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Abstract
We consider two well-known related problems: Longest Repeated Substring (LRS) and Longest
Repeated Reversed Substring (LRRS). Their streaming versions cannot be solved exactly; we show
that only approximate solutions by Monte Carlo algorithms are possible, and prove a lower bound on
consumed memory. For both problems, we present purely linear-time Monte Carlo algorithms working
in O(E + n

E
) space, where E is the additive approximation error. Within the same space bounds, we

then present nearly real-time solutions, which require O(log n) time per symbol and O(n + n
E

log n)
time overall. The working space exactly matches the lower bound whenever E = O(n0.5) and the
size of the alphabet is Ω(n0.01).
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1 Introduction

The streaming model of computation became popular in string processing during the last
decade. In this model, there is no random access to the input: the input string of length
n arrives symbol by symbol and the space available to the algorithm is sublinear in n. In
the design of algorithms for this model, the two main goals are minimization of the total
space required and of the worst-case time in which a single symbol is processed (update
time). If a problem can be solved only approximately, there is usually a trade-off between the
approximation error and the required space/time. A wide use of Monte Carlo randomized
algorithms is another distinctive feature of the streaming model.

Surprisingly, the exact pattern matching, which is the fundamental problem in stringology,
can be solved in the streaming model very efficiently. The first efficient algorithm was
presented by Porat and Porat [18]; soon after that Breslauer and Galil showed [3] that
O(logm) space is enough to find all occurrences of a length-m pattern in a length-n text
in real time (=constant update time), just with a small probability of false positive. More
complicated pattern matching problems, like approximate or multiple matching, were also
analysed [5, 6, 7, 12, 13, 19], as well as the related problem of estimating the Hamming
distance between the pattern and length-m substrings of the text [8].

Another class of string problems concerns the search of repetitions (periods, repeats,
palindromes, etc). As shown in [11], a longest palindrome in a stream can be found
approximately by a real-time Monte Carlo algorithm spending O(M) words of memory,
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31:2 Searching Long Repeats in Streams

where M = n
E for the additive error E and M = logn

log(1+ε) for the multiplicative error 1 + ε;
matching lower bounds for the required space were also proved there. A longest palindrome
with at most d errors can be found within the space and update time which are both polylog
in n and inverse polynomial in the error [14].

In this paper, we consider the problem of finding the longest string occurring at least
twice in the input (longest repeating substring, LRS) and the problem of finding the longest
string occurring in the input together with its reversal (longest repeating reversed substring,
LRRS). Solving LRS in the standard RAM model in linear time is a well-known application of
the suffix tree, first mentioned in the pioneering paper by Weiner [21]. LRRS can be solved in
the same way (e.g., by building the suffix tree for the reversal of the input string). Note that
LRS and LRRS also admit efficient parallel algorithms [2]. However, in the streaming model
these problems can be solved only approximately and only with high probability, as shown
in Section 6. Our main contributions are Monte Carlo algorithms for both problems, solving
them with an additive approximation error E in O( nE + E) space. We give two algorithms
for each problem; “simple” algorithms work in O(n) total time, but have the update time
O( nE ), while more elaborate versions use O(n + n

E logn) total time and allow updates in
O(logn) time. After preliminaries, we describe the main idea of reaching sublinear memory
in Section 3, algorithms for LRRS in Section 4, algorithms for LRS in Section 5, and memory
lower bounds in Section 6.

2 Model and Definitions

Let S denote a string of length n over an alphabet Σ = {1, . . . , N}, where N is polynomial in n.
We write S[i] for the ith symbol of S and S[i..j] for its substring (or factor) S[i]S[i+1] · · ·S[j];
thus, S[1..n] = S. A prefix (resp. suffix) of S is a substring of the form S[1..j] (resp., S[j..n]).
A period of S is a positive integer p such that S[1..n−p] = S[p+1..n]; here the string S[1..n−p]
is a border of S. The reversal of S is the string S̄ = S[n]S[n−1] · · ·S[1]. If S = S̄, then S is
a palindrome. A repeat in S is a pair of equal substrings S[i..i+l−1] = S[j..j+l−1], where
i < j; we denote repeats by the triples (i, j, l) and write L(S) for the maximum length of
a repeat in S. Similar, the condition S[i..i+l−1] = S̄[j..j+l−1], i ≤ j, defines the reversed
repeat (i, j, l) in S; we write L̄(S) for the maximum length of a reversed repeat in S. Note
that a palindrome S[i..i+l−1] is the reversed repeat (i, i, l); moreover, if i+ l ≥ j − 1 for a
reversed repeat (i, j, l), then S[i..j+l−1] is a palindrome of length l+ j − i. Thus the longest
reversed repeat in S is either non-overlapping (the “left occurrence” S[i..i+l−1] ends before
the “right occurrence” S[j..j+l−1] begins), or a palindrome.

We write log for the binary logarithm and amod b instead of (a− 1) mod b+ 1.
We work in the streaming model of computation: the input string S[1..n] (the stream) is

read left to right, one symbol at a time, and cannot be stored, because the available space
is sublinear in n. The space is counted as the number of O(logn)-bit machine words. The
update time is the worst-case time spent between two reads.

An approximation algorithm for a maximization problem has additive error E if it finds
a solution with the cost at least OPT − E, where OPT is the cost of optimal solution; here
E can be a function of the size of the input. For an instance LRS(S) of the LRS problem,
OPT = L(S); similar for LRRS(S) and L̄(S).

A Las Vegas algorithm always returns a correct answer, but its working time and memory
usage on length-n inputs are random variables. A Monte Carlo algorithm gives a correct
answer with high probability (at least 1− 1

n ) and has deterministic working time and space.
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I Observation 1. A longest palindrome in a stream can be approximated in O( nE ) space and
O(1) update time by Monte Carlo Algorithm A of [11], which is better than we can achieve for
LRRS. So for an algorithm designed to solve LRRS it suffices to process only some reversed
repeats (including all non-overlapping ones) in a stream; we assume that the algorithm for
the longest palindrome is run in parallel, and the longer of two results is returned.

Karp–Rabin fingerprints [15] is a hash function widely used for streaming string algorithms.
Let p be a fixed prime from the range [n3+α, n4+α] for some α > 0, and r be a fixed integer
randomly chosen from {1, . . . , p−1}. For a string S, its forward hash and reversed hash are
defined, respectively, as φF(S) =

( n∑
i=1

S[i] · ri
)

mod p and φR(S) =
( n∑
i=1

S[i] · rn−i+1
)

mod p.

Clearly, the forward hash of a string coincides with the reversed hash of its reversal; this fact
is used to detect reversed repeats. The probability of hash collision for two strings of length
m is at most m/p; thus, a linear-time algorithm faces a collision with probability O(n−1−α)
by the choice of p. All further considerations assume that no collisions happen. For an input
stream S, we denote FF (i, j) = φF (S[i..j]) and FR(i, j) = φR(S[i..j]). Hashes of substrings
can be extracted in constant time from the hashes of prefixes, as the next observation shows.

I Proposition 2 ([3]). The following equalities hold:

FF (i, j) = r−(i−1) (FF (1, j)− FF (1, i−1)
)

mod p ,
FR(i, j) = FR(1, j)− rj−i+1FR(1, i−1) mod p .

For an input stream S, the tuple I(i) = (i, FF (1, i−1), FR(1, i−1), r1−i mod p, ri mod p)
is its i-th frame. The proposition below is immediate from definitions and Proposition 2.

I Proposition 3. Given I(i) and S[i], the tuple I(i+1) can be computed in O(1) time.

Let T (S) denote the suffix tree of a length-n string S. Recall that T (S) is the compressed
trie of all suffixes of S, has O(n) nodes and edges, and occupies O(n) words of memory; S is
a part of the data structure. Edges are labelled by substrings of S, each node is identified
with the label of the path from the root to it. Not all substrings of S correspond to nodes;
in general, substrings are addressed by positions. A position in the suffix tree is a pair
pos = (v, raise), where v is a node and raise ≥ 0. This position corresponds to the prefix of
v of length |v| − raise and points to the “locus” in T (S) on the incoming edge of v, raise
symbols above v. The walks on the tree are navigated by (direct) suffix links; for a node v,
link(v) is the longest proper suffix of v. A similar link from an arbitrary position is called
implicit suffix link and is not stored; computing such links is a crucial primitive for the work
with suffix trees.

3 Reduction to Packed Repeats

The main difficulty of LRS and LRRS is that they are not local: the two occurrences of a
repeat can be separated by as much as Ω(n) symbols. To avoid storing the whole input, we
hash blocks of some fixed size b, consider hashes as new symbols, called hashletters, and
search for repeated strings of hashletters. We define direct trace and reversed trace of a
stream S, with the block size b and shift r, as the strings

Pr,b = FF (r, r+b−1)FF (r+b, r+2b−1) · · ·FF (r+xr,bb, r+(xr,b+1)b−1) and
Qr,b = FR(r+xr,bb, r+(xr,b+1)b−1) · · ·FR(r+b, r+2b−1)FR(r, r+b−1),

respectively, where xr,b =
⌊ |S|+1−r

b

⌋
− 1 and the alphabet is 0, . . . , p− 1.

CPM 2019



31:4 Searching Long Repeats in Streams

Let us fix b and consider only the traces with block size b and shifts r = 1, . . . , b, writing
Pr, Qr, xr instead of Pr,b, Qr,b, xr,b; the traces Pb, Qb are called main. We say that a substring
S[l..t] is contained in the traces Pr and Qr if l ≡b r and t− l+ 1 ≡b 0. This condition means
that S[l..t] can be partitioned into blocks such that the corresponding hashletters after the
forward (resp., backward) hashing constitute a substring of the trace Pr (resp., Qr).

We store only the main trace (Pb for LRS and Qb for LRRS) and search for repeats with
the left occurrence contained in the main trace. We call these repeats packable. By the
length argument, the right occurrence of a packable repeat is also contained in some trace.
Long packable repeats approximate the solutions for LRS and LRRS:

I Observation 4. For each repeat (reversed repeat) (i, j, l) such that l > 2b− 2, a stream S

contains a packable repeat (resp., packable reversed repeat) (i′, j′, l′) such that l′ ≥ l − 2b+ 2.
Namely, take i′ = d ibeb, j

′ = j + i′ − i, l′ = b i+l−i
′

b cb.

A packed repeat in a string S, denoted by a quadruple (r, il, ir, k), is a pair of equal
substrings Pb[il .. il+k−1] = Pr[ir .. ir+k−1] , where il < ir and 1 ≤ r ≤ b (see Fig. 1).
Similar, a packed reversed repeat is a pair Qb[xr+2−il .. xr+3−il−k] = Pr[ir .. ir+k−1].

I Observation 5. If (i, j, l) is a packable repeat (packable reversed repeat), then the tuple
(j mod b, i/b, bj/bc + 1, l/b) is a packed repeat (packed reversed repeat). Conversely, if
(r, il, ir, k) is a packed repeat (packed reversed repeat), then (ilb, (ir− 1)b+ r, kb) is a packable
repeat (resp., packable reversed repeat), up to a hash collision.

S a b a b c a b c a b d a b d e c d a b c a b c a b d

P1,4 !F(abab) !F(cabc) !F(abda) !F(bdec) !F(dabc) !F(abca)

P2,4 !F(babc) !F(abca) !F(bdab) !F(decd) !F(abca) !F(bcab)

P3,4 !F(abca) !F(bcab) !F(dabd) !F(ecda) !F(bcab) !F(cabd)

P4,4 !F(bcab) !F(cabd) !F(abde) !F(cdab) !F(cabc)

S a b a b c a b c a b d a b d e c d a b c a b c a b d

P1,4 !F(abab) !F(cabc) !F(abda) !F(bdec) !F(dabc) !F(abca)

P2,4 !F(babc) !F(abca) !F(bdab) !F(decd) !F(abca) !F(bcab)

P3,4 !F(abca) !F(bcab) !F(dabd) !F(ecda) !F(bcab) !F(cabd)

P4,4 !F(bcab) !F(cabd) !F(abde) !F(cdab) !F(cabc)

Figure 1 Traces and packed repeats. Left: packable repeat (4, 19, 8) and its packed repeat
(3, 1, 5, 2) (colored). Right: hashletters available in all direct traces after reading S[17] (colored).

Due to Observations 4, 5, we reduced the initial problems to the problems of finding
a longest packed repeat and a longest packed reversed repeat in a stream; their solutions
will solve, w.h.p., LRS and LRRS with an additive error less than 2b. By Observation 1, the
algorithm for packed reversed repeats can skip some of them if the corresponding packable
reversed repeats are overlapping.

A hashletter has the form FF (j, j + b− 1) or FR(j, j + b− 1). This hashletter becomes
available when we read the symbols S[j], S[j+1], . . . , S[j+b−1], i.e., after reading S[j+b−1].
Hence, after each read, starting from S[b], a new hashletter becomes available for one trace
and one reversed trace. To compute this hashletter FF (j, j + b− 1) or FR(j, j + b− 1) it
is sufficient to know the frames I(j + b) and I(j). Before reading S[i] we store I(i − b +
1), I(i− b+ 2), . . . , I(i). The numbers of these frames are all distinct modulo b, so the frames
can be stored in a cyclic queue of length b. The prefix of the trace Pr (resp., the suffix of
Qr) available after reading S[i] is denoted by P ir (resp., Qir). Note that P ir = Pr[1..b i−r+1

b c],
similar for Qir.
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4 Search of a Longest Reversed Repeat

We first approach LRRS. By Observation 1, it is sufficient to analyse any set of reversed
repeats which includes all non-overlapping ones. If a reversed repeat is non-overlapping, then
the packable reversed repeat obtained from it (Observation 4) is also non-overlapping.

Let us define the packed counterpart of non-overlapping repeats. A handy repeat is a
packed reversed repeat (r, il, ir, k) such that its left occurrence is a substring of Qirb−1

b .

I Lemma 6. For a non-overlapping packable reversed repeat, the corresponding packed
reversed repeat is handy.

Proof. Let (i, j, l) be a non-overlapping packable reversed repeat; the corresponding packed
reversed repeat is (j mod b, i/b, bj/bc+1, l/b) by Observation 5. Its left occurrence is contained
in Qi+l−1

b , and i+ l − 1 < j − 1 < (bj/bc+ 1)b− 1, so it is handy by definition. J

By Lemma 6, to get the desired approximation to LRRS it is enough to find the longest
handy repeat in S. We use Weiner’s algorithm [21] to maintain a dynamic suffix tree for
Qb which equals T (Qjb) after processing S[j], for each j ≤ n. Processing a symbol S[i], we
add a new hashletter to the trace Pr, where r = (i+1) mod b, and find the longest handy
repeat, the right occurrence of which is a suffix of P ir ; we denote this suffix by suff i

r. Since
the repeat is handy, the last hashletter of the left occurrence is added to the tree before the
first hashletter of the right occurrence becomes available. This condition implies that if the
repeat is longer than one hashletter, it extends a handy repeat found on the iteration i− b.

I Observation 7. By definition of a handy repeat, the condition P ir = P i−1
r implies suff i

r =
suff i−1

r . Hence suff i−1
r = suff i−b

r whenever i+ 1 ≡b r. That is, the update of the main trace
Qb does not affect the longest handy repeat ending with a suffix of P ir .

For each r = 1, . . . , b, we maintain the position of the string suff i
r in the tree T (Qib). This

position is denoted by posir.

I Observation 8. The equality suff i−1
r = suff i−b

r stated in Observation 7 does not necessarily
imply posi−1

r = posi−br . Namely, these pairs are equal iff it is still valid to refer to the position
of w = suff i−b

r in the tree T (Qi−1
b ) with the pair posi−br = (v, raise). However new nodes

can appear during the last update of the tree, splitting the incoming edge of v such that the
position of w will be above some ancestor of v. Still, if we go up by raise symbols from the
node v, we will reach the position of w.

After reading S[i], we need to compute posir, where r = (i+1) mod b. We may suppose
that we have computed posi−br after reading S[i− b]. By Observation 8, one can get posi−1

r

from posi−br = (v, raise) walking up the tree from v to the lower end of the edge containing
the position which is raise symbols above v.

I Proposition 9. If i+ 1 ≡b r, the longest proper prefix of suff i
r is a suffix of suff i−1

r .

Proof. Let (r, il, i−r+1
b − k + 1, k), k ≥ 1, be the handy repeat corresponding to suff i

r. The
longest proper prefix of suff i

r corresponds to the handy repeat (r, il + 1, i−r+1
b − k+ 1, k− 1);

its right occurrence ends at the position i−r+1
b − 1 and thus is a suffix of P i−br . Then this

occurrence is a suffix of suff i−b
r by definition. By Observation 7, suff i−b

r = suff i−1
r . J

By Proposition 9, we can find the position posir in the tree T (Qib) as follows: take the
longest suffix w of suff i−1

j such that its position in the tree has a transition by the hashletter
a = FF [i−b+1..i], and follow this transition to get posir; if the root of T (Qib) has no transition
by a, posir coincides with the root. To find w, we scan suffixes of suff i−1

j in the order of
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31:6 Searching Long Repeats in Streams

decreasing length, following suffix links. If the current position is on the edge (u, v), t symbols
from its upper end u, then its implicit link can be found by descending t symbols from the
node link(u). Finally, if imod b = b− 1, a new hashletter is added to Qb, and an iteration
of Weiner’s algorithm is run to update the suffix tree. Now we can formulate

I Theorem 10. There is an algorithm solving, w.h.p., LRRS in a stream with a given additive
error E = O(n0.99) in O( nE + E) space, O(n) total time, and O( nE ) update time.

Proof. Let us fix b = bE2 c and write Tj for the suffix tree T (Qjb). Here we present Algorithm 1
which finds, w.h.p., the longest handy repeat with the block size b in a length-n stream S

within the space and time bounds stated in the theorem. Comparing the corresponding
packable repeat with the longest palindrome in S found by [11, Algorithm A] and taking the
longer of two, we obtain, w.h.p., the solution for LRRS(S) with the error, space, and time
bounds as in the theorem; see Observations 1, 4, 5, and Lemma 6.

During the algorithm we maintain a suffix tree T , an array pos[1..b] of positions in T , an
array SI[1..b] of recent frames and the last frame I. By ith iteration we mean all operations
starting with the read of S[i] and preceding the read of S[i+1]. After (i−1)th iteration,
T = Ti−1, pos[r] contains the latest computed value of posjr (i.e., j ≥ i− b for each r), and SI
contains the frames I(j) for j = i− b+ 1, . . . , i such that I(j) is stored in SI[(j−1) mod b].
The ith iteration looks as follows:

Algorithm 1 : Algorithm AdditiveReversedRepeat, i-th iteration (i ≥ b).
1: r = i mod b+ 1
2: read S[i]; compute I(i+ 1) from I(i); I = I(i+ 1)
3: compute FF = FF (i− b+ 1, i) from I and SI[r]
4: update pos[r] = posi−br to posi−1

r by walking up
5: compute pos[r] = posir by traversing T from posi−1

r by the hashletter FF
6: update answer by the value determined by pos[r]
7: if r = b then
8: compute FR = FR(i− b+ 1, i) from I and SI[r]
9: update T to Ti, appending FR by Weiner’s algorithm
10: SI[r] = I

The update of pos[r] in lines 4-5 is correct by Observation 8 and Proposition 9. In order
to update the answer in line 6, we store in each node of the suffix tree its string depth sd
(the length of the corresponding string). Then the new value (v, raise) of pos[r] gives us
the length of the corresponding handy repeat as sd(v) − raise. From the length and the
number of the iteration we get the right occurrence of the repeat. To find the left occurrence,
recall that the edge of a suffix tree with the lower end v is labeled by the last position of
an occurrence of v in the string; subtracting sd(v)− 1 from this position, we get the first
position of the left occurrence of the repeat. Thus Algorithm1 correctly computes the longest
handy repeat. Consider its time/space costs. The suffix tree is of size O( nE ), both the array
of positions and the array of frames are of size O(E), giving the required space bound.

We store transitions in the suffix tree in a single hash table with the pair (node, symbol)
as the key, using the dynamic perfect hashing [10]. This method provides a dictionary with
constant-time lookup; with probability at least 1− 1

n all updates work in constant time as
well. If an update takes more than a prescribed constant time, we output a “repeat” (1, 1, n)
and stop. This results in an improbable error on the same side as the error caused by a hash
collision. Thus the descents in the suffix tree require constant time per edge.
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At an iteration, potentially heavy computations are in the lines 5 and 9. Each of them, in
the worst case, requires the time proportional to the size of the suffix tree, i.e., O( nE ). Note
that line 4 requires a constant number of operations because Weiner’s algorithm adds to the
tree at most one internal node per iteration.

To estimate the total time, count the total number of elementary operations in each of
the lines 5 and 9 during all iterations. In line 9, a suffix tree is built for a string of length
O( nE ) over a polynomial alphabet (p is polynomial in n and thus in n

E ). This can be done in
O( nE ) time using the hash table. Now consider line 5, grouping all iterations with the same
trace Pr. Consider the evolution of the string depth of pos[r]. Initially, sd = 0. Each suffix
link transition decreases it by 1; it can increase by 1 once per iteration, if the transition
by the current symbol is found. Hence the total number of suffix link transitions is O( nE ),
constant time per each. Finally compute the number of descents which follow suffix link
transitions. Consider the tree depth td of pos[r]. Initially, td = 0, and td is bounded by the
depth of the tree, which is O( nE ). A suffix link transition decreases td by at most 1; each
ascent in line 4 decreases it by 1; updates of the tree do not decrease it. Since the total
number of ascents in lines 4 and suffix link transitions in line 5 is O( nE ), the total number of
descents is O( nE ) as well. Summing over all traces, we get the total time O(n), as required.

Thus, LRRS can be solved within the space/time costs stated in the theorem. J

Next we modify Algorithm 1 to avoid slow updates.

I Theorem 11. There is an algorithm solving, w.h.p., LRRS in a stream with a given additive
error E = O(n0.99) in O( nE +E) space, O(n+ n

E logn) total time, and O(logn) update time.

Proof. Algorithm 1 has two heavy parts: updating the suffix tree and searching in it. For
the first part, we replace Weiner’s construction with its modification by Amir et al. [1]. This
modification can work with the polynomial integer alphabet and has O(logn) update time
and O(n logn) total time, thus adding n

E logn to the total time cost of our algorithm.
We should note that the algorithm by Amir et al. makes no use of suffix links; instead, the

positions where to add new suffixes are determined through queries to the “balanced indexed
structure” (BIS). BIS is capable of finding such a position in O(log |T |) time; in addition, it
can find the longest common prefix of an arbitrary string with T , also in O(log |T |) time.
This allows us to build direct suffix links of new nodes within the same time bounds.

The search will use delayed operations. For each shift r = 1, . . . , b we maintain a “conveyor”
Cr, consisting of the position pos = pos[r] in the tree T , a queue queue of hashletters awaiting
processing (it can be viewed as a suffix of the string Pr), and a flag flag set to 0 if the
algorithm should skip the update of the answer with the current value of pos. One iteration
of our algorithm is shown below.

A new hashletter is added to the current conveyor in line 3; the function lazyProcess,
called in line 4, performs two delayed transitions in T (by suffix links or by queue symbols).
If only one transition is available (by the only queue symbol), one transition is performed.

Let C = Cr be the current conveyor, maxlen be the maximum string depth among all
positions pos seen in C (= the length of the longest handy repeat with the right occurrence
in Pr, found so far). After each call to lazyProcess, the following semi-invariant is kept:
balance = maxlen− sd(pos)− 2|queue| ≥ 0. Adding a symbol to queue decreases balance
by 2; a suffix link transition increases it by 1. A transition by a symbol updates pos and so
is followed by a deletion from queue; thus it increases balance by 1 or even by 2 (if the new
pos changes maxlen). Thus if lazyProcess performed two transitions, then balance has not
decreased, and if there was one transition, then |queue| = 0 and balance ≥ 0 by definition.
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31:8 Searching Long Repeats in Streams

Algorithm 2 : FastAdditiveReversedRepeat, ith iteration (i ≥ b).
1: r = i mod b+ 1
2: read S[i]; compute I(i+ 1) from I(i); I = I(i+ 1)
3: compute FF = FF (i− b+ 1, i) from I and SI[r]; put (Cr, FF )
4: Cr = lazyProcess(Cr); flag = [queue is empty]
5: if flag = 1 then
6: update answer by value determined by Cr
7: if r = b then
8: compute FR = FR(i− b+ 1, i) from I and SI[r]
9: update T to Ti, appending FR and building suffix links using BIS
10: SI[r] = I

Because of the semi-invariant, |queue| > 0 implies sd(pos) + |queue| < maxlen. This
means that after processing the whole queue both maxlen and the longest handy repeat
cannot be updated. Hence at the end of an iteration flag is set to 0 if |queue| > 0 and to 1
otherwise.

I Observation 12. Between the iteration when a hashletter was added to a queue, and an
iteration when it was processed to get pos, the suffix tree can be updated, and a wrong (too
deep) pos can be found. However, while the queue is nonempty, the answer is not updated
because flag = 0. When it becomes empty, the position pos will be correct, since the newest
symbol in the queue appeared after the last update of T .

Observation 12 implies that Algorithm 2 performs exactly the same updates of the answer
as Algorithm 1, and hence is correct. Now consider its time and space costs.

We cannot store queue explicitly due to memory restrictions. Instead, we factorize the
string queue into a prefix (or head) head and a suffix (or tail) tail, storing them separately.
We use four words of memory in total and support three operations in O(1) time: append
a symbol to tail; delete the first symbol of head; set head to tail if head is empty. This
provides full functionality of a queue; let us consider details.

The tail is stored as the position posT = (v, raise) of the string tail in the tree T . The
head is represented by two numbers L and R such that the interval [L..R] of the main trace
Qb equals head; recall that Qb is a part of the suffix tree data structure. To delete the first
hashletter from the queue, we increment L by 1. If now L > R (= the head is empty), we
compute the interval of Qb equal to tail: if posT = (v, raise), the incoming edge of v is
marked by the last position x of an occurrence of v is Qb, so tail = Qb[x−sd(v)+1..x−raise].
Then we set [L..R] to this interval and posT to (root, 0), thus moving tail to head.

To add a hashletter c to the queue, we try to make a transition by c from posT . If it
succeeds, we just update posT with the position reached. If it fails, the string tail · c does not
occur in Qb and we update the current conveyor as follows: pos = posT ; posT = (root, 0);
L = R points to an occurrence of c. If there is no such occurrence, we put pos = posT =
(root, 0);L = R = −1. The justification for such an update is Observation 12: since maxlen
cannot be updated before the queue is emptied, we abandon the currently processed update of
pos and skip some subsequent updates which cannot lead to the update of the answer (because
flag = 0); then we use the tail (without the new symbol) to define the new value of suff r.

Next we optimize the computations in the suffix tree using the dynamic weighted ancestor
tree (DWAT) structure [17] for T , which is maintained in parallel with T ; this tree has the
size O(|T |), and its update requires O( log2 log |T |

log log log |T | ) time per one update of the suffix tree.
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DWAT was used to find implicit suffix links in the suffix tree for the order-preserving
model [9] as follows: descend to the nearest node, follow its suffix link, and ascend using
one O(log log |T |)-time query to DWAT. If we adopt this line, the total time spent by the
algorithm will increase to Θ(n log logn). To avoid this, we exploit the following trick. First
we try to find the implicit link by the usual procedure: ascend to a nearest node, follow
suffix link, and descend the same distance. If after log log |T | operations we have not reached
the destination edge, we abandon this try and find the link querying DWAT. This approach
allows us to unite both bounds: O(log logn) update time from DWAT and O(|T |) = O( nE )
total time for each conveyor, which gives O(n) in total for all conveyors.

With all these optimizations, Algorithm 2 works in the same space as Algorithm 1; the
update time is dominated by O(logn) for the suffix tree update (line 8), including the update
of DWAT; lazyProcess (line 4) requires only O(log logn) time per iteration, as shown above.

The total time of the tree update (including DWAT) is O( nE logn); summing this with
the bound O(n) for all conveyors, we get the result of the theorem. J

I Remark 13. The heaviest operation in Algorithm 2 is the update of the suffix tree. However,
in the literature we found no algorithm which gives better worst-case update time and is
suitable for a polynomial integer alphabet. E.g., the algorithm by Breslauer and Italiano
[4] has O(log logn) update time, but only for constant alphabets, while the algorithm of
Kopelowitz [16] is based on the y-fast trie [22], which has O(logn) worst-case update time.

5 Search of a Longest Repeat

Now we approach LRS. A simple solution is very close to Algorithm 1; in fact it is easier,
because we do not need to take a special care about overlapping repeats: a symbol in
the right occurrence of a repeat becomes available later than its counterpart from the left
occurrence no matter whether the repeat is overlapping or not. It is enough to make the
following changes in Algorithm 1: (i) use Pb instead of Qb, (ii) build suffix tree left to right
by Ukkonen’s algorithm [20], enhanced with the dynamic perfect hashing, instead of Weiner’s
algorithm (line 9; line 8 is no longer needed), and (iii) redefine suff i

r to be the longest suffix
of P ir occurring in P i−rb . This gives us

I Theorem 14. There is an algorithm solving, w.h.p., LRS in a stream with a given additive
error E = O(n0.99) in O( nE + E) working space, O(n) total time, and O( nE ) update time.

However, there is a problem with enhancing this algorithm to get better update time.
Namely, each iteration of Weiner’s algorithm produces exactly one leaf and at most one
internal node, while in Ukkonen’s algorithm the number of new nodes at one iteration can be
linear in the size of the tree. Hence for some updates of the tree T the time Θ(|T |) can be
inevitable (postponed updates may affect the search results). Instead, we work with Qb and
Qr, comparing reversed strings of “reversed” hashletters. This allows us to stick to Weiner’s
construction and prove an analog of Theorem 11.

I Theorem 15. There is an algorithm solving, w.h.p., LRS in a stream with a given additive
error E = O(n0.99) in O( nE +E) space, O(n+ n

E logn) total time, and O(logn) update time.

We define pref ir be the longest prefix of Qir occurring in Qi−rb , and redefine posir to be
the position of pref ir in the current tree T (Qib). Similar to Observation 7, we get

I Observation 16. One has pref i−1
r = pref i−br whenever i+ 1 ≡b r.
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As with reversed repeats, after reading S[i] we take r = (i+1) mod b and compute posi−1
r

from posi−br = (v, raise) walking up the tree until the edge with the position raise symbols
above v will be found. After this we compute posir, using a direct analog of Proposition 9.

I Proposition 17. The longest proper suffix of pref ir is a prefix of pref i−1
r .

Proof of Theorem 15. We define the block size b = bE2 c and write Tj for the suffix tree
T (Qjb). Algorithm 3 is presented below.

Algorithm 3 : FastAdditiveRepeat, ith iteration (i ≥ b).
1: r = i mod b+ 1
2: read S[i]; compute I(i+ 1) from I(i); I = I(i+ 1)
3: compute FR = FR(i− b+ 1, i) from I and SI[r]
4: update pos[r] = posi−br to posi−1

r by walking up
5: compute pos[r] = posir as longest prefix of FR·pref i−1

r that exists in T
6: update answer by the value determined by pos[r]
7: if r = b then
8: update T to Ti, appending FR and building suffix links using BIS
9: SI[r] = I

Line 4 requires O(1) time, since only one internal node can appear in T between the
corresponding iterations; line 8 requires O(logn) time per iteration and thus O( nE logn) in
total (see Algorithm 2). It remains to explain the computation in line 5. As in Theorem 11,
we use two different ways to benefit from both good total time and good update time.

One way is to use hard inverse links, which are inverses of suffix links (i.e., link a node
u to all nodes of the form au where a is a symbol). Clearly, they can be added to the
tree simultaneously with suffix links and stored in a hash table similar to the one used for
transitions by letters. To compute posir, one walks up the tree from the position posi−1

r until
a node with a defined hard inverse link by the hashletter FR is reached, follows this link, and
possibly walks some letters down inside one edge (however, the number of operations needed
to compute the length of descent equals, in the worst case, the number of nodes passed on
ascent). Note that one step up decreases the tree depth of a node by 1, the transition by
hard link cannot increase it more than by 1, and the descent inside one edge does not affect
it. Thus the total number of steps up in processing of a fixed trace is O(|T |). This gives us
O(n) total time for all computations in line 5.

The second way is to use a one O(logn)-time query to BIS. Finally, the solution is to
perform logn steps of the search in the tree, and if the requires position is not found, query
BIS. This gives us both O(n) total time and O(logn) update time. J

6 Lower Bounds

In this section we use Yao’s minimax principle [23] to show the lower space bounds to the LRS
problem, where the input length n and the input alphabet Σ are given; we use the notation
LRS|Σ|[n]. For LRRS, the same results can be obtained by straightforward adaptations of
theorems from [11, Section 2], so we omit them. For LRS, the proofs of Lemma 20 and
Theorem 22 also follow the scheme from [11], while Theorem 19 and Lemma 21 are proved
by different arguments.
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I Theorem 18 (Yao’s principle). Let X be the set of inputs for a problem, A be the set of all
deterministic algorithms solving it, and c(a, x) ≥ 0 be the cost of running a ∈ A on x ∈ X .

Let p be a probability distribution over A, and let A be an algorithm chosen at random
according to p. Let q be a probability distribution over X , and let X be an input chosen at
random according to q. Then maxx∈X E[c(A, x)] ≥ mina∈AE[c(a,X)].

First we prove that any Las Vegas online algorithm solving LRS with a given additive
error needs at least linear space and thus cannot be used for streaming. For Las Vegas
algorithms, the class A consists of all correct algorithms, and c(a, x) is the memory usage.

I Theorem 19. Let A be a Las Vegas streaming algorithm solving the problem LRS|Σ|[n]
with an additive error E ≤ 0.49n using s(n) bits of memory. Then E[s(n)] = Ω(n log |Σ|).

Proof. We give the proof for Σ = {0, 1} to simplify computations. It can be extended for
arbitrary alphabet by encoding letters by binary strings of uniform length. Let P be the
uniform distribution over all strings of even length n. Consider an arbitrary deterministic
algorithm D, solving LRS with an additive error E. An input z is “good” if D spends at
most 0.004n bits of memory on it, and “bad” otherwise. First assume that at least half of
inputs are good. Then good inputs cover at least half, or 20.5n−1, possible prefixes of length
n/2 of inputs. After reading such a prefix of a good input, D is in one of at most 20.004n

states. Then we can choose a class C, containing at least 20.496n−1 prefixes sharing the same
state of D. Note that there exist at most n2 · 20.495n prefixes which contain a repeat of
length 0.005n. Further, any input string xx has a common substring of length 0.005n with
at most n2 · 20.495n strings of length n/2. Hence for n big enough, C contains two strings x
and y such that neither of them contains a repeat of length 0.005n and xx has no common
substring of length 0.005n with y. Then the length of the longest repeated substring in xx is
0.5n, while for yx it is less than 2 · 0.005n = 0.01n. Since D is in the same state after reading
x and y, it gives the same answer for xx and yx; one of the answers must be erroneous.

Thus our assumption about good inputs was wrong, and at least half of the inputs are
bad. Then the expected memory usage of D is at least 0.004n/2 = Ω(n log |Σ|) bits. The
reference to Theorem 18 finishes the proof. J

For Monte Carlo algorithms, A consists of all (non necessarily correct) algorithms, and
c(a, x) is the correctness indicator (0 if correct, 1 otherwise). First we show that the exact
answer to LRS cannot be found using sublinear memory.

I Lemma 20. There is a constant γ such that any Monte Carlo online algorithm solving
LRSΣ[n] exactly with probability 1− 1

n uses at least γn log min{|Σ|, n} bits of memory.

The proof is similar to the proof of [11, Lemma 3] and can be found in Appendix.
For Monte Carlo algorithms with additive error, we first prove an auxiliary rough bound

and then a sharp bound, using a reduction from the exact Monte Carlo algorithm.

I Lemma 21. Any randomized Monte Carlo algorithm solving the problem LRS|Σ|[n] with
the additive error E ≤ 0.49n and the error probability 1

n uses Ω(logn) bits of memory.

Proof. Let Σ = {0, 1} and consider the uniform distribution P over any set P of 2n/2+1

strings of even length n with the following property: each string x ∈ Σn/2 occurs twice as
the left half of a string from P such that one of these strings is xx and the other is xy where
y is a fully randomly chosen string of length n/2. Thus, half of strings in P have repeats
of length n/2, and the other strings are fully random and thus their longest repeats are of
length Θ(logn) with probability 1− 1

n (cf. [11, Lemma 22]). Hence if an algorithm stores
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any sketch of s(n) = o(logn) bits of information about x, it distinguishes between x and y
in the second part with a too small probability: y shares this sketch with x with probability
2−s(n) > 1

n . J

I Theorem 22 (Monte Carlo additive approximation). Any randomized streaming Monte Carlo
algorithm solving the problem LRS|Σ|[n] with the additive error E ≤ 0.49n with probability
1− 1

n uses Ω( nE log min{|Σ|, nE }) bits of memory.

Proof. Let σ = min{|Σ|, nE }. Since the bound Ω( nE log σ) becomes Ω(logn) if E = Ω(n logσ
logn ),

we further suppose that E = o(n logσ
logn ).

Assume that there is a Monte Carlo streaming algorithm A solving LRS|Σ|[n] with additive
error E with probability 1 − 1

n , using o(
n
E log σ) bits of memory. Let n′ =

⌊
n−E
E+1

⌋
. We

define new Monte Carlo streaming Algorithm A′, which processes a string x[1..n′] as follows:
run Algorithm A on x′ = 0Ex[1]0Ex[2] · · · 0Ex[n′]0E , using logE ≤ logn additional bits of
memory to count to E, get an answer R, and return the number

⌊
R
E+1

⌋
. If the longest repeat

in x has length r, the longest repeat in x′ has length (r + 1)E + r (each occurrence consists
of r letters of x and r + 1 blocks of 0’s). Since Algorithm A has additive error E, one gets
r(E + 1) ≤ R ≤ (r + 1)E + r, so A′ must return r. Hence Algorithm A′ solves LRS|Σ|[n′]
exactly with probability 1 − 1

n ≥ 1 − 1
n′ using o(n′ log σ) + logn bits of memory. By the

above assumption on E, this number is o(n′ log σ), contradicting Lemma 20, which requires
the memory usage for exact LRS to be Ω(n′ log σ). J

7 Conclusion

In this paper, two classical string problems (LRS and LRRS) are considered in the streaming
model. We proved that they can be solved only by Monte Carlo approximation algorithms; for
the additive approximation error, we presented efficient algorithms which are space optimal
whenever E = O(

√
n) and |Σ| = Ω(n0.01). The algorithms are based on suffix trees, which is

rather exotic for the streaming model.
Two intriguing open problems about LRS and LRRS streaming solutions are the existence

of algorithms with the additive error E >
√
n within o(

√
n) memory and the existence of

efficient algorithms with multiplicative error. We also note that an efficient solution of the
LRRS problem can be important for solving the problem of the longest gapped palindrome.
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A Appendix

Proof of Lemma 20. We use the auxiliary problem LCPΣ[n] which is to find the longest
common prefix of left and right halves of the input. First we prove that if A is a Monte Carlo
online algorithm solving LCPΣ[n] exactly using less than bn2 log |Σ|c bits of memory, then its
error probability is at least 1

n|Σ| .
By Theorem 18, it is enough to construct probability distribution P over Σn such that

for any deterministic algorithm D using less than bn2 log |Σ|c bits of memory, the expected
probability of error on a string chosen according to P is ≥ 1

n|Σ| . To do this, let n′ = n
2 . For

any x ∈ Σn′ , k = 1, . . . , n′, c ∈ Σ, let w(x, k, c) = x[1..n′]x[1..k−1]cx[k+1..n′]. Now P is
the uniform distribution over all such w(x, k, c). Choose an arbitrary maximal matching of
strings from Σn′ into pairs (x, x′) such that D is in the same state after reading either x or
x′. At most one string per state of D is left unpaired, that is at most 2bn

2 log |Σ|c−1 strings in
total. Since there are |Σ|n′ = 2n′ log |Σ| ≥ 2 · 2bn

2 log |Σ|c−1 possible strings of length n′, at least
half of the strings are paired. Let s be the longest common prefix of x and x′, so x = scv,
x′ = sc′v′, where c 6= c′ are distinct letters. Then D returns the same answer on w(x, |s|, c)
and w(x′, |s|, c), although LCP = |s| in one case and LCP ≥ |s|+ 1 in the other. Similarly, D
errs on either w(x, |s|, c′) or w(x′, |s|, c′). Thus the error probability is at least 1

2n′|Σ| = 1
n|Σ| .

Now we prove the lemma for LCPΣ[n] with an amplification trick. Assume we have
a Monte Carlo streaming algorithm, which solves LCPΣ[n] exactly with error probability
ε using s(n) bits of memory. Then we can run its k instances simultaneously and return
the most frequent answer. The new algorithm uses O(k · s(n)) bits of memory and its error
probability εk satisfies the inequality εk ≤

∑
2i<k

(
k
i

)
(1− ε)iεk−i ≤ 2k · εk/2 = (4ε)k/2. Let

κ = 1
6

log(4/n)
log(1/(n|Σ|)) , so κ = 1

6
1−o(1)

1+log |Σ|/ logn = Θ
(

logn
logn+log |Σ|

)
= γ · 1

log |Σ| log min{|Σ|, n} for
some constant γ. Assume that A uses less than κ · n log |Σ| = γ · n log min{|Σ|, n} bits of
memory. Then running

⌊ 1
2κ
⌋
≥ 3

4
1

2κ (which holds since κ < 1
6 ) instances of A in parallel

requires less than bn2 log |Σ|c bits of memory. But then the error probability of the new

algorithm is bounded from above by
( 4
n

)3/16κ =
(

1
n|Σ|

)18/16
≤ 1

n|Σ| , which we have already
shown to be impossible.

The lower bound for LCP can be converted into a lower bound for solving LRS exactly
by padding the input so that the longest repeat is the common prefix of the whole string
and its right half. Let x = x[1..n] be the input for LCP|Σ|[n], with the answer k. We define
w(x) = 0n1x[1..n2 ]0n1x[n2 + 1..n], where 0, 1 /∈ Σ; clearly, w(x) contains a palindrome of
length at least n + k + 2. On the other hand, any repeated substring of w(x) of length
≥ n+1 must contain the substring 0n/21, which has just two occurrences in w. Thus we have
reduced solving LCP|Σ|[n] to solving LRS|Σ|[3n+ 2]. We already know that solving LCP[n]
with probability 1− 1

n requires γ ·n log min{|Σ|, n} bits of memory, so solving LRS|Σ|[3n+ 2]
with probability 1− 1

3n+2 ≥ 1− 1
n requires γ ·n log{|Σ|, n} ≥ γ′ · (3n+ 2) log min{|Σ|, 3n+ 2}

bits of memory. The reduction needs O(logn) additional bits of memory to count up to n,
but for large n this is much smaller than the lower bound if we choose γ′ < γ

4 . J
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