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Abstract
In this paper we compare two finite words u and v by the lexicographical order of the infinite
words uω and vω. Informally, we say that we compare u and v by the infinite order. We show
several properties of Lyndon words expressed using this infinite order. The innovative aspect of this
approach is that it allows to take into account also non trivial conditions on the prefixes of a word,
instead that only on the suffixes. In particular, we derive a result of Ufnarovskij [V. Ufnarovskij,
Combinatorial and asymptotic methods in algebra, 1995] that characterizes a Lyndon word as a word
which is greater, with respect to the infinite order, than all its prefixes. Motivated by this result, we
introduce the prefix standard permutation of a Lyndon word and the corresponding (left) Cartesian
tree. We prove that the left Cartesian tree is equal to the left Lyndon tree, defined by the left
standard factorization of Viennot [G. Viennot, Algèbres de Lie libres et monoïdes libres, 1978]. This
result is dual with respect to a theorem of Hohlweg and Reutenauer [C. Hohlweg and C. Reutenauer,
Lyndon words, permutations and trees, 2003].
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1 Introduction

Let A be a totally ordered alphabet. A word w is called a Lyndon word if for each nontrivial
factorization w = uv, one has w < v (here < is the lexicographical order). Lyndon words
were introduced in [19].

A well-known theorem of Lyndon states that every finite word w can be decomposed in a
unique way as a nonincreasing product w = `1`2 · · · `n of Lyndon words. This theorem, which
is a combinatorial counterpart of the famous theorem of Poincaré-Birkhoff-Witt, provides
an example of a factorization of the free monoid (see [18]). It has also many algorithmic
applications and it may be computed in an efficient way. Indeed, Duval proposed in [11] a
linear-time algorithms to compute it, while Apostolico and Crochemore proposed in [1] a
O(lgn)-time parallel algorithm.

The (right) Lyndon tree of a Lyndon word w corresponds recursively to the following right
standard factorization of w, when no reduced to a single letter: w can be written as w = uv

where v is the longest proper nonempty suffix of w which is a Lyndon word. The word u is
then also a Lyndon word. Remark that one can also define a left standard factorization of a
Lyndon word, and then a left Lyndon tree (cf. [24] and [5]).
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2:2 Some Variations on Lyndon Words

On the other hand, one can associate to a Lyndon word w the Cartesian tree corresponding
to its suffix standard permutation (also commonly known as the inverse suffix array of w).
Hohlweg and Reutenauer have proved that the (right) Lyndon tree of a Lyndon word is equal
to its Cartesian tree (see [15]). This connection is useful for the computation of runs in a
word (see, e.g. [9, 8, 2, 3]).

In this paper we consider a new approach that uses infinite words: the relation between
two finite words u and v is determined by the lexicographical order of the infinite words
uω and vω (where uω = uuu · · · ). Informally, we say that we compare u and v using the
infinite order.

Note that one can have u < v but uω > vω. For instance, if a < b, one has ab < aba but
(aba)ω < (ab)ω.

This new relation between words has been used in some important results in combinatorics
on words, as, for instance in the bijection of Gessel and Reutenauer (cf. [13]), which is at the
basis of some extentions of the Burrows-Wheeler transform (see [20] and [16]).

We show that several properties of Lyndon words can be expressed by using the infinite
order. We prove (Corollary16) that a word w is a Lyndon word if and only if wω < vω for each
proper suffix v of w, i.e., w is smaller, with respect to the infinite order, than all its proper
suffixes. Moreover, we show that in the classical factorization theorem by Lyndon (every word
can be factorized in a unique way as a non-increasing product of Lyndon words) the product
is non-increasing also with respect to the infinite order. We also deduce (Theorems 21 and 23)
new characterizations of the first and of the last factor of the factorization in Lyndon words.

The innovative aspect of this new approach in the study of Lyndon words is that it takes
into account also conditions on the prefixes of a word, instead that only on the suffixes.
In particular, we derive (Corollary17) a result of Ufnarovskij (cf. [23]) that characterizes
a Lyndon word as a word which is greater, with respect to the infinite order, than all its
proper prefixes.

In the last section, motivated by the Ufnarovskij’s Theorem, we show that the ordering
of the prefixes of a word according to the infinite order is non-trivial, and this leads to the
notion prefix array of a word. We then introduce the prefix standard permutation of a word
(the inverse of the prefix array) and the corresponding left Cartesian tree. We prove, as a
result which is dual with respect to that of Hohlweg and Reutenauer, that the left Cartesian
tree of a Lyndon words is equal to its left Lyndon tree (Theorem 36).

Some of the results of Sections 3 and 4 can be extended by considering a generalized order
relation, i.e., an order in which the comparison between two words depends on the length of
their common prefix. A word w is called a generalized Lyndon word if wω < vω (with respect
the generalized order) for each proper suffix v of w. Generalized Lyndon words have been
introduced in [22] and their theory has been further developed in [10]. A very special case of
generalized order is given by the alternating order, in which the comparison between two
words depends on the parity of the length of their common prefix. The generalized Lyndon
words with respect to the alternating order are called Galois words. A bijection, similar to
that of Gessel and Reutenauer, for the alternating order, has been proved in [12]: it leads
to the definition of the Alternate Burrows-Wheeler Transform (ABWT), that has been also
studied in [14].

2 Definitions and notations

For undefined notation we refer to [17] and [18]. We denote by A a finite alphabet, by A∗
the free monoid and by A+ the free semigroup. Elements of A∗ are called words and the
identity element, denoted by 1 is called the empty word. We say that a word u is a factor of
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the word w if w = xuy for some words x, y; u is a prefix (resp. suffix) if x = 1 (resp. y = 1);
it is nontrivial if u 6= 1 and proper if u 6= w. We say that w = ps is a nontrivial factorization
of w whenever p, s are both nonempty. The length of a word w = a1a2 · · · an, where ai ∈ A
for all i, is equal to n and it is denoted by |w|.

A period of a word a1a2 · · · an is a natural integer p such that ai = ai+p for any i such
that i, i + p ∈ {1, . . . , n}; it is called a nontrivial period if 0 < p < n. A word having a
nontrivial period is called periodic.

We say that v is a fractional power of u if u = u1u2 and v = uku1 for some nonnegative
integer k. In this case, one writes v = ur, where r = k + |u1|/|u| is a positive rational. Note
that for k = 0 (or r < 1) this means that v is a prefix of u. Fractional powers are also known
as sesquipowers (see, e.g., [21]).

We say that the v is a strict fractional power of u if v is a fractional power of u and, with
the notations above, k ≥ 1 or, equivalently, that r ≥ 1. In this case u is a prefix of v.

I Example 1. Let u = abcdef . Then u2/3 = abcd and u5/3 = abcdefabcd. The last one is,
in particular, a strict fractional power of u.

We denote by Aω the set of sequences over A, also called infinite words; such a sequence
(an)n≥1 is also written a1a2a3 · · · . If w is a (finite) word of length n ≥ 1, wω denotes the
infinite word having w as a prefix and of period n.

We denote by A∞ = A∗ ∪Aω the set of finite and infinite words.
A border of a word w of length n is a word which is simultaneously a nontrivial proper

prefix and suffix of w. A word is called unbordered if it has no border. It is well-known that
a word has a border if and only if it is periodic.

3 Infinite order on finite words

Given an order < on the alphabet A, we can define the lexicographical order <lex (or simply
< when it is clear from the context) on A∞ in the following way : u <lex v if either u is a
proper prefix of v (in which case u must be in A∗) or we may write u = pau′, v = pbv′ for
some words p ∈ A∗, u′, v′ ∈ A∞ and some letters a, b ∈ A such that a < b.

I Definition 2. Let s, t be two distinct elements of Aω such that we have a factorization
s = u1 · · ·uks0 with u1, · · · , uk finite nonempty words and s0 is an infinite word. We say
that the comparison between s and t takes place within uk if u1 · · ·uk−1 is a prefix of t, but
u1 · · ·uk is not. If moreover u1, u2, . . . , uk are letters we say that the comparison takes place
at position k.

Note that, when the comparison takes place within uk, one may write t = u1 · · ·uk−1u
′
kt
′,

for some t′ ∈ Aω and u′k 6= uk such that |u′k| = |uk|.
Suppose that u, v are finite nonempty words. The following fact is well-known: one has

uω = vω if and only if u, v are power of a common word, and this is true if and only if u and
v commute (see, for instance, [18, Corollary 6.2.5]).

In the sequel we compare two finite words u and v by comparing the infinite words uω
and vω, with respect to the lexicographical order. Informally, we say that we compare u and
v with respect to the infinite order.

Note that, given two nonempty finite words u, v, it is not true that uω < vω ⇔ u < v, as
shown in the following example.

I Example 3. Let us consider the two words u = b, v = ba. Since u is a prefix of v we have
u < v. Nevertheless uω = bbb · · · > bababa · · · = vω.
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2:4 Some Variations on Lyndon Words

In the next section we will show that this equivalence holds for Lyndon words (The-
orem 20).

Even though we use the term ”infinite order”, when uω 6= vω the comparison between uω
and vω takes place at a position bounded by a function of the lengths of u and v, as stated
by the following lemma, which is a reformulation of the well known Fine and Wilf theorem
(see, for instance, [17]).

I Lemma 4. Let u, v be nonempty words such that uω 6= vω. Then the comparison between
uω and vω takes place at a position k ≤ |u|+ |v| − gcd(|u|, |v|).

The following example shows that the bound given in the previous lemma is tight.

I Example 5. Let u = abaab and v = abaababa. Then,

uω = abaababaabab . . . and vω = abaababaabaa . . . .

One has that vω < uω and that the comparison takes place at position 12 = |u|+ |v| − 1.

I Lemma 6. Let u, v be nonempty words such that uω 6= vω. Then the comparison between
uω and vω takes place within the first factor v of vω if and only if v is not a fractional power
of u.

Proof. The comparison between the two infinite words takes place within the first v if and
only if the two prefixes of length |v| of uω and vω are different. The conclusion follows from
the fact that v is a fractional power of u if and only if v is a prefix of uω. J

I Lemma 7. Let s, t ∈ Aω be as in Definition 2 (and the sentence following it). Then s < t

(resp. s > t) implies u1 · · ·u′ks′ < u1 · · ·ukt′ (resp. u1 · · ·u′ks′ > u1 · · ·ukt′) for any infinite
words s′, t′.

I Lemma 8. Let u, v be nonempty finite words such that uω < vω and let x, y be two finite
words. Then
(i) if neither u or v is a prefix of the other, then (ux)ω < (vy)ω;
(ii) if v is not a fractional power of u, then (uk+1x)ω < (vy)ω, where k is the largest integer

such that uk is a prefix of v. In particular uω < (vy)ω.

Proof. In case (i), the comparison between the two infinite words takes place within the
prefix of length min(|u|, |v|). Hence we conclude using Lemma 7.

Suppose now that the hypothesis of (ii) holds. Then we can write u = u′au1 and
v = uku′bv1, with u′ ∈ A∗, a, b ∈ A such that a 6= b, and u1, v1 ∈ A∗. Let m = |uku′|. Since
uω = uku′au1u

ω and since uω < vω, we have that a <m+1 b. The two infinite words uω
and (uk+1x)ω share the same prefix of length m+ 1, and the same do vω and (vy)ω. Thus
the comparison between between (uk+1x)ω and (vy)ω takes place at position m+ 1. Since
a <m+1 b, we can conclude. J

We use several times the following observation: the opposite order <̃ of an order < is
also a lexicographical order.

I Example 9. Let < be the usual lexicographical order on {a, b}, that is such that a < b.
Then <̃ is defined by b <̃ a.

I Theorem 10. Let u, v be finite nonempty words such that uω 6= vω, and s, t be infinite
words in {u, v}ω. Then

uω < vω ⇐⇒ us < vt.
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Proof. Without loss of generality, we may assume that u, v are primitive.
Suppose that uω < vω. Let us first consider the case when v is not a fractional power

of u. Then we can write u = u1au2, v = uku1bv2 with letters a 6= b and k ≥ 0. Then
uω = uku1a · · · and vω = uku1b · · · . Since uω < vω, we must have a < b. Note that
by hypothesis, one has either us = uω or us = ulv · · · , with l ≥ 1. In both cases us
begins by uk+1. Thus us = uku1a · · · . Moreover vt begins by v and hence vt = uku1b · · · .
Therefore us < vt.

Suppose now that v is a strict fractional power of u. We can write v = uku1, u = u1u2,
for some k ≥ 1, and u1, u2 nonempty finite words (since uω 6= vω). In particular, we
have u1u2 6= u2u1 since u is primitive. Then uω = uku1u2u1 · · · and vω = uku1u1u2 · · ·
(since k ≥ 1). From the inequality uω < vω, we deduce that u2u1 < u1u2. We claim that
us = uku1u2u1 · · · : indeed, either s = ulv · · · , 1 ≤ l ≤ ∞, so that uk+2 is a prefix of us,
implying the claim; or s = v · · · , so that us begins by uv = uuku1 = uku1u2u1 and the claim
is true, too. Moreover vt = uku1u1u2 · · · . Therefore us < vt.

It remains the case where v is a proper prefix of u. Then u is either not a fractional
power of v, or u is a strict fractional power of v. In this case, we have vω <̃ uω. Hence the
previous arguments imply that vt <̃ us and therefore us < vt.

Suppose now that uω < vω does not hold. Since uω 6= vω, we have uω <̃ vω. From
the previous arguments it follows that us <̃ vt, hence vt < us and therefore us < vt

does not hold. J

Using the previous theorem we can prove the following result (part of the it is stated, in
a more general context, in [22], see also [10]).

I Corollary 11. The following conditions are equivalent for nonempty words u, v ∈ A∗:
(1) uω < vω;
(2) (uv)ω < vω;
(3) uω < (vu)ω;
(4) (uv)ω < (vu)ω;
(5) uω < (uv)ω;
(6) (vu)ω < vω.

Proof. It follows from Theorem 10 that Condition (1) is equivalent to each of the Conditions
(2), (3) and (4).

Condition (5) is equivalent to condition (3): indeed uω < (vu)ω ⇔ uuω < u(vu)ω ⇔
uω < (uv)ω. Similarly, condition (6) is equivalent to condition (2): indeed, (uv)ω < vω ⇔
v(uv)ω < vvω ⇔ (vu)ω < vω. J

Note that previous corollary implies a result proved by Bergman in [4, Lemma 5.1] (see
also [23, p.34 and pp.101–102]).

I Corollary 12. Let u, v be two finite words such that uω < vω. Then

uω < (uv)ω < (vu)ω < vω. (1)

Another immediate consequence of Corollary 11 is that one can define the “infinite order”
without any explicit use of infinite words, as stated by the following corollary.

I Corollary 13. Let u, v be two finite words. Then uω < vω if and only if uv < vu.

CPM 2019



2:6 Some Variations on Lyndon Words

4 Lyndon words

In this section we show some fundamental properties of Lyndon words by using the infinite
order, instead of the classical lexicographical order. Moreover, the infinite order allows to
introduce an innovative point of view about Lyndon words, by taking into account conditions
on the prefixes of a word (instead that only on the suffixes). In particular, we derive a result
by Ufnarovskij (Corollary 17) that characterizes a Lyndon word as a word which is greater
(with respect to the infinite order) than its proper prefixes.

Let us start with the classical definition of Lyndon words in terms of the usual lexico-
graphical order (see, for instance, [11]).

I Definition 14. A word w is a Lyndon word if any one of the following three equivalent
conditions holds:
(i) for any nontrivial factorization w = uv, u < v,
(ii) for any nontrivial factorization w = uv, uv < v,
(iii) for any nontrivial factorization w = uv, uv < vu.

The following theorem provides a characterization of Lyndon words by using the infi-
nite order.

I Theorem 15. A word w is a Lyndon word if and only if, for any nontrivial factorization
w = uv, any one of the six equivalent conditions of Corollary 11 holds.

Proof. From Corollary 13 it follows that condition (iii) of Definition 14 is equivalent to
condition (1) of Corollary 11. J

In next corollary (part of whose has already been proved, in a more general context,
in [22, Proposition 2.1], see also [10]) we highlight conditions (1) and (2) of Corollary 11.
Even though such conditions show some formal similarity with the conditions (i) and (ii) of
Definition 14, they are essentially different.

I Corollary 16. A word w is a Lyndon word if and only if one of the following condition is
satisfied for any nontrivial factorization w = uv:
1. uω < vω.
2. wω < vω.

The following result, due to Ufnarovskij (see also [23, Theorem 2, p.35]) follows from
Theorem 15 and condition (5) of Corollary 11. It provides a characterization of a Lyndon
word that takes into account its prefixes, instead than its suffixes.

I Corollary 17 (Ufnarovskij). A word w is a Lyndon word if and only if for any nontrivial
factorization w = ps, one has pω < wω.

I Example 18. The word w = aabab is a Lyndon word. We have aω = (aa)ω < (aaba)ω <
(aab)ω < wω.

The following result is classical (see, for instance [17]).

I Theorem 19. Each word in A∗ can be factorized in a unique way as a nonincreasing
product of Lyndon words.

The term ”nonincreasing” in the previous theorem is referred to the classical lexicograph-
ical order. The following theorem (cf. [6, Theorem 8]) shows that the factorization in Lyndon
words is non-increasing also with respect to the infinite order.
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I Theorem 20. Let u, v be two Lyndon words. Then u < v if and only if uω < vω,

Proof. Suppose that u < v. If u is not a prefix of v, then obviously uω < vω.
If u is a prefix of v, then v = uy, for some nonempty word y. From u < v and v < y

(since v is a Lyndon word) we get u2 < uy = v , and thus uω < vω.
To prove the converse implication, let us suppose that uω < vω. By contradiction,

suppose v < u. By the first part of the proof we would have vω < uω, which gives us
a contradiction. J

In the following theorem we characterize the last element of the factorization in Lyndon
words by using the infinite order.

I Theorem 21. Let w = `1`2 · · · `n, with `i Lyndon words such that `ω1 ≥ `ω2 ≥ . . . ≥ `ωn.
Then `n is the shortest among all nontrivial suffixes s of w such that sω is minimum.

Proof. Let z be the shortest among all nontrivial suffixes of w such that sω is minimum. If
w = z then w is a Lyndon word and `1 = `n = z.

Otherwise, we can write w = uz. Consider the factorization of u in Lyndon words:
u = `′1`

′
2 · · · `′k, with `′ω1 ≥ `′ω2 ≥ · · · ≥ `′ωk . By hypothesis, (`′kz)ω > zω. Then, using

Corollary 11, one has `′ωk > zω. It follows that `′1`′2 · · · `′kz is a non-increasing factorization of
w in Lyndon words. Since the factorization is unique, we have that z = `n. J

I Example 22. Let w = ababaab. Its non-increasing factorization into Lyndon words is
w = (ab)(ab)(aab). One can check that (aab)ω < (abaab)ω < wω < (ab)ω < (baab)ω <

(babaab)ω < bω.

In the previous results we gave a characterization of the last element of the factorization
of a word in Lyndon words. Now, we focus on the first factor. This result is motivated by
point 1 of Corollary 16: the fact that a word w is not a Lyndon word implies the existence of
a prefix u such that uω ≥ vω, where v is the corresponding suffix. If one chooses the shortest
prefix satisfying this property, this turns out to be the first factor in the Lyndon factorization.
In the same vein, it is motivated by Ufnarovskijj’s Theorem (Corollary 17 above).

I Theorem 23. Let w = `1`2 · · · `n be the nonincreasing factorization into Lyndon words of
a finite nonempty word w.
1. The word `1 is the shortest nontrivial prefix p of w such that, when writing w = ps, one

has either s = 1 or pω ≥ sω.
2. The word `1 is the shortest nontrivial prefix p of w such that pω ≥ wω.

In order to prove Theorem 23 we need a preliminary result which refines Corollary 11 in
the case of the usual lexicographical order.

Note that, for any infinite words s, t such that s < t, with < the classical order, and for
any finite word w, one has ws < wt.

I Corollary 24. If `1, `2, . . . , `n, with n ≥ 2, are Lyndon words such that `ω1 ≥ `ω2 ≥ · · · ≥ `ωn,
then `ω1 ≥ (`2 · · · `n)ω.

Proof. The case n = 2, it is trivial. Let consider the case n ≥ 3. By induction hypothesis
we have `ω2 ≥ (`3 · · · `n)ω. From Corollary 11 it follows that `ω2 ≥ (`2 · · · `n)ω. Hence,
`ω1 ≥ (`2 · · · `n)ω. J

It order to prove Theorem 23 let us recall the well-known fact that all Lyndon words are
unbordered (see, for instance, [7]).

CPM 2019



2:8 Some Variations on Lyndon Words

Proof of Theorem 23. Let us prove the first assertion. When n = 1, then w = `1 is a
Lyndon word and the result is true by point 1 of Corollary 16.

Suppose now that n ≥ 2. Then, by Corollary 24, we have `ω1 ≥ (`2 · · · `n)ω. Let p be a
nontrivial prefix of w shorter then `1. Thus, we have a nontrivial factorization `1 = pq for
some q 6= 1. By Corollary 16, we know that pω < qω. Since `1 is unbordered, q cannot be
a fractional power of p. Thus, by point (ii) of Lemma 8, one has pω < (q`2 · · · `n)ω, which
prove the first part of the theorem.

The second assertion just follows from the first one. Indeed, using Corollary 11, we have
that if s 6= 1, then pω ≥ sω is equivalent to pω ≥ (ps)ω. J

I Example 25. Let w = ababaab. As seen in Example 22, its nonincreasing factorization
into Lyndon words is w = (ab)(ab)(aab). One can check that (ab)ω > wω > (abaab)ω while
aω < wω < (babaab)ω.

5 Left Lyndon tree and prefix standardization

In [15], the authors associate with each Lyndon word w an increasing tree, based on the
suffixes of w; they show that the completion of this tree, with leaves appropriately labeled
by the letters of w, is equal to the tree obtained by iterating the right standard factorization
of w (equivalently the Lie bracketing associated with w).

In this section we give a similar construction and result, based on the prefixes of w instead
that on the suffixes. This construction is motivated by Ufnarovskij’s Theorem (Corollary 17).

5.1 Left Lyndon tree
In [24] (cf. also [5]) Viennot introduced the notion of left standard factorization of a
Lyndon word. Let us consider a Lyndon word w having length at least 2. The left standard
factorization of w is the factorization w = uv, where u is the longest nonempty proper prefix
of w which is a Lyndon word.

The following is a well-known result (see [24, p. 14]).

I Proposition 26. Let w = uv be a Lyndon word with its left standard factorization. Then
both u and v are Lyndon words and u < v. Moreover, either v is a letter, or given its left
standard factorization v = v1v2 one has v1 ≤ u.

I Corollary 27. Let u, v, v1 and v2 as in Proposition 26. Then v1 is a prefix of u.

Proof. By Proposition 26 we have v1 ≤ u < v1v2. By a classical property of lexicographical
order, this implies that u = v1m, for a certain word m such that m < v2. Thus v1 is a prefix
of u. J

I Example 28. Let us consider the Lyndon word w = aabaacab on the alphabet {a, b, c}
with a < b < c. Its left standard factorization is w = (aabaac)(ab). The suffix v = ab is a
Lyndon word with left standard factorization (a)(b) and one has a ≤ aabaac.

The free magma M(A) over A is the set of complete trees over A defined recursively as
follows:

each letter is a tree;
if t1, t2 are trees, then (t1, t2) is a tree.

We will use the classical notions of root, internal node and leaf for a tree.
There is a canonical surjective mapping ϕ from M(A) onto A+ defined as follows: given

a tree t, its image ϕ(t), called its foliage, is defined recursively by:
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x1

a

a b

x2

a x3

a c

a b

Figure 1 The left Lyndon tree of w = aabaacab.

ϕ(a) = a for any a in A;
ϕ((t1, t2)) = ϕ(t1)ϕ(t2) for any two trees t1, t2.

In other words, ϕ(t) is obtained by vertically projecting the leaves of t onto a horizontal line.

I Example 29. The foliage of the tree in Figure 1 is the word aabaacab.

To each Lyndon word in A+ we can associate a complete tree L(w) in M(A), called the
left Lyndon tree of w, defined recursively as follows:
L(a) = a for each letter a ∈ A;
L(w) = (L(u),L(v)) for each Lyndon word w of length at least 2 with left standard
factorization w = uv.

It is clear by the definition that ϕ(L(w)) = w.

I Example 30. The left Lyndon tree associated to the Lyndon word w = aabaacab is shown
in Figure 1 (disregarding the labels of the internal nodes).

5.2 Prefix standardization
Consider an alphabet A and a total order < on A. We define an order ≺ on the free monoid
as follows: u ≺ v if either

uω < vω, or
uω = vω (which means that u, v are power of the same word) and if u is longer than v.

I Example 31. Let us consider the above order on {a, b}∗ induced by a < b . One has
aa ≺ a ≺ ab ≺ ba ≺ b.

Let w be a word of length n + 1 on a totally ordered alphabet. Let us consider the
sequence p1, p2, . . . , pn, pn+1 = w of its nonempty prefixes, in increasing length.

Motivated by Ufnarovskij’s Theorem (Corollary 17), we call prefix standard permutation
of w the unique permutation σ ∈ Sn+1 such that

pσ−1(1) ≺ pσ−1(2) ≺ . . . ≺ pσ−1(n) ≺ pσ−1(n+1).

In other words, we number each letter in w by 1, 2, . . . , n, n+ 1 as follows: 1 for the letter
where the ≺-smallest prefix ends, 2 for the second smallest one in the order ≺, and so on.
Then σ is the represented by the word w translated in this new alphabet. We denote such a
permutation by pstd(w).
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Figure 2 The tree C(aabaacab).

I Example 32. The prefix standard permutation of the word w = aabaacab is the per-
mutation pstd(w) = 21543768. Indeed on can check that aa ≺ a ≺ aabaa ≺ aaba ≺ aab ≺
aabaaca ≺ aabaac ≺ w.

I Remark 33. In [15] the authors define the “suffix standard permutation” of a word. In
literature, this is also commonly known as “inverse suffix array”. Therefore, our prefix
standard permutation could also be called “inverse prefix array”.

An injective word is a word without repetition of letters. Each permutation in Sn can
be seen as a complete injective word, that is an injective word in the ordered alphabet
{1 < 2 < . . . < n}, having all n letters as factors.

With each injective word α on a totally ordered alphabet, and in particular with each
permutation α ∈ Sn, we can associate bijectively a binary noncomplete labeled decreasing
tree (i.e., such that each node is smaller than its father) defined recursively as follows:

the root is n, the maximum letter in α;
its left and right subtrees (which may be empty) are the trees associated to u and v

respectively, where u, v are injective words in {1, 2, . . . , n} such that α = unv.

The inverse bijection is obtained by vertically projecting the labels on the horizontal line.

I Example 34. The decreasing tree associated to α = 2154376 is the tree shown in Figure 2
restricted to its internal nodes.

Let us now associate a tree with a Lyndon word, called the left Cartesian tree of w, and
denoted C(w), as follows (see also [9] and the references there). To each letter a ∈ A we
define C(a) = a. Otherwise, let σ = pstd(w) ∈ Sn+1, with |w| = n + 1, and let α ∈ Sn

be the permutation obtained by removing the last digit in σ (which is n + 1, because of
Corollary 17). Using the construction before we obtain a noncomplete binary decreasing tree
t∗ having n nodes. We define C(w) as the complete binary tree having t∗ as tree of internal
nodes and the letters of w as leaves in order from left to right, i.e., such that ϕ(t) = w.

I Example 35. The tree C(w) for w = aabaacab is shown in Figure 2.

For our purpose, we give an alternative construction of C(w). Consider the sequence of
proper prefixes (p1, p2, . . . , pn) of w, viewed as a word of length n on the alphabet A∗, totally
ordered by ≺. Since it is an injective word, we can associate with it a decreasing tree as
before; call it t∗(w). Also as before, we can complete t∗(w) to a tree t(w), having the letters
of w as leaves in ordrer from left to right, i.e., such that ϕ(t(w)) = w. The completed tree
t(w), disregarding the labels of the internal nodes, coincides with C(w). Indeed, the word α
coincides with the previous injective word, up to the unique increasing order isomorphism
from {1, . . . , n} into the set of proper prefixes of w, sending i to the i-th prefix for the order ≺.
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5.3 Equivalence of the trees
From the constructions seen before it is clear that ϕ(L(w)) = ϕ(C(w)) for every Lyndon
word w. We actually have a stronger result.

I Theorem 36. Let w be a Lyndon word. The trees L(w) and C(w) are equal.

To prove the theorem we need some intermediate result. Let x be an internal node of
some planar binary complete tree t = (t1, t2). We call left subtrees sequence with respect to
the tree t and the node x, denoted lss(t, x), the sequence of subtrees of t hanging at the left
of the path from the root to x, that is the sequence of subtrees of t recursively defined as
follows:

if x is the root, then lss(t, x) = (t1);
if x is in t1, then lss(t, x) = lss(t1, x);
if x is in t2, then lss(t, x) = (t1, lss(t2, x)).

I Lemma 37. Let w be a Lyndon word and let x be an internal node of L(w). Let lss(t, x) =
(t1, . . . , tn) and let `i be the foliage of the tree ti for each i. Then all `i are Lyndon words.
Moreover, `i+1 is a prefix of `i for each 1 ≤ i ≤ n− 1.

Proof. The fact that each `i is a Lyndon word follows from the more general fact that the
foliage of each subtree of L(w) is a Lyndon word, as follows recursively from the construction
of L(w).

We prove the other assertion by induction on the size of the tree. If x is the root, then
n = 1 and there is nothing to prove.

Let us suppose that x is not the root of the tree and let us write L(w) = (t′, t′′).
If x is an internal node of t′, then lss(t, x) = lss(t′, x), and we can conclude by induction.
Suppose now that x is an internal node of t′′, and let t′′ = (s1, s2). Thus lss(t, x) =

(t1, t2, . . . , tn), with t1 = t′ and (t2, . . . tn) = lss(t′′, x) (note that n ≥ 2). By induction it is
enough to show that `2 is a prefix of `1. Let v1, v2 be respectively the foliages of s1, s2. Then
by the property of the left standard factorization and by the construction of the tree L(w),
we have that v1 is a prefix of `1. Now either x is in s2 and t2 = s1 and `2 = v1 or x is in s1
and `2 is a proper prefix of v1 In both cases `2 is a prefix of `1. J

I Example 38. Let us consider the tree t in Figure 1 and its internal node x3. The left
subtrees sequence lss(t, x3) is equal to (t1, t2, t3), where ti is the subtree of t having root xi.
The foliages of the three subtrees are respectively the words `1 = aab, `2 = a and `3 = a.
Each of them is a prefix of the previous one.

I Lemma 39. Let `1, . . . , `n, be Lyndon words such that `i+1 is a prefix of `i for each
i = 1, . . . , n− 1. Let `n = `′n`

′′
n be the left standard factorization of `n. Then

(i) (`1 · · · `n−1`
′
n)ω < (`1 · · · `n)ω;

(ii) moreover, if n ≥ 2, one has (`1 · · · `n)ω ≤ (`1 · · · `n−1)ω.

Proof. If n = 1, we have `′ω1 < `′′ω1 by Corollary 16 and `′ω1 < (`′1`′′1)ω by Corollary 11. Hence
`′ω1 < `ω1 .

Suppose now that n ≥ 2. Since both (`1 · · · `n−1`
′
n)ω and (`1 · · · `n)ω start with the word

`1 · · · `n−1`
′
n, we have

(`1 · · · `n−1`
′
n)ω < (`1 · · · `n)ω ⇐⇒ (`1 · · · `n−1`

′
n)ω < `′′n(`1 · · · `n)ω.

Since `n is a prefix of `1, the last inequality is of the form `ns0 < `′′nt0, with s0, t0 ∈ Aω, and
this is true since `n < `′′n by Corollary 16 and because `n is not a prefix of `′′n.
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Figure 3 Variant of the left Lyndon tree of w = aabaacab labeling the internal nodes with their
left foliage.

Let us now prove point (ii). If `1 = `2 = · · · = `n, we trivially have (`1 · · · `n)ω =
(`1 · · · `n−1)ω. Thus, let us suppose that `1 6= `n. Since both terms of the inequality start
with `1 · · · `n−1, we have

(`1 · · · `n)ω ≤ (`1 · · · `n−1)ω ⇐⇒ `n(`1 · · · `n)ω ≤ (`1 · · · `n−1)ω.

Since `n is a prefix of `1, and `n 6= `1 we can write `1 = `nv for a nonempty finite word v.
Thus, the last inequality is of the form `n`1s0 ≤ `nvt0 with s0, t0 ∈ Aω, and this is equivalent
to `1s0 ≤ vt0, which is true because of Corollary 16. J

Before proving the main result let us introduce the following notation. Let t = (t1, t2) be
a complete binary labeled tree. To each internal node x of t we associate the word gt(x),
called the left foliage of x in t, as follows:

if x is the root of t, then gt(x) = ϕ(t1);
if x is in t1, then gt(x) = gt1(x);
if x is in t2, then gt(x) = ϕ(t1)gt2(x).

For further use, we note that the length of gt(x) is equal to the number of leaves located
at the left of x in t.

Also, we use the following result.

I Lemma 40. Let t be a complete binary labeled tree and x an internal note of t. Then
gt(x) = `1 · · · `n, where `1, . . . , `n are the foliages of the trees hanging at the left on the path
from the root to x.

Proof. Let lss(t, x) = (t1, . . . , tn). We have to show that gt(x) = ϕ(t1) · · ·ϕ(tn). This follows
easily from the recursive definition of both lls and g. J

I Example 41. The label shown in Figure 3 is obtained by relabeling the internal nodes of
the tree L(w) in Figure 1, using the left foliage function.

Proof of Theorem 36. Let us consider the two trees L(w) and C(w). Note first that they
have the same foliage. So, in order to prove the equality, it is enough to show that the two
trees obtained from L(w) and C(w) by removing the leaves (that is, considering only the
internal nodes) are equal.

We actually show that by labeling the internal nodes of L(w) using the function gt, we
obtain the same tree as C(w). For this it is enough to show that the labeling gt is decreasing,
and that its projection is exactly the sequence (p1, . . . , pn) of nonempty prefixes of w. Indeed,
the decreasing tree associated with an injective word on a totally alphabet is unique.
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Let us consider two internal nodes x and y of t, such that y is a child of x. We show that
gt(y) ≺ gt(x), i.e., that either

gt(y)ω < gt(x)ω, or
gt(y)ω = gt(x)ω and |gt(y)| > |gt(x)|.

Suppose first that y is a right child of x and denote by h1, . . . , hn the foliages of the subtrees
in the sequence lss(t, y). We have n ≥ 2, and by Lemma 40 gt(x) = h1 · · ·hn−1, and
gt(y) = h1 · · ·hn. Thus gt(y) ≺ gt(x) follows from Lemmata 37 and 39 and from the fact
that |gt(y)| > |gt(x)|.

Suppose now that y is a left child of x. Let lss(t, x) = (t1, . . . , tn), with tn = (t′n, t′′n).
Then lss(t, y) = (t1, . . . , tn−1, t

′
n). Let hi be the foliage of ti for each 1 ≤ i ≤ n, and h′n be

the foliage of t′n. Thus gt(x) = h1 · · ·hn and gt(y) = h1 · · ·hn−1h
′
n. Thus gt(x) ≺ gt(y) by

the Lemmata 37 and 39.
It remains to show that the projection is exactly (p1, . . . , pn). This follows from the fact

the length of gt(x) is equal to the number of leaves located at the left of a given node x;
hence gt(x) is the prefix of w of length this number. We conclude because the lengths of the
successive projections of the internal nodes increase by 1 from left to right. J

I Example 42. Let w = aabaacab. The tree L(w) with each internal node x labeled by
gL(w)(x) (as described in the proof of Theorem 36) is shown in Figure 3.
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