Counting Triangles under Updates in Worst-Case
Optimal Time

Ahmet Kara
Department of Computer Science, University of Oxford, Oxford, UK
ahmet.kara@Qcs.ox.ac.uk

Hung Q. Ngo
RelationalAl, Inc., Berkeley, CA, USA
hung.ngo@relational.ai

Milos Nikolic!
School of Informatics, University of Edinburgh, Edinburgh, UK
milos.nikolic@ed.ac.uk

Dan Olteanu
Department of Computer Science, University of Oxford, Oxford, UK
dan.olteanu@cs.ox.ac.uk

Haozhe Zhang
Department of Computer Science, University of Oxford, Oxford, UK
haozhe.zhang@cs.ox.ac.uk

—— Abstract

We consider the problem of incrementally maintaining the triangle count query under single-tuple
updates to the input relations. We introduce an approach that exhibits a space-time tradeoff such
that the space-time product is quadratic in the size of the input database and the update time can
be as low as the square root of this size. This lowest update time is worst-case optimal conditioned
on the Online Matrix-Vector Multiplication conjecture.

The classical and factorized incremental view maintenance approaches are recovered as special
cases of our approach within the space-time tradeoff. In particular, they require linear-time
maintenance under updates, which is suboptimal. Our approach can also count all triangles in a
static database in the worst-case optimal time needed for enumerating them.

2012 ACM Subject Classification Theory of computation — Database query processing and opti-
mization (theory); Information systems — Database views; Information systems — Data streams

Keywords and phrases incremental view maintenance, amortized analysis, data skew
Digital Object Identifier 10.4230/LIPIcs.ICDT.2019.4

Related Version An extended version of this work is available online at [13], https://arxiv.org/
abs/1804.02780.

Funding This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 682588. Kara acknowledges funding from Fondation
Wiener Anspach.

Acknowledgements Olteanu would like to thank Nicole Schweikardt for the connection between the

Online Matrix-Vector Multiplication conjecture and the triangle query.

1 ‘Work performed while being at the University of Oxford.

© Ahmet Kara, Hung Q. Ngo, Milos Nikolic, Dan Olteanu, and Haozhe Zhang;
37 licensed under Creative Commons License CC-BY

22nd International Conference on Database Theory (ICDT 2019).

Editors: Pablo Barcelo and Marco Calautti; Article No. 4; pp.4:1-4:18

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:ahmet.kara@cs.ox.ac.uk
mailto:hung.ngo@relational.ai
mailto:milos.nikolic@ed.ac.uk
mailto:dan.olteanu@cs.ox.ac.uk
mailto:haozhe.zhang@cs.ox.ac.uk
https://doi.org/10.4230/LIPIcs.ICDT.2019.4
https://arxiv.org/abs/1804.02780
https://arxiv.org/abs/1804.02780
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

4:2

Counting Triangles under Updates in Worst-Case Optimal Time

1 Introduction

We consider the problem of incrementally maintaining the result of the triangle count query

Q=Y 3 Y R@b-Sb.e)-T(ca) 1)

a€Dom(A) beDom(B) c€Dom(C)

under single-tuple updates to the relations R, S, and T with schemas (A4, B), (B, C), and
(C, A), respectively. The relations are given as functions mapping tuples over relation schemas
to tuple multiplicities. A single-tuple update R = { («,) — m } to relation R maps the
tuple (a, 8) to a nonzero multiplicity m, which is positive for inserts and negative for deletes.

The triangle query and its counting variant have served as a milestone for worst-case
optimality of join algorithms in the centralized and parallel settings and for randomized
approximation schemes for data processing. They serve as the workhorse showcasing subop-
timality of mainstream join algorithms used currently by virtually all commercial database
systems. For a database D consisting of R, S, and T, standard binary join plans implement-
ing these queries may take O(|D|?) time, yet these queries can be solved in O(|D|2) time [2].
This observation motivated a new line of work on worst-case optimal algorithms for arbitrary
join queries [18]. The triangle query has also served as a yardstick for understanding the
optimal communication cost for parallel query evaluation in the Massively Parallel Commu-
nication model [15]. The triangle count query has witnessed the development of randomized
approximation schemes with increasingly lower time and space requirements, e.g., [9].

A worst-case optimal result for incrementally maintaining the exact triangle count query
has so far not been established. Incremental maintenance algorithms may benefit from a
good range of processing techniques whose flexible combinations may make it harder to
reason about optimality. Such techniques include algorithms for aggregate-join queries with
low complexity developed for the non-incremental case [17]; pre-materialization of views that
reduces maintenance of the query to that of simpler subqueries [14]; and delta processing
that allows to only compute the change in the result instead of the entire result [7].

1.1 Existing Incremental View Maintenance (IVM) Approaches

The problem of incrementally maintaining the triangle count has received a fair amount
of attention. Existing exact approaches require at least linear time in worst case. After
each update to a database D, the naive approach joins the relations R, S, and T in time
O(|D|?) using a worst-case optimal algorithm [2, 18] and counts the result tuples. The
number of distinct tuples in the result is at most |D|%, which is a well-known result by
Loomis and Whitney from 1949 (see recent notes on the history of this result [17]). The
classical first-order IVM [7] computes on the fly a delta query 6@Q) per single-tuple update R
to relation R (or any other relation) and updates the query result:

0Q() = 6R(a, B)- Y S(B,e)-T(c,), Q) = Q() + Q).

ceDom(C)

The delta computation takes O(|D|) time since it needs to intersect two lists of possibly
linearly many C-values that are paired with 8 in S and with « in T' (i.e., the multiplicity of
such pairs in S and T is nonzero). The recursive IVM [14] speeds up the delta computation
by precomputing three auxiliary views representing the update-independent parts of the
delta queries for updates to R, S, and T":

A. Kara, H. Q. Ngo, M. Nikolic, D. Olteanu, and H. Zhang

VST(ba a’) = Z S(bv C) ’ T(C’ a)

ceDom(C)

Vrr(e,b)= > T(c,a)- R(a,b)
acDom(A)

Vrs (av C) = Z R((I, b) : S(b7 C)'
beDom(B)

These three views take O(|D|?) space but allow to compute the delta query for single-tuple
updates to the input relations in O(1) time. Computing the delta 6Q() = dR(a, 8) - Vs (8, &)
requires just a constant-time lookup in Vgr; however, maintaining the views Vzg and Vg,
which refer to R, still requires O(|D|) time. The factorized IVM [19] materializes only one of
the three views, for instance, Vgr. In this case, the maintenance under updates to R takes
O(1) time, but the maintenance under updates to S and T still takes O(|D|) time.

Further exact IVM approaches focus on acyclic conjunctive queries. For free-connex
acyclic conjunctive queries, the dynamic Yannakakis approach allows for enumeration of
result tuples with constant delay under single-tuple updates [11]. For databases with or
without integrity constraints, it is known that a strict, small subset of the class of acyclic
conjunctive queries admit constant-time update, while all other conjunctive queries have
update times dependent on the size of the input database [4, 5].

Further away from our line of work is the development of dynamic descriptive complexity,
starting with the DynFO complexity class and the much-acclaimed result on FO expressibility
of the maintenance for graph reachability under edge inserts and deletes, cf. a recent
survey [20]. The k-clique query can be maintained under edge inserts by a quantifier-free
update program of arity k — 1 but not of arity k — 2 [22].

A distinct line of work investigates randomized approximation schemes with an arbitrary
relative error for counting triangles in a graph given as a stream of edges, e.g., [3, 12, 6, 16, 8.
Each edge in the data stream corresponds to a tuple insert, and tuple deletes are not
considered. The emphasis of these approaches is on space efficiency, and they express the
space utilization as a function of the number of nodes and edges in the input graph and
of the number of triangles. The space utilization is generally sublinear but may become
superlinear if, for instance, the number of edges is greater than the square root of the number
of triangles. The update time is polylogarithmic in the number of nodes in the graph.

A complementary line of work unveils structure in the PTIME complexity class by giving
lower bounds on the complexity of problems under various conjectures [10, 21].

» Definition 1 (Online Matrix-Vector Multiplication (OMv) [10]). We are given an n X n
Boolean matriz M and receive n column vectors of size n, denoted by vy,...,v,, one by one;
after seeing each vector v;, we output the product Mv; before we see the next vector.

» Conjecture 2 (OMv Conjecture, Theorem 2.4 in [10]). For any v > 0, there is no algorithm
that solves OMv in time O(n3~7).

The OMv conjecture has been used to exhibit conditional lower bounds for many dynamic
problems, including those previously based on other popular problems and conjectures,
such as 3SUM and combinatorial Boolean matrix multiplication [10]. This also applies
to our triangle count query: For any v > 0 and database of domain size n, there is no
algorithm that incrementally maintains the triangle count under single-tuple updates with
arbitrary preprocessing time, O(n!~7) update time, and O(n?~7) answer time, unless the
OMv conjecture fails [4].

4:3

ICDT 2019

4:4 Counting Triangles under Updates in Worst-Case Optimal Time

Asymptotic % b o~
complexity ’ s - - - Space

DY

—— Time

Nl=

/,, \\
. N
1K 3
\/ static case
-1
L. €72
< €

o™, AT

Gi.O €s¥0 eR:ef:I 5':1
classical IVM or classical IVM
cR=€s=0 er=1

factorized IVM

NI~

Figure 1 TVM®’s space and amortized update time parameterized by e¢. The classical IVM is
recovered by setting € € {0,1}. The factorized IVM is recovered by setting er € {0,1}, es = 0, and
er = 1 when Vgr is materialized (similar treatment when Vzs or Vrr is materialized). For e = %,
IVM® counts all triangles in a static database in the worst-case optimal time for enumerating them.

1.2 Qur Contribution

This paper introduces IVM€, an incremental view maintenance approach that maintains the
triangle count in amortized sublinear time. Our main result is as follows:

» Theorem 3. Given a database D and € € [0, 1], IVM® incrementally maintains the result of
Query (1) under single-tuple updates to D with O(|D|?) preprocessing time, O(|D|max{el=e})
amortized update time, constant answer time, and O(|D|'Tmir{e1=ek) spgce.

The preprocessing time is for computing the triangle count on the initial database before
the updates; if we start with the empty database, then this time is O(1). The IVM€ approach
exhibits a tradeoff between space and amortized update time, cf. Figure 1.

IVME® uses a data structure that partitions each input relation into a heavy part and
a light part based on the degrees of data values. The degree of an A-value a in relation
R is the number of B-values paired with a in R. The light part of R consists of all tuples
(a,b) from R such that the degree of a in R is below a certain threshold that depends on
the database size and e. All other tuples are included in the heavy part of R. Similarly, the
relations S and T are partitioned based on the degrees of B-values in S and C-values in T,
respectively. The maintenance is adaptive in that it uses different evaluation strategies for
different heavy-light combinations of parts of the input relations that overall keep the update
time sublinear. Section 3 introduces this adaptive maintenance strategy.

As the database evolves under updates, IVM® needs to rebalance the heavy-light partitions
to account for a new database size and updated degrees of data values. While this rebalancing
may take superlinear time, it remains sublinear per single-tuple update. The update time is
therefore amortized. Section 4 discusses the rebalancing strategy of IVME.

For € = 1, IVM¢ achieves the lowest update time O(|D|2) while requiring O(|D|?) space.
This update time is optimal conditioned on the OMv conjecture. For this, we specialize the
lower bound result in [4] to refer to the size |D| of the database:

» Proposition 4. For any v > 0 and database D, there is no algorithm that incrementally
maintains the result of Query (1) under single-tuple updates to D with arbitrary preprocessing
time, O(|D|2) amortized update time, and O(|D|'™7) answer time, unless the OMv

conjecture fails.

A. Kara, H. Q. Ngo, M. Nikolic, D. Olteanu, and H. Zhang

This lower bound is shown in the extended paper [13]. Theorem 3 and Proposition 4
imply that IVMF® incrementally maintains the triangle count with optimal update time:

» Corollary 5 (Theorem 3 and Proposition 4). Given a database D, IVM® incrementally
maintains the result of Query (1) under single-tuple updates to D with worst-case optimal
amortized update time O(|D\%) and constant answer time, unless the OMv conjecture fails.

IVMEe also applies to triangle count queries with self-joins, such as when maintaining the
count of triangles in a graph given by the edge relation. The space and time complexities are
the same as in Theorem 3 [13].

IVME defines a continuum of maintenance approaches that exhibit a space-time tradeoff
based on €. As depicted in Figure 1, the classical first-order IVM and the factorized IVM
are specific extreme points in this continuum. To recover the former, we set € € {0,1} for
O(|DJ) update time and O(|D]) space for the input relations. To recover the latter, we use a
distinct parameter e per relation: for example, using eg € {0,1}, es = 0, and er = 1, we
support updates to R in O(1) time and updates to S and T in O(|D|) time; the view Vgr
takes O(|D|?) space [13].

We observe that at optimality, IVM€ recovers the worst-case optimal time O(|D|3) of
non-incremental algorithms for enumerating all triangles [18]. Whereas these algorithms are
monolithic and require processing the input data in bulk and all joins at the same time,
IVME achieves the same complexity by inserting |D| tuples one at a time in initially empty
relations R, S, and T', and by using standard join plans [13].

2 Preliminaries

Data Model. A schema X is a tuple of variables. Each variable X has a discrete domain
Dom(X) of data values. A tuple x of data values over schema X is an element from
Dom(X) =[] xex Dom(X). We use uppercase letters for variables and lowercase letters for
data values. Likewise, we use bold uppercase letters for schemas and bold lowercase letters
for tuples of data values.

A relation K over schema X is a function K : Dom(X) — Z mapping tuples over X
to integers such that K (x) # 0 for finitely many tuples x. We say that a tuple x is in K,
denoted by x € K, if K(x) # 0. The value K (x) represents the multiplicity of x in K. The
size |K| of K is the size of the set {x | x € K}. A database D is a set of relations, and its
size |D| is the sum of the sizes of the relations in D.

Given a tuple x over schema X and a variable X in X, we write x[X] to denote
the value of X in x. For a relation K over X, a variable X in X, and a data value
x € Dom(X), we use 0 x—, K to denote the set of tuples in K whose X-value is z, that is,
ox=K ={x | x € K Ax[X] =2} We write 7xK to denote the set of X-values in K,
that is, 7x K = {x[X] | x € K }.

Query Language. We express queries and view definitions in the language of functional
aggregate queries (FAQ) [1]. Compared to the original FAQ definition that uses several
commutative semirings, we define our queries using the single commutative ring (Z, +, -, 0, 1)
of integers with the usual addition and multiplication. A query Q has one of the two forms:

1. Given a set {X;};c[y) of variables and an index set S C [n], let X denote a tuple (X;)ies
of variables and xg denote a tuple of data values over the schema Xg. Then,

Q(xy) = Z Z H Kg(xgs), where:

zfr1€DomM(Xypq1) z,€Dom(X,) SeEM

4:5

ICDT 2019

4:6

Counting Triangles under Updates in Worst-Case Optimal Time

M is a multiset of index sets.

For every index set S € M, Kg: Dom(Xg) — Z is a relation over the schema Xg.

X[s] is the tuple of free variables of Q. The variables X 1,..., X, are called bound.
2. Q(x) = Q1(x) +Q2(x), where @ and Q2 are queries over the same tuple of free variables.

In the following, we use }_, = as a shorthand for }° . cpom(x,)-

Updates and Delta Queries. An update dK to a relation K is a relation over the schema
of K. A single-tuple update, written as 6K = {x — m}, maps the tuple x to the nonzero
multiplicity m € Z and any other tuple to 0; that is, [§K| = 1. The data model and query
language make no distinction between inserts and deletes — these are updates represented as
relations in which tuples have positive and negative multiplicities.

Given a query Q and an update § K, the delta query dQ defines the change in the query
result after applying 6 K to the database. The rules for deriving delta queries follow from
the associativity, commutativity, and distributivity of the ring operations.

Query Q(x) Delta query 6Q(x)

Q1 (x1) - Q2(x2) 6Q1(x1) - Q2(x2) + Q1(x1) - 6Q2(x2) + 6Q1(x1) - 0Q2(x2)
>, Qi(x1) >, 0Qu(x1)

Q1(x) + Q2(x) 6Q1(x) 4 0Q2(x)

K'(x) dK(x) when K = K’ and 0 otherwise

Computation Time. Our maintenance algorithm takes as input the triangle count query @
and a database D and maintains the result of () under a sequence of single-tuple updates. We
distinguish the following computation times: (1) preprocessing time is spent on initializing
the algorithm using D before any update is received, (2) update time is spent on processing
one single-tuple update, and (3) answer time is spent on obtaining the result of Q. We
consider two types of bounds on the update time: worst-case bounds, which limit the time
each individual update takes in the worst case, and amortized worst-case bounds, which limit
the average worst-case time taken by a sequence of updates. Enumerating a set of tuples
with constant delay means that the time until reporting the first tuple, the time between
reporting two consecutive tuples, and the time between reporting the last tuple and the end
of enumeration is constant. When referring to sublinear time, we mean O(|D|'~7) for some
~v > 0, where |D| is the database size.

Computational Model. We consider the RAM model of computation. Each relation (view)
K over schema X is implemented by a data structure that stores key-value entries (x, K(x))
for each tuple x over X with K (x) # 0 and needs space linear in the number of such tuples.
We assume that this data structure supports (1) looking up, inserting, and deleting entries in
constant time, (2) enumerating all stored entries in K with constant delay, and (3) returning
|K| in constant time. For instance, a hash table with chaining, where entries are doubly
linked for efficient enumeration, can support these operations in constant time on average,
under the assumption of simple uniform hashing.

For each variable X in the schema X of relation K, we further assume there is an index
structure on X that allows: (4) enumerating all entries in K matching o x—, K with constant
delay, (5) checking € mx K in constant time, and (6) returning |ox—, K| in constant time,
for any € Dom(X), and (7) inserting and deleting index entries in constant time. Such
an index structure can be realized, for instance, as a hash table with chaining where each
key-value entry stores an X-value x and a doubly-linked list of pointers to the entries in K

A. Kara, H. Q. Ngo, M. Nikolic, D. Olteanu, and H. Zhang

having the X-value x. Looking up an index entry given z takes constant time on average,
and its doubly-linked list enables enumeration of the matching entries in K with constant
delay. Inserting an index entry into the hash table additionally prepends a new pointer to

the doubly-linked list for a given x; overall, this operation takes constant time on average.

For efficient deletion of index entries, each entry in K also stores back-pointers to its index
entries (as many back-pointers as there are index structures for K'). When an entry is deleted
from K, locating and deleting its index entries takes constant time per index.

Data Partitioning. We partition each input relation into two parts based on the degrees of
its values. Similar to common techniques used in databases to deal with data skew, our IVM
approach employs different maintenance strategies for values of high and low frequency.

» Definition 6 (Relation Partition). Given a relation K over schema X, a variable X from
the schema X, and a threshold 0, a partition of K on X with threshold 0 is a set {Kp, K}
satisfying the following conditions:

(union) K(x) = Kn(x)+ Ki(x) for x € Dom(X)
(domain partition) (mxKp)N(rxK;) =10
(heavy part) for allz € nx Kp : |ox=2Kn| > %0
(light part) for allz € 1x K| : |ox==Ki| < %9
The set {Kpn, K} is called a strict partition of K on X with threshold 0 if it satisfies the

union and domain partition conditions and the following strict versions of the heavy part
and light part conditions:

(strict heavy part) for allxz € nxKp : |ox=zKpn| >0
(strict light part) for allx € mx K, : |ox=oKi| < 0
The relations Ky and K; are called the heavy and light parts of K.

Definition 6 admits multiple ways to (non-strictly) partition a relation K on variable X
with threshold 6. For instance, assume that |0 x—, K| = 6 for some X-value z in K. Then,
all tuples in K with X-value x can be in either the heavy or light part of K; but they cannot
be in both parts because of the domain partition condition. If the partition is strict, then all
such tuples are in the heavy part of K.

The strict partition of a relation K is unique for a given threshold and can be computed
in time linear in the size of K.

3 IVMe: Adaptive Maintenance of the Triangle Count

We present IVM¢, our algorithm for the incremental maintenance of the result of Query (1).

We start with a high-level overview. Consider a database D consisting of three relations R,
S, and T with schemas (A, B), (B,C), and (C, A), respectively. We partition R, S, and T
on variables A, B, and C, respectively, for a given threshold. We then decompose Query (1)
into eight skew-aware views expressed over these relation parts:

Qrst() = Z R.(a,b) - Ss(b,c) - Ty(c,a), forr s, t€{h,li}.
a,b,c

Query (1) is then the sum of these skew-aware views: Q() = Zr,&te{h,l} Qrst().
IVME€ adapts its maintenance strategy to each skew-aware view @,s; to ensure amortized
update time that is sublinear in the database size. While most of these views admit sublinear

4:7

ICDT 2019

4:8

Counting Triangles under Updates in Worst-Case Optimal Time

Materialized View Definition Space Complexity

Q= > > Rr(a,b) - Ss(b,c) - Ti(c, a) o(1)

r,s,t€{h,l} a,b,c

Vrs(a,c) =3, Ru(a,b) - Si(b,c) O(|p|HHmintet=el)
Vsr(b,a) =Y, Sn(b,c) - Ti(c,a) O(|D| +min{el=e})
Vrr(e,b) =), Tr(c,a) - Ri(a,b) O(|D[Fmintet=cl)

Figure 2 The definition and space complexity of the materialized views in V = {Q, Vrs, Vs, Vrr}
as part of an IVM*® state of a database D partitioned for € € [0, 1].

delta computation over the relation parts, few exceptions require linear-time maintenance.
For these exceptions, IVM€ precomputes the update-independent parts of the delta queries as
auziliary materialized views and then exploits these views to speed up the delta evaluation.

One such exception is the view Qpp;. Consider a single-tuple update Ry, = {(«, 8) — m}
to the heavy part Rj, of relation R, where o and (3 are fixed data values. Computing the delta
view 0Qnni() = dRu (e, B)->-. Sh(B,¢)-Ti(c,) requires iterating over all the C-values ¢ paired
with S in S, and with « in T7; the number of such C-values can be linear in the size of the
database. To avoid this iteration, IVM¢ precomputes the view Vgr(b,a) = 3. Si(b,¢)-Ti(c, a)
and uses this view to evaluate 0Qpni() = 0Ry (o, 8) - Vsr (8, a) in constant time.

Such auxiliary views, however, also require maintenance. All such views created by
IVME® can be maintained in sublinear time under single-tuple updates to the input relations.
Figure 2 summarizes these views used by IVM€ to maintain Query (1): Vgg, Vgr and Virpg.
They serve to avoid linear-time delta computation for updates to T', R, and S, respectively.
IVME also materializes the result of Query (1), which ensures constant answer time.

We now describe our strategy in detail. We start by defining the state that IVM€ initially
creates and maintains upon each update. Then, we specify the procedure for processing a
single-tuple update to any input relation, followed by the space complexity analysis of IVM*.
Section 4 gives the procedure for processing a sequence of such updates.

» Definition 7 (IVM€ State). Given a database D = {R,S,T} and € € [0,1], an IVM® state
of D is a tuple Z = (e, N,P, V), where:
N is a natural number such that the size invariant ENJ < |D| < N holds. N is called
the threshold base.
P ={Ry, R;, Sy, S;, T, T;} consists of the partitions of R, S, and T on variables A, B,
and C, respectively, with threshold 8 = N€.
V is the set of materialized views {Q, Vrs, Vst,Vrr} as defined in Figure 2.
The initial state Z of D has N =2 - |D| + 1 and the three partitions in P are strict.

By construction, |P| = |D|. The size invariant implies |D| = ©(N) and, together with the
heavy and light part conditions, facilitates the amortized analysis of IVM€® in Section 4.
Definition 6 provides two essential upper bounds for each relation partition in an IVM¢® state:
The number of distinct A-values in Ry, is at most %% =2N17¢ ie., [maRy| <2N17¢ and
the number of tuples in R; with an A-value a is less than %Ne, ie., |oa=aRi| < %NE, for any
a € Dom(A). The same bounds hold for B-values in {Sy, S;} and C-values in {T},T;}.

A. Kara, H. Q. Ngo, M. Nikolic, D. Olteanu, and H. Zhang

3.1 Preprocessing Stage

The preprocessing stage constructs the initial IVM€ state given a database D and € € [0, 1].

» Proposition 8. Given a database D and € € [0, 1], constructing the initial IVME® state of
D takes O(|D|?) time.

Proof. We analyze the time to construct the initial state Z = (¢, N,P, V) of D. Retrieving
the size |D| and computing N = 2-|D|+1 take constant time. Strictly partitioning the input
relations from D using the threshold N€, as described in Definition 6, takes O(|D|) time.
Computing the result of the triangle count query on D (or P) using a worst-case optimal join
algorithm [18] takes O(|D|2) time. Computing the auxiliary views Vzs, Vs, and Vg takes
O(|D | *min{e1=¢}) time, as shown next. Consider the view Vgs(a,c) = >, Rn(a,b) - Si(b, c).
To compute Vig, one can iterate over all (a,b) pairs in Rj, and then find the C-values in
S; for each b. The light part S; contains at most N€ distinct C-values for any B-value,
which gives an upper bound of |Ry| - N€ on the size of Vig. Alternatively, one can iterate
over all (b, c¢) pairs in S; and then find the A-values in Ry, for each b. The heavy part Ry,
contains at most N1'~¢ distinct A-values, which gives an upper bound of |S;| - N1=¢ on
the size of Vgs. The number of steps needed to compute this result is upper-bounded by
min{ |Ry|- N¢, [S;|- N'=¢} < min{ N - N¢, N . N17¢} = Nl+min{el=c} From [D| = O(N)
follows that computing Vzg on the database partition P takes O(|D|'t™n{e1=<}) time; the
analysis for Vg7 and Vg is analogous. Note that max.co 1 {1+ min{e,1 —¢€}} = % Overall,
the initial state Z of D can be constructed in O(|D|2) time. <

The preprocessing stage of IVM® happens before any update is received. In case we start
from an empty database, the preprocessing cost of IVM¢ is O(1).

3.2 Processing a Single-Tuple Update

We describe the IVM€ strategy for maintaining the result of Query (1) under a single-tuple
update to the relation R. This update can affect either the heavy or light part of R, hence
we write d R,., where r stands for h or [. We assume that checking whether the update affects
the heavy or light part of R takes constant time. The update is represented as a relation
O0R, = {(«a,) — m}, where a and (8 are data values and m € Z. Due to the symmetry of
the triangle query and auxiliary views, updates to S and T are handled similarly.

Figure 3 shows the procedure APPLYUPDATE that takes as input a current IVM€ state
Z and the update dR,., and returns a new state that results from applying 0 R, to Z. The
procedure computes the deltas of the skew-aware views referencing R,., which are 6Q.nn
(Line 3), 0Qp; (Line 4), 6@y, (Line 5), and §Q,;; (Line 6), and uses these deltas to maintain
the triangle count (Line 7). These skew-aware views are not materialized, but their deltas
facilitate the maintenance of the triangle count. If the update affects the heavy part Ry, of R,
the procedure maintains Vrg (Line 9) and Ry, (Line 12); otherwise, it maintains Vpgr (Line
11) and R; (Line 12). The view Vg remains unchanged as it has no reference to Ry, or R;.

Figure 3 also gives the time complexity of computing these deltas and applying them to
Z. This complexity is either constant or dependent on the number of C-values for which
matching tuples in the parts of S and T have nonzero multiplicities.

» Proposition 9. Given a state Z constructed from a database D for e € [0,1], IVM*

maintains Z under a single-tuple update to any input relation in O(|D|™&{e1=<}) time.

4:9

ICDT 2019

4:10

Counting Triangles under Updates in Worst-Case Optimal Time

APPLYUPDATE(OR,, Z) Time
1 let dR, = {(a,) = m}
2 let Z = (¢, N,{Rn, Ri,Sh, S, Tn, Ti},{Q, Vs, Vs, Vrr})
3 0Qran() = 0Rr(e, B) - D2, Su(B;c) - Th(c,a) O(D['™)
4 6Qrm() = 6Rr(a) Vs (B, a) o)
5 0Qua() = 3Rr(a B) - 30, Si(B,0) - Th(e,) oDy tet=h)
6 0Qru() =R (Z Si(B,¢c) - Ti(c, @) O(|DI%)
7T QO=Q0)+ 5thh() +0Qrni() + 0Qrin() + 0Qru() o(1)
8 if (rish)
9 Vrs(a,¢) = Vrs(a,c¢) + dRn (e, B) - Si(B, ¢) O(|DI)
10 else
11 Vrr(ce,B) = Vrr(c, B) + Tu(c,) - Ri(a, B) O(/D['™)
12 Re(a,B) = Rr(a, B) + 0Rr(cv, B) o(1)
13 return Z
Total update time: O(|D|mexed=chy

Figure 3 (left) Counting triangles under a single-tuple update. APPLYUPDATE takes as input an
update R, to the heavy or light part of R, hence r € {h,l}, and the current IVM€ state Z of a
database D partitioned using € € [0,1]. It returns a new state that results from applying 6 R, to
Z. Lines 3-6 compute the deltas of the affected skew-aware views, and Line 7 maintains). Lines
9 and 11 maintain the auxiliary views Vrs and Vrg, respectively. Line 12 maintains the affected
part R.. (right) The time complexity of computing and applying deltas. The evaluation strategy for
computing 0@, in Line 5 may choose either S; or T}, to bound C-values, depending on €. The total
time is the maximum of all individual times. The maintenance procedures for S and T are similar.

Proof. We analyze the running time of the procedure from Figure 3 given a single-tuple
update 6 R, = {(a, 8) — m} and a state Z = (e, N, P, V) of D. Since the query and auxiliary
views are symmetric, the analysis for updates to S and T is similar.
We first analyze the evaluation strategies for the deltas of the skew-aware views @Q;.s:
(Line 3) Computing 6@, requires summing over C-values (« and § are fixed). The
minimum degree of each C-value in T}, is %N €, which means the number of distinct
C-values in T}, is at most %]]VVE = 2N'7¢. Thus, this delta evaluation takes O(N'~¢) time.

(Line 4) Computing §Q,; requires constant-time lookups in d R, and Vgr.

(Line 5) Computing 6@, can be done in two ways, depending on e: either sum over
at most 2N'17¢ C-values in T}, for the given o or sum over at most %N € C-values in S
for the given 3. This delta computation takes at most min{2N!~¢, %N €} constant-time
operations, thus O(N™n{&:1=¢}) time.
(Line 6) Computing dQ,; requires summing over at most %NE C-values in S; for the
given . This delta computation takes O(N€) time.
Maintaining the result of Query (1) using these deltas takes constant time (Line 7). The views
Vgrs and Vrp are maintained for updates to distinct parts of R. Maintaining Vig requires
iterating over at most %N ¢ C-values in S; for the given 8 (Line 9); similarly, maintaining
Vrg requires iterating over at most 2N17¢ C-values in T}, for the given « (Line 11). Finally,

A. Kara, H. Q. Ngo, M. Nikolic, D. Olteanu, and H. Zhang

maintaining the (heavy or light) part of R affected by dR,. takes constant time (Line 12).

The total update time is O(max{1, N¢, N1=¢, Nmin{el=cily — o(nymax{el=<}) From the
invariant |D| = ©(N) follows the claimed time complexity O(|D|max{e1=e}), <

3.3 Space Complexity
We next analyze the space complexity of the IVM® maintenance strategy.

» Proposition 10. Given a database D and € € [0, 1], the IVM® state constructed from D to
support the maintenance of the result of Query (1) takes O(|D|tmin{e1=ly gpgce.

Proof. We consider a state Z = (e, N,P, V) of database D. N and e take constant space
and |P| = |D|. Figure 2 summarizes the space complexity of the materialized views Q, Vgs,
Vsr, and Vg from V. The result of @Q takes cons