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Abstract
In our paper [Głuch, Marcinkowski, Ostropolski-Nalewaja, LICS ACM, 2018] we have solved an
old problem stated in [Calvanese, De Giacomo, Lenzerini, Vardi, SPDS ACM, 2000] showing that
query determinacy is undecidable for Regular Path Queries. Here a strong generalisation of this
result is shown, and – we think – a very unexpected one. We prove that no regularity is needed:
determinacy remains undecidable even for finite unions of conjunctive path queries.
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1 Introduction

Query determinacy problem (QDP)

Imagine there is a database D we have no direct access to, and there are views of this D
available to us, defined by some set of queries Q = {Q1, Q2, . . . Qk} (where the language of
queries from Q is a parameter of the problem). And we are given another query Q0. Will
we be able, regardless of D, to compute Q0(D) only using the views Q1(D), . . . Qk(D)? The
answer depends on whether the queries in Q determine1 query Q0. Stating it more precisely,
the Query Determinacy Problem is2:

The instance of the problem is a set of queries Q = {Q1, . . . Qk}, and another query Q0.
The question is whether Q determines Q0, which means that for (♣) each two structures
(database instances) D1 and D2 such that Q(D1) = Q(D2) for each Q ∈ Q, it also holds
that Q0(D1) = Q0(D2).

QDP is seen as a very natural static analysis problem in the area of database theory. It is
important for privacy (when we don’t want the adversary to be able to compute the query)
and for (query evaluation plans) optimisation (we don’t need to access again the database as
the given views already provide enough information). And, as a very natural static analysis
problem, it has a 30 years long history as a research subject – the oldest paper we were able

1 Or, using the language of [6], [5] [9] and [8], whether Q are lossless with respect to Q0.
2 More precisely, the problem comes in two different flavors, “finite” and “unrestricted”, depending on
whether the (♣) “each” ranges over finite structures only, or all structures, including infinite.
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to trace, where QDP is studied, is [20], where decidability of QDP is shown for the case
where Q0 is a conjunctive query (CQ) and also the set Q consists of a single CQ.

But this is not a survey paper, so let us just point a reader interested in the history of
QDP to Nadime Francis’s thesis [14], which is a very good read indeed.

1.1 The context
As we said, this is a technical paper not a survey paper. But still, we need to introduce the
reader to the technical context of our results. And, from the point of view of this introduc-
tion, there are two lines of research which are interesting: decidability problems of QDP for
positive fragments of SQL (conjunctive queries and their unions) and for fragments of the lan-
guage of Regular Path Queries (RPQs) – the core of most navigational graph query languages.

QDP for fragments of SQL

A lot of progress was done in this area in two past decades. The paper [21] was the first to
present a negative result. QDP was shown there to be undecidable if unions of conjunctive
queries are allowed in Q and Q0. The proof is moderately hard, but the queries are high
arity (by arity of a query we mean the number of free variables) and hardly can be seen as
living anywhere close to database practice.

In [22] it was proved that determinacy is also undecidable if the elements of Q are
conjunctive queries and Q0 is a first order sentence (or the other way round). Another
somehow related (although no longer contained in the first order/SQL paradigm) negative
result is presented in [12]: determinacy is shown there to be undecidable if Q is a DATALOG
program and Q0 is a conjunctive query. Finally, closing the classification for the traditional
relational model, it was shown in [17] and [18] that QDP is undecidable for Q0 and the
queries in Q being conjunctive queries. The queries in [17] and [18] are quite complicated
(the Turing machine there is encoded in the arities of the queries), and again hardly resemble
anything practical.

On the positive side, [22] shows that the problem is decidable for conjunctive queries if
each query from Q has only one free variable.

Then, in [2] decidability was shown for Q and Q0 being respectively a set of conjunctive
path queries and a path query. (see Section 3 for the definition). This is an important result
from the point of view of the current paper, and the proof in [2], while not too difficult, is very
nice – it gives the impression of deep insight into the real reasons why a set of conjunctive
path queries determines another conjunctive path query.

The result from [2] begs for generalisations, and indeed it was generalised in [23] to the
scenario where Q is a set of conjunctive path queries but Q0 is any conjunctive query.

QDP for Regular Path Queries

A natural extension of QDP to the graph database scenario is considered here. In this
scenario, the underlying data is modelled as graphs, in which nodes are objects, and edge
labels define relationships between those objects. Querying such graph-structured data has
received much attention recently, due to numerous applications, especially for social networks.

There are many more or less expressive query languages for such databases (see [3]).
The core of all of them (the SQL of graph databases) is RPQ – the language of Regular
Path Queries. RPQ queries ask for all pairs of objects in the database that are connected
by a specified path, where the natural choice of the path specification language, as [26]
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elegantly explains, is the language of regular expressions. This idea is at least 30 years old
(see for example [11], [10]) and considerable effort was put to create tools for reasoning about
regular path queries, analogous to the ones we have in the traditional relational databases
context. For example [1] and [4] investigate decidability of the implication problem for path
constraints, which are integrity constraints used for RPQ optimisation. Containment of
conjunctions of regular path queries has been proved decidable in [7] and [13], and then, in
more general setting, in [19] and [24].

Naturally, query determinacy problem has also been stated, and studied, for Regular
Path Queries. This line of research was initiated in [6], [5], [9] and [8], and it was in [9] where
the central problem of this area – decidability of QDP for RPQ – was first stated (called
there “losslessness for exact semantics”).

On the positive side, the previously mentioned result of Afrati [2] can be seen as a special
case, where each of the regular languages defining the queries only consists of one word
(conjunctive path queries considered in [2] constitute in fact the intersection of CQ and RPQ).
Another positive result is presented in [15], where “approximate determinacy” is shown to be
decidable if the query Q0 is (defined by) a single-word regular language (a conjunctive path
query), and the languages defining the queries in Q0 and Q are over a single-letter alphabet.
See how difficult the analysis is here – despite a lot of effort (the proof of the result in [15]
invokes ideas from [2] but is incomparably harder) even a subcase (for a single-word regular
language) of a subcase (unary alphabet) was only understood “approximately”.

On the negative side, in [16], we showed (solving the problem from [9]), that QDP is
undecidable for full RPQ.

1.2 Our contribution
The main result of this paper, and – we think – quite an unexpected one, is the following
strong generalisation of the main result from [16]:

I Theorem 1.1. Answering Determinacy question for Finite Regular Path Queries is unde-
cidable in unrestricted and finite case (for necessary definitions see Section 3).

To be more precise, we show that the problem, both in the “finite” and the “unrestricted”
versions, is undecidable.

It is, we believe, interesting to see that this negative result falls into both lines of research
outlined above. Finite Regular Path Queries are of course a subset of RPQ, where star is
not allowed in the regular expressions (only concatenation and plus are), but on the other
hand they are also Unions of Conjunctive Path Queries, so unlike general RPQs are first
order queries and they also fall into the SQL category.

Our result shows that the room for generalising the positive result from [2] is quite limited.
What we however find most surprising is the discovery that it was possible to give a negative
answer to the question from [9], which had been open for 15 years, without talking about
RPQs at all – undecidability is already in the intersection of RPQs and (positive) SQL.
I Remark. [3] makes a distinction between “simple paths semantics” for Recursive Path
Queries and “all paths semantics”. As all the graphs we produce in this paper are acyclic
(DAGs), all our results hold for both semantics.

Organization of the paper.

In short Section 3 we introduce (very few) notions and some notations we need to use.
Sections 4–14 of this paper are devoted to the proof of Theorem 1.1.

ICDT 2019
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In Section 4 we first follow the ideas from [16] defining the red-green signature. Then
we define the game of Escape and state a crucial lemma (Lemma 4.2), asserting that this
game really fully characterises determinacy for Regular Path Queries. This part follows in
the footsteps of [16], but with some changes: in [16] Escape is a solitary game, and here we
prefer to see it as a two-player one.

At this point we will have the tools ready for proving Theorem 1.1. In Section 5 we
explain what is the undecidable problem we use for our reduction, and in Section 6 we present
the reduction. In Sections 7 – 14 we use the characterisation provided by Lemma 4.2 to
prove correctness of this reduction. Due to the space constraint, we try to explain the main
ideas and formulate all the crucial lemmas in the main body of the paper, but the proofs of
the lemmas can be found in the full paper.

2 How this paper relates to [16]

This paper builds on top of the technique developed in [16] to prove undecidability of
QDP-RPQ for any languages, including infinite.

From the point of view of the high-level architecture the two papers do not differ much.
In both cases, in order to prove that if some computational device rejects its input then
the respective instance of QDP-RPQ (or QDP-FRPQ) is positive (there is determinacy) we
use a game argument. In [16] this game is solitary. The player, called Fugitive, constructs
a structure/graph database (a DAG, with source a and sink b). He begins the game by
choosing a path D0 from a to b, which represents a word from some regular language G(Q0).
Then, in each step he must “satisfy requests”– if there is a path from some v to w in the
current structure, representing a word from some (*) regular language Q then he must add
a path representing a word from another language Q′ connecting these v and w. He loses
when, in this process, a path from a to b from yet another language R(Q0) is created. In this
paper this game is replaced by a two-player game. But this is a minor difference. There are
however two reasons why the possibility of using infinite languages is crucial in [16]. Due to
these reasons, while, as we said, the general architecture of the proof of the negative result in
this paper is the same as in [16], the implementation of this architecture is almost completely
different here.

The first reason is as follows. Because of the symmetric nature of the constraints, the
language Q (in (*) above) is always almost the same as language Q′ (they only have different
“colors”, but otherwise are equal). For this reason it is not at all clear how to force Fugitive
to build longer and longer paths. This is a problem for us, as to be able to encode something
undecidable we need to produce structures of unbounded size. One can think that paths of
unbounded length translate to potentially unbounded length of Turing machine tape.

In order to solve this problem we use – in [16] – a language G(Q0). It is an infinite
language and – in his initial move – Fugitive could choose/commit to a path of any length
he wished so that the length of the path did not need to increase in the game. But now we
only have finite languages, so also G(Q0) must be finite and we needed to invent something
completely different.

The second reason is in R(Q0). This – one can think – is the language of “forbidden
patterns” – paths from a to b that Fugitive must not construct. If he does, it means that he
“cheats”. But now again, R(Q0) is finite. So how can we use it to detect Fugitive’s cheating
on paths no longer than the longest one in R(Q0)? This at first seemed to us to be an
impossible task.

But it wasn’t impossible. The solution to both aforementioned problems is in the
complicated machinery of languages producing edges labelled with x and y.
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3 Preliminaries and notations

Determination

For a set of queries Q = {Q1, Q2, . . . , Qk} and another query Q0, we say that Q determines
Q0 if and only if: ∀D1,D2 Q(D1) = Q(D2) → Q0(D1) = Q0(D2), where Q(D1) = Q(D2) is
defined as ∀Q∈Q Q(D1) = Q(D2). Query determinacy comes in two versions: unrestricted
and finite, depending on whether we allow or disallow infinite structures D to be considered.
When we speak about determinacy without specifying explicitly it’s version, we assume the
unrestricted case of the problem.

Structures

When we say “structure” we always mean a directed graph with edges labelled with letters
from some signature/alphabet Σ. In other words every structure we consider is a relational
structure D over some signature Σ consisting of binary predicate names. Letters D, M, G
and H are used to denote structures. Ω is used for a set of structures. Every structure we
consider will contain two distinguished constants a and b. For two structures G and G′ over
Σ, with sets of vertices V and V ′, a function h : V → V ′ is called a homomorphism if for each
two vertices 〈u, v〉 connected by an edge with label e ∈ Σ in G there is an edge connecting
〈h(u), h(v)〉, with the same label e, in G′.

Conjunctive path queries

Given a set of binary predicate names Σ and a word w = a1a2 . . . an over Σ∗ we define a
(conjunctive) path query w(v0, vn) as a conjunctive query:

∃v1,...,vn−1a1(v0, v1) ∧ a2(v1, v2) ∧ . . . an(vn−1, vn).

We use the notation w[v0, vn] to denote the canonical structure (“frozen body”) of query
w(v0, vn) – the structure consisting of elements v0, v1, . . . vn and atoms a1(v0, v1), a2(v1, v2),
. . . an(vn−1, vn).

Regular path queries

For a regular language Q over Σ we define a query, which is also denoted by Q, as Q(u, v) =
∃w∈Qw(u, v)

In other words such a query Q looks for a path in the given graph labelled with any word
from Q and returns the endpoints of that path. Clearly, if Q is a finite regular language
(finite regular path query), then Q(u, v) is a union of conjunctive queries.

We use letters Q and L to denote regular languages and Q and L to denote sets of regular
languages. The notation Q(D) has the natural meaning: Q(D) = {〈u, v〉 |D |= Q(u, v)}.

4 Red-Green Structures and Escape

In this section we will provide crucial tool for our proof. First we will introduce red-green
structures. Such a structure will consist of two structures each with distinct colour. One can
think that we take two databases and then colour one green and another red and then look
at them as a whole. This notion is very useful for two coloured Chase technique from [17]
and [18] that has evolved into Game of Escape in [16] and is also present in this paper.

ICDT 2019
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4.1 Red-green signature and Regular Constraints
For a given alphabet (signature) Σ let ΣG and ΣR be two copies of Σ one written with “green
ink” and another with “red ink”. Let Σ̄ = ΣG ∪ ΣR.

For any word w from Σ∗ let G(w) and R(w) be copies of this word written in green and
red respectively. For a regular language L over Σ let G(L) and R(L) be copies of this same
regular language but over ΣG and ΣR respectively. Also for any structure D over Σ let G(D)
and R(D) be copies of this same structure D but with labels of edges recolored to green
and red respectively. For a pair of regular languages L over Σ and L′ over Σ′ we define the
Regular Constraint (RC) L→ L′ as a formula ∀u,vL(u, v)⇒ L′(u, v).

We use the notation D |= t to say that an RC t is satisfied in D. Also, we write D |= T

for a set T of RCs when for each t ∈ T it is true that D |= t.
For a graph D and an RC t = L→ L′ let rq(t,D) (as “requests”) be the set of all triples

〈u, v, L→ L′〉 such that D |= L(u, v) and D 6|= L′(u, v). For a set T of RCs by rq(T,D) we
mean the union of all sets rq(t,D) such that t ∈ T . Requests are there in order to be satisfied:

Algorithm 1 Function Add used to satisfy requests.
function Add
arguments:

Structure D
RC L→ L′

pair 〈u, v〉 such that 〈u, v, L→ L′〉 ∈ rq(L→ L′,D)
body:

1: Take a word w = a0a1 . . . an from L′ and create a new path
w[u, v] = a0(u, s1), a1(s1, s2), . . . , an(sn−1, v) where s1, s2, . . . , sn−1 are new vertices

2: return D ∪ w[u, v].

Notice that the result Add(D,L → L′, 〈u, v〉) depends on the choice of w ∈ L′. So the
procedure is non-deterministic.

For a regular language L we define L→ = G(L)→ R(L) and L← = R(L)→ G(L). All
regular constraints we are going to consider are either L→ or L←. For a regular language L
we define L↔ = {L→, L←} and for a set L of regular languages we define: L↔ =

⋃
L∈L L

↔.

Requests of the form 〈u, v, t〉 for some RC t of the form L→ (L←) are generated by G(L)
(resp. by R(L)). Requests that are generated by G(L) or R(L) are said to be generated by L.

The following lemma is straightforward to prove and characterises determinacy in terms
of regular constraints:

I Lemma 4.1. A set Q of regular path queries over Σ does not determine (does not finitely
determine) a regular path query Q0, over the same alphabet, if and only if there exists a
structure M (resp. a finite structure) and a pair of vertices u, v ∈M such that M |= Q↔ and
M |= (G(Q0))(u, v) but M 6|= (R(Q0))(u, v−).

Any structure M, as above, will be called a counterexample. One can think of M as a pair
of structures, being green and red parts of M. Note that those two structures both agree on
Q but don’t on Q0, thus proving that Q does not determine Q0.

4.2 The game of Escape
Here we present the essential tool for our proof. One can note that the game of Escape is
very simmilar to the well known Chase technique. This is indeed the case, as one can think
about RCs as of Tuple Generating Dependencies (TGDs) from the Chase. Divergence from
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standard Chase comes from “nondeterminism” that is inherent part of RCs (request can be
satisfied by any word from a language) phenomenon not present in TGDs.

An instance Escape(Q0, Q) of a game called Escape, played by two players called Fugitive
and Crocodile, is:

A finite regular language Q0 of forbidden paths over Σ.
A set Q of finite regular languages over Σ,

The rules of the game are:
First Fugitive picks the initial position of the game as D0 = (G(w))[a, b] for some w ∈ Q0.
Suppose Dβ is the current position of some play before move β+1 and let Sβ = rq(Q↔,Dβ).
Then, in move β + 1, Crocodile picks one request 〈u, v, t〉 ∈ Sβ and then Fugitive can
move to any position of the form:

Dβ+1 := Add(Dβ , t, 〈u, v〉)

For a limit ordinal λ the position Dλ is defined as
⋃
β<λ

Dβ .

If rq(Q↔,Di) is empty then for each j > i the structures Dj and Di are equal.
Fugitive loses when for a final position Dω2 =

⋃
β<ω2

Dβ it is true that Dω2 |= (R(Q0))(a, b),

otherwise he wins. Obviously if there is some β < ω2 such that Dβ |= (R(Q0))(a, b) then
the result of the game is already known (Fugitive loses), but technically the game still
proceeds.

Notice that we want the game to last ω2 steps. This is not really crucial (if we were careful
ω steps would be enough) but costs nothing and will simplify presentation in Section 10.

Obviously, different strategies of both players may lead to different final positions.
Now we can state the crucial Lemma, that connects the game of Escape and QDP-RPQ:

I Lemma 4.2. For an instance of QDP-RPQ consisting of regular language Q0 over Σ and
a set of regular languages Q over Σ the two conditions are equivalent:
(i) Q does not determine Q0,
(ii) Fugitive has a winning strategy in Escape(Q0, Q).

The proof of this Lemma can be found in the full paper.
We should mention here that all the notions of Section 4 are similar to those of [16] but

are not identical. The most notable difference is in the definition of the game of Escape, as
it is no longer a solitary game, as it was in [16].

This makes the analysis slightly harder here, but pays off in Sections 7 – 14.

5 Source of undecidability

In this section we will define tiling problem that we will reduce to QDP-FRPQ. In order to
prove undecidability for both finite and unrestricted case we will build our tiling problem
upon notion of recursively inseparable sets.

I Definition 5.1 (Recursively inseparable sets). Sets A and B are called recursively insepar-
able when each set C, called a separator, such that A ⊆ C and B ∩C = ∅, is undecidable [25].

ICDT 2019
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(0, 4) (4, 4)

(0, 0) (4, 0)

Figure 1 Finite square grid.

It is well known that:

I Lemma 5.2. Let T be the set of all Turing Machines. Then sets Tacc = {φ ∈ T |φ(ε) = 1}
and Trej = {φ ∈ T |φ(ε) = 0} are recursively inseparable. By φ(ε) we mean the returned value
of the Turing Machine φ that was run on an empty tape.

I Definition 5.3 (Square Grids). For a k ∈ N let [k] be the set {i ∈ N|0 ≤ i ≤ k}. A square
grid is a directed graph 〈V,E〉 where V = [k]× [k] for some natural k > 0 or V = N× N. E
is defined as E(〈i, j〉, 〈i+ 1, j〉) and E(〈i, j〉, 〈i, j + 1〉) for each relevant i, j ∈ N.

I Definition 5.4 (Our Grid Tiling Problem (OGTP)). An instance of this problem is a set
of shades S having at least two elements (gray,black ∈ S) and a set F ⊆ {V,H} × S ×
{V,H}×S of forbidden pairs 〈c, d〉 where c, d ∈ {V,H}×S. Let the set of all these instances
be called I.

I Definition 5.5. A proper shading3 is an assignment of shades to edges of some square
grid G (see Figure 1) such that:
(a1) each horizontal edge of G has a label from {H} × S.
(a2) each vertical edge of G has a label from {V } × S.
(b1) bottom-left horizontal edge is shaded gray4.
(b2) upper-right vertical edge (if it exists) is shaded black.
(b3) G contains no forbidden paths of length 2 labelled by 〈c, d〉 ∈ F .

We define two subsets of instances of OGTP:
A = {I ∈ I|there exists a proper shading of some finite square grid }.
B = {I ∈ I|there is no proper shading of any square grid }.

By a standard argument, using Lemma 5.2, one can show that:

I Lemma 5.6. Sets A and B of instances of OGTP are recursively inseparable.

In Section 6 we will construct a function R (R like Reduction) from I (instances of OGTP)
to instances of QPD-FRPQ that will satisfy the following:

3 We would prefer to use the term “coloring” instead, but we already have colors, red and green, and they
shouldn’t be confused with shades.

4 We think of (0, 0) as the bottom-left corner of a square grid. By ‘right’ we mean a direction of the
increase of the first coordinate and by ‘up’ we mean a direction of increase of the second coordinate.
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I Lemma 5.7. For any instance I = 〈S,F〉 of OGTP and for 〈Q, Q0〉 = R(I):
(i) If I ∈ A then Q does not finitely determine Q0.
(ii) If I ∈ B then Q determines Q0.
Now the need for notion of recursive inseparability should be clear. Imagine, for the sake

of contradiction, that we have an algorithm ALG deciding determinacy in either finite or
unrestricted case. Then, in both cases, algorithm ALG ◦R would separate A and B, which
contradicts the recursive inseparability of A and B (Lemma 5.6). That will be enough to
prove Theorem 1.1.

6 The function R

Now we define a function R, as specified in Section 5, from the set of instances of OGTP to
the set of instances of QDP-FRPQ. Suppose an instance 〈S,F〉 of OGTP is given. We will
construct an instance 〈Q, Q0〉 = R(〈S,F〉) of QDP-FRPQ. The edge alphabet (signature) will
be: Σ = {αC , αW , xC , xW , yC , yW , $C , $W , ω}∪Σ0 where Σ0 = {A,B}×{H,V }×{W,C}×S.
We think of H and V as orientations – Horizontal and Vertical. W and C stand for warm
and cold. It is worth reminding at this point that relations from Σ̄ will – apart from shade,
orientation and temperature – have also a color, red or green.

I Notation 6.1. We will denote (l, o, t, s) ∈ Σ0 as ( lts o).
Symbol • and empty space are to be understood as wildcards. This means, for example,

that ( As H) denotes the set {( AW
s H ), ( AC

s H)} and ( •Ws H ) denotes {( AW
s H ), ( BW

s H )}.
Symbols from (•W ) and {αW , xW , yW , $W } will be called warm and symbols from (•C)

and {αC , xC , yC , $C} will be called cold.

Now we define Q and Q0. Let Qgood be a set of 15 languages:

1. ω
2. αC + αW

3. xC + xW

4. yC + yW

5. $C + $W
6. (BC

V ) + (BW
V )

7. (BW
H ) + (BC

H)
8. (AW

V ) + (AC
V )

9. (AC
H) + (AW

H )
10. (BW

H )(AW
V ) + (BC

V )(AC
H)

11. (AC
H)(BC

V ) + (AW
V )(BW

H )
12. xC

(
(AC

H)+(BC
H)+(AC

V )+(BC
V )
)
+xC +xW

13.
(
(AC

H)+(BC
H)+(AC

V )+(BC
V )
)
yC+yC+yW

14. xW + xC + xC(AC
H)(BC

V )
15. yW + $C + (AC

H)(BC
V )yC + (BC

V )yC

Let Qbad be a set of languages:
1. αWxW ( •Ws d )( •Ws′ d′ )yWω for each forbidden pair 〈(d, s), (d′, s′)〉 ∈ F .
2. αWxW ( BW

shade V )$Wω for each shade ∈ S \ {black}.

Finally, let Qugly be a set of languages: 1. αCΣ≤4(•W )Σ≤4ω, 2. αWΣ≤4(•C)Σ≤4ω and
3. αCxC(BC

V )(BC
V )yCω. Where Σ≤4 is language over Σ of words shorter than 5.

We write Qigood, Qibad, Qiugly to denote the i-th language of the corresponding group. Now
we can define: Q := Qgood ∪Qbad ∪Qugly

The sense of the construction will (hopefully) become clear later, but we can already say
something about the structure of the defined languages.

Languages from Qgood serve as a building blocks during the game of Escape, they are
used solely to build a shaded square grid structure, that will correspond to some tiling of
square grid. On the other hand the languages from Qbad and Qugly serve as a “stick” during
play. It will become clear later that whenever Fugitive has to answer a request generated by
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15:10 The First Order Truth Behind Undecidability of Regular Path Queries Determinacy

one of languages in Qbad or Qugly it is already too late for him to win. More precisely every
request generated by Qbad is due to Fugitive assigning shades to grid in a forbidden manner
and leads to Fugitive’s swift demise. Similarly requests generated by Qugly make Fugitive to
use “right” building blocks from Qgood, by forcing that edge is red if and only if it is warm
(this will be thoroughly explained in Section 8), or else he will loose. Third language from
Qugly ensures that there won’t be two consecutive (BC

V ) symbols in the structure, it is a
feature used exclusively in proof of Lemma 11.1.

Finally, define Qstart := αCxC( AC
gray H)(BC

V )yCω, and let:

Q0 := Qstart +
⊕

L∈Qugly

L+
⊕

L∈Qbad

L

Intuitively, we need to put the languages Qbad and Qugly into Q0 so that they can serve
as aforementioned “sticks” such that whenever Fugitive makes a mistake he loses. Recall
that Fugitive loses when he writes a red word from Q0 connecting the beginning and the end
of the starting structure. On the other side, this creates a problem regarding the starting
structure (now Fugitive can pick a word from Qbad or Qugly to start from instead of a word
from Qstart), but fortunately it can be dealt with and will be resolved in Section 8.

7 Structure of the proof of Lemma 5.7

The rest of the paper will be devoted to the proof of Lemma 5.7 (restated):

I Lemma 7.1. For any instance I = 〈S,F〉 of OGTP and for 〈Q, Q0〉 = R(I):
(i) If I ∈ A then Q does not finitely determine Q0.
(ii) If I ∈ B then Q determines Q0.
Proof of claim (i) – which will be presented in the end of Section 14 – will be straightforward

once the reader grasps the (slightly complicated) constructions that will emerge in the proof
of claim (ii).

For the proof of claim (ii) we will employ Lemma 4.2, showing that if the instance 〈S,F〉
has no proper shading then Crocodile does have a winning strategy in Escape(Q, Q0) (where
〈Q, Q0〉 = R(〈S,F〉)). As we remember from Section 4.2, in such a game Fugitive will first
choose, as the initial position of the game, a structure D0 = w[a, b] for some w ∈ G(Q0).
Then, in each step, Crocodile will pick a request in the current structure (current position of
the game) D and Fugitive will satisfy this request, creating a new (slightly bigger) current D.
Fugitive will win if he will be able to play forever (by which, formally speaking, we mean ω2

steps, for more details see Section 4.2), or until all requests are satisfied, without satisfying
(in the constructed structure) the query (R(Q0))(a, b). While talking about the strategy of
Fugitive we will use the words “must not” and “must” as shorthands for “or otherwise he will
quickly lose the game”. The expression “Fugitive is forced to” will also have this meaning.

Analysing a two-player game (proving that certain player has a winning strategy) sounds
like a complicated task: there is this (infinite) alternating tree of positions, whose structure
somehow needs to be translated into a system of lemmas. In order to prune this game tree
our plan is first to notice that in his strategy Fugitive must obey the following principles:
(I) The structure D0 resulting from his initial move must be (G(w))[a, b] for some w ∈

Qstart.
(II) He must not allow any green edge with warm label and any red edge with cold label

to appear in D.
(III) He must never allow any path labelled by a word from the language G(Qbad)∪R(Qbad)

to occur between vertices a and b.
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Then we will assume that Fugitive’s play indeed follows the three principles and we will
present a strategy for Crocodile which will be winning against Fugitive. From the point of
view of Crocodile’s operational objectives this strategy comprises three stages.

In each of these stages Crocodile’s operational goal will be to force Fugitive to build
some specified structure (where, of course all the specified structures will be superstructures
of D0). In the first stage Fugitive will be forced to build a structure called P1 (defined in
Section 9). In the second stage the specified structures will be called Pm and P$

m (each
defined in Section 9) and in the third stage Fugitive will be forced to construct one of the
structures Gm or Lkm (defined in Section 12)

During the three stages of his play Crocodile will only pick requests from the languages in
Qgood. These languages, as we said before, are shade-insensitive, so we can imagine Crocodile
playing in a sort of shade filtering glasses. Of course Fugitive, when responding to Crocodile’s
requests, will need to commit on the shades of the symbols he will use, but Crocodile’s actions
will not depend on these shades.

The shades will however play their part after the end of the third stage. Assuming that
the original instance of OGTP has no proper shading, we will get that, at this moment,
R(Qbad)(a, b) already holds true in the structure Fugitive was forced to construct. This will
end the proof of (ii).

8 Principles of the Game

The rules of the game of Escape are such that Fugitive loses when he builds a path (from a

to b) labelled with w ∈ R(Q0). So – when trying to encode something – one can think of
words in Q0 as of some sort of forbidden patterns. And thus one can think of Q0 as of a
tool detecting that Fugitive is cheating and not really building a valid computation of the
computing device we encode. Having this in mind the reader can imagine why the words
from languages from the sets Qbad and Qugly, which clearly are all about suspiciously looking
patterns, are all in Q0.

But another rule of the game is that at the beginning Fugitive picks his initial position
D0 as a path (from a to b) labelled with some w ∈ G(Q0), so it would be nice to think of
Q0 as of initial configurations of this computing device. The fact that the same object is
playing the set of forbidden patterns and, at the same time, the set of initial configurations
is a problem. We solved it by having languages from Qugly ∪Qbad both in Q and in Q0:

I Lemma 8.1 (Principle I). Fugitive must choose to start the Escape game
from D0 = G(w)[a, b] for some w ∈ Qstart.

Notice that, from the point of view of the shades-blind Crocodile the words in Qstart are
indistinguishable and thus Fugitive only has one possible choice of D0. Proof of this Lemma
can be found in the full paper.

From now on we assume that Fugitive obeys Principle I. This implies that for some
w ∈ Qstart structure G(w)[a, b] is contained in all subsequent structures D at each step of
the game.

Now we will formalise the intuition about languages from Qugly as forbidden patterns.
We start with an observation that simplifies reasoning in the proof of Principle II.

I Observation 8.2. For some vertices u, v in the current structure D if there is a green (red)
edge between them then Crocodile can force Fugitive to draw a red (green) edge between u
and v.

Proof. It is possible due to languages 1− 9 in Qgood. J
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I Definition 8.3. A P2-ready5 structure D is a structure satisfying the following:
D0 is a substructure of D;
there are only two edges incident to a: 〈a, a′〉 with label G(αC) and 〈a, a′〉 with label
R(αW );
all edges labeled with αC and αW are between a and a′;
there are only two edges incident to b: 〈b′, b〉 with label G(ω) and 〈b′, b〉 with label R(ω);
all edges labeled with ω are between b′ and b;
for each v ∈ D \ {a, b} there is a directed path in D, of length at most 4, from a′ to v and
there is a directed path in D, of length at most 4, from v to b′.

I Lemma 8.4 (Principle II). Suppose that, after Fugitive’s move, the current structure D is
a P2-ready structure. Then neither a green edge with label from (•W ) nor a red edge with
label from (•C) may appear in D.

The proof of this Lemma can be found in the full paper.

I Lemma 8.5 (Principle III). Fugitive must not allow any path labelled with a word from
R(Qbad) ∪G(Qbad) to occur in the current structure D between vertices a and b.

The proof of this Lemma can be found in the full paper.

9 The paths Pm and P$
m

I Definition 9.1. (See Figure 2, please use a color printer if you can) Pm, for m ∈ N+, is a
directed graph (V,E) where V = {a, a′, b′, b} ∪ {vi : i ∈ [0, 2m]} and the edges E are labelled
with symbols from Σ \ Σ0 or with symbols of the form (lto), where – like before – l ∈ {A,B},
o ∈ {H,V } and t ∈ {W,C}. Each label has to also be either red or green. Notice that there
is no s ∈ S here: the labels we now use are sets of symbols from Σ̄ like in Notation 6.1: we
watch the play in Crocodile’s shade filtering glasses.

The edges of Pm are as follows:
Vertex a′ is a successor of a and vertex b is a successor of b′. For each i ∈ [2m] the
successors of vi are vi+1 (if it exists) and b′ and the predecessors of vi are vi−1 (if it
exists) and a′. From each node there are two edges to each of its successors, one red and
one green, and there are no other edges.
Each Cold edge (labelled with a symbol in (•C)) is green.
Each Warm edge (labelled with a symbol in (•W )) is red.
Each edge 〈v2i, v2i+1〉 is from (AH).
Each edge 〈v2i+1, v2i+2〉 is from (BV ).
Each edge 〈a′, vi〉 is labelled by either xC or xW .
Each edge 〈vi, b′〉 is labelled by either yC or yW .
Edges 〈a, a′〉 with label G(αC) and 〈a, a′〉 with label R(αW ) are in E.
Edges 〈b′, b〉 with label G(ω) and 〈b′, b〉 with label R(ω) are in E.

I Definition 9.2. P$
m for m ∈ N+ is Pm with two additional edges: 〈v2m, b

′〉 ∈ E, with
label G($C), and 〈v2m, b

′〉 ∈ E, with label R($W ).

5 Meaning “ready for Principle II”.
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Figure 2 P1 (left) and P$
3 (right).

One may notice6 that D0 is a substructure of both Pm and P$
m, and that:

I Exercise 9.3. For any m, the only requests generated by Qgood in P$
m are those generated

by Q10
good and Q11

good.

I Exercise 9.4. Each Pm and each P$
m is a P2-ready structure.

10 Stage I

Recall that untill the end of Section 13 we watch, analyse Fugitive’s and Crocodile’s play in
shade filtering glasses. And we assume that Fugitive obeys Principle I and III.

I Definition 10.1 (Crocodile’s strategy). The sequence of languages S = (l1, l2, . . . , ln), for
some n ∈ N, defines a strategy for Crocodile as follows: If S = (l) ++S′ (where ++ denotes
sequence concatenation) then Crocodile demands Fugitive to satisfy requests generated by l
one by one (in any order) until (it can take infinitely many steps) there are no more requests
generated by l in the current structure. Then7 Crocodile proceeds with strategy S′.

Now we define a set of strategies for Crocodile. All languages that will appear in these
strategies are from Qgood so instead of writing Qigood we will just write i. Let:

Scolor := (3, 4, 5, 6, 7, 8, 9),
Scycle := (15, 14) ++Scolor ++ (12, 13) ++Scolor,
Sstart := (1, 2) ++Scycle.

Recall that D0 is Fugitive’s initial structure (consisting of green edges only), as demanded
by Principle I.

I Lemma 10.2. Crocodile’s strategy (1, 2) applied to the current structure D0 forces Fugitive
to add R(αW )[a, a′] and R(ω)[b′, b].

The proof of this Lemma can be found in full paper.
A careful reader could ask here: “Why did we need to work so hard to prove that the

newly added red edge must be warm. Don’t we have Principle II which says that red edges

6 Not all anonymous reviewers equally appreciated our decision to use the “exercise” environment in this
paper. In our opinion proving some simple facts themselves, rather than skipping the proofs, can help
the readers to develop intuitions needed to understand what is to come in the paper. We discussed this
issue with several colleagues and none of them felt that using this environment is arrogant.

7 For this “then” to make sense we need the total number of moves of the game to be ω2 rather than ω.
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must always be warm and green must be cold?”. But we cannot use Principle II here: the
structure is not P2-ready yet. Read the proof of Principle II again to notice that this red
αW between a and a′ is crucial there. And this is what Stage I is all about: it is here where
Crocodile forces Fugitive to construct a structure which is P2-ready. From now on all the
current structures will be P2-ready and Fugitive will indeed be a slave of Principle II.

The following Lemma explains the role of Scolor and is a first cousin of Observation 8.2:

I Lemma 10.3 (Scolor). Strategy Scolor applied to a P2-ready D forces Fugitive to create a
P2-ready D′ such that:

Sets of vertices of D and D′ are equal.
There are no requests generated by Q1−9

good in D′, which means that each edge has its
counterpart (incident to the same vertices) of the opposite color and temperature.

The proof of this Lemma can be found in the full paper.

I Lemma 10.4. Strategy Sstart applied to D0 forces Fugitive to build P1.

The proof of this Lemma can be found in the full paper.

11 Stage II

Note that from now on Fugitive must obey all Principles.
Now we imagine that P1 has already been created and we proceed with the analysis to

the later stage of the Escape game where either Pm+1 or P$
k for some k ≤ m will be created.

Let us define {Sk} inductively for k ∈ N+ in the following fashion:
S1 := Sstart,
Sk := Sk−1 ++Scycle for k > 1.

I Lemma 11.1. For all m ∈ N+ strategy Sm applied to D0 forces Fugitive to build a structure
isomorphic, depending on his choice, either Pm+1 or P$

k for some k ≤ m.

The proof of this Lemma can be found in the full paper.

12 The grids Gm and partial grids Lk
m

I Definition 12.1. Gm, for m ∈ N+, is a directed graph (V,E) where:
V = {a, a′, b′, b}∪ {vi,j : i, j ∈ [0,m]} and the edges E are labelled (as in Pm) with Σ \Σ0

or one of the symbols of the form (lto), which means that the shade filtering glasses are still
on.

The edges of Gm are as follows:
Vertex a′ is a successor of a, b is a successor of b′. All vi,j are successors of a′ and the
successors of each vi,j are vi+1,j , vi,j+1 (when they exist) and b′. From each node there
are two edges to each of its successors, one red and one green. There are no other edges.
Each cold edge, labelled with a symbol in (•C), is green.
Each warm edge, labelled with a symbol in (•W ), is red.
Each edge 〈vi,j , vi+1,j〉 is horizontal – its label is from (•H).
Each edge 〈vi,j , vi,j+1〉 is vertical – its label is from (•V ).
The label of each edge leaving vi,j, with i+ j even, is from (A), the label of each edge
leaving vi,j, with i+ j odd, is from (B).
Each edge 〈a′, vi〉 is labeled by either xC or xW .
Each edge 〈vi, b′〉 is labeled by either yC or yW .
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Figure 3 G4 (left). Smaller picture in the top-right corner explains how different line styles on
the main picture map to Σ0 (please use a color printer if you can).

Figure 4 L$ 3
6 (left) and L1

6 (right).

Edges 〈a, a′〉 with label G(αC) and 〈a, a′〉 with label R(αW ) are in E.
Edges 〈b′, b〉 with label G(ω) and 〈b′, b〉 with label R(ω) are in E.

I Definition 12.2. Let Lkm = (V ′, E′), for m, k ∈ N+ where k ≤ m, is a subgraph of Gm =
(V,E) induced by the set V ′ ⊆ V of vertices defined as V ′ = {a, a′, b′, b} ∪ {vi,j : i, j ∈ [0,m];
| i − j | ≤ k }.

I Definition 12.3. Let G$
m for m ∈ N+ is Gm with two edges added: 〈vm,m, b′〉 with label

G($C) and 〈vm,m, b′〉 with label R($W ).

I Definition 12.4. Let L$ k
m for m ∈ N+, k ∈ N+ ∪ {0}, k ≤ m is Lkm with two edges added:

〈vm,m, b′〉 with label G($C) and 〈vm,m, b′〉 with label R($W ).

B Fact 12.5. For all m: Lmm is equal to Gm and L$ m
m is equal to G$

m.

I Exercise 12.6. Languages from Qgood or Qugly do not generate requests in any G$
m.

13 Stage III

Now we imagine that either Pm+1 or P$
k for some k ≤ m was created as the current position

in a play of the game of Escape and we proceed with the analysis to the later stage of the
play, where either Gm+1 or G$

k will be created.

I Lemma 13.1. For any m ∈ N+ Crocodile can force Fugitive to build a structure isomorphic,
depending on Fugitive’s choice, to either Gm+1 or to G$

k for some k ≤ m.
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Notice that by Exercise 12.5, in order to prove Lemma 13.1 it is enough to prove that for
any m ∈ N+ Crocodile can force Fugitive to build a structure isomorphic to either Lm+1

m+1 or
to L$ k

k for some k ≤ m.
As we said, we assume that Crocodile already forced Fugitive to build a structure

isomorphic to either Pm+1 or to P$
k for some k ≤ m. Rename each vi in this Pm+1 (or P$

k)
as vi,i. If the structure which was built is Pm+1 we will show a strategy leading to Lm+1

m+1
and when P$

k was built, we will show a strategy leading to L$ k
k.

Now we define a sequence of strategies Sklayer, which, similarly to strategies for building
P• • consist only of languages from Qgood, so instead of writing Qigood we will just write i.

Let:
Sodd := (11) ++Scolor ++ (12, 13) ++Scolor,
Seven := (10) ++Scolor ++ (12, 13) ++Scolor,

Sklayer :=


[ ], if k = 0
Sk−1
layer ++Sodd if k odd
Sk−1
layer ++Seven otherwise

Proofs of the following four Lemmas can be found in the full paper.

I Lemma 13.2. For all k ∈ N strategy S1
layer applied to the current structure P$

k forces
Fugitive to build L$ 1

k.

I Lemma 13.3. For all k,m ∈ N, k < m strategy Sodd (for k + 1 odd) and Seven (for k + 1
even) applied to L$ k

m forces Fugitive to build L$ k+1
m .

I Lemma 13.4. For all k,m ∈ N, k < m strategy S1
layer applied to Pk forces Fugitive to

build L1
k, strategy Sodd (for k + 1 odd) and Seven (for k + 1 even) applied to Lkm forces

Fugitive to build Lk+1
m .

I Lemma 13.5. For all m ∈ N strategy Smlayer forces Fugitive to build L$ m
m from P$

m and
Lmm from Pm.

I Observation 13.6. By Exercise 12.5 Lemma 13.5 proves Lemma 13.1.

14 And now we finally see the shades again

Now we are ready to finish the proof of Lemma 5.7. First assume the original instance of Our
Grid Tiling Problem has no proper shading. The following is straightforward from König’s
Lemma by noticing that if there were arbitrary grids with proper shading, then there would
be an infinite one:

I Lemma 14.1. If an instance I of OGTP has no proper shading then there exist natural m
such that for any k ≥ m a square grid of size k has no shading that satisfies conditions (a1),
(a2), (b1) and (b3) of proper shading.

Let m be the value from Lemma 14.1. By Lemma 13.1 Crocodile can force Fugitive to
build a structure isomorphic to either Gm+1 or G$

k for some k ≤ m. Now suppose the play
ended, in some final position H isomorphic to one of these structures. We take off our glasses,
and not only we still see this H, but now we also see the shades, with each edge (apart from
edges labeled with α, ω, x, y and $) having one of the shades from S. Now concentrate on
the red edges labeled with (•W ) of H. They form a grid, with each vertical edge labeled with
V , each horizontal edge labeled with H, and with each edge labeled with a shade from S.
Now we consider two cases:
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If Gm+1 was built then clearly condition (b3) of Definition 5.5 is unsatisfied. But this
implies that a path labeled with a word from one of the languages Qbad occurs in H
between a and b, which is in breach with Principle III because of language Q1

bad.
If G$

k for k ≤ m was built then clearly condition (b2) or (b3) of Definition 5.5 is
unsatisfied. This is because we assumed that there is no proper shading. But this implies
that a path labeled with a word from one of the languages Qbad occurs in H between a
and b, which is in breach with Principle III because of language Q1

bad.
This ends the proof of Lemma 5.7 (ii).

For the proof of Lemma 5.7 (i) assume the original instance 〈S,F〉 of Our Grid Tiling
Problem has a proper shading – a labeled grid of side length m. Call this grid G.

Recall that G$
m satisfies all regular constraints from Q↔good and from Q↔ugly (Exercise 12.6).

Now copy the shades of the edges of G to the respective edges of G$
m. Call this new structure

( G$
m with shades added) M. It is easy to see that M constitutes a counterexample, as in

Lemma 4.1.
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