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Abstract
Let G be a directed graph with n vertices and m edges, embedded on a surface S, possibly with
boundary, with first Betti number β. We consider the complexity of finding closed directed walks
in G that are either contractible (trivial in homotopy) or bounding (trivial in integer homology)
in S. Specifically, we describe algorithms to determine whether G contains a simple contractible
cycle in O(n+m) time, or a contractible closed walk in O(n+m) time, or a bounding closed walk
in O(β(n+m)) time. Our algorithms rely on subtle relationships between strong connectivity in G
and in the dual graph G?; our contractible-closed-walk algorithm also relies on a seminal topological
result of Hass and Scott. We also prove that detecting simple bounding cycles is NP-hard.

We also describe three polynomial-time algorithms to compute shortest contractible closed walks,
depending on whether the fundamental group of the surface is free, abelian, or hyperbolic. A key
step in our algorithm for hyperbolic surfaces is the construction of a context-free grammar with
O(g2L2) non-terminals that generates all contractible closed walks of length at most L, and only
contractible closed walks, in a system of quads of genus g ≥ 2. Finally, we show that computing
shortest simple contractible cycles, shortest simple bounding cycles, and shortest bounding closed
walks are all NP-hard.
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1 Introduction

A key step in several algorithms for surface-embedded graphs is finding a shortest closed walk
and/or simple cycle in the input graph with some interesting topological property. There is a
large body of work on finding short interesting walks and cycles in undirected surface graphs,
starting with Thomassen’s seminal 3-path condition [49,55]. For example, efficient algorithms
are known for computing shortest non-contractible and non-separating cycles [7,12,27,28,46],
shortest contractible closed walks [10], simple cycles that are shortest in their own homotopy
class [11], and shortest closed walks in a given homotopy [18] or homology class [29], and for
detecting simple cycles that are either contractible, non-contractible, or non-separating [9].
On the other hand, several related problems are known to be NP-hard, including computing
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34:2 Topologically Trivial Closed Walks in Directed Surface Graphs

shortest splitting closed walks [13], computing shortest separating cycles [6], computing
shortest closed walks in a given homology class [14], and deciding whether a surface graph
contains a simple separating or splitting cycle [9].

Directed surface graphs are much less understood, in part because they do not share
convenient properties of undirected graphs, such as Thomassen’s 3-path condition [49,55],
or the assumption that if shortest paths are unique, then two shortest paths cross at most
once [26]. The first progress in this direction was a pair of algorithms by Cabello, Colin
de Verdière, and Lazarus [8], which compute shortest non-contractible and non-separating
cycles in directed surface graphs, with running times O(n2 logn) and O(g1/2n3/2 logn).
Erickson and Nayyeri described an algorithm to compute the shortest non-separating cycles
in 2O(g)n logn time [29]. Later Fox [33] described algorithms to compute shortest non-
contractible cycles in O(β3n logn) time and shortest non-separating cycles in O(β2n logn)
time on surfaces with first Betti number β. (As in previous papers, the input size n is the
total number of vertices and edges in the input graph.)

This paper describes the first algorithms and hardness results for finding topologically
trivial closed walks in directed surface graphs. Our results extend similar results of Cabello,
Colin de Verdière, and Lazarus [6, 9] for undirected surface graphs; however, our algorithms
require several new techniques, both in design and analysis. (On the other hand, our NP-
hardness proofs are actually simpler than the corresponding proofs for undirected graphs!)

We present results for eight different problems, determined by three independent design
choices. First, we consider two types of “trivial” closed walks: contractible walks, which can
be continuously deformed to a point, and bounding walks, which are weighted sums of face
boundaries. (See Section 2 for more detailed definitions.) Second, like Cabello et al. [6, 8, 9],
we carefully distinguish between closed walks and simple cycles throughout the paper. Finally,
we consider two different goals: deciding whether a given directed graph contains a trivial
cycle or closed walk, and finding the shortest trivial cycle or closed walk in a given directed
graph (possibly with weighted edges). Crucially, our algorithms do not assume that the faces
of the input embedding are open disks. Our results are summarized in Table 1.

Table 1 Our results; β is the first Betti number of the underlying surface.

Structure Surface Any Shortest
Simple contractible cycle any O(n) NP-hard
Contractible closed walk annulus O(n) O(n2 log logn)

torus O(n) O(n3 log logn)
boundary O(n) O(β5n3)

other O(n) O(β6n9)
Simple bounding cycle any NP-hard NP-hard
Bounding closed walk any O(βn) NP-hard

In Section 3, we describe linear-time algorithms to determine whether a directed surface
graph contains a simple contractible cycle or a contractible closed walk, matching similar
algorithms for undirected graphs by Cabello et al. [9]. Our algorithms are elementary: After
removing some obviously useless edges, we report success if and only if some face of the input
embedding has a (simple) contractible boundary. However, the proofs of correctness require
careful analysis of the dual graphs, and the correctness proof for contractible closed walks
relies on a subtle topological lemma of Hass and Scott [38]. These two problems are nontrivial
for directed graphs even if every face of the input embedding is a disk; see Figure 1.
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Figure 1 A cellularly embedded directed graph with no contractible or bounding closed walks.

In Section 4, we describe an algorithm to determine whether a directed surface graph
contains a bounding closed walk in O(βn) time. We exploit a careful analysis of the interplay
between strong connectivity in the input graph G and its dual graph G?. With some
additional effort, our algorithm can return an explicit description of a bounding closed walk
in O(n2) time if one exists; in the full paper [30, Section 4.2] we prove that this quadratic
upper bound is optimal. This problem can be reduced to finding zero cycles in periodic (or
“dynamic”) graphs [17,40,45]; a periodic graph is a graph whose edges are labeled with integer
vectors; a zero cycle is a closed walk whose edge labels sum to the zero vector. However, all
algorithms known for finding zero cycles rely on linear programming, and thus are much
more complex and much less efficient than the specialized algorithm we present.

Next, we propose three polynomial-time algorithms to compute shortest contractible
closed walks. Each of our algorithms is designed for a different class of surfaces, depending
whether the surface’s fundamental group is abelian (the annulus and the torus), free (any
surface with boundary), or hyperbolic (everything else). Our algorithm for the annulus
and torus uses a standard covering-space construction, together with a recent algorithm of
Mozes et al. [50]. For graphs on surfaces with boundary, we exploit the fact that the set of
trivial words for any finitely-generated free group is a context-free language [51, 54]; this
observation allows us to reduce to a small instance of the CFG shortest path problem [3,4,56].
We describe these two algorithms in detail in the full paper [30, Section 6]. In Section 5,
we describe our algorithm for hyperbolic surfaces, which also reduces to CFG shortest
paths; the main technical hurdle is the construction of an appropriate context-free grammar.
Specifically, for any integers g ≥ 2 and L ≥ 0, we construct a context-free grammar with
O(g2L2) nonterminals, in Chomsky normal form, that generates all contractible closed walks
of length L, and only contractible closed walks, in a canonical genus-g surface map called
a system of quads [31, 47]. Our construction exploits well-known geometric properties of
hyperbolic tilings.

Finally, in the full paper [30, Section 5], we prove that detecting simple bounding
cycles, finding shortest simple contractible cycles, and finding shortest bounding closed
walks are all NP-hard. Cabello [6] described a polynomial-time algorithm to compute the
shortest simple contractible cycle in an undirected surface graph; thus, our reduction for
that problem makes essential use of the fact that the input graph is directed. Cabello [6]
and Cabello et al. [9] proved that the other two problems are NP-hard in undirected surface
graphs. Our NP-hardness proofs closely follow theirs but are slightly simpler.

2 Background

Directed graphs. Let G be an arbitrary directed graph, possibly with loops and parallel
edges. Each edge of G is directed from one endpoint, called its tail, to the other endpoint,
called its head. An edge is a loop if its head and tail coincide. At the risk of confusing the
reader, we sometimes write u�v to denote an edge with tail u and head v.

SoCG 2019



34:4 Topologically Trivial Closed Walks in Directed Surface Graphs

A walk in G is an alternating sequence of vertices and edges v0�v1� · · ·�v`, where
vi�vi+1 is an edge in G for each index i; this walk is closed if v0 = v`. A simple cycle is a
closed walk that visits each vertex at most once. An edge cut in a directed graph G is a
nonempty subset X of edges such that G \X has two components, one containing the tails
of edges in X, and other containing the heads of edges in X. A directed graph is strongly
connected if it contains a walk from any vertex to any other vertex, or equivalently, if it
contains no edge cuts.

An (integer) circulation in a directed graph G is a function φ : E(G)→ N that satisfies
the balance constraint

∑
u�v φ(u�v) =

∑
v�w φ(v�w) for every vertex v. The support of φ

is the subset of edges e such that φ(e) > 0. An Euler tour of φ is a closed walk that traverses
each edge e exactly φ(e) times; such a walk exists if and only if the support of φ is connected.

Surfaces, embeddings, and duality. A surface is a 2-manifold, possibly with boundary.
A surface is orientable if it does not contain a Möbius band; we explicitly consider only
orientable surfaces in this paper.A closed curve on a surface S is (the image of) a continuous
map γ : S1 ↪→ S; a closed curve is simple if this map is injective. The boundary ∂S of S
consists of disjoint simple closed curves; the interior of S is the complement S◦ = S \ ∂S.
The genus of S is the maximum number of disjoint simple closed curves in S◦ whose deletion
leaves the surface connected. Up to homeomorphism, there is exactly one orientable surface
with genus g and b boundary cycles, for any non-negative integers g and b. The first Betti
number of an orientable surface is either 2g if b = 0, or 2g + b− 1 if b > 0.

An embedding of G on a surface S is a continuous map that sends vertices of G to distinct
points in S◦, and sends edges to interior-disjoint simple paths in S◦ from their tails to their
heads. In particular, if G contains two anti-parallel edges u�v and its reversal v�u, those
edges are embedded as interior-disjoint paths. The embedding of G maps every (simple)
closed walk in G to a (simple) closed curve in S◦; we usually do not distinguish between a
closed walk in G and its image in S.

We explicitly consider graphs with loops and parallel edges; however, without loss of
generality, we assume that no loop edge is the boundary of a disk, and no two parallel edges
are the boundary of a disk. With this assumption, Euler’s formula implies that a graph with
n vertices on a surface with first Betti number β has at most O(n+ β) edges.

A face of an embedding is a component of the complement of the image of the graph.
An embedding is cellular if every face is homeomorphic to an open disk. Unlike most
previous papers, we explicitly consider non-cellular graph embeddings; a single face can have
disconnected boundary and/or positive genus. Each directed edge e in a surface graph lies
on the boundary of two (possibly equal) faces, called the left shore and right shore of e. We
sometimes write f�f ′ to denote a directed edge whose left shore is f and whose right shore
is f ′. A boundary face of the embedding is any face that intersects the boundary of S.

A dual walk is an alternating sequence of faces and edges f0�f1� · · · �f`, where fi�fi+1 is
an edge in G for each index i. A dual walk is closed if its initial face f0 and final face f`
coincide; a dual walk is simple if the faces fi are distinct (except possibly f0 = f`). A simple
closed dual walk is called a cocycle. A minimal edge cut in a surface graph is the disjoint
union of at most g + 1 cocycles.

Every surface embedding of a directed graph G defines a directed dual graph G?, with
one vertex f? for each face f of G, and one edge e? for each edge e of G. Specifically, for any
edge e in G, we have tail(e?) = left(e)? and head(e?) = right(e)?, as shown in Figure 2. We
will treat G? exclusively as an abstract directed graph. Every dual walk in G corresponds to
a walk in G?; in particular, every cocycle in G corresponds to a cycle in G?.
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f g g*f*

Figure 2 Duality in directed surface graphs.

Contractible and bounding. Let α : [0, 1] → S and β : [0, 1] → S be two (not necessarily
simple) paths in S with the same endpoints. A homotopy between α and β is a continuous
function h : [0, 1]2 → S such that h(s, 0) = α(0) = β(0) and h(s, 1) = α(1) = β(1) for all s,
and h(0, t) = α(t) and h(1, t) = β(t) for all t. Two paths are homotopic, or in the same
homotopy class, if there is a homotopy between them. A closed curve γ in S (or a closed
walk in a surface graph G) is contractible if it is homotopic to a constant function. A simple
closed curve (or a simple cycle in G) is contractible in S if and only if it is the boundary of a
disk in S [25].

Mirroring classical terminology for curves in the plane [1,52], an Alexander numbering for
a surface graph G is a function α : F (G)→ Z that assigns an integer to each face of G, such
that α(f) = 0 for every boundary face f . The boundary ∂α of an Alexander numbering α is a
circulation ∂α : E(G)→ Z, defined by setting ∂α(e) = α(left(e))−α(right(e)). A closed walk
is bounding if and only if it is an Euler tour of some boundary circulation. Equivalently, a
closed walk (or its underlying circulation) is bounding if and only if its integer homology class
is trivial. (We refer to reader to Hatcher [39], Giblin [35], or Edelsbrunner and Harer [23] for
a more through introduction to homology.) On the sphere or the plane, every closed walk is
bounding, and every circulation is a boundary circulation; however, these equivalences do
not extend to other surfaces. (See Figure 1!) A simple cycle γ in G is bounding in S if and
only if S \ γ is disconnected; simple bounding cycles are often called separating cycles.

3 Contractible Cycles and Walks

3.1 Simple Cycles
I Lemma 1. Let G be a directed graph embedded on an orientable surface, and let e be a
directed edge that lies in a directed cocycle of G. No bounding closed walk (and in particular,
no simple contractible cycle) in G traverses e.

Proof. Let λ be a directed cocycle in G, and let ω be a bounding closed walk. Let
φ : E(G)→ N be the boundary circulation defined by setting φ(e) to the number of times
that ω traverses e, and let α : F (G)→ N be an Alexander numbering of ω (so that φ = ∂α).
We immediately have

∑
e∈λ φ(e) =

∑
e∈λ

(
α(right(e))− α(left(e))

)
= 0. Because φ(e) ≥ 0

for every edge e in G, it follows that φ(e) = 0 for every edge e ∈ λ. J

In light of this lemma, we can assume without loss of generality that G contains no
directed cocycles; in particular, no edge of G has the same face on both sides.

The boundary of a face f , denoted ∂f , is the set of edges that have f on one side.
The boundary of f is oriented clockwise if f is the right shore of any edge in ∂f , and
counterclockwise if f is the left shore of any edge in ∂f . Each face in G with counterclockwise
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boundary appears as a source in the dual graph G?; each face of G with clockwise boundary
appears as a sink in G?. We call a face coherent if its boundary is oriented either clockwise
or counterclockwise, and incoherent otherwise. See Figure 3.

Figure 3 A simple clockwise contractible cycle (bold green) in a directed surface graph, enclosing
four coherent faces: two counterclockwise (shaded blue) and two clockwise (shaded pink).

I Lemma 2. Let G be a directed graph with no cocycles, embedded on an orientable surface S.
If G contains a simple contractible directed cycle, then G has a face whose boundary is a
simple contractible directed cycle.

Proof. Let γ be a simple contractible cycle in G. This cycle is the boundary of a closed
disk D [25]. Without loss of generality, assume γ is oriented clockwise around D, so the right
shore of every edge in γ is a face in D.

A dual walk that starts at a face inside D cannot visit the same face more than once,
because G has no cocycles (G? has no cycles), and cannot cross γ, because γ is oriented
clockwise (all its dual edges point into D). Thus, D must contain at least one face f with
clockwise boundary (a sink in G?). The closure of f is a subset of the closed disk D, so it
must be homeomorphic to a closed disk with zero or more interior holes.

If ∂f is a simple directed cycle, we are done. Otherwise, ∂f is the union of two or more
edge-disjoint simple directed cycles; consider the non-simple shaded face in Figure 3. Each
of these cycles is contractible, because it lies in D. Any simple cycle in ∂f that is not the
original cycle γ (for example, the boundary of any hole in the closure of f) encloses strictly
fewer faces than γ. The lemma now follows immediately by induction on the number of
enclosed faces. J

I Theorem 3. Given an arbitrary directed graph G embedded on an arbitrary orientable
surface, we can determine in O(n) time whether G contains a simple contractible cycle.

Proof. The algorithm proceeds as follows. First, we compute the strong components of the
dual graph G? in O(n) time. An edge e of G lies in a cocycle if and only if both endpoints of
the dual edge e? lie in the same strong component of G?; we remove all such edges from G

in O(n) time. Finally, we examine each face of the remaining subgraph by brute force, in
O(n) time. If any face is an open disk whose boundary is a simple directed cycle, we output
True; otherwise, we output False. Correctness follows from Lemmas 1 and 2. J

3.2 Non-simple Closed Walks
It is easy to construct directed surface graphs that contain contractible closed walks but no
simple contractible cycles. For example, the one-vertex graph in Figure 4 has two Eulerian
circuits, both of which are contractible, but the only simple cycles consist of single edges,
none of which are contractible.
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Figure 4 A surface graph with contractible closed walks but no simple contractible cycles.

We detect contractible closed walks using essentially the algorithm described in the
previous section: After removing all cocycle edges, we look for a face whose boundary is
coherent and whose interior is an open disk. However, proving this algorithm correct requires
more subtlety. Here we only sketch a proof of correctness, deferring full details to the full
version [30, Section 3.2].

First, we observe that some shortest contractible closed walk in G is weakly simple,
meaning it can be perturbed in a small neighborhood of the graph into a simple closed
curve [15]. Let ω be a shortest contractible closed walk in G, and let ω̃ be a generic
perturbation of ω on the surface. A seminal result of Hass and Scott [38, Theorem 2.7]
implies that if ω̃ is not already simple, then it contains either a simple contractible closed
subpath, which we call a monogon, or a pair of simple interior-disjoint subpaths that bound
a disk, which we call a bigon. We call a bigon coherent if one subpath is homotopic to the
reverse of the other, and incoherent otherwise. See Figure 5. If ω̃ contained a monogon
or a coherent bigon, smoothing its endpoint(s) would give us shorter contractible closed
walk than ω, which is impossible. Smoothing the corners of incoherent bigons removes all
self-intersections from ω̃; we can mirror this smoothing by reordering subpaths of the walk ω.

Figure 5 Shortening or simplifying a contractible closed curve by smoothing at points of self-
intersection. From left to right: A monogon, a coherent bigon, and an incoherent bigon.

A simple winding-number argument implies that any weakly simple bounding walk in G
traverses each edge at most once.

Finally, we prove that if a graph G with no cocycles has a contractible closed walk,
then the boundary of some face of G is contractible, using a similar induction argument as
Lemma 2. If some weakly simple contractible closed walk ω encloses more than one face,
then it must enclose a face f with coherent boundary (a source or sink in G?). If face f is a
disk, we are done; otherwise, f is a disk with holes, and the boundary of any hole is another
weakly simple contractible closed walk that encloses fewer faces.

I Theorem 4. Given a directed graph G embedded on any surface, we can determine in
O(n) time whether there is a contractible closed walk in G.

If the face f has an interior hole, then the graph G must be disconnected, because the
interior of f is a subset of the open disk A. Thus, it may tempting to simplify our argument
by assuming “without loss of generality” that the graph G is connected. Unfortunately,
we cannot simultaneously assume that G is connected and that G contains no cocycles.
Resolving this tension lies at the core of our algorithm for finding bounding closed walks,
which we describe next.
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4 Bounding Closed Walks

To simplify our presentation, we assume in this section that our input graphs are embedded
on surfaces without boundary; this assumption is justified by the following observation. Let G
be a directed graph embedded on a surface S with b > 0 boundary cycles, and let S• be the
surface without boundary obtained from S by attaching a single disk with b− 1 holes to all
boundary cycles of S. All boundary faces of G on the original surface S are contained in a
single face of G on S•. If S has first Betti number β, then S• has genus O(β).

I Lemma 5. A closed walk ω in G is bounding in S if and only if it is bounding in S•.

Proof. Any Alexander numbering for ω on S is also an Alexander numbering for ω on S•.
Let α be any Alexander numbering for ω on S•. For any integer k, the function α+ k

defined as (α+ k)(f) = α(f) + k for every face is also an Alexander numbering for ω on S•.
Thus, there is an Alexander numbering α• of ω such that α•(f) = 0 for the single face of G
containing S• \ S. The function α• is an Alexander numbering for ω on S. J

Our algorithm for detecting bounding closed walks relies on two elementary observations.
First, we can assume without loss of generality that G is strongly connected, because any
closed walk in the input graph G stays within a single strong component of G. On the other
hand, Lemma 1 implies that we can assume without loss of generality that the input graph G
has no cocycles; otherwise, we can remove all cocycles in O(n) time by contracting each
strong component of the dual graph G? to a single dual vertex. Indeed, if the input graph
satisfies both of these conditions, finding bounding closed walks is trivial.

I Lemma 6. Let G be a strongly connected surface graph with at least one edge, whose dual
graph G? is acyclic. There is a bounding closed walk in G.

Proof. For each face f of G, let α(f) be the rank of the dual vertex f? in an arbitrary
topological sort of the dual graph G?. For each edge e in G, we have α(left(e)) > α(right(e)).
Thus, the function ∂α : e 7→ α(left(e))−α(right(e)) is a positive integer boundary circulation
with connected support. Any Euler tour of this circulation is a bounding closed walk. J

Kao and Shannon [41,43,44] observed that these two assumptions are actually identical
for planar graphs; a planar directed graph G is strongly connected if and only if its dual
graph G∗ is acyclic. (This important observation is the basis of several efficient algorithms
for planar directed graphs [2,41–44,53].) And indeed, finding bounding closed walks in planar
graphs is trivial, because every closed walk in a planar graph is bounding.

However, this equivalence does not extend to directed graphs on more complex surfaces;
a strongly connected directed surface graph can contain many directed cocycles. Moreover,
deleting all the directed cocycles from a strongly connected surface graph can disconnect
the graph. More subtly, if H is a disconnected surface graph without cocycles, the induced
embeddings of the individual components of H can contain cocycles. See Figure 6.

Our algorithm repeatedly applies both of these simplifications, alternately removing
cocycle edges and separating components, eventually reporting success if it ever finds a
component that is both strongly connected and cocycle-free. Each iteration can be performed
in O(n) time, and each iteration removes at least one edge, so conservatively, our algorithm
runs in O(n2) time. But in fact, our algorithm converges after only O(g) iterations. We only
sketch a proof of this claim in this extended abstract; see the full paper [30, Section 4.1] for
complete proofs.
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Figure 6 A strongly connected directed graph on the torus with cocycles (bold red). Deleting
all cocycles disconnects the graph. The components of the disconnected graph have more cocycles.
(Only one cocycle is emphasized in each component.)

I Lemma 7. Let H be a directed surface graph without cocycles. Every weak component
of H is strongly connected.

Proof. If a weak component of H is not strongly connected, then H contains a non-empty
directed edge cut. Every non-empty directed edge cut is the disjoint union of cocycles. J

We call any face of G simple if it is homeomorphic to an open disk and non-simple
otherwise. (The boundary of a simple face is not necessarily a simple cycle.)

I Lemma 8. Let G be a strongly connected surface graph, let H be the subgraph of G obtained
by deleting all cocycles, and let G′ be a (strong) component of H. Every simple face of G′ is
also a simple face of G.

I Corollary 9. Let G be a strongly connected surface graph, let H be the subgraph of G
obtained by deleting all cocycles, and let G′ be a (strong) component of H. Every directed
cocycle in G′ visits at least one non-simple face of G′.

We define the footprint JGK of a directed surface graph G as the union of the vertices,
edges, and simple faces of G. For example, the footprint of the middle graph in Figure 6 is
the disjoint union of two annuli. The embedding of G is cellular if and only if JGK is the
entire surface. Let β0(G) denote the number of (weak) components of G, or equivalently,
the number of components of its footprint JGK. Let β1(G) denote the first Betti number
of JGK, which is the rank of the first homology group of JGK. If G has at least one non-simple
face, then β1(G) := β0(G)− v(G) + e(G)− f0(G), where v(G), e(G), and f0(G) denote the
number of vertices, edges, and simple faces of G, respectively. If G (and therefore JGK) is
disconnected, then β1(G) is the sum of the first Betti numbers of its components.

I Lemma 10. Let G be a strongly connected surface graph, let H be the subgraph of G
obtained by deleting all cocycles, let G′ be a (strong) component of H, and let H ′ be the
subgraph of G′ obtained by deleting all cocycles. If H ′ 6= G′, then β1(H ′) < β1(G′).

I Theorem 11. Given a directed graph G embedded on any surface with genus g, we can
determine in O(gn) time whether there is a bounding closed walk in G.

Proof. Assume G is strongly connected, since otherwise, we can consider each strong
component of G separately. Let H be the graph obtained by deleting all cocycles of G. We
can construct H in O(n) time by computing the strong components of G? in linear time, and
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then deleting any edge of G whose incident faces lie in the same strong component of G?.
Lemma 1 implies that any bounding closed walk in G is also a bounding closed walk in H.

If H has no edges, we return False. If H is weakly connected and has at least one edge,
then, following Lemmas 6 and 7, we immediately return True. Otherwise, we recursively
examine each (strong) component of H. Each vertex of the input graph G participates in
only one subproblem at each level of recursion, so the total time spent at each level is O(n).
Finally, Lemma 10 implies that the depth of the recursion tree is at most O(g). J

5 Shortest Contractible Closed Walks

Finally, we describe polynomial-time algorithms to compute the shortest contractible closed
walk in a directed surface graph with weighted edges. In this extended abstract, we describe
only our algorithm for surfaces without boundary and with genus g ≥ 2. These are precisely
the surfaces whose fundamental groups are hyperbolic in the sense of Gromov [37], but not
free; as already observed by Dehn [19], the natural geometry for the universal cover of these
surfaces is the hyperbolic plane. (See Figure 8 below.) We describe our (simpler) algorithms
for other types of surfaces in the full paper [30, Section 6].

Ultimately, our algorithm reduces the problem of finding the shortest contractible cycle
to the CFG shortest path problem, introduced by Yannakakis [56]. Given a directed graph
G = (V,E) with weighted edges, a labeling ` : E → Σ ∪ {ε} for some finite set Σ, and a
context-free grammar G over the alphabet Σ, the CFG shortest path problem asks for the
shortest walk (if any) in G whose label is in the language generated by G. An algorithm of
Barrett et al. [3] solves the CFG shortest path problem in O(NPn3) time, where N and P
are the numbers of nonterminals and productions in G, respectively, and n is the number of
vertices in G, when the grammar G is in Chomsky normal form and all edge weights in G are
non-negative. (Their algorithm was extended to graphs with negative edges but no negative
cycles by Bradford and Thomas [4].) The main difficulty in our algorithm is the construction
of an appropriate context-free grammar.

Fix a directed graph G with non-negatively weighted edges, embedded on an orientable
surface S with genus g ≥ 2 and no boundary. Unlike previous sections, it will prove convenient
in this section to treat G as undirected, but with asymmetric edge weights, as proposed by
Cabello et al. [10]. That is, each undirected edge uv in G is composed of two darts u�v and
v�u with independent weights; a walk is alternating series of vertices and darts; and the
length of a walk is the sum of the weights of its darts, counted with appropriate multiplicity.
We also assume without loss of generality that the given embedding of G is cellular, meaning
every face is homeomorphic to an open disk. These assumptions can be enforced if necessary
by adding at most O(m) directed edges with (symbolically) infinite weight.

5.1 Edge Labeling

The first step in our algorithm is to label the edges of G so that the labels along any closed
walk encode its homotopy type. In principle, we can derive such a labeling by reducing G
to a system of loops [12, 22, 46]; however, this labeling leads to a less efficient algorithm.1
Instead, we reduce G to a different canonical surface decomposition called a system of quads,
as proposed by Lazarus and Rivaud [47] and Erickson and Whittlesey [31].

1 Specifically, the running time of the resulting algorithm has an extra facotr of gO(g) in the running time.
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Let (T, L,C) be an arbitrary tree-cotree decomposition of G, which partitions the edges
of G into a spanning tree T , a spanning tree C∗ of the dual graph G∗, and exactly 2g leftover
edges L [24]. Contracting every edge in T and deleting every edge in C reduces G to a
system of loops, which has one vertex a, one face f , and 2g loops L. To construct the system
of quads Q, we introduce a new vertex z in the interior of f , add edges between z and every
corner of f , and then delete the edges in L.

Next we label each directed edge e in G with a directed walk 〈e〉 in Q as follows. Every
walk 〈e〉 starts and ends at a and thus has even length. If e ∈ T , then 〈e〉 is the empty walk.
Otherwise, after contracting T , edge e connects two corners of f ; we define 〈e〉 as the walk
of length 2 in Q from the back corner of e, to z, and then to the front corner of e. (If e ∈ L,
there are two such walks; choose one arbitrarily.)

a

b

c

d

a

b

c

d

a

b

c

d

a

b

c

d z

Figure 7 Left: A fundamental polygon for a surface of genus 2, obtained by contracting a spanning
tree and cutting along a system of loops. Right: Mapping a directed non-tree edge to a path of
length 2 in the corresponding system of quads.

Finally, for any closed walk ω in G, let 〈ω〉 denote the closed walk in Q obtained by
concatenating of the labels of edges in ω in order. The closed walks ω and 〈ω〉 are freely
homotopic in S; in particular, ω is contractible if and only if 〈ω〉 is contractible. Moreover,
the number of edges in 〈ω〉 is at most twice the number of edges in ω.

The universal cover Q̂ of a system of quads Q is isomorphic to a regular tiling of the
hyperbolic plane by quadrilaterals meeting at vertices of degree 4g; see Figure 8. The covering
map from Q̂ to Q is a graph homomorphism (mapping vertices to vertices and edges to
edges), which (at the risk of confusing the reader) we also denote 〈·〉 : Q̂→ Q. A closed walk
in Q is contractible if and only if it is the projection of a closed walk in Q̂. Thus, a closed
walk ω in G is contractible if and only if there is a closed walk ω̂ in Q̂ such that 〈ω̂〉 = 〈ω〉.

5.2 Hyperbolic Geometry
Our algorithm exploits two well-known geometric properties of regular hyperbolic tilings:
the area of any ball in a hyperbolic tiling grows exponentially with its radius [36,48], and
the area enclosed by any simple cycle grows at most linearly with the cycle’s length [20,21].
In particular, we rely on the following immediate corollary of these two properties: The
distance from any point in the interior of a simple cycle in a regular hyperbolic tiling is at
most logarithmic in the length of that cycle; see Figure 9.

Classical results already imply this qualitative behavior for all regular hyperbolic tilings;
indeed, Chepoi et al. [16] have derived tight asymptotic bounds. However, we require precise
upper bounds for growth, isoperimetry, and in-radius in the specific tiling Q̂; the running
time of our algorithm ultimately depends exponentially on the constants in those bounds.

For any positive integer r, let N(r) denote the number of vertices at distance at most r
from an arbitrary basepoint vertex â of Q̂; we derive tight bounds on N(r) from a recurrence
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Figure 8 The universal cover of a genus-2 system of quads. (Compare with Figure 7.)

Figure 9 Simple closed curves in hyperbolic tilings have logarithmic in-radius.

of Floyd and Plotnick [32]. We derive our isoperimetric inequalities using the “spur and
bracket” analysis of Erickson and Whittlesey [31, Section 4.2], which is based in turn on
results of Gersten and Short [34], along with classical results of Dehn [20,21]. Our inradius
bound then follows immediately. See the full paper [30, Section 7.2] for further details.

I Lemma 12. N(r) ∼ βλr for some constants 1 < β < 2 and 4g − 3 < λ < 4g − 2. In
particular, N(r) ≥ λr for all r ≥ 0.

I Lemma 13. Any simple cycle of length L in Q̂ has less than 3L/2 faces of Q̂ in its interior.

I Lemma 14. Any simple cycle of length L in Q̂ has less than 2L/g vertices of Q̂ in its
interior.

I Lemma 15. Let γ be a simple cycle in Q̂ with length at most L. Every tiling vertex in the
interior of γ has distance at most ρ = dlogλ(2L/g)e from at least one vertex of γ.

5.3 Triangulation
Now let ω be a closed walk in Q̂ with a distinguished vertex â called its basepoint. Following
Muller and Schupp [51], define a k-triangulation of ω is a continuous map T from a reference
triangulation T of a simple polygon P to Q̂ with the following properties:
T maps vertices of P to vertices of ω.
T maps a distinguished edge of P , called the root edge, to the basepoint â.
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T maps the boundary of P continuously onto the walk ω; in particular, every edge of P
except the root edge is mapped to a single edge of ω.
Finally, T maps each diagonal edge in T to a walk of length at most k in Q̂.

This map is not necessarily an embedding, even locally. The diagonal walks may intersect
each other or ω, even if ω is a simple cycle; moreover, some diagonal walks may have length
zero if ω is not simple.

Figure 10 Any closed walk in a hyperbolic tiling can be “triangulated” by paths of logarithmic
length.

I Lemma 16. Every simple cycle of length L in Q̂ has a (2ρ + 2)-triangulation, where
ρ = dlogλ(2L/g)e.

Proof. Let γ be a simple cycle of length L in Q̂, and let Γ denote the closed disk bounded
by γ. Intuitively, we construct a “Delaunay triangulation” of the vertices of γ inside Γ.

For each tiling vertex x in Γ, let nn(x) denote its nearest neighbor on γ, measuring
distance by counting edges in Q̂ and breaking ties arbitrarily. In particular, if x ∈ γ, then
nn(x) = x. Lemma 15 implies that the distance from any vertex x to its nearest neighbor
nn(x) is at most ρ. Arbitrarily triangulate each tile in Γ to obtain a triangulation ∆. Let M
denote the set of all edges xy in ∆ such that nn(x) 6= nn(y). (Intuitively, M is a “discrete
medial axis” of Γ [5].) For each edge xy in M , let σ(x, y) denote a shortest path in Q̂

from nn(x) to nn(y); in particular, if xy is an edge of γ, then σ(x, y) = xy. The triangle
inequality implies that each shortest path σ(x, y) has length at most 2ρ+ 2. The shortest
paths {σ(x, y) | xy ∈M} are the paths of a (2ρ+ 2)-triangulation of γ. J

y

x

z z

x x x
w z w z

x x

y

x x
x x xx x xx

Figure 11 Top: Extending a k-triangulation across a spur. Bottom: Merging two k-triangulations
across a generic repeated vertex.
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We extend the previous construction to non-simple closed walks using a straightforward
induction argument. Any non-simple closed walk can be decomposed into two shorter closed
walks at a repeated vertex. The induction hypothesis gives us two (2ρ+ 2)-triangulations
for the shorter closed walks, which we can extend or combine into a (2ρ+ 2)-triangulation
for ω by case analysis, as suggested by Figure 11. We defer further details to the full
paper [30, Section 7.3].

I Lemma 17. Every closed walk of length L in Q̂ has a (2ρ + 2)-triangulation, where
ρ = dlogλ(2L/g)e.

5.4 Context-Free Grammar
Now finally we reach the key component of our algorithm: the construction of a small
context-free grammar G in Chomsky normal form such that the shortest contractible closed
walk in G is also the shortest walk whose label is in the language generated by G.

I Lemma 18. For any positive integer L, there is a context-free grammar G in Chomsky
normal form with O(g2L2) non-terminals, such that (1) Every string generated by G describes
a contractible closed walk in Q, and (2) every contractible closed walk in Q of length at
most L is generated by G.

Proof sketch. We closely follow a construction of Muller and Schupp [51, Theorem 1]. The
alphabet for our grammar consists of all 8g darts in Q. The variables of G correspond to
homotopy classes of walks of length at most 2ρ+ 2 in Q; in particular, the starting variable
corresponds to the class of contractible walks from vertex a to vertex a. The number of
nonterminals is

2N(2ρ+ 2) = O(λ2ρ+2) ≤ O(λ2 logλ(2L/g)+4) = O((2L/g)2 λ4) = O(g2L2)

by Lemma 12 and the definition of ρ. The non-terminal productions in G correspond to
concatenation of homotopy classes; crudely, there are at most O(g4L4) such productions.
Finally, the grammar includes a terminal production for the homotopy class of each dart. For
any closed walk ω of length L, and for any (2ρ+2)-triangulation T of ω, the dual tree of T is a
parse tree for ω in this grammar. We defer further details to the full paper [30, Section 7.4]. J

I Theorem 19. Let G be a directed graph with m non-negatively weighted edges, embedded on
the orientable surface of genus g with no boundary. We can compute the shortest contractible
closed walk in G in O(g6m9) time.

Proof. We construct the system of quads Q and label the edges of G in O(m) time. If
necessary, subdivide edges of G so that each edge is labeled with either the empty walk or a
single dart in Q. After subdivision, G has at most 2m edges, and therefore (because G is
symmetric) at most 2m vertices.

Then we build a context-free grammar G that generates only contractible walks in Q

and generates all non-empty contractible walks in Q of length at most 2m, as described in
Lemma 18. This grammar has N = O(g2m2) nonterminals and P = O(g4m4) productions.
Recall from Section 3.2 that some shortest contractible walk in G is weakly simple, and
therefore has at most 2m edges. It follows that G generates the label of some shortest
contractible walk in G.

Finally, we compute the shortest closed walk in G whose label is generated by G, using
the CFG-shortest-path algorithm of Barrett et al. [3], in O(NP (n′)3) = O(g6m9) time. J



J. Erickson and Y. Wang 34:15

References
1 James W. Alexander. Topological invariants of knots and links. Trans. Amer. Math. Soc.,

30(2):275–306, 1928. doi:10.1090/S0002-9947-1928-1501429-1.
2 Lars Arge, Laura Toma, and Norbert Zeh. I/O-efficient topological sorting of planar DAGs.

In Proc. 15th Ann. ACM Symp. Parallel Algorithms Arch., pages 85–93, 2003. doi:10.1145/
777412.777427.

3 Chris Barrett, Riko Jacob, and Madhav Marathe. Formal-language-constrained path problems.
SIAM J. Comput., 30(3):809–837, 2000. doi:10.1137/S0097539798337716.

4 Phillip G. Bradford and David A. Thomas. Labeled shortest paths in digraphs with negative
and positive edge weights. RAIRO-Theor. Inf. Appl., 43(3):567–583, 2009. doi:10.1051/ita/
2009011.

5 Jonathan W. Brandt. Convergence and continuity criteria for discrete approximations of
the continuous planar skeletons. CVGIP: Image Understanding, 59(1):116–124, 1994. doi:
10.1006/ciun.1994.1007.

6 Sergio Cabello. Finding shortest contractible and shortest separating cycles in embedded
graphs. ACM Trans. Algorithms, 6(2):24:1–24:18, 2010. doi:10.1145/1721837.1721840.

7 Sergio Cabello, Erin W. Chambers, and Jeff Erickson. Multiple-Source Shortest Paths in
Embedded Graphs. SIAM J. Comput., 42(4):1542–1571, 2013. doi:10.1137/120864271.

8 Sergio Cabello, Éric Colin de Verdière, and Francis Lazarus. Finding shortest non-trivial cycles
in directed graphs on surfaces. In Proc. 26th Ann. Symp. Comput. Geom., pages 156–165,
2010. doi:10.1145/1810959.1810988.

9 Sergio Cabello, Éric Colin de Verdière, and Francis Lazarus. Finding cycles with topological
properties in embedded graphs. SIAM J. Discrete Math., 25:1600–1614, 2011. doi:10.1137/
100810794.

10 Sergio Cabello, Éric Colin de Verdière, and Francis Lazarus. Finding shortest non-trivial
cycles in directed graphs on surfaces. J. Comput. Geom., 7(1):123–148, 2016. doi:10.20382/
jocg.v7i1a7.

11 Sergio Cabello, Matt DeVos, Jeff Erickson, and Bojan Mohar. Finding one tight cycle. ACM
Trans. Algorithms, 6(4):article 61, 2010. doi:10.1145/1824777.1824781.

12 Sergio Cabello and Bojan Mohar. Finding Shortest Non-Separating and Non-Contractible
Cycles for Topologically Embedded Graphs. Discrete Comput. Geom., 37(2):213–235, 2007.
doi:10.1007/s00454-006-1292-5.

13 Erin W. Chambers, Éric Colin de Verdière, Jeff Erickson, Francis Lazarus, and Kim Whittlesey.
Splitting (complicated) surfaces is hard. Comput. Geom. Theory Appl., 41(1–2):94–110, 2008.
doi:10.1016/j.comgeo.2007.10.010.

14 Erin W. Chambers, Jeff Erickson, and Amir Nayyeri. Minimum cuts and shortest homologous
cycles. In Proc. 25th Ann. Symp. Comput. Geom., pages 377–385, 2009. doi:10.1145/1542362.
1542426.

15 Hsien-Chih Chang, Jeff Erickson, and Chao Xu. Detecting weakly simple polygons. In
Proc. 26th ACM-SIAM Symp. Discrete Algorithms, pages 1655–1670, 2015. doi:10.1137/1.
9781611973730.110.

16 Victor Chepoi, Feodor Dragan, Bertrand Estellon, Michel Habib, and Yann Vaxès. Diameters,
centers, and approximating trees of δ-hyperbolic geodesic spaces and graphs. In Proc. 24th
Ann. Symp. Comput. Geom., pages 59–68, 2008. doi:10.1145/1377676.1377687.

17 Edith Cohen and Nimrod Megiddo. Strongly polynomial-time and NC algorithms for detecting
cycles in periodic graphs. J. Assoc. Comput. Mach., 40(4):791–830, 1993. doi:10.1145/
153724.153727.

18 Éric Colin de Verdière and Jeff Erickson. Tightening non-simple paths and cycles on surfaces.
SIAM J. Comput., 39(8):3784–3813, 2010. doi:10.1137/090761653.

19 Max Dehn. Über unendliche diskontinuierliche Gruppen. Math. Ann., 71(1):116–144, 1911.
URL: http://eudml.org/doc/158521.

SoCG 2019

http://dx.doi.org/10.1090/S0002-9947-1928-1501429-1
http://dx.doi.org/10.1145/777412.777427
http://dx.doi.org/10.1145/777412.777427
http://dx.doi.org/10.1137/S0097539798337716
http://dx.doi.org/10.1051/ita/2009011
http://dx.doi.org/10.1051/ita/2009011
http://dx.doi.org/10.1006/ciun.1994.1007
http://dx.doi.org/10.1006/ciun.1994.1007
http://dx.doi.org/10.1145/1721837.1721840
http://dx.doi.org/10.1137/120864271
http://dx.doi.org/10.1145/1810959.1810988
http://dx.doi.org/10.1137/100810794
http://dx.doi.org/10.1137/100810794
http://dx.doi.org/10.20382/jocg.v7i1a7
http://dx.doi.org/10.20382/jocg.v7i1a7
http://dx.doi.org/10.1145/1824777.1824781
http://dx.doi.org/10.1007/s00454-006-1292-5
http://dx.doi.org/10.1016/j.comgeo.2007.10.010
http://dx.doi.org/10.1145/1542362.1542426
http://dx.doi.org/10.1145/1542362.1542426
http://dx.doi.org/10.1137/1.9781611973730.110
http://dx.doi.org/10.1137/1.9781611973730.110
http://dx.doi.org/10.1145/1377676.1377687
http://dx.doi.org/10.1145/153724.153727
http://dx.doi.org/10.1145/153724.153727
http://dx.doi.org/10.1137/090761653
http://eudml.org/doc/158521


34:16 Topologically Trivial Closed Walks in Directed Surface Graphs

20 Max Dehn. Transformation der Kurven auf zweiseitigen Flächen. Math. Ann., 72(3):413–421,
1912. doi:10.1007/BF01456725.

21 Max Dehn. Papers on Group Theory and Topology. Springer, 1987. Translated by John
Stillwell. doi:10.1007/978-1-4612-4668-8.

22 Tamal K. Dey and Sumanta Guha. Transforming Curves on Surfaces. J. Comput. System
Sci., 58:297–325, 1999. doi:10.1006/jcss.1998.1619.

23 Herbert Edelsbrunner and John L. Harer. Computational Topology: An Introduction. Amer.
Math. Soc., 2010.

24 David Eppstein. Dynamic generators of topologically embedded graphs. In Proc. 14th Ann.
ACM-SIAM Symp. Discrete Algorithms, pages 599–608, 2003.

25 David B. A. Epstein. Curves on 2-manifolds and isotopies. Acta Mathematica, 115:83–107,
1966. doi:10.1007/BF02392203.

26 Jeff Erickson. Shortest Non-trivial Cycles in Directed Surface Graphs. In Proc. 27th Ann.
Symp. Comput. Geom., pages 236–243, 2011. doi:10.1145/1998196.1998231.

27 Jeff Erickson, Kyle Fox, and Luvsandondov Lkhamsuren. Holiest minimum-cost paths and
flows in surface graphs. In Proc. 50th Ann. ACM Symp. Theory Comput., pages 1319–1332,
2018. doi:10.1145/3188745.3188904.

28 Jeff Erickson and Sariel Har-Peled. Optimally cutting a surface into a disk. Discrete Comput.
Geom., 31(1):37–59, 2004. doi:10.1007/s00454-003-2948-z.

29 Jeff Erickson and Amir Nayyeri. Minimum cuts and shortest non-separating cycles via homology
covers. In Proc. 22nd Ann. ACM-SIAM Symp. Discrete Algorithms, pages 1166–1176, 2011.
doi:10.1137/1.9781611973082.88.

30 Jeff Erickson and Yipu Wang. Topologically Trivial Closed Walks in Directed Surface Graphs.
Preprint, March 2019. arXiv:1812.01564.

31 Jeff Erickson and Kim Whittlesey. Transforming Curves on Surfaces redux. In Proc.
24th Ann. ACM-SIAM Symp. Discrete Algorithms, pages 1646–1655, 2013. doi:10.1137/1.
9781611973105.118.

32 William J. Floyd and Steven J. Plotnick. Growth functions on Fuchsian groups and the Euler
characteristic. Invent. Math., 88(1):1–29, 1987. doi:10.1007/BF01405088.

33 Kyle Fox. Shortest Non-trivial Cycles in Directed and Undirected Surface Graphs. In Proc.
24th Ann. ACM-SIAM Symp. Discrete Algorithms, pages 352–364, 2013. doi:10.1137/1.
9781611973105.26.

34 Steve M. Gersten and Hamish B. Short. Small cancellation theory and automatic groups.
Invent. Math., 102:305–334, 1990. doi:10.1007/BF01233430.

35 Peter Giblin. Graphs, Surfaces and Homology. Cambridge Univ. Press, 3rd edition, 2010.
36 Rostislav Grigorichuk and Pierre de la Harpe. On problems related to growth, entropy and

spectrum in group theory. J. Dynam. Control Systems, 3(1):51–89, 1997. doi:10.1007/
BF02471762.

37 Mikhail Gromov. Hyperbolic Groups. In Steve M. Gersten, editor, Essays in Group Theory,
number 8 in Math. Sci. Res. Inst. Pub., pages 75–265. Springer-Verlag, 1987.

38 Joel Hass and Peter Scott. Intersections of curves on surfaces. Israel J. Math., 51:90–120,
1985. doi:10.1007/BF02772960.

39 Allen Hatcher. Algebraic Topology. Cambridge Univ. Press, 2002. URL: http://www.math.
cornell.edu/~hatcher/AT/ATpage.html.

40 Kazuo Iwano and Kenneth Steiglitz. A semiring on convex polygons and zero-sum cycle
problems. SIAM J. Comput., 19(5):883–901, 1990. doi:10.1137/0219061.

41 Ming-Yang Kao. Linear-processor NC algorithms for planar directed graphs I: Strongly
connected components. SIAM J. Comput., 22(3):431–459, 1993. doi:10.1137/0222032.

42 Ming-Yang Kao and Philip N. Klein. Toward overcoming the transitive-closure bottleneck:
Efficient parallel algorithms for planar digraphs. J. Comput. Syst. Sci., 47(3):459–500, 1993.
doi:10.1016/0022-0000(93)90042-U.

http://dx.doi.org/10.1007/BF01456725
http://dx.doi.org/10.1007/978-1-4612-4668-8
http://dx.doi.org/10.1006/jcss.1998.1619
http://dx.doi.org/10.1007/BF02392203
http://dx.doi.org/10.1145/1998196.1998231
http://dx.doi.org/10.1145/3188745.3188904
http://dx.doi.org/10.1007/s00454-003-2948-z
http://dx.doi.org/10.1137/1.9781611973082.88
http://arxiv.org/abs/1812.01564
http://dx.doi.org/10.1137/1.9781611973105.118
http://dx.doi.org/10.1137/1.9781611973105.118
http://dx.doi.org/10.1007/BF01405088
http://dx.doi.org/10.1137/1.9781611973105.26
http://dx.doi.org/10.1137/1.9781611973105.26
http://dx.doi.org/10.1007/BF01233430
http://dx.doi.org/10.1007/BF02471762
http://dx.doi.org/10.1007/BF02471762
http://dx.doi.org/10.1007/BF02772960
http://www.math.cornell.edu/~hatcher/AT/ATpage.html
http://www.math.cornell.edu/~hatcher/AT/ATpage.html
http://dx.doi.org/10.1137/0219061
http://dx.doi.org/10.1137/0222032
http://dx.doi.org/10.1016/0022-0000(93)90042-U


J. Erickson and Y. Wang 34:17

43 Ming-Yang Kao and Gregory E. Shannon. Local reorientation, global order, and planar
topology. In Proc. 21st Ann. ACM Symp. Theory Comput., pages 286–296, 1989. doi:
10.1145/73007.73034.

44 Ming-Yang Kao and Gregory E. Shannon. Linear-processor NC algorithms for planar directed
graphs II: Directed spanning trees. SIAM J. Comput., 22(3):460–481, 1993. doi:10.1137/
0222033.

45 S. Rao Kosaraju and Gregory F. Sullivan. Detecting cycles in dynamic graphs in polynomial
time (preliminary version). In Proc. 20th ACM Symp. Theory. Comput., pages 398–406, 1988.
doi:10.1145/62212.62251.

46 Martin Kutz. Computing shortest non-trivial cycles on orientable surfaces of bounded genus
in almost linear time. In Proc. 22nd Ann. Symp. Comput. Geom., pages 430–438, 2006.
doi:10.1145/1137856.1137919.

47 Francis Lazarus and Julien Rivaud. On the homotopy test on surfaces. In Proc. 53rd Ann.
IEEE Symp. Foundations Comput. Sci., pages 440–449, 2012. doi:10.1109/FOCS.2012.12.

48 John Milnor. A note on curvature and the fundamental group. J. Diff. Geom., 2(1):1–7, 1968.
doi:10.4310/jdg/1214501132.

49 Bojan Mohar and Carsten Thomassen. Graphs on Surfaces. Johns Hopkins Univ. Press, 2001.
50 Shay Mozes, Kirill Nikolaev, Yahav Nussbaum, and Oren Weimann. Minimum Cut of Directed

Planar Graphs in O(n log logn) Time. In Proc. 29th Ann. ACM-SIAM Symp. Discrete
Algorithms, pages 477–494, 2018. doi:10.1137/1.9781611975031.32.

51 David E. Muller and Paul E. Schupp. Groups, the theory of ends, and context-free languages.
J. Comput. System Sci., 26(3):295–310, 1983. doi:10.1016/0022-0000(83)90003-X.

52 August F. Möbius. Über der Bestimmung des Inhaltes eines Polyëders. Ber. Sächs. Akad.
Wiss. Leipzig, Math.-Phys. Kl., 17:31–68, 1865. Gesammelte Werke 2:473–512, Liepzig, 1886.

53 Vijaya Ramachandran and Honghua Yang. Finding the closed partition of a planar graph.
Algorithmica, 11(5):443–468, 1994. doi:10.1007/BF01293266.

54 L. B. Smikun. Connection between context-free groups and groups with decidable problems of
automata equivalence. Cybernetics, 12(5):687–691, 1976. Translated from Kibernetika (Kiev)
(5):33–37, 1976. doi:10.1007/BF01070252.

55 Carsten Thomassen. Embeddings of graphs with no short noncontractible cycles. J. Comb.
Theory Ser. B, 48(2):155–177, 1990. doi:10.1016/0095-8956(90)90115-G.

56 Mihalis Yannakakis. Graph-theoretic methods in database theory. In Proc. 9th ACM SIGACT-
SIGMOD-SIGART Symp. Principles Database Syst., pages 230–242, 1990. doi:10.1145/
298514.298576.

SoCG 2019

http://dx.doi.org/10.1145/73007.73034
http://dx.doi.org/10.1145/73007.73034
http://dx.doi.org/10.1137/0222033
http://dx.doi.org/10.1137/0222033
http://dx.doi.org/10.1145/62212.62251
http://dx.doi.org/10.1145/1137856.1137919
http://dx.doi.org/10.1109/FOCS.2012.12
http://dx.doi.org/10.4310/jdg/1214501132
http://dx.doi.org/10.1137/1.9781611975031.32
http://dx.doi.org/10.1016/0022-0000(83)90003-X
http://dx.doi.org/10.1007/BF01293266
http://dx.doi.org/10.1007/BF01070252
http://dx.doi.org/10.1016/0095-8956(90)90115-G
http://dx.doi.org/10.1145/298514.298576
http://dx.doi.org/10.1145/298514.298576

	Introduction
	Background
	Contractible Cycles and Walks
	Simple Cycles
	Non-simple Closed Walks

	Bounding Closed Walks
	Shortest Contractible Closed Walks
	Edge Labeling
	Hyperbolic Geometry
	Triangulation
	Context-Free Grammar


