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—— Abstract

A partition (Vi,..., Vi) of the vertex set of a graph G with a (not necessarily proper) colouring c is
colourful if no two vertices in any V; have the same colour and every set V; induces a connected
graph. The COLOURFUL PARTITION problem, introduced by Adamaszek and Popa, is to decide
whether a coloured graph (G, ¢) has a colourful partition of size at most k. This problem is related to
the COLOURFUL COMPONENTS problem, introduced by He, Liu and Zhao, which is to decide whether
a graph can be modified into a graph whose connected components form a colourful partition by
deleting at most p edges.

Despite the similarities in their definitions, we show that COLOURFUL PARTITION and COLOURFUL
CoMPONENTS may have different complexities for restricted instances. We tighten known NP-hardness
results for both problems by closing a number of complexity gaps. In addition, we prove new hardness
and tractability results for COLOURFUL PARTITION. In particular, we prove that deciding whether a
coloured graph (G, ¢) has a colourful partition of size 2 is NP-complete for coloured planar bipartite
graphs of maximum degree 3 and path-width 3, but polynomial-time solvable for coloured graphs of
treewidth 2.

Rather than performing an ad hoc study, we use our classical complexity results to guide us in
undertaking a thorough parameterized study of COLOURFUL PARTITION. We show that this leads to
suitable parameters for obtaining FPT results and moreover prove that COLOURFUL COMPONENTS
and COLOURFUL PARTITION may have different parameterized complexities, depending on the
chosen parameter.
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1 Introduction

Research in comparative genomics, which studies the structure and evolution of genomes
from different species, has motivated a number of interesting graph colouring problems. In
this paper we focus on the multiple genome alignment problem, where one takes a set of
sequenced genomes, lets the genes be the vertex set of a graph G, and joins by an edge any
pair of genes whose similarity (determined by their nucleotide sequences) exceeds a given
threshold. The vertices are also coloured to indicate the species to which each gene belongs.
This leads to a coloured graph (G,c), where ¢ : V(G) — {1,2,...} denotes the colouring
of G. We emphasize that ¢ is not necessarily proper (that is, adjacent vertices may have the
same colour).

One seeks to better understand the evolutionary processes affecting these genomes by
attempting to partition similar genes into orthologous sets (that is, collections of genes that
originated from the same ancestral species but diverged following a speciation event). This
translates into partitioning V' (G) such that each part

(i) contains no more than one vertex of each colour, and

(ii) induces a connected component.
These two conditions ensure that each part contains vertices representing an orthologous set
of similar genes. In addition, one seeks to find a partition that is in some sense optimal.

When Zheng et al. [14] considered this model, one approach they followed was to try to
delete as few edges as possible such that the connected components of the resulting graph G’
are colourful, that is, contain no more than one vertex of any colour; in this case the connected
components give the partition of V(G). This led them to the ORTHOGONAL PARTITION
problem, introduced in [8], also known as the COLOURFUL COMPONENTS problem [1, 2, 7].
(Note that a graph is colourful if each of its components is colourful.)

COLOURFUL COMPONENTS
Instance: A coloured graph (G, c¢) and an integer p > 1
Question: Is it possible to modify G into a colourful graph G’ by deleting at most p edges?

The focus of this paper is on the companion problem COLOURFUL PARTITION, which was
introduced by Adamaszek and Popa [1]. A partition is colourful if every partition class
induces a connected colourful graph. The size of a partition is its number of partition classes.

COLOURFUL PARTITION
Instance: A coloured graph (G, c) and an integer k > 1

Question:  Does (G, c¢) have a colourful partition of size at most k7

Let us immediately demonstrate with an example that COLOURFUL COMPONENTS and
COLOURFUL PARTITION are distinct: a colourful partition with the fewest parts might
require the deletion of more edges than the minimum needed to obtain a colourful graph.
This has not previously been clearly established. Later, we will find a family of instances on
which the problems have different complexities (see Corollary 11).

» Example 1. Let G have vertices uq, ..., ug, v1,..., 0, w,w and edges ww’ and w;w, u;w’,
viw, viw' for i € {1,...,k}. Let ¢ assign colour ¢ to each u; and v;, colour k + 1 to w and
colour k42 to w’. Then ({us,...,ur, w}, {v1,..., vk, w'}) is a colourful partition for (G, ¢) of

size 2, which we obtain by deleting 2k + 1 edges. However, deleting the 2k edges v;w and v;w’
for i € {1,...,k} also yields a colourful graph (with a colourful partition of size k + 1). See
Figure 1 for an illustration.
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Figure 1 The graph G of Example 1 with k = 5.

Known Results. Adamaszek and Popa [1] proved, among other results, that COLOURFUL
PARTITION does not admit a polynomial-time approximation within a factor of nﬁ’e, for
any € > 0 (assuming P # NP). A coloured graph (G, ¢) is ¢-coloured if 1 < ¢(u) < £ for all
u € V(G). Bruckner et al. [2] proved the following two results for COLOURFUL COMPONENTS.
The first result follows from observing that for £ = 2, the problem becomes a maximum
matching problem in a bipartite graph after removing all edges between vertices coloured
alike. This observation can also be used for COLOURFUL PARTITION.

» Theorem 2 ([2]). COLOURFUL PARTITION and COLOURFUL COMPONENTS are polynomial-
time solvable for 2-coloured graphs.

» Theorem 3 ([2]). COLOURFUL COMPONENTS is NP-complete for 3-coloured graphs of
mazximum degree 6.

The situation for trees is different than for general graphs (see Example 1). A tree T has
a colourful partition of size k if and only if it can be modified into a colourful graph by at
most k — 1 edge deletions. Hence, the problems COLOURFUL PARTITION and COLOURFUL
COMPONENTS are equivalent for trees. The following hardness and FPT results are due to
Bruckner et al. [2] and Dondi and Sikora [7]. Note that trees of diameter at most 3 are
stars and double stars (the graph obtained from two stars by adding an edge between their
central vertices), for which both problems are readily seen to be polynomial-time solvable. A
subdivided star is the graph obtained by subdividing the edges of a star.

» Theorem 4 ([2]). COLOURFUL PARTITION and COLOURFUL COMPONENTS are polynomial-
time solvable for coloured trees of diameter at most 3, but NP-complete for coloured trees of
diameter 4.

» Theorem 5 ([7]). COLOURFUL PARTITION and COLOURFUL COMPONENTS are polynomial-
time solvable for coloured paths (which have path-width at most 1), but NP-complete for
coloured subdivided stars (which are trees of path-width at most 2).

» Theorem 6 ([2]). COLOURFUL PARTITION and COLOURFUL COMPONENTS are FPT for
coloured trees, when parameterized by the number of colours.

» Theorem 7 ([7]). COLOURFUL PARTITION and COLOURFUL COMPONENTS are FPT for
coloured trees, when parameterized by the number of colourful components (or equivalently,
by the size of a colourful partition).

In addition to Theorem 6, Bruckner et al. [2] showed that COLOURFUL COMPONENTS is
FPT for general coloured graphs when parameterized by the number of colours ¢ and the
number of edge deletions p. Misra [10] considered the size of a minimum vertex cover as
the parameter.
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» Theorem 8 ([10]). COLOURFUL COMPONENTS is FPT when parameterized by vertex
cover number.

Our Contribution.! Our main focus is the COLOURFUL PARTITION problem. We consider
particular graph classes and, for FPT results, parameters. Our choices have a clear motivation
as, guided by past work, we seek the key to understanding the problem’s (in)tractability.
That is, our aims are: (i) to improve known NP-hardness results by obtaining tight results
and to generalize tractability results for COLOURFUL PARTITION (Section 3); (ii) to prove
new results analogous to those known for COLOURFUL COMPONENTS (Section 3) and to
show that the two problems are different (Sections 3 and 4); and (iii) to use the new results
to determine suitable parameters for obtaining FPT results (Section 4). Along the way we
also prove some new results for COLOURFUL COMPONENTS.

First, we show an analogue of Theorem 3 by proving that COLOURFUL PARTITION is
NP-complete even for 3-coloured 2-connected planar graphs of maximum degree 3. The
bounds on this result are best possible, as COLOURFUL PARTITION is polynomial-time
solvable for 2-coloured graphs (Theorem 2) and for graphs of maximum degree 2 (trivial).
We show that it also gives us a family of instances on which COLOURFUL COMPONENTS and
COLOURFUL PARTITION have different complexities.

Second, we focus on coloured trees. Due to Theorem 6, COLOURFUL PARTITION is
polynomial-time solvable for ¢-coloured trees for every fixed ¢. Hence the coloured trees
in the hardness proofs of Theorems 4 and 5 use an arbitrarily large number of colours.
They also have arbitrarily large degree. We define the colour-multiplicity of a coloured
graph (G, ¢) as the maximum number of vertices in G with the same colour. We prove that
COLOURFUL PARTITION is NP-complete even for coloured trees of maximum degree 6 and
colour-multiplicity 2. As both problems are equivalent on trees, we obtain the same result for
COLOURFUL COMPONENTS (note that the graphs in the proof of Theorem 3 are not trees).

Third, we fix the number k of colourful components, which gives us the k-COLOURFUL
PARTITION problem. For every k > 1, this problem is polynomial-time solvable for coloured
trees (due to Theorem 7) and for ¢-coloured graphs for every fixed ¢ (such graphs have
at most k¢ vertices). We prove that 2-COLOURFUL PARTITION is NP-complete for split
graphs and for coloured planar bipartite graphs of maximum degree 3 and path-width 3,
but polynomial-time solvable for coloured graphs of treewidth at most 2. The latter two
results form our main results. They complement Theorem 5, which implies NP-completeness
of COLOURFUL PARTITION for path-width 2.

In Section 4 we show that COLOURFUL PARTITION and COLOURFUL COMPONENTS are
FPT when parameterized by the treewidth and the number of colours. This generalizes
Theorem 6. Our choice for this combination of parameters was guided by our results from
Section 3. Our results imply that for the six natural parameters: number of colourful
components; maximum degree; number of colours; colour-multiplicity; path-width; treewidth;
and all their possible combinations, we have obtained either para-NP-completeness or an FPT
algorithm for COLOURFUL PARTITION. This motivates the search for other parameters for
this problem. As the vertex cover number of the subdivided stars in the proof of Theorem 5
can be arbitrarily large, it is natural to consider this parameter. As an analogue to Theorem 8,
we prove that COLOURFUL PARTITION is FPT when parameterized by vertex cover number.
A vertex u of a coloured graph (G,c) is uniquely coloured if its colour ¢(u) is not used

1 Since this paper was submitted, Chlebikova and Dallard have independently extended some of our
results [5].
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on any other vertex of G. It is easy to show NP-hardness for COLOURFUL PARTITION
and COLOURFUL COMPONENTS for instances with no uniquely coloured vertices (see also
Theorem 12). By uncovering a surprising connection with the Robertson-Seymour graph
minors project, we also prove that, when parameterized by the number of non-uniquely
coloured vertices, COLOURFUL COMPONENTS is para-NP-hard and COLOURFUL PARTITION
is FPT. Thus there are families of instances on which the two problems have different
parameterized complexities.

2 Preliminaries

All our graphs are simple, with no loops or multiple edges. Let G = (V, E) be a graph. A
subset U C V is connected if it induces a connected subgraph of G. For a vertex u € V,
N(u) = {v | wv € E} is the neighbourhood of u, and deg(u) = |N(u)| is the degree of u. A
graph is cubic if every vertex has degree exactly 3. A connected graph on at least three vertices
is 2-connected if it has no vertex whose removal disconnects the graph. A graph G = (V, E)
is split if V' can be partitioned into two (possibly empty) sets K and I, where K is a clique
and I is an independent set. A mapping ¢ : E — {1,2,3} is a proper 3-edge colouring of G if
c(e) # c(f) for any two distinct edges e and f with a common end-vertex. A set S C Visa
vertex cover of G if G— .S is an independent set. The VERTEX COVER problem asks if a graph
has a vertex cover of size at most s for a given integer s. The vertex cover number ve(G) of
a graph G is the minimum size of a vertex cover in G. We use the following lemma.

» Lemma 9 ([4]). VERTEX COVER is NP-complete for 2-connected cubic planar graphs with
a proper 3-edge colouring given as input.

A tree decomposition of a graph G is a pair (T, X') where T is a tree and X = {X; | i € V(T)}
is a collection of subsets of V(G), called bags, such that
1. UieV(T) Xi =V(G);
2. for every edge zy € E(G), there is an ¢ € V(T') such that z,y € X;; and
3. for every z € V(G), the set {i € V(T') | x € X;} induces a connected subtree of T
The width of (T, X) is max{|X;| —1 | i € V(T)}, and the treewidth of G is the minimum
width over all tree decompositions of G. If T is a path, then (T, X) is a path decomposition
of G. The path-width of G is the minimum width over all path decompositions of G.

For some of our proofs we use variants of the SATISFIABILITY problem. Note here only that
in instances of the NP-complete problem NOT-ALL-EQUAL POSITIVE 3-SATISFIABILITY [12],
each clause contains three positive literals and the problem is to find a truth assignment 7
where each clause contains at least one true literal and at least one false literal. In this
context we call such a 7 satisfying.

In the remainder of this paper, proofs of results and claims marked (#) are omitted.

3 Classical Complexity

We will prove four hardness results and one polynomial-time result on COLOURFUL PARTITION.
Note that COLOURFUL PARTITION belongs to NP. We start by proving the following result.

» Theorem 10. COLOURFUL PARTITION is NP-complete for 3-coloured 2-connected planar
graphs of maximum degree 3.

Proof Sketch. We use a reduction from VERTEX COVER. By Lemma 9 we may assume that
we are given a 2-connected cubic planar graph G with a proper 3-edge colouring c¢. From G
and ¢ we construct a coloured graph (G', ') as follows.
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Figure 2 The blue 9-vertex gadget for a vertex v incident to edges e, e2, e3 in GG, connected to
the three red vertices Ve, , Ve,, Ves in G” in the proof of Theorem 10.

For each e € E(G) with c(e) = 4, create a vertex v, with colour ¢(v.) =4 in G’ (a red
vertex).

For every vertex v € V(G) with incident edges ey, e, e5 (with colours 1, 2, 3, respectively),
create a copy of the 3-coloured 9-vertex gadget shown in Figure 2 (a blue set), and connect
it to the red vertices ve,, ve, and ve,, as shown in the same figure.

Note that G’ is 3-coloured, 2-connected, planar and has maximum degree 3. We claim
that G has a vertex cover of size at most s if and only if G’ has a colourful partition of size
at most 3n + s (M). <

The coloured graph (G’,¢’) constructed in the proof of Theorem 10 can be modified into a
colourful graph by omitting exactly one edge adjacent to each red vertex and exactly three
edges inside each blue component. It can be readily checked that this is the minimum number
of edges required. Hence COLOURFUL COMPONENTS is polynomial-time solvable on these
coloured graphs (G’,¢’), whereas COLOURFUL PARTITION is NP-complete. Thus we have:

» Corollary 11. There exists a family of instances on which COLOURFUL COMPONENTS and
COLOURFUL PARTITION have different complezities (assuming P # NP ).

We now present our second, third and fourth NP-hardness results. The last condition in
Theorem 12 shows that the number of uniquely coloured vertices is not a useful parameter.

» Theorem 12 (#). COLOURFUL PARTITION and COLOURFUL COMPONENTS are NP-
complete for coloured trees with maximum degree at most 6, colour-multiplicity 2, and no
uniquely coloured vertices.

» Theorem 13 (#). 2-COLOURFUL PARTITION is NP-complete for coloured split graphs.

» Theorem 14 (#). 2-COLOURFUL PARTITION is NP-complete for coloured planar bipartite
graphs of mazximum degree 3 and path-width 3.

We complement Theorem 14 with a positive result (Theorem 15) whose bounds are best
possible due to Theorem 14. The idea behind it is that the sets Vi and V5 of a colourful
partition of size 2 form connected subtrees in a tree decomposition. Branching over all
options, we “guess” two vertices a and b of one bag assigned to different sets V;. By exploiting
the treewidth-2 assumption we can translate the instance into an equivalent instance of
2-SATISFIABILITY.?

2 A graph has treewidth at most 2 if and only if every 2-connected component is a series-parallel graph.
This fact can be used for an alternative proof of Theorem 15.
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Figure 3 Illustration of the polynomial-time algorithm for treewidth 2. Top: an input graph
(the vertex colouring is not represented), with a partition cutting (a,b), i.e. a is in one part, b is
in the other. Bottom-left: a tree-decomposition of the graph satisfying Properties 1, 2 and 3. The
bags in the head subtree are in bold. Precuts computed as in Claim 19 are shown using colours
on the top line of bags that have precuts. For example, the bag {d, b, f} is precut on (d,b), as can
be verified directly in the graph (if d, b and f are not all in the same part of an (a, b)-partition,
then d must be in the same part as a). Here f is attached to b, and e is attached to a but not to b.
Bottom-right: the tree decomposition showing a possible output of the 2-SATISFIABILITY formula,
where the colours represent the values of each x,,.

» Theorem 15. 2-COLOURFUL PARTITION is polynomial-time solvable for coloured graphs
of treewidth at most 2.

Proof. Let (G, c) be a coloured graph on n vertices such that G has treewidth at most 2.
Without loss of generality we may assume that G is connected. We may assume that G is
not colourful, otherwise we are trivially done. If G has treewidth 1, then it is a tree and
we apply Theorem 7. Hence we may assume that G has treewidth 2. Let (T, X) be a tree
decomposition of G of width 2 (so all bags of X have size at most 3). We can obtain this
tree decomposition in linear time [13]. Let us state and then explain two properties that we
may assume hold for (T, X). These properties, along with the main definitions necessary for
our algorithm, are illustrated in Figure 3.

1. For any two adjacent nodes 4, j in T, one of X; and X strictly contains the other.
2. All bags are pairwise distinct.

In fact, what we will show is that if we find that (7', X') does not have these two properties,
then we can make simple changes to obtain a tree decomposition that does. First, if there are
two adjacent nodes ¢, j in 7" such that neither X; nor X; contains the other, we remove the
edge ij from T', create a new node k that is adjacent to both i and j and let X, = X; N X;.
Note that X}, # 0, as G is connected. We now have a tree decomposition that has Property 1
unless X; = X; for a pair of adjacent nodes i and j. But now for every pair of identical
bags X; and X, we delete j and make each of its neighbours adjacent to ¢ and so obtain a
tree decomposition with Properties 1 and 2.

20:7
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Let a and b be a fixed pair of adjacent vertices in G. Almost all of the remainder of this proof
is concerned with describing an algorithm that decides whether or not G has a colourful
partition of size 2 in which a and b belong to different parts. Clearly such an algorithm
suffices: we can apply it to each of the O(n?) pairs of adjacent vertices in G to determine
whether G has any colourful partition of size 2 (since such a partition must separate at least
one pair of adjacent vertices).

As a and b are adjacent, there is at least one bag that contains both of them. We may
assume that this bag is Xy = {a, b}; otherwise we add a new node 0 to T with X = {a, b}
and make 0 adjacent to 7 such that X; is a (larger) bag that contains both a and b.

We orient all edges of T" away from 0 and think of T" as being rooted at 0. We write i — j
to orient an edge from 4 to j. If i — j is present in 7', then i is the parent of j and j is a child
of i. The head subtree of T is the subtree obtained by removing all 1-vertex bags along with
all their descendants. For any oriented edge ¢ — j in T', we have either X; C X, or X; C X;
by Property 1. The tree T'[i] is the subtree of T rooted at i; in particular 7' = T'[0]. The
set V[i] denotes (J;ey () Xj- As we shall explain, we may assume the following property.

3. For any node i of T, the subgraph G[V[i]] induced by Vi] is connected.

It is possible that we must again modify the tree decomposition to obtain this property.
Suppose that it does not hold for some node i. That is, the vertices of V[i] can be divided
into two sets U and W such that there is no edge from U to W in G. We create two trees T} 7
and T; w that are isomorphic to T'[i]: for each vertex j in T'[i], we let jy and jw be the
corresponding nodes in 7; 7 and T; w respectively and let X;, = X, NU, X;, = X; NW.
Then the tree decomposition is modified by replacing T'[i] by T; v and T; w and making each
of iy and iy adjacent to the parent of i. (The vertex i certainly has a parent since i = 0
would imply that G is not connected.) If at any point we create a node whose associated bag
is empty or identical to that of its parent, we delete it and make its children (if it has any)
adjacent to its parent. Note that although the number of bags may increase through this
operation, the sum of the sizes of the bags of T can only decrease, and at least one bag gets
its size reduced, so overall this operation only needs to be applied a polynomial number of
times. In this way we obtain a decomposition that now satisfies each of Properties 1, 2 and 3.

We say that a colourful partition P = (V1,Va) of G is an (a, b)-partition if a € V1 and b € V;
and we say that P cuts a pair (uj,us) if u1 € V5 and ug € Va. We emphasize that the order
is important. A colourful partition P respects a bag X if X C V; or X C V5. Note that
every colourful partition respects all 1-vertex bags. Let X be a bag that contains vertices u
and v. Then X is precut on (u,v) if every (a,b)-partition either cuts (u,v) or respects X.
Note that X is precut on (a,b) by definition. We now prove three structural claims.

> Claim 16. If an (a, b)-partition P respects a bag X;, then it respects every X; with i — j.

Proof. Consider the set C of bags that are not respected by P. Then C is the intersection
of the set of bags containing at least one vertex from V; and the set of bags containing at
least one vertex from V5. Since both Vi and V5, are connected in G, the set of nodes whose
bags contain at least one vertex from V; and the set of nodes whose bags contain at least
one vertex from V5 induce subtrees of T'. Hence their intersection, C, is a set of nodes that
also induce a subtree of T'. Since (a,b) is not respected by P, we know 0 € C. This means
that if 7 is not in C, then for every other vertex j € T'[i], j cannot be in C. N

> Claim 17. Let ¢ — j be an oriented edge of T' with X; = {u,v} and |X;| = 3. If X; is
precut on (u,v), then X; is precut on (u,v).
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Proof. By Property 1, we know that X; C X, so X; contains u and v. Suppose (u,v) is a
precut on X; and let P be an (a, b)-partition. If P cuts (u,v) then we are done. Otherwise, P
respects X; = {u, v}, so by Claim 16, P also respects X;. Thus (u,v) is a precut on X;. <

>> Claim 18. Let ¢ — j be an oriented edge of T' with X; = {u,v, w} and |X;| = 2 such
that X; is precut on (u,v). If X; = {v,w}, then X; is precut on (w,v). If X; = {u, w},
then X; is precut on (u,w).

Proof. Let P = (Vi, V) be an (a, b)-partition of G. Suppose P does not respect X;. Then
if X; contains w, we must have that w is not in the same part of the partition as the other
vertex — either u or v — of X;. By Claim 16, P does not respect X; either, so we know v € V;
and v € Va. Thus if X; = {v,w}, then w € Vi, and if X; = {u, w}, then w € V5. <

By Claim 16 and the fact that 1-vertex bags are respected, for every node ¢ not in the head
subtree of T, X; is respected by every (a, b)-partition of G.

> Claim 19. For every node i in the head subtree, X; is precut on some pair of its vertices,
and these precuts can be computed in linear time.

Proof. We show that Claim 19 holds by proving a slightly stronger statement: for all d, for
each node j in the head subtree at distance d from 0, X; is precut on a pair of its vertices,
and if X; contains three vertices, then it is precut on some pair (u,v) such that X; = {u, v}
where i is the parent of j. We prove this by induction on d. The base case holds as X is
precut on (a,b). For the inductive case, suppose that j is some node at distance d > 0 with
parent i. As ¢ and j are in the head subtree, each of X; and X; has either two or three

vertices. Suppose first that X; = {u, v, w}, and then we may assume that X; is, say, {u, v}.

(Recall that X; C X; or X; C X, by Property 1.) By the induction hypothesis, we know

that X; is precut on (u,v) or on (v,u) and so, by Claim 17, X is precut in the same way.

Now suppose that X; has two vertices and X; = {u,v,w}. Since X, has two vertices, it
follows that X; # Xy, so ¢ has a parent h, and we can suppose that X, = {u,v}. By the
induction hypothesis, without loss of generality we may assume X, is precut on (u,v), so X;
is precut on (u,v) by the same argument as above. Then, as X has no identical bags by
Property 2, we find that X; = {u,w} or X; = {v,w}. By Claim 18, X is precut. <

We say that two vertices u and v of G are attached if they are adjacent or X contains the
bag {u,v}. If u and v are not attached, then they are detached.

> Claim 20. Let X; = {u,v,w} be a 3-vertex bag precut on (u,v). If w and u (or w and v)
are detached, then in every (a,b)-partition of G the vertices w and v (respectively w and u)
are in the same colourful set.

Proof. Let P = (V4,V3) be an (a,b)-partition. If P respects X;, then w is in the same
colourful set as both u and v. Thus we may assume that P does not respect X; and so
u € Vi and v € Vs, since X; is precut on (u,v). We may assume without loss of generality
that w is detached from v and so we must show that w € V5.

Let us assume instead that w € V; and derive a contradiction. By the connectivity
of G[V1], there exists an induced path @ on ¢ edges in G[V1] that connects u to w. As u
and w are detached, they are not adjacent, so £ is at least 2. No internal vertex of @ is in X;
since v and w are its end-vertices and v is not in V;. Let X;,,...,X;, be bags of X such
that X, is a bag that contains the pair of vertices joined by the jth edge of Q). We take a
walk in T' from 4; to i, by stitching together paths from i; to ij41, 1 <j </ —1. As X,

and X, , correspond to incident edges of ), and both X;, and X, , contain the internal
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vertex of ) incident with both these edges, every bag of the nodes along the path between
them also contains this vertex. Thus every bag of the nodes along our walk from 4 to i,
contains an internal vertex of () and so none of these bags is X;. Therefore our walk must
be contained within a connected component of T\ i. Let j be the node of this component
adjacent to ¢ in 7. We note that X, contains v and w, X;, contains u, X;, contains w,
and the paths from 7 to each of 41 and i, go through j. Thus X; must contain u and w,
and so, by Property 1, it follows that X; = {u,w}. As u and w are detached, we have a
contradiction. <

We now build ¢, an instance of 2-SATISFIABILITY, that will help us to find an (a, b)-partition
of G (if one exists). For each vertex u of G, we create a variable z,, (understood as “u € V1”).
We add clauses (or pairs of clauses) on two variables equivalent to the following statements:

T, = true (1)
rp = false (2)
Ty # X, if u and v have the same colour (3)

For any bag X; precut on some pair (u,v),

Ty V Iy (4)
Xy, = Xy, Yw € V[ \ {u} (5)
Ty = Ty Yw e V[ \ {v} (6)

For each bag X; = {u} of size 1,
Ty = Ty Yw € VI]i]\ {u} (7)
For each bag {u,v,w} of size 3 precut on (u,v)

Xy = Ty, if w is detached from v (8)

Ty = Ty if w is detached from u 9)

We now claim that G has an (a, b)-partition if and only if ¢ is satisfiable.

First suppose that G has an (a, b)-partition P. For each vertex u in G, set z,, = true
it w € V4, and x,, = false otherwise. As P cuts (a,b), Statements (1) and (2) are satisfied.
As P is colourful, Statement (3) is satisfied.

Consider a bag X; precut on (u,v). Two cases are possible: either P cuts (u,v), or X is
respected by P. In the first case we have z,, = true and z,, = false, which is enough to satisfy
Statements (4), (5) and (6). In the second case, x,, = x, (which satisfies Statement (4)), and
by Claim 16, for each j in T'[i], X is respected by P. Thus all vertices in V[i] are in the same
subset V3 or V3, hence they have the same value of x,,, which satisfies Statements (5) and (6).

For Statement (7), note that each bag X; of size 1, and, by Claim 16, every bag X; such
that j is a descendent of ¢ is always respected, so all values of z,, for w € Vi] are identical.
Statements (8) and (9) follow from Claim 20.

Now suppose ¢ is satisfiable. We construct two disjoint sets V3 and V5 by putting a
vertex u in V; if x,, = true in V4 and in Vo otherwise. We show (V1, V2) is an (a, b)-partition
of G. By Statements (1) and (2), a € V4 and b € V5. By Statement (3), two vertices of the
same colour cannot belong to the same set. It remains to prove that both sets are connected.
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In fact, we shall prove by induction on d, that for the set of vertices belonging to bags of
nodes at distance at most d from 0 in 7', the two subsets found by dividing the set according
to membership of V; or V5 each induce a connected subgraph of G. For the base case, we
consider Xy = {a,b} and the two subsets contain a single vertex so we are done. For the
inductive case, we consider a node j at distance d > 0 from 0. Let ¢ be the parent of j in T.
It is enough to show that any vertex in X; \ X; is in the same component of G[V;] or G[V3]
as a vertex of X; assigned to the same set (V4 or V3).

Let us first assume that X; is in the head subtree. If | X;| = 2, then X; C X; so we
may assume that X; = {u,v,w} and also that X; = {u, v}, and X; and X; are both precut
on (u,v) (using Claims 17 and 19).

We distinguish three cases.

> Case 1. 1z, =z, = true.

Considering Statement (6) for bag X;, we have x,, = true, as well as z,, = true for every
vertex w’ € V[i] \ X;. Hence V[i] C V4. By Property 3, G[Vi]] is connected, so w is in the
same component of G[V1] as v.

> Case 2. =z, =z, = false.
Symmetrically to Case 1, we can show that w is in the same component of G[Vz] as u.
> Case 3. x, # .

By Statement (4), in this case we have z,, = true and =, = false. Suppose that x,, = true
(the case for x,, = false again follows symmetrically). Since x,, # x,, by Statement (9),
w must be attached to w. If there is an edge from u to w, then we are done. If there is no
such edge, then X has a bag X = {u,w}, and k must be a child of j. As k is in the head
subtree, X}, is precut on (u,w) or (w,u) by Claim 19. By Statements (5) and (6), since
Ty = Ty = true, T,y = true for every w’ € V[k]\ {u,w} and thus V]k] C V;. Since G[V[k]]
is connected and contains both u and w, we are done.

Now we consider the case when X is not in the head subtree. Thus X is in a subtree that
has at its root a bag containing a single vertex u and, by Statement (7), every vertex in the
bags of the subtree are in the same subset V; or V5 as v and these vertices together induce a
connected subgraph. Thus, as u is also in the parent of the root of the subtree (since G is
connected, the parent is not empty), we are done.

Thus we have a polynomial-time algorithm to decide 2-COLOURFUL PARTITION on the
instance (G, c). First we compute in polynomial time a tree-decomposition (7, X') of G with
Properties 1, 2 and 3. Then for every pair of adjacent vertices a and b in G, we check whether
there is a colourful (a,b)-partition of size 2 in polynomial time using the corresponding
2-SATISFIABILITY formula ¢. <

4 Parameterized Complexity

Guided by some observations on the aforementioned hardness constructions, we present three
new FPT results in this section. The first one generalizes Theorem 6.

» Theorem 21 (#). COLOURFUL PARTITION and COLOURFUL COMPONENTS are FPT when
parameterized by treewidth plus the number of colours.

The proof of our second FPT result uses similar arguments to the proof sketch of
Theorem 8 given in [10]. However, its details are different, as optimal solutions for COLOURFUL
PARTITION do not necessarily translate into optimal solutions for COLOURFUL COMPONENTS.
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» Theorem 22. COLOURFUL PARTITION is FPT when parameterized by vertex cover number.

Proof Sketch. In fact we will show the result for the optimization version of COLOURFUL
PARTITION. Let (G,c¢) be a coloured graph. We will prove that we can find the size of
a minimum colourful partition (one with smallest size) in FPT time. By a simple greedy
argument, we can find a vertex cover S of G that contains at most 2vc(G) vertices. It is
therefore sufficient to show that COLOURFUL PARTITION is FPT when parameterized by |S].
If two vertices of G have the same colour then they will always be in different colourful
components of G. Thus if two vertices with the same colour are adjacent, we can delete
the edge that joins them, that is, we may assume that ¢ is a proper colouring of G (note
that deleting edges from G maintains the property that S is a vertex cover). Since S is a
vertex cover, T'= V(G) \ S is an independent set. Let C' be the set of colours used on G.
We let s = |S| and for a set S" C S, we let T;(S’) be the set of vertices with colour ¢ whose
neighbourhood in S is S’, that is, for all u € T;(S"), we have that Ng(u) = 5" and c(u) = i.

> Rule 1. If there is a colour ¢ € C' and a set S” C S such that |T;(S")| > s+ 1, then delete
|T;(S")| — s (arbitrary) vertices of T;(S’) from G.

We claim that we can safely apply Rule 1 (#) and apply it exhaustively. We again denote the
resulting instance by (G, c) and let T = V(G) \ S. Note that now |T;(S")| < s for every i € C
and every S’ C S. Consequently, the number of vertices of T" with colour 7 is at most s2°.
Note that this means that |T'| < |C|s2° and thus the total number of vertices in G is at most
s+ |C|s2%. Hence, it remains to bound the size of C by a function of s.

We let Cr denote the set of colours that appear on vertices of T' but not on vertices
of S. For two colours ¢,j € Cp, if T;(S") = T;(S’) holds for all S" C S, then we say that ¢
and j are clones and note that these colours are interchangeable. For a colourful partition
P=0,...,Vi) for G, we let Ps = (V1 NS, ..., Vi NS) be the partition of S induced by P
(note that in this case we allow some of the blocks to be empty).

We consider each partition @ of S. If a block of @ is not colourful, then we discard Q.
Otherwise we determine a minimum colourful partition P for G with Ps = @; note that such
a partition P may not exist, as it may not be possible to make the blocks of ) connected
(by using vertices T' in addition to edges both of whose endpoints lie in S). We will choose
the colourful partition for G that has minimum size overall. Let @ be a partition of S in
which each block is colourful.

> Rule 2. If there are s distinct colours iy, ...,is in Cr that are pairwise clones, then delete
all vertices with colour i4 from G.

We claim that we can safely apply Rule 2 (#) and apply it exhaustively; again call the
resulting graph G and define S and T' as before.

> Claim 23 (#). |Cr| < (s —1)(s+1)%".

We continue as follows. The number of different colours used on vertices of S is at most s.
Hence C \ Cr has size at most s. Recall that for every colour i € C, the number of vertices
of T with colour 7 is at most s2°. We combine these two facts with Claim 23 to deduce that
V] =S| +|T| < s+ |C|s2° = s+ |C\ Cr|s2° + |Cr|s2° < s 4 5%2° + (s — 1)(s + 1) 52°.
Then by brute force we can compute a minimum colourful partition P for G subject to the
restriction that Ps = @ in f(s) time for some function f that only depends on s.

The correctness of our FPT-algorithm follows from the above description. It remains to
analyze the running time. Applying Rule 1 exhaustively takes O(2°|C|) = O(2%n) time, as
the number of different subsets S’ C S is 2°. We then branch into at most s* directions by
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considering every partition of S. Applying Rule 2 exhaustively takes O(2°n?) time, as for
each colour ¢ € C we first calculate the values of |T;(S”)| for every S’ C S, which can be done
in O(2°n) time. Doing this for every colour takes a total of O(2°n?) time and partitioning the
colours into sets that are clones can be done in O(2%n?) time, and deleting colours can be done
in O(sn) time. As every auxiliary graph F' has at most n vertices, we can compute a maximum
matching in F in O(ng) time by using the Hopcroft-Karp algorithm [9]. Finally, translating
a minimum solution into a minimum solution for the graph in which we restored the vertices
we removed due to exhaustive application of Rules 1 and 2 takes O(n) time. This means that
the total running time is O(2°n) + s*(0(2%n2) + O(s) + O(n2) + f(s) + O(n)) = f'(s)O(n?)
for some function f’ that only depends on s, as desired. <

The DisJoINT CONNECTED SUBGRAPHS problem takes as input a graph G with r pairwise
disjoint subsets Zi,...,Z, of V(G) for some r > 1. It asks whether we can partition
V(G)\ (ZyU---U Z,) into sets Si,...,S, such that every S; U Z; induces a connected
subgraph of G. Robertson and Seymour introduced this problem in their graph minor project
and proved that it is cubic-time solvable as long as Z; U --- U Z, has constant size [11].

» Theorem 24. When parameterized by the number of non-uniquely coloured vertices,
COLOURFUL COMPONENTS is para-NP-complete, but COLOURFUL PARTITION is FPT.

Proof. The MULTITERMINAL CUT problem is to test for a graph G, integer p and terminal
set S, if there is a set E’ with |E’| < p such that every terminal in S is in a different
component of G — E’. This problem is NP-complete even if |S| = 3 [6]. To prove the first part,
give each of the three vertices in S colour 1 and the vertices in G — S colours 2,...,|V| — 2.

To prove the second part, let (G, ¢) be a coloured graph and k be an integer. We assume
without loss of generality that G is connected. Let @ with |Q| = ¢ be the set of non-uniquely
coloured vertices. If k£ > ¢, then place each of the ¢ vertices of () in a separate component
and assign the uniquely coloured vertices to components in an arbitrary way subject to
maintaining connectivity of the ¢ components. This yields a colourful partition of (G, ¢) of
size at most k. Now assume that k < ¢ — 1. We consider every possible partition of @) into &k
sets Z1,..., 2y, where some of the sets Z; may be empty. It remains to solve DISJOINT
CONNECTED SUBGRAPHS on the input (G, Z1, ..., Zx). Note that |Z1| +-- - +|Z| has size q.
Hence, by the above result of Robertson and Seymour [11], solving D1sJOINT CONNECTED
SUBGRAPHS takes cubic time. As there are O(g?) partitions to consider, the result follows. <

5 Conclusions

We showed that COLOURFUL PARTITION and COLOURFUL COMPONENTS are NP-complete
for coloured trees of maximum degree at most 6 (and colour-multiplicity 2). What is their
complexity for coloured trees of maximum degree d for 3 < d < 57 COLOURFUL COMPONENTS
is known to be NP-complete for 3-coloured graphs of maximum degree 6 (Theorem 3); we
also ask if one can prove a result analogous to Theorem 10: what is its complexity for
coloured graphs of maximum degree 37 Our main result is that 2-COLOURFUL PARTITION is
NP-complete for coloured (planar bipartite) graphs of path-width 3 (and maximum degree 3),
but polynomially solvable for coloured graphs of treewidth 2. We believe that the latter result
can be extended to k-COLOURFUL PARTITION (k > 3), but leave this for future research. A
more interesting question is if the problem is FPT for treewidth 2 when parameterized by k.
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