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Abstract
We propose an approach for answering conjunctive queries with negation, where the negated relations
have bounded degree. Its data complexity matches that of the InsideOut and PANDA algorithms
for the positive subquery of the input query and is expressed in terms of the fractional hypertree
width and the submodular width respectively. Its query complexity depends on the structure of
the conjunction of negated relations; in general it is exponential in the number of join variables
occurring in negated relations yet it becomes polynomial for several classes of queries.

This approach relies on several contributions. We show how to rewrite queries with negation on
bounded-degree relations into equivalent conjunctive queries with not-all-equal (NAE) predicates,
which are a multi-dimensional analog of disequality (6=). We then generalize the known color-coding
technique to conjunctions of NAE predicates and explain it via a Boolean tensor decomposition of
conjunctions of NAE predicates. This decomposition can be achieved via a probabilistic construction
that can be derandomized efficiently.
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1 Introduction

This paper considers the problem of answering conjunctive queries with negation of the form

Q(XF )← body ∧
∧
S∈E

¬RS(XS), (1)

where body is the body of an arbitrary conjunctive query, XF = (Xi)i∈F denotes a tuple of
variables (or attributes) indexed by a set F of positive integers, and E is the set of hyperedges
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21:2 Boolean Tensor Decomposition for Conjunctive Queries with Negation

of a multi-hypergraph1 H = (V, E). Every hyperedge S ∈ E corresponds to a bounded-degree
relation RS on attributes XS . For instance, the equality (=) relation is a bounded-degree
(binary) relation, because every element in the active domain has degree one; the edge relation
E of a graph with bounded maximum degree is also a bounded-degree relation. Section 2
formalizes this notion of bounded degree.

We exemplify using three Boolean queries2 over a directed graph G = ([n], E) with n
nodes and N = |E| edges: the k-walk query3, the k-path query, and the induced (or chordless)
k-path query. They have the same body and encode graph problems of increasing complexity:

W ←E(X1, X2) ∧ E(X2, X3) ∧ · · · ∧ E(Xk, Xk+1).

P ←E(X1, X2) ∧ E(X2, X3) ∧ · · · ∧ E(Xk, Xk+1) ∧
∧

i,j∈[k+1]
i+1<j

Xi 6= Xj . (2)

I ←E(X1, X2) ∧ E(X2, X3) ∧ · · · ∧ E(Xk, Xk+1) ∧
∧

i,j∈[k+1]
i+1<j

(¬E(Xi, Xj) ∧Xi 6= Xj)). (3)

The hypergraph H for the k-walk query W is empty since it has no negated relations. This
query can be answered in O(kN logN) time using for instance the Yannakakis dynamic pro-
gramming algorithm [34]. The k-path query P has the hypergraph H = ([k+1], {(i, j) | i, j ∈
[k + 1], i + 1 < j}). It can be answered in O(kkN logN)-time [30] and even better in
2O(k)N logN -time using the color-coding technique [8]. The induced k-path query I has the
hypergraph H similar to that of P , but every edge (i, j) has now multiplicity two due to the
negated edge relation and also the disequality. This query is W[2]-hard [10]. However, if the
graph G has a maximal degree that is bounded by some constant d, then the query can be
answered in O(f(k, d) ·N logN)-time for some function f that depends exponentially on k
and d [30]. Our results imply the above complexities for the three queries.

1.1 Main Contribution

In this paper we propose an approach to answering conjunctive queries with negation on
bounded-degree relations of arbitrary arities. Our approach is the first to exploit the bounded
degree of the negated relations. The best known algorithms for positive queries such as
InsideOut [2] and PANDA [3] can also answer queries with negation, albeit with much higher
complexity since already one negation can increase their worst-case runtime. For example,
the Boolean path queries with a disequality between the two end points takes linear time with
our approach, but quadratic time with existing approaches [2, 3]. The data complexity of our
approach matches that of InsideOut and PANDA for the positive subquery Q(XF )← body. To
lower its query complexity, we use a range of techniques including color-coding, probabilistic
construction of Boolean tensor decompositions, and derandomization of this construction.

I Theorem 1.1. Any query Q of the form (1), where for each S ∈ E the relation RS
has bounded degree and f(·) is a function of Q, can be answered over a database of size
N in time O(f(Q) · logN · (N fhtwF (body) + |output|)) using a reduction to InsideOut and
O(f(Q) · (poly(logN) ·N subwF (body) + logN · |output|)) using a reduction to PANDA.

1 In a multi-hypergraph, each hyperedge S can occur multiple times. All hypergraphs in this paper are
multi-hypergraphs.

2 We denote Boolean queries Q(XF ) where F = ∅ by Q instead of Q(). We also use [n] = {1, . . . , n}.
3 Unlike a path, in a walk some vertices may repeat.
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The complexities of InsideOut [2] and PANDA [3] depend on the fractional hypertree width
fhtw [17] and respectively the submodular width subw [23]. The widths fhtwF and subwF
are fhtw and respectively subw computed on the subset of hypertree decompositions of the
positive subquery of Q for which the set F of free variables form a connected subtree. The
dependency of the function f on the structure of Q, and in particular on the hypergraph H
of the negated relations in Q, is an important result of this paper.

Theorem 1.1 draws on three contributions:
1. A rewriting of queries of the form (1) into equivalent conjunctive queries with not-all-equal

predicates, which are a multi-dimensional analog of disequality 6= (Proposition 4.3);
2. A generalization of color-coding [8] from cliques of disequalities to arbitrary conjunctions

of not-all-equal predicates; and
3. An alternative view of color coding via Boolean tensor decomposition of conjunctions

of not-all-equal predicates (Lemma 5.1). This decomposition admits a probabilistic
construction that can be derandomized efficiently (Corollary 5.7).

Contribution 1 (Section 4) gives a rewrite of the query Q into an equivalent disjunction
of queries Qi of the form (cf. Proposition 4.3)

Qi(XF )← bodyi ∧
∧
S∈Ei

NAE(ZS).

For each query Qi, bodyi may be different from body in Q, since fresh variables ZS and
unary predicates may be introduced. Its fractional hypertree and submodular widths remain
however at most that of body. We thus rewrite the conjunction of the negated relations into
a much simpler conjunction of NAE predicates without increasing the data complexity of Q.
The number of such queries Qi depends exponentially on the arities and the degrees of the
negated relations, which is the reason why we need the constant bound on these degrees.

Contribution 2 (Section 5) is based on the observation that a conjunction of NAE predicates
can be answered by an adaptation of the color-coding technique [8], which has been used so
far for checking cliques of disequalities. The crux of this technique is to randomly color each
value in the active domain with one color from a set whose size is much smaller than the
size of the active domain, and to use these colors instead of the values themselves to check
the disequalities. We generalize this idea to conjunctions of NAE predicates and show that
such conjunctions can be expressed equivalently as disjunctions of simple queries over the
different possible colorings of the variables in these queries.

Contribution 3 (Section 5) explains color coding by providing an alternative view of
it: Color coding is a (Boolean) tensor decomposition of the (Boolean) tensor defined by
the conjunction

∧
S NAE(ZS). As a tensor,

∧
S NAE(ZS) is a multivariate function over

variables in the set U =
⋃
S ZS . The tensor decomposition rewrites it into a disjunction of

conjunctions of univariate functions over individual variables Zi (Lemma 5.1). That is,∧
S

NAE(ZS) ≡
∨
j∈[r]

∧
i∈U

f
(j)
i (Zi),

where r is the (Boolean tensor) rank of the tensor decomposition, and for each j ∈ [r], the
inner conjunction

∧
i∈U f

(j)
i (Zi) can be thought of as a rank-1 tensor of inexpensive Boolean

univariate functions f (j)
i (·) (∀i ∈ U). The key advantages of this tensor decomposition

are that (i) the addition of univariate conjuncts to bodyi does not increase its (fractional
hypertree and submodular) width and (ii) the dependency of the rank r on the database
size N is only a logN factor. Lemma 5.1 shows that the rank r depends on two quantities:

ICDT 2019



21:4 Boolean Tensor Decomposition for Conjunctive Queries with Negation

r = P (G, c) · |F|. The first is the chromatic polynomial of the hypergraph of
∧
S NAE(ZS)

using c colors. The second is the size of a family of hash functions that represent proper
c-colorings of homomorphic images of the input database. The number c of needed colors
is at most the number |U | of variables in

∧
S NAE(ZS). We show it to be the maximum

chromatic number of a hypergraph defined by any homomorphic image of the database.
We give a probabilistic construction of the tensor decomposition that generalizes the

construction used by the color-coding technique. It selects a color distribution dependent
on the query structure, which allows the rank of

∧
S NAE(ZS) to take a wide range of

query complexity asymptotics, from polynomial to exponential in the query size. This is
more refined than the previously known bound [8], which amounts to a tensor rank that is
exponential in the query size. We further derandomize this construction by adapting ideas
from derandomization for k-restrictions [6] (with k being related to the Boolean tensor rank).

Section 6 shows how to use the Boolean tensor decomposition in conjunction with
InsideOut [2] and PANDA [3] to evaluate queries of the form (1) with the complexity given
by Theorem 1.1. The query complexity captured by the function f is given by the number
of NAE predicates and the rank of the tensor decomposition of their conjunction.

2 Preliminaries

In this paper we consider arbitrary conjunctive queries with negated relations of the form (1).
We make use of the following naming convention. Capital letters with subscripts such as Xi

or Aj denote variables. For any set S of positive integers, XS = (Xi)i∈S denote a tuple of
variables indexed by S. Given a relation R over variables XS and J ⊆ S, πJR denotes the
projection of R onto variables XJ , i.e., we write πJR instead of πXJ

R. If Xi is a variable,
then the corresponding lower-case xi denotes a value from the active domain Dom(Xi) of Xi.
Bold-face xS = (xi)i∈S denotes a tuple of values in

∏
i∈S Dom(Xi).

We associate a hypergraph H(R) with a relation R(XS) as follows. The vertex set is
{(i, v) | i ∈ S, v ∈ Dom(Xi)}. Each tuple xS = (xi)i∈S ∈ R corresponds to a (hyper)edge
{(i, xi)|i ∈ S}. H(R) is a |S|-uniform hypergraph (all hyperedges have size |S|).

2.1 Hypergraph coloring and bounded-degree relations

Hypergraph coloring. Let G = (U,A) denote a multi-hypergraph and k be a positive integer.
A proper c-coloring of G is a mapping h : U → [c] such that for every edge S ∈ A, there exists
u, v ∈ S with u 6= v such that h(u) 6= h(v). The chromatic polynomial P (G, c) of G is the
number of proper c-colorings of G [18]. A vertex (edge) coloring of G is an assignment of colors
to the vertices (edges) of G so that no two adjacent vertices (incident edges) have the same
color. The chromatic number χ(G) and the chromatic index χ′(G) are the smallest numbers
of colors needed for a vertex coloring and respectively an edge coloring of G. Coloring a
(hyper)graph is equivalent to coloring it without singleton edges.

Bounded-degree relation. The maximum degree of a vertex in a hypergraph G = (U,A) is
denoted by ∆(G): ∆(G) = maxv∈U |{S ∈ A | v ∈ S}|. For a relation RS(XS), its maximum
degree ∆(H(RS)) is the maximum number of tuples in RS with the same value for a variable
X ∈ XS : ∆(H(RS)) = max i∈S

v∈Dom(Xi)
|{xS ∈ RS | xi = v}|. We will use a slightly different

notion of degree of a relation denoted by deg(RS), which also accounts for the arity |S| of
the relation RS . Proposition 2.3 connects the two notions.
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I Definition 2.1 (Matching). A k-ary relation M(XS) is called a (k-dimensional) matching
if for every two tuples xS ,x′S ∈M , either xS = x′S, i.e., xS and x′S are the same tuple, or
it holds that xi 6= x′i,∀i ∈ S.

I Definition 2.2 (Degree). The degree of a relation RS(XS), denoted by deg(RS), is the
smallest integer d for which RS can be written as the disjoint union of d matchings. The
degree deg(RS) is bounded if there is a constant dS such that deg(RS) ≤ dS.

It is easy to see that deg(RS) = χ′(H(RS)). If RS is a binary relation, then H(RS) is
a bipartite graph and deg(RS) = χ′(H(RS)) = ∆(H(RS)). This follows from König’s line
coloring theorem [20], which states that the chromatic index of a bipartite graph is equal
to its maximum degree. When the arity k is higher than two, to the best of our knowledge
there does not exist such a nice characterization of the chromatic index of RS in terms of
the maximum degree of individual vertices in the graph, although there has been some work
on bounding the chromatic index of (linear) uniform hypergraphs [5, 22, 13, 29, 29]. In our
setting, we are willing to live with sub-optimal decomposition of a bounded-degree relation
into matchings as long as it can be done in linear time.

I Proposition 2.3. Let RS(XS) denote a k-ary relation of size N and ` = ∆(H(RS)). Then:
` ≤ deg(RS) ≤ k(`− 1) + 1;
We can compute in O(N)-time disjoint k-ary matchings M1, . . . ,Mk`−k+1 such that
RS =

⋃k(`−1)+1
j=1 Mj.

Proof. The fact that ` ≤ deg(RS) is obvious. To show that deg(RS) ≤ k(` − 1) + 1, note
that any edge in H(RS) is adjacent to at most k(`− 1) other edges of H(RS), hence greedy
coloring can color the edges of H(RS) in time O(N) using k(`− 1) + 1 colors. J

The two notions of degree of a relation are thus equivalent up to a constant factor given
by the arity of the relation.

2.2 FAQ, width parameters, and corresponding algorithms
I Definition 2.4 (The FAQ problem [2]). The input to FAQ is a set of functions and the
output is a function which is a series of aggregations (e.g. sums) over the product of input
functions. In particular, the input to FAQ consists of the following:

A multi-hypergraph H = (V = [n], E).
Each vertex i ∈ V = [n] corresponds to a variable Xi over a discrete domain Dom(Xi).
For each hyperedge S ∈ E, there is a corresponding input function (also called a factor)
ψS :

∏
i∈S Dom(Xi)→ D for some fixed D.

A number f ∈ [n]. Let F := [f ]. Variables in XF are called free variables, while variables
in X[n]−F are called bound variables.
For each i ∈ [n]− F , there is a commutative semiring (D,

⊕(i)
,
⊗

). (All the semirings
share the same D and

⊗
but can potentially have different

⊕(i)).4
The FAQ problem is to compute the following function ϕ(xF ) :

∏
i∈F Dom(Xi)→ D

ϕ(xF ) :=
(f+1)⊕
xf+1

. . .

(n)⊕
xn

⊗
S∈E

ψS(xs). (4)

4 More generally, instead of (D,⊕(i),⊗) being a semiring, we also allow some ⊕
(i)

to be identical to ⊗.

ICDT 2019



21:6 Boolean Tensor Decomposition for Conjunctive Queries with Negation

Consider the conjunctive query Q(XF ) ←
∧
S∈E RS(XS) where XF is the set of

free variables. The FAQ framework models each input relation RS as a Boolean func-
tion ψS(xS), called a “factor”, in which ψS(xS) = true iff xS ∈ RS . Then, computing
the output Q(XF ) is equivalent to computing the Boolean function ϕ(xF ) defined as
ϕ(xF ) =

∨
xf+1
· · ·
∨
xn

∧
S∈E ψS(xS). Instead of Boolean functions, this expression can be

defined in SumProd form over functions on a commutative semiring (D,⊕,⊗):

ϕ(xF ) =
⊕
xf+1

· · ·
⊕
xn

⊗
S∈E

ψS(xS). (5)

The semiring ({true, false},∨,∧) was used for Q above.
We next define tree decompositions and the fhtw and subw parameters. We refer the

reader to the recent survey by Gottlob et al. [15] for more details and a historical context.
In what follows, the hypergraph H should be thought of as the hypergraph of the input
FAQ query, although the notions of tree decomposition and width parameters are defined
independently of queries.

A tree decomposition of a hypergraph H = (V, E) is a pair (T, χ), where T is a tree and
χ : V (T )→ 2V maps each node t of the tree to a subset χ(t) of vertices such that:
(a) Every hyperedge S ∈ E is a subset of some χ(t), t ∈ V (T ) (i.e. every edge is covered by

some bag);
(b) For every vertex v ∈ V, the set {t | v ∈ χ(t)} is a non-empty (connected) sub-tree of T .

This is called the running intersection property.
The sets χ(t) are often called the bags of the tree decomposition. Let TD(H) denote the set
of all tree decompositions of H. When H is clear from context, we use TD for brevity.

I Definition 2.5 (F -connex tree decomposition [9, 32]). Given a hypergraph H = (V, E) and
a set F ⊆ V, a tree decomposition (T, χ) of H is F -connex if there is a subset V ′ ⊆ V (T )
that forms a connected subtree of T and satisfies

⋃
t∈V ′ χ(t) = F . We use TDF to denote the

set of all F -connex tree decompositions of H. (Note that when F = ∅, TDF = TD.)

To define width parameters, we use the polymatroid characterization from [3]. A function
f : 2V → R+ is called a (non-negative) set function on V. A set function f on V is modular
if f(S) =

∑
v∈S f({v}) for all S ⊆ V, it is monotone if f(X) ≤ f(Y ) whenever X ⊆ Y ⊆ V,

and it is submodular if f(X ∪ Y ) + f(X ∩ Y ) ≤ f(X) + f(Y ) for all X,Y ⊆ V . A monotone,
submodular set function h : 2V → R+ with h(∅) = 0 is called a polymatroid. Let Γn denote
the set of all polymatroids on V = [n].

Given a hypergraph H = (V, E), define the set of edge dominated set functions, denoted
by EDH or ED when H is clear from the context, as follows:

ED := {h | h : 2V → R+, h(S) ≤ 1,∀S ∈ E}. (6)

We can now define the submodular width and fractional hypertree width of a given hypergraph
H (or of a given FAQ query with hypergraph H): 5

fhtw(H) := min
(T,χ)∈TD

max
h∈ED∩Γn

max
t∈V (T )

h(χ(t)), fhtwF (H) := min
(T,χ)∈TDF

max
h∈ED∩Γn

max
t∈V (T )

h(χ(t)),

subw(H) := max
h∈ED∩Γn

min
(T,χ)∈TD

max
t∈V (T )

h(χ(t)), subwF (H) := max
h∈ED∩Γn

min
(T,χ)∈TDF

max
t∈V (T )

h(χ(t)).

5 Although this definition for fhtw differs from the original one [17, 15], the two definitions have been
shown to be equivalent [3].
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It is known that subw(H) ≤ fhtw(H), and there are classes of hypergraphs with bounded
subw and unbounded fhtw [23]. Furthermore, fhtw is strictly less than other width notions
such as (generalized) hypertree width and tree width.

I Theorem 2.6 ([2]). Given an FAQ ϕ over a single semiring with hypergraph H = (V, E)
and free variables F ⊆ V over a database of size N , the InsideOut algorithm can answer ϕ in
time O(|E| · |V|2 · logN · (N fhtwF (H) + |output|)).

I Theorem 2.7 ([3]). Given an FAQ ϕ over the Boolean semiring with hypergraph H = (V, E)
and free variables F ⊆ V over a database of size N , the PANDA algorithm can answer ϕ in
time O(|V| · 22|V| · (poly(logN) ·N subwF (H) + logN · |output|)).

3 Example

We illustrate our approach using the following Boolean query6:

C ← R(X,Y ), S(Y, Z),¬T (X,Z) (7)

where all input relations have sizes upper bounded by N and thus the active domain of any
variable X has size at most N . The query C can be answered trivially in time O(N2) by
joining R and S first, and then, for each triple (x, y, z) in the join, by verifying whether
(x, z) /∈ T with a (hash) lookup. Suppose we know that the degree of relation T is less than
two. Can we do better than O(N2) in that case? The answer is YES.

Rewriting to not-all-equal predicates

By viewing T as a bipartite graph of maximum degree two, it is easy to see that T can
be written as a disjoint union of two relations M1(X,Z) and M2(X,Z) that represent
matchings in the following sense: for any i ∈ [2], if (x, z) ∈Mi and (x′, z′) ∈Mi, then either
(x, z) = (x′, z′) or x 6= x′ and z 6= z′. Let Dom(Z) denote the active domain of the variable
Z. Define, for each i ∈ [2], a singleton relation Wi(Z) ← Dom(Z) ∧ ¬(πZMi)(Z). Clearly,
|Wi| ≤ N and given Mi, Wi can be computed in O(N) preprocessing time. For each i ∈ [2],
create a new variable Xi with domain Dom(Xi) = Dom(X). Then,

¬Mi(X,Z) ≡Wi(Z) ∨ ∃Xi

[
Mi(Xi, Z) ∧ NAE(X,Xi)

]
. (8)

The predicate NAE stands for not-all-equal: It is the negation of the conjunction of pairwise
equality on its variables. For arity two as in the rewriting of ¬Mi(X,Z), NAE(X,Xi) stands
for the disequality X 6= Xi.

From T = M1∨M2 and (8), we can rewrite the original query C from (7) into a disjunction
of Boolean conjunctive queries without negated relations but with one or two extra existential
variables that are involved in disequalities ( 6=): C ≡

∨
i∈[4] Ci, where

C1 ←R(X,Y ) ∧ S(Y, Z) ∧W1(Z) ∧W2(Z).
C2 ←R(X,Y ) ∧ S(Y, Z) ∧W1(Z) ∧M2(X2, Z) ∧X 6= X2.

C3 ←R(X,Y ) ∧ S(Y, Z) ∧W2(Z) ∧M1(X1, Z) ∧X 6= X1.

C4 ←R(X,Y ) ∧ S(Y, Z) ∧M1(X1, Z) ∧M2(X2, Z) ∧X 6= X1 ∧X 6= X2.

6 If R, S, and T would record direct train connections between cities, then this query would ask whether
there exists a pair of cities with no direct train connection but with connections via another city.

ICDT 2019



21:8 Boolean Tensor Decomposition for Conjunctive Queries with Negation

It takes linear time to compute the matching decomposition of T into M1 and M2 since:
(1) the relation T is a bipartite graph with degree at most two, and it is thus a union of
even cycles and paths; and (2) we can traverse the cycles and paths and add alternative
edges to M1 and M2. In general, when the maximum degree is higher and when T is not a
binary predicate, Proposition 2.3 shows how to decompose a relation into high-dimensional
matchings efficiently. The number of queries Ci depends exponentially on the arities and
degrees of the negated relations.

Boolean tensor decomposition

The acyclic query C1 can be answered in O(N logN) time using for instance InsideOut [2];
this algorithm first sorts the input relations in time O(N logN). The query C2 can be
answered as follows. Let ∀i ∈ [logN ], fi : Dom(X)→ {0, 1} denote the function such that
fi(X) is the ith bit of X in its binary representation. Then, by noticing that

X 6= X2 ≡
∨

b∈{0,1}

∨
i∈[logN ]

fi(X) = b ∧ fi(X2) 6= b (9)

we can break up the query C2 into the disjunction of 2 logN acyclic queries of the form

Cb,i2 ← R(X,Y ) ∧ S(Y, Z) ∧W1(Z) ∧M2(X2, Z) ∧ fi(X) = b ∧ fi(X2) 6= b. (10)

For a fixed b, both fi(X) = b and fi(X2) 6= b are singleton relations on X and X2, respectively.
Then, C2 can be answered in time O(N log2 N). The same applies to C3. We can use the
same trick to answer C4 in time O(N log3 N). However, we can do better than that by
observing that when viewed as a Boolean tensor in (9), the disequality tensor has the Boolean
rank bounded by O(logN). In order to answer C4 in time O(N log2 N), we will show that the
three-dimensional tensor (X 6= X1) ∧ (X 6= X2) has the Boolean rank bounded by O(logN)
as well. To this end, we extend the color-coding technique. We can further shave off a logN
factor in the complexities of C2, C3, and C4, as explained in Section 6.

Construction of the Boolean tensor decomposition

We next explain how to compute a tensor decomposition for the conjunction of disequalities
in C4. We show that there exists a family F of functions f : Dom(X)→ {0, 1} satisfying the
following conditions:
(i) |F| = O(log |Dom(X)|) = O(logN),
(ii) For every triple (x, x1, x2) ∈ Dom(X)3 for which x 6= x1 ∧ x 6= x2, there is a function

f ∈ F such that f(x) 6= f(x1) ∧ f(x) 6= f(x2), and
(iii) F can be constructed in time O(N logN).
We think of each function f as a “coloring” that assigns a “color” in {0, 1} to each element
of Dom(X). Assuming (i) to (iii) hold, it follows that

X 6= X1 ∧X 6= X2 ≡
∨

(c,c1,c2)

∨
f∈F

f(X) = c ∧ f(X1) = c1 ∧ f(X2) = c2, (11)

where (c, c1, c2) ranges over all triples in {0, 1}3 such that c 6= c1 and c 6= c2. Given this
Boolean tensor decomposition, we can solve C4 in time O(N log2 N).

We prove (i) to (iii) using a combinatorial object called the disjunct matrices. These
matrices are the central subject of combinatorial group testing [24, 12].
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I Definition 3.1 (k-disjunct matrix). A t×N binary matrix A = (aij) is called a k-disjunct
matrix if for every column j ∈ [N ] and every set S ⊆ [N ] such that |S| ≤ k and j /∈ S, there
exists a row i ∈ [t] for which aij = 1 and aij′ = 0 for all j′ ∈ S.

It is known that for every integer k <
√
N , there exists a k-disjunct matrix (or equivalently

a combinatorial group testing [24]) with t = O
(
k2 logN

)
rows that can be constructed in

time O(k2N logN) [31]. (If k ≥
√
N , we can just use the identity matrix.) In particular,

for N = |Dom(X)| and k = 2, a 2-disjunct matrix A = (aij) of size O(logN) × N can
be constructed in time O(N logN). From the matrix we define the function family F by
associating a function fi to each row i of the matrix, and every member x ∈ Dom(X) to a
distinct column jx of the matrix. Define fi(x) = ai,jx and (i)–(iii) straightforwardly follow.

4 Untangling bounded-degree relations

In this section we introduce a rewriting of queries of the form (1) into queries with so-called
not-all-equal predicates, under the assumption that the relation RS(XS) for every hyperedge
S ∈ E has bounded degree deg(RS).

I Definition 4.1 (Not-all-equal). Let k ≥ 2 be an integer, and S be a set of k integers. The
relation NAEk(XS), or NAE(XS) for simplicity, holds true iff not all variables in XS are
equal: NAE(XS) = ¬

∧
{i,j}∈(S2)Xi = Xj .

The disequality (6=) relation is exactly NAE2. The negation of a matching is connected
to NAE predicates as follows.

I Proposition 4.2. Let M(XS) be a k-ary matching, where k = |S| ≥ 2. For any i, j ∈ S,
define the unary relation Wi(Xi)← Dom(Xi) ∧ ¬(πiM)(Xi) and the binary relation Mij =
πi,jM . For any ` ∈ S, it holds that

¬M(XS) ≡

 ∨
i∈S\{`}

Wi(Xi)

∨∃YS\{`}
NAE(X`,YS\{`}) ∧

∧
j∈S\{`}

M`j(Yj , Xj)

 . (12)
Proof. The intuition for this rewriting is as follows. A value xi ∈ Dom(Xi) occurs in at
most one tuple in the matching M . Therefore, any value in a tuple determines the rest of
the tuple. The rewriting in (12) first turns every tuple in M into a tuple whose values are
all the same, i.e., all-equal values. The negation of M consists of tuples with at least two
different values, i.e., not-all-equal values.

We next prove that the rewriting is correct.
In one direction, consider a tuple xS /∈M , i.e., ¬M(xS) holds, and suppose xi /∈Wi for

all i ∈ S \ {`}. This means, for every i ∈ S \ {`}, there is a unique tuple t(i) = (t(i)j )j∈S ∈M
such that xi = t

(i)
i . Define yj = t

(j)
` for all j ∈ S \ {`}. The tuple yS\{`} satisfies

(yj , xj) = (t(j)` , t
(j)
j ) ∈M`j , for all j ∈ S \ {`}. Moreover, one can verify that NAE(x`,yS\{`})

holds. In particular, if yj = x` for all j ∈ S \ {`}, then all tuples t(j) ∈M are the same tuple
(since M is a matching) and that tuple is xS . Hence xS ∈M which is a contradiction.

Conversely, suppose there exists a tuple (xS ,yS\{`}) satisfying the right hand side
of (12). If xi ∈ Wi for any i ∈ S \ {`}, then xS /∈ M , i.e., xS satisfies the left hand side
of (12). Now, suppose xi /∈ Wi for all i ∈ S \ {`}. Suppose to the contrary that xS ∈ M .
Then, for all j ∈ S \ {`} we have yj = x` since M`j(yj , xj) must hold. This means that
NAE(x`,yS\{`}) = ¬ ∧j∈S\{`} x` = yj does not hold. This contradicts our hypothesis. J
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We use the connection to NAE predicates to decompose a query containing a conjunction
of negated bounded-degree relations into a disjunction of positive terms, as given next by
Proposition 4.3. We call this rewriting untangling.

Let fhtwF and subwF denote the fractional hypertree width and respectively the sub-
modular width of the conjunctive query Q(XF ) ← body (These notions are defined in
Section 2.2).

I Proposition 4.3. Let Q be the query defined in Eq. (1): Q(XF )← body∧
∧
S∈E ¬RS(XS).

We can compute in linear time a collection of B hypergraphs Hi = (Vi, Ei) such that

Q(XF ) ≡
∨
i∈[B]

Qi(XF ), where ∀i ∈ [B] : Qi(XF )← bodyi ∧
∧
S∈Ei

NAE(ZS), (13)

and bodyi is the body of a conjunctive query satisfying

fhtwF (bodyi) ≤ fhtwF (body), and subwF (bodyi) ≤ subwF (body).

Furthermore, the number B of queries is bounded by B ≤
∏
S∈E(|S|)

|S|(deg(RS)−1)+1.

Proof. From Proposition 2.3, each relation RS(XS) can be written as a disjoint union of
DS ≤ |S|(deg(RS)− 1) + 1 matchings M `

S , ` ∈ [DS ]. These matchings can be computed in
linear time. Hence, the second half of the body of query Q can be rewritten equivalently as∧

S∈E

¬RS(XS) ≡
∧
S∈E

¬
∨

`∈[DS ]

M `
S(XS) ≡

∧
S∈E
`∈[DS ]

¬M `
S(XS).

To simplify notation, let E1 denote the multiset of edges obtained from E by duplicating the
edge S ∈ E exactly DS times. Furthermore, for the `-th copy of S, associate the matching
M `
S with the copy of S in E1; use MS to denote the matching corresponding to that copy.

Then, we can write Q equivalently Q(XF )← body ∧
∧
S∈E1

¬MS(XS).
For each S ∈ E1, fix an arbitrary integer `S ∈ S. From Proposition 4.2, the negation of

MS can be written as

¬MS(XS) ≡
( ∨
i∈S\{`S}

WS
i (Xi)

)
∨∃Y S

S\{`S}

[ ∧
j∈S\{`S}

(π`S ,jMS)(Y Sj , Xj)∧NAE(X`S ,Y
S
S\{`S})

]
,

where WS
i is a unary relation on variable Xi, and Y S

S\{`S} = (Y Si )i∈S\{`S} is a tuple of fresh
variables, only associated with (the copy of) S. In particular, if S and S′ are two distinct
items in the multiset E1, then Y Si and Y S′i are two distinct variables.

Each negated term ¬MS(XS) is thus expressed as a disjunction of |S| positive terms.
We can then express the conjunction of |E1| negated terms as the disjunction of

∏
S∈E1

|S|
conjunctions. For this, define a collection of tuples T =

∏
S∈E1

S. In particular, every
member T ∈ T is a tuple T = (tS)S∈E1

where tS ∈ S. The second half of the body of query
Q can be rewritten equivalently as∧

S∈E

¬RS(XS) ≡
∧
S∈E1

¬MS(XS)

≡
∧
S∈E1

 ∨
i∈S\{`S}

WS
i (Xi) ∨ ∃Y S

S\{`S}
[ ∧
j∈S\{`S}

(π`S ,jMS)(Y Sj , Xj) ∧ NAE
(
X`S ,Y

S
S\{`S}

)]
≡
∨
T∈T

∧
S∈E1
tS 6=`S

WS
tS (XtS ) ∧

∧
S∈E1
tS=`S

∃Y S
S\{`S}

[ ∧
j∈S\{`S}

(π`S ,jMS)(Y Sj , Xj) ∧ NAE
(
X`S ,Y

S
S\{`S}

)]
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The original query Q is equivalent to the disjunction

Q(XF ) ≡
∨
T∈T

QT (XF )

of up to
∏
S∈E1

|S| queries QT defined by

body ∧
∧
S∈E1
tS 6=`S

WS
tS (XtS ) ∧

∧
S∈E1
tS=`S

j∈S\{`S}

(π`S ,jMS)(Y Sj , Xj)

︸ ︷︷ ︸
bodyi

∧
∧
S∈E1
tS=`S

NAE
(
X`S ,Y

S
S\{`S}

)
(14)

In the above definition of QT , let us denote all but the last conjunction of NAE predicates
by bodyi. It holds that fhtwF (bodyi) ≤ fhtwF (body), and subwF (bodyi) ≤ subwF (body) [1].
We now turn to the conjunction of NAE predicates in (14). Since each S ∈ E is repeated at
most |S|(deg(RS)− 1) + 1 times in E1, it follows that the number

∏
S∈E1

|S| of conjunctive
queries QT is at most

∏
S∈E |S|

|S|(deg(RS)−1)+1. J

5 Boolean tensor decomposition

Thanks to the untangling result in Proposition 4.3, we only need to concentrate on answering
queries of the form (13). To deal with the conjunction of NAE predicates, this section describes
the construction of a Boolean tensor decomposition of a conjunction

∧
S∈A NAE(XS) of NAE

predicates. The multi-hypergraph of this conjunction has the query variables as vertices and
the NAE predicates as hyperedges.

I Lemma 5.1. Let G = (U,A) be the multi-hypergraph of a conjunction
∧
S∈A NAE(XS), N

an upper bound on the domain sizes for variables (Xi)i∈U , and c a positive integer. Suppose
there exists a family F of functions f : [N ]→ [c] satisfying the following property

for any proper N -coloring h : U → [N ] of G there exists a function f ∈ F (15)
such that f ◦ h is a proper c-coloring of G.

Then, the following holds:∧
S∈A

NAE(XS) ≡
∨
g

∨
f∈F

∧
i∈U

f(Xi) = g(i), (16)

where g ranges over all proper c-colorings of G. In particular, the Boolean tensor rank of the
left-hand side of (16) is bounded by r = P (G, c) · |F|.

Proof. Let xU denote any tuple satisfying the LHS of (16). Define h : U → [N ] by setting
h(i) = xi. Then h is a proper N -coloring of G, which means there exists f ∈ F such that
g = f ◦ h is a proper c-coloring of G. Then the conjunct on the RHS corresponding to this
particular pair (g, f) is satisfied.

Conversely, let xU denote any tuple satisfying the RHS of (16). Then, there is a pair
(g, f) whose corresponding conjunct on the RHS of (16) is satisfied, i.e., f(xi) = g(i) for all
i ∈ U . Recall that g is a proper c-coloring of G. If there exists S ∈ A such that NAE(xS)
does not hold, then xi = xj for all i, j ∈ S, implying g(i) = f(xi) = f(xj) = g(j) for all
i, j ∈ S, contradicting the fact that g is a proper coloring.

For the Boolean tensor rank statement, note that (16) is a Boolean tensor decomposition
of the formula

∧
S∈A NAE(XS), because f(Xi) = g(i) is a unary predicate on variable Xi.

This predicate is of size bounded by N . J
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To explain how Lemma 5.1 can be applied, we exemplify two techniques, showing the intimate
connections of our Boolean tensor decomposition problem to combinatorial group testing
and perfect hashing.

I Example 5.2 (Connection to group testing). Consider the case when the graph G is a k-star,
i.e., a tree with a center vertex and k leaf vertices. Let A be a O(k2 logN) × N binary
k-disjunct matrix, which can be constructed in time O(kN logN) (This is due to known
results on k-restriction and error codes, recalled in the extended paper [1]). We can assume
k <
√
N to avoid triviality. Consider a family F of functions f : [N ]→ {0, 1} constructed as

follows: there is a function f for every row i of A, where f(j) = aij , for all j ∈ [N ]. The
family F has size O(k2 logN). We show that F satisfies condition (15). Let h : U → [N ]
denote any coloring of the star. Let j ∈ [N ] be the color h assigns to the center, and S be
the set of colors assigned to the leaf nodes. Clearly j /∈ S. Hence, there is a function f ∈ F
for which f(j) = 1 and f(j′) = 0 for all j′ ∈ S, implying f ◦ h is a proper 2-coloring of G.

A consequence of our observation is that for a k-star G the conjunction
∧
S∈A NAE(XS)

has Boolean rank bounded by O(k2 logN).

I Example 5.3 (Connection to perfect hashing). Consider now the case when the graph G is
a k-clique. Let F denote any (N, c, k)-perfect hash family, i.e., a family of hash functions
from [N ] → [c] such that for every subset S ⊆ [N ] of size k, there is a function f in the
family for which its image is also of size k. It is easy to see that this hash family satisfies (15).
From [6], it is known that we can construct in polytime an (N, k2, k)-perfect hash family of
size O(k4 logN). However, it is not clear what the runtime exponent of their construction
is. What we need for our application is that the construction should run in linear data
complexity and in polynomial query complexity. We use a result from [31] to exhibit such a
construction in Theorem 5.6; furthermore, our hash family has size only O(k2 logN).

We next construct the smallest family F satisfying Lemma 5.1. We first bound the size of
F using the probabilistic method [7] and then specify how to derandomize the probabilistic
construction of F to obtain a deterministic algorithm. For this, we need some terminology.

Every coloring h : U → [N ] of G = (U,A) induces a homomorphic image h(G) =
(h(U), h(A)), which is the graph on vertex set h(U) and edge set h(A) defined by

h(U) = {h(v) | v ∈ U} ⊆ [N ], h(A) =
{
h(S) = {h(v) | v ∈ S} | S ∈ A

}
⊆ 2[N ].

Here, we overload notation to allow h range over sets and graphs. Let col(G, N) denote
the set of proper N -colorings h of G. Each such proper N -coloring is a homomorphic
image of G. Define c as the maximum chromatic number over all homomorphic images of
G: c = maxh∈col(G,N) χ(h(G)). For a given h ∈ col(G, N), let g : h(U) → [c] be a proper
c-coloring of h(G). The multiplicity of a color i ∈ [c] is the number of vertices colored i by
g. The signature of g is the vector µ(g) = (µi)i∈[c], where µi is the multiplicity of color i.
Let Tc(h) denote the collection of all signatures of proper c-colorings of h(G). For a given
signature µ = (µ1, . . . , µc) ∈ Tc(h), let n(µ, h) denote the number of proper c-colorings of
h(G) whose signature is µ.

I Example 5.4. Suppose G is the k-clique and c = k. Then, every proper k-coloring of h(G)
has signature µ = 1k = (1, 1, . . . , 1): Tc(h) has only one member, but n(1, h) = k!. If G is
the k-star then c = 2 and for any h ∈ col(G, N), h(G) is an `-star for some ` ∈ [k]. Then,
T2(h) has two signatures: µ = (`, 1) and µ′ = (1, `); furthermore, n(µ, h) = n(µ′, h) = 1.

I Definition 5.5 (Strongly Explicit Construction). A family F of functions f : [N ]→ [c] is
said to be strongly explicit if there is an algorithm that, given an index to a function f in F
and a number j ∈ [N ], returns f(j) in poly(log |F|, logN)-time.
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The next theorem gives two upper bounds on the size of a family of hash functions
satisfying (15) that we use to define the rank of our Boolean tensor decomposition: The first
bound is for such families in general, whereas the second is for strongly explicit families that
we can use effectively.

I Theorem 5.6. Let G = (U,A) be a multi-hypergraph, c = maxh∈col(G,N) χ(h(G)), and
p = (p1, . . . , pc) ∈ Rc+ be a fixed non-negative real vector such that ‖p‖1 = 1. Define

θ(p) = min
h∈col(G,N)

∑
µ∈Tc(h)

n(µ, h)
c∏
i=1

pµii (17)

Then, the following hold:
(a) There exists a family F of functions f : [N ]→ [c] satisfying (15) such that

|F| ≤
⌈

lnP (G, N)
θ(p)

⌉
≤ |U | logN

θ(p) . (18)

(b) There is a strongly explicit family F ′ of functions f : [N ]→ [c] satisfying (15) such that

|F ′| = O

(
|U |3 · log |U | · logN

θ(p)

)
. (19)

The next corollary follows immediately from Lemma 5.1 and Theorem 5.6.

I Corollary 5.7. Let G = (U,A) be a multi-hypergraph, c = maxh∈col(H,N) χ(h(G)), and

θ∗ = max
p:‖p‖1=1,p≥0

θ(p), (20)

where θ(p) is defined in (17). The following hold:
(a) The Boolean rank of the function

∧
F∈A NAE(XF ) is upper bounded by P (G,c)·lnP (G,N)

θ∗ .
(b) Given p, there is a strongly explicit Boolean tensor decomposition of

∧
F∈A NAE(XF )

whose rank is upper bounded by P (G, c) · |U |
3·log |U |·logN

θ(p) .

To apply the above result, we need to specify p to maximize θ(p). We do not know
how to compute the optimizer p∗ in closed form. We next discuss several observations that
allow us to bound θ∗ from below or compute it exactly. In the following, for any tuple
µ = (µ1, . . . , µ`) of positive integers, let Kµ denote the complete `-partite graph defined as
follows. For every i ∈ [`] there is an independent set Ii of size µi. All independent sets are
disjoint. The vertex set is

⋃
i∈[`] Ii and the vertices not belonging to the same independent

set are connected. Without loss of generality, we assume µ1 ≥ · · · ≥ µ` when specifying the
graph Kµ. For example, K1k is the k-clique, and K(k,1) is the k-star.

I Proposition 5.8. The following hold:
(a) Given a multi-hypergraph G = (U,A) with |U | = k and c = maxh∈col(G,N) χ(h(G)), it

holds that θ∗ ≥ 1
cc ≥

1
kk
.

(b) Suppose G = Kµ for some positive integer tuple µ = (µ1, . . . , µ`), where µ1 ≥ · · · ≥ µ` ≥
1. Let S` denote the set of all permutations of [`], and FP(µ) denote the number of
permutations π ∈ S` for which µi = µπ(i),∀i ∈ [`]. Then,

θ∗ = max
p

∑
π∈S`

∏̀
i=1

p
µπ(i)
i ≥

∑
π∈S`

∏̀
i=1

(
µi
‖µ‖1

)µπ(i)

≥ FP(µ)
∏̀
i=1

(
µi
‖µ‖1

)µi
. (21)
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I Corollary 5.9. Let ` ∈ [k] be an integer. Let µ = (k− `,1`). Then, when G = Kµ we have

θ∗ ≥ `!
k`

(
k − `
k

)k−`
≥ `!
e`

1
k`
,

where e = 2.7.. is the base of the natural log. In particular, G is a (k − 1)-star when ` = 1
and the bound is θ∗ ≥ 1

ek . When ` = k, then G is a k-clique and the bound is θ∗ = k!/kk.

For any constant ` ∈ [k], the bound for θ∗ is Ω(1/k`); in particular, the lower bound for θ∗
ranges anywhere between Ω(1/k), Ω(1/k2), up to Ω(k!/kk). There is a spectrum of these
bounds, leading to a spectrum of Boolean tensor ranks for our decomposition.

I Example 5.10. From (18) and the above corollary, it follows that when G is a k-star,
the corresponding Boolean rank is bounded by O(k2 logN), matching the group testing
connection from Example 5.2. The reason is twofold. We need two colors to color a k-star
and the chromatic polynomial of a k-star using two colors is two. The size of the family F of
hash functions is upper bounded by |U | logN

θ∗ where θ∗ is at least 1
ek and |U | = k + 1. Then,

|F| ≤ e · k · (k + 1) logN = O(k2 logN). This matches the tailor-made construction from
Example 5.2. However, our strongly explicit construction in Theorem 5.6(b) yields a slightly
larger Boolean tensor decomposition of rank O(k4 log k logN).

When applying part (b) of Proposition 5.8 to the problem of detecting k-paths in a graph,
i.e., the query P in the introduction, we obtain the Boolean rank O(k

k+3

k! · log k · logN).
This is because (1) we would need two colors and the chromatic polynomial for the k-path
hypergraph using two colors is two, and (2) the size of the family of strongly explicit functions
is O( (k+1)3 log(k+1) logN

θ∗ ) with θ∗ = k!/kk.

6 How to use the tensor decomposition

Sections 4 and 5 introduced two rewriting steps. The first step transforms a conjunctive
query with negation of the form (1) into a disjunction of conjunctive queries with NAE
predicates of the form (13). The second step transforms a conjunction of NAE predicates
into a disjunction of conjunctions of one-variable-conditions of the form (16). The first step
exploited the bounded degrees of the negated relations to bound from above the number of
disjuncts and independently of the database size. The second step uses a generalization of
the color-coding technique to further rewrite a conjunction of NAE predicates into a Boolean
tensor decomposition whose rank depends on the structure of the multi-hypergraph of the
conjunction. Both rewriting steps preserve the equivalence of the queries.

In this section, we show that the query obtained after the two rewriting steps can be
evaluated efficiently. This query has the form Q(XF )←

∨
j∈[B] Qj(XF ) where ∀j ∈ [B]:

Qj(XF )←
∨

g∈col(Gj ,cj)

∨
f∈Fj

 ∧
S∈Ej

RS(XS) ∧
∧
i∈Uj

f(Xi) = g(i)


︸ ︷︷ ︸

Q
(g,f)
j

(XF )

(22)

In particular, we will show that the data complexity of any conjunctive query with negation
of the form (1) is the same as for its positive subquery Q(XF )← body.

The subsequent development in this section uses the InsideOut algorithm and the FAQ
framework (see Section 2.2 and [2]). For each j ∈ [B], we distinguish two multi-hypergraphs
for the query Qj(XF ): Hj = (Vj , Ej) and associated relations (RS)S∈Ej for

∧
S∈Ej RS(XS);
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and Gj = (Uj ,Aj) for
∧
i∈Uj f(Xi) = g(i), where Uj ⊆ Vj . For the rest of this section,

we will fix some j ∈ [B] and drop the subscript j for brevity. In particular, we will use
H = (V, E),G = (U,A),F to denote Hj = (Vj , Ej),Gj = (Uj ,Aj),Fj respectively.

A better semiring for shaving off a logN factor

Let r = P (G, c) · |F| denote the Boolean tensor rank in the decomposition (16). If we
were only interested in bounding the rank, we can use the bound on |F| from Part (a) of
Theorem 5.6. However, for the purpose of using the Boolean tensor decomposition in an
algorithm, we have to be able to explicitly and efficiently construct the family F of functions.
We thus need to use the bound on |F| from Part (b) of Theorem 5.6. To facilitate the
explanations below, define w = |F|/ logN so that the Boolean rank is decomposed into
r = P (G, c) · w · logN ; that is, w = |U |3·log |U |

θ(p) from Part (b) of Theorem 5.6.
By Theorem 2.6, we can answer query (22) by running r instantiations of InsideOut, each

of which computes Q(g,f)
j for some fixed pair (g, f), and then take the disjunction of Q(g,f)

j

over g and f . The runtime is

O(P (G, c) · w · (|E|+ |U |) · |V |2 · (logN)2 · (N fhtwF (H) + |output|)). (23)

The atoms f(Xi) = g(i) are singleton factors, i.e., factors on one variable, and thus do not
increase the fractional hypertree width or the submodular width of the query.

These r instantiations of InsideOut are run on sum-product instances over the Boolean
semiring. We can however reformulate the problem as sum-product over a different semiring,
which helps reduce the runtime. The new semiring (D,⊕,⊗,0,1) is defined as follows.
The domain D is set to D = {0, 1}r, the collection of all r-bit vectors. The “addition”
and “multiplication” operators ⊕ and ⊗ are bit-wise max and min (essentially, bit-wise
∨ and ∧). The additive identity is 0 = 0r, the r-bit all-0 vector. The multiplicative
identity is 1 = 1r, the r-bit all-1 vector. To each input relation RS , we associate a function
ψS(XS) :

∏
i∈S Dom(Xi)→D, where ψS(xS) = 1 if xS ∈ RS and 0 otherwise. Also, define

|U | extra singleton factors ψi : Dom(Xi)→D (∀i ∈ U), where

ψi(xi) = (bg,f )g∈col(G,c),f∈F , where bg,f =
{

1 if f(xi) = g(i)
0 if f(xi) 6= g(i).

(24)

I Proposition 6.1. The query (22) is equivalent to the following SumProd expression

ϕ(xF ) =
⊕
x|F |+1

· · ·
⊕
x|V |

⊗
S∈E

ψS(xS)⊗
⊗
i∈U

ψi(xi). (25)

The runtime of InsideOut for the expression ϕ(xF ) is

O(P (G, c) · w · (|E|+ |U |) · |V |2 · logN · (N fhtwF (H) + |output|)). (26)

Proof. For any xF , we have Q(xF ) = true iff ϕ(xF ) 6= 0. This is because for each xF , the
value ϕ(xF ) ∈ D is an r-bit vector where each bit represents the answer to Q(g,f)

j (XF ) for
some pair (g, f) (There are exactly r = P (G, c) · |F| such pairs).

The runtime of InsideOut follows from the observation that each operation ⊕ or ⊗ can be
done in O(r/ logN)-time, because those are bit-wise ∨ or ∧ and the r-bit vector can be stored
in O(r/ logN) words in memory. Bit-wise ∨ and ∧ of two words are done in O(1)-time. J

We can further lower the data complexity of our approach using PANDA (See Section 2.2
and [3]). By Theorem 2.7, the complexity from (26) becomes:

O(P (G, c) · w · |V | · 22|V | · (poly(logN) ·N subwF (H) + logN · |output|)). (27)
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The data complexity for conjunctive queries with negation

We are now ready to prove Theorem 1.1. From Proposition 4.3, we untangle Q into a disjunc-
tion of B different queries Qj for j ∈ [B] of the form (13) where B ≤

∏
S∈E(|S|)|S|(dS−1)+1 =

O(1) in data complexity. From (16), each of these queries is equivalent to query (22). For
a fixed g ∈ col(G, c) and f ∈ F , the inner conjunction Q(g,f)

j (XF ) in (22) has at most the
widths fhtwF and subwF of body in the original query (1). Query (22) can be solved in
time (26) using InsideOut or (27) using PANDA.

7 Related Work

Color-coding. The color-coding technique [8] underlies existing approaches to answering
queries with disequalities [27, 9, 21], the homomorphic embedding problem [14], and motif
finding and counting in computational biology [4]. This technique has been originally
proposed for checking cliques of inequalities. It is typically used in conjunction with a
dynamic programming algorithm, whose analysis involves combinatorial arguments that
make it difficult to apply and generalize to problems beyond the path query from Eq. (2). For
example, it is unclear how to use color coding to recover the Plehn and Voigt result [30] for
the induced path query from Eq. (3). In this paper, we generalize the technique to arbitrary
conjunctions of NAE predicates and from graph coloring to hypergraph coloring.

Queries with disequalities. Our work also generalizes prior work on answering queries with
disequalities, which are a special case of queries with negated relations of bounded degree.

Papadimitriou and Yannakakis [27] showed that any acyclic join query Q with an arbitrary
set of disequalities on k variables can be evaluated in time 2O(k log k) · |D| · |Q(D)| · log2 |D|
over any database D. This builds on, yet uses more colors than the color-coding technique.

Bagan et al [9] extended this result to free-connex acyclic queries; they also shaved off a
log |D| factor by using a RAM model of computation differently from ours, where sorting
can be done in linear time.

Koutris et al [21] introduced a practical algorithm for conjunctive queries with disequalities:
Given a select-project-join (SPJ) plan for the conjunctive query without disequalities, the
disequalities can be solved uniformly using an extended projection operator. The reliance
on SPJ plans is a limitation, since it is known that such plans are suboptimal for join
processing [25] and are inadequate to achieve the fhtw and subw complexity bounds. Our
approach uses the InsideOut [2] and PANDA [3] query evaluation algorithms and inherits
their low data complexity, thus achieving both bounds as stated in Theorem 1.1.

Differently from prior work and in line with our work, Koutris et al [21] also investigated
query structures for which the combined complexity becomes polynomial: This is the case for
queries whose augmented hypergraphs have bounded treewidth (an augmented hypergraph
is the hypergraph of the skeleton conjunctive query extended with one hyperedge per
disequality). Koutris et al [21] further proposed an alternative query answering approach
that uses the probabilistic construction of the original color-coding technique coupled with
any query evaluation algorithm. When restricted to queries with disequalities, our query
complexity analysis is more refined than [21] as the number of colors used in our generalization
of color-coding is sensitive to the query structure.

Tensor decomposition. Our Boolean tensor decomposition for conjunctions of NAE predi-
cates draws on the general framework of tensor decomposition used in signal processing and
machine learning [19, 33]. It is a special case of sum-product decomposition and a powerful
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tool. Typical dynamic programming algorithms solve subproblems by combining relations
and eliminating variables [34, 26, 2]. The sum-product decomposition is the dual approach
that decomposes a formula and introduces new variables. The PANDA algorithm [3] achieves
a generalization of the submodular width by rewriting a conjunction as a sum-product over
tree decompositions. By combining PANDA with our Boolean tensor decomposition, we can
answer queries with negation in time defined by the submodular width.

While close in spirit to k-restrictions [6], our approach to derandomization of the con-
struction of the Boolean tensor decomposition is different since we would like to execute
it in time defined by the fhtw-bound for computing body. Our derandomization uses a
code-concatenation technique where the outer-code is a linear error-correcting code on the
Gilbert-Varshamov boundary [31] that can be constructed in linear time. As a byproduct, the
code enables an efficient construction of an (N, k2, k)-perfect hash family of size O(k2 logN).
To the best of our knowledge, the prior constructions yield families of size O(k4 logN) [6].

Data sparsity. We connect two notions of sparsity in this work. One is the bounded degree
of the input relations that are negated in the query. There are notions of sparsity beyond
bounded degree, cf. [28] for an excellent and comprehensive course on sparsity. The most
refined sparsity notion is that of nowhere denseness [16], which characterizes the input
monotone graph classes on which FO model checking is fixed-parameter tractable. We leave
as future work the generalization of our work to queries with negated nowhere-dense relations.

The second notion of sparsity used in this work is given by the Boolean tensor rank of
the Boolean tensor decomposition of the conjunction of NAE predicates. We note that the
relation represented by such a conjunction is not necessarily nowhere dense.

8 Concluding remarks

In this paper, we studied the complexity of answering conjunctive queries with negation on
relations of bounded degree. We give an approach that matches the data complexity of the
best known query evaluation algorithms InsideOut [2] and PANDA [3].

An intriguing venue of future research is to further lower the query complexity of our
approach. Proposition 5.8 presented lower bounds on θ∗ that are dependent on the structure
of the multi-hypergraph G of the input query. It is an intriguing open problem to give a
lower bound on θ∗ that is dependent on some known parameter of G. The extended version
of this paper [1] discusses two further ideas on how to reduce the query complexity:

Cast coloring as a join of “coloring predicates” and apply the InsideOut algorithm on the
resulting query with the coloring predicates taken into account; and

Exploit symmetry to answer the k-path query in time 2O(k)N logN [8] instead of
O(kkN logN).

Our approach extends immediately to unions of conjunctive queries with negated relations
and of degree bounds on the positive relations. In the latter case, we can achieve a runtime
depending on the degree-aware version of the submodular width [3].

We finally note that our Boolean tensor decomposition technique cannot be generalized to
more powerful semirings such as the sum-product semiring over the reals due to an intrinsic
computational difficulty: The counting version of the (induced) k-path query from Section 1
is #W[1]-hard [11, 14].
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