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Abstract
Lempel-Ziv (LZ) factorization and Lyndon factorization are well-known factorizations of strings.
Recently, Kärkkäinen et al. studied the relation between the sizes of the two factorizations, and
showed that the size of the Lyndon factorization is always smaller than twice the size of the non-
overlapping LZ factorization [STACS 2017]. In this paper, we consider a similar problem for the
overlapping version of the LZ factorization. Since the size of the overlapping LZ factorization is
always smaller than the size of the non-overlapping LZ factorization and, in fact, can even be an
O(logn) factor smaller, it is not immediately clear whether a similar bound as in previous work
would hold. Nevertheless, in this paper, we prove that the size of the Lyndon factorization is always
smaller than four times the size of the overlapping LZ factorization.
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1 Introduction

A factorization of a string w is a sequence of non-empty substrings of w such that the
concatenation of the substrings in the sequence is w. Various types of factorizations of
strings have been proposed so far, and most, if not all, of them are categorized into two
(not necessarily disjoint) categories. One is to factorize a given string w into combinatorial
objects such as squares (square factorization [9, 18]), repetitions (repetition factorization [14]),
palindromes (palindromic factorization [13, 10, 4, 2]), closed words (closed factorization [1]),
and Lyndon words (Lyndon factorization [6]), while the other is to factorize a given string
w as efficient preprocessing for text processing, in particular, text compression [21, 22, 20].
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Amongst the variety of string factorizations, the Lyndon factorization [6] and the Lempel-
Ziv (LZ for short) factorization [21] are probably those that are most well-known and
extensively studied from the above categories, respectively, and this paper also deals with
these factorizations.

As will be seen below, the definitions of LZ and Lyndon factorizations are rather different,
and hence the results of these factorizations of the same string can also be very different. On
the other hand, quite interestingly, both LZ and Lyndon factorizations have been used as
efficient preprocessing for linear-time computation of runs or maximal repetitions in a given
string [16, 5, 7, 3, 17, 11, 8]. Another connection between LZ and Lyndon factorizations is
that both of the sizes of the LZ and Lyndon factorizations of a string w are lower bounds of
the output size of any grammar compression for w [19, 12]. Here, by the size of a factorization
we mean the number of factors in the factorization. Now, a natural question would be: How
much the sizes of the LZ and Lyndon factorizations of the same string can differ?

This question was first considered by Kärkkäinen et al. [15] for the non-overlapping
variant of LZ factorization. The non-overlapping LZ factorization of a string w is a sequence
p1, . . . , pzno of zno factors such that each pi is a single character if it is the first occurrence
of the character in w, or pi is the longest prefix of pi · · · pzno

that has an occurrence in
p1 · · · pi−1. A string ` is said to be a Lyndon word, if ` is lexicographically smaller than
all of its non-empty proper suffixes. A factorization fe1

1 , . . . , fem
m is said to be the Lyndon

factorization of a string w if fi is a Lyndon word, ei ≥ 1, and fi is lexicographically larger
than fi+1 for all i. For many strings, the size m of Lyndon factorization is smaller than the
size zno of non-overlapping LZ factorization. However, they showed that there is a series
of strings for which m = zno + Θ(√zno) holds. In addition, they proved that the inequality
m < 2zno holds for any string.

In this paper, we consider the relationship between the size of overlapping variant of
LZ factorization and Lyndon factorization of the same string. The non-overlapping LZ
factorization of a string w is a sequence q1, . . . , qz of z factors such that each qi is a single
character if it is the first occurrence of the character in w, or qi is the longest prefix of
qi · · · qzno

that has another occurrence in w beginning at a position within q1 · · · qi−1. It is
known that z ≤ zno always holds, and there are cases where z is by a factor of O(logn)
smaller than zno: E.g., for a trivial string an, z = 2 while zno = Θ(logn). These facts make
it more challenging to show an upper bound for m in terms of z. Still, in this paper, we
prove that the inequality m < 4z holds for any string. Our proof generally follows the scheme
introduced by Kärkkäinen et al. [15], but our analysis leading to the inequality m < 4z is
original and seems to be interesting.

2 Preliminaries

2.1 Strings
Let Σ be an ordered alphabet. An element of Σ∗ is called a string. The length of a string w is
denoted by |w|. The empty string ε is a string of length 0. Let Σ+ be the set of non-empty
strings, i.e., Σ+ = Σ∗ − {ε}. For a string w = xyz, x, y and z are called a prefix, substring,
and suffix of w, respectively. The i-th character of a string w is denoted by w[i], where
1 ≤ i ≤ |w|. For a string w and two integers 1 ≤ i ≤ j ≤ |w|, let w[i..j] denote the substring
of w that begins at position i and ends at position j. For convenience, let w[i..j] = ε when
i > j. For any string w let w1 = w, and for any integer k ≥ 2 let wk = wwk−1, i.e., wk is a
k-times repetition of w.
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If character a is lexicographically smaller than another character b, then we write a ≺ b.
For any strings x, y, let lcp(x, y) be the length of the longest common prefix of x and y. We
write x ≺ y iff either x[lcp(x, y) + 1] ≺ y[lcp(x, y) + 1] or x is a proper prefix of y.

2.2 Lyndon words and Lyndon factorization of strings
A string w is said to be a Lyndon word, if w is lexicographically strictly smaller than all of
its non-empty proper suffixes. The Lyndon factorization of a string w is the factorization
fe1

1 , . . . , fem
m of w, such that each fi ∈ Σ+ is a Lyndon word, ei ≥ 1, and fi � fi+1 for all

1 ≤ i < m. We call m the size of the Lyndon factorization of w. We also refer to each fi as
a Lyndon factor and each Fi = fei

i as a Lyndon run of w.

2.3 Lempel-Ziv factorization of strings
The overlapping Lempel-Ziv factorization (LZ factorization for short) of a string w is the
factorization p1, . . . , pz of w such that either pi is a character which does not appear in
p1 · · · pi−1 or pi is the longest prefix of pi · · · pz which has another occurrence to the left. We
refer to each pi as an LZ phrase. For any substring w[i..j] (1 ≤ i ≤ j ≤ |w|) in w, w[i..j] is
said to contain an LZ phrase boundary if there exists an LZ phrase which begins in [i, j].

3 Tools for non-overlapping LZ factorization

In this paper, we give the following result.

I Theorem 1. Let m be the size of the Lyndon factorization of a string w and z the size of
the (overlapping) LZ factorization of w. For any string w, m < 4z holds.

We prove Theorem 1 in Section 4. Our proof follows similar techniques for non-overlapping
version which was introduced by Kärkkäinen et al. [15]. In this section, we explain their
techniques which can be also applied for overlapping version.

3.1 Leftmost occurrence and factorizations
Each factorization catches the leftmost occurrences of particular substrings. Lemma 2 can
be easily obtained by the definition of LZ factorization.

I Lemma 2. If a substring w[i..j] does not have any occurrence to the left, w[i..j] contains
an LZ phrase boundary.

I Lemma 3 (Lemma 4 of [15]). Let d ≥ 1 and 1 ≤ i ≤ m − d + 1, and assume that
Fi · · ·Fi+d−1 has an occurrence to the left of the trivial one in w. Then:
1. The leftmost occurrence of Fi · · ·Fi+d−1 is a prefix of fj for some j < i;
2. Fi · · ·Fi+d−1 is a prefix of every fk with j ≤ k < i.

3.2 Domains
Due to Lemma 3, each concatenation of several Lyndon runs has a range such that every
Lyndon run in the range has the concatenation as a prefix.

I Definition 4 (Definition 5 of [15]). Let d ≥ 1 and 1 ≤ i ≤ m − d + 1. d-domain of a
Lyndon run Fi, denoted by domd(Fi), is the substring Fj · · ·Fi−1 where Fj is the Lyndon
run starting at the same position as the leftmost occurrence of Fi · · ·Fi+d−1 in w. Note that

CPM 2019
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w = a b b a b b a b a c a b a c b a b a c a b a

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

1

2

1

1, 2, 3

Figure 1 All non-empty domains in string w = abbabbabacabacbabacaba are illustrated. Since
the leftmost occurrence of w[20..22] in w is w[7..9], 2-domain of Lyndon run w[20..21] is w[7..19].
Moreover, w[7..9] is associated with this 2-domain. (This figure imitates Figure 1 of [15].)

if Fi · · ·Fi+d−1 does not have any occurrence to the left of the trivial one then domd(Fi) = ε.
The integers d and i − j are called the order and size of the domain, respectively. The
extended d-domain of Fi is the substring extdomd(Fi) = domd(Fi) · Fi · · ·Fi+d−1 of w.

By the definition and Lemma 2, each domain contains an LZ phrase boundary. For any
domain domd(Fi), we say that the leftmost occurrence of Fi · · ·Fi+d−1 is associated with
domd(Fi) (Definition 7 of [15]).

I Lemma 5 (Lemma 8 of [15]). Each substring associated with a domain contains an LZ
phrase boundary.

We show an example of domains in Figure 1.

3.3 Tandem domains
I Definition 6 (Definition 9 of [15]). Let d ≥ 1 and 1 ≤ i ≤ m − d. A pair of domains
domd+1(Fi), domd(Fi+1) is called a tandem domain if domd+1(Fi) · Fi = domd(Fi+1) or,
equivalently, if extdomd+1(Fi) = extdomd(Fi+1). Note that we permit domd+1(Fi) = ε.

Let domd+1(Fi), domd(Fi+1) be a tandem domain. By Lemma 3, Fi can be written as
Fi = Fi+1 · · ·Fi+d · x for some x ∈ Σ+. Thus, Fi · · ·Fi+d = Fi+1 · · ·Fi+d · x · Fi+1 · · ·Fi+d.
We say that the occurrence of x · Fi+1 · · ·Fi+d in the leftmost occurrence of Fi · · ·Fi+d is
associated with the tandem domain domd+1(Fi), domd(Fi+1) (Definition 10 of [15]).

In Figure 1, a pair of 3-domain of Lyndon run w[16..19] and 2-domain of Lyndon run
w[20..21] is a tandem domain. Moreover, w[10..13] is associated with the tandem domain.

3.4 Groups
I Definition 7. Let d ≥ 1, 2 ≤ p ≤ m, and 1 ≤ i ≤ m − d − p + 2. A set of p domains
domd+p−1(Fi), . . . , domd(Fi+p−1) is called a p-group if for all t = 0, . . . , p − 2 the equal-
ity domd+p−1−t(Fi+t), domd+p−2−t(Fi+t+1) hols or, equivalently, extdomd+p−1(Fi) = . . . =
extdomd(Fi+p−1). Note that we permit domd+p−1(Fi) = ε.

Let domd+p−1(Fi), . . . , domd(Fi+p−1) is a p-group. Fi has Fi+p−1 · · ·Fi+p+d−2 as a prefix
by Lemma 3. Then, Fi · · ·Fi+p+d−2 = Fi+p−1 · · ·Fi+p+d−2 · x · Fi+1 · · ·Fi+p+d−2 for some
x ∈ Σ∗. We say that the occurrence of x · Fi+1 · · ·Fi+p+d−2 in the leftmost occurrence of
Fi · · ·Fi+p+d−2 is associated with the group.

I Lemma 8 (Lemma 16 of [15]). The substring associated with a p-group is the concatenation,
in reverse order, of the p− 1 substrings associated with the tandem domains belonging to the
p-group.
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Figure 2 This figure illustrated 3-group domd+2(Fi−2), domd+1(Fi−1), domd(Fi). α1(= zy) is the
substring associated with tandem domain domd+1(Fi−1), domd(Fi), and α2(= z′yzy) is the substring
associated with tandem domain domd+2(Fi−2), domd+1(Fi−1). Moreover, α1α2 is the substring
associated with the 3-group. (This figure imitates Figure 2 of [15].)

Two groups domd+p−1(Fi), . . . , domd(Fi+p−1) and domd′+p′−1(Fk), . . . , domd′(Fk+p′−1)
are said to be disjoint if i+ p− 1 < k or k+ p′− 1 < i. For any disjoint groups, the following
property holds.

I Lemma 9 (Lemma 18 of [15]). Substring associated with disjoint groups do not overlap.

3.5 Subdomains
I Definition 10 (Definition 19 of [15]). dome(Fk) is said to be a subdomain of domd(Fi) =
Fj · · ·Fi−1 if either

k = i and e = d, or
j ≤ k < i and extdome(Fk) is a substring of extdomd(Fi).

I Lemma 11 (Lemma 20 of [15]). Let dome(Fk+1), dome+1(Fk) be a tandem domain. If
dome(Fk+1) and dome+1(Fk) are both subdomains of a domain domd(Fi), then the substring
associated with domd(Fi) does not overlap the substring associated with tandem domain
dome(Fk+1), dome+1(Fk).

From this lemma, if every domain in a group is a subdomain of domain domd(Fi), the
substring associated with domd(Fi) does not overlap the substring associated with the group.

3.6 Canonical subdomains
For any domain domd(Fi) = Fj · · ·Fi−1, we define canonical subdomain Ci,d as follows. Ci,d
is the set of subdomains of domd(Fi) which can be obtained by the following conditions.
Initially, we set δ = d+ 1, l = i− 1. When l = j, then we finish the operations.

If domδ(Fl) = Fj · · ·Fl−1, we add domδ(Fl) into the set Ci,d, and set δ = δ + 1, l = l − 1.
If domδ(Fl) = Fj′ · · ·Fl−1 (j < j′), we add domδ(Fl) into the set Ci,d, and set δ = 1, l =
j′ − 1. All domains that were added to the set in this case are called loose subdomains.

We refer to each set of consecutive non-loose subdomains as a cluster. Note that the
number of clusters is the number of loose subdomains plus one. Since domd′(Fj) = ε, the
domain w.r.t. Fj is always a cluster.

Let t be the number of loose subdomains in canonical sundomains Ci,d of domain
domd(Fi). We can discuss the number of LZ phrase boundaries contained in extdomd(Fi).
Let domd1(Fi1), . . . , domdt

(Fit) (i1 < . . . < it) be the sequence of loose subdomains, and

CPM 2019
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Figure 3 This figure illustrates the canonical subdomains of dom1(F16) = F1 · · ·F15. (This figure
imitates Figure 3 of [15].)

l (≥ 1) the number of Lyndon runs in the leftmost cluster. By the definition of loose
subdomains, we have the following equality.

extdomd(Fi) = Fj · · ·Fj+l−1 · extdomd1(Fi1) · · · extdomdt
(Fit) (1)

Let S be the sum of the number of the LZ phrase boundaries contained in substrings associated
with each clusters of Ci,d. By Lemma 9, these substrings do not overlap each other, and they
are in Fj · · ·Fj+l−1. Moreover, they do not overlap the substring associated with domd(Fi)
since they are also subdomains of domd(Fi) (by Lemma 11). Thus, by Lemma 5, there
exists an LZ phrase boundary in Fj · · ·Fj+l−1 which was not counted in S. Let nh be the
number of LZ phrase boundaries which is contained in extdomdh

(Fih). It is clear that these
boundaries are not in Fj · · ·Fj+l−1. Thus, they do not overlap the substring associated with
the group and domd(Fi), respectively. Finally, we can discuss the number Ni,d of LZ phrase
boundaries in extdomd(Fi) by using Equality (2):

Ni,d ≥ 1 +
t∑

h=1
nh + S. (2)

4 Proof for overlapping LZ factorization

In this section, we prove Theorem 1. Our proof follows a general scheme introduced by
Kärkkäinen et al. [15]. However, our analysis leading to the inequality m < 4z is original
and seems to be interesting.

4.1 Number of LZ phrase boundaries in groups
In the proof for non-overlapping version, Corollary 17 of [15] is one of the important properties.
However, the corollary does not hold for overlapping version of LZ factorization. We want to
introduce a new lemma as Lemma 13 for our problem. We start from the following lemma.

I Lemma 12. Each substring associated with a 3-group contains an LZ phrase boundary.
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Figure 4 An illustration of the first case of proof for Lemma 12.
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d+2

s’

Figure 5 An illustration of the second case of proof for Lemma 12.

Proof. Let domd+2(Fi−2), domd+1(Fi−1), domd(Fi) be a 3-group. By the definition of groups,
Fi−1 can be written as Fi · · ·Fi+d−1 · z for some z ∈ Σ+, and Fi−2 can be written as
Fi−2 = Fi−1 · · ·Fi+d−1 · z′ = Fi · · ·Fi+d−1 · z · Fi · · ·Fi+d−1 · z′ for some z′ ∈ Σ+. For
convenience, y = Fi · · ·Fi+d−1. Then, Fi−2 · · ·Fi+d−1 = y · z · y · z′ · Fi−1 · y.

The substring associated with the 3-group is the suffix z · y · z′ · Fi−1 · y of the leftmost
occurrence of Fi−2 · · ·Fi+d−1. s denotes the occurrence (see Figure 4). Suppose that
z · y · z′ ·Fi−1 · y does not have any LZ phrase boundaries at the occurrence. By the definition
of LZ factorization, z · y · z′ · Fi−1 · y has an occurrence to the left. Let s′ be one of such
occurrences of z · y · z′ · Fi−1 · y. We consider the suffix Fi−1 · y of s′. If a prefix of this
suffix Fi−1 · y overlaps a suffix of Fi−2(see Figure 4). This fact implies that fi−2 has a prefix
of Fi−1 · y as a suffix since Fi−2 = f

ei−2
i−2 . On the other hand, fi−2 has Fi−1 · y as a prefix

by Lemma 3. Hence, fi−2 has a prefix of Fi−1 · y as a prefix and also a suffix. This fact
contradicts that fi−2 is a Lyndon word. Thus, the distance between s and s′ has to be at
least |Fi−1 · y| + 1. However, this fact also contradicts the leftmost occurrence of y (the
leftmost occurrence of y is a prefix of Fj in fact, see also Figure 5). Therefore, every substring
associated with a 3-group contains an LZ phrase boundary. J

By using this lemma, we can easily obtain the following key lemma.

I Lemma 13. Each substring associated with a p-group contains at least
⌊
p−1

2
⌋
LZ phrase

boundaries.

Proof. From Lemma 8, the substring associated with a p-group is the concatenation of p− 1
substrings associated with tandem domains. The substring associated with 3-group contains
an LZ phrase boundary by Lemma 12. Let x and y be the consecutive substrings which are
associated with two consecutive tandem domains. Then, either x or y contains an LZ phrase
boundary. Therefore, there exists at least

⌊
p−1

2
⌋
LZ phrase boundaries. J

CPM 2019



29:8 On the Size of Overlapping Lempel-Ziv and Lyndon Factorizations

4.2 Number of LZ phrase boundaries in extended domains

I Lemma 14. Let domd(Fi) be a domain of size k ≥ 0. extdomd(Fi) contains at least⌈
k−1

4
⌉

+ 1 LZ phrase boundaries (namely Ni,d ≥
⌈
k−1

4
⌉

+ 1).

Proof. Let domd(Fi) = Fj · · ·Fi−1 be a domain of size k = i− j. We prove this lemma by
induction on k. If k = 0, then the substring associated with domd(Fi) contains an LZ phrase
boundary and the statement holds. Now we assume that k ≥ 1 and the lemma holds for all
k ≤ k′ for some k′.

Firstly, we consider the case when Ci,d does not have loose subdomain. In that case,
domd+k(Fj), . . . , domd(Fi) is a (k + 1)-group. By Lemma 5, the substring associated with
domd(Fi) contains an LZ phrase boundary. On the other hand, by Lemma 13, the substring
associated with the (k + 1)-group contains

⌊
k
2
⌋
LZ phrase boundaries. Since every domain

in the group is a subdomain of domd(Fi), the substring associated with domd(Fi) does
not overlap each of them by Lemma 11. Thus, extdomd(Fi) contains

⌊
k
2
⌋

+ 1 LZ phrase
boundaries. The statement of the lemma holds for this case since

⌊
k
2
⌋

+ 1 ≥
⌈
k−1

4
⌉

+ 1.
Suppose that Ci,d has t (≥ 1) loose subdomains. Let domd1(Fi1), . . . , domdt

(Fit) be the t
loose subdomains of Ci,d and kh the size of loose subdomain domdh

(Fih) for any 1 ≤ h ≤ t.
We can see a lower bound of Ni,d by using Equation (2). For the second term of Equation (2),
nh ≥

⌈
kh−1

4
⌉

+ 1 holds by an induction hypothesis. Now we analyze the sum of kh for all h.
Let l be the number of domains in the leftmost cluster. Then,

t∑
h=1

kh = k − l −
t−1∑
h=1

dh − (dt − d) (3)

holds. Next, we analyze the third term of Equation (2). Notice that S is the sum of the
number of LZ phrase boundaries which are contained in substrings associated with each
group that is a cluster in Ci,d. The leftmost cluster is a l-group, the rightmost cluster is a
(dt − d)-group, and each of other clusters is (dh − 1)-group. For convenience, we consider
1-group as a single domain and 0-group as an empty set of domains. It is clear that substrings
associated with each of them has no LZ phrase boundary. Thus, S can be written as

S =
⌊
l − 1

2

⌋
+

t−1∑
h=1

⌊
1
2(dh − 1− [dh > 1])

⌋
+
⌊
dt − d− 1

2

⌋
(4)

by using Knuth’s notation [predicate] for the numerical value (0 or 1) of the predicate in
brackets. We partition (t− 1) clusters (which are not the leftmost and the rightmost) into
two sets as;

T1 = {h | dh ≥ 3, h ∈ [1, t− 1]}, and
T2 = {h | dh < 3, h ∈ [1, t− 1]}.

For any non-negative integer e,
⌊
e
2
⌋
≥ e

2 −
1
2 holds. By using this inequation, the second

term in the right-hand side of Equation (4) can be written as
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t−1∑
h=1

⌊
1
2(dh − 1− [dh > 1])

⌋
=

∑
h∈T1

⌊
1
2(dh − 1− [dh > 1])

⌋
≥ 1

2
∑
h∈T1

(dh − 1− [dh > 1])− |T1|
2

= 1
2
∑
h∈T1

(
dh
3 − [dh > 1]

)
+ 1

3
∑
h∈T1

dh − |T1| ≥
1
3
∑
h∈T1

dh − |T1|.

Thus, S can be also written as

S ≥ 1
3
∑
h∈T1

dh − |T1|+ α

(
α =

⌊
l − 1

2

⌋
+
⌊
dt − d− 1

2

⌋)
.

Moreover, Equation (2) can be written as

1 +
t∑

h=1

(⌈
kh − 1

4

⌉
+ 1
)

+ S

≥ 1 + 3
4 t+ 1

4

(
k − l −

t−1∑
h=1

dh + d− dt

)
+ S

≥ 1 + 3
4 t+ 1

4(k − l + d− dt)−
1
4
∑
h∈T1

dh −
1
4
∑
h∈T2

dh + 1
3
∑
h∈T1

dh − |T1|+ α

≥ 1 + 3
4 t+ 1

4(k − l + d− dt)−
|T2|
2 + 1

12
∑
h∈T1

dh − |T1|+ α

≥ 1 + 3
4(1 + |T1|+ |T2|) + 1

4(k − l + d− dt)−
|T2|
2 + |T1|

4 − |T1|+ α

≥ 7
4 + 1

4(k − l + d− dt) +
⌊
l − 1

2

⌋
+
⌊
dt − d− 1

2

⌋
.

Let β = 7
4 + 1

4 (k − l + d− dt) +
⌊
l−1

2
⌋

+
⌊
dt−d−1

2
⌋
. We can prove β ≥ k−1

4 + 1 for each of
three cases as follows. If l = 1, then

β ≥ 7
4 + 1

4(k − l + d− dt) + dt − d− 1
2 − 1

2

= 3
4 + k − 1

4 + dt − d
4 ≥ k − 1

4 + 1.

If l > 1 and dt − d− 1 = 1, then

β ≥ 7
4 + 1

4(k − l + d− dt) + l − 1
2 − 1

2

= 1 + k − 1
4 + l − (dt − d)

4 ≥ k − 1
4 + 1.

If l > 1 and dt − d− 1 > 1, then

β ≥ 7
4 + 1

4(k − l + d− dt) + l − 1
2 − 1

2

+dt − d− 1
2 − 1

2

= k − 1
4 + l

4 + dt − d
4 ≥ k − 1

4 + 1.

Therefore, Ni,d ≥
⌈
k−1

4
⌉

+ 1 holds. J

CPM 2019



29:10 On the Size of Overlapping Lempel-Ziv and Lyndon Factorizations

4.3 Proof of Theorem 1
Now, we are ready to prove Theorem 1.

Proof of Theorem 1. A string s can be written as the sequence of 1-domains, namely s =
extdom1(Fi1) · · · extdom1(Fit) where it = m. Let kh be the size of dom1(Fih). By Lemma 14,
extdom1(Fih) contains

⌈
kh−1

4
⌉

+ 1 LZ phrase boundaries. It is clear that
∑t
h=1 kh = m− t.

Therefore,

z ≥
t∑

h=1

(⌈
kh − 1

4

⌉
+ 1
)
≥ m− 2t

4 + t >
m

4

holds. J

5 Conclusion

We discussed the relationship between the size z of overlapping variant of LZ factorization
and the size m of Lyndon factorization of the same string. We showed that the inequality
m < 4z holds for any string. One of the interesting open questions is whether there exists a
better bound. Finally, we conjecture that the inequality m < 2z holds for any string.
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