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Abstract
We show that the Longest Common Prefix Array of a text collection of total size n on alphabet
[1, σ] can be computed from the Burrows-Wheeler transformed collection in O(n log σ) time using
o(n log σ) bits of working space on top of the input and output. Our result improves (on small
alphabets) and generalizes (to string collections) the previous solution from Beller et al., which
required O(n) bits of extra working space. We also show how to merge the BWTs of two collections of
total size n within the same time and space bounds. The procedure at the core of our algorithms can
be used to enumerate suffix tree intervals in succinct space from the BWT, which is of independent
interest. An engineered implementation of our first algorithm on DNA alphabet induces the LCP of
a large (16 GiB) collection of short (100 bases) reads at a rate of 2.92 megabases per second using
in total 1.5 Bytes per base in RAM. Our second algorithm merges the BWTs of two short-reads
collections of 8 GiB each at a rate of 1.7 megabases per second and uses 0.625 Bytes per base in
RAM. An extension of this algorithm that computes also the LCP array of the merged collection
processes the data at a rate of 1.48 megabases per second and uses 1.625 Bytes per base in RAM.
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1 Introduction

The increasingly-growing production of huge datasets composed of short strings – especially
in domains such as biology, where new generation sequencing technologies can nowadays
generate Gigabytes of data in few hours – is lately generating much interest towards fast and
space-efficient algorithms able to index this data. The Burrows-Wheeler Transform [7] and
its extension to sets of strings [16, 1] is becoming the gold-standard in the field: even when
not compressed, its size is one order of magnitude smaller than classic suffix arrays (while
preserving many of their indexing capabilities). The functionalities of this transformation
can be extended by computing additional structures such as the LCP array [9]; see, e.g.
[19, 20] for a bioinformatics application where this component is needed. To date, several
practical algorithms have been developed to solve the task of merging or building de novo such
components [1, 9, 13, 14, 6, 10], but little work has been devoted to the task of computing
the LCP array from the BWT of string collections in little space (internal and external
working space). The only existing work we are aware of in this direction is from Beller et
al. [5], who show how to build the LCP array from the BWT of a single text in O(n log σ)
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7:2 Inducing the LCP from the BWT

time and O(n) bits of working space on top of the input and output. Other works [17, 2]
show how to build the LCP array directly from the text in O(n) time and O(n log σ) bits of
space (compact). In this paper, we combine Beller et al.’s algorithm with a recent suffix-tree
enumeration procedure of Belazzougui [2] and reduce this working space to o(n log σ) while
also generalizing the algorithm to string collections. As a by-product, we show an algorithm
able to merge the BWTs of two string collections using just o(n log σ) bits of working space.
An efficient implementation of our algorithms on DNA alphabet uses (in RAM) as few as n
bits on top of a packed representation of the input/output, and can process data as fast as
2.92 megabases per second.

2 Basic Concepts

Let Σ = {c1, c2, . . . , cσ} be a finite ordered alphabet of size σ with c1 < c2 < . . . < cσ, where
< denotes the standard lexicographic order. Given a text T = t1t2 · · · tn ∈ Σ∗ we denote by
|T | its length n. We use ε to denote the empty string. A factor (or substring) of T is written
as T [i, j] = ti · · · tj with 1 ≤ i ≤ j ≤ n. A right-maximal substring W of T is a string for
which there exist at least two distinct characters a, b such that Wa and Wb occur in T .

Let C = {T1, . . . , Tm} a string collection of total length n, where each Ti is terminated by
a character # (the terminator) lexicographically smaller than all other alphabet’s characters.
In particular, a collection is an ordered multiset, and we denote C[i] = Ti.

The generalized suffix array GSA[1..n] (see [21, 9, 15]) of C is an array of pairs GSA[i] =
〈j, k〉 such that C[j][k..] is the i-th lexicographically smallest suffix of strings in C, where
we break ties by input position (i.e. j in the notation above). We denote by range(W) =
〈left(W), right(W)〉 the maximal pair 〈L,R〉 such that all suffixes in GSA[L,R] are prefixed
by W . Note that the number of suffixes lexicographically smaller than W in the collection is
L− 1. We extend this definition also to cases where W is not present in the collection: in
this case, the (empty) range is 〈L,L− 1〉 and we still require that L− 1 is the number of
suffixes lexicographically smaller than W in the collection.

The extended Burrows-Wheeler Transform BWT [1..n] [16, 1] of C is the character array
defined as BWT [i] = C[j][k − 1 mod |C[j]|], where 〈j, k〉 = GSA[i].

The longest common prefix (LCP) array of a collection C of strings (see [9, 15, 10]) is an
array storing the length of the longest common prefixes between two consecutive suffixes of
C in lexicographic order (with LCP [1] = 0).

Given two collections C1, C2 of total length n, the Document Array of their union is the
binary array DA[1..n] such that DA[i] = 0 if and only if the i-th smallest suffix comes from
C1. When merging suffixes of the two collections, ties are broken by collection number (i.e.
suffixes of C1 are smaller than suffixes of C2 in case of ties).

The C-array of a string (or collection) S is an array C[1..σ] such that C[i] contains the
number of characters lexicographically smaller than i in S, plus one (S will be clear from the
context). Alternatively, C[c] is the starting position of suffixes starting with c in the suffix
array of the string. When S (or any of its permutations) is represented with a balanced
wavelet tree, then we do not need to store explicitly C, and C[c] can be computed in O(log σ)
time with no space overhead on top of the wavelet tree [18]. S.rankc(i) is the number of
characters equal to c in S[1, i− 1].

Function getIntervals(L, R, BWT), where BWT is the extended Burrows-Wheeler trans-
form of a string collection and 〈L,R〉 is the suffix array interval of some string W appearing
in the collection, returns all suffix array intervals of strings cW , with c 6= #, that occur in
the collection. When BWT is represented with a balanced wavelet tree, we can implement
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this function so that it terminates in O(log σ) time per returned interval [5]. The function
can be made to return the output intervals on-the-fly, one by one (in an arbitrary order),
without the need to store them all in an auxiliary vector, with just O(logn) bits of additional
overhead in space [5] (this requires to DFS-visit the sub-tree of the wavelet tree induced by
BWT [L,R]; the visit requires only log σ bits to store the current path in the tree).

We note that an extension of the above function that navigates in parallel two BWTs is
immediate. Function getIntervals(L1, R1, L2, R2, BWT1, BWT2) takes as input two ranges of a
string W on the BWTs of two collections, and returns the pairs of ranges on the two BWTs
corresponding to all left-extensions cW of W (c 6= #) such that cW appears in at least one
of the two collections. To implement this function, it is sufficient to navigate in parallel the
two wavelet trees as long as at least one of the two intervals is not empty.

The function S.rangeDistinct(i, j) returns the set of distinct alphabet characters dif-
ferent than the terminator # in S[i, j]. Also this function can be implemented in O(log σ)
time per returned element when S is represented with a wavelet tree (again, this requires a
DFS-visit of the sub-tree of the wavelet tree induced by S[i, j]).

BWT.bwsearch(〈L, R〉, c) is the procedure that, given the suffix array interval 〈L,R〉 of
a string W , returns the suffix array interval of cW by using the BWT [12]. This function
requires access to array C and rank support on BWT , and runs in O(log σ) time when BWT

is represented with a balanced wavelet tree.

3 Our Contributions

Our work builds upon the following two results from Belazzougui1[2] and Beller et al. [5].

I Theorem 1 (Belazzougui [2]). Given the Burrows-Wheeler Transform of a text T ∈ [1, σ]n
represented with a wavelet tree, we can solve the following problem in O(n log σ) time using
O(σ2 log2 n) bits of working space on top of the BWT. Enumerate the following information
for each distinct right-maximal substring W of T : (i) |W |, and (ii) range(Wci) for all
c1 < · · · < ck such that Wci occurs in T .

I Theorem 2 (Beller et al. [5]). Given the Burrows-Wheeler Transform of a text T represented
with a wavelet tree, we can compute the LCP array of T in O(n log σ) time using 4n bits of
working space on top of the BWT and the LCP.

Theorem 2 represents the state of the art for computing the LCP array from the BWT.
Our first observation is that Theorem 1 can be directly used to induce the LCP array of T
using just O(σ2 log2 n) bits of working space on top of the input and output (proof in Section
6.1). In Section 6.1 we combine this result with Theorem 2 and obtain our first theorem:

I Theorem 3. Given the Burrows-Wheeler Transform of a text T ∈ [1, σ]n, we can compute
the LCP array of T in O(n log σ) time using o(n log σ) bits of working space on top of the
BWT and the LCP.

Proof. First, we replace T by its wavelet matrix [8] – of size n log σ + o(n log σ) bits – in
O(n log σ) time using just n bits of additional working space as shown in [8]. Wavelet matrices
support the same set of operations of wavelet trees in the same running times (indeed, they

1 While the original theorem [2, Sec. 5.1] is general and uses the underlying rank data structure as a
black box, in our case we strive for succinct space (not compact as in [2]) and stick to wavelet trees. All
details on how to achieve the claimed running time and space are described in Section 4.
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7:4 Inducing the LCP from the BWT

can be considered as a wavelet tree representation). We re-use a portion (n bits) of the LCP
array’s space (which always takes ≥ n bits) to accommodate the extra n bits required for
building the wavelet matrix, so the overall working space does not exceed o(n log σ) bits on
top of the BWT and LCP. In the rest of the paper we will simply assume that the input is
represented by a wavelet tree.

At this point, if σ <
√
n/ log2 n then σ2 log2 n = o(n) and our extension of Theorem 1

gives us o(n log σ) additional working space. If σ ≥
√
n/ log2 n then log σ = Θ(logn) and we

can use Theorem 2, which yields extra working space O(n) = o(n logn) = o(n log σ). Note
that, while we used the threshold σ <

√
n/ log2 n, any threshold of the form σ <

√
n/ log1+ε n,

with ε > 0 would work. The only constraint is that ε > 0, since otherwise for ε = 0 the working
space would become O(n log σ) for constant σ (not good since we aim at o(n log σ)). J

We proceed by extending Theorem 1 to enumerate also the intervals corresponding to
leaves of the generalized suffix tree of a collection (Theorem 1 enumerates internal nodes).
In Section 6.1 we show that this simple modification, combined again with the strategy of
Theorem 2 (generalized to collections), can be used to extend Theorem 3 to text collections:

I Theorem 4. Given the Burrows-Wheeler Transform of a collection C = {T1, . . . , Tm} of
total length n on alphabet [1, σ], we can compute the LCP array of C in O(n log σ) time using
o(n log σ) bits of working space on top of the BWT and the LCP.

In [2, 3], Belazzougui et al. show that Theorem 1 can be adapted to merge the BWTs
of two texts T1, T2 and obtain the BWT of the collection {T1, T2} in O(nk) time and
n log σ(1 + 1/k) + 11n + o(n) bits of working space for any k ≥ 1 [3, Thm. 7]. We show
that our strategy enables a more space-efficient algorithm for the task of merging BWTs of
collections. The following theorem, proved in Section 6.2, merges two BWTs by computing
the binary DA of their union. After that, the merged BWT can be streamed to external
memory (the DA tells how to interleave characters from the input BWTs) and does not
take additional space in internal memory. Similarly to what we did in the proof of Theorem
3, this time we re-use the space of the Document Array to accommodate the extra n bits
needed to replace the BWTs of the two collections with their wavelet matrices.

I Theorem 5. Given the Burrows-Wheeler Transforms of two collections C1 and C2 of total
length n on alphabet [1, σ], we can compute the Document Array of C1 ∪C2 in O(n log σ) time
using o(n log σ) bits of working space on top of the input BWTs and the output DA.

When k = log σ, the running time of [3, Thm. 7] is the same as our Theorem 5 but the
working space is higher: n log σ+O(n) bits. We also briefly discuss how to extend Theorem 5
to build the LCP array of the merged collection. In Section 7 we present an implementation
of our algorithms and an experimental comparison with eGap [11], the state-of-the-art tool
designed for the same task of merging BWTs while inducing the LCP of their union.

4 Belazzougui’s Enumeration Algorithm

In [2], Belazzougui showed that a BWT with rank and range distinct functionality (see
Section 2) is sufficient to enumerate in small space a rich representation of the internal nodes
of the suffix tree of a text T . In this section we describe his algorithm.

Remember that explicit suffix tree nodes correspond to right-maximal text substrings.
By definition, for any right-maximal substring W there exist at least two distinct characters
c1, . . . , ck such that Wci is a substring of T , for i = 1, . . . , k. The first idea is to represent any
text substringW (not necessarily right-maximal) as follows. Let charsW[1] < · · · < charsW[kW]
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be the (lexicographically-sorted) character array such that W · charsW[i] is a substring of
T for all2 i = 1, . . . , kW , where kW is the number of right-extensions of W . Let moreover
firstW[1..kW + 1] be the array such that firstW[i] is the starting position of (the range of)
W ·charsW[i] in the suffix array of T for i = 1, . . . , kW , and firstW[kW + 1] is the end position
of W in the suffix array of T . The representation for W is (differently from [2], we omit
charsW from the representation and we add |W |; these modifications will turn useful later):
repr(W) = 〈firstW, |W|〉. Note that, if W is not right-maximal and is not a text suffix, then
W is followed by kW = 1 distinct characters in T and the above representation is still well-
defined. When W is right-maximal, we will also say that repr(W) is the representation of a
suffix tree explicit node (i.e. the node reached by following the path labeledW from the root).
At this point, the enumeration algorithm works by visiting the Weiner Link tree of T starting
from the root’s representation repr(ε) = 〈firstε, 0〉, where firstε = 〈C[c1], . . . , C[cσ], n〉
(see Section 2 for a definition of the C-array) and c1, . . . , cσ are all (and only) the sorted
alphabet’s characters. The visit uses a stack storing representations of suffix tree nodes,
initialized with repr(ε). At each iteration, we pop the head repr(W) from the stack and
we push repr(cW) such that cW is right-maximal in T . If nodes are pushed on the stack
in decreasing order of interval length, then the stack’s size never exceeds O(σ logn). In
Appendix A we describe in detail how Weiner links are computed, and show that with this
strategy we visit all suffix tree nodes in O(n log σ) time using overall O(σ2 log2 n) bits of
additional space (for the stack). In Section 6.1 we show that this enumeration algorithm can
be used to compute the LCP array from the BWT of a collection.

5 Beller et al.’s Algorithm

Also Beller et al.’s algorithm [5] works by enumerating a (linear) subset of the BWT intervals.
LCP values are induced from a particular visit of those intervals. Belazzougui’s and Beller et
al.’s algorithms have, however, two key differences which make the former more space-efficient
on small alphabets, while the latter more space-efficient on large alphabets: (i) Beller et
al. use a queue (FIFO) instead of a stack (LIFO), and (ii) they represent W -intervals with
just the pair of coordinates range(W) and the value |W |. In short, while Beller et al.’s queue
might grow up to size Θ(n), the use of intervals (instead of the more complex representation
used by Belazzougui) makes it possible to represent it using O(1) bitvectors of length n. On
the other hand, the size of Belazzougui’s stack can be upper-bounded by O(σ logn), but its
elements take more space to be represented.

Beller et al.’s algorithm starts by initializing all LCP entries to ⊥ (an undefined value),
and by inserting in the queue the triple 〈1, n, 0〉, where the first two components are
the BWT interval of ε (the empty string) and the third component is its length. From
this point, the algorithm keeps performing the following operations until the queue is
empty. We remove the first (i.e. the oldest) element 〈L,R, `〉 from the queue, which (by
induction) is the interval and length of some string W : range(W) = 〈L,R〉 and |W | =
`. Using operation getIntervals(L, R, BWT) [5] (see Section 2) we left-extend the BWT
interval 〈L,R〉 with the characters c1, . . . , ck in rangeDistinct(L, R), obtaining the triples
〈L1, R1, `+ 1〉, . . . , 〈Lk, Rk, `+ 1〉 corresponding to the strings c1W, . . . , ckW . For each such
triple 〈Li, Ri, `+ 1〉, if Ri 6= n and LCP [Ri + 1] = ⊥ then we set LCP [Ri + 1]← ` and push
〈Li, Ri, `+ 1〉 on the queue. Importantly, note that we can push the intervals returned by
getIntervals(L, R, BWT) in the queue in any order; as discussed in Section 2, this step can

2 We require charsW to be also complete: if Wc is a substring of T , then c ∈ charsW.
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7:6 Inducing the LCP from the BWT

Algorithm 1: Node-Type(BWT,LCP).
input :Wavelet tree of the Burrows-Wheeler transformed collection BWT ∈ [1, σ]n and empty array

LCP[1..n].
behavior :Fills node-type LCP values.

1 if σ >
√
n/ log2 n then

2 BGOS(BWT, LCP); /* Run Beller et al.’s algorithm */
3 else
4 P← new_stack(); /* Initialize new stack */

5 P.push(repr(ε)); /* Push representation of ε */

6 while not P.empty() do
7 〈firstW, `〉 ← P.pop(); /* Pop highest-priority element */
8 t← |firstW| − 1; /* Number of children of ST node */

9 for i = 2, . . . , t do
10 LCP[firstW[i]]← `; /* Set LCP value */

11 x1, . . . , xk ← BWT.Weiner(〈firstW, `〉); /* Follow Weiner Links */

12 x′
1, . . . , x

′
k ← sort(x1, . . . , xk); /* Sort by interval length */

13 for i = k . . . 1 do
14 P.push(x′

i); /* Push representations */

15 LCP[0]← 0;

be implemented with just O(logn) bits of space overhead with a DFS-visit of the wavelet
tree’s sub-tree induced by BWT [L,R] (i.e. the intervals are not stored temporarily anywhere:
they are pushed as soon as they are generated). To limit space usage, Beller et al. use two
different queue representations. As long as there are O(n/ logn) elements in the queue, they
use a simple vector. When there are more intervals, they switch to a representation based on
four bitvectors of length n that still guarantees constant amortized operations. All details are
described in Appendix B. Beller et al. [5] show that the above algorithm correctly computes
the LCP array of a text. In the next section we generalize the algorithm to text collections.

6 Our Algorithms

We describe our algorithms directly on string collections. This will include, as a particular
case, inputs formed by a single text. Procedure BGOS(BWT,LCP) in Line 2 of Algorithm 1 is a
call to Beller et al.’s algorithm, modified as follows. First, we set LCP[C[c]]← 0 for all c ∈ Σ.
Then, we push in the queue 〈range(c), 1〉 for all c ∈ Σ and start the main algorithm. Note
moreover that (see Section 2) from now on we never left-extend ranges with #.

6.1 Computing the LCP From the BWT
Let C be a text collection where each string is ended by a terminator # (common to all
strings). Consider now the LCP and GSA (generalized Suffix Array) arrays of C. We divide
LCP values in two types. Let GSA[i] = 〈j, k〉, with i > 1, indicate that the i-th suffix in
the lexicographic ordering of all suffixes of strings in C is C[j][k..]. A LCP value LCP[i] is
of node type when the i-th and (i− 1)-th suffixes are distinct: C[j][k..] 6= C[j′][k′..], where
GSA[i] = 〈j, k〉 and GSA[i− 1] = 〈j′, k′〉. Those two suffixes differ before the terminator is
reached in both suffixes (it might be reached in one of the two suffixes, however); we use the
name node-type because i− 1 and i are the last and first suffix array positions of the ranges
of two adjacent children of some suffix tree node, respectively (i.e. the node corresponding to
string C[j][k..k+LCP [i]− 1]). Note that it might be that one of the two suffixes, C[j][k..] or
C[j′][k′..], is the empty string (followed by the terminator) #. Similarly, a leaf-type LCP value
LCP[i] is such that the i-th and (i − 1)-th suffixes are equal: C[j][k..] = C[j′][k′..]. We use
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the name leaf-type because, in this case, it must be the case that i ∈ [L+ 1, R], where 〈L,R〉
is the suffix array range of some suffix tree leaf (it might be that R > L since there might
be repeated suffixes in the collection). Note that, in this case, C[j][k..] = C[j′][k′..] could
coincide with #. Entry LCP [0] escapes the above classification, so we will set it separately.

Our idea is to compute first node-type and then leaf-type LCP values. We argue that
Beller et al.’s algorithm already computes the former kind of LCP values. When this algorithm
uses too much space (i.e. on small alphabets), we show that Belazzougui’s enumeration
strategy can be adapted to reach the same goal: by the very definition of node-type LCP
values, they lie between children of some suffix tree node x, and their value corresponds to
the string depth of x. This strategy is described in Algorithm 1. Function BWT.Weiner(x) in
Line 11 takes as input the representation of a suffix tree node x and returns all explicit nodes
reached by following Weiner links from x (an implementation of this function is described
in Appendix A. Leaf-type LCP values, on the other hand, can easily be computed by
enumerating intervals corresponding to suffix tree leaves. To reach this goal, it is sufficient to
enumerate ranges of suffix tree leaves starting from range(#) and recursively left-extending
with backward search with characters different from # whenever possible. For each range
〈L,R〉 obtained in this way, we set each entry LCP [L+ 1, R] to the string depth (terminator
excluded) of the corresponding leaf. This strategy is described in Algorithm 2. In order to
limit space usage, we use again a stack or a queue to store leaves and their string depth (note
that each leaf takes O(logn) bits to be represented): we use a queue when σ > n/ log3 n,
and a stack otherwise. The queue is the same used by Beller et al.[5] and described in
Appendix B. This guarantees that the bit-size of the queue/stack never exceeds o(n log σ)
bits: since leaves take just O(logn) bits to be represented and the stack’s size never contains
more than O(σ · logn) leaves, the stack’s bit-size never exceeds O(n/ logn) = o(n) when
σ ≤ n/ log3 n. Similarly, Beller et al’s queue always takes at most O(n) bits of space, which
is o(n log σ) for σ > n/ log3 n. Note that in Lines 13-16 we can afford storing temporarily
the k resulting intervals since, in this case, the alphabet’s size is small enough. To sum up,
our full procedure works as follows: (1) we initialize an empty array LCP[1..n], (2), we fill
node-type entries using procedure Node-Type(BWT, LCP) described in Algorithm 1, and (3)
we fill leaf-type entries using procedure Leaf-Type(BWT, LCP) described in Algorithm 2.

Algorithm 2: Leaf-Type(BWT,LCP).
input :Wavelet tree of the Burrows-Wheeler transformed collection BWT ∈ [1, σ]n and array LCP[1..n].
behavior :Fills leaf-type LCP values.

1 if σ > n/ log3 n then
2 P← new_queue(); /* Initialize new queue */
3 else
4 P← new_stack(); /* Initialize new stack */

5 P.push(BWT.range(#), 0); /* Push range of terminator and LCP value 0 */

6 while not P.empty() do
7 〈〈L,R〉, `〉 ← P.pop(); /* Pop highest-priority element */

8 for i = L+ 1 . . . R do
9 LCP[i]← `; /* Set LCP inside range of ST leaf */

10 if σ > n/ log3 n then
11 P.push(getIntervals(L, R, BWT), `+ 1); /* Pairs 〈interval,`+ 1〉 */
12 else
13 〈Li, Ri〉i=1,...,k ← getIntervals(L, R, BWT);
14 〈L′

i, R
′
i〉i=1,...,k ← sort(〈Li, Ri〉i=1,...,k); /* Sort by interval length */

15 for i = k . . . 1 do
16 P.push(〈L′

i, R
′
i〉, `+ 1); /* Push in order of decreasing length */
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Theorems 3 and 4 follow from the correctness of our procedure, which for space reasons
is reported in Appendix C as Lemma 6. As a by-product, in Appendix D we note that
Algorithm 1 can be used to enumerate suffix tree intervals in succinct space from the BWT,
which could be of independent interest.

6.2 Merging BWTs in Small Space
The procedure of Algorithm 2 can be extended to merge BWTs of two collections C1, C2
using o(n log σ) bits of working space on top of the input BWTs and output Document Array
(here, n is the cumulative length of the two BWTs). The idea is to simulate a navigation of
the leaves of the generalized suffix tree of C1 ∪ C2 (note: for us, a collection is an ordered
multi-set of strings). Our procedure differs from that described in [3, Thm. 7] in two ways.
First, they navigate a subset of the suffix tree nodes (so-called impure nodes, i.e. the roots of
subtrees containing suffixes from distinct strings), whereas we navigate leaves. Second, their
visit is implemented by following Weiner links. This forces them to represent the nodes with
the “heavy” representation repr of Section 4, which is not efficient on large alphabets. On
the contrary, leaves can be represented simply as ranges and allow for a more space-efficient
queue/stack representation.

We represent each leaf by a pair of intervals, respectively on BWT (C1) and BWT (C2),
of strings of the form W#. Note that: (i) the suffix array of C1 ∪ C2 is covered by the
non-overlapping intervals of strings of the form W#, and (ii) for each such string W#, the
interval range(W#) = 〈L,R〉 in GSA(C1 ∪ C2) can be partitioned as 〈L,M〉 · 〈M + 1, R〉,
where 〈L,M〉 contains only suffixes from C1 and 〈M + 1, R〉 contains only suffixes from C2
(one of these two intervals could be empty). It follows that we can navigate in parallel the
leaves of the suffix trees of C1 and C2 (using again a stack or a queue containing pairs of
intervals on the two BWTs), and fill the Document Array DA[1..n], an array that will tell
us whether the i-th entry of BWT (C1 ∪ C2) comes from BWT (C1) (DA[i] = 0) or BWT (C2)
(DA[i] = 1). To do this, let 〈L1, R1〉 and 〈L2, R2〉 be the ranges on the suffix arrays of C1
and C2, respectively, of a suffix W# of some string in the collections. Note that one of the
two intervals could be empty: Rj < Lj . In this case, we still require that Lj − 1 is the
number of suffixes in Cj that are smaller than W#. Then, in the collection C1 ∪ C2 there
are L1 + L2 − 2 suffixes smaller than W#, and R1 + R2 suffixes smaller than or equal to
W#. It follows that the range of W# in the suffix array of C1 ∪ C2 is 〈L1 +L2− 1, R1 +R2〉,
where the first R1 − L1 + 1 entries correspond to suffixes of strings from C1. Then, we
set DA[L1 + L2 − 1, L2 + R1 − 1] ← 0 and DA[L2 + R1, R1 + R2] ← 1. The procedure
starts from the pair of intervals corresponding to the ranges of the string “#” in the two
BWTs, and proceeds recursively by left-extending the current pair of ranges 〈L1, R1〉, 〈L2, R2〉
with the symbols in BWT1.rangeDistinct(L1, R1)∪BWT2.rangeDistinct(L2, R2). The detailed
procedure is reported in Algorithm 3. The leaf visit is implemented, again, using a stack
or a queue; this time however, these containers are filled with pairs of intervals 〈L1, R1〉,
〈L2, R2〉. We implement the stack simply as a vector of quadruples 〈L1, R1, L2, R2〉. As far
as the queue is concerned, some care needs to be taken when representing the pairs of ranges
using bitvectors as seen in Appendix B with Beller et al.’s representation. Recall that, at any
time, the queue can be partitioned in two sub-sequences associated with LCP values ` and
`+ 1 (we pop from the former, and push in the latter). This time, we represent each of these
two subsequences as a vector of quadruples (pairs of ranges on the two BWTs) as long as
the number of quadruples in the sequence does not exceed n/ logn. When there are more
quadruples than this threshold, we switch to a bitvector representation defined as follows.
Let |BWT (C1)| = n1, |BWT (C2)| = n2, and |BWT (C1 ∪ C2)| = n = n1 + n2. We keep two



N. Prezza and G. Rosone 7:9

bitvectors Open[1..n] and Close[1..n] storing opening and closing parentheses of intervals in
BWT (C1∪C2). We moreover keep two bitvectors NonEmpty1[1..n] and NonEmpty2[1..n] keeping
track, for each i such that Open[i] = 1, of whether the interval starting in BWT (C1 ∪ C2)[i]
contains suffixes of reads coming from C1 and C2, respectively. Finally, we keep four bitvectors
Openj[1..nj] and Closej[1..nj], for j = 1, 2, storing non-empty intervals on BWT (C1) and
BWT (C2), respectively. To insert a pair of intervals 〈L1, R1〉, 〈L2, R2〉 in the queue, let
〈L,R〉 = 〈L1 +L2−1, R1 +R2〉. We set Open[L]← 1 and Close[R]← 1. Then, for j = 1, 2, we
set NonEmptyj[L]← 1, Openj[Lj]← 1 and Closej[Rj]← 1 if and only if Rj ≥ Lj . This queue
representation takes O(n) bits. By construction, for each bit set in Open at position i, there
is a corresponding bit set in Openj if and only if NonEmptyj[i] = 1 (moreover, corresponding
bits set appear in the same order in Open and Openj). It follows that a left-to-right scan of
these bitvectors is sufficient to identify corresponding intervals on BWT (C1 ∪ C2), BWT (C1),
and BWT (C2). By packing the bits of the bitvectors in words of Θ(logn) bits, the t pairs
of intervals contained in the queue can be extracted in O(t+ n/ logn) time (as described
in [5]) by scanning in parallel the bitvectors forming the queue. Particular care needs to
be taken only when we find the beginning of an interval Open[L] = 1 with NonEmpty1[L] = 0
(the case NonEmpty2[L] = 0 is symmetric). Let L2 be the beginning of the corresponding
non-empty interval on BWT (C2). Even though we are not storing L1 (because we only store
nonempty intervals), we can retrieve this value as L1 = L−L2 + 1. Then, the empty interval
on BWT (C1) is 〈L1, L1 − 1〉.

The same arguments used in the previous section show that the algorithm runs in
O(n log σ) time and uses o(n log σ) bits of space on top of the input BWTs and output
Document Array. This proves Theorem 5. To conclude, we note that the algorithm can be
extended to compute the LCP array of the merged collection while merging the BWTs. This
requires adapting Algorithm 1 to work on pairs of suffix tree nodes (as we did in Algorithm
3 with pairs of leaves), but for space reasons we do not describe all details here. Results
on an implementation of the extended algorithm are discussed in the next section. From
the practical point of view, note that it is more advantageous to induce the LCP of the
merged collection while merging the BWTs (rather than first merging and then inducing the
LCP using the algorithm of the previous section), since leaf-type LCP values can be induced
directly while computing the document array.

Note that Algorithm 3 is similar to Algorithm 2, except that now we manipulate pairs of
intervals. In Line 22, we sort quadruples according to the length Ri1 +Ri2 − (Li1 + Li2) + 2
of the combined interval on BWT (C1 ∪ C2). Finally, note that Backward search can be
performed correctly also when the input interval is empty: BWTj.bwsearch(〈Lj, Lj − 1〉, c),
where Lj − 1 is the number of suffixes in Cj smaller than some string W , correctly returns
the pair 〈L′, R′〉 such that L′ is the number of suffixes in Cj smaller than cW : this is true
when implementing backward search with a rankc operation on position Lj ; then, if the
original interval is empty we just set R′ = L′ − 1 to keep the invariant that R′ − L′ + 1 is
the interval’s length.

7 Implementation and Experimental Evaluation

We implemented our algorithms on DNA alphabet in https://github.com/nicolaprezza/
bwt2lcp using the language C++. Thanks to the small alphabet size, it was actually sufficient
to implement our extension of Belazzougui’s enumeration algorithm (and not the strategy of
Beller et al., which is more suited to large alphabets). The repository features a new packed
string on DNA alphabet ΣDNA = {A,C,G, T,#} using 4 bits per character and able to
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Algorithm 3: Merge(BWT1, BWT2, DA).
input :Wavelet trees of the Burrows-Wheeler transformed collections BWT1 ∈ [1, σ]n1 , BWT2 ∈ [1, σ]n2

and empty document array DA[1..n], with n = n1 + n2.
behavior :Computes Document Array DA.

1 if σ > n/ log3 n then
2 P← new_queue(); /* Initialize new queue of interval pairs */
3 else
4 P← new_stack(); /* Initialize new stack of interval pairs */

5 P.push(BWT1.range(#), BWT2.range(#)); /* Push SA-ranges of terminator */

6 while not P.empty() do
7 〈L1, R1, L2, R2〉 ← P.pop(); /* Pop highest-priority element */

8 for i = L1 + L2 − 1 . . . L2 + R1 − 1 do
9 DA[i]← 0; /* Suffixes from C1 */

10 for i = L2 + R1 . . . R1 + R2 do
11 DA[i]← 1; /* Suffixes from C2 */

12 if σ > n/ log3 n then
13 P.push(getIntervals(L1, R1, L2, R2, BWT1, BWT2)); /* New intervals */
14 else
15 c1

1, . . . , c
1
k1
← BWT1.rangeDistinct(L1, R1);

16 c2
1, . . . , c

2
k2
← BWT2.rangeDistinct(L2, R2);

17 {c1 . . . ck} ← {c1
1, . . . , c

1
k1
} ∪ {c2

1, . . . , c
2
k2
};

18 for i = 1 . . . k do
19 〈Li

1, R
i
1〉 ← BWT1.bwsearch(〈L1, R1〉, ci); /* Backward search step */

20 for i = 1 . . . k do
21 〈Li

2, R
i
2〉 ← BWT2.bwsearch(〈L2, R2〉, ci); /* Backward search step */

22 〈L̂i
1, R̂

i
1, L̂

i
2, R̂

i
2, 〉i=1,...,k ← sort(〈Li

1, R
i
1, L

i
2, R

i
2, 〉i=1,...,k);

23 for i = k . . . 1 do
24 P.push(L̂i

1, R̂
i
1, L̂

i
2, R̂

i
2); /* Push in order of decreasing length */

compute the quintuple 〈rankc(i)〉i∈ΣDNA
with just one cache miss. This is crucial for our

algorithms, since at each step we need to left-extend ranges by all characters. This class
divides the text in blocks of 128 characters. Each block is stored using 512 cache-aligned
bits (the typical size of a cache line), divided as follows. The first 128 bits store four 32-bits
counters with the partial ranks of A, C, G, and T before the block (if the string is longer than
232 characters, we further break it into superblocks of 232 characters; on reasonably-large
inputs, the extra rank table fits in cache and does not cause additional cache misses). The
following three blocks of 128 bits store the first, second, and third bits, respectively, of the
characters’ binary encodings (each character is packed in 3 bits). Using this layout, the
rank of each character in the block can be computed with at most three masks, a bitwise
AND (actually less, since we always compute the rank of all five characters and we re-use
partial results whenever possible), and a popcount operation. We also implemented a packed
string on the augmented alphabet Σ+

DNA = {A,C,G,N, T,#} using 4.38 bits per character
and offering the same cache-efficiency guarantees. In this case, a 512-bits block stores 117
characters, packed as follows. As before, the first 128 bits store four 32-bits counters with
the partial ranks of A, C, G, and T before the block. Each of the following three blocks of
128 bits is divided in a first part of 117 bits and a second part of 11 bits. The first parts
store the first, second, and third bits, respectively, of the characters’ binary encodings. The
three parts of 11 bits, concatenated together, store the rank of N’s before the block. This
layout minimizes the number of bitwise operations (in particular, shifts and masks) needed
to compute a parallel rank.

Several heuristics have been implemented to reduce the number of cache misses in practice.
In particular, we note that in Algorithm 2 we can avoid backtracking when the range size
becomes equal to one; the same optimization can be implemented in Algorithm 3 when also
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Table 1 Datasets used in our experiments. Size accounts only for the alphabet’s characters. The
alphabet’s size σ includes the terminator.

Name Size σ N. of Max read Bytes for
GiB reads length lcp values

NA12891.8 8.16 5 85,899,345 100 1
shortreads 8.0 6 85,899,345 100 1
pacbio 8.0 6 942,248 71,561 4
pacbio.1000 8.0 6 8,589,934 1000 2
NA12891.24 23.75 6 250,000,000 100 1
NA12878.24 23.75 6 250,000,000 100 1

Table 2 In this experiment, we merge pairs of BWTs and induce the LCP of their union using
eGap and merge. We also show the resources used by the pre-processing step (building the BWTs) for
comparison. Wall clock is the elapsed time from start to completion of the instance, while RAM (in
GiB) is the peak Resident Set Size (RSS). All values were taken using the /usr/bin/time command.
During the preprocessing step on the collections pacBio.1000 and pacBio, the available memory in
MB (parameter m) of eGap was set to 32000 MB. In the merge step this parameter was set to about
to the memory used by merge. eGap and merge take as input the same BWT file.

Preprocessing eGap merge
Name Wall Clock RAM Wall Clock RAM Wall Clock RAM

(h:mm:ss) (GiB) (h:mm:ss) (GiB) (h:mm:ss) (GiB)
NA12891.8 1:15:57 2.84 10:15:07 18.09 (-m 32000) 3:16:40 26.52

NA12891.8.RC 1:17:55 2.84
shortreads 1:14:51 2.84 11:03:10 16.24 (-m 29000) 3:36:21 26.75

shortreads.RC 1:19:30 2.84
pacbio.1000 2:08:56 31.28 5:03:01 21.23 (-m 45000) 4:03:07 42.75

pacbio.1000.RC 2:15:08 31.28
pacbio 2:27:08 31.25 2:56:31 33.40 (-m 80000) 4:38:27 74.76

pacbio.RC 2:19:27 31.25
NA12878.24 4:24:27 7.69 31:12:28 47.50 (-m 84000) 6:41:35 73.48
NA12891.24 4:02:42 7.69

computing the LCP array, since leaves of size one can be identified during navigation of
internal suffix tree nodes. Overall, we observed (using a memory profiler) that in practice
the combination of Algorithms 1-2 generates at most 1.5n cache misses; the extension of
Algorithm 3 that computes also LCP values generates twice this number of cache misses
(this is expected, since it navigates two BWTs).

We now report some preliminary experiments on our algorithms: bwt2lcp (Algorithms
1-2) and merge (Algorithm 3, extended to compute also the LCP array). All tests were
done on a DELL PowerEdge R630 machine, used in non exclusive mode. Our platform is
a 24-core machine with Intel(R) Xeon(R) CPU E5-2620 v3 at 2.40 GHz, with 128 GiB of
shared memory and 1TB of SSD. The system is Ubuntu 14.04.2 LTS. The code was compiled
using gcc 8.1.0 with flags -Ofast -fstrict-aliasing.
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Table 3 In this experiment, we induced the LCP array from the BWT of a collection (each
collection is the union of two collections from Table 2). We also show pre-processing requirements
(i.e. building the BWT) of the better performing tool between BCR and eGap.

Preprocessing bwt2lcp
Name Wall Clock RAM Wall Clock RAM

(h:mm:ss) GiB (h:mm:ss) (GiB)
NA12891.8 ∪ NA12891.8.RC (BCR) 2:43:02 5.67 1:40:01 24.48
shortread ∪ shortread.RC (BCR) 2:47:07 5.67 2:14:41 24.75

pacbio.1000 ∪ pacbio.1000.RC (eGap-m 32000) 7:07:46 31.28 1:54:56 40.75
pacbio ∪ pacbio.RC (eGap-m 80000) 6:02:37 78.125 2:14:37 72.76
NA12878.24 ∪ NA12891.24 (BCR) 8:26:34 16.63 6:41:35 73.48

Table 1 summarizes the datasets used in our experiments. “NA12891.8”3 contains Human
DNA reads on the alphabet ΣDNA where we have removed reads containing the nucleotide N .
“shortreads” contains Human DNA short reads on the extended alphabet Σ+

DNA. “pacbio”
contains PacBio RS II reads from the species Triticum aestivum (wheat). “pacbio.1000” are
the strings from “pacbio” trimmed to length 1,000. All the above datasets except the first have
been download from https://github.com/felipelouza/egap/tree/master/dataset. To
conclude, we added two collections, “NA12891.24” and “NA12878.24” obtained by taking
the first 250, 000, 000 reads from individuals NA128784 and NA12891. All datasets except
“NA12891.8” are on the alphabet Σ+

DNA. In Tables 2 and 3, the suffix “.RC” added to a
dataset’s name indicates the reverse-complemented dataset.

We compare our algorithms with eGap5 and BCR6, two tools designed to build the BWT
and LCP of a set of DNA reads. Since no tools for inducing the LCP from the BWT of
a set of strings are available in the literature, in Table 3 we simply compare the resources
used by bwt2lcp with the time and space requirements of eGap and BCR when building
the BWT. In [10], experimental results show that BCR works better on short reads and
collections with a large average LCP, while eGap works better when the datasets contain
long reads and relatively small average LCP. For this reason, in the preprocessing step we
have used BCR for the collections containing short reads and eGap for the other collections.
eGap, in addition, is capable of merging two or more BWTs while inducing the LCP of their
union. In this case, we can therefore directly compare the performance of eGap with our
tool merge; results are reported in Table 2. Since the available RAM is greater than the
size of the input, we have used the semi-external strategy of eGap. Notice that an entirely
like-for-like comparison between our tools and eGap is not completely feasible, being eGap
a semi-external memory tool (our tools, instead, use internal memory only). While in our
tables we report RAM usage only, it is worth to notice that eGap uses a considerable amount
of disk working space. For example, the tool uses 56GiB of disk working space when run on
a 8GiB input (in general, the disk usage is of 7n bytes).

Our tools exhibit a dataset-independent linear time complexity, whereas eGap’s running
time depends on the average LCP. Table 3 shows that our tool bwt2lcp induces the LCP
from the BWT faster than building the BWT itself. When N’s are not present in the dataset,

3 ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/data/NA12891/sequence_read/SRR622458_1.filt.fastq.gz
4 ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/data/NA12878/sequence_read/SRR622457_1.filt.fastq.gz
5 https://github.com/felipelouza/egap
6 https://github.com/giovannarosone/BCR_LCP_GSA

https://github.com/felipelouza/egap/tree/master/dataset
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/data/NA12891/sequence_read/SRR622458_1.filt.fastq.gz
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/data/NA12878/sequence_read/SRR622457_1.filt.fastq.gz
https://github.com/felipelouza/egap
https://github.com/giovannarosone/BCR_LCP_GSA
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bwt2lcp processes data at a rate of 2.92 megabases per second and uses 0.5 Bytes per base
in RAM in addition to the LCP. When N’s are present, the throughput decreases to 2.12
megabases per second and the tool uses 0.55 Bytes per base in addition to the LCP. As
shown in Table 2, our tool merge is from 1.25 to 4.5 times faster than eGap on inputs with
large average LCP, but 1.6 times slower when the average LCP is small (dataset “pacbio”).
When N’s are not present in the dataset, merge processes data at a rate of 1.48 megabases
per second and uses 0.625 Bytes per base in addition to the LCP. When N’s are present, the
throughput ranges from 1.03 to 1.32 megabases per second and the tool uses 0.673 Bytes per
base in addition to the LCP. When only computing the merged BWT (results not shown here
for space reasons), merge uses in total 0.625/0.673 Bytes per base in RAM (without/with
N’s) and is about 1.2 times faster than the version computing also the LCP.
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A Notes on Belazzougui’s Algorithm

The enumeration algorithm works by visiting the Weiner link tree of the text. While this
guarantees that we will visit all and only the suffix tree’s explicit nodes (see [2]), there are
two main issues that need to be addressed. First, the stack’s size may grow in an uncontrolled
way. The solution to this problem is simple: once computed repr(cW) for the right-maximal
left-extensions cW of W , we push them on the stack in decreasing order of range length
range(cW ) (i.e. the node with the smallest range is pushed last). This guarantees that the
stack will always contain at most O(σ logn) elements [2]. Since each element takes O(σ logn)
bits to be represented, the stack’s size never exceeds O(σ2 log2 n) bits.

The second issue that needs to be addressed is how to efficiently compute repr(cW)
from repr(W) for the characters c such that cW is right-maximal in T . In [2, 3] this op-
eration is supported efficiently by first enumerating all distinct characters in each range
BWT [firstW[i]..firstW[i + 1]] for i = 1, . . . , kW . Using the notation of [2], let us call
rangeDistinct(i, j) the operation that returns all distinct characters in BWT [i, j]. Equival-
ently, for each a ∈ charsW we want to list all distinct left-extensions cWa of Wa. Note that,
in this way, we may also visit implicit suffix tree nodes (i.e. some of these left-extensions
could be not right-maximal). Stated otherwise, we are traversing all explicit and implicit
Weiner links. Since the number of such links is linear [2, 4] (even including implicit Weiner
links7), globally the number of distinct characters returned by rangeDistinct operations
is O(n). An implementation of rangeDistinct on wavelet trees is discussed in [5] with the
procedure getIntervals (this procedure actually returns more information: the suffix array
range of each cWa). This implementation runs in O(log σ) time per returned character.
Globally, we therefore spend O(n log σ) time using a wavelet tree. We now need to compute
repr(cW) for all left-extensions of W and keep only the right-maximal ones. Let x = repr(W)
and BWT.Weiner(x) be the function that returns the representations of such strings (used in
Line 11 of Algorithm 1). This function can be implemented by observing that

range(cWa) = 〈 C[c] + BWT.rankc(left(Wa)), C[c] + BWT.rankc(right(Wa) + 1)− 1 〉

where a = charsW[i] for 1 ≤ i < |firstW|, and noting that left(Wa) and right(Wa) are
available in repr(W). Note also that we do not actually need to know the value of characters
charsW[i] to compute the ranges of each cW · charsW[i]; this is the reason why we can omit
charsW from repr(W). Using a wavelet tree, the above operation takes O(log σ) time. By the
above observations, the number of strings cWa such that W is right-maximal is bounded
by O(n). Overall, computing repr(cW) = 〈firstcW, |W |+ 1〉 for all left-extensions cW of all
right-maximal strings W takes therefore O(n log σ) time. Within the same running time, we
can check which of those extensions is right maximal (i.e. those such that |firstcW| ≥ 2),
sort them by interval length (we always sort at most σ node representations, therefore also
sorting takes globally O(n log σ) time), and push them on the stack.

7 To see this, first note that the number of right-extensions Wa of W that have only one left-extension
cWa is at most equal to the number of right-extensions of W ; globally, this is at most the number of
suffix tree’s nodes (linear). Any other right-extension Wa that has at least two distinct left-extensions
cWa and bWa is, by definition, left maximal and corresponds therefore to a node in the suffix tree of
the reverse of T . It follows that all left-extensions of Wa can be charged to an edge of the suffix tree of
the reverse of T (again, the number of such edges is linear).
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B Notes on Beller et al.’s Algorithm

Time complexity. It is easy to see that the algorithm inserts in total a linear number of
intervals in the queue since an interval 〈Li, Ri, `+1〉 is inserted only if LCP [Ri+1] = ⊥, and
successively LCP [Ri + 1] is set to a value different than ⊥. Clearly, this can happen at most
n times. In [5] the authors moreover show that, even counting the left-extensions of those
intervals (that we compute after popping each interval from the queue), the total number of
computed intervals stays linear. Overall, the algorithm runs therefore in O(n log σ) time (as
discussed in Section 2, getIntervals runs in O(log σ) time per returned element).

Queue implementation. To limit space usage, Beller et al. use the following queue rep-
resentations. First note that, at each time point, the queue’s triples are partitioned in a
(possibly empty) sequence with associated LCP value (i.e. the third element in the triples)
`+ 1, followed by a sequence with associated LCP value `, for some `. We can therefore store
the two sequences (with associated LCP value) independently, and there is no need to store
the LCP values in the triples themselves (i.e. the queue’s elements become just ranges). Note
also that we pop elements from the sequence with associated LCP value `, and push elements
in the sequence with associated LCP value `+ 1. When the former sequence is empty, we
create a new sequence with associated LCP value `+ 2 and start popping from the sequence
with associated LCP value `+ 1 (and so on). Beller et al. represent each of the two sequences
separately as follows. While inserting elements in a sequence, as long as the sequence’s length
does not exceed n/ logn we represent it as a vector of pairs (of total size at most O(n) bits).
This representation supports push/pop operations in (amortized) constant time. As soon as
the sequence’s length exceeds n/ logn, we switch to a representation that uses two packed
bitvectors of length n storing, respectively, the left- and right-most boundaries of the ranges
in the sequence. Note that this representation can be used because the sequence of intervals
corresponds to suffix array ranges of strings of some fixed length `, therefore there cannot be
overlapping intervals. Pushing an interval in this new queue’s representation takes constant
time. Popping all the t intervals from one of the two sequences, on the other hand, can be
implemented in O(t+ n/ logn) time by scanning the bitvectors (this requires using simple
bitwise operations on words, see [5] for all details). Since at most O(logn) sequences will
exceed size n/ logn, overall pop operations take amortized constant time.

C Proofs

I Lemma 6. Algorithms 1 and 2 correctly compute the LCP array of the collection in
O(n log σ) time using o(n log σ) bits of working space on top of the input and output.

Proof.
Correctness and completeness - Algorithm 1. We start by proving that Beller et al.’s pro-

cedure in Line 2 of Algorithm 1 (procedure BGOS(BWT,LCP)) fills all the node-type LCP
entries correctly. The proof proceeds by induction on the LCP value ` and follows the
original proof of [5]. At the beginning, we insert in the queue all c-intervals, for c ∈ Σ.
For each such interval 〈L,R〉 we set LCP [R + 1] = ` = 0. It is easy to see that after
this step all and only the node-type LCP values equal to 0 are correctly set. Assume, by
induction, that all node-type LCP values less than or equal to ` have been correctly set,
and we are about to extract from the queue the first triple 〈L,R, `+ 1〉 having length
`+ 1. For each extracted triple with length `+ 1 associated to a string W , consider the
triple 〈L′, R′, `+ 2〉 associated to one of its left-extensions cW . If LCP [R′+ 1] 6= ⊥, then
we have nothing to do. However, if LCP [R′ + 1] = ⊥, then it must be the cases that (i)
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the value to write in this cell satisfies LCP [R′ + 1] ≥ `+ 1, since by induction we have
already filled all node-type LCP values smaller than or equal to `, and (ii) LCP [R′+ 1] is
of node-type, since otherwise the BWT interval of cW would also include position R′ + 1.
On the other hand, it cannot be the case that LCP [R′ + 1] > `+ 1 since otherwise the
cW -interval would include position R′+1. We therefore conclude that LCP [R′+1] = `+1
must hold.
The above argument settles correctness; to prove completeness, assume that, at some
point, LCP [i] = ⊥ and the correct value to be written in this cell is `+ 1. We want to
show that we will pull a triple 〈L,R, ` + 1〉 from the queue corresponding to a string
W (note that ` + 1 = |W | and, moreover, W could end with #) such that one of the
left-extensions aW of W satisfies range(aW) = 〈L′, i − 1〉, for some L′. This will show
that, at some point, we will set LCP [i]← `+ 1. We proceed by induction on |W |. Note
that we separately set all LCP values equal to 0. The base case |W | = 1 is easy: by
the way we initialized the queue, 〈range(c), 1〉, for all c ∈ Σ, are the first triples we pop.
Since we left-extend these ranges with all alphabet’s characters except #, it is easy to see
that all LCP values equal to 1 are set. From now on we can therefore assume that we
are setting LCP-values equal to `+ 1 > 1, i.e. W = b · V , for b ∈ Σ− {#} and V ∈ Σ+.
Let abV be the length-(` + 2) left-extension of W = bV such that right(abV) + 1 = i.
Since, by our initial hypothesis, LCP[i] = `+ 1, the collection contains also a suffix aU
lexicographically larger than abV and such that LCP(aU, abV) = `+ 1. But then, it must
be the case that LCP(right(bV) + 1) = ` (it cannot be smaller by the existence of U
and it cannot be larger since |bV | = `+ 1). By inductive hypothesis, this value was set
after popping a triple 〈L′′, R′′, `〉 corresponding to string V , left-extending V with b, and
pushing 〈range(bV), `+ 1〉 in the queue. This completes the completeness proof since we
showed that 〈range(bV), `+ 1〉 is in the queue, so sooner or later we will pop it, extend it
with a, and set LCP[right(abV) + 1] = LCP[i]← `+ 1.
If the queue uses too much space, then Algorithm 1 switches to a stack and Lines 4-
14 are executed instead of Line 2. Note that this pseudocode fragment corresponds
to Belazzougui’s enumeration algorithm, except that now we also set LCP values
in Line 10. By the enumeration procedure’s correctness, we have that, in Line 10,
〈firstW[1], firstW[t + 1]〉 is the SA-range of a right-maximal string W with ` = |W |, and
firstW[i] is the first position of the SA-range of Wci, with i = 1, . . . , t, where c1, . . . , c2
are all the (sorted) right-extensions of W . Then, clearly each LCP value in Line 10
is of node-type and has value `, since it is the LCP between two strings prefixed by
W ·charsW[i− 1] andW ·charsW[i]. Similarly, completeness of the procedure follows from
the completeness of the enumeration algorithm. Let LCP [i] be of node-type. Consider
the prefix Wb of length LCP [i] + 1 of the i-th suffix in the lexicographic ordering of
all strings’ suffixes. Since LCP [i] = |W |, the (i − 1)-th suffix is of the form Wa, with
b 6= a, and W is right-maximal. But then, at some point our enumeration algorithm
will visit the representation of W , with |W | = `. Since i is the first position of the
range of Wb, we have that i = firstW[j] for some j ≥ 2, and Line 10 correctly sets
LCP [firstW[j]] = LCP [i]← ` = |W |.

Correctness and completeness - Algorithm 2. Proving correctness and completeness of this
procedure is much easier. It is sufficient to note that the while loop iterates over all
ranges 〈L,R〉 of strings ending with # and not containing # anywhere else (note that we
start from the range of # and we proceed by recursively left-extending this range with
symbols different than #). Then, for each such range we set LCP [L + 1, R] to `, the
string depth of the corresponding string (excluding the final character #). It is easy to
see that each leaf-type LCP value is correctly set in this way.
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Complexity - Algorithm 1. If σ >
√
n/ log2 n, then we run Beller et al’s algorithm, which

terminates in O(n log σ) time and uses O(n) = o(n log σ) bits of additional working space.
Otherwise, we perform a linear number of operations on the stack since, as observed in
Section 4, the number of Weiner links is linear. By the same analysis of Section 4, the
operation in Line 11 takes O(k log σ) amortized time on wavelet trees, and sorting in
Line 12 (using any comparison-sorting algorithm sorting m integers in O(m logm) time)
takes O(k log σ) time. Note that in this sorting step we can afford storing in temporary
space nodes x1, . . . , xk since this takes additional space O(kσ logn) = O(σ2 logn) =
O(n/ log3 n) = o(n) bits. All these operations sum up to O(n log σ) time. Since the stack
always takes at most O(σ2 log2 n) bits and σ ≤

√
n/ log2 n, the stack’s size never exceeds

O(n/ log2 n) = o(n) bits.
Complexity - Algorithm 2. Note that, in the while loop, we start from the interval of # and

recursively left-extend with characters different than # until this is possible. It follows
that we visit the intervals of all strings of the form W# such that # does not appear
inside W . Since these intervals form a cover of [1, n], their number (and therefore the
number of iterations in the while loop) is also bounded by n. This is also the maximum
number of operations performed on the queue/stack. Using Beller et al.’s implementation
for the queue and a simple vector for the stack, each operation takes constant amortized
time. Operating on the stack/queue takes therefore overall O(n) time. For each interval
〈L,R〉 popped from the queue/stack, in Line 9 we set R−L− 2 LCP values. As observed
above, these intervals form a cover of [1, n] and therefore Line 9 is executed no more than
n times. Line 13 takes time O(k log σ). Finally, in Line 14 we sort at most σ intervals.
Using any fast comparison-based sorting algorithm, this costs overall at most O(n log σ)
time.

As far as the space usage of Algorithm 2 is concerned, note that we always push just
pairs interval/length (O(logn) bits) in the queue/stack. If σ > n/ log3 n, we use Beller et
al.’s queue, taking at most O(n) = o(n log σ) bits of space. Otherwise, the stack’s size never
exceeds O(σ · logn) elements, with each element taking O(logn) bits. This amounts to
O(σ · log2 n) = O(n/ logn) = o(n) bits of space usage. Moreover, in Lines 13-14 it holds
σ ≤ n/ log3 n so we can afford storing temporarily all intervals returned by getIntervals in
O(k logn) = O(σ logn) = O(n/ log2 n) = o(n) bits. J

D Enumerating Suffix Tree Intervals in Succinct Space

We note that Algorithm 1 can be used to enumerate suffix tree intervals using just o(n log σ)
space on top of the input BWT of a single text, when this is represented with a wavelet
tree. This is true by definition in Belazzougui’s procedure (Lines 4-14), but a closer look
reveals that also Beller et al’s procedure (Line 2) enumerates suffix tree intervals. At each
step, we pop from the queue an element 〈〈L,R〉, |W |〉 with 〈L,R〉 = range(W) for some
string W , left-extend the range with all a ∈ BWT.rangeDistinct(L, R), obtaining the ranges
range(aW) = 〈La, Ra〉 and, only if LCP [Ra + 1] = ⊥, set LCP [Ra + 1] ← |W | and push
〈〈La, Ra〉, |W | + 1〉 on the stack. But then, since LCP [Ra + 1] = |W | we have that the
Ra-th and (Ra + 1)-th smallest suffixes start, respectively, with aUc and aUd for some
c < d ∈ Σ, where W = Uc. This implies that aU is right-maximal, and the corresponding
suffix tree node has at least two children labeled c and d; in particular, 〈La, Ra〉 is the range
of aW = aUc, that is, one of these two children. Since we assume that we are working with
a single text, 〈La, Ra〉 is the range of a suffix tree node if and only if Ra > La: in this case,
we return this range. Completeness of the visit (i.e. we return all suffix tree nodes’ intervals)
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follows from the completeness of the LCP-array construction procedure (i.e. we fill all LCP
values). To conclude note that, to perform our visit, we are using the array LCP to store
null/non-null entries (i.e. ⊥ or any other number); this shows that we do not actually need
the LCP array: a bitvector of length n = o(n log σ) is sufficient (remember that Beller et
al.’s strategy is used on large alphabets, so n = o(n log σ) holds).
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