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Abstract
We strengthen the connections between electrical transformations and homotopy from the planar
setting – observed and studied since Steinitz – to arbitrary surfaces with punctures. As a result, we
improve our earlier lower bound on the number of electrical transformations required to reduce an
n-vertex graph on surface in the worst case [SOCG 2016] in two different directions. Our previous
Ω(n3/2) lower bound applies only to facial electrical transformations on plane graphs with no
terminals. First we provide a stronger Ω(n2) lower bound when the planar graph has two or more
terminals, which follows from a quadratic lower bound on the number of homotopy moves in the
annulus. Our second result extends our earlier Ω(n3/2) lower bound to the wider class of planar
electrical transformations, which preserve the planarity of the graph but may delete cycles that are
not faces of the given embedding. This new lower bound follow from the observation that the defect
of the medial graph of a planar graph is the same for all its planar embeddings.
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1 Introduction

Consider the following set of local operations performed on any graph:
Leaf contraction: Contract the edge incident to a vertex of degree 1.
Loop deletion: Delete the edge of a loop.
Series reduction: Contract either edge incident to a vertex of degree 2.
Parallel reduction: Delete one of a pair of parallel edges.
Y�∆ transformation: Delete a degree-3 vertex and connect its neighbors with three
new edges.
∆�Y transformation: Delete edges of a 3-cycle and join its vertices to a new vertex.
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25:2 Lower Bounds for Electrical Reduction on Surfaces

These operations and their inverses, which we call electrical transformations following Colin
de Verdière et al. [10], have been used for over a century to analyze electrical networks [24].
Steinitz [35, 36] proved that any planar network can be reduced to a single vertex using
these operations. Several decades later, Epifanov [16] proved that any planar graph with
two special vertices called terminals can be similarly reduced to a single edge between the
terminals; simpler algorithmic proofs of Epifanov’s theorem were later given by Feo [18],
Truemper [40, 41], and Feo and Provan [19]. These results have since been extended to
planar graphs with more than two terminals [20, 21, 2, 14] and to some families of non-planar
graphs [20, 42]. See Chang’s thesis [5] for a history of the problem.

Despite decades of prior work, the complexity of the reduction process is still poorly
understood. Steinitz’s proof implies that O(n2) electrical transformations suffice to reduce
any n-vertex planar graph to a single vertex; Feo and Provan’s algorithm reduces any 2-
terminal planar graph to a single edge in O(n2) steps. While these are the best upper bounds
known, several authors have conjectured that they can be improved [20, 19, 2]. Without
any restrictions on which transformations are permitted, the only known lower bound is
the trivial Ω(n). However, Chang and Erickson recently proved that if all transformations
are required to be facial, meaning any deleted cycle must be a face of the given embedding,
then reducing a plane graph without terminals to a single vertex requires Ω(n3/2) steps
in the worst case [7]. This is obtained by studying the relation between facial electrical
transformations and homotopy moves, a set of operations performed on the medial graph of
the input.

In this paper, we extend our earlier lower bound for electrical transformations in two
directions. To this end, first we study multicurves on surfaces under electrical reduction and
homotopy moves, which are in one-to-one correspondence with medial graphs. Specifically,
in Section 3 we prove that the set of tight multicurves under electrical reduction and under
homotopy moves is identical. As a consequence, any surface-embedded graph can be reduced
without ever increasing its number of edges. Previously such property is only known to hold
for plane graphs [27, 7].

Next, we consider plane graphs with two terminals. In this setting, leaf deletions, series
reductions, and Y�∆ transformations that delete terminals are forbidden. We prove in
Section 4 that Ω(n2) facial electrical transformations are required in the worst case to reduce
a 2-terminal plane graph as much as possible. Not every 2-terminal plane graph can be
reduced to a single edge between the terminals using only facial electrical transformations.
However, we show that any 2-terminal plane graph can be reduced to a unique minimal
graph called a bullseye using a finite number of facial electrical transformations. Our lower
bound ultimately relies on a recent Ω(n2) lower bound on the number of homotopy moves
required to tighten a contractible closed curve in the annulus [9].

In Section 5, we consider a wider class of electrical transformations that preserve the
planarity of the graph, but are not necessarily facial. Our second main result is that Ω(n3/2)
planar electrical transformations are required to reduce a planar graph (without terminals)
to a single vertex in the worst case. Like our earlier lower bound for facial electrical
transformations, our proof ultimately reduces to the study of a certain curve invariant, called
the defect, of the medial graph of a given unicursal plane graph G. A key step in our new
proof is the following surprising observation: Although the definition of the medial graph of
G depends on the embedding of G, the defect of the medial graph is the same for all planar
embeddings of G.
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2 Background

2.1 Types of electrical transformations
We distinguish between three increasingly general types of electrical transformations in plane
graphs: facial, crossing-free, and arbitrary. (For ease of presentation, we assume throughout
the paper that plane graphs are actually embedded on the sphere instead of the plane.)

An electrical transformation in a graph G embedded on a surface Σ is facial if any deleted
cycle is a face of G. All leaf contractions, series reductions, and Y�∆ transformations are
facial, but loop deletions, parallel reductions, and ∆�Y transformations may not be facial.
Facial electrical transformations form three dual pairs, as shown in Figure 1; for example,
any series reduction in G is equivalent to a parallel reduction in the dual graph G∗.

Figure 1 Facial electrical transformations in a plane graph G and its dual G∗.

An electrical transformation in G is crossing-free if it preserves the embeddability of the
underlying graph into the same surface. Equivalently, an electrical transformation is crossing-
free if the vertices of the cycle deleted by the transformation are all incident to a common
face of G. All facial electrical transformations are trivially crossing-free, as are all loop
deletions and parallel reductions. If the graph embeds in the plane, crossing-free electrical
transformations are also called planar. The only non-crossing-free electrical transformation
is a ∆�Y transformation whose three vertices are not incident to a common face; any such
transformation introduces a K3,3-minor into the graph, connecting the three vertices of the
∆ to an interior vertex, an exterior vertex, and the new Y vertex.

Figure 2 A non-planar ∆�Y transformation.

2.2 Multicurves and medial graphs
A surface is a 2-manifold with or without punctures. Formally, a closed curve in a surface Σ
is a continuous map γ : S1 → Σ. A closed curve is simple if it is injective. A multicurve is
a collection of one or more closed curves. We consider only generic multicurves, which are
injective except at a finite number of (self-)intersections, each of which is a transverse double
point. A multicurve is connected if its image in the surface is connected; we consider only
connected multicurves in this paper. The image of any (non-simple, connected) multicurve
has a natural structure as a 4-regular map, whose vertices are the self-intersection points
of the curves, edges are maximal subpaths between vertices, and faces are components of
complement of the curves in the surface. We do not distinguish between multicurves whose
images are combinatorially equivalent maps.

SoCG 2019



25:4 Lower Bounds for Electrical Reduction on Surfaces

The medial graph G× of an embedded graph G is another embedded graph whose vertices
correspond to the edges of G, and two vertices of G× are connected by an edge if the
corresponding edges in G are consecutive in cyclic order around some vertex, or equivalently,
around some face in G. Every vertex in every medial graph has degree 4; thus, every medial
graph is the image of a multicurve. Conversely, when the surface is a sphere, the image of
every non-simple multicurve is the medial graph of some plane graph. We call an embedded
graph G unicursal if its medial graph G× is the image of a single closed curve.

Smoothing a multicurve γ at a vertex x replaces the intersection of γ with a small
neighborhood of x with two disjoint simple paths, so that the result is another 4-regular
embedded graph. There are two possible smoothings at each vertex. More generally, a
smoothing of γ is any multicurve obtained by smoothing a subset of its vertices.

Figure 3 Two possible smoothings of a vertex.

2.3 Local moves
A homotopy between two curves γ and γ′ on the same surface Σ is a continuous deformation
from one curve to the other, formally defined as a continuous function H : S1 × [0, 1]→ Σ
such that H(·, 0) = γ and H(·, 1) = γ′. The definition of homotopy extends naturally to
multicurves. Classical topological arguments imply that two multicurves are homotopic if
and only if one can be transformed into the other by a finite sequence of homotopy moves
(shown in Figure 4). Notice that a 1�0 move is applied to an empty loop, and a 2�0 move is
applied on an empty bigon. A multicurve is homotopically tight (or h-tight for short) if no
sequence of homotopy moves leads to a multicurve with fewer vertices.

Figure 4 Homotopy moves 1�0, 2�0, and 3�3.

Figure 5 Electrical moves 1�0, 2�1, and 3�3.

Facial electrical transformations in any embedded graph G correspond to local operations
in the medial graph G× that closely resemble homotopy moves. We call these 1�0, 2�1, and
3�3 moves, where the numbers before and after each arrow indicate the number of local
vertices before and after the move. We collectively refer to these operations and their inverses
as electrical moves. A multicurve is electrically tight (or e-tight for short) if no sequence of
electrical moves leads to another multicurve with fewer vertices. For multicurves on surfaces
with boundary, both homotopy moves and electrical moves performed on boundary faces are
forbidden. The fact that we use same name tight for both homotopy moves and electrical
moves is not a coincidence; we will justify its usage in Section 3.2.
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3 Connection between electrical and homotopy moves

For any connected multicurve (or 4-regular embedded graph) γ on surface Σ,
let X(γ) denote the minimum number of electrical moves required to tighten γ,
let H↓(γ) denote the minimum number of homotopy moves required to tighten γ, without
ever increase the number of vertices; that is, no 0�1 and 0�2 moves are allowed.
let H(γ) denote the minimum number of homotopy moves required to tighten γ.

It is not immediately obvious whether a multicurve γ that is tight under monotonic
homotopy moves could be further tightened by allowing 0�1 and 0�2 moves or not. Hass
and Scott [22] and de Graaf and Schrijver [13] independently proved that any multicurve γ
can be tightened using monotonic homotopy moves, which implies that H↓(γ) = 0 if and only
if H(γ) = 0. In other words, (standard) homotopy moves and monotonic homotopy moves
share the same set of tight multicurves. Now H↓(γ) ≥ H(γ) follows for any multicurve γ.

3.1 Smoothing lemma
We would like to compare X(γ) with H↓(γ) and H(γ). The following key lemma follows
from close reading of proofs by Truemper [40, Lemma 4] and several others [20, 25, 2, 27]
that every minor of a ∆Y-reducible graph is also ∆Y-reducible.

I Lemma 1 (Chang and Erickson [7, Lemma 3.1]). Let γ be any connected multicurve on
surface Σ, and let γ̌ be a connected smoothing of γ. Applying any sequence of N electrical
moves to γ to obtain γ′. Then one can apply a similar sequence of electrical moves of length
at most N to γ̌ to obtain a (possibly trivial) connected smoothing γ̌′ of γ′.

As a remark, using similar argument one can recover a result by Newmann-Coto [26]:
any homotopy from multicurve γ to another multicurve γ′ that never removes vertices can
be turned into a homotopy from a smoothing of γ to a smoothing of γ′.

Using Lemma 1 one can show that X(γ) ≥ H↓(γ) for every planar curve γ, a result
implicit in the work of Noble and Welsh [27] and formally proved by Chang and Erickson [7].

I Lemma 2 (Smoothing Lemma [7]). X(γ̌) ≤ X(γ) for every connected smoothing γ̌ of every
connected multicurve γ in the plane.

I Lemma 3 (Monotonicity Lemma [7]). For every connected multicurve γ, there is a minimum-
length sequence of electrical moves that simplifies γ to a simple closed curve that does not
contain 0�1 or 1�2 moves.

I Lemma 4 (Electrical-Homotopy Ineq. [7]). X(γ) ≥ H↓(γ) for every planar curve γ.

3.2 Equivalence of tightness
One of the main obstacles to generalize Lemmas 2, 3, and 4 to curves on arbitrary surface
is that again we do not know a priori whether the set of tight multicurves under electrical
moves is the same as those under homotopy moves. Such problem did not exist in the planar
setting as all planar multicurves can be tightened to simple curves using either electrical or
homotopy moves. We first show that every electrically tight multicurve is also homotopically
tight.

I Lemma 5. Let γ be a connected multicurve on an arbitrary surface Σ. If γ is electrically
tight, then γ is homotopically tight.

SoCG 2019



25:6 Lower Bounds for Electrical Reduction on Surfaces

Proof. Let γ be a connected multicurve in some arbitrary surface, and suppose γ is not
homotopically tight. Results of Hass and Scott [22] and de Graaf and Schrijver [13] imply
that γ can be tightened by a finite sequence of homotopy moves that never increases the
number of vertices. In particular, applying some finite sequence of 3�3 moves to γ creates
either an empty loop, which can be removed by a 1�0 move, or an empty bigon, which can
be removed by either a 2�0 move or a 2�1 move. Thus, γ is not electrically tight. J

However, for the reverse direction, we don’t have a similar monotonicity result for electrical
moves on arbitrary surfaces. A careful reading of the sequence of work by de Graaf and
Schrijver [29, 30, 32, 31, 11, 12, 13] leads to a five-way equivalence that shows the two
versions of tightness coincide when the given curve is primitive. Unfortunately their results
do not generalize as some of the equivalences break down with the presence of non-primitive
counterexamples. We defer details to the full version of the paper.

Routing set. Inspired by the routing problem studied by de Graaf and Schrijver [12], we
introduce the notion of routing set. Despite its naïve look, the routing set satisfies a crucial
property that encapsulates the whole difficulty of the problem, which allows us to bypass the
heavy machinery developed for the primitive case. We then use the established equivalence
of tightness to derive the monotonicity lemma for electrical moves on arbitrary multicurves.

For any multicurve γ, the routing set of γ is the following collection of homotopy classes:

route(γ) :=
{

[γ̌] | γ̌ is a smoothing of γ
}
.

Each homotopy class in route(γ) is referred as a route of γ.

I Lemma 6. Routing set of γ is invariant under electrical moves for any multicurve γ.

Proof. Let γ′ be the multicurve obtained from performing one electrical move to γ. Because
electrical moves are closed under inverses, we only need to prove that route(γ) ⊆ route(γ′).

Let γ̌ be an arbitrary smoothing of γ; [γ̌] is in route(γ) by definition. By Lemma 1, one
can obtain a connected smoothing γ̌′ of γ′ that is at most one electrical move away from
γ̌. In particular, [γ̌′] is in route(γ′). If γ̌′ is equal to γ̌ or is obtained from γ̌ using a 1�0,
0�1, or 3�3 move, then immediately we have [γ̌] = [γ̌′] to be a route in route(γ′). If γ̌′ is
obtained from γ̌ using a 2�1 move, consider the multicurve γ̌◦ obtained from γ̌ by performing
a 2�0 move (on the same empty bigon) instead. γ̌◦ is a smoothing of γ̌′, which in turn
is a smoothing of γ′. Because 2�0 is a homotopy move, [γ̌] = [γ̌◦] is a route in route(γ′).
Similarly when γ̌′ is obtained from γ̌ using a 1�2 move, we consider γ̌ as a smoothing of γ̌′
thus [γ̌] is a route in route(γ′). This concludes the proof. J

The intersection number of a homotopy class [γ] is defined to be the minimum number of
vertices among all curves homotopic to γ. The main routes of γ are those routes of γ that
achieve the maximum intersection number.

I Lemma 7. Any homotopically tight multicurve is also electrically tight.

Proof. Assume for contradiction that there is an h-tight multicurve γ that is not e-tight.
Tighten γ using electrical moves to an e-tight multicurve γ′ with less number of vertices than
γ. Now by Lemma 6 the routing set of γ and γ′ is the same; in particular, [γ′] is a main
route of both γ and γ′. However since both γ and γ′ are h-tight, the intersection number of
[γ] is strictly greater than the intersection number of [γ′] and thus [γ′] cannot be a main
route of γ, a contradiction. J
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3.3 Monotonicity of electrical moves
As a corollary of Lemma 7, we are ready to generalize the monotonicity lemma (Lemma 3)
to multicurves on general surfaces.

I Lemma 8. Let γ be any connected multicurve γ on surface Σ, and let γ̌ be a connected
smoothing of γ, satisfying route(γ) = route(γ̌). Then X(γ̌) ≤ X(γ) holds.

Proof. Let γ be a connected multicurve with n(γ) vertices, and let γ̌ be a connected
smoothing of γ. If X(γ) equals to zero, then γ is both e-tight and h-tight by Lemma 5. The
fact that route(γ) = route(γ̌) implies that [γ] is a route of γ̌ and its intersection number is
equal to n(γ). If γ̌ is a proper smoothing of γ, then the intersection number of any route of
γ̌ is strictly less then n(γ), a contradiction. As a result, the only smoothing of γ satisfying
the condition is γ itself, and therefore the inequality trivially holds.

Otherwise, applying a minimum-length sequence of electrical moves that tightens γ. By
Lemma 1 there is another sequence of electrical moves of length at most X(γ) that tightens
γ̌. We immediately have X(γ̌) ≤ X(γ) and the lemma is proved. J

I Lemma 9. For any connected multicurve γ, there is a minimum-length sequence of electrical
moves that tightens γ that does not contain 0�1 or 1�2 moves.

The proof follows almost verbatim from Lemma 3 after substituting Lemma 8 for Lemma 2
and applying Lemma 6. See the full version for a proof.

4 Two-terminal plane graphs

Most applications of electrical reductions, starting with Kennelly’s computation of effective
resistance [24], designate two vertices of the input graph as terminals and require a reduction
to a single edge between those terminals. In this context, electrical transformations that delete
either of the terminals are forbidden; specifically: leaf contractions when the leaf is a terminal,
series reductions when the degree-2 vertex is a terminal, and Y�∆ transformations when
the degree-3 vertex is a terminal. An important subtlety here is that not every 2-terminal
planar graph can be reduced to a single edge using only facial electrical transformations.
The simplest bad example is the three-vertex graph shown in Figure 6.

Figure 6 A facially irreducible 2-terminal plane graph; solid vertices are the terminals.

In this section, we show that in the worst case, Ω(n2) facial electrical transformations
are required to reduce a 2-terminal plane graph with n vertices as much as possible. The
medial graph G× of any 2-terminal plane graph G is properly considered as a multicurve
embedded in the annulus; the faces of G× that correspond to the terminals are removed
from the surface. The main strategy is to lower bound X(G×) by some function of H(G×),
then defer to the quadratic lower bound for untangling annular curve using homotopy moves
[9]. To this end, we generalize Lemma 4 to annular curves; such result is obtained by the
understanding of tight multicurves on the annulus.

First, we prove in Section 4.1 that any annular curve can be tightened to a unique family
of curves. Next in Section 4.2, we generalize the results by Chang and Erickson [7], in
particular the electrical-homotopy inequality (Lemma 4), to the annular case. We prove
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25:8 Lower Bounds for Electrical Reduction on Surfaces

our quadratic lower bound in Section 4.3. Existing algorithms for reducing an arbitrary
2-terminal plane graphs to a single edge rely on an additional operation which we call a
terminal-leaf contraction, in addition to facial electrical transformations. We discuss this
subtlety in more detail in the full version.

4.1 Tight annular curves
The winding number of a directed closed curve γ in the annulus is the number of times any
generic path π from one (fixed) boundary component to the other crosses γ from left to right,
minus the number of times π crosses γ from right to left. Two directed closed curves in the
annulus are homotopic if and only if their winding numbers are equal.

The depth of any multicurve γ in the annulus is the minimum number of times a path
from one boundary to the other crosses γ; thus, depth is essentially an unsigned version of
winding number. Just as the winding number around the boundaries is a complete homotopy
invariant for curves in the annulus, the depth turns out to be a complete invariant for
electrical moves on the annular multicurves.

I Lemma 10. Electrical moves do not change the depth of any annular multicurve.

For any integer d > 0, let αd denote the unique closed curve in the annulus with d− 1
vertices and winding number d. Up to isotopy, this curve can be parametrized in the plane as

αd(θ) := ((cos(θ) + 2) cos(dθ), (cos(θ) + 2) sin(dθ)) .

In the notation of our other papers [7, 8], αd is the flat torus knot T (d, 1).
The following lemmas are direct consequences of Lemma 7.

I Lemma 11. For any integer d > 0, the curve αd is both h-tight and e-tight.

I Corollary 12. A connected multicurve γ in the annulus is e-tight if and only if γ = αdepth(γ);
therefore, any annular multicurve γ is e-tight if and only if γ is h-tight.

4.2 Smoothing lemma in the annulus
Equipped with the understanding of tight annular curves, we are ready to extend the results
in Section 3.1 to the annulus.

I Lemma 13. For any connected smoothing γ̌ of any connected multicurve γ in the annulus,
we have X(γ̌) + 1

2 depth(γ̌) ≤ X(γ) + 1
2 depth(γ).

Proof. Let γ be an arbitrary connected multicurve in the annulus, and let γ̌ be an arbitrary
connected smoothing of γ. Without loss of generality, we can assume that γ is non-simple,
since otherwise the lemma is vacuous.

If γ is already e-tight, then γ = αd for some integer d ≥ 2 by Corollary 12. (The curves
α0 and α1 are simple.) First, suppose γ̌ is a connected smoothing of γ obtained by smoothing
a single vertex x. The smoothed curve γ̌ contains a single empty loop if x is the innermost
or outermost vertex of γ, or a single empty bigon otherwise. Applying one 1�0 or 2�0 move
transforms γ̌ into the curve αd−2, which is e-tight by Lemma 11. Thus we have X(γ̌) = 1
and depth(γ̌) = d − 2, which implies X(γ̌) + 1

2 depth(γ̌) = X(γ) + 1
2 depth(γ). As for the

general case when γ̌ is obtained from γ by smoothing more than one vertices, the statement
follows from the previous case by induction on the number of smoothed vertices.

If γ is not e-tight, applying a minimum-length sequence of electrical moves that tightens
γ into some curve γ′. By Lemma 1 there is another sequence of electrical moves of length
at most X(γ) that tightens γ̌ to some connected smoothing γ̌′ of γ′, which can be further
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tightened electrically to an e-tight curve using arguments in the previous paragraph because
γ′ is e-tight. This implies that X(γ̌) ≤ X(γ)+ 1

2 (depth(γ′)−depth(γ̌′)). By Lemma 10, γ and
γ′ have the same depth, and γ̌ and γ̌′ have the same depth. Therefore X(γ̌) + 1

2 depth(γ̌) ≤
X(γ) + 1

2 depth(γ) and the lemma is proved. J

I Lemma 14. For every connected multicurve γ in the annulus, there is a minimum-length
sequence of electrical moves that tightens γ to αdepth(γ) without 0�1 or 1�2 moves.

The proof follows almost verbatim from Lemma 3 and 9; see the full version.

I Lemma 15. X(γ) + 1
2 depth(γ) ≥ H↓(γ) ≥ H(γ) for every closed curve γ in the annulus.

Proof. Let γ be a closed curve in the annulus. If γ is already e-tight, then X(γ) = H↓(γ) = 0
by Lemma 5, so the lemma is trivial. Otherwise, consider a minimum-length sequence of
electrical moves that tightens γ. By Lemma 14, we can assume that the first move in the
sequence is neither 0�1 nor 1�2. If the first move is 1�0 or 3�3, the theorem immediately
follows by induction on X(γ), since by Lemma 10 neither of these moves changes the depth
of the curve.

The only interesting first move is 2�1. Let γ′ be the result of this 2�1 move, and let γ◦ be
the result if we perform the 2�0 move on the same empty bigon instead. The minimality of
the sequence implies X(γ) = X(γ′)+1, and we trivially have H↓(γ) ≤ H↓(γ◦)+1. Because γ
is a single curve, γ◦ is also a single curve and therefore a connected proper smoothing of γ′.
Thus, Lemma 10, Lemma 13, and induction on the number of vertices imply

X(γ) + 1
2 depth(γ) = X(γ′) + 1

2 depth(γ′) + 1

≥ X(γ◦) + 1
2 depth(γ◦) + 1

≥ H↓(γ◦) + 1
≥ H↓(γ),

which completes the proof. J

4.3 Quadratic lower bound
Bullseyes. For any k > 0, let Bk denote the 2-terminal plane graph that consists of a path
of length k between the terminals, with a loop attached to each of the k − 1 interior vertices,
embedded so that collectively they form concentric circles that separate the terminals. We
call each graph Bk a bullseye. For example, B1 is just a single edge; B2 is shown in Figure 6;
and B4 is shown on the left in Figure 7. The medial graph B×k of the kth bullseye is the
curve α2k. Because different bullseyes have different medial depths, Lemma 10 implies that
no bullseye can be transformed into any other bullseye by facial electrical transformations.

The following corollary is now immediate from the electrical-homotopy inequality for
annular curves (Lemma 15).

I Theorem 16. Let G be a 2-terminal plane graph, and let γ be any unicursal smooth-
ing of G×. Reducing G to a bullseye requires at least H(γ) − 1

2 depth(γ) facial electrical
transformations.

Chang et al. [9] presented an infinite family of contractible curves in the annulus para-
metrized by their number of vertices n that require Ω(n2) homotopy moves to tighten. Every
contractible curve is the medial graph of some 2-terminal plane graph (because they have
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Figure 7 The bullseye graph B4 and its medial graph α8.

even depth and thus the faces can be two-colored [37]). Euler’s formula implies that every
n-vertex curve in the annulus has exactly n + 2 faces (including the boundary faces) and
therefore has depth at most n+ 1.

I Corollary 17. Reducing a 2-terminal plane graph to a bullseye requires Ω(n2) facial
electrical transformations in the worst case.

5 Planar electrical transformations

Finally, we extend our earlier Ω(n3/2) lower bound for reducing plane graphs and our Ω(n2)
lower bound for reducing graphs on surface – without terminals using only facial electrical
transformations – to the larger class of planar electrical transformations. Recall that a plane
graph G unicursal if its medial graph G× is the image of a single closed curve. As in our
earlier work [7], we analyze electrical transformations in an unicursal plane graph G in terms
of a certain invariant of the medial graph of G called defect, first introduced by Aicardi [1]
and Arnold [4, 3]. Our extension to non-facial electrical transformations is based on the
following surprising observation: Although the medial graph of G depends on its embedding,
the defect of the medial graph of G does not.

I Theorem 18. Let G and H be planar embeddings of the same abstract planar graph. If G
is unicursal, then H is unicursal and defect(G×) = defect(H×).

The goal of the section is to prove Theorem 18.

5.1 Defect
Let γ be an arbitrary closed curve on the sphere. Choose an arbitrary basepoint γ(0) and an
arbitrary orientation for γ. For any vertex x of γ, we define sgn(x) = +1 if the first traversal
through x crosses the second traversal from right to left, and sgn(x) = −1 otherwise. Two
vertices x and y are interleaved, denoted x G y, if they alternate in cyclic order – x, y, x, y –
along γ. Finally, following Polyak [28], we can define

defect(γ) := −2
∑
xGy

sgn(x) · sgn(y),

where the sum is taken over all interleaved pairs of vertices of γ.
Trivially, every simple closed curve has defect zero. Straightforward case analysis [28]

implies that the defect of a curve does not depend on the choice of basepoint or orientation.
Moreover, any homotopy move changes the defect of a curve by at most 2; see the paper by
Chang and Erickson [7, Section 2.1] for an explicit case breakdown. Defect is also preserved
by any homeomorphism from the sphere to itself, including reflection.
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5.2 Navigating between planar embeddings
Whitney [43, 39] showed that any planar embedding of a 2-connected planar graph G can be
transformed into any other embedding by a finite sequence of split reflections, defined as
follows. A split curve is a simple closed curve σ whose intersection with the embedding of
G consists of two vertices x and y; without loss of generality, σ is a circle with x and y at
opposite points. A split reflection modifies the embedding of G by reflecting the subgraph
inside σ across the line through x and y.

I Lemma 19. Let G be an arbitrary 2-connected planar graph. Any two planar embeddings
of G can be transformed into one other by a finite sequence of split reflections.

To navigate among the planar embeddings of arbitrary connected planar graphs, we need
two additional operations. First, we allow split curves that intersect G at only a single cut
vertex; a cut reflection modifies the embedding of G by reflects the subgraph inside such a
curve. More interestingly, we also allow degenerate split curves that pass through a cut vertex
x of G twice, but are otherwise simple and disjoint from G. The interior of a degenerate split
curve σ is an open topological disk. A cut eversion is a degenerate split reflection that everts
the embedding of the subgraph of G inside such a curve, intuitively by mapping the interior
of σ to an open circular disk (with two copies of x on its boundary), reflecting the interior
subgraph, and then mapping the resulting embedding back to the interior of σ. Structural
results of Stallman [33, 34] and Di Battista and Tamassia [15, Section 7] imply the following.

Figure 8 Top row: A regular split reflection and a cut reflection. Bottom row: a cut eversion.

I Lemma 20. Let G be an arbitrary connected planar graph. Any planar embedding of G can
be transformed into any other planar embedding of G by a finite sequence of split reflections,
cut reflections, and cut eversions.

5.3 Tangle flips
Now consider the effect of the operations stated in Lemma 20 on the medial graph G×.
By assumption, G is unicursal so that G× is a single closed curve. Let σ be any (possibly
degenerate) split curve for G. Embed G× so that every medial vertex lies on the corresponding
edge in G, and every medial edge intersects σ at most once. By the Jordan curve theorem, we
can assume without loss of generality that σ is a circle, and that the intersection points γ ∩σ
are evenly spaced around σ. A tangle of γ is the intersection of γ with either disk bounded
by σ; each tangle consists of one or more subpaths of γ called strands. We arbitrarily refer
to the two tangles defined by σ as the interior and exterior tangles of σ. Split curve σ
intersects at most four edges of G×, so the tangle of G× inside σ has at most two strands.
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Moreover, reflecting (or everting) the subgraph of G inside σ induces a flip of this tangle
of G×. Any tangle can be flipped by reflecting the disk containing it, so that each strand
endpoint maps to a different strand endpoint; see Figure 9. Straightforward case analysis
implies that flipping any tangle of G× with at most two strands transforms G× into another
closed curve; see Figure 10.

Figure 9 Flipping tangles with one and two strands.

I Lemma 21. Let γ be an arbitrary closed curve on the sphere. Flipping any tangle of γ
with one strand yields another closed curve γ′ with defect(γ′) = defect(γ).

Proof. Let σ be a simple closed curve that crosses γ at exactly two points. These points
decompose σ into two subpaths α · β, where α is the unique strand of the interior tangle and
β is the unique strand of the exterior tangle. Let Σ denote the interior disk of σ, and let
φ : Σ → Σ denote the homeomorphism that flips the interior tangle. Flipping the interior
tangle yields the closed curve γ′ := rev(φ(α)) · β, where rev denotes path reversal.

No vertex of α is interleaved with a vertex of β; thus, two vertices in γ′ are interleaved if
and only if the corresponding vertices in γ are interleaved. Every vertex of rev(φ(α)) has the
same sign as the corresponding vertex of α, since both the orientation of the vertex and the
order of traversals through the vertex changed. Thus, every vertex of γ′ has the same sign as
the corresponding vertex of γ. We conclude that defect(γ′) = defect(γ). J

A tangle is tight if each strand is simple and each pair of strands crosses at most once. Any
tangle can be tightened – that is, transformed into a tight tangle – by continuously deforming
the strands without crossing σ or moving their endpoints, and therefore by a finite sequence
of homotopy moves. Let γ e σ and γ d σ denote the closed curves that result from tightening
the interior and exterior tangles of σ, respectively.1 The following lemma that flipping any
2-strand tangle does not change its defect follows from our inclusion-exclusion formula for
defect [6, Lemma 5.4]; we give a simpler proof here to keep the paper self-contained.

I Lemma 22. Let γ be an arbitrary closed curve on the sphere. Flipping any tangle of γ
with two strands yields another closed curve γ′ with defect(γ′) = defect(γ).

Proof. Let σ be a simple closed curve that crosses γ at exactly four points. These four
points naturally decompose γ into four subpaths α · δ · β · ε, where α and β are the strands
of the interior tangle of σ, and δ and ε are the strands of the exterior tangle. Flipping the
interior tangle either exchanges α and β, reverses α and β, or both; see Figure 10. In every
case, the result is a single closed curve γ′. We classify each vertex of γ as interior if it lies
on α and/or β, and exterior otherwise. Similarly, we classify pairs of interleaved vertices are
either interior, exterior, or mixed.

1 We recommend pronouncing e as “tightened inside” and d as “tightened outside”; note that the symbols
e and d resemble the second letters of “inside” and “outside”.
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Figure 10 Flipping all six types of 2-strand tangle.

An interior vertex x and an exterior vertex y are interleaved if and only if x is an
intersection point of α and β and y is an intersection point of δ and ε. Thus, the total
contribution of mixed vertex pairs to Polyak’s formula defect(γ) = −2

∑
xGy sgn(x) · sgn(y) is

−2
∑

x∈α∩β

∑
y∈δ∩ε

sgn(x) · sgn(y) = −2

 ∑
x∈α∩β

sgn(x)

  ∑
y∈δ∩ε

sgn(y)

 .

Consider any sequence of homotopy moves that tightens the interior tangle with strands α
and β. Any 2�0 move involving both α and β removes one positive and one negative vertex;
no other homotopy move changes the number of vertices in α∩β or the signs of those vertices.
Thus, tightening α and β leaves the sum

∑
x∈α∩β sgn(x) unchanged. Similarly, tightening

the exterior tangle δ ∪ ε leaves the sum
∑
y∈δ∩ε sgn(y) unchanged. But after tightening both

tangles, either α and β are disjoint, or δ and ε are disjoint, or both, as γ is a single closed
curve. Thus, at least one of the sums

∑
x∈α∩β sgn(x) and

∑
y∈δ∩ε sgn(y) is equal to zero.

We conclude that mixed vertex pairs do not contribute to the defect.
The curve γ e σ obtained by tightening α and β has at most one interior vertex (and

therefore no interior vertex pairs); the exterior vertices of γ e σ are precisely the exterior
vertices of γ. Similarly, the curve γ d σ obtained by tightening both δ and ε has at most one
exterior vertex; the interior vertices of γ d σ are precisely the interior vertices of γ. It follows
that defect(γ) = defect(γ d σ) + defect(γ e σ).

Finally, let γ′ be the result of flipping the interior tangle. The curve γ′ d σ is just a
reflection of γ dσ, which implies that defect(γ′ dσ) = defect(γ dσ), and straightforward case
analysis implies γ′eσ = γeσ. We conclude that defect(γ′) = defect(γ′eσ)+defect(γ′dσ) =
defect(γ e σ) + defect(γ d σ) = defect(γ). J

Lemmas 20, 21, and 22 now immediately imply Theorem 18.

5.4 Back to planar electrical moves
Each planar electrical transformation in a plane graph G induces the same change in the
medial graph G× as a finite sequence of 1- and 2-strand tangle flips (hereafter simply called
“tangle flips”) followed by a single electrical move. For an arbitrary connected multicurve γ,
let X̄(γ) denote the minimum number of electrical moves in a mixed sequence of electrical
moves and tangle flips that tightens γ. Similarly, let H̄(γ) denote the minimum number of
homotopy moves in a mixed sequence of homotopy moves and tangle flips that tightens γ.
We emphasize that tangle flips are “free” and do not contribute to either X̄(γ) or H̄(γ).

Our lower bound on planar electrical moves follows our earlier lower bound proof for
facial electrical moves almost verbatim; the only subtlety is that the embedding of the graph
can effectively change at every step of the reduction. A complete proof can be found in the
full version of the paper.
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I Lemma 23. X̄(γ) ≥ H̄(γ) ≥ |defect(γ)|/2 for every closed curve γ on the sphere.

I Theorem 24. Let G be an arbitrary planar graph, and let γ be any unicursal smoothing
of G× (defined with respect to any planar embedding of G). Reducing G to a single vertex
requires at least |defect(γ)|/2 planar electrical transformations.

Finally, Hayashi et al. [23] and Even-Zohar et al. [17] describe infinite families of planar
closed curves with defect Ω(n3/2); see also [7, Section 2.2].

I Corollary 25. Reducing any n-vertex planar graph to a single vertex requires Ω(n3/2)
planar electrical transformations in the worst case.

6 Open problems

Our results suggest several open problems. Perhaps the most compelling, and the primary
motivation for our work, is to find either a subquadratic upper bound or a quadratic lower
bound on the number of (unrestricted) electrical transformations required to reduce any
planar graph without terminals to a single vertex. Like Gitler [20], Feo and Provan [19], and
Archdeacon et al. [2], we conjecture that O(n3/2) facial electrical transformations suffice.
However, proving the conjecture appears to be challenging.

Another direction is to prove a quadratic lower bound for graphs on surfaces with
positive genus under crossing-free electrical transformations. To generalize Theorem 18 to
surface-embedded graphs, we need an extension of Lemma 20 to navigate through all the
possible embeddings. Using the theory of large-edgewidth (LEW) embeddings, a result by
Thomassen [38, Theorem 6.1] shows that any embedding of a surface-embedded graph can
be obtained from the LEW-embedding (if there’s one) by a finite sequence of split reflections.
From here it is not hard to construct a toroidal curve that admits an LEW-embedding and
has quadratic defect. The main difficulty is that we don’t have a similar electrical-homotopy
inequality for arbitrary surfaces.

Finally, none of our lower bound techniques imply anything about non-planar electrical
transformations or about electrical reduction of non-planar graphs. Indeed, the only lower
bound known in the most general setting, for any family of electrically reducible graphs, is
the trivial Ω(n). It seems unlikely that planar graphs can be reduced more quickly by using
non-planar electrical transformations, but we can’t prove anything. Any non-trivial lower
bound for this problem would be interesting.
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