ)}, i.e. the elements of S that intersect σ, not including d(σ). We define
Πi(S) = {σ : |`(σ)| = i} and Π(S) =

⋃n
i=0 Πi(S). For analyzing RIC , the properties of

Π0(R) for a randomly chosen subset R ⊂ S turns out to be very crucial. In particular, they
characterize how the uninserted elements of S interact with the current partially constructed
structure, denoted by H(R). For notational simplicity, the conflict list of any σ ∈ Π0(R),
`(σ) = σ ∩ S (instead of σ ∩R) which will be an important parameter in the analysis.

We illustrate the framework and the notations in the context of quicksort. A configuration
σ is an interval defined by {xi, xj} ∈ S , i.e., |d(σ)| = 2 and `([xi, xj]) = S ∩ [xi, xj], i.e., the
points of S that lie in this interval. The configurations space Π(S) is the set of intervals

© Sandeep Sen;
licensed under Creative Commons License CC-BY

36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019).
Editors: Rolf Niedermeier and Christophe Paul; Article No. 58; pp. 58:1–58:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ssen@cse.iitd.ac.in
https://doi.org/10.4230/LIPIcs.STACS.2019.58
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

58:2 A Unified Approach to Tail Estimates for Randomized Incremental Construction

Procedure RIC(S).
1 N = [x1, x2 . . . xn] : a random permutation of S. ;
2 T ← φ ,H is some data structure appropriately initialized;
3 for i = 1 to n do
4 T ← T ∪ {xi};
5 Update H(T)
6 Return H(T) ;

Figure 1 Randomized Incremental Construction.

defined by all pairs xi, xj ∈ S. Note that Π0(S) consists of intervals defined by the sorted
set of points in S. The associated data structure H(R) for a sample R ⊂ S may be thought
of as an incidence relation between intervals σ ∈ Π0(R) and `(σ) ∈ S −R. This is precisely
the ordered intervals induced by the points in R and the uninserted points S −R partially
ordered by these intervals.
When the next randomly chosen element x ∈ S − R is added to R, H(R) is updated to
H(R ∪ {x}) and this cost contributes to the running time of RIC . In [4] , the data-structure
is maintained as a conflict graph that maintains relation between σ ∈ Π0(R) and S −R as
a bipartite graph. Although configurations are created and destroyed, the total cost can
be shown to be twice the cost of new configurations created and the ones destroyed can be
charged to the cost of its creation. In the case of quicksort, H(S) yields the information
about the sorted set since it contains all the ordered intervals. The reader is referred to
[4, 17] for further details regarding this framework. We include a brief description in the
Appendix.

Although the initial analysis in [4] was somewhat intricate and complex, subsequent
papers [1, 19] simplified the analysis using a clever technique called backward analysis. In
this paper, we will appeal to the simpler analysis. Often the full conflict graph information
can be replaced by simpler relations (see [10, 19]. However, the conflict graph approach is
very general and works for diverse problems.

A related, but a somewhat distinct approach was developed in the work of Seidel [19, 20, 1]
that maintains a solution inductively, that is recomputed from scratch if the next insertion
modifies it. For example, the closest pair can be computed in this similar manner ([12]).
Although our techniques can be applied to the latter work also, we will focus primarily on
the Clarkson-Shor incremental paradigm of a configuration space.

While the primary focus was on deriving bounds on the expected running time of RIC, it
was clear that obtaining concentration bounds on the expected running time would make
the RIC more practical and attractive. The conjecture was that the running times are
concentrated around their expected values but to the best of our knowledge, there has
been little progress in this direction barring some papers related to computing line segment
intersections using RIC [3, 15] and on fixed dimensional linear programming [20]. For
problems like planar hulls, high probability bounds can be proved based on linear ordering
that do not extend to higher dimensions. Although, by resampling Ω(logn) times, we can
obtain inverse polynomial concentration bounds, it comes at the expense of the increasing
the running time by an O(logn) factor.

In this paper, we revisit the problem and present a general methodology to obtain tail
bounds for specific problems like Delaunay triangulation, 3-D convex hulls, and line segment
intersections that are based on RIC - these are summarized in Table 1. For the case of

S. Sen 58:3

Table 1 Summary of results for some representative problems using our technique.
w.p. : “with probability” α(n) : inverse Ackerman function, γ > 0 some constant
The third result alludes to a version that doesn’t use conflict lists explicitly.

Problem Expected Running time Tail estimates
Quicksort O(n logn) O(cγn logn) w.p. ≥ 1− n−c

Delaunay Triangulation O(n logn) O(cγn logn) w.p. ≥ 1− 2−c

Segment intersections/ O(n logn+m) O(n logn+m) w.p.
Trapezoidal maps n: segments, m: intersections 1− exp−(m+n logn

nα(n))

finding intersection of line segments, our bounds are not only better than [15] but also
distinctly less involved in terms of calculations. Moreover, we develop a unified approach
based on a well-known Martingale inequality, unlike the previous approaches that were
arguably more ad-hoc.

We also provide some evidence of the non-existence of such generalized tail estimates
by constructing an instance of the trapezoidal maps (based on maintaining conflict lists)
for which inverse polynomial tail estimates is possible only for running times exceeding
Ω(n logn log logn) and rules out concentration bounds within constant factor of expectation.

I Remark. In RIC based algorithms, the term running time is often interchangeably used
with structural changes caused by each insertion, particularly when the underlying data
structure is a conflict-graph.

1.1 Main techniques and organization

We begin by introducing a useful probabilistic inequality, viz., Freedman’s inequality [9] for
Martingales that will be used to model the running time of the generic RIC algorithms. In
the following section, we illustrate the use of this technique for analyzing quicksort that
can also be viewed within the framework of RIC . The application to quicksort doesn’t
yield any better result than what was previously known, but it provides a stepping stone
to the more complex and general framework. In particular, even the more commonly used
Azuma-Hoeffding bound is not known to be effective for quicksort concentration bounds
because its dependence on the worst-case bound (sum of bounded differences).

It is unlikely that the previously known techniques for concentration bound of quicksort
can be extended to generic RIC analysis as the intermediate structures in RIC are more
complex and can be bound only in an expected sense. Starting with quicksort in section 3
which has a predictable intermediate structure consisting of i + 1 intervals in stage i, we
tackle increasingly complex scenarios. In the case of Delaunay triangulation (in section 4),
although the number of triangles in the i-th step is O(i), the number of additional triangles
created in the i-th step can be bound only in expectation. In section 5 we consider the case
of line segment intersections where the size of the intermediate structure can be bound only
in an expected sense and may have a large variance.

In the last section, we construct a family of inputs for the RIC for trapezoidal maps to
show that inverse polynomial concentration bound is not attainable if we rely on conflict-list
based update mechanism.

STACS 2019

58:4 A Unified Approach to Tail Estimates for Randomized Incremental Construction

2 Basic framework and tools

Let S = {x1, x2 . . . xn} be a set of n objects. A permutation π of S is a 1-1 function
π(i) = j where i, j ∈ {1, 2, . . . n} that produces a permutation xπ(1), xπ(2) . . . xπ(n). A
random permutation of S is one of the n! permutation function chosen uniformly at random.
A k-prefix of a permutation π is the sequence of the first k objects and denoted by π(k)

consisting of xπ−1(1), xπ−1(2) . . . xπ−1(k). Note that the permutation x3, x1, x2 is defined as
π(1) = 2;π(2) = 3;π(3) = 1, so the permutation is xπ−1(1), xπ−1(2), xπ−1(3).

Let X1, X2 . . . Xn where Xi = xπ−1(i) corresponding to a random permutation π. Further,
let X̄(k) denote a sequence of k random variables that will also be used it to refer to a fixed
choice of the k variables, i.e., X̄k = π(k).

Let (Ω,U) denote the space of all possible permutations of n objects and U is the uniform
probability distribution. For 0 ≤ i ≤ n, let Bi consist of blocks of permutations, partitioned
into some equivalent classes according to the i-prefixes where B0 is a single block consisting
of all permutations. In this context, let us define Zi = E[Z|X̄(i)] for any well-defined random
variable Z over the probability space (Ω,U) where the conditioning is over the blocks of Bi.
The sequence Zi defines a martingale sequence that is widely known as a Doob Martingale
[5, 7, 8]. The reader may recognize that these blocks form the basis of a nested filter sequence
that formally defines a martingale sequence.

It is more intuitive to visualize the above process as a tree τ , where the level i nodes
correspond to blocks of Bi with arity n− i and each sub-block is connected to its parent block
by an edge directed from the parent. Any node in the j-th level of this tree can be labelled
by the (unique) sequence X(j) leading to it. An edge is labelled by the (random) choice
made at that level and also has an associated weight w(τ(X̄(i−1)), τ(X̄(i))) that corresponds
to the cost of the i-th incremental step. Here τ(X̄(i)) represents the node of the tree τ after
adding/deleting a sequence of random variable X̄(i), we have We will use w̄ to denote an upper
bound of w() in the context of specific algorithms. Let Y =

∑j=n
j=0 w(τ(X̄(j−1)), τ(X̄(j)))

be a random variable that corresponds to the sum of the cost of the edges on a path that
corresponds to the cost of the RIC. Let Yi = E[Y |Fi] = E[Y |X̄(i)].

Even if we interpret the sequence as deletion sequence starting from {x1, x2, x3}, the
reader can easily verify that this preserves the nesting property of blocks, and hence a
valid filter. For example, B1 would contain the blocks (x1x2x3, x1, x3, x2) corresponding to
deletion of x1 and B2 would contain the block (x1, x2, x3) when x2 is the next element deleted
and so on. Since every insertion sequence has a unique backward deletion sequence, this
interpretation amounts to running the RIC in the reverse direction with each step associated
with the same cost as the forward direction. This perspective is is very similar to the idea of
backward analysis [21].

In the Doob’s martingale sequence, Y0 denotes the expected running time of the RIC. We
would like to bound the deviation |Yn−Y0| for any run of the algorithm with high probability,
which in the context of this paper will be inverse polynomial, unless otherwise mentioned.
Likewise the random deletion sequence also defines a Doob’s martingale on the subsets which
will be referred to as the backward-sequence martingale (BSM henceforth).

The following martingale tail bound is the basis of many later results in this paper which
is distinct from Azuma’s inequality and referred to as the Method of bounded variance.

I Theorem 1 (Freedman [9]). Let X1, X2 . . . Xn be a sequence of random variables and let
Yk, a function of X1 . . . Xk be a martingale sequence, i.e., E[Yk|X1 . . . Xk] = Yk−1 such that
max1≤k≤n{|Yk − Yk−1|} ≤Mn. Let

Wk =
k∑
j=1

E[(Yj − Yj−1)2|X1 . . . Xj−1] =
k∑
j=1

V ar(Yj |X1 . . . Xj−1)

S. Sen 58:5

where V ar is the variance using E[Yj] = Yj−1. Then for all λ and Wn ≤ ∆2, ∆2 > 0 ,

Pr[|Yn − Y0| ≥ λ] ≤ 2 exp
(
− λ2

2(∆2 +Mn · λ/3)

)

Note that the term ∆2 can be bound by
∑n
j=1 maxX1,X2...Xj V ar(Yj |X1 . . . Xj−1) i.e.,

the worst case bounds over all choices of length j prefix X(j). If the inner term can be bound
by some function of j, say, ω(j), then we may obtain an upper bound on the probability of
deviation for any sequence X̄(n) as

∑n
j=1 ω(j) which can be viewed as a function of n.

Further, we will actually use a minor variation of this result (see [6, 13]). Suppose
Pr[Mn ≥ g(n)] ≤ 1

f(n) for some non-decreasing functions g, f . If we let B denote the event
Mn ≥ g(n), then the overall bound becomes

Pr[|Yn − Y0| ≥ λ] ≤ 2 exp
(
− λ2

2(∆2 + g(n)λ/3)

)
+ Pr(B) (1)

Similarly it can also be extended to the case where Wn ≤ ∆2 holds with probability
1 − 1

f(n) . Henceforth, in the remaining paper, we will appeal to the following version of
Freedman’s inequality where the bounds on Mn and Wn hold with high probability. Often
the term 1

f(n) will be the dominant term, so the final tail bound will effectively be O(1
f(n)).

I Corollary 2. Let Pr[max1≤k≤n{|Yk − Yk−1|} ≥Mn,Wn ≥ ∆2] ≤ 1
f(n) , then,

Pr[|Yn − Y0| ≥ λ] ≤ 2 exp
(
− λ2

2(∆2 +Mn · λ/3)

)
+O(1/f(n))

3 Application to Quicksort and related problems

Let us consider quicksort in the RIC framework and without loss of generality, let the input
elements be {1, 2 . . . n}. The j-th pivot, 1 ≤ j ≤ n, partitions the input into j + 1 ordered
sets, by splitting some existing partition P . Any element x ∈ P is charged the cost of
comparison with the pivot - any element x′ 6∈ P is not charged. The running time of the
algorithm can be bound by the cumulative charges accrued by each element. In this analysis
we will bound the charge of each element with high probability (w.h.p. henceforth) to denote
probability exceeding 1− 1/nα for some appropriate constant α > 0, and the overall running
time bound follows from multiplying by n.

The associated weight with each edge is either 1 or 0 depending on whether the latest
random choice is one of the boundary elements of the interval containing x. We define
a random variable Ixj = {1 if interval containing x changes in step j 0 otherwise}. From
backward analysis, the probability of this is at most 2

j for a uniformly chosen child node1. For
completeness, we have included a detailed description of backward analysis in the appendix.
We will also omit the superscript x and just use Ij since we will obtain a worst case bound
over all choices of x. The reader may note that the bound on E[Ij] is only a function of j
and not X̄(j) over all random choices of any prefix of j elements.

1 Using a simple trick of circular ordering (see [21]), this probability can be made exactly equal to 2
j .

Subsequently, Chernoff bounds can be applied easily by arguing about te independence of Ijs.

STACS 2019

58:6 A Unified Approach to Tail Estimates for Randomized Incremental Construction

It will also help to focus on the BSM for quicksort. A random deletion sequence creates
a nested sequence of random subsets starting from the all the elements and ending in the
empty sequence. An edge of this tree (K,K − {y}) is given a value 1 for a subset K and an
element y ∈ K if in the (forward) quicksort algorithm, selecting y as a pivot and leading to
K (all the pivots selected) forces a comparison between y and x. Clearly two edges from
any subset will be given a value 1, so that the expected cost for a random deletion is 2

n−j in
the j-th level, n ≥ j ≥ 0. Figure 2 gives a depiction of this random variable in the quicksort
process.

Consider a path P = v0v1 . . . vn from root to a leaf-node in this tree. The cost of this
path is given by w(P) =

∑n
i=1 w(vi, vi+1). A random path corresponds to one where vi+1 is

a child of vi chosen uniformly at random among the n− i children. The expected cost of
such a random path is given by

Erandom P [w(P)] = E[
n∑
i=1

w(Vi, Vi+1)] where Vi+1 is a random child of node Vi

We will follow the convention that small letters will denote fixed choices, i.e., vi where the
capital letters will correspond to random variables, i.e., Vi. Let Ej [Z] denote EXj [Z|X̄(j−1)]
for some random variable Z. Note that X̄(j−1) represents a fixed path from the root of the
tree τ corresponding to the deletion sequence X1X2 . . . Xj−1, to a level j − 1 node, say Vj−1.
Then,

Ej [Y] = Yj =
j−1∑
k=0

w(vk, vk+1) + Ej

n−1∑
k=j

w(Vk, Vk+1)

 =
j−1∑
k=0

w(vk, vk+1) +
n∑

k=j+1
E[Ik]

It follows that Y0 = 2Hn and we want to obtain a tail estimate for Yn − Y0.
So,

Yj − Yj−1 = w(vj−1, vj) +

 n∑
k=j+1

E[I ′k]

−
 n∑
k=j

E[Ik]

 (2)

= Ij − E[Ij] assuming Ij , I ′j ’s have the same distribution (3)

To see this, the reader may recall that the probability that a fixed element x is affected by
the pivot is a function only of the number of elements deleted (in the backward sequence)
and not on the elements themselves or how they are distributed. So Ej [(Yj − Yj−1)2] =
Ej [(Ij − E[Ij])2] which shows that the value of Yj differs from Yj−1 because of the specific
choice of the random variable Xj .

For quicksort, we can complete the analysis as follows.

Ej [(Ij − E[Ij])2] = Ej [I2
j]− E2

j [Ij] ≤ Ej [I2
j]− 4

(n− j)2

≤ 2
n− j

since I2
j is also a 0-1 indicator rv

So
∑n
j=1 Ej−1[(Yj − Yj−1)2] ≤

∑n
j=1

2
n−j ≤ 2Hnwhere Hn ≤ logn. Plugging in λ = 2c logn

for some constant c and using Freedman’s theorem, we obtain

Pr[|Yn − Y0| ≥ c logn] ≤ exp
(
− 4c2 log2 n

2(logn+ c logn/3)

)
≤ 1
nc
.

Note that Mn = Yi − Yi−1 ≤ 1.

S. Sen 58:7

Figure 2 Tree corresponding to the Backward Sequence Martingale corresponding to the compar-
isons for a fixed element x. The root corresponds to Y0 which denotes the expected running time.
Every edge has cost 0 or 1 depending on whether x and Xi belong to the same interval and a path
in this tree reveals the indicator variables Ij .

This shows that a single element incurs at most O(logn) cost with high probability and
therefore quicksort runs in O(n logn) time with high probability.
I Remark. A straightforward application of the classic Azuma-Hoeffding bound [16]

Pr[|Yn − Y0| ≥ t] ≤ exp
(

−t2∑n

i=1
c2
i

)
would not have been effective since the the bound

ci = Mn = 1 makes the denominator too large for an O(logn) deviation bound. In [21], the
author obtained a similar bound by using Chernoff bounds for binomial distribution that
require independence of Ijs across different levels. Also note that, there exists a superior
bound of O(n−Ω(log logn)) for Quicksort obtained in [14].

The above argument can be directly extended to obtain a concentration bound on the
dart throwing game that has many applications (Mulmuley [18]). Consider throwing n darts
randomly in n ordered locations, say numbered {1, 2 . . . n}. Let S(i) be a random variable
that denotes the smallest numbered location among the first i randomly thrown darts. Let
Z(i) = 1 if S(i) 6= S(i − 1) and Z(1) = 1. So Z(i) is the number of times S(i) changes
among the first i darts thrown. We are interested in E[Z(n)] which can be shown to be∑n
i=1

1
i = Hn, the n-th harmonic. This follows from backward analysis by observing that

among a set of i randomly chosen numbers, the probability of picking the smallest number
as the last number is 1

i . This is related to many visibility problems in geometry as well as
the analysis of Trieps. Using the Freedman’s inequality, we can easily show the following
from the previous argument and looking at the changes in the leftmost interval induced by
the darts.

I Corollary 3.

Pr[|Z(n)−Hn| ≥ 0.9 logn] ≤ exp(−0.7 logn) ≤ 1
n0.7

This implies that Pr[0.1 logn ≤ Z(n) ≤ 1.9 logn] ≥ 1 − n−0.7. The above result has been
stated in a slightly weaker manner so that we can claim a lower bound on Z(n) that will be
invoked later to show the limitations of RIC .

STACS 2019

58:8 A Unified Approach to Tail Estimates for Randomized Incremental Construction

The analysis in this section also extends to problems like constructing trapezoidal maps
that can be used for point location (Seidel [19]). Since a trapezoid can be defined by at most
4 segments, the expected work for point location is

∑n
i=1

4
j ≤ 4 logn. Using a straightforward

extension of the previous arguments, the following result can be obtained.

I Lemma 4. Given a set of n non-intersecting line segments, a trapezoidal map can be
constructed using RIC such that for any query point q, the number times the trapezoid
containing q changes can be bound by O(logn) with inverse polynomial probability.

This result will turn out to be very useful for some later results.

3.1 Extension to more general cost function

The bound obtained in Equation 3 can be extended to a more general situations of RIC
where a single change can affect multiple "intervals" (more precisely, configurations). More
specifically, when w̄ not bounded by a constant we have the following generalization as long
as E[w(Vj−1, Vj)] are same across all nodes in level j − 1 for a random choice of the next
node. Let Wj = w(Vj−1, Vj), then by generalizing the calculations in Equation 3, we obtain

Ej [(Yj − Yj−1)2] ≤ Ej [W2
j]− E2

j [Wj] ≤ Ej [W2
j] (4)

Although the generalized analysis of RIC is not described here is details, we appeal to the
intuitions of the reader that the expected cost of the j-th step depends on j and not the
actual choice of the elements - see Equation 5. Note that in the general analysis of RIC , we
obtain an upper bound on the E[Wj] as a function of j. The upper bounds can be considered
as the (identical) expected cost of the i-th step and the martingale bounds can be applied on
these costs, so the final bounds would still hold as deviation from this (uniform) expected
upper-bounds.

3.2 Comparison with an earlier bound

We briefly recall the framework of Mehlhorn, Sharir and Welzl [15] to model the general RIC
algorithm. A rooted (n, r) tree T is either a single node for r = 0 or (for r > 0) the tree has
n children which are recursively defined (n− 1, r − 1) subtrees. Each of the n edges has an
associated weight di corresponding to the i-th child and maxni=1 di ≤ d(n) and

∑
i di ≤M(n).

The expected cost of a path in this recursively defined tree is A =
∑n−1
i=1

M(n−i)
(n−i) . One of the

main results in the paper is the following tail bound (Theorem 1 in [15]).

Pr(X ≥ B) ≤
(

e

1 +B/A

)B/d(n)
for all B ≥ 0

Although this bound looks somewhat simpler to use, this is not directly comparable to
Freedman’s bound except for some special cases like Lemma 4 and quicksort where the
concentration results are similar. It may be noted that the authors [15] analyze the backward
execution of the algorithm for these results. This bound becomes weaker if d(n) is not a
constant - for some of the later applications d(n) may be larger than A in the worst case.
The authors improve the bound for the specific problem of building visibility maps of line
segments by using the expected value of M(n). However, there is no generalization given for
other problems.

S. Sen 58:9

4 Incremental Delaunay Triangulation

We will now consider somewhat more complex scenarios like construction of Delaunay
Triangulation and three dimensional convex hull (see Guibas Knuth and Sharir [10]). Broadly
speaking these algorithms have two distinct components -

(i) Updating the (partial) structure of the points inserted thus far.
(ii) Updating the point-location data structure of the uninserted points.

For concreteness, we will address the problem of Delaunay Triangulation. The analysis
corresponding to updating the point location structure is similar to the analysis of quicksort
given above. For the update of structural complexity, it was shown in [10] that the expected
cumulative structural change can be bound by O(n), whereas for the latter, the expected
work over all the n (random) insertions sequence O(n logn). We will do a combined analysis
since we are interested in obtaining tail estimates on the work including all data structural
updates.

In the remaining part of the paper, we will be alluding to the BSM framework and
make use of Equation 4 for deriving the tail estimates. To avoid any confusion, we will
use stage/level k to refer to the forward algorithm when k objects have been added and do
all calculations in this order. Although the martingale has been defined for the backward
execution, substituting n− k by k, consistently will not not affect anything except the order
of the summations. This will also help us use the random sampling bounds without having
to restate them in the flipped order.

We will make extensive use of the following result of [4, 11].

I Theorem 5. At any stage i of the RIC of Delaunay triangulation, the i randomly chosen
points is a uniform random subset of the n points. So the number of unsampled points within
each triangle is bounded by O(ni logn) with probability 1 − 1/nc for any constant c > 1.
Moreover, all the triangles that emerges in the course of edge flips also satisfy the above
bounds.

I Remark.
(i) A random sample of size r + 1 is constructed by adding a random element to a sample

of size r. So the properties of random sampling applies to the intermediate steps as
well with high probability. In general, we will use a similar bound on maxσ∈Π0(R) |`(σ)|.
This is crucial for the application of the generalized version of Freedman’s inequality
given in Equation 1 where the event B contains all insertion sequences where the bound
in Theorem 5 fails during one of more stages. In other words, the complement of B
consists of all insertion sequences where the bound holds during all stages.

(ii) All the triangles that show up in the course of edge flips belong to Π0(R). Although
some of them are not Delaunay triangles and therefore, only temporary, they can
contribute to the running time, depending on the data structure one maintains for the
intermediate partitions.

To apply Freedman’s bound, we will bound the variance. Unlike the analysis of quicksort,
we will consider the work done for all the n points (actually n− i uninserted points in stage i)
together. Each edge flip involves four triangles - two old and two new and redistributes the
points in the two new triangles. Since each triangle contains O(ni logn) points w.h.p, each
edge flip can be be done in O(ni logn) w.h.p. Since the maximum degree of a Delaunay graph
of i points is i, the total number of edge flips in the i-th stage is bounded by i. Therefore we
can claim the following.

STACS 2019

58:10 A Unified Approach to Tail Estimates for Randomized Incremental Construction

I Lemma 6. The work in stage i of the algorithm, i ≤ n can be bound by O(n logn) w.h.p.

Let Πs(R) denote the configurations in Π0(R ∪ s) adjacent to s (or defined by s). The
following claims can be easily derived from some general random-sampling lemmas in [4]

I Lemma 7. (i) E[
∑
σ∈Πs(R) `(σ)] = O(nr)E[|Πs(R)|]

(ii) E[
∑
σ∈Πs(R) `

2(σ)] = O(n
2

r2)E[|ΠsR)|]

Bounding Variance. We will need the following result

I Lemma 8. For real numbers xi 1 ≤ i ≤ r (
∑r
i=1 xi)

2 ≤ r
(∑r

i=1 x
2
i

)
Proof. Using the convexity of the square function, from Jensens inequality it follows that∑r

i=1
x2
i

r ≥
(∑r

i=1
xi

r

)2
. Multiplying both sides by r2 yields the required result. J

Let Rk denote the random subset of the first k sites2 and let DT (Rk) represent the
Delaunay triangulation of Rk which is a planar graph having 2k − hk − 2 triangles and
3k− hk − 3 edges where hk is the number of points on the convex hull of Rk. The work done
when a site v ∈ DT (Rk) is picked by the RIC , is proportional to the number of unsampled
points in the triangles adjoining v. If l(σ) is the number of points in a triangle σ, then
the work is proportional to Tk =

∑
σ∈∆(v) l(σ) where ∆(v) denotes triangles adjacent to v.

Squaring Tk and taking expectation

E[T 2
k] = 1

k
E[
∑
v∈Rk

(
∑

σ∈∆(v)

l(σ))
2
] ≤ 1

k
E[
∑
v∈Rk

∑
σ∈∆(v)

|∆(v)|l2(σ)] from Lemma 8

= 1
k

∑
v∈Rk

|∆(v)|E[
∑

σ∈∆(v)

l2(σ)] ≤ 1
k

∑
v∈Rk

n2

k2 |∆(v)|2 from Lemma 7

= O(n
2

k
) as

∑
v

|∆(v)|2 = O(
∑
v

∆(v)
2
) = O(k2)

Following Equation 4, this yields Wn ≤
∑k=n
k=1 E[T 2

k] ≤
∑k=n
k=1 O(n

2

k) = O(n2 logn). Plugging
the bound ofMn = O(n logn) from Lemma 6 in Freedman’s theorem, we obtain the following
bound.

I Lemma 9. Let T (n) denote the running time of ric based construction of Delaunay
Triangulation and let λ = cn logn for a suitable constant c. Then

Pr[T (n) ≥ α(n)λ] ≤ exp
(
− (α(n)cn logn)2

2(n2 logn+ α(n)c · n2 log2 n/3)

)
≤ exp(−α(n))

I Remark. The above Lemma gives high probability bound for T (n) exceeding Ω(n log2 n)
for α = Ω(logn). However, this bound is superior to the straightforward Markov’s bound
applied on the expected work as well as preferable to restarting the original algorithm using
independent random bits each time.

2 We will use this term to distinguish between the input points defining the triangulation and the unadded
points

S. Sen 58:11

This analysis can be extended to the three-dimensional convex hull algorithm presented
in Mulmuley [17]. In [3], the authors obtain similar tail estimates for the for the space
complexity (alternately referred to as conflict history) of the algorithm of [10]. For fixed
dimensional linear programming Seidel [20] proved a similar property and this can be extended
to RIC algorithms like closest pair [12]. These algorithms typically have the property, that
in stage i, with probability Ω(1

i), the algorithm re-builds the data structure. This makes
inverse polynomial bound challenging - say for i =

√
n, the RIC for Delaunay triangulation

could spend O(n log(
√
n) time to rebuild the associated point location data structure if the

i-th point has degree Ω(i).

5 More generalized RIC: segment intersections

We now consider a more general scenario in RIC (Randomized Incremental Construction).
Using a conflict graph update model of RIC (see Appendix), we obtain the following expression
for expected work.

E[#edges created in the conflict graph] =
∑

σ∈Π0(R∪s)

l(σ) · Pr{σ ∈ Π0(R ∪ s)−Π0(R)}

From backward analysis this probability is the same as deleting a random element from R∪ s
which is d(σ)

r+1 where r = |R|. By substituting this we obtain

∑
σ∈Π0(R∪s)

l(σ) · d(σ)
r + 1 = d(σ)

r + 1
∑

σ∈Π0(R∪s)

l(σ) = O(d(σ)
r
· n
r
E[Π0(R ∪ s)]) (5)

Therefore the expected work over the sequence of random insertions is
∑n
r=1O(d(σ)

r ·
n
rE[Π0(R ∪ s)]).

For the case of line segment intersections, it can be shown that E[Π0(R∪s)] = O(r+ m·r2

n2)
from which it follows that the expected work is

n∑
r=1

O(d(σ)
r
· n
r
·O(r + m · r2

n2) =
n∑
r=1

(
dn

r
+ dm

n

)
= O(n logn+m).

Here d(σ) ≤ 6 which the maximum number of segments that define a σ (trapezoid in this
case).

Tail bounds for this problem has been elusive despite some significant attempts (see [15]).
We will show that our previous methodology can be extended to obtain tail estimates on the
work done.

Consider an arrangement of n segments with m intersections (0 ≤ m ≤
(
n
2
)
). In the

trapezoidal map T of the n segments (also known as a vertical visibility diagram), let us
denote the set of trapezoids adjacent to segment si by Ti. Any trapezoid σ ∈ T is defined
by at most six segments. Since it is a planar map, and there are at most 2n+ 2m vertices,
it follows that

∑
i |Ti| = O(n + m). We would like to obtain a bound on

∑
i |Ti|

2. Let us
denote by ni and mi respectively, the number of segments end-points and intersection points
visible to segment si. It follows that |Ti| = O(ni +mi) and∑

i

|Ti|2 = O(
∑
i

(ni +mi)2) = O(
∑
i

n2
i +

∑
i

ni ·mi +
∑
i

m2
i)

where mi ≤ O(n) from the zone theorem bound. Moreover
∑
i ni = O(n) and

∑
imi = O(m)

as each point is visible from the closest segments above and below.

STACS 2019

58:12 A Unified Approach to Tail Estimates for Randomized Incremental Construction

The first expression can be bound by (
∑
i ni)

2 = O(n2) and the second expression by
2(
∑
i ni) · (

∑
imi) = O(n ·m) (Cauchy-Schwartz inequality). The third expression is less

than (m/n) · n2 = mn. So, the overall expression can be bound by O(m · n+ n2).
For a uniformly chosen sample Rk of size k, the expected number of intersections in the

sample is mk2

n2 , so the variance can be bound by

E[T 2
k |Rk] = 1

k
E[
∑
si∈Rk

(
∑
σ∈Ti

l(σ))
2
]

To simplify calculations, we recall (Theorem 5) that l(σ) ≤ O(n logn
k) with high probability.

So, plugging this in the previous expression, and using the previous bound on
∑
i |Ti|

2, we
obtain (w.h.p.)

E[T 2
k |Rk] ≤ 1

k
·O(n

2 log2 n

k2) · E[k2 + k ·mk]

where mk is the number of intersections in Rk. Taking expectation over all choices of Rk, we
obtain the unconditional expectation as

E[T 2
k] ≤ n2 log2 n

k3 · E[k2 + kmk] ≤ n2 log2 n

k3 · (k2 + mk3

n2)) ≤ n2 log2 n

k
+m log2 n

This uses the bound E[mk] = O(k + m·k2

n2). This bound is relevant for the maintenance
of conflict graphs.

In contrast, for an algorithm like Mulmuley [18], where only the trapezoids are maintained,
the work done3 can be bound by using l(σ) = 1 in the expression for E[T 2

k]. This yields
E[T 2

k] = O(k +m k2

n2). We shall return to this case later.
So

Wn ≤
n∑
k=1

E[T 2
k] ≤ O(n2 log3 n+mn log2 n)

To obtain high probability bounds using Freedman’s inequality, we want to bound this
expression by λ2

logn where λ = c(n logn+m). Mn andMn ·λ can be bound by O(n logn ·α(n))
and mnα(n) respectively with high probability. This follows from a bound of O(tα(t)) on
the zone of a segment that intersects t segments in an arrangement of n segments ([18]).

So λ2

Wn+Mn·λ can be bound by

Ω(m2 +mn logn+ n2 log2 n)
O(mn log2 n+ n2 log3 n+mnα(n) logn+ n2α(n) log2 n

= Ω(m2 +mn logn+ n2 log2 n)
O(mn log2 n+ n2 log3 n

.

So from Freedman’s inequality we obtain a tail bound of exp(− m2

mn log2 n
) for m ≥ n log2 n.

I Theorem 10. Let T (n) represent the work done in the conflict-graph based segment
intersection algorithm, then there exists constant β, such that for m ≥ βn log2 n, Pr[T (n) ≥
m] ≤ exp(− m

n log2 n
).

To the best of our knowledge, no prior concentration bound was known for the conflict-graph
based approach for segment intersection given by Clarkson and Shor [4]. The paper by [15]
noted that their methods could not be extended to this algorithm.

3 there is some additional cost for point location that can be bound using Lemma 4

S. Sen 58:13

Figure 3 A bad input for segments intersections (trapezoidal maps). The thicker segments
correspond to the sampled set.

For the specific case of m = 0, the bound can be improved by observing that the zone
of a segment can be at most O(n) (instead of nα(n)) as there are no intersections. Setting
m = 0 in the previous bound for Wn, we obtain the following

I Corollary 11. For constructing the trapezoidal map of n non-intersecting line segments
using RIC , the work done T (n) satisfies Pr[T (n) ≥ cβn log2 n] ≤ n−β

2 for some constant
c > 1.

This shows that we can obtain inverse polynomial concentration bounds around a running
time that exceeds the expected running time by a factor of Ω(logn).

We now return to the algorithms of [18] and [4] that do not maintain conflict-graphs but
only involves segment end-points. As observed before, the quantity Wn can be bound by∑n
k=1O(k +m k2

n2) = O(n2 +mn). We summarize as follows.

I Lemma 12. In the segment intersection algorithms of [18, 4] that do not maintain conflict-
graphs explicitly, the probability that the work exceeds c(m+ n logn) can be bound by

exp−
(

Ω(m2 +mn logn+ n2 log2 n)
O(mnα(n) + n2α(n) logn)

)
≤ exp(− logn

α(n)) since M = O(nα(n)).

For m ≥ n logn, the bound improves to exp(− m
nα(n)).

I Remark. This bound is better than the results in [15] where the authors show that for
some constant δ > 0. Pr[T (n) ≥ Cm] ≤ exp

(
−δm
n logn

)
for m ≥ n logn log log logn.

6 Can we improve the tail bounds

Figure 3 shows an input of n horizontal segments divided into two sets U ,B each of which
has n/2 segments. In the top pile U of the n/2 horizontal segments, let T denote the lowest√
n · c(n) segments for some function c(n) that will determined in the analysis.

STACS 2019

58:14 A Unified Approach to Tail Estimates for Randomized Incremental Construction

We will consider the RIC after the first 3
√
n insertions. We want to consider the event that

at least
√
n segments are chosen from B and no segment is chosen from T . The probability

of the former is 1− 2−
√
n (from Chernoff bounds) whereas the probability of the latter can

be easily seen as (1− c(n)√
n

)
3
√
n

= Ω(4−3c(n)), using (1−x) ≥ exp−(x+x2) ≥ 1
4x x ∈ [0, 1/2].

Since the two events are independent, the probability of their intersection, which will be
denoted by the event E1 is nearly Ω(4−3c(n)) (since 1− 2−

√
n → 1).

Notice that, if the lowest sampled segment is s ∈ U then all the segments below s will
intersect the vertical lines through the end-points of the trapezoids defined by the sampled
segments in B. Namely, if there are m unsampled segments below s, then the size of the
conflict graph is at least

√
n ·m. Every time s changes, new edges are created in the conflict

graph by the sampled edges in B. Following the choice of the initial 3
√
n segments, let us

consider subsequent sampling by the RIC where segments from T will be sampled. Within
T , let us denote by T ′ the lowest αc(n)

√
n segments for some constant α < 1 and let T ′′

denote the remaining segments. Let E2 denote the event that among the first logn segments
sampled from T , none are from T ′. This can be calculated as (1− α)logn = Ω(4−α logn).

From our earlier analysis, the lowest sampled segment in T ′′ changes about θ(log logn)
times with probability 1

logn (Corollary 3) - note that this holds regardless of the event E2.
So, in the second phase of RIC , at least Ω(α

√
nc(n) ·

√
n log logn) edges are created with

probability Ω(2−α logn

logn).
So, by unconditioning the first phase event E1, we obtain

Pr[E1 ∩ E2] = Pr[E2|E1] · Pr[E1] = Ω(1
lognn

−α · 2−6c(n)). This yields the following result

I Theorem 13. There exists inputs for which the conflict-graph based RIC algorithm for
constructing vertical visibility maps (segment intersections with no intersections) encounters
Ω(αc(n)

√
n log logn) structural changes with probability Ω(e−6c(n)−α) for c(n) = o(

√
n).

In particular, by choosing c(n) = logn
13 , and a small α, the conflict graph based RIC algorithm

may encounter Ω(n logn log logn) changes with probability Ω(1√
n

) that rules out inverse
polynomial bounds for a total work of O(n logn). Note that 1√

n
can be easily increased to

1
nε for any ε > 0 by an appropriate choice of c(n).

The reader may compare this result with Corollary 11 to get a sense of the gap between
upper and lower bounds of the tail estimates. Coming up with similar examples for the
other problems discussed in this paper, like Delaunay Triangulation would be an interesting
exercise and shed more light on the behavior of RIC .

References
1 P. Chew. The simplest Voronoi diagram algorithm takes linear expected time. In Manuscript,

1988.
2 Kenneth L. Clarkson. Applications of Random Sampling in Computational Geometry, II. In

Symposium on Computational Geometry, pages 1–11. ACM, 1988.
3 Kenneth L. Clarkson, Kurt Mehlhorn, and Raimund Seidel. Four Results on Randomized

Incremental Constructions. In STACS 92, 9th Annual Symposium on Theoretical Aspects of
Computer Science, Cachan, France, February 13-15, 1992, Proceedings, pages 463–474, 1992.

4 Kenneth L. Clarkson and Peter W. Shor. Application of Random Sampling in Computational
Geometry, II. Discrete & Computational Geometry, 4:387–421, 1989.

5 J.L. Doob. Regularity properties of certain families of chance variables. Transactions of the
American Mathematical Society, 47 (3):455—-486, 1940.

6 Devdatt P. Dubhashi and Alessandro Panconesi. Concentration of Measure for the Analysis
of Randomized Algorithms. Cambridge University Press, 2009.

S. Sen 58:15

7 W. Feller. An Introduction to Probability Theory, Vol. 1. Wiley, New York, NY, third edition,
1968.

8 W. Feller. An Introduction to Probability Theory and Its Applications, Vol. 2. Wiley, New
York, NY, second edition, 1971.

9 David Freedman. On tail probabilities on martingales. In The Annals of Probability, volume
3(1), pages 100–118, 1975.

10 Leonidas J. Guibas, Donald E. Knuth, and Micha Sharir. Randomized Incremental Construction
of Delaunay and Voronoi Diagrams. Algorithmica, 7(4):381–413, 1992.

11 David Haussler and Emo Welzl. Epsilon-Nets and Simplex Range Queries. In Proceedings
of the Second Annual ACM SIGACT/SIGGRAPH Symposium on Computational Geometry,
Yorktown Heights, NY, USA, June 2-4, 1986, pages 61–71, 1986.

12 S. Khuller and Y. Matias. A Simple Randomized Sieve Algorithm for the Closest-Pair Problem.
Information and Computation, 118(1):34–37, 1995.

13 C. McDiarmid. Concentration. Probabilistic Methods for Algorithmic Discrete Mathematics,
16, Algorithms and Combinatorics:195—-248, 1998.

14 Colin McDiarmid and Ryan Hayward. Large Deviations for Quicksort. J. Algorithms, 21(3):476–
507, 1996.

15 Kurt Mehlhorn, Micha Sharir, and Emo Welzl. Tail Estimates for the Efficiency of Randomized
Incremental Algorithms for Line Segment Intersection. Comput. Geom., 3:235–246, 1993.

16 Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge University
Press, New York, NY, USA, 1995.

17 K. Mulmuley. Computational Geometry: An Introduction Through Randomized Algorithms.
Prentice-Hall, 1994. URL: https://books.google.com/books?id=rjgZAQAAIAAJ.

18 Ketan Mulmuley. A Fast Planar Partition Algorithm, I (Extended Abstract). In 29th Annual
Symposium on Foundations of Computer Science, White Plains, New York, USA, 24-26
October 1988, pages 580–589, 1988.

19 Raimund Seidel. A Simple and Fast Incremental Randomized Algorithm for Computing
Trapezoidal Decompositions and for Triangulating Polygons. Comput. Geom., 1:51–64, 1991.

20 Raimund Seidel. Small-Dimensional Linear Programming and Convex Hulls Made Easy.
Discrete & Computational Geometry, 6:423–434, 1991.

21 Raimund Seidel. Backwards Analysis of Randomized Geometric Algorithms. In In: Pach J.
(eds) New Trends in Discrete and Computational Geometry. Algorithms and Combinatorics,
volume 10. Springer, Berlin, Heidelberg, 1993.

A Appendix

We provide a brief description of the notations and definitions that capture the framework of
RIC and its analysis in very general setting.

Given a set S of n elements (like points, segments, lines etc.), a configuration σ is defined
by at most d objects where d is O(1). The set of objects is denoted by d(σ) and the number
of configurations is bounded by nd if there are no more than O(1) configurations associated
each subset of d elements (there can be more than one configuration associated with the
same d(σ) elements.

Let `(σ) = S ∩ σ − d(σ) be the elements that intersect with σ. With a slight overloading
of notation we will also use `(σ) to denote the set of the intersecting elements with σ also.
Let Πi(S) denote the set of configurations σ with `(σ) = i. We use Π(S) = ∪iΠi(S) to
denote all configurations. For any subset R ⊂ S, we use Π(R) to denote the configurations
defined by elements of R and the conflict list of any configuration d(σ) ⊂ R as σ ∩ S, i.e., all
the elements and not just the elements in R.

A conflict graph represents the relation between the configurations in Π0(R) and the
corresponding conflict list, which is a bipartite graph with configurations in Π0(R) on one
side and the uninserted elements on the other side. Randomized Incremental construction

STACS 2019

https://books.google.com/books?id=rjgZAQAAIAAJ

58:16 A Unified Approach to Tail Estimates for Randomized Incremental Construction

s10

s4

s5

s6

s7

s8

s9

s1

s2

s3 A

B

Figure 4 The red segments are sampled segments and blue segments are unsampled. The
trapezoids A,B are configurations that belong to Π0(R). Here d(A) = {s4, s5} `(A) = {s3, s6, s10}.

can be thought of as maintaining and update of the conflict graph starting with R = φ

and successively adding a random (uninserted) element e ∈ S −R into R. This introduces
σ ∈ Π0(R∪ e)−Π0(R) requiring appropriate changes in the conflict graph. To illustrate this
framework on qiucksort, we define the configurations as intervals defined by a pair of elements
[xi, xj] where xi < xj . Initially there is the hypothetical configuration (−∞,+∞). As we
introduce more pivots, we maintain the ordered set of intervals induced by the elements
chosen as pivots. As we introduce a pivot, some interval is split. Eventually we have the
sorted set defined by consecutive intervals. When an interval [xi, xj] splits because of a pivot
element y such that xi < y < xj , the elements in `([xi, xj]) ∩ S is reassigned to `([xi, y]) and
`([y, xj]) appropriately. The number of comparisons required is roughly |`([xi, xj]) ∩ S| (the
cardinality).

The analysis of quicksort in this framework can be done using the technique of backward
analysis which is very elegant. Let us assign an indicator random variable Xk associated
with an element x, such that

Xk =
{

1 if x is compared for the k-th pivot
0 otherwise

The number of comparisons involving x is given by
∑n
k=1Xk. Therefore

E[
n∑
k=1

Xk] =
n∑
k=1

E[Xk] =
n∑
k=1

pk(x)

where pk(x) is the probability that element x is involved in the partitioning of the k-th pivot
insertion.

To compute the probability, we observe that Xk = 1 iff the k-th pivot y is one of the two
elements that bound the interval containing x after k pivots are chosen randomly. For a
fixed choice of k initial pivots, the probability that y is one of the two bounding elements is
at most 2(k−1)!

k! = 2
k . The numerator represents the number of permutations with one of the

bounding elements being the last pivot. Although this is the probability conditioned on the
choice of the first k pivots, clearly unconditioning would also give us the same probability.
Therefore the expected number of comparisons involving x is

∑n
k=1

1
k = O(logn). Further

the total expected number of comparisons is O(n logn) by summing over all elements.

A ZPPNP[1] Lifting Theorem
Thomas Watson
University of Memphis, Memphis, TN, USA
Thomas.Watson@memphis.edu

Abstract

The complexity class ZPPNP[1] (corresponding to zero-error randomized algorithms with access to
one NP oracle query) is known to have a number of curious properties. We further explore this class
in the settings of time complexity, query complexity, and communication complexity.

For starters, we provide a new characterization: ZPPNP[1] equals the restriction of BPPNP[1] where
the algorithm is only allowed to err when it forgoes the opportunity to make an NP oracle query.

Using the above characterization, we prove a query-to-communication lifting theorem, which
translates any ZPPNP[1] decision tree lower bound for a function f into a ZPPNP[1] communication
lower bound for a two-party version of f .

As an application, we use the above lifting theorem to prove that the ZPPNP[1] communication
lower bound technique introduced by Göös, Pitassi, and Watson (ICALP 2016) is not tight. We
also provide a “primal” characterization of this lower bound technique as a complexity class.

2012 ACM Subject Classification Theory of computation → Computational complexity and cryp-
tography

Keywords and phrases Query complexity, communication complexity, lifting

Digital Object Identifier 10.4230/LIPIcs.STACS.2019.59

Related Version A full version of the paper is available at https://eccc.weizmann.ac.il/report/
2017/139/.

Funding Supported by NSF grant CCF-1657377.

Acknowledgements I thank Mika Göös and Toniann Pitassi for discussions, and anonymous reviewers
for thoughtful comments.

1 Introduction

Query-to-communication lifting is a paradigm for proving lower bounds in communication
complexity [30, 26, 34] using lower bounds in query complexity (a.k.a. decision tree complexity)
[40, 9, 26]. This technique has yielded a wide array of applications, including lower bounds
for the Clique vs. Independent Set communication game and the related Alon–Saks–Seymour
conjecture in graph theory [15, 6], separations between communication complexity and
partition number [20, 3, 16, 4, 22], lower bounds for monotone circuits, monotone span
programs, and proof complexity [35, 7, 25, 19, 14, 36, 33], new and unified proofs of quantum
communication lower bounds [38] and of separations between randomized and quantum
communication complexity [22, 1, 2], lower bounds for LP and SDP relaxations of CSPs
[12, 31, 29], separations between communication complexity classes [10, 28, 18, 21, 17, 8],
and lower bounds for finding Nash equilibria [37, 5].

The basic format of the technique is a two-step approach in which a relatively simple
problem-specific argument is combined with fairly heavy-duty general-purpose machinery for
handling communication protocols. More specifically:

© Thomas Watson;
licensed under Creative Commons License CC-BY

36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019).
Editors: Rolf Niedermeier and Christophe Paul; Article No. 59; pp. 59:1–59:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:Thomas.Watson@memphis.edu
https://doi.org/10.4230/LIPIcs.STACS.2019.59
https://eccc.weizmann.ac.il/report/2017/139/
https://eccc.weizmann.ac.il/report/2017/139/
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

59:2 A ZPPNP[1] Lifting Theorem

Class Reference

P [35, 20]
NP [18, 15]
BPP [22]
PNP [17]
ZPPNP[1] Theorem 2
SBP [18]
AWPP [38]
PostBPP [18]
PP [38] P

NP BPP

PNP ZPPNP[1] SBP AWPP

PostBPP

PP

Figure 1 Classes with a known query-to-communication lifting theorem. C1 → C2 denotes
C1 ⊆ C2.

(1) Capture the combinatorial core of the desired communication complexity lower bound
by proving an analogous query complexity lower bound.

(2) Apply a lifting theorem showing that the query complexity of any boolean function f is
essentially the same as the communication complexity of a two-party version of f .

The availability of a lifting theorem greatly eases the burden on the lower bound prover, since
query lower bounds are generally much easier to prove than communication lower bounds.

The lifting theorem is with respect to a particular model of computation: deterministic,
randomized, nondeterministic, and so on; it is convenient to associate these models with
their corresponding classical time-bounded complexity classes: P, BPP, NP, and so on. This
idea has led to an ongoing project: prove lifting theorems for the query/communication
analogues of various classical complexity classes. Figure 1 shows the main classes for which a
lifting theorem is known, along with primary references. Even the less well-known classes
sometimes correspond to standard measures in the query/communication settings; e.g.,
AWPP corresponds to approximate polynomial degree in query complexity and to log of
approximate rank in communication complexity. Some notable classes for which a lifting
theorem is not known include BQP, UP, and MA. Proving a lifting theorem for AM would
be a breakthrough, as it is notoriously open to prove any strong AM-type communication
lower bound for an explicit function, but is trivial to do so in the query complexity setting.

Our central contribution is a lifting theorem for the slightly exotic class ZPPNP[1], which
corresponds to randomized algorithms that can make one call to an NP oracle, output the
correct answer with probability ≥ 3/4, and output ⊥ with the remaining probability. This
model is interesting partly because it has so many curious properties, one of which is that it
is robust with respect to the success probability threshold: by [13], the success probability
can be efficiently amplified as long as it is > 1/2 (which is nontrivial since the standard
method for amplification would use multiple independent trials, resulting in multiple NP
oracle queries). In terms of relations to other classes, ZPPNP[1] contains BPP [11] and is
contained in S2P [11] and in PostBPP (a.k.a. BPPpath) [21]. If we generalized ZPPNP[1] to
allow success probability slightly < 1/2, or to allow two nonadaptive NP oracle calls, either
way the class would contain AM ∩ coAM, and hence proving explicit lower bounds for the
communication version would yield breakthrough AM communication lower bounds; in this
sense, ZPPNP[1] is just shy of the communication lower bound frontier. ZPPNP[1] also shows
up frequently in the literature on the “two queries problem” [39].

T. Watson 59:3

Our starting point is to uncover another curious property of ZPPNP[1]: we prove it
is equivalent (in time, query, and communication complexities) to a new model we dub
CautiousBPPNP[1], which corresponds to randomized algorithms that can make one call to an
NP oracle, output the correct answer with probability ≥ 3/4, and are only allowed to err
when they choose not to call the NP oracle. This equivalence plays a crucial role in our proof
of the lifting theorem for ZPPNP[1].

Once we have the lifting theorem, the natural application domain is to prove new ZPPNP[1]-
type communication lower bounds. [21] developed a technique for proving such lower bounds,
and we use our lifting theorem to derive new separations, which imply that the technique
from [21] is not tight. This is analogous to the main application from [17], in which a PNP

lifting theorem was used to show that the PNP-type communication lower bound technique
from [24, 32] is not tight. For context, we note that certain other communication complexity
classes have similar lower bound techniques that are tight; e.g., the discrepancy bound
captures PP communication [27], and the corruption bound captures SBP communication
[23]. So for what class is the lower bound technique from [21] tight, if not ZPPNP[1]? We
also answer this question in the full version of this paper. The class did not have a standard
name, but it turns out to have a reasonably simple definition.

1.1 Statement of results
We formally define ZPPNP[1] and CautiousBPPNP[1] and their query/communication analogues
in Section 2. For any model C (such as ZPPNP[1] or CautiousBPPNP[1]) we use C for the
polynomial time complexity class, Cdt and Ccc for the polylog query and communication
complexity classes, and Cdt(f) and Ccc(F) for the corresponding query and communication
complexities of a partial function f : {0, 1}n → {0, 1} and a partial two-party function
F : {0, 1}n × {0, 1}n → {0, 1} (we also consider F ’s where Alice and Bob have unequal but
polynomially-related input lengths). We use Θ̃ to hide polylog(n) factors. We prove the
following characterization in Section 3.

I Theorem 1.
(i) ZPPNP[1] = CautiousBPPNP[1].
(ii) ZPPNP[1]dt(f) = Θ̃(CautiousBPPNP[1]dt(f)) for all f .
(iii) ZPPNP[1]cc(F) = Θ̃(CautiousBPPNP[1]cc(F)) for all F .

We now prepare to state the lifting theorem. For f : {0, 1}n → {0, 1} (called the outer
function) and g : X × Y → {0, 1} (called the gadget), their composition f ◦ gn : Xn ×
Yn → {0, 1} is the two-party function where Alice gets x = (x1, . . . , xn) ∈ Xn, Bob gets
y = (y1, . . . , yn) ∈ Yn, and the goal is to evaluate (f ◦ gn)(x, y) := f(g(x1, y1), . . . , g(xn, yn)).
Note that any deterministic (P-type) decision tree for f can be turned into a deterministic
protocol for f ◦ gn where Alice and Bob communicate to evaluate g(xi, yi) whenever the
decision tree queries the ith input bit of f . A similar thing can be done in other models
besides deterministic. The essence of a lifting theorem is to go in the other direction: convert
a protocol for f ◦ gn into a comparable-cost decision tree for f . In other words, if g is
sufficiently complicated, then it hides the input bits to f so well that a communication
protocol cannot do any better than just running a decision tree for f .

We use the index gadget Indm : [m]× {0, 1}m → {0, 1} mapping (x, y) 7→ yx, where m is
a sufficiently large polynomial in n. This gadget has previously been used for the P, BPP,
and PNP lifting theorems. (In some cases, lifting theorems with simpler gadgets are known,
but for many applications the index gadget is fine.)

STACS 2019

59:4 A ZPPNP[1] Lifting Theorem

I Theorem 2. Let m = m(n) := nC for a large enough constant C. For every f : {0, 1}n →
{0, 1},
(i) ZPPNP[1]cc(f ◦ Indnm) = Θ̃(ZPPNP[1]dt(f)),
(ii) CautiousBPPNP[1]cc(f ◦ Indnm) = Θ(CautiousBPPNP[1]dt(f) · logn).

Note that part (i) of Theorem 2 is a corollary of part (ii), since by Theorem 1,

ZPPNP[1]cc(f ◦ Indnm) = Θ̃(CautiousBPPNP[1]cc(f ◦ Indnm))

= Θ̃(CautiousBPPNP[1]dt(f)) = Θ̃(ZPPNP[1]dt(f)).

We are not aware of a way to prove part (i) directly, without going through Theorem 1. To
prove part (ii) (in Section 4), we combine tools and techniques from the proofs of lifting
theorems for BPP [22], NP [18, 15], and PNP [17], along with some new technical contributions.

Two of the main results in [21] are MAcc 6⊆ ZPPNP[1]cc and UScc 6⊆ ZPPNP[1]cc, where
MA and US are the classes associated with “Merlin–Arthur games” and “unique witnesses”
respectively (more precise definitions are deferred to Section 5). The proofs introduced a
certain lower bound technique – let us use Bcc(F) for the largest bound attainable for F
using this technique, and Bcc for the class of all F ’s with Bcc(F) ≤ polylog(n) – and showed
that MAcc 6⊆ Bcc, UScc 6⊆ Bcc, and ZPPNP[1]cc ⊆ Bcc. The definition of Bcc is not important
for now, but we provide it in the full version of this paper, where we show that it can be
characterized as a more natural complexity class.

Since ZPPNP[1]cc is closed under complement (whereas Bcc is not), we have ZPPNP[1]cc ⊆
Bcc ∩ coBcc. A natural question is whether the latter is actually an equality, i.e., whether the
lower bound technique of [21] for ZPPNP[1]cc is tight. Since [21] observed that MAcc,UScc ⊆
coBcc, we have MAcc ∩ coMAcc, UScc ∩ coUScc ⊆ Bcc ∩ coBcc, and thus the following result
(proven in Section 5 using Theorem 2) answers this question in the negative (in two different
ways).

I Theorem 3.
(i) MAcc ∩ coMAcc 6⊆ ZPPNP[1]cc.
(ii) UScc ∩ coUScc 6⊆ ZPPNP[1]cc.

2 Definitions

We set up notation and provide the formal definitions of ZPPNP[1] and CautiousBPPNP[1]. For
the query and communication complexity versions, we follow the convention of using the
complexity class names as complexity measures. That is, Cdt(f) denotes the minimum cost of
any correct C-type decision tree for f , and Cdt also denotes the class of families of partial f ’s
with Cdt(f) ≤ polylog(n); similarly, Ccc(F) denotes the minimum cost of any correct C-type
communication protocol for F , and Ccc also denotes the class of families of partial F ’s with
Ccc(F) ≤ polylog(n) (assuming Alice and Bob have polynomially-related input lengths).

In the query complexity setting, “query” actually has two meanings for us: a decision
tree makes queries to individual input bits, then it forms an NP-type (DNF) oracle query.

We think of a randomized algorithm M as taking a uniformly random string s ∈ {0, 1}r
(for some number of coins r that depends on the input length); we let Ms(x) denote M
running on input x with outcome s. Similarly, we think of a randomized (in our case,
ZPPNP[1]-type or CautiousBPPNP[1]-type) decision tree T or communication protocol Π as the
uniform distribution over a multiset of corresponding non-randomized Ts’s or Πs’s indexed
by s ∈ {0, 1}r; we denote this as T ∼

{
Ts : s ∈ {0, 1}r

}
or Π ∼

{
Πs : s ∈ {0, 1}r

}
.

T. Watson 59:5

2.1 ZPPNP[1]

ZPPNP[1] consists of all languages L for which there is a polynomial-time randomized algorithm
M (taking input x and coin tosses s ∈ {0, 1}r) and a language L′ ∈ NP such that the following
hold.

Syntax: The computation of Ms(x) produces an oracle query q and a function out : {0, 1}
→ {0, 1,⊥}; the output is then out(L′(q)).

Correctness: The output is always L(x) or ⊥, and is L(x) with probability ≥ 3/4.

We define a ZPPNP[1]-type decision tree T for f on input x as follows.

Syntax: T ∼
{
Ts : s ∈ {0, 1}r

}
where each Ts makes queries to the bits of x until it reaches

a leaf, which is labeled with a DNF D and a function out : {0, 1} → {0, 1,⊥}; the output
is then out(D(x)).

Correctness: The output is always f(x) or ⊥, and is f(x) with probability ≥ 3/4.
Cost: The maximum height of any Ts, plus the maximum width of any DNF appearing at a

leaf.

We define a ZPPNP[1]-type communication protocol Π for F on input (x, y) as follows.

Syntax: Π ∼
{

Πs : s ∈ {0, 1}r
}

where each Πs communicates until it reaches a leaf,
which is labeled with a multiset of rectangles

{
Rw : w ∈ {0, 1}k

}
(for some k) and

a function out : {0, 1} → {0, 1,⊥}; the output is then out applied to the indicator of
whether (x, y) ∈

⋃
w R

w.
Correctness: The output is always F (x, y) or ⊥, and is F (x, y) with probability ≥ 3/4.
Cost: The maximum communication cost of any Πs, plus the maximum k at any leaf.

A priori, the value 3/4 seems arbitrary since it is not clear whether ZPPNP[1] is amenable
to amplification of the success probability (naively doing repeated trials would increase the
number of NP queries). However, [13] showed that amplification is actually possible, so we
may use any constant > 1/2 for the success probability in the definition of ZPPNP[1] (while
affecting the measures ZPPNP[1]dt(f) and ZPPNP[1]cc(F) by only constant factors).

2.2 CautiousBPPNP[1]

CautiousBPPNP[1] consists of all languages L for which there is a polynomial-time randomized
algorithm M (taking input x and coin tosses s ∈ {0, 1}r) and a language L′ ∈ NP such that
the following hold.

Syntax: The computation ofMs(x) either directly outputs a bit (without invoking the oracle)
or produces an oracle query q and a nonconstant function out : {0, 1} → {0, 1}; in the
latter case the output is then out(L′(q)).

Correctness: The output is L(x) with probability ≥ 3/4, and is L(x) for all s such that
Ms(x) makes an oracle query.

We define a CautiousBPPNP[1]-type decision tree T for f on input x as follows.

Syntax: T ∼
{
Ts : s ∈ {0, 1}r

}
where each Ts makes queries to the bits of x until it reaches

a leaf, which is labeled with either an output bit, or a DNF D and a nonconstant function
out : {0, 1} → {0, 1}; in the latter case the output is then out(D(x)).

Correctness: The output is f(x) with probability ≥ 3/4, and is f(x) for all s such that Ts(x)
makes a DNF query.

Cost: The maximum height of any Ts, plus the maximum width of any DNF appearing at a
leaf.

STACS 2019

59:6 A ZPPNP[1] Lifting Theorem

We define a CautiousBPPNP[1]-type communication protocol Π for F on input (x, y) as follows.

Syntax: Π ∼
{

Πs : s ∈ {0, 1}r
}
where each Πs communicates until it reaches a leaf, which

is labeled with either an output bit, or a multiset of rectangles
{
Rw : w ∈ {0, 1}k

}
(for

some k) and a nonconstant function out : {0, 1} → {0, 1}; in the latter case the output is
then out applied to the indicator of whether (x, y) ∈

⋃
w R

w.
Correctness: The output is F (x, y) with probability ≥ 3/4, and is F (x, y) for all s such that

Πs(x, y) makes a “union of rectangles” query.
Cost: The maximum communication cost of any Πs, plus the maximum k at any leaf.

The success probability of any CautiousBPPNP[1]-type computation can be amplified by taking
the majority vote of multiple independent trials – except if at least one trial results in an
NP-type oracle query then (to avoid multiple oracle queries) we just use the output of one
such trial since we know it will be correct. Thus just like for BPP-type computations, success
probability 1/2 + ε can be amplified to 1− δ with a O(1

ε2 log 1
δ) factor overhead in cost.

3 ZPPNP[1] = CautiousBPPNP[1]

We now prove Theorem 1, starting with part (i). First assume L ∈ ZPPNP[1], witnessed by a
randomized algorithm M (taking input x and coin tosses s ∈ {0, 1}r) and L′ ∈ NP. To see
that L ∈ CautiousBPPNP[1], consider this randomized algorithm with oracle access to L′:
1. Sample s ∈ {0, 1}r and run Ms(x) until it produces q and out.
2. If out(0) = out(1) then output this common bit, or an arbitrary bit if out(0) = out(1) = ⊥.
3. Else if one of out(0), out(1) is ⊥ then output whichever is not ⊥.
4. Else invoke the oracle on q and output out(L′(q)).
Consider any s for which this algorithm outputs the wrong bit: then it did not make an oracle
query (since M never outputs the wrong bit), and Ms(x) would have output ⊥ (because of
either line 2, or line 3 with out(L′(q)) = ⊥ and out(1−L′(q)) 6= L(x)). Hence this algorithm
correctly solves L, with error probability at most that of M .

For the converse direction, we generalize the argument from [11] that BPP ⊆ ZPPNP[1].
Assume L ∈ CautiousBPPNP[1], witnessed by a randomized algorithm M (taking input x and
coin tosses s ∈ {0, 1}r) and L′ ∈ NP. Assume that this has already been amplified so the
error probability is < 1/4r (by the remark at the end of Section 2.2). For a fixed input x
and b ∈ {0, 1}, let

Sb :=
{
s ∈ {0, 1}r : Ms(x) outputs b without invoking the oracle

}
.

To see that L ∈ ZPPNP[1], consider the following randomized algorithm:
1. Sample s ∈ {0, 1}r and run Ms(x) until it produces either an output b (so s ∈ Sb) or q

and out.
2. If it produced q and out then ask the NP oracle for the value of L′(q) and output

out(L′(q)).
3. Else sample independent strings s1, . . . , s4r ∈ {0, 1}r and ask the NP oracle whether⋃

i(Sb ⊕ si) 6= {0, 1}r (i.e., whether there exists an s′ such that for every i, s′ ⊕ si 6∈ Sb);
output ⊥ if so and b if not.

Note that this algorithm never outputs the wrong bit: if s ∈ Sb for b = 1 − L(x), then
|Sb| < 2r/4r so by a union bound,

∣∣⋃
i(Sb ⊕ si)

∣∣ < 4r · (2r/4r) = 2r and hence the NP oracle
returns 1 on line 3 and the algorithm outputs⊥. For the success probability, consider two cases.
If |S0∪S1| ≤ 2r/4, then line 2 executes (guaranteeing correct output) with probability ≥ 3/4.
Otherwise, since |S1−L(x)| < 2r/4r, we must have |SL(x)| > 2r/4 − 2r/4r > 2r/5 (we may

T. Watson 59:7

assume r is at least a large enough constant), so by a union bound over all s′ ∈ {0, 1}r, the
probability over s1, . . . , s4r that

⋃
i(SL(x) ⊕ si) 6= {0, 1}r is < 2r · (4/5)4r ≤ (5/6)r ≤ 1/5. In

this latter case, the probability of outputting ⊥ is

P[b = 1− L(x)] + P
[⋃

i(Sb ⊕ si) 6= {0, 1}r
∣∣ b = L(x)

]
· P[b = L(x)]

≤ 1/4r + (1/5) · |SL(x)|/2r ≤ 1/4.

In both cases the success probability is ≥ 3/4.

Parts (ii) and (iii) are proved in the same way as part (i), but we must carefully analyze the
cost. We summarize the differences. For the ZPPNP[1] ⊆ CautiousBPPNP[1] direction, exactly
the same argument works but using Ts or Πs in place of Ms, and making the same DNF
query or “union of rectangles” query rather than the same NP oracle query on line 4. This
shows CautiousBPPNP[1]dt(f) ≤ ZPPNP[1]dt(f) and CautiousBPPNP[1]cc(F) ≤ ZPPNP[1]cc(F).

Now consider the CautiousBPPNP[1] ⊆ ZPPNP[1] direction for parts (ii) and (iii). By
standard sparsification of the randomness, we may assume T or Π uses only O(logn) coin
tosses (while affecting the success probability by only ±o(1)). Then as noted at the end of
Section 2.2, we may amplify with O(log logn) repetitions so r becomes O(logn · log logn) and
the error probability becomes ≤ 1/ log2 n < 1/4r. As above, we use Ts or Πs in place of Ms,
and make the same DNF query or “union of rectangles” query rather than the same NP oracle
query on line 2. For line 3, we note that the predicate

⋃
i(Sb⊕si) 6= {0, 1}r, as a function of the

input x or (x, y), can be computed by nondeterministically guessing s′ and running Ts′⊕si(x) or
Πs′⊕si(x, y) for each i ∈ [4r]; this can be expressed as a DNF of width 4r·(cost of amplified T),
or as a union of 2k rectangles with k = r+ 4r · (cost of amplified Π). Thus, the overall cost is
O(r · (cost of amplified T or Π)) ≤ O((cost of original T or Π) · logn · log2 logn). This shows
the following, finishing the proof of Theorem 1:

ZPPNP[1]dt(f) ≤ O
(
CautiousBPPNP[1]dt(f) · logn · log2 logn

)
,

ZPPNP[1]cc(F) ≤ O
(
CautiousBPPNP[1]cc(F) · logn · log2 logn

)
.

4 Proof of the Lifting Theorem

We now prove Theorem 2. As noted in Section 1.1, we just need to show part (ii). It is
straightforward to see that for all f ,

CautiousBPPNP[1]cc(f ◦ Indnm) ≤ O(CautiousBPPNP[1]dt(f) · logn)

since we can have the communication protocol run the optimal decision tree for f , commu-
nicating O(logn) bits to evaluate Indm(xi, yi) whenever this bit is queried, and if a width-w
DNF oracle query is formed then we can convert each of its ≤ nw conjunctions into ≤ mw

rectangles, resulting in a “union of rectangles” oracle query that contributes k = O(w logn)
to the cost. Thus, the bulk of the proof is to show that for all f ,

CautiousBPPNP[1]dt(f) ≤ O(CautiousBPPNP[1]cc(f ◦ Indnm)/ logn). (1)

In Section 4.1 we provide relevant technical background from the proofs of earlier lifting
theorems (mainly the one for BPP [22]). In Section 4.2 we describe how to simulate the
communication protocol with a decision tree. In Section 4.3 we prove a key technical lemma.

STACS 2019

59:8 A ZPPNP[1] Lifting Theorem

4.1 Background
Abbreviate G := Indnm. We consider deterministic communication protocols on G’s input
domain [m]n × ({0, 1}m)n, which we view as partitioned into slices G−1(z) = {(x, y) :
G(x, y) = z}, one for each z ∈ {0, 1}n. We let |Π| denote the worst-case number of bits
communicated by a deterministic protocol Π. We use boldface letters for random variables.

Let H∞(x) := minx log(1/P[x = x]) denote the usual min-entropy of a random variable
x. Supposing x is distributed over a set X, we define the deficiency of x as the nonnegative
quantity D∞(x) := log |X| −H∞(x). A basic property is that if X is a Cartesian product
then marginalizing x to some coordinates cannot increase the deficiency. For a set X we let
X denote a random variable uniformly distributed on X.

The following definition and claim originate in the proof of the lifting theorems for NP,
SBP, and PostBPP [18, 15]. They describe an invariant that Alice maintains throughout
the simulation, and how to restore it (by fixing some coordinates, which will correspond to
querying those input bits of f) when it gets violated.

I Definition 4. A random variable x ∈ [m]J (where J ⊆ [n] is some index set) is called
δ-dense if for every nonempty I ⊆ J , the coordinates xI (marginally distributed over [m]I)
have min-entropy rate at least δ, i.e., H∞(xI) ≥ δ · |I| logm.

B Claim 5. If A ⊆ [m]J then there exist an I ⊆ J of size |I| ≤ O(D∞(A)/ logn) and a
nonempty A′ ⊆ A such that A′ is fixed on I and 0.9-dense on J r I.

It is simple to check that all 2n slices of G’s input domain have the same size, and that
the uniform distribution over any slice is marginally nearly-uniform on both Alice’s input
and Bob’s input. The following lemma from [22] provides a sufficient condition for similar
properties to hold even after we have queried some of the input bits of f .

I Definition 6. For a partial assignment ρ ∈ {0, 1, ∗}n, define its free positions as free ρ :=
ρ−1(∗) ⊆ [n], and its fixed positions as fix ρ := [n] r free ρ. A rectangle X × Y is called
ρ-structured if Xfree ρ is 0.9-dense, Xfix ρ is fixed, and each element of G(X × Y) ⊆ {0, 1}n
is consistent with ρ.

I Definition 7. A distribution D1 is said to be ε-pointwise-close to a distribution D2 if for
every outcome, the probability under D1 is within a factor 1± ε of the probability under D2.
The distributions are said to be ε-close if the statistical (total variation) distance is ≤ ε.

I Lemma 8 ([22]). Suppose X × Y is ρ-structured and D∞(Y) ≤ n3. Then:
(i) For any z ∈ {0, 1}n consistent with ρ, the uniform distribution on G−1(z) ∩ X × Y

(which is nonempty) has both of its marginal distributions o(1)-close to X and Y ,
respectively.

(ii) G(X,Y) is o(1)-pointwise-close to the uniform distribution over the set of all z con-
sistent with ρ.

Now we come to the main part of the proof of the BPP lifting theorem from [22]. It
shows that, given query access to z, we can approximately sample the transcript that would
be generated by a communication protocol on a random input from z’s slice. In fact, this
simulation maintains some invariants, which we need to expose (in the “furthermore” part of
the lemma) for use in the subsequent “NP oracle query” phase of our simulation.

I Definition 9. A deterministic protocol Π is said to be a refinement of a deterministic
protocol Π if they have the same input domain and for every transcript rectangle X × Y of
Π, there exists a transcript rectangle of Π that contains X × Y .

T. Watson 59:9

I Lemma 10 ([22]). For every deterministic protocol Π on G’s input domain with |Π| ≤
n logm, there exist a refinement Π and a randomized decision tree T of cost O(|Π|/ logn) that
on input z ∈ {0, 1}n outputs a transcript of Π or ⊥, such that the following two distributions
are o(1)-close:

t := output distribution of T on input z,
t′ := transcript generated by Π when run on a random input (x,y) ∼ G−1(z).

Furthermore, for every (non-⊥) transcript output by T on input z with positive probability,
the associated rectangle X × Y satisfies:
(i) X × Y is ρ-structured, where ρ corresponds to the results of the queries made by T

(and is hence consistent with z),
(ii) D∞(Y) ≤ n2.5,
(iii) D∞(Xfree ρ) ≤ O(|Π|).

4.2 Simulation
I Lemma 11. Let X×Y be a ρ-structured rectangle in G’s input domain such that D∞(Y) ≤
n2.5. Suppose

{
Rw ⊆ X × Y : w ∈ {0, 1}k

}
is a collection of rectangles whose union covers

exactly G−1(f−1(1))∩X×Y . Then f can be computed by a width-O((D∞(Xfree ρ)+k)/ logn)
DNF on the domain of inputs consistent with ρ.

Lemma 11 is our key tool for converting the NPcc oracle query to an NPdt oracle query.
The proof, which we give in Section 4.3, combines insights from the lifting theorem proofs
for NP [18, 15] and PNP [17] with new calculations. For now we use Lemma 11 to argue (1),
thus finishing the proof of Theorem 2.

Let Π ∼
{

Πs : s ∈ {0, 1}r
}
be a CautiousBPPNP[1]-type communication protocol for f ◦G

(and note WLOG the cost is ≤ n logm). Here is a CautiousBPPNP[1]-type decision tree for f
on input z:
1. Sample s ∈ {0, 1}r and (eliding the dependence on s) let Π and T be the refinement and

randomized decision tree from Lemma 10 applied to Πs.
2. Sample T ’s coin tosses s′ and run Ts′ on input z until it either outputs ⊥ (in which case

we halt and output an arbitrary bit) or produces a transcript t of Π.
3. Let X × Y be the rectangle associated with t, and let t∗ be the transcript of Πs whose

rectangle contains X × Y .
4. If t∗ outputs a bit, then we halt and output the same bit; otherwise let

{
Rw : w ∈ {0, 1}k

}
and out : {0, 1} → {0, 1} be the rectangles and nonconstant function associated with t∗.

5. Since X ×Y satisfies properties (i), (ii), (iii) from Lemma 10, we may apply Lemma 11 to
the collection

{
Rw∩X×Y : w ∈ {0, 1}k

}
(whose union covers exactly G−1(f−1(out(1)))∩

X × Y by the correctness of Π), using f if out(1) = 1 or ¬f if out(1) = 0, to obtain a
width-O((|Πs| + k)/ logn) DNF D that computes f or ¬f (respectively) on all inputs
consistent with ρ.

6. Output out(D(z)).

Since T makes O(|Πs|/ logn) queries and the DNF on line 5 has width O((|Πs|+ k)/ logn),
the above decision tree indeed has cost O((cost of Π)/ logn). If it reaches line 5 and makes a
DNF query, then the output is correct since z is consistent with ρ and hence out(D(z)) = f(z).
For the success probability, call t good if the corresponding t∗ either outputs f(z) directly
or makes a “union of rectangles” query, and note that if the above decision tree generates

STACS 2019

59:10 A ZPPNP[1] Lifting Theorem

a good t then the output is correct (by the previous sentence). Hence, letting t, t′ be the
o(1)-close random variables from Lemma 10 applied to Πs (with (x,y) ∼ G−1(z)), we have

P[output is correct] ≥ Es

[
Ps′ [t is a good transcript]

]
≥ Es

[
Px,y[t′ is good]− o(1)

]
= Ex,y

[
Ps[t′ is good]

]
− o(1)

= Ex,y

[
Ps[Πs(x,y) outputs f(z)]

]
− o(1)

≥ Ex,y[3/4]− o(1)
= 3/4− o(1).

We conclude that CautiousBPPNP[1]dt(f) ≤ O(CautiousBPPNP[1]cc(f ◦G)/ logn).1

4.3 Forming a DNF
We now prove Lemma 11. Fix any z ∈ f−1(1) consistent with ρ, and define J := free ρ. We
need to show that there exists a width-O((D∞(XJ) + k)/ logn) conjunction that accepts z
but does not accept any input in f−1(0) consistent with ρ.

For each rectangle Rw = Xw × Y w define the set of weighty rows as

Aw :=
{
x ∈ Xw : |Y wx | ≥ 2nm−n

3}
where Y wx :=

{
y ∈ Y w : G(x, y) = z

}
.

B Claim 12. There exists a w ∈ {0, 1}k such that |Aw| ≥ |X|/2k+1.

Proof. Suppose for contradiction this is not the case. Then by Lemma 8.(i) we have∣∣G−1(z) ∩
(⋃

w A
w
)
× Y

∣∣
|G−1(z) ∩X × Y | ≤

|
⋃
w A

w|
|X|

+ o(1) ≤ 2k · |X|/2k+1

|X|
+ o(1) < 3/4. (2)

On the other hand, since the Rw’s cover G−1(z) ∩X × Y and since k ≤ n logm WLOG,∣∣G−1(z) ∩
(
X r

⋃
w A

w
)
× Y

∣∣ ≤ ∣∣⋃
w, x6∈Aw Y wx

∣∣ ≤ 2k · |X| · 2nm−n3 ≤ |X| · 2nm−n2.9
,

and by Lemma 8.(ii) and D∞(Y) ≤ n2.5 ≤ n3 we have

|G−1(z)∩X×Y | ≥ |X|·|Y |·(1−o(1))/2|J| ≥ |X|·2nm−n
2.5
·(1−o(1))/2n ≥ |X|·2nm−n

2.6
,

and thus∣∣G−1(z) ∩
(
X r

⋃
w A

w
)
× Y

∣∣
|G−1(z) ∩X × Y | ≤ |X| · 2nm−n2.9

|X| · 2nm−n2.6 = 2n
2.6−n2.9

< 1/4. (3)

Now (2) and (3) form a contradiction. This proves the claim. C

1 Let us summarize the fundamental reason we are unable to make this proof work directly for ZPPNP[1]

(instead of CautiousBPPNP[1]) without going through Theorem 1. Suppose we reach line 5 with out(1) = ⊥
and out(0) 6= ⊥. We would like to form a DNF that accepts those z’s consistent with ρ where
G−1(z) ∩X × Y is covered by the union of

{
Rw ∩X × Y : w ∈ {0, 1}k

}
– and then output ⊥ if the

DNF accepts and output out(0) if it rejects. The issue is that there may be some z’s consistent with
ρ such that f(z) = out(0) but G−1(z) ∩X × Y is partially covered by the union – even a fairly small
coverage might result in the DNF accepting z. This could cause the overall probability of outputting ⊥
on z to be much higher in the decision tree than in the communication protocol.

T. Watson 59:11

Now fix a w ∈ {0, 1}k such that |Aw| ≥ |X|/2k+1 and hence D∞(Aw
J) ≤ D∞(XJ) + k+ 1.

Applying Claim 5 to AwJ , we can obtain an I ⊆ J of size |I| ≤ O((D∞(XJ) + k)/ logn) and
a nonempty A′ ⊆ Aw such that A′ is fixed on I ∪ fix ρ and 0.9-dense on J r I. Consider the
conjunction that accepts iff the I coordinates of the input equal zI ; we now argue that this
conjunction satisfies the desired properties. It certainly has the right width and accepts z.

Define σ ∈ {0, 1, ∗}n as the partial assignment that extends ρ by fixing the coordinates
in I to zI . Pick any x′ ∈ A′ and let B := Y wx′ . Then A′ × B is σ-structured (note that
for all (x, y) ∈ A′ × B, G(x, y)I = G(x′, y)I = zI since xI = x′I) and D∞(B) ≤ n3, and
thus by Lemma 8.(ii), G(A′,B) is o(1)-pointwise-close to the uniform distribution over
all strings consistent with σ. In particular, for every z′ consistent with σ (i.e., for every
z′ consistent with ρ that is accepted by the conjunction) there exists an (x, y) ∈ A′ × B
such that G(x, y) = z′; since A′ × B ⊆ Rw ⊆ G−1(f−1(1)), this implies that f(z′) = 1.
In summary, the conjunction does not accept any input in f−1(0) consistent with ρ. This
finishes the proof of Lemma 11.

5 Applications

We prove Theorem 3 in this section. Since MAcc ∩ coMAcc, UScc ∩ coUScc ⊆ Bcc ∩ coBcc,
Theorem 3 cannot be shown using the lower bound technique from [21], so we instead prove
the analogous separations in query complexity and apply our lifting theorem. We start by
defining the query/communication versions of MA and US.

Merlin–Arthur games (MA) are the model where Merlin nondeterministically sends a
message to Arthur (comprised of Alice and Bob in the communication setting), who is
randomized and decides whether to accept. On a 1-input, there should exist a witness Merlin
can send that makes Arthur accept with probability 1, and on a 0-input, Arthur should reject
with probability ≥ 1/2 no matter what Merlin sends. In the query/communication settings,
the cost is Merlin’s message length plus Arthur’s query/communication cost.

The US model is like ordinary nondeterminism, except that an input is accepted iff there
is exactly one witness that leads to acceptance (so, rejection means there are either 0 or
≥ 2 accepted witnesses). In query complexity, the cost is the maximum width of any of the
witness conjunctions. In communication complexity, the cost is the log of the number of
witness rectangles.

5.1 MA ∩ coMA
We now prove Theorem 3.(i). We start with a general technique for proving CautiousBPPNP[1]dt

lower bounds. For a bit b, we say a conjunction is b-monochromatic for a partial function f
if it rejects all (1− b)-inputs.

I Lemma 13. Suppose f has no monochromatic conjunction of width < k. Then

CautiousBPPNP[1]dt(f) ≥ min(k,BPPdt(f)).

Proof. If f has a CautiousBPPNP[1]-type decision tree of cost < k, then this decision tree
must never make a DNF query (in which case it is just a BPP-type decision tree, showing
that BPPdt(f) ≤ CautiousBPPNP[1]dt(f)). To see this, suppose for contradiction some leaf
is labeled with a DNF query D and a function out, and consider the conjunction that
accepts the inputs that lead to that leaf and are accepted by an arbitrarily chosen term of
D (which WLOG is consistent with the partial assignment leading to the leaf). Then this
conjunction has width < k and is out(1)-monochromatic (as any input accepted by it would
make the CautiousBPPNP[1]-type decision tree output out(1) after making a DNF query, for
some outcome of the coin tosses, and hence could not be an out(0)-input). J

STACS 2019

59:12 A ZPPNP[1] Lifting Theorem

Let n = 2`2, and define the partial function f : {0, 1}n → {0, 1} that interprets its input
as a pair of `× ` boolean matrices (A,B), such that f(A,B) = 1 iff A has an all-1 row and
every row of B is at most half 1’s, and f(A,B) = 0 iff B has an all-1 row and every row of A
is at most half 1’s. Note that f ∈ MAdt ∩ coMAdt since an MA-type decision tree can guess a
row in A and check that a random bit from that row is 1, and a coMA-type decision tree can
guess a row in B and check that a random bit from that row is 1. This upper bound lifts to
f ◦ Indnm ∈ MAcc ∩ coMAcc. We now show that f 6∈ CautiousBPPNP[1]dt which, by Theorems
1 and 2, implies that f ◦ Indnm 6∈ ZPPNP[1]cc. This will yield Theorem 3.(i).

By Lemma 13, it suffices to show that (1) f has no monochromatic conjunction of width
≤ `/2, and (2) BPPdt(f) ≥ Ω(`).

To see (1), consider any conjunction C of width ≤ `/2: Since it does not touch every
row of A, and it touches at most half the bits in each row of B, we can construct a 1-input
accepted by C by putting all 1’s in an untouched row of A, and filling the rest of the matrix
entries with 0’s (except those whose value is determined by C accepting). Similarly, there
must exist a 0-input accepted by C. Thus C is not monochromatic.

For (2), it suffices to show that every cost-o(`) deterministic decision tree succeeds with
probability < 3/4 over the input distribution obtained by filling a uniformly random one of
the 2` rows with 1’s (and letting all other entries of (A,B) be 0’s). If the decision tree accepts
after seeing only 0’s, then conditioned on a random 0-input it continues to accept (and hence
err) with probability ≥ 1− o(1) (since the all-0’s path of the decision tree only touches a
o(1) fraction of the rows). Similarly, if it rejects after seeing only 0’s, then conditioned on a
random 1-input it continues to reject (and hence err) with probability ≥ 1− o(1). In either
case, it errs with probability ≥ 1/2− o(1) over an unconditioned random input.

5.2 US ∩ coUS
We now prove Theorem 3.(ii). Let weight(·) refer to Hamming weight. For even n, define the
partial function f : {0, 1}n → {0, 1} that interprets its input as (a, b) ∈ {0, 1}n/2 × {0, 1}n/2,
such that f(a, b) = 1 iff weight(a) = 1 and weight(b) ∈ {0, 2}, and f(a, b) = 0 iff weight(b) = 1
and weight(a) ∈ {0, 2}. Note that f ∈ USdt ∩ coUSdt since a US-type decision tree can guess
the location of a 1 in a, and a coUS-type decision tree can guess the location of a 1 in b. This
upper bound lifts to f ◦ Indnm ∈ UScc ∩ coUScc. We now show that f 6∈ CautiousBPPNP[1]dt

which, by Theorems 1 and 2, implies that f◦Indnm 6∈ ZPPNP[1]cc. This will yield Theorem 3.(ii).
Note that Lemma 13 cannot help us here, since this f does have small monochromatic

conjunctions (e.g., a conjunction with two positive literals from a is 0-monochromatic), so we
devise a different technique. In fact, we show something stronger than f 6∈ CautiousBPPNP[1]dt.
Define BPPNP[1] in the natural way (two-sided error, and allowed to err after an NP oracle
query is made), and notice that the class may depend on the exact choice of success probability
(since the standard method of amplification involves multiple independent trials, which would
increase the number of NP oracle queries). Let us use BPPNP[1]

p to indicate that the success
probability must be ≥ p on each input. As CautiousBPPNP[1] can be efficiently amplified (see
the end of Section 2.2), the following lemma implies that f 6∈ CautiousBPPNP[1]dt.

I Lemma 14. For every constant ε > 0, BPPNP[1]dt
3/4+ε (f) ≥ Ω(n).

Proof. It suffices to show that every cost-o(n) PNP[1]-type decision tree succeeds with
probability ≤ 3/4 + o(1) over the uniform distribution on valid inputs to f . Let v be
the leaf reached after seeing only 0’s, and say v is labeled with DNF D and function
out : {0, 1} → {0, 1}. Assume out(1) = 1 (the case out(1) = 0 is argued similarly). Con-

T. Watson 59:13

sider the joint random variables a, b,a′, b′ where a has a unique 1 in a random posi-
tion, b is all 0’s, a′ is obtained from a by flipping a random 0 to 1, and b′ is obtained
from b by flipping a random 0 to 1. Note that (a, b) is the input distribution conditioned
on weight(a) = 1 and weight(b) = 0, and (a′, b′) is the input distribution conditioned
on weight(a) = 2 and weight(b) = 1. We have P[(a, b) reaches v] ≥ 1 − o(1) and thus
P[(a, b) reaches v and is accepted] ≥ P[(a, b) is accepted]− o(1). Also, conditioned on any
outcome of (a, b) that reaches v and is accepted, with probability ≥ 1− o(1) the two flipped
bits are not among those read along the path to v and not among those read by an arbitrarily
chosen term of D that accepts (a, b), in which case (a′, b′) also reaches v and is accep-
ted. Thus, P

[
(a′, b′) reaches v and is accepted

∣∣ (a, b) reaches v and is accepted
]
≥ 1− o(1).

Combining these, we get

P[(a′, b′) is accepted]
≥ P

[
(a′, b′) and (a, b) both reach v and are accepted

]
= P

[
(a′, b′) reaches v and is accepted

∣∣ (a, b) reaches v and is accepted
]

· P[(a, b) reaches v and is accepted]
≥ (1− o(1)) · (P[(a, b) is accepted]− o(1))
= P[(a, b) is accepted]− o(1).

Thus, under the uniform distribution on valid inputs to f ,

P[err] ≥ P
[
err
∣∣weight(a) = 1 and weight(b) = 0

]
/4

+ P
[
err
∣∣weight(a) = 2 and weight(b) = 1

]
/4

=
(
P[(a, b) is rejected] + P[(a′, b′) is accepted]

)
/4

=
(
1− (P[(a, b) is accepted]− P[(a′, b′) is accepted])

)
/4 ≥ (1− o(1))/4. J

We complement Lemma 14 by noting that BPPNP[1]dt
3/4 (f) ≤ 2: With probability 1/4 each:

accept iff weight(a) ≤ 1,
accept iff weight(a) ≥ 1,
reject iff weight(b) ≤ 1,
reject iff weight(b) ≥ 1.

Hence BPPNP[1]dt
3/4 6⊆ BPPNP[1]dt

3/4+ε , which implies that BPPNP[1]
3/4 6⊆ BPPNP[1]

3/4+ε in a relativized
world. Thus, unlike ZPPNP[1], BPPNP[1] is not generally amenable to efficient amplification;
this phenomenon has subsequently been fully explored in [41].

References
1 Scott Aaronson and Andris Ambainis. Forrelation: A Problem That Optimally Separates

Quantum from Classical Computing. In Proceedings of the 47th Symposium on Theory of
Computing (STOC), pages 307–316. ACM, 2015. doi:10.1145/2746539.2746547.

2 Scott Aaronson, Shalev Ben-David, and Robin Kothari. Separations in Query Complexity
Using Cheat Sheets. In Proceedings of the 48th Symposium on Theory of Computing (STOC),
pages 863–876. ACM, 2016. doi:10.1145/2897518.2897644.

3 Andris Ambainis, Martins Kokainis, and Robin Kothari. Nearly Optimal Separations
Between Communication (Or Query) Complexity And Partitions. In Proceedings of the
31st Computational Complexity Conference (CCC), pages 4:1–4:14. Schloss Dagstuhl, 2016.
doi:10.4230/LIPIcs.CCC.2016.4.

STACS 2019

http://dx.doi.org/10.1145/2746539.2746547
http://dx.doi.org/10.1145/2897518.2897644
http://dx.doi.org/10.4230/LIPIcs.CCC.2016.4

59:14 A ZPPNP[1] Lifting Theorem

4 Anurag Anshu, Aleksandrs Belovs, Shalev Ben-David, Mika Göös, Rahul Jain, Robin Kothari,
Troy Lee, and Miklos Santha. Separations in Communication Complexity Using Cheat Sheets
And Information Complexity. In Proceedings of the 57th Symposium on Foundations of
Computer Science (FOCS), pages 555–564. IEEE, 2016. doi:10.1109/FOCS.2016.66.

5 Yakov Babichenko and Aviad Rubinstein. Communication Complexity of Approximate Nash
Equilibria. In Proceedings of the 49th Symposium on Theory of Computing (STOC), pages
878–889. ACM, 2017. doi:10.1145/3055399.3055407.

6 Shalev Ben-David, Pooya Hatami, and Avishay Tal. Low-Sensitivity Functions from Unambigu-
ous Certificates. In Proceedings of the 8th Innovations in Theoretical Computer Science Confer-
ence (ITCS), pages 28:1–28:23. Schloss Dagstuhl, 2017. doi:10.4230/LIPIcs.ITCS.2017.28.

7 Maria Luisa Bonet, Juan Luis Esteban, Nicola Galesi, and Jan Johannsen. On the Relative
Complexity of Resolution Refinements and Cutting Planes Proof Systems. SIAM Journal on
Computing, 30(5):1462–1484, 2000. doi:10.1137/S0097539799352474.

8 Adam Bouland, Lijie Chen, Dhiraj Holden, Justin Thaler, and Prashant Vasudevan. On The
Power of Statistical Zero Knowledge. In Proceedings of the 58th Symposium on Foundations
of Computer Science (FOCS), pages 708–719. IEEE, 2017. doi:10.1109/FOCS.2017.71.

9 Harry Buhrman and Ronald de Wolf. Complexity Measures and Decision Tree Complexity:
A Survey. Theoretical Computer Science, 288(1):21–43, 2002. doi:10.1016/S0304-3975(01)
00144-X.

10 Harry Buhrman, Nikolai Vereshchagin, and Ronald de Wolf. On Computation and Communic-
ation with Small Bias. In Proceedings of the 22nd Conference on Computational Complexity
(CCC), pages 24–32. IEEE, 2007. doi:10.1109/CCC.2007.18.

11 Jin-Yi Cai and Venkatesan Chakaravarthy. On Zero Error Algorithms Having Oracle Access
to One Query. Journal of Combinatorial Optimization, 11(2):189–202, 2006. doi:10.1007/
s10878-006-7130-0.

12 Siu On Chan, James Lee, Prasad Raghavendra, and David Steurer. Approximate Constraint
Satisfaction Requires Large LP Relaxations. Journal of the ACM, 63(4):34:1–34:22, 2016.
doi:10.1145/2811255.

13 Richard Chang and Suresh Purini. Amplifying ZPPSAT[1] and the Two Queries Problem. In
Proceedings of the 23rd Conference on Computational Complexity (CCC), pages 41–52. IEEE,
2008. doi:10.1109/CCC.2008.32.

14 Susanna de Rezende, Jakob Nordström, and Marc Vinyals. How Limited Interaction Hinders
Real Communication (and What It Means for Proof and Circuit Complexity). In Proceedings
of the 57th Symposium on Foundations of Computer Science (FOCS), pages 295–304. IEEE,
2016. doi:10.1109/FOCS.2016.40.

15 Mika Göös. Lower Bounds for Clique vs. Independent Set. In Proceedings of the 56th
Symposium on Foundations of Computer Science (FOCS), pages 1066–1076. IEEE, 2015.
doi:10.1109/FOCS.2015.69.

16 Mika Göös, T.S. Jayram, Toniann Pitassi, and Thomas Watson. Randomized Communication
vs. Partition Number. In Proceedings of the 44th International Colloquium on Automata,
Languages, and Programming (ICALP), pages 52:1–52:15. Schloss Dagstuhl, 2017. doi:
10.4230/LIPIcs.ICALP.2017.52.

17 Mika Göös, Pritish Kamath, Toniann Pitassi, and Thomas Watson. Query-to-Communication
Lifting for PNP. In Proceedings of the 32nd Computational Complexity Conference (CCC),
pages 12:1–12:16. Schloss Dagstuhl, 2017. doi:10.4230/LIPIcs.CCC.2017.12.

18 Mika Göös, Shachar Lovett, Raghu Meka, Thomas Watson, and David Zuckerman. Rectangles
Are Nonnegative Juntas. SIAM Journal on Computing, 45(5):1835–1869, 2016. doi:10.1137/
15M103145X.

19 Mika Göös and Toniann Pitassi. Communication Lower Bounds via Critical Block Sensitivity.
In Proceedings of the 46th Symposium on Theory of Computing (STOC), pages 847–856. ACM,
2014. doi:10.1145/2591796.2591838.

http://dx.doi.org/10.1109/FOCS.2016.66
http://dx.doi.org/10.1145/3055399.3055407
http://dx.doi.org/10.4230/LIPIcs.ITCS.2017.28
http://dx.doi.org/10.1137/S0097539799352474
http://dx.doi.org/10.1109/FOCS.2017.71
http://dx.doi.org/10.1016/S0304-3975(01)00144-X
http://dx.doi.org/10.1016/S0304-3975(01)00144-X
http://dx.doi.org/10.1109/CCC.2007.18
http://dx.doi.org/10.1007/s10878-006-7130-0
http://dx.doi.org/10.1007/s10878-006-7130-0
http://dx.doi.org/10.1145/2811255
http://dx.doi.org/10.1109/CCC.2008.32
http://dx.doi.org/10.1109/FOCS.2016.40
http://dx.doi.org/10.1109/FOCS.2015.69
http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.52
http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.52
http://dx.doi.org/10.4230/LIPIcs.CCC.2017.12
http://dx.doi.org/10.1137/15M103145X
http://dx.doi.org/10.1137/15M103145X
http://dx.doi.org/10.1145/2591796.2591838

T. Watson 59:15

20 Mika Göös, Toniann Pitassi, and Thomas Watson. Deterministic Communication vs. Partition
Number. In Proceedings of the 56th Symposium on Foundations of Computer Science (FOCS),
pages 1077–1088. IEEE, 2015. doi:10.1109/FOCS.2015.70.

21 Mika Göös, Toniann Pitassi, and Thomas Watson. The Landscape of Communication
Complexity Classes. In Proceedings of the 43rd International Colloquium on Automata,
Languages, and Programming (ICALP), pages 86:1–86:15. Schloss Dagstuhl, 2016. doi:
10.4230/LIPIcs.ICALP.2016.86.

22 Mika Göös, Toniann Pitassi, and Thomas Watson. Query-to-Communication Lifting for BPP.
In Proceedings of the 58th Symposium on Foundations of Computer Science (FOCS), pages
132–143. IEEE, 2017. doi:10.1109/FOCS.2017.21.

23 Mika Göös and Thomas Watson. Communication Complexity of Set-Disjointness for All
Probabilities. Theory of Computing, 12(1):1–23, 2016. Special issue for selected papers from
APPROX–RANDOM 2014. doi:10.4086/toc.2016.v012a009.

24 Russell Impagliazzo and Ryan Williams. Communication Complexity with Synchronized
Clocks. In Proceedings of the 25th Conference on Computational Complexity (CCC), pages
259–269. IEEE, 2010. doi:10.1109/CCC.2010.32.

25 Jan Johannsen. Depth Lower Bounds for Monotone Semi-Unbounded Fan-In Circuits. RAIRO
- Theoretical Informatics and Applications, 35:277–286, 2001. doi:10.1051/ita:2001120.

26 Stasys Jukna. Boolean Function Complexity: Advances and Frontiers, volume 27 of Algorithms
and Combinatorics. Springer, 2012.

27 Hartmut Klauck. Lower Bounds for Quantum Communication Complexity. SIAM Journal on
Computing, 37(1):20–46, 2007. doi:10.1137/S0097539702405620.

28 Hartmut Klauck. On Arthur Merlin Games in Communication Complexity. In Proceedings
of the 26th Conference on Computational Complexity (CCC), pages 189–199. IEEE, 2011.
doi:10.1109/CCC.2011.33.

29 Pravesh Kothari, Raghu Meka, and Prasad Raghavendra. Approximating Rectangles by
Juntas and Weakly-Exponential Lower Bounds for LP Relaxations of CSPs. In Proceedings
of the 49th Symposium on Theory of Computing (STOC), pages 590–603. ACM, 2017. doi:
10.1145/3055399.3055438.

30 Eyal Kushilevitz and Noam Nisan. Communication Complexity. Cambridge University Press,
1997.

31 James Lee, Prasad Raghavendra, and David Steurer. Lower Bounds on the Size of Semidefinite
Programming Relaxations. In Proceedings of the 47th Symposium on Theory of Computing
(STOC), pages 567–576. ACM, 2015. doi:10.1145/2746539.2746599.

32 Periklis Papakonstantinou, Dominik Scheder, and Hao Song. Overlays and Limited Memory
Communication. In Proceedings of the 29th Conference on Computational Complexity (CCC),
pages 298–308. IEEE, 2014. doi:10.1109/CCC.2014.37.

33 Toniann Pitassi and Robert Robere. Strongly Exponential Lower Bounds for Monotone
Computation. In Proceedings of the 49th Symposium on Theory of Computing (STOC), pages
1246–1255. ACM, 2017. doi:10.1145/3055399.3055478.

34 Anup Rao and Amir Yehudayoff. Communication Complexity. In preparation, 2017.
35 Ran Raz and Pierre McKenzie. Separation of the Monotone NC Hierarchy. Combinatorica,

19(3):403–435, 1999. doi:10.1007/s004930050062.
36 Robert Robere, Toniann Pitassi, Benjamin Rossman, and Stephen Cook. Exponential Lower

Bounds for Monotone Span Programs. In Proceedings of the 57th Symposium on Foundations
of Computer Science (FOCS), pages 406–415. IEEE, 2016. doi:10.1109/FOCS.2016.51.

37 Tim Roughgarden and Omri Weinstein. On the Communication Complexity of Approximate
Fixed Points. In Proceedings of the 57th Symposium on Foundations of Computer Science
(FOCS), pages 229–238. IEEE, 2016. doi:10.1109/FOCS.2016.32.

38 Alexander Sherstov. The Pattern Matrix Method. SIAM Journal on Computing, 40(6):1969–
2000, 2011. doi:10.1137/080733644.

STACS 2019

http://dx.doi.org/10.1109/FOCS.2015.70
http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.86
http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.86
http://dx.doi.org/10.1109/FOCS.2017.21
http://dx.doi.org/10.4086/toc.2016.v012a009
http://dx.doi.org/10.1109/CCC.2010.32
http://dx.doi.org/10.1051/ita:2001120
http://dx.doi.org/10.1137/S0097539702405620
http://dx.doi.org/10.1109/CCC.2011.33
http://dx.doi.org/10.1145/3055399.3055438
http://dx.doi.org/10.1145/3055399.3055438
http://dx.doi.org/10.1145/2746539.2746599
http://dx.doi.org/10.1109/CCC.2014.37
http://dx.doi.org/10.1145/3055399.3055478
http://dx.doi.org/10.1007/s004930050062
http://dx.doi.org/10.1109/FOCS.2016.51
http://dx.doi.org/10.1109/FOCS.2016.32
http://dx.doi.org/10.1137/080733644

59:16 A ZPPNP[1] Lifting Theorem

39 Rahul Tripathi. The 1-Versus-2 Queries Problem Revisited. Theory of Computing Systems,
46(2):193–221, 2010. doi:10.1007/s00224-008-9126-x.

40 Nikolai Vereshchagin. Relativizability in Complexity Theory. In Provability, Complexity,
Grammars, volume 192 of AMS Translations, Series 2, pages 87–172. American Mathematical
Society, 1999.

41 Thomas Watson. Amplification with One NP Oracle Query. Technical Report TR18-058,
Electronic Colloquium on Computational Complexity (ECCC), 2018. URL: https://eccc.
weizmann.ac.il/report/2018/058.

http://dx.doi.org/10.1007/s00224-008-9126-x
https://eccc.weizmann.ac.il/report/2018/058
https://eccc.weizmann.ac.il/report/2018/058

	p000-Frontmatter
	Foreword
	Conference Organization
	External Reviewers

	p001-Goldberg
	Extended Abstract and Annotated Bibliography

	p002-Muscholl
	Introduction
	String transducers: the setting
	Class-membership problems
	The equivalence problem
	Transducers with origins
	Conclusions

	p003-Mutzel
	Introduction
	Motivation
	Graph Similarity
	Isomorphism based Approaches
	Distance based Approaches
	Weisfeiler-Leman Approaches

	Conclusion

	p004-Bringmann
	Introduction
	Key Conjectures
	Fine-Grained Reductions and Conditional Lower Bounds
	Example I: SETH-Hardness of Orthogonal Vectors
	Example II: Regular Expression Pattern Matching
	Conclusion

	p005-Friedrich
	Introduction
	Combining heterogeneity and interdependency

	p006-Almagor
	Introduction
	Mathematical Tools
	Algebraic numbers
	First-order theory of the reals

	Almost Self-Conjugate Systems of Inequalities
	Analysis of the Point-to-Semialgebraic Orbit Problem
	Solving Almost Self-Conjugate Systems
	The case where gamma is a root of unity
	The case where gamma is not a root of unity

	The Semialgebraic Orbit Problem
	Discussion

	p007-Angelopoulos
	Introduction
	Strategies of optimal discovery ratio in Sigma
	The discovery ratio of competitively optimal strategies
	Connections between the discovery and the bijective ratios

	p008-Aronov
	Introduction
	Diameter
	Uniformity
	Width
	Width in the plane
	Width in three dimensions
	Red-blue width

	p009-Auger
	Introduction
	Definitions and classic results on simple stochastic games
	Iterative formulation of Ludwig's algorithm
	Bland's rule version
	Analysis of Algorithm 1

	Simple stochastic games with few random nodes
	Modified game and forcing strategies
	Value intervals and pivot
	Main algorithm

	Analysis of Algorithm 4
	Modified game G[p] for a pretotal order p
	Recursive formulation

	p010-Bamas
	Introduction
	Preliminaries
	Distributed computing
	Vertex coloring
	Probabilistic tools
	The dense decomposition

	Graphs with small clique number
	Graphs with chromatic number close to the maximum degree
	Reducers
	Overview of the proof of Theorem 1.3
	Proof of Theorem 1.3
	Summary of our contributions

	Concluding remarks

	p011-Bannach
	Introduction
	Describing Parameterized Problems
	Syntactic Properties Allowing Color Coding
	Formulas With Color Predicates
	Formulas With Weak Quantifiers

	Syntactic Proofs and Natural Problems
	Syntactic Tools: New Operators
	Describing Classical Problems

	Conclusion

	p012-Bannink
	Introduction
	Perfect Schmidt strategies for MOD games
	Free XOR games
	Line games
	Unique games

	Techniques
	Reduction to angle games
	Norming hypergraphs and quasirandomness
	Line games and Gowers uniformity norms
	Semidefinite programming relaxation

	p013-Belmonte
	Introduction
	Definitions
	Token Sliding on Split Graphs is PSPACE-complete
	PSPACE-completeness for Chordal Graphs for c >=2
	XP-time Algorithm on Split Graphs for fixed c >= 2
	W-hardness for Split Graphs

	p014-Beyersdorff
	Introduction
	Preliminaries
	Reductionless long-distance Q-Resolution
	Merge Resolution
	Merge maps
	Definition of M-Res
	Soundness and completeness of M-Res

	Proof complexity: Merge Resolution vs Reductionless LD-Q-Res
	{{EQ lower bound for reductionless LD-Q-Res
	Short M-Res refutations of {{EQ

	Extending Merge Resolution to DQBF
	Conclusions

	p015-Birx
	Introduction
	Preliminaries
	Upper Bound for the Open Version
	Lower Bound for the Open Version
	Lower Bound for the Closed Version

	p016-Bonamy
	Introduction
	Preliminaries
	Minimal domination in triangle-free graphs
	The extension problem is hard in bipartite graphs
	Conclusion

	p017-Butti
	Introduction
	Classification of Binary Predicates
	Conclusion

	p018-Capelli
	Introduction
	Preliminaries
	Warm-up: Quantification on OBDD
	Bounded width complete structured DNNF
	Complete structured DNNF
	Width
	Eliminating Constants
	Existential quantification on bounded width d-DNNF

	Algorithms for graph width measures
	Lower Bounds
	The definition of width
	Structuredness

	Conclusion

	p019-Chalermsook
	Introduction
	Our Results
	Overview of Techniques

	Overview of the Proof
	On the Strength of Our Result
	Our Bound is Almost Tight
	Comparison to the Previous Bound

	Conclusions and Open Problems

	p020-Cook
	Introduction
	Preliminaries
	2-Tag Systems
	Average-Case Complexity

	New Concise Input Encoding for 2-Tag Systems
	An example of the decoding process, with paired notation

	p021-Cseh
	Introduction
	Related work
	Our contribution

	Preliminaries
	Weak stability
	Strong stability
	Super-stability
	Conclusion and open questions

	p022-Descotte
	Introduction
	Preliminaries
	Synchronized relations
	Universal closure properties

	Closure under intersection
	Closure under complement
	Closure under concatenation, Kleene star, and projection
	Concluding remarks and future work

	p023-Destombes
	Introduction
	Preliminaries
	High resource-bounded Kolmogorov complexity is compatible with low block complexity
	Epitomes
	Plain epitomes
	Ordered epitomes

	p024-Dietzfelbinger
	Introduction
	Basic Data Structure
	Previous Work and Relevant Techniques
	Our Contribution

	The Construction Problem in Matrix and Graph Terminology
	Full Rank of the Linear Systems
	Proof of Proposition 3(i)
	Adjustments for Proposition 3 (ii) and (iii)
	Proof of Lemma 4

	Proof of the Main Theorem
	Experiments and Practical Considerations
	Experimental Overhead
	Experimental Runtimes

	Conclusion and Future Work

	p025-Eiben
	Introduction
	Our Results

	Preliminaries
	Solving DSN on a Fixed Surface
	Important and Marked Vertices
	Ladders
	Finishing the Proof

	Improved ETH-based Lower Bound for General Graphs
	Conclusions

	p026-Ellen
	Introduction
	The Signal Detection Problem
	Simple Signal Detection Algorithms
	ABA Detection
	Results

	Preliminaries
	One-Shot Signal Detection
	Identical Signals
	Oblivious Processes
	The General Setting
	Two Process Algorithm

	p027-Fabianski
	Introduction
	Complexity-measures for bipartite graphs
	Domination and independence problems
	Algorithms
	Discussion of related results

	p028-Fomin
	Introduction
	Definition of the problem and outline of the algorithm
	Replacement actions

	High-level description of the algorithm
	Key concepts
	Graph embeddings and boundaried graphs
	Annulus-embedded separators
	Replacement folios

	Applications
	Problems generated by different Instantiations of L
	Modifications to planar graph with additional properties

	Conclusions and open problems

	p029-Ganardi
	Introduction
	Preliminaries
	Visibly pushdown languages
	Sliding window algorithms and main results
	Reduction to transducer problem
	Dichotomy for rational functions

	p030-Gawrychowski
	Introduction
	Preliminaries
	Computing a Longest k-Rollercoaster in O(nk^2)-Time
	Computing a Longest k-Rollercoaster in O(nlog^2n)-Time
	Lower Bound

	p031-Gemici
	Introduction
	Related work
	Model Description
	The Negative Impact of Tolls on Inequality
	The Inequity theorem
	Computing the efficiency-equality trade-off
	The model
	The objective
	The algorithm

	The asymmetric case

	The Inequity Index
	Scale invariance of the inequity index
	No-regret learning

	Computing the Inequity in Pigou
	Tolls and Inequality: Empirical Findings
	Discussion

	p032-Giannopoulou
	Introduction
	Preliminaries
	A Menger-like property of tree-cut width
	Tidy decompositions and branch interfaces
	Branch Interfaces
	Obstructions and algorithms for tree-cut width
	Discussion

	p033-Grigoriev
	Introduction
	Notation and technical preliminaries
	NP-completeness results
	NP-hard cases with odd numerator
	NP-hard cases with even numerator
	Containment in NP

	The polynomial time result for delta=2
	The polynomially solvable cases

	p034-Gupta
	Introduction
	Our Result
	Organization of the Paper

	Preliminaries
	Representation of High Genus Graph
	Previous Work

	Isolating Paths in High Genus Graphs

	p035-Hjuler
	Introduction
	A O(log n) approximation of Minimum Dominating Set in O(Delta log n) time per update
	Preliminaries
	The algorithm
	Analysis

	A O(log n) Approximation for Minimum Connected Dominating Set in Õ(n) per update
	A more intricate Õ(Delta) algorithm to restore the minimality of C
	A O(min(Delta, sqrt m) amortized algorithm for Minimal Dominating Set
	The algorithm
	Running time

	p036-Hols
	Introduction
	Preliminaries
	EDS parameterized by the size of a modulator to a P_3- resp. P_5-component graph
	Lower bound for EDS parameterized by the size of a modulator to a P_3-component graph
	Polynomial kernelization for EDS parameterized by the size of a modulator to a P_5-component graph

	EDS parameterized by the size of a modulator to an H-component graph
	Conclusion

	p037-Holt
	Introduction
	General notations
	Hyperbolic groups
	Compressed words and the compressed word problem
	The compressed word problem for hyperbolic groups
	Further compressed decision problems
	Computing the order of a compressed group element
	Compressed conjugacy and centralisers
	Compressed knapsack

	Conclusion and open problems

	p038-Hommelsheim
	Introduction
	Robust Matchings and Strong Connectivity Augmentation
	Robust Matching Augmentation
	The Source Cover Problem
	Source Cover on Chordal Bipartite Graphs
	Source Cover on Graphs of Bounded Treewidth

	Weighted Robust Matching Augmentation
	Conclusion

	p039-Jansen
	Introduction
	Preliminaries
	Planar graphs

	Sparsification
	Odd Cycle Transversal
	Reducing the number of terminals
	Reducing the diameter and obtaining the kernel

	Vertex Multiway Cut
	Reductions to Vertex Planarization
	Conclusions

	p040-Jeandel
	
	Preliminary definitions
	Subshifts
	Combinatorial Group Theory
	Subshifts as analogs of subgroups
	Removing symbols and dimensions
	Adding symbols and dimensions

	The three embedding theorems
	The Higman embedding theorem
	Higman's relative embedding theorem
	The Boone-Higman-Thompson theorem

	Discussion

	p041-Jukna
	Introduction
	Negation width of circuits
	Motivation
	Our contributions

	Random subcircuits
	Proof of Theorem 1.6
	Proof of Theorem 1.8
	Proof of Theorem 1.9
	Explicit lower bounds
	Final remarks
	Motivating examples
	Super-polynomial gaps
	The triangle function
	Threshold functions

	p042-Khan
	Introduction
	Our Results
	Overview

	Preliminaries
	Simple Algorithms
	Improved algorithm

	Computing DFS in sublinear number of passes
	Algorithm

	Final algorithm
	Processing of Edges
	Algorithm
	Correctness and Analysis

	Experimental Evaluation
	Conclusion

	p043-Kiefer
	Introduction
	Proof of Proposition 2
	Proof of Theorem 1
	Strongly Connected
	Not Necessarily Strongly Connected

	Proof of Theorem 4

	p044-Knop
	Introduction
	Parameterization by the number of constraints
	Detecting matrices
	Coefficient reduction
	Proof of Theorem 1

	Parameterization by the dual treedepth
	Preliminaries
	Upper bound
	Lower bound

	Conclusions

	p045-Krauthgamer
	Introduction
	Reduction from Directed nTree to Set Cover
	Reduction from Set Cover to kTree
	Reduction from p-Partial Cover

	Moderate Improvements to Delta-Set Cover Imply New Algorithms for Directed nTree and Directed Hamiltonicity

	p046-Kreutzer
	Introduction
	Directed Minors and Directed Bounded Expansion
	Approximation of distance-r dominating sets and duality between distance-r dominating sets and r-scattered sets
	Parameterised complexity of Distance-r Dominating Set
	Fixed-parameter tractability on bounded expansion classes
	VC-dimension and neighbourhood complexity
	Kernelisation on classes of bounded crownful expansion

	Steiner trees
	Hardness Results

	p047-Landwehr
	Introduction
	Preliminaries
	Trees, Languages and Tree Automata
	Tree Automata with Global Equality Constraints

	Properties
	Expressive Power of different Acceptance Conditions
	Restricted Constraints
	Closure Properties

	Decision Problems
	Undecidability Results
	Emptiness Problem

	Conclusion

	p048-Larsen
	Introduction
	Eigenvalue Bounds for Hereditary Discrepancy
	Hereditary l_infty-discrepancy
	Hereditary l_2-discrepancy

	Discrepancy Minimization with Hereditary l_2 Guarantees
	Partial Coloring
	The Final Algorithm

	Experiments

	p049-LeGall
	Introduction
	Preliminaries
	Notations and definitions
	Classical and quantum LOCAL models
	The construction from prior works

	Efficient Construction of Graph States
	Separation between the Classical and Quantum LOCAL Models
	Separation for a Distribution
	Technical Definition of the Classical LOCAL Model
	Restriction to finite and initial randomness

	The Case of Functions

	p050-Loff
	Introduction
	A tea-break puzzle
	Composition with Equality
	Almost Conjecture 4
	Organization

	Preliminaries, and precise statements of our results
	Thickness and squares
	Thickness and its properties
	Squares

	The projection lemma
	Lifting 0-query complexity

	p051-Luo
	Introduction
	Related work
	Problem description and preliminaries
	Paper outline

	Lower bounds for kSmL-U
	Upper bounds for kSmL-U
	Upper bound for 0 <= a <t
	Upper bound for a >= t

	kSmL-A: Arbitrary travel times
	Conclusion

	p052-Matl
	Introduction
	The Bounded Generalised Min-Cut Problem
	Extending EDS to Larger Domains
	k-Set Functions
	Fixing a Label: Reduced Languages
	Extending EDS to Larger Domains

	Classifying SEDS and SDS Languages
	Conclusions

	p053-Mottet
	Introduction
	Main Definitions
	Some Facts about Register Automata
	The Containment Problem for Register Automata
	Types
	Collapsing Configurations
	Abstract Configurations

	Open Problems

	p054-Papp
	Introduction
	Related Work
	Models and Notation
	Basic Observations
	Construction for the Adversarial Case
	Benevolent Case

	p055-Paul
	Introduction
	Preliminaries
	Main Result
	Necessity
	Sufficiency

	p056-Peserico
	Introduction
	The paging problem
	Memory capacity often varies over time
	Our results

	Some formalism/terminology
	Minimal capacity fluctuations can lead to arbitrarily large performance degradation
	Dealing with adversarial fluctuations efficiently – and ``implicitly''
	An exact characterization of the competitive ratio
	Decoupling replacement from capacity in RAM rental
	Conclusions

	p057-Posobin
	Introduction
	Proof sketch
	Three ways to measure the amount of information
	Arbitrary change
	Random noise: four versions
	Tools used in the proof

	Combinatorial version
	Complexity statement
	Infinite sequences and Hausdorff dimension

	p058-Sen
	Introduction
	Main techniques and organization

	Basic framework and tools
	Application to Quicksort and related problems
	Extension to more general cost function
	Comparison with an earlier bound

	Incremental Delaunay Triangulation
	More generalized RIC: segment intersections
	Can we improve the tail bounds
	Appendix

	p059-Watson
	Introduction
	Statement of results

	Definitions
	ZPP^{NP[1]}
	CautiousBPP ^{NP[1]}

	ZPP^{NP[1]}=CautiousBPP ^{NP[1]}
	Proof of the Lifting Theorem
	Background
	Simulation
	Forming a DNF

	Applications
	MA cap coMA
	US cap coUS

