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Abstract
The boom of genomic sequencing makes compression of sets of sequences inescapable. This underlies
the need for multi-string indexing data structures that helps compressing the data. The most
prominent example of such data structures is the Burrows-Wheeler Transform (BWT), a reversible
permutation of a text that improves its compressibility. A similar data structure, the eXtended
Burrows-Wheeler Transform (XBW), is able to index a tree labelled with alphabet symbols. A link
between a multi-string BWT and the Aho-Corasick automaton has already been found and led to a
way to build a XBW from a multi-string BWT. We exhibit a stronger link between a multi-string
BWT and a XBW by using the order of the concatenation in the multi-string. This bijective link
has several applications: first, it allows one to build one data structure from the other; second, it
enables one to compute an ordering of the input strings that optimises a Run-Length measure (i.e.,
the compressibility) of the BWT or of the XBW.
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1 Introduction

A seminal, key data structure, which was used for searching a set of words in a text, is the
Aho-Corasick (AC) automaton [1]. Its states form a tree that indexes all the prefixes of the
words, and each node in the tree is equipped with another kind of arc, called a Failure Link.
A failure link of a node/prefix v points to the node representing the largest proper suffix of v
in the tree. In a way, the Aho-Corasick automaton can be viewed as a multi-string indexing
data structure.

In the early 90’s, the Burrows-Wheeler Transform (BWT) of a text T , which is a reversible
permutation of T , was introduced for the sake of compressing a text. Indeed, the BWT
permutation tends to group identical symbols in runs, which favours compression [5]. However,
the BWT can also be used as an index for searching in T , using the Backward Search
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procedure [10]. In fact, the BWT of T is the last column of a matrix containing all cyclic-shifts
of T sorted in lexicographical order. As sorting the cyclic shifts of T is equivalent to sorting
its suffixes, there exists a natural link between the suffix array of T and the BWT of T . Starting
in 2005, the radical increase in textual data and in biological sequences raised the need for
multi-string indexes. In the multi-string case, a simple approach is to concatenate all input
strings and separate them using the same termination symbol (which does not belong to the
alphabet), and then to index the result with a traditional indexing data structure (e.g., a
suffix array or a FM-index). Another approach is to add a unique termination symbol for
each string without concatenation [3, 21]. In both approaches, an initial order on the strings
is given by the permutation of the strings in the first approach, or by the order between
the termination symbols in the second. All our results are made with the first approach
(which minimises the alphabet size) in mind, and can be adapted to the second. Such
multi-string indexes are heavily exploited in bioinformatics: first, to index all chromosomes
of a genome [17], or a large collection of similar genomes, which allows aligning sequence
reads simultaneously to several reference genomes [19], or second, to store and mine whole
sets of raw DNA/RNA sequence reads for the purpose of comparing biological conditions or
of identifying splice junctions in RNA [7, 14]. In fact, managing compressed and searchable
read data sets is now crucial for bioinformatic analyses.

Initially viewed as a simple extension of single-string BWT construction, the efficient
construction of multi-string BWT is not trivial and has been investigated per se. Bauer et al.
proposed, among others, a lightweight incremental algorithm for their construction [3]. Then,
Holt et al. devised algorithms for directly merging several, already built multi-string BWTs
efficiently [14, 15], which has recently been improved to build simultaneously the companion
Longest Common Prefix (LCP) table [8], or to scale up to terabyte datasets [23].

The notion of BWT has been extended into the XBW to index trees whose arcs are labelled
by alphabet symbols [9]. The XBW comprises two arrays, which compactly represent the tree
and offer navigational operations.

Recently, Gagie et al. propose the notion of Wheeler graphs to subsume several variants
of the BWT, including the XBW of a trie for a set of strings [12]. The relation between a
multi-string BWT and the XBW representation of the Aho-Corasick automaton has already
been studied and exploited. Hon et al. first use the XBW representation of the Aho-Corasick
trie to speed-up dictionary matching [16] building up on [4]. Manzini gave an algorithm
that computes the failure links for the trie using the Suffix Array and LCP tables, and an
algorithm to build the XBW of the trie with failure links from the BWT of a multi-string [22].
However, none of these established a bijective link between a multi-string BWT and the XBW of
the Aho-Corasick automaton. To generalise these results, one needs to consider the order in
which the strings are concatenated to form the multi-string. This idea enables us to exhibit
a bijection between a multi-string BWT and the XBW of the Aho-Corasick automaton, which
allows building one structure from the other in either direction (from BWT to XBW or from
XBW to BWT). Finally, we exploit this bijection to find an optimal string order that minimises
a Run-Length Encoding (i.e., maximises the compressibility) of these two data structures.
Numerous proofs are in appendix (A preprint version of this work is available as [6]).

2 Preliminaries

In this section, we introduce basic concepts and notation, present the Burrows-Wheeler
Transform and an extension of it for a set of strings. Finally, we provide a notation for the
Aho-Corasick automaton and the eXtended Burrows-Wheeler Transform.
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2.1 General notation
Set and Permutation. Let i and j be two integers such that i ≤ j. The interval [[i, j]] is the
set of all integers between i and j. An integer interval partition of [[i, j]] is a set of intervals
{[[i1, j1]], . . . [[in, jn]]} such that i1 = i, jn = j, and for all k ∈ [[1, n− 1]], jk + 1 = ik+1. We
also define the order < on intervals such that for two intervals u := [[i, j]] and v := [[i′, j′]],
u < v iff j < i′. Let E be a finite set and let #E (or #(E)) denote its cardinality. A
permutation of E is an automorphism of E. A permutation σ of E is said to be circular iff
for all i and j ∈ E, there exists a positive integer k such that σk(i) = j (where σ1(i) = σ(i)
and σk(i) = σ(σk−1(i))). For a circular permutation σ of E and an element e ∈ E, we denote
by σe the function from [[1,#E]] to E such that for all i ∈ [[1,#E]], σe(i) := σ(i+#E−1)(e).
Given a total order < for E, we define <σ as the order on E such that e <σ f iff σ(e) < σ(f)
for any e, f ∈ E.

String. Let Σ be a finite alphabet. A string w of length n over Σ is a sequence of symbols
w[1] . . . w[n] where w[i] ∈ Σ for all i ∈ [[1, n]]. Σ∗ is the set of all finite strings over Σ. The
length of a string w is denoted by |w|. A substring of w is written as w[i, j] := w[i] . . . w[j]
for some i ≤ j. A prefix of w is a substring of w starting at position 1, and a suffix of w is a
substring of w ending at position |w|. A prefix x (or a suffix) of a string y is said proper is x
is different from y. The reverse of a string w, denoted by ←−w , is the string w[n] . . . w[2]w[1].
We define the lexicographic order < on strings as usual.

Ordered Set of Strings. Let S = {s1, . . . , sn} be a set of strings. The norm of S, denoted
‖S‖, is the sum of the length of strings of S, i.e. ‖S‖ := Σsi∈S |si|. Let Prefix(S),
(respectively Suffix(S)) denote the set of all prefixes (resp. all suffixes) of strings of S. We
denote by ←−S the set of all reverse strings of strings of S, i.e. ←−S := {←−s1 , . . . ,

←−sn}. An ordered
set of strings P is a pair (S, σ) where S is a set of strings in lexicographic order, and σ a
circular permutation of S. We denote by P.S the set of strings S and by P.σ the circular
permutation σ. We denote by ←−P the pair (←−−P.S, P.σ).

2.2 Burrows-Wheeler Transform
BWT of a string. Let w be a string and i be an integer satisfying 1 ≤ i ≤ |w|. The Suffix
Array (SA) of w [20], denoted SA(w), is the array of integers that stores the starting positions
of the |w| suffixes of w sorted in lexicographic order. The Burrows-Wheeler Transform
(BWT) [5] of w, denoted BWT(w), is the array containing a permutation of the symbols of w
which satisfies BWT(w)[i] := w[SA(w)[i]− 1] if SA(w)[i] > 1, and BWT(w)[i] := w[|w|] otherwise.
The Longest Common Prefix table (LCP) [5] of w, denoted LCP(w), is the array of integers
such that LCP(w)[i] equals the length of the longest common prefix between the suffixes of w
starting at positions SA(w)[i] and SA(w)[i− 1] if i > 1, and 0 otherwise.

For any string s ∈ Σ∗ and any symbol c ∈ Σ, one defines the functions denoted rank and
select as follows: rankc(s, i) is the number of occurences of c in s[1, i], and selectc(s, j) is
the position of the jth occurence of c in s. The arrays BWT(w) and LCP(w) can be computed
in O(|w|) time [5, 10]. Simultaneously, one can compute rank and select for BWT(w) at no
additional cost and implement them such that any rank or select query takes constant
time [13, 11, 18]. We use such state-of-the-art data structure to store a BWT.

Let C denote the array of length #Σ such that C[c] equals the number of symbols
of w that are alphabetically strictly smaller than c. The Last-to-First column mapping
(LF) [10] of w is the function such that for any 1 ≤ i ≤ |w| one has LF(w)[i] := C[BWT(w)[i]] +
rankBWT(w)[i](BWT(w), i). It is proved that SA(w)[LF(w)[i]] = SA(w)[i]− 1 if SA(w)[i] ≥ 2 and
SA(w)[LF(w)[i]] = |w| otherwise [5, 10].

CPM 2019
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BWT of a set of strings. From now on, let P := (S, σ) be an ordered set of strings. We
assume the symbol $ is not in Σ and is alphabetically smaller than all other symbols. We
denote by mP the string obtained by concatenating the strings of P.S := {s1, . . . , s#(P.S)}
separated by a $ and following the order P.σ. i.e., mP := sP.σ(1)$sP.σ(2)$ . . . $sP.σ(n)$ (See
Figure 1). We extend the notion of BWT of a string to an ordered set of strings P : the BWT of
P is the BWT of the string mP , i.e., BWT(P ) := BWT(mP ). We extend similarly the LF function
by setting that LF(P ) := LF(mP ) (by using rank on BWT(P )).

P.S = {abaa,
abba,
baba,
bbaa}

P.σ = abaa 7→ abba
abba 7→ baba
baba 7→ bbaa
bbaa 7→ abaa

mP = abaa$abba$baba$bbaa$

P.σ P.σ

P.σ
P.σ

Figure 1 Running example with P.S := {abaa, abba, baba, bbaa} and the corresponding mP .

We define the Longest Representative Suffix table (LRS) of P as the array of |mP | integers
satisfying: for any i ∈ [[1, |mP |]] one has LRS(P )[i] := select$(mP [SA(mP )[i] : |mP |], 1)− 1.
The entry LRS(P )[i] gives the length of the substring of mP starting at position SA(mP )[i]
up to, but not including the next $. Using the LRS table, we extend the notion of LCP table
to an ordered set of strings. For P , we set LCP(P )[i] := min(LCP(mP )[i], LRS(P )[i]) for any
i ∈ [[1, |mP |]]. Using tables BWT(P ) and LCP(mP ), we can compute the tables LRS(P ) and
LCP(P ) in linear time in |mP | (see Appendix). Figure 2 illustrates the LCP and LRS tables.

2.3 Aho-Corasick automaton and eXtended Burrows-Wheeler
Transform

Tree. Let T be a tree and u be a node of T . Let ⊥ denote the root of T . We denote
by ParentT (u) the parent of u in T , by ChildrenT (u) the set of children of u in T , and
by LeavesT (u) the set of leaves in the subtree of u in T . Let v be a leaf of T ; we denote
by BT (v) the subtree of T containing all nodes comprised between ⊥ and v included. As
for a leaf v in the subtree of u in T , #ChildrenBT (v)(u) = 1, we denote by ChildT (v)(u)
the unique element of ChildrenBT (v)(u). Given a total order ≺ on LeavesT (⊥), we extend
this order on the set ChildrenT (v) for any node v of T by: for any x, y in ChildrenT (v),
x ≺ y iff minx′∈LeavesT (x) x

′ ≺ miny′∈LeavesT (y) y
′.

Aho-Corasick tree. The Aho-Corasick automaton (AC) [1] of a set of strings S is a digraph
whose set of nodes is the set of all prefixes of the strings of S. This graph is composed of
two trees on the same node set. The first tree, which we called the Aho-Corasick Tree (ACT),
has an arc from a prefix u to a different prefix v iff u is the longest proper prefix of v in
Prefix(S) (see Figure 4). The second tree, termed Aho-Corasick Failure link (ACFL), has an
arc from a prefix u to a different prefix v iff v is the longest proper suffix of u in Prefix(S).

eXtended Burrows-Wheeler Transform. Let T be an ordered tree (i.e., with a total order
on the set of children of each node) such that every node of T is labelled with a symbol
from an alphabet Σ. We define the functions δ and π on the set of nodes of T except for
the root such that for a node v of T , δ(v) is the label of v, and π(v) is the string obtained
by concatenating the labels from v’s parent up to the root of T . Let ≺ be the total order
between the nodes of T such that for u and v two nodes of T , u ≺ v iff π(u) is strictly
lexicographically smaller than π(v) or u is before v in the order of T .
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b b a a$ a b a a $ a b b a $ b a b a $

b b a a $ a b a a$ a b b a $ b a b a $

b b a a $ a b a a $ a b b a$ b a b a $

b b a a $ a b a a $ a b b a $ b a b a$

b b aa $ a b a a $ a b b a $ b a b a $

b b a a $ a b aa $ a b b a $ b a b a $

b b a a $ a b a a $ a b ba $ b a b a $

b b a a $ a b a a $ a b b a $ b a ba $

b ba a $ a b a a $ a b b a $ b a b a $

b b a a $ a ba a $ a b b a $ b a b a $

b b a a $ a b a a $ a b b a $ ba b a $

b b a a $a b a a $ a b b a $ b a b a $

b b a a $ a b a a $a b b a $ b a b a $

b b a a $ a b a a $ a bb a $ b a b a $

b b a a $ a b a a $ a b b a $ b ab a $

bb a a $ a b a a $ a b b a $ b a b a $

b b a a $ ab a a $ a b b a $ b a b a $

b b a a $ a b a a $ a b b a $b a b a $

b b a a $ a b a a $ ab b a $ b a b a $

b b a a $ a b a a $ a b b a $ b a b a $

BWT(P)

0

0

0

0

0

1

1

1

1

2

1

3

2

0

2

2

3

2

1

3

LCP(P)

0

0

0

0

1

1

1

1

2

2

3

4

4

2

2

3

3

4

3

4

LRS(P)

20

5

10

15

19

4

9

14

18

3

12

1

6

8

13

17

2

11

7

16

SA(mP)

Figure 2 Tables LCP(P ), LRS(P ), SA(mP ) and BWT(P ) for the running example. One has
LCP(P )[10] = LRS(P )[10] = 2 although the longest common prefix between suffixes of rank 9
and 10 is aa$ab of length 5 (i.e., although LCP(mP )[10] = 5).

I Example 1. With the tree of Figure 3, we have δ( 13 ) = b and π( 13 ) = aba =
δ( 12 )δ( 8 )δ( 1 ), and also δ( 4 ) = b and π( 4 ) = baa = δ( 3 )δ( 2 )δ( 1 ). Thus, 13 ≺ 4

since π( 13 ) < π( 4 ).

The Prefix Array (PA) of an ordered tree T is the array of pointers to the nodes of
T (except the root of T ) sorted in ≺ order. The eXtended Burrows-Wheeler Transform
(XBWT) [9]1 of a tree T is an array of symbols of Σ of length #PA(T ), such that the entry
at position i gives the label of the node PA(T )[i]. The eXtended Burrows-Wheeler Last
(XBWL) [9]1 of a tree T is the bit array of length #PA(T ) such that XBWL(T )[i] equals 1 if
the node PA(T )[i] is the last child of its parent, and 0 otherwise. Figure 5a illustrates XBWT
and XBWL.

eXtended Burrows-Wheeler Transform of Aho-Corasick automaton. For a set of strings
S := {s1, . . . , sn}, we denote by S$ the set {s1$, . . . , sn$}. Let P be an ordered set of strings.
We define ACT(P ) as the variant of the Aho-Corasick tree of P.S$ where the label of an arc
is shifted on the deepest node of this arc (i.e., the label of a node v of ACT(P ) is the label of
(u, v) in ACT(P.S) where u is the parent of v in ACT(P )) and equipped with the order CP.σ.
Indeed, CP.σ is the order on the leaves satisfying: for u and v two leaves of ACT(P ), uCP.σ v

1 In [9], the XBW-transform is defined as XBW(T )[i] := 〈XBWT[i], XBWL[i]〉, for any position i.

CPM 2019
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0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

a

a b

b

b

$

a

$

b

a

$

a

b

$

abaa < abba < baba < bbaa

bbaa <P.σ abaa <P.σ abba <P.σ baba

5 CP.σ 7 CP.σ 11 CP.σ 14

Figure 3 Tree ACT(←−P ) for the running example, and links between the orders <, <P.σ, and CP.σ.

iff π(u) <P.σ π(v). We extend this order to the set of children of all nodes (see Figure 3).
Note that ACT(P ) differs from ACT(P.S) (defined above) to correspond to an input of the
eXtended Burrows-Wheeler Transform.

3 Link between BWT and XBW of Aho-Corasick automaton

Here, we introduce a decomposition of a multi-string BWT that leads us to exhibit a bijection
with the Aho-Corasick automaton (see Proposition 2). This builds on and extends Manzini’s
work [22]. We extend this bijection to the XBWT of the Aho-Corasick automaton (see Figure 4).
For space reasons, many proofs are given in the Appendix (or the preprint [6]).

Link between BWT and AC. Given an ordered set of strings P , Decomp_BWT(P ) is the
integer interval partition of [[1, |mP |]] such that

[[i, j]] ∈ Decomp_BWT(P ) iff
{

LCP(P )[k] 6= LRS(P )[k], for k ∈ {i, j + 1}
LCP(P )[k] = LRS(P )[k], for k ∈ [[i+ 1, j]].

We define Dec_Pre as the function from Decomp_BWT(P ) to Σ∗ such that

Dec_Pre[u] :=
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
mP [SA(mP )[i] : SA(mP )[i] + LRS(P )[i]− 1],

for all u := [[i, j]] ∈ Decomp_BWT(P ).

I Proposition 2. Dec_Pre is a bijection between Decomp_BWT(P ) and Prefix(←−−P.S).

Let us start the proof of Proposition 2 with the following Lemma.

I Lemma 3. Let u = [[i, j]] ∈ Decomp_BWT(P ). For all k ∈ [[i, j]],

Dec_Pre[u] =
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
mP [SA(mP )[k] : SA(mP )[k] + LRS(P )[k]− 1].

Proof. Let us show by contraposition that LRS(P )[k − 1] = LCP(P )[k] for all k ∈ [[i+ 1, j]].
Assume that there exists k ∈ [[i + 1, j]] such that LRS(P )[k − 1] 6= LCP(P )[k]. Whenever
LRS(P )[k − 1] < LCP(P )[k], we get by definition that LRS(P )[k] ≥ LCP(P )[k], and thus
LRS(P )[k−1] < LRS(P )[k]. By the definiton of LRS(P ), mP [SA(mP )[k−1]+LRS(P )[k−1]] = $.
By the definition of LCP(P ), for all j ∈ [[1, LCP(P )[k − 1] − 1]], mP [SA(mP )[k] + j] =
mP [SA(mP )[k− 1] + j]. As LRS(P )[k− 1] < LCP(P )[k], we have mP [SA(mP )[k] + LRS(P )[k−
1]] = mP [SA(mP )[k − 1] + LRS(P )[k − 1]] = $, which is impossible since LRS(P )[k − 1] <
LRS(P )[k]. Whenever LRS(P )[k − 1] > LCP(P )[k], as LCP(P )[k] = LRS(P )[k], the string
mP [SA(mP )[k] : |mP |] is lexicographically strictly smaller than mP [SA(mP )[k − 1] : |mP |],
which is impossible. This concludes the proof. J
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Proof. Let u = [[i, j]] be an interval of Decomp_BWT(P ). First, we prove that Dec_Pre[u] ∈
Prefix(←−−P.S), and then to prove the bijection, we show Dec_Pre is injective and surjective.
By definition, LRS(P )[i] = select$(mP [SA(mP )[i] : |mP |], 1)−1, we get that mP [SA(mP )[i]+
LRS(P )[i]] = $ and for any j ∈ [[SA(mP )[i], SA(mP )[i] + LRS(P )[i] − 1]], mP [j] 6= $. Hence,
mP [SA(mP )[i] : SA(mP )[i]+LRS(P )[i]−1] is a suffix of a string w of P.S, and thus Dec_Pre[u]
is a prefix of ←−w in ←−−P.S.
Injectiveness. Let u1 = [[i1, j1]] and u2 = [[i2, j2]] be two elements of Decomp_BWT(P ).

Without loss of generality, we take i1 ≤ i2. Assume that Dec_Pre[u1] = Dec_Pre[u2], we
have that mP [SA(mP )[i1] : SA(mP )[i1] + LRS(P )[i1]− 1] = mP [SA(mP )[i2] : SA(mP )[i2] +
LRS(P )[i2]−1] and thus for all k ∈ [[i1, i2]], mP [SA(mP )[i1] : SA(mP )[i1]+LRS(P )[i1]−1] =
mP [SA(mP )[k] : SA(mP )[k] + LRS(P )[k]− 1]. Hence, we have LCP(P )[k] = LRS(P )[i1] and
LRS(P )[k] = LRS(P )[i1]. Therefore by the definition of Decomp_BWT(P ), we get u1 = u2.

Surjectiveness. Let v be a prefix of a string of ←−−P.S. The string ←−v is a suffix of a string of
P.S. By the definition of mP , ←−v is a prefix of a suffix s of mP such that s[|←−v |+ 1] = $.
By the definition of BWT(P ), the table SA(mP ) gives, for a position i, the starting
position of the ith suffix of mP in lexicographic order. Hence, there is a bijection
between Suffix(mP ) and the set of positions in SA(mP ). Let k ∈ [[1, |mP |]] such that
s = mP [SA(mP )[k] : |mP |]. As ←−v is a suffix of a string of P.S and a prefix of s, we have
←−v = mP [SA(mP )[k] : SA(mP )[k] + LRS(P )[k]− 1]. We take u = [[i, j]] ∈ Decomp_BWT(P )
such that k ∈ [[i, j]]. By Lemma 3, ←−v = Dec_Pre[u]. J

By Proposition 2, there exists an integer interval partition of [[1, |mP |]]
(i.e., Decomp_BWT(P )) that is in bijection with the set of nodes of AC(←−−P.S). The follow-
ing theorem extends this bijection by building an isomorphic graph of AC(P.S) whose set of
nodes is Decomp_BWT(←−P ). This states how to simulate an Aho-Corasick automaton using
the BWT (similarly to [22]).

I Theorem 4. Using tables BWT(←−P ), LCP(←−P ), LRS(←−P ) and the function LF(←−P ), we can build
the graph (Decomp_BWT(←−P ), AT (←−P ) ∪AF (←−P )) that is isomorphic to AC(P.S).

AT (P ) := {(u, v) ∈ Decomp_BWT(P )2| ∃x ∈ u such that LF(P )[x] 6= 0 and LF(P )[x] ∈ v},

AF (P ) := {(u, v) ∈ Decomp_BWT(P )2|
(

max
k<i

LRS(P )[k]=mink<l≤i(LCP(P )[l])

(k)
)
∈ v with u := [[i, j]]}.

More precisely, the graph (Decomp_BWT(←−P ), AT (←−P )) is isomorphic to the tree ACT(P.S)
and the graph (Decomp_BWT(←−P ), AF (←−P )) is isomorphic to the tree ACFL(P.S) (see Appendix).

Link between BWT and XBW. After giving a new proof of the relation between Aho-
Corasick automaton and BWT, we exhibit a new (bijective) link between the BWT and the
XBW, which takes into account the order in the multi-string (Theorem 5). This leads to both,
another construction algorithm of the XBW from the BWT, and to a construction of the BWT
from the XBW, and thereby extends Manzini’s results (Corollary 6).

Alike the definition of Decomp_BWT(P ) for an ordered set of strings P , we define
Decomp_XBW(T ) of a tree T of t nodes as the integer interval partition of [[1, t]] such that

[[i, j]] ∈ Decomp_XBW(T ) iff
{

XBWL(T )[k] = 1, for k ∈ {i− 1, j}
XBWL(T )[k] = 0, for k ∈ [[i, j − 1]].
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Figure 4 Link between BWT(P ), ACT(←−−P.S) and ACFL(←−−P.S) for the running example. The blocks in
the tables SA, LCP, LRS and BWT show the decomposition Decomp_BWT(P ).

I Theorem 5 (See Figure 5b). There exists a bijection, denoted BWT_XBW, between
Decomp_BWT(P ) and Decomp_XBW(ACT(←−P )) such that for all u ∈ Decomp_BWT(P ) with
u := [[i, j]], BWT_XBW(u) := [[i′, j′]] and z := ParentACT(←−P )(PA(ACT(←−P )[i′])):
(1) Let {y1, y2, . . . y#u} := LeavesACT(←−P )(z) such that yk CP.σ yl ⇒ k < l; then

BWT(P )[i, j] = δ[ChildACT(←−P )(y1)(z)]δ[ChildACT(←−P )(y2)(z)] . . . δ[ChildACT(←−P )(y#u)(z)].

(2) Let {x1, x2, . . . , x#(BWT_XBW(u))} := ChildrenACT(←−P )(z) such that xk CP.σ xl ⇒ k < l; then

XBWT(ACT(←−P ))[i′, j′] = δ[x1]δ[x2] . . . δ[x#(BWT_XBW(u))].

Theorem 5 provides us with a strong link between BWT(P ) and XBWT(ACT(←−P )), which
allows transforming one structure into the other. This leads to the following corollary.

I Corollary 6. Let P be an ordered set of strings.
(1) Using tables BWT(P ), LCP(P ) and LRS(P ) of an ordered set of strings P , we can build

the tables XBWT(ACT(←−P )) and XBWL(ACT(←−P )) in linear time of ‖P.S‖ ×#Σ.
(2) Using tables XBWT(ACT(S)) and XBWL(ACT(S)) of a set of strings S, we can build the tables

BWT(←−P ), LCP(←−P ) and LRS(←−P ) in linear time of ‖S‖ ×#Σ where P is an ordered set of
strings such that P.S = S.

The idea behind the algorithms is to exploit the link of Theorem 5 to compute each sub-
string of the BWT or of the XBWT associated to each element of Decomp_BWT or of Decomp_XBW.

4 Optimal ordering of strings for maximising compression

In this section, we show how to use Theorem 5 to compute the permutation that leads to a
BWT and a XBWT having the minimum Run Length Encoding.
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(a) a a a a a a b b b b b $ $ b a b a $ a $BWT(P)

0 0 0 0 0 1 1 1 1 2 1 3 2 0 2 2 3 2 1 3LCP(P)

0 0 0 0 1 1 1 1 2 2 3 4 4 2 2 3 3 4 3 4LRS(P)

b $ $ b a b a $ a $a a b bXBWT(ACT (
←−
P ))

1 1 1 0 1 0 1 1 1 11 0 1 1XBWL(ACT (
←−
P ))

(b)

a a a a a a b b b b b $ $ b a b a $ a $BWT(P)

b $ $ b a b a $ a $a a b bXBWT(ACT(
←−
P ))

1 2 8 3 13 7 11 9 12 4 6 14 10 5{x1, . . . ,xl}

5 7 11 14 5 7 11 14 5 7 14 7 11 11 14 5 7 14 11 5{y1, . . . ,ym}

1 1 1 1 2 2 8 8 3 3 13 7 11 9 12 4 6 14 10 5{ChildACT (
←−
P )(yi)

(z)}

0 1 2 8 312 6 10 13 9 4

0 1 2 8 312 6 10 13 9 4
z

Figure 5 (a) Link between Decomp_BWT(P ) (in blue) and Decomp_XBW(ACT(←−P )) (in green). (b)
Illustration of Theorem 5 for the running example.

4.1 Minimum permutation problem for BWT and XBWT
Run-Length Encoding [24] is a widely used method to compress strings. For a string w,
the Run-Length Encoding splits w into the minimum number of substrings containing a
single symbol. The size of the Run-Length Encoding of w is the cardinality of the minimum
decomposition. For example for abbaaaccabbb = a1b2a3c2a1b3 (where the power notation αn
means n copies of symbol α), the size of the Run-Length Encoding is 6 (for the decomposition
has 6 blocks).

We define Run-Length measures: dB for a BWT, and dX for a XBW (similar to those
of [15]). For P an ordered set of strings, let dB(P ) be the cardinality of the set {i ∈
[[1,#BWT(P )− 1]] | BWT(P )[i] 6= BWT(P )[i+ 1]}. Similarly, let dX(P ) be the cardinality of the
set {i ∈ [[1,#XBWT(ACT(P ))− 1]] | XBWT(ACT(P ))[i] 6= XBWT(ACT(P ))[i+ 1]}.

Given two ordered sets of strings, P1 and P2 such that P1.S = P2.S (i.e., they contain
the same set of strings), Theorem 5 implies that their BWT may differ, and thus dB(P1) and
dB(P2) may also differ. We define the following minimisation problems. As the Run-Length
Encoding of BWT(P ) has size dB(P ) + 1, finding an optimal solution of Min-Permutation-BWT
can help compressing BWT(P ).

I Definition 7 (Min-Permutation-BWT and Min-Permutation-XBWT). Let S be a set of strings.
The problem Min-Permutation-BWT asks for an ordered set of strings P that minimises dB(P )
and such that P.S = S. The problem Min-Permutation-XBWT asks for an ordered set of
strings P that minimises dX(P ) and such that P.S = S.

To simplify Min-Permutation-BWT, we consider specific ordered sets of strings. Let P be
an ordered set of strings and let ⊥ denote the root of ACT(←−P ). We say that P is topologically
planar if for each node u in ACT(←−P ) and v ∈ LeavesACT(←−P )(⊥) \ LeavesACT(←−P )(u), there does
not exists u1 and u2 in LeavesACT(←−P )(u) such that u1 CP.σ v CP.σ u2. In other words, P is

topologically planar if we can draw the tree ACT(←−P ) by ordering the leaves with CP.σ without
arcs crossing each other.
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Let P be an ordered set of strings, which is not necessarily topologically planar. We denote
by Ptp the ordered set of strings such that Ptp.S = P.S, and such that Ptp.σ satisfies for any
u in ACT(←−P ), any v ∈ LeavesACT(←−P )(⊥) \ LeavesACT(←−P )(u), and any u1, u2 in LeavesACT(←−P )(u)
such that u1CP.σ vCP.σ u2, we have u1CPtp.σ u2CPtp.σ v. As we have a bijection between the
set of circular permutations of P.S and the set of leaves of ACT(←−P ), we can unambiguously
define the ordered set of strings Ptp that is topologically planar.

I Proposition 8. Let P be an ordered set of strings. We have dB(Ptp) ≤ dB(P ) and
dB(Ptp) = dX(←−Ptp).

Proof. For the inequality, let us prove that any modification of the order used to create
Ptp decreases the value of dB. Let P be an ordered set of strings that is not topologically
planar. Let u in ACT(←−P ), v ∈ LeavesACT(←−P )(⊥) \ LeavesACT(←−P )(u), and let u1 and u2 in
LeavesACT(←−P )(u) such that u1 CP.σ v CP.σ u2. Let P ′ be the copy of P where the only
difference is u1 CPtp.σ u2 CPtp.σ v. Let x ∈ Decomp_BWT(P ) such that Dec_Pre[x] = u. By
Theorem 5, for all y ∈ Decomp_BWT(P ) \ {x}, we have BWT(P )[y] = BWT(P ′)[y], BWT(P )[x] =
. . . δ[u1]δ[v1]δ[u2] . . . and BWT(P ′)[x] = . . . δ[u1]δ[u2] . . . δ[v1] . . . with v1 = ChildACT(←−P )(v)(u).
As δ[u1] = δ[u2] and δ[u1] 6= δ[v1], we have dB(P ′) ≤ dB(P ).

For the equality, it is enough to see that for any element u in Decomp_BWT(Ptp), the
numbers of distinct successive symbols are identical in BWT(Ptp)[u] and in XBWT(ACT(←−Ptp))
[BWT_XBW[u]]. Thus, for two successive elements u = [[i1, j1]] and v = [[i2, j2]] of
Decomp_BWT(Ptp), we obtain an equivalence between BWT_XBW[u] = [[i′1, j′1]] and BWT_XBW[v] =
[[i′2, j′2]]:

BWT(Ptp)[j1] = BWT(Ptp)[i2] iff BWT(ACT(←−Ptp))[j′1] = BWT(ACT(←−Ptp))[i′2]. J

Thanks to Proposition 8, we can restrict the search to ordered sets of strings that are
topologically planar when solving Min-Permutation-BWT or Min-Permutation-XBWT. Fur-
thermore, an optimal solution of Min-Permutation-BWT for S is also an optimal solution of
Min-Permutation-XBWT for ←−S , and vice versa. This yields the following theorem.

I Theorem 9. Let S be a set of strings. We can find an optimal solution for Min-
Permutation-BWT and for Min-Permutation-XBWT in O(‖S‖ ×#Σ) time.

4.2 Proof of Theorem 9
As a reminder, Proposition 8 states that an optimal solution of Min-Permutation-BWT is also
an optimal solution of Min-Permutation-XBWT, and vice versa. In the following of this proof,
we only prove the result regarding Min-Permutation-XBWT.

To start, let us give an overview of algorithm:
1. we take a random permutation σ of S and define P such that P.S = S and P.σ = σ ,
2. we build ACT(P ), XBWT(ACT(P )) and Decomp_XBW(ACT(P )),
3. we find P ′ which is an optimal solution of Min-Permutation-XBWT.

In the following, we define the problem Min-Permutation-Table and explicit its link to
Min-Permutation-XBWT (Lemma 10). Lemma 10 gives us a linear time algorithm for finding
an optimal solution of Min-Permutation-Table, and thus we can apply this algorithm to
obtain an optimal solution for Min-Permutation-XBWT.

Given A an array of symbols of Σ, we define Char(A) as the set of (different) symbols
in A. Given T an array of n symbols of Σ and D an integer interval partition of [[1, n]]
such for each interval [[i, j]] of D, #(Char(T [i, j])) = j − i + 1 (i.e., all the symbols of



B. Cazaux and E. Rivals 24:11

T [i, j] are different), the problem Min-Permutation-Table is to find a T ′ such that for all
[[i, j]] ∈ D, #(Char(T [i, j])) = #(Char(T ′[i, j])) and which minimises dA(T ′, D) := #{i ∈
[[1, n− 1]] | T ′[i] 6= T ′[i+ 1]}. A proof of the following lemma is given in Appendix.

I Lemma 10. Let S be a set of strings and let P be an ordered set of strings such that
P.S = S. For an optimal solution T ′ of Min-Permutation-Table for XBWT(ACT(P )) and for
Decomp_XBW(ACT(P )), there exists an optimal solution P ′ of Min-Permutation-XBWT for S
such that XBWT(ACT(P ′)) = T ′.

Let T be an array of n symbols of Σ and let D be an integer interval partition of [[1, n]]
such for each interval [[i, j]] of D, #(Char(T [i, j])) = j − i + 1. Let A(D) be the array of
all intervals in D in the order < and B(T,D) the array of size #A(D) − 1 such that the
position i of B(T,D) is B(T,D)[i] = Char(A(D)[i]) ∩ Char(A(D)[i + 1]). For any set of
symbols C := {c1, . . . , cm} where c1 < . . . < cm, we define word(C) as the string c1 . . . cm.

I Lemma 11. Let T be an array of n symbols of Σ and let D be an integer interval partition
of [[1, n]] such for any interval [[i, j]] of D, #(Char(T [i, j])) = j − i+ 1.

If there exists i in [[1, n]] such that [[i, i]] ∈ D, then T ′1[1, i− 1]T ′2 is an optimal solution
of Min-Permutation-Table for T and for D, where T ′1 is an optimal solution of Min-
Permutation-Table for T [1, i] and for {[[i′, j′]] ∈ D | j′ ≤ i}, and T ′2 is an optimal
solution of Min-Permutation-Table for T [i, n] and for {[[i′, j′]] ∈ D | i′ ≥ i}.
If there exists i in [[1,#B(T,D)]] such that #(B(T,D)[i]) = 0, then T ′1T ′2 is an optimal
solution of Min-Permutation-Table for T and for D, where T ′1 is an optimal solution
of Min-Permutation-Table for T [1, A(D)[i][1]] and for {[[i′, j′]] ∈ D | j′ ≤ A(D)[i][1]},
and T ′2 is an optimal solution of Min-Permutation-Table for T [A(D)[i+ 1][0], n] and for
{[[i′, j′]] ∈ D | i′ ≥ A(D)[i+ 1][0]}.
If there exists i in [[1,#B(T,D)]] such that #(B(T,D)[i]) = 1, then T ′1aaT ′2 is an optimal
solution of Min-Permutation-Table for T and for D, where B(T,D)[i] = {a}, T ′1 is an
optimal solution of Min-Permutation-Table for T [1, A(D)[i− 1][1]]word(Char(A(D)[i] \
{a}) and for {[[i′, j′]] ∈ D | j′ < A(D)[i][1]} ∪ {[[A(D)[i][0], A(D)[i][1]− 1]]}, and T ′2 is an
optimal solution of Min-Permutation-Table for word(Char(A(D)[i+ 1] \ {a})T [A(D)[i+
2][0], n] and for {[[i′, j′]] ∈ D | i′ > A(D)[i+ 1][0]} ∪ {[[A(D)[i+ 1][0] + 1, A(D)[i][1]]]}.

Proof. All the proofs are derived from the equality dA(T [1, n], D) = dA(T [1, i], {[[i′, j′]] ∈
D | j′ ≤ i}) + dA(T [i, n], {[[i′, j′]] ∈ D | i′ ≥ i}) for all i ∈ [[1, n]]. J

I Lemma 12. Let T be an array of n symbols of Σ and let D be an integer interval partition
of [[1, n]] such that for any interval [[i, j]] of D, #(Char(T [i, j])) = j − i+ 1. Whenever for
any i ∈ [[1,#B(T,D)]] one has #(B(T,D)[i]) ≥ 2, Algorithm 1 gives an optimal solution for
Min-Permutation-Table in O(#T ×#Σ) time.

Proof.
Complexity. To build the tables A(D) and B(T,D), we need O(#T ×#Σ) time. As both

tables are smaller than T , the for loop of Algorithm 1 also takes O(#T ×#Σ) time.
Optimality. As for any i in [[1,#B(T,D)]], one has #(B(T,D)[i]) ≥ 2, we get B(T,D)[i] \
{last} 6= ∅ (within the for loop of Algorithm 1). Let T ∗ be a string such that for all
[[i, j]] ∈ D, Char(T [i, j]) = Char(T ∗[i, j]). The size of T ∗ is #T and the number of
intervals of D is #D, i.e., the maximum number of positions where two consecutive
letters can be identical. Hence, we have dA(T ∗, D) ≤ #T −#D+ 1. Let T ′ be the string
given by Algorithm 1. We have dA(T ′, D) =

∑
u∈D(#u− 1) + 1 = #T −#D + 1. This

concludes the proof. J
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Algorithm 1: Computation of an array T ′ of symbols satisfying for any [[i, j]] ∈ D,
Char(T [i, j]) = Char(T ′[i, j]).
Input :An instance of Min-Permutation-Table T and D
Output :A string T ′
last← $ such that $ /∈ Σ;
T ′ ← empty string;
for i ∈ [[1,#B(T,D)]] do

lettre← random element of B(T,D)[i] \ {last};
T ′ ← T ′ word(Char(A(D)[i]) \ {lettre, last});
T ′ ← T ′ lettre lettre;
last← lettre;

T ′ ← T ′ word(Char(A(D)[#A(D)]) \ {last});
return T ′;

I Lemma 13. Let T be an array of n symbols of Σ and let D be an integer interval partition
of [[1, n]] such that for each interval [[i, j]] of D, #(Char(T [i, j])) = j − i+ 1. The problem
Min-Permutation-Table can be solved in O(#T ×#Σ) time.

Proof. By Lemma 12 and Lemma 11, we can compute an optimal solution of
Min-Permutation-Table by splitting the interval, applying Algorithm 1 on each part, and
then merging the strings output by Algorithm 1. J

5 Conclusion and Perspectives

Here, we present a new view of the Burrows-Wheeler Transform: as the text representation
of an Aho-Corasick automaton that depends on the concatenation order. This induces a link
between the Burrows-Wheeler Transform and the eXtended Burrows-Wheeler Transform,
via the Aho-Corasick automaton. This link allows one to transform one structure into the
other (for which we provide algorithms). We also exploit this link to find in linear time an
ordering of input strings that optimises the compression of the concatenated strings.

Of course, it would be interesting to evaluate even empirically the gain of this compression
on real life data. In bioinformatics, one wishes to index a collection of genomes from indidual
of the same species. For instance, it can be all variants of a virus genome within a host
(e.g., HIV or Ebola virus in human); their number and relative frequency may change along
time [2]. An application is then to compare the sequencing reads obtained from any new
infected individual with this index to determine whether some variants are becoming more
frequent or resistant to some treatment. Some viruses evolve rapidly to circumvent immune
response, the number of potential variants can be large. Hence, it is practically relevant
to reduce the index space by finding an optimal permutation of the genomes that would
maximised the Run-Length Encoding of the index.
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A Appendix

A.1 Linear time construction of tables LRS(P ) and LCP(P )
To build in linear time the tables LRS(P ) and LCP(P ), we use Algorithm 2, which is proved
in Lemma 14. We summarise this property in Proposition 15. The tables for the running
example are illustrated in Figure 2.

I Lemma 14. Let i ∈ [[1, |mP |]].

LRS(P )[i] =
{

0 if i ∈ [[1,#(P.S)]],
LRS(P )[LF(P )[i]]− 1 otherwise.

Proof. For any i ∈ [[1, |w|]], we know that SA(w)[LF(w)[i]] = SA(w)[i]− 1 if SA(w)[i] ≥ 2 and
SA(w)[LF(w)[i]] = |w| otherwise; hence, we get

if SA(w)[i] ≥ 2,

LRS(P )[LF(P )[i]] = select$(mP [SA(mP )[LF(P )[i]] : |mP |], 1)− 1
= select$(mP [SA(w)[i]− 1 : |mP |], 1)− 1

=
{

0 if mP [SA(w)[i]− 1] = $,
LRS(P )[i] + 1 otherwise.

If SA(w)[i] = 1,

LRS(P )[LF(P )[i]] = select$(mP [SA(mP )[LF(P )[i]] : |mP |], 1)− 1
= select$(mP [|mP | : |mP |], 1)− 1
= 0.

We define the function Letter from [[1, |mP |]] to Σ such that C[Letter[i]] < i ≤
C[Letter[i+ 1]] (see the definition of LF on page 3) where Σ = {c1 . . . , c#Σ} with c1 < . . . <

c#Σ. Thus, we define RLF(P ) from [[1, |mP |]] to [[1, |mP |]] such that

RLF(P )[i] = selectLetter[i](BWT(P ), i− C[Letter[i]]).

Let i be an integer between 1 and |mP |. We have

RLF(P )[LF(P )[i]] = selectLetter[LF(P )[i]](BWT(P ), LF(P )[i]− C[Letter[LF(P )[i]]])
= selectBWT(P )[i](BWT(P ), LF(P )[i]− C[BWT(P )[i]])
= selectBWT(P )[i](BWT(P ), rankBWT(w)[i](BWT(w), i))
= i.

Hence, the function RLF(P ) is the reverse bijection of LF(P ), and as mP [SA(mP )[i]− 1] =
BWT(P )[i], one gets

LRS(P )[i] = 0 ⇔ BWT(P )[RLF(P )[i]] = $
⇔ BWT(P )[selectLetter[i](BWT(P ), i− C[Letter[i]])] = $
⇔ Letter[i] = $
⇔ i ∈ [[1,#(P.S)]].

Therefore, we derive the desired equality, which concludes the proof. J
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I Proposition 15. Let P be an ordered set of strings. Using tables BWT(P ) and LCP(mP ),
we can compute the tables LRS(P ) and LCP(P ) in a time that is linear in |mP |.

Proof. As the value of LCP(P ) at each position corresponds to the minimum between the
values at same positions in LCP(mP ) and in LRS(P ), we only need to proove that the table
LRS(P ) can be computed from BWT(P ) in linear time.

Using Algorithm 2 and Lemma 14, we can compute table LRS(P ) in O(|mP |) time.

Algorithm 2: Computation of table LRS(P ).
Input :The ordered set of strings P
Output :The table LRS(P )
Compute the table BWT(P );
Initialise LRS as an empty table of length |mP |;
for i ∈ [[1,#(P.S)]] do

position← i;
nb← 0;
LRS[position]← nb;
while BWT(P )[position] 6= $ do

LRS[position]← nb;
nb← nb+ 1;
position← LF[position];

return LRS;

J

A.2 Proof of Theorem 4
The next propositions exhibit the links between Decomp_BWT(P ) and first, the arcs of
ACT(←−−P.S) (Proposition 16), and second, the arcs of ACFL(←−−P.S) (Proposition 17).

I Proposition 16 (See Figure 4). The graph GT (P ) = (Decomp_BWT(P ), AT (P )) is iso-
morphic to the tree ACT(←−−P.S), where

AT (P ) := {(u, v) ∈ Decomp_BWT(P )2| ∃x ∈ u such that LF(P )[x] 6= 0 and LF(P )[x] ∈ v}.

Proof. First, we show that there exists a bijection between the node set of ACT(←−−P.S) and
that of GT (P ). We reuse the bijection Dec_Pre, which served in Proposition 2. Let us
show that for each arc (u, v) of AT (P ), (Dec_Pre[u], Dec_Pre[v]) is an arc of ACT(←−−P.S), and
vice versa. Let (u, v) ∈ AT (P ), i.e., (u, v) ∈ Decomp_BWT(P )2 such that there exists x ∈ u
satisfying LF(P )[x] ∈ v.

According to [5], we know that SA(mP )[LF(mP )[i]] = SA(mP )[i]− 1. By Lemma 14, we
have LRS(P )[LF(P )[x]] = LRS(P )[x]+1 for all x such that LF(P )[x] 6= 0. With both equalities
and Lemma 3, we obtain

Dec_Pre[v] =
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
mP [SA(mP )[LF(P )[x]] : SA(mP )[LF(P )[x]] + LRS(P )[LF(P )[x]]− 1]

=
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
mP [SA(mP )[x]− 1 : SA(mP )[x]− 1 + LRS(P )[LF(P )[x]]− 1]

=
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
mP [SA(mP )[x]− 1 : SA(mP )[x]− 1 + LRS(P )[x]]

=
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
mP [SA(mP )[x] : SA(mP )[x] + LRS(P )[x]− 1] mP [SA(mP )[x]− 1]

= Dec_Pre[u] mP [SA(mP )[x]− 1].
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The string Dec_Pre[u] is thus the longest prefix of Dec_Pre[v].
Let (x, y) be an arc of ACT(←−−P.S). We take z a leaf in the subtree of ACT(←−−P.S) in y.

As x is the parent of y in ACT(←−−P.S), z is also a leaf in the subtree of ACT(←−−P.S) in x.
We take i ∈ [[1, |mP |]] such that ←−z is a prefix of mP [i : |mP |]. Hence ←−y is a prefix of
mP [i + |z| − |y| : |mP |] and ←−x is a prefix of mP [i + |z| − |x| : |mP |]. As (x, y) is an arc
of ACT(←−−P.S), |y| − |x| = 1. Thus, choosing k such that SA(mP )[k] = i + |z| − |y| + 1, and
u, v in Decomp_BWT(P )2 such that k ∈ u and LF(P )[k] ∈ v, we get ←−x = Dec_Pre[u] and
←−y = Dec_Pre[v]. This concludes the proof. J

I Proposition 17 (See Figure 4). The graph GF (P ) = (Decomp_BWT(P ), AF (P )) is iso-
morphic to the tree ACFL(←−−P.S), where

AF (P ) := {(u, v) ∈ Decomp_BWT(P )2|
(

max
k<i

LRS(P )[k]=mink−1≤l≤i(LCP(P )[l])

(k)
)
∈ v with u = [[i, j]]}.

Proof. First, let us show the following equivalence. Let u = [[i, j]] ∈ Decomp_BWT(P ).

w ∈ Decomp_BWT(P ) such that ∃k∈w with k < i and LRS(P )[k]=mink−1≤l≤i(LCP(P )[l])
⇔

Dec_Pre[w] is a suffix of Dec_Pre[u].

Let w∈Decomp_BWT(P ) such that ∃k∈w with k<i and LRS(P )[k]=mink−1≤l≤i(LCP(P )[l]).
Hence, we have for all l ∈ [[k − 1, i]], LRS(P )[k] ≤ LCP(P )[l], and thus

Dec_Pre[u] =
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
mP [SA(mP )[i] : SA(mP )[i] + LRS(P )[i]− 1]

=
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
mP [SA(mP )[i] + LRS(P )[k] : SA(mP )[i] + LRS(P )[i]− 1]
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
mP [SA(mP )[i] : SA(mP )[i] + LRS(P )[k]− 1]

=
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
mP [SA(mP )[i] + LRS(P )[k] : SA(mP )[i] + LRS(P )[i]− 1]
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
mP [SA(mP )[k] : SA(mP )[k] + LRS(P )[k]− 1]

=
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
mP [SA(mP )[i] + LRS(P )[k] : SA(mP )[i] + LRS(P )[i]− 1] Dec_Pre[w].

Let w = [[i1, j1]] and u = [[i2, j2]] be two elements of Decomp_BWT(P ) such that Dec_Pre[w]
is a suffix of Dec_Pre[u]. Hence, we have that mP [SA(mP )[i1] : SA(mP )[i1] + LRS(P )[i1]− 1]
is a prefix of mP [SA(mP )[i2] : SA(mP )[i2] + LRS(P )[i2]− 1]. By the definition of BWT(P ), for
all l ∈ [[i1, i2]], LRS(P )[i1] ≤ LCP(P )[l]. This concludes the proof of the equivalence. By the
equivalence, given u and v in Decomp_BWT(P ) such that Dec_Pre[u] is a suffix of Dec_Pre[v],
for all k1 ∈ u and k2 ∈ v, we have k1 ≤ k2. Hence, by taking the largest w satisfying the
first step of the inequality, we obtain the longest suffix and vice versa. J

A.3 Proof of Theorem 5
Proof. We define TB (resp. TX) as the array of intervals of Decomp_BWT(P )
(resp. Decomp_XBW(ACT(←−P ))) sorted in the interval order. Let us prove that TB and TX have
the same length, and that at the same position i, TB [i] and TX [i] represent the same prefix of
←−
P . By Proposition 2, the length of TB is #Prefix(←−−P.S). By the definition of Decomp_XBW,
the length of TX is the number of 1 in XBWL(ACT(←−P )), i.e., the number of internal nodes of
ACT(←−P ), and thus is equal to #Prefix(←−−P.S). Hence, TB and TX have the same cardinalities.

Let i ∈ [[1,#Prefix(←−−P.S)]]. By Proposition 2, TB [i] represents the ith suffix of strings of
P.S in lexicographic order. By the definition of XBWT(ACT(←−P )), all the nodes PA(ACT(←−P ))[k]
for k ∈ TX [i] have the same parent z in ACT(←−P ), and z represents the ith node in ≺ order,
i.e., the ith suffix of strings of P.S in lexicographic order.
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As for a given position i, TB [i] and TX [i] represent the same prefix of ←−P , we define the
bijection BWT_XBW such that for any i in [[1,#Prefix(←−−P.S)]], one has BWT_XBW[TB [i]] = TX [i].
As the tree ACT(←−P ) represents the Aho-Corasick tree of ←−−P.S$, we have a bijection b1 from
the node set of ACT(←−P ) onto the set of prefixes of ←−−P.S$. By the definition of functions π and
δ (see page 4), for any node v of ACT(←−P ), we have b1(v) =

←−−
π(v) δ(v).

By the definition of XBWT(ACT(←−P )), we have that for TX [i] = [[i′, j′]]

#TX [i] = #{v node of ACT(←−P ) | π(v) =
←−−−−−−−−−−−−−−−−−−−−−
Dec_Pre[BWT_XBW−1[TX [i]]]}

= #{v node of ACT(←−P ) | v is a child of b−1
1 (Dec_Pre[BWT_XBW−1[TX [i]]])}.

As i′ ∈ TX [i] and b−1
1 (Dec_Pre[BWT_XBW−1[TX [i]]]) = ParentACT(←−P )(PA(ACT(←−P ))[i′]),

#TX [i] = #{v node of ACT(←−P ) | v is a child of ParentACT(←−P )(PA(ACT(←−P ))[i′])}
= #ChildrenACT(←−P )(ParentACT(←−P )(PA(ACT(←−P ))[i′])).

Let {x1, x2, . . . , x#TX [i]} be the set of children of ParentACT(←−P )(PA(ACT(←−P ))[i′]) sorted such

that x1 CP.σ . . . CP.σ x#TX [i]. By the definition of XBWT(ACT(←−P )), for any k ∈ [[1,#TX [i]]],
we have XBWT(ACT(←−P ))[i′ + k − 1] = δ[xk]. By the definition of BWT(P ), for TB [i] = [[i′′, j′′]],
we get

#TB [i] = #{w ∈ ←−−P.S$ | Dec_Pre[TB [i]] is a prefix of w}
= #{v leaf of ACT(←−P ) | b−1

1 (Dec_Pre[TB [i]]) is an ancestor of v in ACT(←−P )}.

As b−1
1 (Dec_Pre[TB [i]])=b−1

1 (Dec_Pre[BWT_XBW−1[TX [i]]])=ParentACT(←−P )(PA(ACT(←−P ))[i′]),

#TB [i] = #{v a leaf of ACT(←−P ) | ParentACT(←−P )(PA(ACT(←−P ))[i′])
is an ancestor of v in ACT(←−P )}

= #LeavesACT(←−P )(ParentACT(←−P )(PA(ACT(←−P ))[i′])).

Let {y1, y2, . . . , y#TB [i]} be the set of leaves of the subtree of ParentACT(←−P )(PA(ACT(←−P ))[i′])

in ACT(←−P ) sorted such that y1 CP.σ . . .CP.σ y#TB [i]. Given k ∈ [[i′′, j′′]], we define wP [k] as
the string mP [select$(mP , rank$(mP , SA(P )[k]− 1)) + 1 : SA(P )[k] + LRS(P )[k]− 1]. For
all k ∈ [[i′′, j′′]], the string wP [k] is a string of P.S. Moreover, the definition of <P.σ implies
wP [i′′] <P.σ . . . <P.σ wP [j′′]. As for l ∈ [[1,#TB[i]]], the string π(yl) is also a string of P.S,
we get π(yl) = wP [i′′ + l − 1]. Given x and y in [[i′′, j′′]] ∈ Decomp_BWT(P ), we obtain the
following equivalences between orders:

x < y ⇔ wP [x] <P.σ wP [y] ⇔ π(yx−i′′+1) <P.σ π(yy−i′′+1) ⇔ yx−i′′+1 CP.σ yy−i′′+1.

By the definition of BWT(P ), for all k ∈ [[1,#TB [i]]], we get that

BWT(P )[i′′ + k − 1] = mP [SA(mP )[i′′ + k − 1]− 1]
= wP [i′′ + k − 1][|wP [i′′ + k − 1]| − LRS[i′′ + k − 1] + 1]
= π(yk)[|wP [i′′ + k − 1]| − LRS[i′′ + k − 1] + 1]
= δ[ChildACT(←−P )(yk)(ParentACT(←−P )(PA(ACT(←−P ))[i′]))]. J
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A.4 Proof of Corollary 6
Let P be an ordered set of strings. To compute tables XBWT(ACT(←−P )) and XBWL(ACT(←−P ))
using only BWT(P ), LCP(P ) and LRS(P ), we first define a new table BWD(P ).

The Burrows-Wheeler Decomposition of P , denoted by BWD(P ), is the array of length
#Decomp_BWT(P ) such that for each position i, BWD(P )[i] is the cardinality of the ith element
of Decomp_BWT(P ) in interval order.

I Lemma 18. Using tables LCP(P ) and LRS(P ), Algorithm 3 computes BWD(P ) in linear
time in ‖P.S‖ and the table BWD(P ) can be stored with ‖P.S‖ × log(#(P.S)) bits.

Proof of Lemma 18. For each i in [[1, |mP |]], at the begining of the loop for, we have that
LCP(P )[i− j] 6= LRS(P )[i− j] and for all k ∈ [[i− j + 1, i− 1]], LCP(P )[k] 6= LRS(P )[k]. Hence,
if LCP(P )[i] 6= LRS(P )[i], the interval [[i− j, i− 1]] is an element of Decomp_BWT(P ) and the
cardinality of [[i− j, i− 1]] is j. Otherwise, we increase j by 1 because the position i does
not correspond to a new interval of Decomp_BWT(P ). For the complexity, as each step of
the loop can be computed in constant time, Algorithm 3 computes BWD(P ) in linear time in
‖P.S‖. As for each position i of BWD(P ), BWD(P )[i] represents the number of strings of P.S
having as suffix Dec_Pre[u], where u is the ith element of Decomp_BWT(P ) sorted in interval
order, it follows that BWD(P )[i] ≤ #(P.S). This concludes the proof. J

Algorithm 3: Computation of table BWD(P ).
Input :The tables LCP(P ) and LRS(P )
Output :The table BWD(P )
BWD← empty list;
j ← 0;
for i ∈ [[1, |mP |]] do

if LCP(P )[i] 6= LRS(P )[i] then
insert j at the end of BWD;
j ← 1;

else j ← j + 1 ;
return BWD;

I Lemma 19. Using tables BWT(P ) and BWD(P ), Algorithm 4 computes the tables
XBWT(ACT(←−P )) and XBWL(ACT(←−P )) in linear time of ‖P.S‖ ×#Σ.

Proof of Lemma 19. Algorithm 4 is an application of Theorem 5. J

Using Algorithm 3 to build BWD(P ) and Algorithm 4, we can compute tables XBWT(ACT(←−P ))
and XBWL(ACT(←−P )) in linear time of ‖P.S‖ ×#Σ.
We define the equivalent of BWD for Decomp_XBW(P ). The eXtended Burrows Wheeler
Decomposition (XBWD) of a tree T is the array of length #XBWL(T ) such that for any position
i, XBWD(P )[i] equals the cardinality of the ith element of Decomp_XBW(T ) sorted in interval
order.

I Lemma 20. From the table XBWL(ACT(S)), Algorithm 5 computes XBWD(ACT(S)) in linear
time in ‖P.S‖ and the table XBWD(ACT(S)) can be stored in ‖P.S‖ × log(#Σ) bits.
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Algorithm 4: Computation of tables XBWT(ACT(←−P )) and XBWL(ACT(←−P )).
Input :The tables BWT(P ) and BWD(P )
Output :The tables XBWT(ACT(←−P )) and XBWL(ACT(←−P ))
Initialise both XBWT and XBWL as empty lists;
nb← 1;
for i ∈ [[1,#BWD(P )]] do

D ← Dictionnary such that for all l ∈ Σ, D[l]← true;
begin← nb;
last← begin+ BWD(P )[i]− 1;
nb← last+ 1;
for j ∈ [[begin, last]] do

if D[BWT(P )[j]] then
insert BWT(P )[j] at the end of XBWT ;
insert 0 at the end of XBWL ;
D[BWT(P )[j]]← false;

XBWL[#XBWL]← 1;
return XBWT and XBWL;

Proof. The proof of Lemma 20 is similar to that of Lemma 18. As for each position i of
XBWD(ACT(S)), XBWD(ACT(S))[i] represents the number of the right extensions of the strings
PA(ACT(S))[i] in S (i.e., the number of different strings PA(ACT(S))[i] a which are substrings
of a string of S for some a ∈ Σ), we have XBWD(ACT(S))[i] ≤ #Σ. J

Algorithm 5: Computation of table XBWD(ACT(S)).
Input : The table XBWL(ACT(S)); Output: The table XBWD(ACT(S))
XBWD← empty list;
j ← 1;
for i ∈ [[1,#(XBWL(ACT(S)))]] do

if XBWL(ACT(S)) = 1 then
insert j at the end of XBWD ;
j ← 1;

else j ← j + 1 ;
return XBWD;

I Lemma 21. Using tables XBWT(ACT(S)) and XBWD(ACT(S)), we can build the tables BWT(←−P ),
LCP(←−P ) and LRS(←−P ) in linear time of ‖P.S‖×#Σ, where P is a topologically planar, ordered
set of strings such that P.S = S.

Proof. In [9], Ferragina et al. prove that with both tables XBWT(ACT(S)) and XBWD(ACT(S))
one can access in constant time the children and the parents in ACT(S). Hence, we can
compute in linear time in ‖P.S‖, the table TL(ACT(S)), where in each position of i we store
the number of leaves in the subtree of the node PA(ACT(S))[i]. We finish the proof using the
results of Theorem 5 and an algoritm similar to Algorithm 4. J
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A.5 Proof of Lemma 10
Proof. Let T ′ be an optimal solution of Min-Permutation-Table for XBWT(ACT(P )) and for
Decomp_XBW(ACT(P )). By Theorem 5, for each [[i, j]] ∈ Decomp_XBW(ACT(P )), the order
of the symbols in XBWT(ACT(P ))[i, j] depends on the order on the children of the parent
of PA(ACT(P ))[i]. Hence, the choice of T ′ corresponds to the choice of an order for each
internal node of ACT(P ) over all its children. As we can extend this order to a total order
on the leaves of ACT(P ), we can build P ′ the ordered set of strings satisfying P ′.S = S$

and P ′.σ(π(fi)) = si, where the order on the leaves of ACT(P ) is f1 < . . . < f#S and
s1 < . . . < s#S are the strings of S in lexicographic order. J
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