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Abstract
The Fréchet distance provides a natural and intuitive measure for the popular task of computing the
similarity of two (polygonal) curves. While a simple algorithm computes it in near-quadratic time, a
strongly subquadratic algorithm cannot exist unless the Strong Exponential Time Hypothesis fails.
Still, fast practical implementations of the Fréchet distance, in particular for realistic input curves,
are highly desirable. This has even lead to a designated competition, the ACM SIGSPATIAL GIS
Cup 2017: Here, the challenge was to implement a near-neighbor data structure under the Fréchet
distance. The bottleneck of the top three implementations turned out to be precisely the decision
procedure for the Fréchet distance.

In this work, we present a fast, certifying implementation for deciding the Fréchet distance, in
order to (1) complement its pessimistic worst-case hardness by an empirical analysis on realistic input
data and to (2) improve the state of the art for the GIS Cup challenge. We experimentally evaluate
our implementation on a large benchmark consisting of several data sets (including handwritten
characters and GPS trajectories). Compared to the winning implementation of the GIS Cup, we
obtain running time improvements of up to more than two orders of magnitude for the decision
procedure and of up to a factor of 30 for queries to the near-neighbor data structure.
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1 Introduction

A variety of practical applications analyze and process trajectory data coming from different
sources like GPS measurements, digitized handwriting, motion capturing, and many more.
One elementary task on trajectories is to compare them, for example in the context of
signature verification [28], map matching [15, 27, 16, 10], and clustering [12, 13]. In this
work we consider the Fréchet distance as curve similarity measure as it is arguably the most
natural and popular one. Intuitively, the Fréchet distance between two curves is explained
using the following analogy. A person walks a dog, connected by a leash. Both walk along
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their respective curve, with possibly varying speeds and without ever walking backwards.
Over all such traversals, we search for the ones which minimize the leash length, i.e., we
minimize the maximal distance the dog and the person have during the traversal.

Initially defined more than one hundred years ago [21], the Fréchet distance quickly
gained popularity in computer science after the first algorithm to compute it was presented
by Alt and Godau [2]. In particular, they showed how to decide whether two length-n curves
have Fréchet distance at most δ in time O(n2) by full exploration of a quadratic-sized search
space, the so-called free-space (we refer to Section 3.1 for a definition). Almost twenty years
later, it was shown that, conditional on the Strong Exponential Time Hypothesis (SETH),
there cannot exist an algorithm with running time O(n2−ε) for any ε > 0 [6]. Even for
realistic models of input curves, such as c-packed curves [18], exact computation of the
Fréchet distance requires time n2−o(1) under SETH [6]. Only if we relax the goal to finding
a (1 + ε)-approximation of the Fréchet distance, algorithms with near-linear running times in
n and c on c-packed curves are known to exist [18, 7].

It is a natural question whether these hardness results are mere theoretical worst-case
results or whether computing the Fréchet distance is also hard in practice. This line of
research was particularly fostered by the research community in form of the GIS Cup 2017 [25].
In this competition, the 28 contesting teams were challenged to give a fast implementation
for the following problem: Given a data set of two-dimensional trajectories D, answer queries
that ask to return, given a curve π and query distance δ, all σ ∈ D with Fréchet distance at
most δ to π. We call this the near-neighbor problem.

The three top implementations [5, 11, 19] use multiple layers of heuristic filters and
spatial hashing to decide as early as possible whether a curve belongs to the output set or
not, and finally use an essentially exhaustive Fréchet distance computation for the remaining
cases. Specifically, these implementations perform the following steps:
0. Preprocess D.
On receiving a query with curve π and query distance δ:
1. Use spatial hashing to identify candidate curves σ ∈ D.
2. For each candidate σ, decide whether π, σ have Fréchet distance ≤ δ:

a) Use heuristics (filters) for a quick resolution in simple cases.
b) If unsuccessful, use a complete decision procedure via free-space exploration.

Let us highlight the Fréchet decider outlined in steps 2a and 2b: Here, filters refer to sound,
but incomplete Fréchet distance decision procedures, i.e., whenever they succeed to find
an answer, they are correct, but they may return that the answer remains unknown. In
contrast, a complete decision procedure via free-space exploration explores a sufficient part of
the free space (the search space) to always determine the correct answer. As it turns out, the
bottleneck in all three implementations is precisely Step 2b, the complete decision procedure
via free-space exploration. Especially [5] improved upon the naive implementation of the
free-space exploration by designing very basic pruning rules, which might be the advantage
because of which they won the competition. There are two directions for further substantial
improvements over the cup implementations: (1) increasing the range of instances covered by
fast filters and (2) algorithmic improvements of the exploration of the reachable free-space.

Our contribution. We develop a fast, practical Fréchet distance implementation. To this
end, we give a complete decision procedure via free-space exploration that uses a divide-and-
conquer interpretation of the Alt-Godau algorithm for the Fréchet distance and optimize it
using sophisticated pruning rules. These pruning rules greatly reduce the search space for
the realistic benchmark sets we consider – this is surprising given that simple constructions
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generate hard instances which require the exploration of essentially the full quadratic-sized
search space [6, 8]. Furthermore, we present improved filters that are sufficiently fast
compared to the complete decider. Here, the idea is to use adaptive step sizes (combined
with useful heuristic tests) to achieve essentially “sublinear” time behavior for testing if an
instance can be resolved quickly. Additionally, our implementation is certifying (see [22] for
a survey on certifying algorithms), meaning that for every decision of curves being close/far,
we provide a short proof (certificate) that can be checked easily; we also implemented a
computational check of these certificates. See Section 8 in the full version for details.

An additional contribution of this work is the creation of benchmarks to make future
implementations more easily comparable. We compile benchmarks both for the near-neighbor
problem (Steps 0 to 2) and for the decision problem (Step 2). For this, we used publicly
available curve data and created queries in a way that should be representative for the
performance analysis of an implementation. As data sets we use the GIS Cup trajectories [24],
a set of handwritten characters called the Character Trajectories Data Set [26] from [17], and
the GeoLife data set [3] of Microsoft Research [30, 29, 31]. Our benchmarks cover different
distances and also curves of different similarity, giving a broad overview over different
settings. We make the source code as well as the benchmarks publicly available to enable
independent comparisons with our approach.1 Additionally, we particularly focus on making
our implementation easily readable to enable and encourage others to reuse the code.

Evaluation. The GIS Cup 2017 had 28 submissions, with the top three submissions2
(in decreasing order) due to Bringmann and Baldus [5], Buchin et al. [11], and Dütsch
and Vahrenhold [19]. We compare our implementation with all of them by running their
implementations on our new benchmark set for the near-neighbor problem and also comparing
to the improved decider of [5]. The comparison shows significant speed-ups up to almost a
factor of 30 for the near-neighbor problem and up to more than two orders of magnitude for
the decider.

Related work. The best known algorithm for deciding the Fréchet distance runs in time
O(n2 (log logn)2

logn ) on the word RAM [9]. This relies on the Four Russians technique and is
mostly of theoretical interest. There are many variants of the Fréchet distance, e.g., the
discrete Fréchet distance [1, 20]. After the GIS Cup 2017, several practical papers studying
aspects of the Fréchet distance appeared [4, 14, 23]. Some of this work [4, 14] addressed
how to improve upon the spatial hashing step (Step 1) if we relax the requirement of
exactness. Since this is orthogonal to our approach of improving the complete decider, these
improvements could possibly be combined with our algorithm. The other work [23] neither
compared with the GIS Cup implementations, nor provided their source code publicly to
allow for a comparison, which is why we have to ignore it here.

1 Code and benchmarks are available at: https://github.com/chaot4/frechet_distance
2 The submissions were evaluated “for their correctness and average performance on a[sic!] various large

trajectory databases and queries”. Additional criteria were the following: “We will use the total elapsed
wall clock time as a measure of performance. For breaking ties, we will first look into the scalability
behavior for more and more queries on larger and larger datasets. Finally, we break ties on code stability,
quality, and readability and by using different datasets.”

SoCG 2019
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2 Preliminaries

Our implementation as well as the description are restricted to two dimensions, however, the
approach can also be generalized to polygonal curves in d dimensions. Therefore, a curve
π is defined by its vertices π1, . . . , πn ∈ R2 which are connected by straight lines. We also
allow continuous indices as follows. For p = i+ λ with i ∈ {1, . . . , n} and λ ∈ [0, 1], let

πp := (1− λ)πi + λπi+1.

We call the πp with p ∈ [1, n] the points on π. A subcurve of π which starts at point p on π
and ends at point q on π is denoted by πp...q. In the remainder, we denote the number of
vertices of π (resp. σ) with n (resp. m) if not stated otherwise. We denote the length of a
curve π by ‖π‖, i.e., the sum of the Euclidean lengths of its line segments. Additionally, we
use ‖v‖ for the Euclidean norm of a vector v ∈ R2. For two curves π and σ, the Fréchet
distance dF (π, σ) is defined as

dF (π, σ) := inf
f∈Tn

g∈Tm

max
t∈[0,1]

∥∥πf(t) − σg(t)
∥∥ ,

where Tk is the set of monotone and continuous functions f : [0, 1] → [1, k]. We define
a traversal as a pair (f, g) ∈ Tn × Tm. Given two curves π, σ and a query distance δ, we
call them close if dF (π, σ) ≤ δ and far otherwise. There are two problem settings that we
consider in this paper:

Decider Setting. Given curves π, σ and a distance δ, decide whether dF (π, σ) ≤ δ. (With
such a decider, we can compute the exact distance by using parametric search in theory
and binary search in practice.)

Query Setting. Given a curve dataset D, build a data structure that on query (π, δ) returns
all σ ∈ D with dF (π, σ) ≤ δ.

We mainly focus on the decider in this work. To allow for a comparison with previous
implementations (which are all in the query setting), we also run experiments with our
decider plugged into a data structure for the query setting.

2.1 Preprocessing

When reading the input curves we immediately compute additional data which is stored with
each curve:
Prefix Distances. To be able to quickly compute the curve length between any two vertices

of π, we precompute the prefix lengths, i.e., the curve lengths ‖π1...i‖ for every i ∈
{2, . . . , n}. We can then compute the curve length for two indices i < i′ on π by
‖πi...i′‖ = ‖π1...i′‖ − ‖π1...i‖.

Bounding Box. We compute the bounding box of all curves, which is a simple coordinate-wise
maximum and minimum computation.

Both of these preprocessing steps are extremely cheap as they only require a single pass over
all curves, which we anyway do when parsing them. In the remainder of this work we assume
that this additional data was already computed, in particular, we do not measure it in our
experiments as it is dominated by reading the curves.
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Figure 1 Example of a free-space diagram for curves π (black) and σ (red). The doubly-circled
vertices mark the start. The free-space, i.e., the pairs of indices of points which are close, is colored
green. The non-free areas are colored red. The threshold distance δ is roughly the distance between
the first vertex of σ and the third vertex of π.

3 Complete decider

The key improvement of this work lies in the complete decider via free-space exploration.
Here, we use a divide-and-conquer interpretation of the algorithm of Alt and Godau [2]
which is similar to [5] where a free-space diagram is built recursively. This interpretation
allows us to prune away large parts of the search space by designing powerful pruning rules
identifying parts of the search space that are irrelevant for determining the correct output.
Before describing the details, we formally define the free-space diagram.

3.1 Free-space diagram
The free-space diagram was first defined in [2]. Given two polygonal curves π and σ and a
distance δ, it is defined as the set of all pairs of indices of points from π and σ that are close
to each other, i.e.,

F := {(p, q) ∈ [1, n]× [1,m] | ‖πp − σq‖ ≤ δ}.

For an example see Figure 1. A path from a to b in the free-space diagram F is defined as a
continuous mapping P : [0, 1]→ F with P (0) = a and P (1) = b. A path P in the free-space
diagram is monotone if P (x) is component-wise at most P (y) for any 0 ≤ x ≤ y ≤ 1. The
reachable space is then defined as

R := {(p, q) ∈ F | there exists a monotone path from (1, 1) to (p, q) in F}.

Figure 2 shows the reachable space for the free-space diagram of Figure 1. It is well known
that dF (π, σ) ≤ δ if and only if (n,m) ∈ R.

This leads us to a simple dynamic programming algorithm to decide whether the Fréchet
distance of two curves is at most some threshold distance. We iteratively compute R
starting from (1, 1) and ending at (n,m), using the previously computed values. As R is
potentially a set of infinite size, we have to discretize it. A natural choice is to restrict to
cells. The cell of R with coordinates (i, j) ∈ {1, . . . , n − 1} × {1, . . . ,m − 1} is defined as
Ci,j := R ∩ [i, i+ 1]× [j, j + 1]. This is a natural choice as given Ci−1,j and Ci,j−1, we can
compute Ci,j in constant time; this follows from the simple fact that F ∩ [i, i+ 1]× [j, j + 1]
is convex [2]. We call this computation of the outputs of a cell the cell propagation. This
algorithm runs in time O(nm) and was introduced by Alt and Godau [2].

SoCG 2019
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Figure 2 Reachable space of the free-space diagram in Figure 1. The reachable part is blue and
the non-reachable part is red. Note that the reachable part is a subset of the free-space.

3.2 Basic algorithm
For integers 1 ≤ i ≤ i′ ≤ n, 1 ≤ j ≤ j′ ≤ m we call the set B = [i, i′]× [j, j′] a box. We denote
the left/right/bottom/top boundaries of B by Bl = {i} × [j, j′], Br = {i′} × [j, j′], Bb =
[i, i′]× {j}, Bt = [i, i′]× {j′}. The left input of B is BRl = Bl ∩ R, and its bottom input is
BRb = Bb ∩R. Similarly, the right/top output of B is BRr = Br ∩R, BRt = Bt ∩R. A box is
a cell if i+ 1 = i′ and j + 1 = j′. We always denote the lower left corner of a box by (i, j)
and the top right by (i′, j′), if not mentioned otherwise.

A recursive variant of the standard free-space decision procedure is as follows: Start with
B = [1, n]× [1,m]. At any recursive call, if B is a cell, then determine its outputs from its
inputs in constant time, as described by [2]. Otherwise, split B vertically or horizontally
into B1, B2 and first compute the outputs of B1 from the inputs of B and then compute the
outputs of B2 from the inputs of B and the outputs of B1. In the end, we just have to check
(n,m) ∈ R to decide whether the curves are close or far. This is a constant-time operation
after calculating all outputs.

Now comes the main idea of our approach: we try to avoid recursive splitting by directly
computing the outputs for non-cell boxes using certain rules. We call them pruning rules
as they enable pruning large parts of the recursion tree induced by the divide-and-conquer
approach. Our pruning rules are heuristic, meaning that they are not always applicable,
however, we show in the experiments that on practical curves they apply very often and
therefore massively reduce the number of recursive calls. The detailed pruning rules are
described Section 3.3. Using these rules, we change the above recursive algorithm as follows.
In any recursive call on box B, we first try to apply the pruning rules. If this is successful,
then we obtained the outputs of B and we are done with this recursive call. Otherwise, we
perform the usual recursive splitting. Corresponding pseudocode is shown in Algorithm 1.

In the remainder of this section, we describe our pruning rules and their effects.

3.3 Pruning rules
In this section we introduce the rules that we use to compute outputs of boxes which are
above cell-level in certain special cases. Note that we aim at catching special cases which
occur often in practice, as we cannot hope for improvements on adversarial instances due
to the conditional lower bound of [6]. Therefore, we make no claims whether they are
applicable, only that they are sound and fast. In what follows, we call a boundary empty if
its intersection with R is ∅.
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Algorithm 1 Recursive Decider of the Fréchet Distance.
1: procedure DecideFréchetDistance(π, σ)
2: ComputeOutputs(π, σ, [1, n]× [1,m])
3: return [(n,m) ∈ R]

4: procedure ComputeOutputs(π, σ,B = [i, i′]× [j, j′])
5: if B is a cell then
6: compute outputs by cell propagation
7: else
8: use pruning rules I to IV to compute outputs of B
9: if not all outputs have been computed then
10: if j′ − j > i′ − i then . split horizontally
11: B1 = [i, i′]× [j, b(j + j′)/2c]
12: B2 = [i, i′]× [b(j + j′)/2c, j′]
13: else . split vertically
14: B1 = [i, b(i+ i′)/2c]× [j, j′]
15: B2 = [b(i+ i′)/2c, i′]× [j, j′]
16: ComputeOutputs(π, σ,B1) and ComputeOutputs(π, σ,B2)

Figure 3 Output computation of a box when inputs are empty. First we can compute the outputs
of the top left box and then the outputs of the right box. In this example, we then know that the
curves have a Fréchet distance greater than δ as (n,m) is not reachable.

Rule I: empty inputs
The simplest case where we can compute the outputs of a box B is if both inputs are empty,
i.e. BRb = BRl = ∅. In this case no propagation of reachability is possible and thus the
outputs are empty as well, i.e. BRt = BRr = ∅. See Figure 3 for an example.

Rule II: shrink box
Instead of directly computing the outputs, this rule allows us to shrink the box we are
currently working on, which reduces the problem size. Assume that for a box B we have
that BRb = ∅ and the lowest point of BRl is (i, jmin) with jmin > j. In this case, no pair in
[i, i′]× [j, jmin] is reachable. Thus, we can shrink the box to the coordinates [i, i′]× [bjminc, j′]
without losing any reachability information. An equivalent rule can be applied if we swap
the role of Bb and Bl. See Figure 4 for an example of applying this rule.

Rule III: simple boundaries
Simple boundaries are boundaries of a box that contain at most one free section. To define
this formally, a set I ⊆ [1, n] × [1,m] is called an interval if I = ∅ or I = {p} × [q, q′] or
I = [q, q′]× {p} for real p and an interval [q, q′]. In particular, the four boundaries of a box
B = [i, i′] × [j, j′] are intervals. We say that an interval I is simple if I ∩ F is again an
interval. Geometrically, we have a free interval of a point πp and a curve σq...q′ (which is the

SoCG 2019
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Figure 4 This is an example of shrinking a box in case one of the inputs is empty and the other
one starts with an empty part. In this example the top left box has an empty input on the left and
the start of the bottom input is empty as well. Thus, we can shrink the box to the right part.

πp

δ

σ′

Figure 5 Example of a point πp and a curve σ′ which lead to a simple boundary.

form of a boundary in the free-space diagram) if the circle of radius δ around πp intersects
σq...q′ at most twice. See Figure 5 for an example. We call such a boundary simple because
it is of low complexity, which we can exploit for pruning.

There are three pruning rules that we do based on simple boundaries (see Figure 6 for
visualizations). They are stated here for the top boundary Bt, but symmetric rules apply to
Br. Later, in Section 3.4, we then explain how to actually compute simple boundaries, i.e.,
also how to compute Bt ∩ F . The pruning rules are:

(a) If Bt is simple because Bt ∩ F is empty then we also know that the output of this
boundary is empty. Thus, we are done with Bt.

(b) Suppose that Bt is simple and, more specifically, of the form that it first has a free and
then a non-free part; in other words, we have (i, j′) ∈ Bt ∩ F . Due to our recursive
approach, we already computed the left inputs of the box and thus know whether the
top left corner of the box is reachable, i.e. whether (i, j′) ∈ R. If this is the case, then
we also know the reachable part of our simple boundary: Since (i, j′) ∈ R and Bt ∩ F is
an interval containing (i, j′), we conclude that BRt = Bt ∩ F and we are done with Bt.

(c) Suppose that Bt is simple, but the leftmost point (imin, j
′) of Bt ∩ F has imin > i. In

this case, we try to certify that (imin, j
′) ∈ R, because then it follows that BRt = Bt ∩ F

and we are done with Bt. To check for reachability of (imin, j
′), we try to propagate the

reachability through the inside of the box, which in this case means to propagate it from
the bottom boundary. We test whether (imin, j) is in the input, i.e., if (imin, j) ∈ BRb , and
whether {imin} × [j, j′] ⊆ F (by slightly modifying the algorithm for simple boundary
computations). If this is the case, then we can reach every point in Bt ∩ F from (imin, j)
via {imin} × [j, j′].

We also use symmetric rules by swapping “top” with “right” and “bottom” with “left”.
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a) b) c)

Figure 6 Visualization of the rules for computing outputs using simple boundaries. All three
cases are visualized with the top boundary being simple. In a) the boundary is non-free and therefore
no point on it can be reachable. In b) the boundary’s beginning is free and reachable, enabling us
to propagate the reachability to the entire free interval. In c) we can propagate the reachability of
a point on the bottom boundary, using a free interval inside the box, to the beginning of the free
interval of the top boundary and thus decide the entire boundary.

Rule IV: boxes at free-space diagram boundaries

The boundaries of a free-space diagram are a special form of boundary which allows us to
introduce an additional rule. Consider a box B which touches the top boundary of the free-
space diagram, i.e., B = [i, i′]× [j,m]. Suppose the previous rules allowed us to determine the
output for BRr . Since any valid traversal from (1, 1) to (n,m) passing through B intersects Br,
the output BRt is not needed anymore, and we are done with B. A symmetric rule applies to
boxes which touch the right boundary of the free-space diagram.

3.4 Implementation details of simple boundaries

It remains to describe how we test whether a boundary is simple, and how we determine
the free interval of a simple boundary. One important ingredient for the fast detection of
simple boundaries are two simple heuristic checks that check whether two polygonal curves
are close or far, respectively. The former check was already used in [5]. We first explain these
heuristic checks, and then explain how to use them for the detection of simple boundaries.

Heuristic check whether two curves are close. Given two subcurves π′ := πi...i′ and
σ′ := σj...j′ , this filter heuristically tests whether dF (π′, σ′) ≤ δ. Let ic := b i+i

′

2 c and
jc := b j+j

′

2 c be the indices of the midpoints of π′ and σ′ (with respect to hops). Then
dF (π′, σ′) ≤ δ holds if

max{‖πi...ic‖ , ‖πic...i′‖}+ ‖πic − σjc
‖+ max{‖σj...jc

‖ , ‖σjc...j′‖} ≤ δ.

The triangle equality ensures that this is an upper bound on all distances between two points
on the curves. For a visualization, see Figure 7a. Observe that all curve lengths that need to
be computed in the above equation can be determined quickly due to our preprocessing, see
Section 2.1. We call this procedure HeurClose(π′, σ′, δ).

Heuristic check whether two curves are far. Symmetrically, we can test whether all pairs
of points on π′ and σ′ are far by testing

‖πic − σjc
‖ −max{‖πi...ic‖ , ‖πic...i′‖} −max{‖σj...jc

‖ , ‖σjc...j′‖} > δ.

We call this procedure HeurFar(π′, σ′, δ).

SoCG 2019
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πi

σj

πic

σjc

≤ δ?

πi′

σj′

(a) HeurClose

πi

πi′

πic

σj

σj′

σjc

> δ?‖πic − πi′‖

‖σjc − σj‖

(b) HeurFar

Figure 7 Visualizations of heuristic checks HeurClose and HeurFar.

Computation of simple boundaries. Recall that an interval is defined as I = {p} × [q, q′]
(intervals of the form [q, q′] × {p} are handled symmetrically). The naive way to decide
whether interval I is simple would be to go over all the segments of σq...q′ and compute the
intersection with the circle of radius δ around πp. However, this is too expensive because
(i) computing the intersection of a disc and a segment involves taking a square root, which
is an expensive operation with a large constant running time, and (ii) iterating over all
segments of σq...q′ incurs a linear factor in n for large boxes, while we aim at a logarithmic
dependence on n for simple boundary detection.

We avoid these issues by resolving long subcurves σj..j+s using our heuristic checks
(HeurClose, HeurFar). Here, s is an adaptive step size that grows whenever the heuristic
checks were applicable, and shrinks otherwise. See Algorithm 2 for pseudocode of our simple
boundary detection. It is straightforward to extend this algorithm to not only detect whether
a boundary is simple, but also compute the free interval of a simple boundary; we call the
resulting procedure SimpleBoundary.

3.5 Effects of combined pruning rules

All the pruning rules presented above can in practice lead to a reduction of the number of
boxes that are necessary to decide the Fréchet distance of two curves. We exemplify this on
two real-world curves; see Figure 8 for the curves and their corresponding free-space diagram.
We explain in the following where the single rules come into play. For Box 1 we apply Rule
IIIb twice – for the top and right output. The top boundary of Box 2 is empty and thus
we computed the outputs according to Rule IIIa. Note that the right boundary of this box
is on the right boundary of the free-space diagram and thus we do not have to compute it
according to Rule IV. For Box 3 we again use Rule IIIb for the top, but we use Rule IIIc
for the right boundary – the blue dotted line indicates that the reachability information is
propagated through the box. For Box 4 we first use Rule II to move the bottom boundary
significantly up, until the end of the left empty part; we can do this because the bottom
boundary is empty and the left boundary is simple, starting with an empty part. After two
splits of the remaining box, we see that the two outputs of the leftmost box are empty as
the top and right boundaries are non-free, using Rule IIIa. For the remaining two boxes we
use Rule I as their inputs are empty.

This example illustrates how propagating through a box (in Box 3 ) and subsequently
moving a boundary (in Box 4 ) leads to pruning large parts. Additionally, we can see how
using simple boundaries leads to early decisions and thus avoids many recursive steps. In
total, we can see how all the explained pruning rules together lead to a free-space diagram
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Algorithm 2 Checks if the boundary {p} × [q, q′] in the free-space diagram is simple.
1: procedure isSimpleBoundary(πp, σq...q′)
2: if HeurFar(πp, σq...q′ , δ) or HeurClose(πp, σq...q′ , δ) then
3: return ‘simple’

4: C ←

{
{σq} , if ‖p− σq‖ ≤ δ
∅ , otherwise

. set of change points

5: s← 1, j ← q

6: while j < q′ do
7: if HeurClose(πp, σj...j+s, δ) then
8: j ← j + s

9: s← 2s
10: else if HeurFar(πp, σj...j+s, δ) then
11: j ← j + s

12: s← 2s
13: else if s > 1 then
14: s← s/2
15: else
16: P ← {j′ ∈ (j, j + 1] | ‖πp − σj′‖ = δ}
17: C ← C ∪ P
18: j ← j + 1
19: if |C| > 2 then
20: return ‘not simple’

21: return ‘simple’

with only twelve boxes, i.e., twelve recursive calls, for curves with more than 50 vertices
and more than 1500 reachable cells. Figure 9 shows what effects the pruning rules have by
introducing them one by one in an example.

4 Decider with filters

The decider can be divided into two parts:
1. Filters
2. Complete decider via free-space exploration
As outlined in Section 1, we first try to determine the correct output by using fast but
incomplete filtering mechanisms and only resort to the slower complete decider presented in
the last section if none of the heuristic deciders (filters) gave a result.

The speed-ups introduced by our complete decider were already explained in Section 3.
A second source for our speed-ups lies in the usage of a good set of filters. Interestingly,
since our optimized complete decider via free-space exploration already solves many simple
instances very efficiently, our filters have to be extremely fast to be useful – otherwise, the
additional effort for an incomplete filter does not pay off. In particular, we cannot afford
expensive preprocessing and ideally, we would like to achieve sublinear running times for our
filters. To this end, we only use filters that can traverse large parts of the curves quickly.
We achieve sublinear-type behavior by making previously used filters work with an adaptive
step size (exploiting fast heuristic checks), and designing a new adaptive negative filter. Due
to space constraints, the detailed explanation of the filters is in Section 4 of the full version.
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3 4

21

Figure 8 A free-space diagram as produced by our final implementation (left) with the corres-
ponding curves (right). The curves are taken from the SIGSPATIAL dataset. We number the boxes
in the third level of the recursion from 1 to 4.

5 Experiments

In the experiments, we aim to substantiate the following two claims. First, we want to
verify that our main contribution, the decider, actually is a significant improvement over the
state of the art. To this end, we compare our implementation with the – to our knowledge –
currently fastest Fréchet distance decider, namely [5]. Second, we want to verify that our
improvements in the decider setting also carry over to the query setting, also significantly
improving the state of the art. To show this, we compare to the top three submissions of the
GIS Cup.

We use three different data sets: the GIS Cup set (Sigspatial) [24], the handwritten
characters (Characters) [26], and the GeoLife data set (GeoLife) [3]. For all experiments,
we used a laptop with an Intel i5-6440HQ processor with 4 cores and 16GB of RAM. See
Section 7 of the full version for additional experiments.

5.1 Decider setting

In this section we test the running time performance of our new decider algorithm. We first
describe our new benchmark using the three data sets, and then discuss our experimental
findings, in particular how the performance and improvement over the state of the art varies
with the distance and also the “neighbor rank” in the data set.

Benchmark. For the decider, we want to specifically test how the decision distance δ
and how the choice of the second curve σ influences the running time of the decider. To
experimentally evaluate this, we create a benchmark for each data set D in the following way.
We select a random curve π ∈ D and sort the curves in the data set D by their distance to π
in increasing order, obtaining the sequence σ1, . . . , σn. For all k ∈ {1, . . . , blognc}, we
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Figure 9 A decider example introducing the pruning rules one by one. They are introduced
from top to bottom and left to right. The images in this order depict: the free-space diagram, the
reachable space, after introducing Rule I, Rule II, Rule IIIa, Rule IIIb, Rule IIIc, Rule IV, and finally
the free-space diagram with all pruning rules enabled. The curves of this example are shown in
Figure 8.
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select a curve σ ∈ {σ2k , . . . , σ2k+1−1} uniformly at random3,
compute the exact distance δ∗ := dF (π, σ),
for each l ∈ {−10, . . . , 0}, add benchmark tests (π, σ, (1− 2l) · δ∗) and (π, σ, (1 + 2l) · δ∗).

By repeating this process for 1000 uniformly random curves π ∈ D, we create 1000 test cases
for every pair of k and l.

Running times. First we show how our implementation performs in this benchmark. In
Figure 10 we depict timings for running our implementation on the benchmark for all data
sets. We can see that distances larger than the exact Fréchet distance are harder than smaller
distances. This effect is most likely caused by the fact that decider instances with positive
result need to find a path through the free-space diagram, while negative instances might be
resolved earlier as it already becomes clear close to the lower left corner of the free-space
diagram that there cannot exist such a path. Also, the performance of the decider is worse
for computations on (π, σi, δ) when i is smaller. This seems natural, as curves which are
closer are more likely in the data set to actually be of similar shape, and similar shapes often
lead to bottlenecks in the free-space diagram (i.e., small regions where a witness path can
barely pass through), which have to be resolved in much more detail and therefore lead to a
higher number of recursive calls. It follows that the benchmark instances for low k and l are
the hardest; this is the case for all data sets. In Characters we can also see that for k = 7
there is suddenly a rise in the running time for certain distance factors. We assume that
this comes from the fact that the previous values of k all correspond to the same written
character and this changes for k = 7.

We also run the original code of the winner of the GIS Cup, namely [5], on our benchmark
and compare it with the running time of our implementation. See Figure 11 for the speed-up
factors of our implementation over the GIS Cup winner implementation. The speed-ups
obtained depend on the data set. While for every data set a significant amount of benchmarks
for different k and l are more than one order of magnitude faster, for GeoLife even speed-
ups by 2 orders of magnitude are reached. Speed-ups tend to be higher for larger distance
factors. The results on GeoLife suggest that for longer curves, our implementation becomes
significantly faster relative to the current state of the art. Note that there also are situations
where our decider shows similar performance to the one of [5]; however, those are cases where
both deciders can easily recognize that the curves are far (due to, e.g., their start or end
points being far). We additionally show the percentage of instances that are already decided
by the filters in Figure 12.

5.2 Query setting
Our query data structure is influenced by [5]. We first use spatial hashing (via a kd-tree) on
endpoints and extrema of the curves to select a good set of candidate curves, and then use
our decider from Section 4 to decide those candidates. See Section 5 of the full version.

Benchmark. We build a query benchmark similar to the one used in [5]. For each k ∈
{0, 1, 10, 100, 1000}, we select a random curve π ∈ D and then pick a threshold distance δ
such that a query of the form (π, δ) returns exactly k + 1 curves (note that the curve π itself
is also always returned). We repeat this 1000 times for each value of k and also create such
a benchmark for each of the three data sets.

3 Note that for k = blognc some curves might be undefined as possibly 2k+1 − 1 > n. In this case we
select a curve uniformly at random from {σ2k , . . . , σn}.
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Figure 10 Running times of the decider benchmark when we run our implementation on it.
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Figure 11 The speed-up factors obtained over the GIS Cup winner on the decider benchmark.
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Figure 12 The percentage of queries that are decided by the filters on the decider benchmark.
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Running times. We compare our implementation with the top three implementations of
the GIS Cup on this benchmark. The results are shown in Table 1. Again the running
time improvement of our implementation depends on the data set. For Characters the
maximal improvement factor over the second best implementation is 14.6, for Sigspatial
17.3, and for GeoLife 29.1. For Sigspatial and Characters it is attained at k = 1000,
while for GeoLife it is reached at k = 100 but k = 1000 shows a very similar but slightly
smaller factor.

To give deeper insights about the single parts of our decider, a detailed analysis of the
running times of the single parts of the algorithm is shown in Table 2. Again we witness
different behavior depending on the data set. It is remarkable that for Sigspatial the
running time for k = 1000 is dominated by the greedy filter. This suggests that improving
the filters might still lead to a significant speed-up in this case. However, for most of the
remaining cases the running time is clearly dominated by the complete decider, suggesting
that our efforts of improving the state of the art focused on the right part of the algorithm.
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