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Abstract
We show that, if an n-vertex triangulation T of maximum degree ∆ has a dual that contains a cycle
of length `, then T has a non-crossing straight-line drawing in which some set, called a collinear set,
of Ω(`/∆4) vertices lie on a line. Using the current lower bounds on the length of longest cycles in
3-regular 3-connected graphs, this implies that every n-vertex planar graph of maximum degree ∆
has a collinear set of size Ω(n0.8/∆4). Very recently, Dujmović et al. (SODA 2019) showed that,
if S is a collinear set in a triangulation T then, for any point set X ⊂ R2 with |X| = |S|, T has a
non-crossing straight-line drawing in which the vertices of S are drawn on the points in X. Because
of this, collinear sets have numerous applications in graph drawing and related areas.
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1 Introduction

Throughout this paper, all graphs are simple and finite and have at least 4 vertices. For
a planar graph G, we say that a set S ⊆ V (G) is a collinear set if G has a non-crossing
straight-line drawing in which the vertices of S are all collinear. A plane graph is a planar
graph G along with a particular non-crossing drawing of G. The dual G? of a plane graph G
is the graph whose vertex set V (G?) is the set of faces in G and in which fg ∈ E(G?) if and
only if the faces f and g of G have at least one edge in common. The circumference, c(G),
of a graph G is the length of the longest cycle in G. In Section 2, we prove the following:

I Theorem 1. Let T be a triangulation of maximum degree ∆ whose dual T ? has circumfer-
ence `. Then T has a collinear set of size Ω(`/∆4).

The dual of a triangulation is a 3-connected cubic planar graph. The study of the
circumference of 3-connected cubic planar graphs has a long and rich history going back
to at least 1884 when Tait [27] conjectured that every such graph is Hamiltonian. In 1946,
Tait’s conjecture was disproved by Tutte who gave a non-Hamiltonian 46-vertex example [28].
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29:2 Dual Circumference and Collinear Sets

Repeatedly replacing vertices of Tutte’s graph with copies of itself gives a family of graphs,
〈Gi : i ∈ Z〉 in which Gi has 46 ·45i vertices and circumference at most 45 ·44i. Stated another
way, n-vertex members of the family have circumference O(nα), for α = log44(45) < 0.9941.
The current best upper bound of this type is due to Grünbaum and Walther [18] who
construct a 24-vertex non-Hamiltonian cubic 3-connected planar graph, resulting in a family
of graphs in which n-vertex members have circumference O(nα) for α = log23(22) < 0.9859.

A series of results has steadily improved the lower bounds on the circumference of n-
vertex (not necessarily planar) 3-connected cubic graphs. Barnette [5] showed that, for every
n-vertex 3-connected cubic graph G, c(G) = Ω(logn). Bondy and Simonovits [8] improved
this bound to eΩ(

√
logn) and conjectured that it can be improved to Ω(nα) for some α > 0.

Jackson [19] confirmed this conjecture with α = log2(1 +
√

5)− 1 > 0.6942. Billinksi et al.
[6] improved this to the solution of 41/α − 31/α = 2, which implies α > 0.7532. The current
record is held by Liu, Yu, and Zhang [22] who show that α > 0.8.

It is known that any planar graph of maximum degree ∆ can be triangulated so that
the resulting triangulation has maximum degree d3∆/2e+ 11 [21]. This fact, together with
Theorem 1 and the result of Liu, Yu, and Zhang [22], implies the following corollary:

I Corollary 2. Every n-vertex triangulation of maximum degree ∆ contains a collinear set
of size Ω(n0.8/∆4).

It is known that every planar graph G has a collinear set of size Ω(
√
n) [9, 13] . Corollary 2

therefore improves on this bound for bounded-degree planar graphs and, indeed for the family
of n-vertex planar graphs of maximum degree ∆ ∈ O(nδ), with δ < 0.075. For example,
the triangulations dual to Grünbaum and Walther’s construction have maximum degree
∆ ∈ O(logn). As discussed below, this implies that there exists n-vertex triangulations
of maximum degree O(logn) whose largest collinear set has size O(n0.9859). Corollary 2
implies that every n-vertex planar graph of maximum degree O(logn) has a collinear set of
size Ω(n0.8).

Recently, Dujmović et al. [14] have shown that every collinear set is free. That is, for any
planar graph G, any collinear set S ⊆ V (G), and any setX ⊂ R2 with |X| = |S|, there exists a
non-crossing straight-line drawing of G in which the vertices of S are drawn on the points of X.
Because of this, collinear sets have immediate applications in graph drawing and related areas.
For applications of Corollary 2, including untangling [11, 23, 29, 17, 20, 9, 12, 13, 25], column
planarity [3, 15, 12, 13], universal point subsets [16, 1, 12, 13], and partial simultaneous
geometric drawings [15, 4, 2, 7, 13] the reader is referred to Dujmović [13] and Dujmović et
al. [14, Section 1.1]. Corollary 2 gives improved bounds for all of these problems for planar
graphs of maximum ∆ ∈ o(n0.075).

For example, it is known that every n-vertex planar geometric graph can be untangled
while keeping some set of Ω(n0.25) vertices fixed [9] and that there are n-vertex planar
geometric graphs that cannot be untangled while keeping any set of Ω(n0.4948) vertices fixed
[10]. Although asymptotically tight bounds are known for paths [11], trees [17], outerplanar
graphs [17], planar graphs of treewidth two [25], and planar graphs of treewidth three [12],
progress on the general case has been stuck for 10 years due to the fact that the exponent
0.25 comes from two applications of Dilworth’s Theorem. Thus, some substantially new idea
appears to be needed. By relating collinear/free sets to dual circumference, the current paper
presents an effective new idea. Indeed, Corollary 2 implies that every bounded-degree n-vertex
planar geometric graph can be untangled while keeping Ω(n0.4) vertices fixed. Note that,
even for bounded-degree planar graphs, Ω(n0.25) was the best previously-known lower bound.
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Our work opens two avenues for further progress:
1. Lower bounds on the circumference of 3-regular 3-connected graphs is an active area

of research. Indeed, the Ω(n0.8) lower bound of Liu, Yu, and Zhang [22] is less than a
year old. Any further progress on these lower bounds will translate immediately to an
improved bound in Corollary 2 and all its applications.

2. It is possible that the dependence on ∆ can be removed from Theorem 1 and Corollary 2,
thus making these results applicable to all planar graphs, regardless of maximum degree.

2 Proof of Theorem 1

Let G be a plane graph. We treat the vertices of G as points, the edges of G as closed
curves, and the faces of G as closed sets (so that a face contains all the edges on its boundary
and an edge contains both its endpoints). Whenever we consider subgraphs of G we treat
them as having the same embedding as G. Similarly, if we consider a graph G′ that is
homeomorphic1 to G then we assume that the edges of G′ – each of which represents a path
in G whose internal vertices all have degree 2 – inherit their embedding from the paths they
represent in G.

Finally, if we consider the dual G? of G then we treat it as a plane graph in which each
vertex f is represented as a point in the interior of the face f of G that it represents. The
edges of G? are embedded so that an edge fg is contained in the union of the two faces f
and g of G, it intersects the interior of exactly one edge of G that is common to f and g,
and this intersection consists of a single point.

A proper good curve C for a plane graph G is a Jordan curve with the following properties:
1. proper : for any edge xy of G, C either contains xy, intersects xy in a single point (possibly

an endpoint), or is disjoint from xy; and
2. good: C contains at least one point in the interior of some face of G.

Da Lozzo et al. [12] show that proper good curves define collinear sets:

I Theorem 3. In a plane graph G, a set S ⊆ V (G) is a collinear set if and only if there is
a proper good curve for G that contains S.

For a triangulation T , let v(T ) denote the size of a largest collinear set in T . We will show
that, for any triangulation T of maximum degree ∆ whose dual is T ?, v(T ) = Θ(c(T ?)/∆4)
by relating proper good curves in T to cycles in T ?.

As shown by Ravsky and Verbitsky [25, 24], the inequality v(T ) ≤ c(T ?) is easy: If T is a
triangulation that has a proper good curve C containing k vertices, then a slight deformation
of C produces a proper good curve that contains no vertices. This curve intersects a cyclic
sequence of faces f0, . . . , fk′−1 of T with k′ ≥ k. In this sequence, fi and f(i+1) mod k′ share
an edge, for every i ∈ {0, . . . , k′ − 1}, so this sequence is a closed walk in the dual T ? of T .
The properness of the original curve and the fact that each face of T is a triangle ensures
that fi 6= fj for any i 6= j, so this sequence is a cycle in T ? of length k′ ≥ k. Therefore,
c(T ?) ≥ v(T ). From the result of Grünbaum and Walther described above, this implies that
there are n-vertex triangulations T such that v(T ) = O(n0.9859).

The other direction, lower-bounding v(T ) in terms c(T ?) is more difficult. Not every
cycle C of length ` in T ? can be easily transformed into a proper good curve containing a
similar number of vertices in C. In the next section, we describe three parameters τ , ρ, and
κ of a cycle C in T ? and show that C can always be transformed into a proper good curve
containing Ω(κ) vertices of T .

1 We say that a graph G′ is homeomorphic to G if G′ can be obtained from G by repeatedly contracting
an edge of G that is incident to a degree-2 vertex.

SoCG 2019
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Figure 1 Faces of T ? that are pinched and caressed by C. C is bold, caressed faces are teal,
pinched faces are pink, and untouched faces are unshaded.

2.1 Faces that are Touched, Pinched, and Caressed
Throughout the remainder of this section, T is a triangulation whose dual is T ? and C is a
cycle in T ?. Refer to Figure 1 for the following definitions. We say that a face f of T ?
1. is touched by C if f ∩ C 6= ∅;
2. is pinched by C if f ∩ C is a cycle or has more than one connected component; and
3. is caressed by C if it is touched but not pinched by C.

Since C is almost always the cycle of interest, we will usually say that a face f of T ? is
touched, pinched, or caressed, without specifically mentioning C. We will frequently use
the values τ , ρ, and κ to denote the number of faces of T ? in some region that are τouched,
ρinched or κaressed. Observe that, since every face that is touched is either pinched or
caressed, we have the identity τ = ρ+ κ.

I Lemma 4. If C caresses κ faces of T ? then T has a proper good curve that contains at
least κ/4 vertices so, by Theorem 3, v(T ) ≥ κ/4.

Proof. Let F be the set of faces in T ? that are caressed by C. Each element u ∈ F

corresponds to a vertex of T so we will treat F as a set of vertices in T . Consider the
subgraph T [F ] of T induced by F . The graph T [F ] is planar and has κ vertices. Therefore,
by the 4-Colour Theorem [26], T [F ] contains an independent set F ′ ⊆ F of size at least κ/4.

We claim that there is a proper good curve for T that contains all the vertices in F ′. To
see this, first observe that the cycle C in T ? already defines a proper good curve (that does
not contain any vertices of T ) that we also call C. We perform local modifications on C so
that it contains all the vertices in F ′.

For any vertex u ∈ F ′, let w0, . . . , wd−1 denote the neighbours of u in cyclic order. The
curve C intersects some contiguous subsequence uwi, . . . , uwj of the edges adjacent to u.
Since u is caressed, this sequence does not contain all edges incident to u. Therefore, the curve
C crosses the edge wi−1wi, then crosses uwi, . . . , uwj , and then crosses the edge wjwj+1. We
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Figure 2 Transforming the dual cycle C into a proper good curve C′ containing u.

f0
f1 f2 f3 f4 fk−1

fk

Figure 3 A Hamiltonian cycle C in T ? that caresses only four faces.

modify C by removing the portion between the first and last of these crossings and replacing
it with a curve that contains u and is contained in the two triangles wi−1uwi and wjuwj+1.
(See Figure 2.)

After performing this local modification for each u ∈ F ′ we have a curve C ′ that contains
every vertex u ∈ F ′. All that remains is verify that C ′ is good and proper for T . That C ′ is
good for T is obvious. That C ′ is proper for T follows from the following two observations:
(i) C ′ does not contain any two adjacent vertices (since F ′ is an independent set); and (ii) if
C ′ contains a vertex u, then it does not intersect the interior of any edge incident to u. J

Lemma 4 reduces our problem to finding a cycle in T ? that caresses many faces. It is
tempting to hope that any sufficiently long cycle in T ? caresses many faces, but this is not
true; Figure 3 shows that even a Hamiltonian cycle C in T ? may caress only four faces,
two inside C and two outside of C. In this example, there is an obvious sequence of faces
f0, . . . , fk, all contained in the interior of C where fi shares an edge with fi+1 for each
i ∈ {0, . . . , k− 1}. The only faces caressed by C are the endpoints f0 and fk of this sequence.

Our strategy is to define a tree structure, T0 on groups of faces contained in the interior
of C and a similar structure, T1 on groups of faces in the exterior of C. We will then show
that every leaf of T0 or T1 contains a face caressed by C. In Figure 3, the tree T0 is the
path f0, . . . , fk and, indeed, the leaves f0 and fk of this tree are caressed by C. After a
non-trivial amount of analysis of the trees T0 and T1, we will eventually show that, if C does
not caress many faces, then T0 and T1 have many nodes, but few leaves. Therefore T0 and T1
have many degree-2 nodes. This abundance of degree-2 nodes makes it possible to perform a
surgery on C that increases the number of caressed faces. Performing this surgery repeatedly
will then produce a curve C that caresses many faces.

A path P = v1, . . . , vr in T ? is a chord path (for C) if v1, vr ∈ V (C) and v2, . . . , vr−1 6∈
V (C). Note that this definition implies that the interior vertices v2, . . . , vr−1 of P are either
all contained in the interior of C or all contained in the exterior of C.

SoCG 2019
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PL
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X1
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Figure 4 The proof of Lemma 5.

I Lemma 5. Let P be a chord path for C and let L and R be the two faces of P ∪C that each
contain P in their boundary. Then R contains at least one face of T ? that is caressed by C.

Proof. The proof is by induction on the number, t, of faces of T ? contained in R. If t = 1,
then R is a face of T ? and it is caressed by C.

If t > 1, then consider the face f of T ? that is contained in R and has the first edge of P
on its boundary. Refer to Figure 4. Since t > 1, X = R \ f is non-empty. The set X may
have several connected components X1, . . . , Xk, but each Xi has a boundary that contains a
chord path Pi for C. We can therefore apply induction on P1 (or any Pi) using R = X1 in
the inductive hypothesis. J

2.2 Auxilliary Graphs and Trees: H, H̃, T0, and T1

Refer to Figure 5. Consider the auxilliary graph H with vertex set V (H) ⊆ V (T ?) and whose
edge set consist of the edges of C plus those edges of T ? that belong to any face pinched by
C. Let v0, . . . , vr−1 be the clockwise cyclic sequence of vertices on some face f of T ? that is
pinched by C. We identify three kinds of vertices that are special with respect to f :
1. A vertex vi is special of Type A if vi−1vi is an edge of C and vivi+1 is not an edge of C.
2. A vertex vi is special of Type B if vi−1vi is not an edge of C and vivi+1 is an edge of C.
3. A vertex vi is special of Type Y if vi not incident to any edge of C and vi has degree 3

in H.

We say that a chord path vi, . . . , vj is a keeper with respect to f if vi is special of Type A,
vj is special of Type B, and none of vi+1, . . . , vj−1 are special. We let H̃ denote the subgraph
of H containing all the edges of C and all the edges of all paths that are keepers with respect
to some pinched face f of T ?.

It is worth emphasizing at this point that, by definition, every keeper is entirely contained
in the boundary of at least one face f of T ?. This property will be useful shortly.

Let H̃ ′ denote the graph that is homeormophic to H̃ but does not contain any degree 2
vertices. That is, H̃ ′ is the minor of H̃ obtained by repeatedly contracting an edge incident
a degree-2 vertex. The graph H̃ ′ naturally inherits an embedding from the embedding of H̃.
This embedding partitions the edges of H̃ ′ into three sets:
1. The set B of edges that are contained in (the embedding of) C;
2. The set E0 of edges whose interiors are contained in the interior of (the embedding of) C;

and
3. The set E1 of edges whose interiors are contained in the exterior of (the embedding of) C.

Observe that, for each i ∈ {0, 1}, the graph Hi whose edges are exactly those in B ∪ Ei
is outerplanar, since all vertices of Hi are on a single face, whose boundary is C. Let Hi

? be
dual of Hi and let Ti be the subgraph of Hi

? whose edges are all those dual to the edges of
Ei. From the outerplanarity of Hi, it follows that Ti is a tree.
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(a) (b)

(c) (d)

Figure 5 (a) the cycle C in T ? with faces classified as pinched or caressed; (b) the auxilliary
graph H; (c) the auxilliary graph H̃ with keeper paths highlighted; (d) the trees T0 and T1.

Each vertex of Ti corresponds to a face of H̃. From this point onwards, we will refer to
the vertices of Ti as nodes to highlight this fact, so that a node u of Ti is synonymous with
the subset of R2 contained in the corresponding face of H̃. In the following, when we say
that a node u of Ti contains a face f of T ? we mean that f is one of the faces of T ? whose
union makes up u. The degree, δu of any node u in Ti is exactly equal to the number of
keeper paths on the boundary of u.

The following lemma allows us to direct our effort towards proving that one of T0 or T1
has many leaves.

I Lemma 6. Each leaf u of Ti contains at least one face of T ? that is caressed by C.

Proof. The edge of Ti incident to u corresponds to a chord path P . The graph P ∪ C has
two faces with P on its boundary, one of which is u. The lemma now follows immediately
from Lemma 5, with R = u. J

We will make use of the following well-known property of 3-connected plane graphs.

I Lemma 7. If T has n ≥ 4 vertices then any two faces of T ? share at most one edge.

I Lemma 8. Let u be a node of Ti and let ρu, κu, and δu denote the number of pinched faces
of T ? in u, the number of caressed faces of T ? in u, and the degree of u in Ti, respectively.
Then ρu ≤ 2(κu + δu).

Before proving Lemma 8, we point out that the leading constant 2 is tight. Figure 6
shows an example in which all ρu = 2k + 1 pinched faces of T ? are contained in a single
(pink) node u of T0 that contains κu = 0 caressed faces and has degree δu = k + 2.

SoCG 2019
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· · ·

Figure 6 An example showing the tightness of Lemma 8.

Proof. The proof is a discharging argument. We assign each pinched face in u a single unit
of charge, so that the total charge is ρu. We then describe a discharging procedure that
preserves the total charge. After executing this procedure, pinched faces in u have no charge,
each caressed face in u has charge at most 2, and each keeper path in u has charge at most
2. Since there is a bijection between keeper paths in u and edges of Ti incident to u, this
proves the result.

We now describe the discharging procedure, which is recursive and takes as input a chord
path P that partitions u into two parts L and R. We require as a precondition that there are
m ≥ 1 pinched faces of T ? in L, each of which contains at least one edge of P and such that
every edge of P is contained in at least one of these faces. During a recursive call, P may
have a charge c ∈ {0, 1, 2}. This charge will be at most 1 if m > 1, but can be 2 if m = 1.

To initialize the discharging procedure, we choose an arbitrary pinched face f contained
in u. The face f begins with one unit of charge and has r ≥ 2 chord paths P1, . . . , Pr on
its boundary. We move the charge from f onto P1 and apply the recursive procedure to
P1, with a charge of 1 (with L being the component of u \ P1 that contains f). We then
recursively apply the discharging procedure on each of P2, . . . , Pr with a charge of 0.

Next we describe each recursive step, during which we are given P with some charge
c ∈ {0, 1, 2}. There are several cases to consider (see Figure 7):
1. R contains no face of T ? that is pinched by C. If R is empty, then P is a keeper path, in

which case we leave a charge of c on it and we are done. Otherwise R is non-empty and
Lemma 5 ensures that R contains at least one caressed face f . We move the charge from
P onto f and we are done.

2. R contains a face f that is pinched by C and that shares at least one edge with P . We
consider three subcases:
a. f contains neither endpoint of P . In this case, R \ f has at least three connected

components, A, B, and X1, . . . , Xk, where A and B each contain an endpoint of P
and each Xi has a chord path Pi in common with f . We recurse on each of these
components so that each of these components takes the place of R in the recursion.
When recursing on A we take one unit of charge from P (if needed) and place it on
A’s chord path. When recursing on B we take the second unit of charge from P (if
needed) and place it on B’s chord path. When recursing on X1 we move the unit of
charge from f to P1. When recursing on X2, . . . , Xk we use no charge on P2, . . . , Pk.

b. f contains exactly one endpoint of P . In this case, R \ f has one connected component
A that contains an endpoint of P and one or more connected components X1, . . . , Xk

where each Xi has a chord path Pi on the boundary of f . The path P has a charge
c ≤ 2. When recursing on X1 we assign all of P ’s charge to the chord path P1, which
is contained in the single pinched face f . When recursing on A we move the single
unit of charge from f to the chord path of A.
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Figure 7 Discharging steps in the proof of Lemma 8.

c. f contains both endpoints of P . We claim that, in this case, P must be on the
boundary of more than one pinched faces in L, otherwise P would be a keeper path.
To see this, observe that the face f contains both the first edge e1 and last edge e2
of P . If e1 = e2 because P is a single edge, then it is certainly a keeper, which is not
possible. Otherwise, by Lemma 7, e1 and e2 are on the boundary of two different faces
in L. By assumption, both of these faces are pinched by C.
Therefore P has at most one unit of charge assigned to it. Now, R \ f has one or more
connected components X1, . . . , Xk sharing chord paths P1, . . . , Pk with f on which we
recurse. When recursing on X1 we move the charge from P and the charge from f to
P1. When recursing on the remaining Xi, i ∈ {2, . . . , k} we assign no charge to Pi.

3. R contains at least one pinched face, but no pinched face in R shares an edge with P .
In this case, consider the face g of H that is contained in R and has P on its boundary.
By definition, g contains no pinched faces of T ?, but g is touched by C, so g contains at
least one caressed face2 f of T ?. We move the c units of charge from P onto f .
Now, R still contains one or more pinched faces f1, . . . , fk, where each fi shares part of a
chord path Pi with g. On each such face fi, we run the initialization procedure described
above except that we recurse only on the chord paths of fi that do not share edges with
g. i.e., we do not recurse on the chord path Pi.

This completes the description of the discharging procedure, and the proof. J

2 In fact g contains at least two caressed faces, one for each endpoint of P .

SoCG 2019
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2.3 Bad Nodes
We say that a node of Ti is bad if it has degree 2 and contains no face of T ? that is caressed by
C. We now move from studying individual nodes of T0 and T1 to studying global quantities
associated with T0 and T1. From this point on, for each i ∈ {0, 1},
1. τi, ρi, and κi refer the total numbers of faces contained in nodes of Ti that are touched,

pinched, and caressed by C, respectively;
2. ni refers to the number of nodes of Ti;
3. δi = 2(ni − 1) is the total degree of all nodes in Ti; and
4. bi is the number of bad nodes in Ti.

I Lemma 9. If κi ≤ τi/6 then ni ≥ τi/8.

Proof. From Lemma 8 we know ρi ≤ 2(κi + δi), so

τi = κi + ρi ≤ 3κi + 2δi = 3κi + 4(ni − 1) ≤ τi/2 + 4ni ,

and reorganizing the left- and right-hand sides gives the desired result. J

I Lemma 10. For any 0 < ε < 1, if bi ≤ (1− ε)ni, then κi = Ω(ετi).

Proof. Partition the nodes of Ti into the following sets:
1. the set B of bad nodes;
2. the set N1 of leaves;
3. the set N≥3 of nodes having degree at least 3;
4. the set N2 of nodes having degree 2 that are not bad.

bi = ni − |N1| − |N≥3| − |N2|
> ni − 2|N1| − |N2| since |N1| > |N≥3|
≥ ni − 2κi − |N2| (since, by Lemma 6, κi ≥ |N1|)
≥ ni − 3κi (since each node in N2 contains a caressed face)

Thus, we have

ni − 3κi ≤ bi ≤ (1− ε)ni

and rewriting gives

κi ≥ εni/3 . (1)

If κi ≥ τi/6, then the proof is complete. On the other hand, if κi ≤ τi/6 then, by Lemma 9,
ni ≥ τi/8. Combining this with (1) gives

κi ≥ εni/3 ≥ ετi/24 = Ω(ετi) . J

2.4 Interactions Between Bad Nodes
We have now reached a point in which we know that the vast majority of nodes in T0 and T1
are bad nodes, otherwise Lemma 10 implies that a constant fraction of the faces touched by
C are caressed by C. At this point, we are ready to study interactions between bad nodes
of T0 and bad nodes of T1. The proof of the following lemma is ommitted due to space
constraints but can be found in the full version of the paper.
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I Lemma 11. If u is a bad node then there is a single face f of T ? that is contained in u
and that contains all edges of C ∩ u.

The following lemma shows that a bad node u in T0 and a bad node w in T1 share at
most one edge of C.

I Lemma 12. If nodes u in T0 and w in T1 are bad nodes that share at least one edge of C,
then u and w share exactly one edge of C.

Proof. Suppose u and w share two edges e1 and e2 of C. Then, by Lemma 11, there is a
common face fu in u that contains e1 and e2, Similarly, there is a common face fw contained
in w that contains both e1 and e2. But this contradicts Lemma 7. J

I Lemma 13. If u and w are bad nodes of Ti sharing a common chord path P , then P is a
single edge.

Proof. By Lemma 11, u and w have the first edge of P in common and the last edge of P in
common. Lemma 7 therefore implies that the first and last edge of P are the same, so P has
only one edge. J

2.5 Really Bad Nodes
At this point we will start making use of the assumption that the triangulation T has
maximum degree ∆, which is equivalent to the assumption that each face of T ? has at most
∆ edges on its boundary.

I Observation 14. If T has maximum degree ∆ and C has length `, then the number of
faces τ of T ? touched by C is at least 2`/∆. At least `/∆ of these faces are in the interior
of C and at least `/∆ of these faces are in the exterior of C.

Proof. Orient the edges of C counterclockwise so that, for each edge e of C, the face of T ?
to the left of e is in C’s interior and the face of T ? to the right of e is in C’s exterior. Each
face of T ? has at most ∆ edges. Therefore, the number of faces to the right of edges in C is
at least `/∆. The same is true for the number of faces of T ? to the left of edges in C. J

For a node u of Ti, we define N(u) as the set of nodes in T0 and T1 (excluding u) that
share an edge of T ? with u. Note that N(u) contains the neighbours of u in Ti as well as
nodes of T1−i with which u shares an edge of C. We say that a node u is really bad if u and
all nodes in N(u) are bad. The proof of the following lemma – which is similar to that of
Lemma 10 – is ommitted due to space constraints.

I Lemma 15. For every sufficiently small 0 < α < 1/2, if T has maximum degree ∆, C has
length `, and the number κ, of faces caressed by C is at most α`/∆2, then the number of
really bad nodes in T0 is at least n0 −O(αn0).

For a node u of Ti, we define N0(u) = {u} and, for any r ∈ N, we define Nr(u) =⋃
w∈Nr−1(u)N(w). We say that a node u in Ti is reallyr bad if u is bad and all nodes in

Nr(u) are bad. The proof of the following lemma is a straightforward generalization of the
proof of Lemma 15.

I Lemma 16. For any constant i ∈ N and every sufficiently small 0 < α < 1/2, if T has
maximum degree ∆, C has length `, and the number, κ, of faces caressed by C is at most
α`/∆i+1, then the number of reallyi bad nodes in T0 is at least n0 −O(αn0).

For our purposes, it will be sufficient to work with bad (i = 0), really bad (i = 1), and
really really bad (i = 2) nodes.
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2.6 Tree/Cycle Surgery
We summarize the situation so far. We are left with the case where C has length ` and
therefore touches Ω(`/∆) faces. To complete the proof of Theorem 1 we must deal with the
situation where C caresses o(`/∆4) faces and therefore each of T0 and T1 has o(`/∆4) leaves
(Lemma 6), Ω(`/∆) nodes (Lemma 9), and the fraction of really really bad nodes in T0 and
T1 is 1−O(1/∆2) (Lemma 16).

To handle cases like these, the only option is to perform surgery on the cycle C to increase
the number of caressed nodes. In particular, our strategy is to perform modifications to C
that increase the number of faces caressed by C. At this point we are ready to complete the
proof of Theorem 1.

Proof of Theorem 1. By Lemma 4, it suffices to prove the existence of a cycle C in T ?

that caresses Ω(`/∆4) faces. We begin by applying Lemma 16 with i = 2 and α = ε/∆.
For sufficiently small, but constant, ε, Lemma 16 implies that κ = Ω(`/∆4) or the number
of nodes in T0 that are not really really bad is at most O(εn0/∆). In the former case, C
caresses Ω(`/∆4) faces of T ? and we are done.

In the latter case, consider the forest obtained by removing all nodes of T0 that are not
really really bad. This forest has (1−O(ε/∆))n0 nodes. We claim that it also has O(εn0/∆)
components. To see why this is so, let L be the set of leaves in Ti and let S be the set of
non-leaf nodes in Ti that are not really really bad. Observe that it is sufficient to upper
bound the number, k of components in Ti − S.

We have |L| ≤ |S|+ |L| = O(εn0/∆) and k =
∑
u∈S(degTi

(u)− 1). Furthermore,

O(εn0/∆) ≥ |L| ≥
∑
u∈S

(degTi
(u)− 2) = |S|+

∑
u∈S

(degTi
(u)− 1) = |S|+ k .

Therefore k ≤ |S|+ k = O(εn0/∆), as claimed.
Thus the forest obtained by removing all really really bad nodes from Ti has at most

O(εn0/∆) components, each of which is a path. At least one of these paths contains Ω(∆/ε)
nodes. In particular, for a sufficiently small constant ε, one of these components, X, has at
least 5∆ nodes.

Consider some node u in X, and let Ca and Cb be the two components of u ∩ C.
Observe that T1[N(u)] consists of two paths a1, . . . , ar and b1, . . . , bs of bad nodes where
each a1, . . . , ar contains an edge of Ca and each of b1, . . . , br contains an edge of Cb. Note
that it is possible that ai = bj for some values of i and j, but everything stated thus far,
and subsequently, is still true. It follows from Lemma 12 that among any sequence of ∆
consecutive nodes in X, at least one node has r ≥ 2 and therefore |N(u)| ≥ 5. Let u be any
such node that is not among the first 2∆ or last 2∆ nodes of X. Such a u always exists
because X contains at least 5∆ nodes.

Let x0 = u. We now describe some of the nodes in the vicinity of u (refer to Figure 8):
1. there is a path x2∆, . . . , x1, x0, y1, . . . , y2∆ in T0 consisting entirely of really really bad

nodes.
2. some really bad node a1 of T1 shares an edge with each of x0, . . . , xi for some i ∈
{1, . . . ,∆− 4}.

3. some really bad node a2 of T1 shares an edge with a1 and and edge with x0.
4. some really bad node a0 of T1 shares an edge with a1 and with each of xi, . . . , xi+j for

some j ∈ {0, . . . ,∆− 4}.

The surgery we perform focuses on the nodes u and a1. Consider the two components
of C ∩ a1. One of these components, p, shares an edge with u. By Lemma 12, the other
component, q, does not share an edge with u. Imagine removing u from T0, thereby separating
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u = x0

y1

y2∆

x2∆
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...

...

...

...

Figure 8 Nodes in the vicinity of u = x0.

T0 into a component Tx containing x1 and a component Ty containing y1. Equivalently, one
can think of removing the edges of u from C separating C into two paths Cx and Cy on the
boundary of Tx and Ty, respectively. We distinguish between two major cases (see Figure 9):

1. q ⊂ Cx. In this case, we punt to Case 2. By Lemma 13 a1 − C consists of two edges
and exactly one of these edges, e, is not incident to u. Instead, e is incident to xi. We
set u′ = xi, x′1 = xi−1, y′1 = xi+1, and a′1 = a1. Observe that a′1 connects the two
components of T0 − u′ and shares edges with u′ and x′1. This is exactly the situation
considered in Case 2.

2. q ⊂ Cy. At this point it is helpful to think of T0, T1, and C as a partition of R2, where
nodes of T0 are coloured red, nodes of T1 are coloured blue and C is the (purple) boundary
between red and blue. To describe our modifications of C, we imagine changing the
colours of nodes. The effect that such a recolouring has on C is immediately obvious:
It produces a 1-dimensional set C ′ that contains every (purple) edge contained in the
red-blue boundary. The set C ′ is a collection of vertices and edges of T ?. Therefore, if C ′
is a simple cycle, then C ′ defines a new pair of trees T ′0 and T ′1.
Refer to the right two thirds of Figure 9 for a simple (and misleading) example of what
follows. For a full example, refer to Figure 10. The surgery we perform, recolours
x0, x1, . . . , xi−1 blue and recolours a1 red. Observe that, because q ⊂ Cy and p contain
an edge of x1, this implies that the red subset of R2 is simply-connected and its boundary
C ′ is a simple cycle consisting of edges of T ∗. The new trees T ′0 and T ′1 are therefore well
defined. We now make two claims that will complete our proof.

B Claim 17. For each i ∈ {0, 1}, and every node of w Ti that is not bad, C ∩w = C ′ ∩w.
(Equivalently, for every face f of T ? that is not a bad node of T0 or T1, C ∩ f = C ′ ∩ f .)

B Claim 18. The face a0 is caressed by C ′.
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Figure 9 Cases 1 and 2 in the proof of Theorem 1 and the surgery performed in Case 2.

These two claims complete the proof because, together, they imply that C ′ caresses one
more node than C. Indeed, by definition, C did not caress any faces belonging to bad
nodes. Therefore, the first claim implies that the faces of T ? caressed by C ′ are a superset
of those caressed by C. The face a0 is a bad node of Ti so it is not caressed by C but the
second claim states that it is caressed by C ′. Therefore C ′ caresses at least one more face
than C.
This surgery recolours at most ∆ − 2 ≤ ∆ nodes of T0 and T1, so the difference in
length between C and C ′ is at most ∆2. If we start with a cycle C of length `, then
we can perform this surgery at least `/(4∆2) times before the length of C decreases
to less than `′ = `/2. If at some point during this process, we are no longer able to
perform this operation, it is because C caresses Ω(`′/∆4) = Ω(`/∆4) faces of T ? and
we are done. By the end of this process, the number of faces caressed by C is at least
`/(4∆2) ∈ Ω(`/∆2) ⊂ Ω(`/∆4) and we are also done.
Thus, all that remains is to prove Claim 17 and Claim 18.
To prove Claim 17 we observe that C and C ′ differ only on the boundaries of nodes
that are recoloured. Thus, it is sufficient to show that all nodes in R = ∪{N(v) : v ∈
{x0, . . . , xi−1, a1} are bad. But this is immediate since x0, . . . , xi−1 are really really bad
and a1 ∈ N(x0), so a1 is bad. Since every node in R share an edge with at least one of
{x0, . . . , xi−1, a1}, every node in R is therefore bad, as required.
To prove Claim 18 we consider the boundary of the face a0 of T ∗ after the recolouring
operation. This boundary consists of, in cyclic order:
a. An edge shared between a0 and a1. This edge is in C ′ since a0 is in T ′1 and a1 is in T ′0.
b. A path of edges shared with xi, . . . , xi+j . The nodes xi, . . . , xi+j are in T0 and are

distinct from x0, . . . , xi−1, so these nodes are in T ′0. Therefore, this part of the bounary
of a0 is contained in C ′.
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Figure 10 Performing surgery on C to obtain C′ that caresses a0.

c. An edge shared between a0 and another node a−1 =6= a1 of T1. The faces of a−1 are
in T ′1 because a1 is the only face that moves from T1 to T ′0. (T ′1 is the only face whose
colour goes from blue to red.)

d. A path of edges that contains at least one edge of Cy. If we fix an embedding in which
the outer face is some face of T1 other than a0, then this path contains a portion of
C that is traversed in clockwise order. By Lemma 12 This path does not contain
any edge of xi. Furthermore, this path does not contain any edges of x0, x1, . . . , xi−1
that are not on the outer face of T0 ∪ a1. Therefore, this path consists of a (possibly
empty) sequence of edges that are shared with x0, . . . , xi−1 followed by a sequence of
edges from Cy. The former part of this path is shared with nodes in T ′1, so these edges
are not in C ′. The latter part of this path is shared with nodes in Ty, which are all
contained contained in T ′0.

Therefore the intersection C ′ ∩ a0 consists of one connected component so a0 is caressed
by C ′. J

3 Discussion

It remains an open problem to eliminate the dependence of our results on the maximum
degree, ∆, of T . The next significant step is to resolve the following conjecture:

I Conjecture 19. If T is a triangulation whose dual T ? has a cycle of length `, then T ? has
a cycle that caresses Ω(`) faces. (Therefore, by Lemma 4 and Theorem 3, T has a collinear
set of size Ω(`).)
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