
On the Size of Overlapping Lempel-Ziv and
Lyndon Factorizations
Yuki Urabe
Department of Informatics, Kyushu University, Japan
yuki.urabe@inf.kyushu-u.ac.jp

Yuto Nakashima
Department of Informatics, Kyushu University, Japan
yuto.nakashima@inf.kyushu-u.ac.jp

Shunsuke Inenaga
Department of Informatics, Kyushu University, Japan
inenaga@inf.kyushu-u.ac.jp

Hideo Bannai
Department of Informatics, Kyushu University, Japan
bannai@inf.kyushu-u.ac.jp

Masayuki Takeda
Department of Informatics, Kyushu University, Japan
takeda@inf.kyushu-u.ac.jp

Abstract
Lempel-Ziv (LZ) factorization and Lyndon factorization are well-known factorizations of strings.
Recently, Kärkkäinen et al. studied the relation between the sizes of the two factorizations, and
showed that the size of the Lyndon factorization is always smaller than twice the size of the non-
overlapping LZ factorization [STACS 2017]. In this paper, we consider a similar problem for the
overlapping version of the LZ factorization. Since the size of the overlapping LZ factorization is
always smaller than the size of the non-overlapping LZ factorization and, in fact, can even be an
O(logn) factor smaller, it is not immediately clear whether a similar bound as in previous work
would hold. Nevertheless, in this paper, we prove that the size of the Lyndon factorization is always
smaller than four times the size of the overlapping LZ factorization.

2012 ACM Subject Classification Mathematics of computing → Combinatorics on words

Keywords and phrases Lyndon factorization, Lyndon words, Lempel-Ziv factorization

Digital Object Identifier 10.4230/LIPIcs.CPM.2019.29

Funding Yuto Nakashima: Supported by JSPS KAKENHI Grant Number JP18K18002.
Shunsuke Inenaga: Supported by JSPS KAKENHI Grant Number JP17H01697.
Hideo Bannai: Supported by JSPS KAKENHI Grant Number JP16H02783.
Masayuki Takeda: Supported by JSPS KAKENHI Grant Number JP18H04098.

1 Introduction

A factorization of a string w is a sequence of non-empty substrings of w such that the
concatenation of the substrings in the sequence is w. Various types of factorizations of
strings have been proposed so far, and most, if not all, of them are categorized into two
(not necessarily disjoint) categories. One is to factorize a given string w into combinatorial
objects such as squares (square factorization [9, 18]), repetitions (repetition factorization [14]),
palindromes (palindromic factorization [13, 10, 4, 2]), closed words (closed factorization [1]),
and Lyndon words (Lyndon factorization [6]), while the other is to factorize a given string
w as efficient preprocessing for text processing, in particular, text compression [21, 22, 20].

© Yuki Urabe, Yuto Nakashima, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda;
licensed under Creative Commons License CC-BY

30th Annual Symposium on Combinatorial Pattern Matching (CPM 2019).
Editors: Nadia Pisanti and Solon P. Pissis; Article No. 29; pp. 29:1–29:11

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:yuki.urabe@inf.kyushu-u.ac.jp
mailto:yuto.nakashima@inf.kyushu-u.ac.jp
mailto:inenaga@inf.kyushu-u.ac.jp
https://orcid.org/0000-0002-6856-5185
mailto:bannai@inf.kyushu-u.ac.jp
mailto:takeda@inf.kyushu-u.ac.jp
https://doi.org/10.4230/LIPIcs.CPM.2019.29
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

29:2 On the Size of Overlapping Lempel-Ziv and Lyndon Factorizations

Amongst the variety of string factorizations, the Lyndon factorization [6] and the Lempel-
Ziv (LZ for short) factorization [21] are probably those that are most well-known and
extensively studied from the above categories, respectively, and this paper also deals with
these factorizations.

As will be seen below, the definitions of LZ and Lyndon factorizations are rather different,
and hence the results of these factorizations of the same string can also be very different. On
the other hand, quite interestingly, both LZ and Lyndon factorizations have been used as
efficient preprocessing for linear-time computation of runs or maximal repetitions in a given
string [16, 5, 7, 3, 17, 11, 8]. Another connection between LZ and Lyndon factorizations is
that both of the sizes of the LZ and Lyndon factorizations of a string w are lower bounds of
the output size of any grammar compression for w [19, 12]. Here, by the size of a factorization
we mean the number of factors in the factorization. Now, a natural question would be: How
much the sizes of the LZ and Lyndon factorizations of the same string can differ?

This question was first considered by Kärkkäinen et al. [15] for the non-overlapping
variant of LZ factorization. The non-overlapping LZ factorization of a string w is a sequence
p1, . . . , pzno of zno factors such that each pi is a single character if it is the first occurrence
of the character in w, or pi is the longest prefix of pi · · · pzno

that has an occurrence in
p1 · · · pi−1. A string ` is said to be a Lyndon word, if ` is lexicographically smaller than
all of its non-empty proper suffixes. A factorization fe1

1 , . . . , fem
m is said to be the Lyndon

factorization of a string w if fi is a Lyndon word, ei ≥ 1, and fi is lexicographically larger
than fi+1 for all i. For many strings, the size m of Lyndon factorization is smaller than the
size zno of non-overlapping LZ factorization. However, they showed that there is a series
of strings for which m = zno + Θ(√zno) holds. In addition, they proved that the inequality
m < 2zno holds for any string.

In this paper, we consider the relationship between the size of overlapping variant of
LZ factorization and Lyndon factorization of the same string. The non-overlapping LZ
factorization of a string w is a sequence q1, . . . , qz of z factors such that each qi is a single
character if it is the first occurrence of the character in w, or qi is the longest prefix of
qi · · · qzno

that has another occurrence in w beginning at a position within q1 · · · qi−1. It is
known that z ≤ zno always holds, and there are cases where z is by a factor of O(logn)
smaller than zno: E.g., for a trivial string an, z = 2 while zno = Θ(logn). These facts make
it more challenging to show an upper bound for m in terms of z. Still, in this paper, we
prove that the inequality m < 4z holds for any string. Our proof generally follows the scheme
introduced by Kärkkäinen et al. [15], but our analysis leading to the inequality m < 4z is
original and seems to be interesting.

2 Preliminaries

2.1 Strings
Let Σ be an ordered alphabet. An element of Σ∗ is called a string. The length of a string w is
denoted by |w|. The empty string ε is a string of length 0. Let Σ+ be the set of non-empty
strings, i.e., Σ+ = Σ∗ − {ε}. For a string w = xyz, x, y and z are called a prefix, substring,
and suffix of w, respectively. The i-th character of a string w is denoted by w[i], where
1 ≤ i ≤ |w|. For a string w and two integers 1 ≤ i ≤ j ≤ |w|, let w[i..j] denote the substring
of w that begins at position i and ends at position j. For convenience, let w[i..j] = ε when
i > j. For any string w let w1 = w, and for any integer k ≥ 2 let wk = wwk−1, i.e., wk is a
k-times repetition of w.

Y. Urabe, Y. Nakashima, S. Inenaga, H. Bannai, and M. Takeda 29:3

If character a is lexicographically smaller than another character b, then we write a ≺ b.
For any strings x, y, let lcp(x, y) be the length of the longest common prefix of x and y. We
write x ≺ y iff either x[lcp(x, y) + 1] ≺ y[lcp(x, y) + 1] or x is a proper prefix of y.

2.2 Lyndon words and Lyndon factorization of strings
A string w is said to be a Lyndon word, if w is lexicographically strictly smaller than all of
its non-empty proper suffixes. The Lyndon factorization of a string w is the factorization
fe1

1 , . . . , fem
m of w, such that each fi ∈ Σ+ is a Lyndon word, ei ≥ 1, and fi � fi+1 for all

1 ≤ i < m. We call m the size of the Lyndon factorization of w. We also refer to each fi as
a Lyndon factor and each Fi = fei

i as a Lyndon run of w.

2.3 Lempel-Ziv factorization of strings
The overlapping Lempel-Ziv factorization (LZ factorization for short) of a string w is the
factorization p1, . . . , pz of w such that either pi is a character which does not appear in
p1 · · · pi−1 or pi is the longest prefix of pi · · · pz which has another occurrence to the left. We
refer to each pi as an LZ phrase. For any substring w[i..j] (1 ≤ i ≤ j ≤ |w|) in w, w[i..j] is
said to contain an LZ phrase boundary if there exists an LZ phrase which begins in [i, j].

3 Tools for non-overlapping LZ factorization

In this paper, we give the following result.

I Theorem 1. Let m be the size of the Lyndon factorization of a string w and z the size of
the (overlapping) LZ factorization of w. For any string w, m < 4z holds.

We prove Theorem 1 in Section 4. Our proof follows similar techniques for non-overlapping
version which was introduced by Kärkkäinen et al. [15]. In this section, we explain their
techniques which can be also applied for overlapping version.

3.1 Leftmost occurrence and factorizations
Each factorization catches the leftmost occurrences of particular substrings. Lemma 2 can
be easily obtained by the definition of LZ factorization.

I Lemma 2. If a substring w[i..j] does not have any occurrence to the left, w[i..j] contains
an LZ phrase boundary.

I Lemma 3 (Lemma 4 of [15]). Let d ≥ 1 and 1 ≤ i ≤ m − d + 1, and assume that
Fi · · ·Fi+d−1 has an occurrence to the left of the trivial one in w. Then:
1. The leftmost occurrence of Fi · · ·Fi+d−1 is a prefix of fj for some j < i;
2. Fi · · ·Fi+d−1 is a prefix of every fk with j ≤ k < i.

3.2 Domains
Due to Lemma 3, each concatenation of several Lyndon runs has a range such that every
Lyndon run in the range has the concatenation as a prefix.

I Definition 4 (Definition 5 of [15]). Let d ≥ 1 and 1 ≤ i ≤ m − d + 1. d-domain of a
Lyndon run Fi, denoted by domd(Fi), is the substring Fj · · ·Fi−1 where Fj is the Lyndon
run starting at the same position as the leftmost occurrence of Fi · · ·Fi+d−1 in w. Note that

CPM 2019

29:4 On the Size of Overlapping Lempel-Ziv and Lyndon Factorizations

w = a b b a b b a b a c a b a c b a b a c a b a

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

1

2

1

1, 2, 3

Figure 1 All non-empty domains in string w = abbabbabacabacbabacaba are illustrated. Since
the leftmost occurrence of w[20..22] in w is w[7..9], 2-domain of Lyndon run w[20..21] is w[7..19].
Moreover, w[7..9] is associated with this 2-domain. (This figure imitates Figure 1 of [15].)

if Fi · · ·Fi+d−1 does not have any occurrence to the left of the trivial one then domd(Fi) = ε.
The integers d and i − j are called the order and size of the domain, respectively. The
extended d-domain of Fi is the substring extdomd(Fi) = domd(Fi) · Fi · · ·Fi+d−1 of w.

By the definition and Lemma 2, each domain contains an LZ phrase boundary. For any
domain domd(Fi), we say that the leftmost occurrence of Fi · · ·Fi+d−1 is associated with
domd(Fi) (Definition 7 of [15]).

I Lemma 5 (Lemma 8 of [15]). Each substring associated with a domain contains an LZ
phrase boundary.

We show an example of domains in Figure 1.

3.3 Tandem domains
I Definition 6 (Definition 9 of [15]). Let d ≥ 1 and 1 ≤ i ≤ m − d. A pair of domains
domd+1(Fi), domd(Fi+1) is called a tandem domain if domd+1(Fi) · Fi = domd(Fi+1) or,
equivalently, if extdomd+1(Fi) = extdomd(Fi+1). Note that we permit domd+1(Fi) = ε.

Let domd+1(Fi), domd(Fi+1) be a tandem domain. By Lemma 3, Fi can be written as
Fi = Fi+1 · · ·Fi+d · x for some x ∈ Σ+. Thus, Fi · · ·Fi+d = Fi+1 · · ·Fi+d · x · Fi+1 · · ·Fi+d.
We say that the occurrence of x · Fi+1 · · ·Fi+d in the leftmost occurrence of Fi · · ·Fi+d is
associated with the tandem domain domd+1(Fi), domd(Fi+1) (Definition 10 of [15]).

In Figure 1, a pair of 3-domain of Lyndon run w[16..19] and 2-domain of Lyndon run
w[20..21] is a tandem domain. Moreover, w[10..13] is associated with the tandem domain.

3.4 Groups
I Definition 7. Let d ≥ 1, 2 ≤ p ≤ m, and 1 ≤ i ≤ m − d − p + 2. A set of p domains
domd+p−1(Fi), . . . , domd(Fi+p−1) is called a p-group if for all t = 0, . . . , p − 2 the equal-
ity domd+p−1−t(Fi+t), domd+p−2−t(Fi+t+1) hols or, equivalently, extdomd+p−1(Fi) = . . . =
extdomd(Fi+p−1). Note that we permit domd+p−1(Fi) = ε.

Let domd+p−1(Fi), . . . , domd(Fi+p−1) is a p-group. Fi has Fi+p−1 · · ·Fi+p+d−2 as a prefix
by Lemma 3. Then, Fi · · ·Fi+p+d−2 = Fi+p−1 · · ·Fi+p+d−2 · x · Fi+1 · · ·Fi+p+d−2 for some
x ∈ Σ∗. We say that the occurrence of x · Fi+1 · · ·Fi+p+d−2 in the leftmost occurrence of
Fi · · ·Fi+p+d−2 is associated with the group.

I Lemma 8 (Lemma 16 of [15]). The substring associated with a p-group is the concatenation,
in reverse order, of the p− 1 substrings associated with the tandem domains belonging to the
p-group.

Y. Urabe, Y. Nakashima, S. Inenaga, H. Bannai, and M. Takeda 29:5

! !"!"#!!"#"!"##!$

%

&$!

&$"

'

!"(& #!!

&

)!)" %

!"#!

% '

%!"#!!"#"

!"#!

% '

%

'*

'*

!"#!!"#"

!"#!

% '

% '*

%%

% '% '

Figure 2 This figure illustrated 3-group domd+2(Fi−2), domd+1(Fi−1), domd(Fi). α1(= zy) is the
substring associated with tandem domain domd+1(Fi−1), domd(Fi), and α2(= z′yzy) is the substring
associated with tandem domain domd+2(Fi−2), domd+1(Fi−1). Moreover, α1α2 is the substring
associated with the 3-group. (This figure imitates Figure 2 of [15].)

Two groups domd+p−1(Fi), . . . , domd(Fi+p−1) and domd′+p′−1(Fk), . . . , domd′(Fk+p′−1)
are said to be disjoint if i+ p− 1 < k or k+ p′− 1 < i. For any disjoint groups, the following
property holds.

I Lemma 9 (Lemma 18 of [15]). Substring associated with disjoint groups do not overlap.

3.5 Subdomains
I Definition 10 (Definition 19 of [15]). dome(Fk) is said to be a subdomain of domd(Fi) =
Fj · · ·Fi−1 if either

k = i and e = d, or
j ≤ k < i and extdome(Fk) is a substring of extdomd(Fi).

I Lemma 11 (Lemma 20 of [15]). Let dome(Fk+1), dome+1(Fk) be a tandem domain. If
dome(Fk+1) and dome+1(Fk) are both subdomains of a domain domd(Fi), then the substring
associated with domd(Fi) does not overlap the substring associated with tandem domain
dome(Fk+1), dome+1(Fk).

From this lemma, if every domain in a group is a subdomain of domain domd(Fi), the
substring associated with domd(Fi) does not overlap the substring associated with the group.

3.6 Canonical subdomains
For any domain domd(Fi) = Fj · · ·Fi−1, we define canonical subdomain Ci,d as follows. Ci,d
is the set of subdomains of domd(Fi) which can be obtained by the following conditions.
Initially, we set δ = d+ 1, l = i− 1. When l = j, then we finish the operations.

If domδ(Fl) = Fj · · ·Fl−1, we add domδ(Fl) into the set Ci,d, and set δ = δ + 1, l = l − 1.
If domδ(Fl) = Fj′ · · ·Fl−1 (j < j′), we add domδ(Fl) into the set Ci,d, and set δ = 1, l =
j′ − 1. All domains that were added to the set in this case are called loose subdomains.

We refer to each set of consecutive non-loose subdomains as a cluster. Note that the
number of clusters is the number of loose subdomains plus one. Since domd′(Fj) = ε, the
domain w.r.t. Fj is always a cluster.

Let t be the number of loose subdomains in canonical sundomains Ci,d of domain
domd(Fi). We can discuss the number of LZ phrase boundaries contained in extdomd(Fi).
Let domd1(Fi1), . . . , domdt

(Fit) (i1 < . . . < it) be the sequence of loose subdomains, and

CPM 2019

29:6 On the Size of Overlapping Lempel-Ziv and Lyndon Factorizations

!"#!"$!"%!"&!""!"'!(!)!*!+!#!$!%!&!"

!

"

#

$

!

"

!

"

%

!

"#

!"+

&'()*+%,!!"-&'()*+",!!.-&'()*+#,!%-

Figure 3 This figure illustrates the canonical subdomains of dom1(F16) = F1 · · ·F15. (This figure
imitates Figure 3 of [15].)

l (≥ 1) the number of Lyndon runs in the leftmost cluster. By the definition of loose
subdomains, we have the following equality.

extdomd(Fi) = Fj · · ·Fj+l−1 · extdomd1(Fi1) · · · extdomdt
(Fit) (1)

Let S be the sum of the number of the LZ phrase boundaries contained in substrings associated
with each clusters of Ci,d. By Lemma 9, these substrings do not overlap each other, and they
are in Fj · · ·Fj+l−1. Moreover, they do not overlap the substring associated with domd(Fi)
since they are also subdomains of domd(Fi) (by Lemma 11). Thus, by Lemma 5, there
exists an LZ phrase boundary in Fj · · ·Fj+l−1 which was not counted in S. Let nh be the
number of LZ phrase boundaries which is contained in extdomdh

(Fih). It is clear that these
boundaries are not in Fj · · ·Fj+l−1. Thus, they do not overlap the substring associated with
the group and domd(Fi), respectively. Finally, we can discuss the number Ni,d of LZ phrase
boundaries in extdomd(Fi) by using Equality (2):

Ni,d ≥ 1 +
t∑

h=1
nh + S. (2)

4 Proof for overlapping LZ factorization

In this section, we prove Theorem 1. Our proof follows a general scheme introduced by
Kärkkäinen et al. [15]. However, our analysis leading to the inequality m < 4z is original
and seems to be interesting.

4.1 Number of LZ phrase boundaries in groups
In the proof for non-overlapping version, Corollary 17 of [15] is one of the important properties.
However, the corollary does not hold for overlapping version of LZ factorization. We want to
introduce a new lemma as Lemma 13 for our problem. We start from the following lemma.

I Lemma 12. Each substring associated with a 3-group contains an LZ phrase boundary.

Y. Urabe, Y. Nakashima, S. Inenaga, H. Bannai, and M. Takeda 29:7

! FiFi−1Fi−2Fj

y

d+1

d+2

z

Fi+d −1!

d

y

Fi−1

y z

y z’Fi−1Fi−2

Fi−1

y z

y z’

y

y z

Fi−1 y

s

s’

Figure 4 An illustration of the first case of proof for Lemma 12.

! FiFi−1Fi−2Fj

y z

Fi+d −1!

d

y

Fi−1

y z

y z’Fi−1Fi−2

Fi−1

y z

y z’

y

y z

z y

s

d+1

d+2

s’

Figure 5 An illustration of the second case of proof for Lemma 12.

Proof. Let domd+2(Fi−2), domd+1(Fi−1), domd(Fi) be a 3-group. By the definition of groups,
Fi−1 can be written as Fi · · ·Fi+d−1 · z for some z ∈ Σ+, and Fi−2 can be written as
Fi−2 = Fi−1 · · ·Fi+d−1 · z′ = Fi · · ·Fi+d−1 · z · Fi · · ·Fi+d−1 · z′ for some z′ ∈ Σ+. For
convenience, y = Fi · · ·Fi+d−1. Then, Fi−2 · · ·Fi+d−1 = y · z · y · z′ · Fi−1 · y.

The substring associated with the 3-group is the suffix z · y · z′ · Fi−1 · y of the leftmost
occurrence of Fi−2 · · ·Fi+d−1. s denotes the occurrence (see Figure 4). Suppose that
z · y · z′ ·Fi−1 · y does not have any LZ phrase boundaries at the occurrence. By the definition
of LZ factorization, z · y · z′ · Fi−1 · y has an occurrence to the left. Let s′ be one of such
occurrences of z · y · z′ · Fi−1 · y. We consider the suffix Fi−1 · y of s′. If a prefix of this
suffix Fi−1 · y overlaps a suffix of Fi−2(see Figure 4). This fact implies that fi−2 has a prefix
of Fi−1 · y as a suffix since Fi−2 = f

ei−2
i−2 . On the other hand, fi−2 has Fi−1 · y as a prefix

by Lemma 3. Hence, fi−2 has a prefix of Fi−1 · y as a prefix and also a suffix. This fact
contradicts that fi−2 is a Lyndon word. Thus, the distance between s and s′ has to be at
least |Fi−1 · y| + 1. However, this fact also contradicts the leftmost occurrence of y (the
leftmost occurrence of y is a prefix of Fj in fact, see also Figure 5). Therefore, every substring
associated with a 3-group contains an LZ phrase boundary. J

By using this lemma, we can easily obtain the following key lemma.

I Lemma 13. Each substring associated with a p-group contains at least
⌊
p−1

2
⌋
LZ phrase

boundaries.

Proof. From Lemma 8, the substring associated with a p-group is the concatenation of p− 1
substrings associated with tandem domains. The substring associated with 3-group contains
an LZ phrase boundary by Lemma 12. Let x and y be the consecutive substrings which are
associated with two consecutive tandem domains. Then, either x or y contains an LZ phrase
boundary. Therefore, there exists at least

⌊
p−1

2
⌋
LZ phrase boundaries. J

CPM 2019

29:8 On the Size of Overlapping Lempel-Ziv and Lyndon Factorizations

4.2 Number of LZ phrase boundaries in extended domains

I Lemma 14. Let domd(Fi) be a domain of size k ≥ 0. extdomd(Fi) contains at least⌈
k−1

4
⌉

+ 1 LZ phrase boundaries (namely Ni,d ≥
⌈
k−1

4
⌉

+ 1).

Proof. Let domd(Fi) = Fj · · ·Fi−1 be a domain of size k = i− j. We prove this lemma by
induction on k. If k = 0, then the substring associated with domd(Fi) contains an LZ phrase
boundary and the statement holds. Now we assume that k ≥ 1 and the lemma holds for all
k ≤ k′ for some k′.

Firstly, we consider the case when Ci,d does not have loose subdomain. In that case,
domd+k(Fj), . . . , domd(Fi) is a (k + 1)-group. By Lemma 5, the substring associated with
domd(Fi) contains an LZ phrase boundary. On the other hand, by Lemma 13, the substring
associated with the (k + 1)-group contains

⌊
k
2
⌋
LZ phrase boundaries. Since every domain

in the group is a subdomain of domd(Fi), the substring associated with domd(Fi) does
not overlap each of them by Lemma 11. Thus, extdomd(Fi) contains

⌊
k
2
⌋

+ 1 LZ phrase
boundaries. The statement of the lemma holds for this case since

⌊
k
2
⌋

+ 1 ≥
⌈
k−1

4
⌉

+ 1.
Suppose that Ci,d has t (≥ 1) loose subdomains. Let domd1(Fi1), . . . , domdt

(Fit) be the t
loose subdomains of Ci,d and kh the size of loose subdomain domdh

(Fih) for any 1 ≤ h ≤ t.
We can see a lower bound of Ni,d by using Equation (2). For the second term of Equation (2),
nh ≥

⌈
kh−1

4
⌉

+ 1 holds by an induction hypothesis. Now we analyze the sum of kh for all h.
Let l be the number of domains in the leftmost cluster. Then,

t∑
h=1

kh = k − l −
t−1∑
h=1

dh − (dt − d) (3)

holds. Next, we analyze the third term of Equation (2). Notice that S is the sum of the
number of LZ phrase boundaries which are contained in substrings associated with each
group that is a cluster in Ci,d. The leftmost cluster is a l-group, the rightmost cluster is a
(dt − d)-group, and each of other clusters is (dh − 1)-group. For convenience, we consider
1-group as a single domain and 0-group as an empty set of domains. It is clear that substrings
associated with each of them has no LZ phrase boundary. Thus, S can be written as

S =
⌊
l − 1

2

⌋
+

t−1∑
h=1

⌊
1
2(dh − 1− [dh > 1])

⌋
+
⌊
dt − d− 1

2

⌋
(4)

by using Knuth’s notation [predicate] for the numerical value (0 or 1) of the predicate in
brackets. We partition (t− 1) clusters (which are not the leftmost and the rightmost) into
two sets as;

T1 = {h | dh ≥ 3, h ∈ [1, t− 1]}, and
T2 = {h | dh < 3, h ∈ [1, t− 1]}.

For any non-negative integer e,
⌊
e
2
⌋
≥ e

2 −
1
2 holds. By using this inequation, the second

term in the right-hand side of Equation (4) can be written as

Y. Urabe, Y. Nakashima, S. Inenaga, H. Bannai, and M. Takeda 29:9

t−1∑
h=1

⌊
1
2(dh − 1− [dh > 1])

⌋
=

∑
h∈T1

⌊
1
2(dh − 1− [dh > 1])

⌋
≥ 1

2
∑
h∈T1

(dh − 1− [dh > 1])− |T1|
2

= 1
2
∑
h∈T1

(
dh
3 − [dh > 1]

)
+ 1

3
∑
h∈T1

dh − |T1| ≥
1
3
∑
h∈T1

dh − |T1|.

Thus, S can be also written as

S ≥ 1
3
∑
h∈T1

dh − |T1|+ α

(
α =

⌊
l − 1

2

⌋
+
⌊
dt − d− 1

2

⌋)
.

Moreover, Equation (2) can be written as

1 +
t∑

h=1

(⌈
kh − 1

4

⌉
+ 1
)

+ S

≥ 1 + 3
4 t+ 1

4

(
k − l −

t−1∑
h=1

dh + d− dt

)
+ S

≥ 1 + 3
4 t+ 1

4(k − l + d− dt)−
1
4
∑
h∈T1

dh −
1
4
∑
h∈T2

dh + 1
3
∑
h∈T1

dh − |T1|+ α

≥ 1 + 3
4 t+ 1

4(k − l + d− dt)−
|T2|
2 + 1

12
∑
h∈T1

dh − |T1|+ α

≥ 1 + 3
4(1 + |T1|+ |T2|) + 1

4(k − l + d− dt)−
|T2|
2 + |T1|

4 − |T1|+ α

≥ 7
4 + 1

4(k − l + d− dt) +
⌊
l − 1

2

⌋
+
⌊
dt − d− 1

2

⌋
.

Let β = 7
4 + 1

4 (k − l + d− dt) +
⌊
l−1

2
⌋

+
⌊
dt−d−1

2
⌋
. We can prove β ≥ k−1

4 + 1 for each of
three cases as follows. If l = 1, then

β ≥ 7
4 + 1

4(k − l + d− dt) + dt − d− 1
2 − 1

2

= 3
4 + k − 1

4 + dt − d
4 ≥ k − 1

4 + 1.

If l > 1 and dt − d− 1 = 1, then

β ≥ 7
4 + 1

4(k − l + d− dt) + l − 1
2 − 1

2

= 1 + k − 1
4 + l − (dt − d)

4 ≥ k − 1
4 + 1.

If l > 1 and dt − d− 1 > 1, then

β ≥ 7
4 + 1

4(k − l + d− dt) + l − 1
2 − 1

2

+dt − d− 1
2 − 1

2

= k − 1
4 + l

4 + dt − d
4 ≥ k − 1

4 + 1.

Therefore, Ni,d ≥
⌈
k−1

4
⌉

+ 1 holds. J

CPM 2019

29:10 On the Size of Overlapping Lempel-Ziv and Lyndon Factorizations

4.3 Proof of Theorem 1
Now, we are ready to prove Theorem 1.

Proof of Theorem 1. A string s can be written as the sequence of 1-domains, namely s =
extdom1(Fi1) · · · extdom1(Fit) where it = m. Let kh be the size of dom1(Fih). By Lemma 14,
extdom1(Fih) contains

⌈
kh−1

4
⌉

+ 1 LZ phrase boundaries. It is clear that
∑t
h=1 kh = m− t.

Therefore,

z ≥
t∑

h=1

(⌈
kh − 1

4

⌉
+ 1
)
≥ m− 2t

4 + t >
m

4

holds. J

5 Conclusion

We discussed the relationship between the size z of overlapping variant of LZ factorization
and the size m of Lyndon factorization of the same string. We showed that the inequality
m < 4z holds for any string. One of the interesting open questions is whether there exists a
better bound. Finally, we conjecture that the inequality m < 2z holds for any string.

References
1 Golnaz Badkobeh, Hideo Bannai, Keisuke Goto, Tomohiro I, Costas S. Iliopoulos, Shunsuke

Inenaga, Simon J. Puglisi, and Shiho Sugimoto. Closed factorization. Discrete Applied
Mathematics, 212:23–29, 2016. doi:10.1016/j.dam.2016.04.009.

2 Hideo Bannai, Travis Gagie, Shunsuke Inenaga, Juha Kärkkäinen, Dominik Kempa, Marcin
Piatkowski, and Shiho Sugimoto. Diverse Palindromic Factorization is NP-Complete. Int. J.
Found. Comput. Sci., 29(2):143–164, 2018. doi:10.1142/S0129054118400014.

3 Hideo Bannai, Tomohiro I, Shunsuke Inenaga, Yuto Nakashima, Masayuki Takeda, and
Kazuya Tsuruta. The “Runs” Theorem. SIAM Journal on Computing, 46(5):1501–1514, 2017.
doi:10.1137/15M1011032.

4 Kirill Borozdin, Dmitry Kosolobov, Mikhail Rubinchik, and Arseny M. Shur. Palindromic
Length in Linear Time. In CPM 2017, pages 23:1–23:12, 2017. doi:10.4230/LIPIcs.CPM.
2017.23.

5 Gang Chen, Simon J. Puglisi, and W. F. Smyth. Lempel-Ziv factorization using less
time & space. Mathematics in Computer Science, 1(4):605–623, June 2008. doi:10.1007/
s11786-007-0024-4.

6 K. T. Chen, R. H. Fox, and R. C. Lyndon. Free Differential Calculus, IV. The Quotient
Groups of the Lower Central Series. Annals of Mathematics, 68(1):81–95, 1958. URL:
http://www.jstor.org/stable/1970044.

7 Maxime Crochemore, Lucian Ilie, and Liviu Tinta. Towards a Solution to the “Runs” Conjecture.
In Paolo Ferragina and Gad M. Landau, editors, Combinatorial Pattern Matching, pages
290–302, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

8 Maxime Crochemore, Costas S. Iliopoulos, Tomasz Kociumaka, Ritu Kundu, Solon P. Pissis,
Jakub Radoszewski, Wojciech Rytter, and Tomasz Walen. Near-Optimal Computation of
Runs over General Alphabet via Non-Crossing LCE Queries. In SPIRE 2016, pages 22–34,
2016. doi:10.1007/978-3-319-46049-9_3.

9 Marius Dumitran, Florin Manea, and Dirk Nowotka. On Prefix/Suffix-Square Free Words. In
SPIRE 2015, pages 54–66, 2015. doi:10.1007/978-3-319-23826-5_6.

10 Gabriele Fici, Travis Gagie, Juha Kärkkäinen, and Dominik Kempa. A subquadratic algorithm
for minimum palindromic factorization. J. Discrete Algorithms, 28:41–48, 2014. doi:10.1016/
j.jda.2014.08.001.

http://dx.doi.org/10.1016/j.dam.2016.04.009
http://dx.doi.org/10.1142/S0129054118400014
http://dx.doi.org/10.1137/15M1011032
http://dx.doi.org/10.4230/LIPIcs.CPM.2017.23
http://dx.doi.org/10.4230/LIPIcs.CPM.2017.23
http://dx.doi.org/10.1007/s11786-007-0024-4
http://dx.doi.org/10.1007/s11786-007-0024-4
http://www.jstor.org/stable/1970044
http://dx.doi.org/10.1007/978-3-319-46049-9_3
http://dx.doi.org/10.1007/978-3-319-23826-5_6
http://dx.doi.org/10.1016/j.jda.2014.08.001
http://dx.doi.org/10.1016/j.jda.2014.08.001

Y. Urabe, Y. Nakashima, S. Inenaga, H. Bannai, and M. Takeda 29:11

11 Pawel Gawrychowski, Tomasz Kociumaka, Wojciech Rytter, and Tomasz Walen. Faster
Longest Common Extension Queries in Strings over General Alphabets. In CPM 2016, pages
5:1–5:13, 2016. doi:10.4230/LIPIcs.CPM.2016.5.

12 Tomohiro I, Yuto Nakashima, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda. Faster
Lyndon factorization algorithms for SLP and LZ78 compressed text. Theor. Comput. Sci.,
656:215–224, 2016. doi:10.1016/j.tcs.2016.03.005.

13 Tomohiro I, Shiho Sugimoto, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda. Com-
puting Palindromic Factorizations and Palindromic Covers On-line. In CPM 2014, pages
150–161, 2014. doi:10.1007/978-3-319-07566-2_16.

14 Hiroe Inoue, Yoshiaki Matsuoka, Yuto Nakashima, Shunsuke Inenaga, Hideo Bannai, and
Masayuki Takeda. Computing Smallest and Largest Repetition Factorizations in O(n logn)
Time. In PSC 2016, pages 135–145, 2016. URL: http://www.stringology.org/event/2016/
p12.html.

15 Juha Kärkkäinen, Dominik Kempa, Yuto Nakashima, Simon J. Puglisi, and Arseny M. Shur.
On the Size of Lempel-Ziv and Lyndon Factorizations. In STACS 2017, pages 45:1–45:13,
2017. doi:10.4230/LIPIcs.STACS.2017.45.

16 Roman Kolpakov and Gregory Kucherov. Finding Maximal Repetitions in a Word in Linear
Time. In FOCS 1999, pages 596–604, Washington, DC, USA, 1999. IEEE Computer Society.
URL: http://dl.acm.org/citation.cfm?id=795665.796470.

17 Dmitry Kosolobov. Computing runs on a general alphabet. Inf. Process. Lett., 116(3):241–244,
2016. doi:10.1016/j.ipl.2015.11.016.

18 Yoshiaki Matsuoka, Shunsuke Inenaga, Hideo Bannai, Masayuki Takeda, and Florin Manea.
Factorizing a String into Squares in Linear Time. In CPM 2016, pages 27:1–27:12, 2016.
doi:10.4230/LIPIcs.CPM.2016.27.

19 Wojciech Rytter. Application of Lempel-Ziv factorization to the approximation of grammar-
based compression. Theoretical Computer Science, 302(1):211–222, 2003. doi:10.1016/
S0304-3975(02)00777-6.

20 Terry A. Welch. A Technique for High-Performance Data Compression. IEEE Computer,
17(6):8–19, 1984. doi:10.1109/MC.1984.1659158.

21 J. Ziv and A. Lempel. A universal algorithm for sequential data compression. IEEE Transac-
tions on Information Theory, 23(3):337–343, May 1977. doi:10.1109/TIT.1977.1055714.

22 Jacob Ziv and Abraham Lempel. Compression of individual sequences via variable-rate coding.
IEEE Trans. Information Theory, 24(5):530–536, 1978. doi:10.1109/TIT.1978.1055934.

CPM 2019

http://dx.doi.org/10.4230/LIPIcs.CPM.2016.5
http://dx.doi.org/10.1016/j.tcs.2016.03.005
http://dx.doi.org/10.1007/978-3-319-07566-2_16
http://www.stringology.org/event/2016/p12.html
http://www.stringology.org/event/2016/p12.html
http://dx.doi.org/10.4230/LIPIcs.STACS.2017.45
http://dl.acm.org/citation.cfm?id=795665.796470
http://dx.doi.org/10.1016/j.ipl.2015.11.016
http://dx.doi.org/10.4230/LIPIcs.CPM.2016.27
http://dx.doi.org/10.1016/S0304-3975(02)00777-6
http://dx.doi.org/10.1016/S0304-3975(02)00777-6
http://dx.doi.org/10.1109/MC.1984.1659158
http://dx.doi.org/10.1109/TIT.1977.1055714
http://dx.doi.org/10.1109/TIT.1978.1055934

	Introduction
	Preliminaries
	Strings
	Lyndon words and Lyndon factorization of strings
	Lempel-Ziv factorization of strings

	Tools for non-overlapping LZ factorization
	Leftmost occurrence and factorizations
	Domains
	Tandem domains
	Groups
	Subdomains
	Canonical subdomains

	Proof for overlapping LZ factorization
	Number of LZ phrase boundaries in groups
	Number of LZ phrase boundaries in extended domains
	Proof of Theorem 1

	Conclusion

