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Abstract
We revisit an algorithm of Clarkson et al. [1], that computes (roughly) a 1/(4d2)-centerpoint in Õ(d9)
time, for a point set in Rd, where Õ hides polylogarithmic terms. We present an improved algorithm
that computes (roughly) a 1/d2-centerpoint with running time Õ(d7). While the improvements are
(arguably) mild, it is the first progress on this well known problem in over twenty years. The new
algorithm is simpler, and the running time bound follows by a simple random walk argument, which
we believe to be of independent interest. We also present several new applications of the improved
centerpoint algorithm.
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1 Introduction

Notation

In the following O(·) hides constants that do not depend on the dimension. Od(·) hides
constants that depend on the dimension (usually badly – exponential or doubly exponential,
or even worse). The notation Õ(·) hides polylogarithmic factors, where the power of the
polylog is independent of the dimension.

Computing centerpoints

A classical implication of Helly’s theorem, is that for any set P of n points in Rd, there
is a 1/(d + 1)-centerpoint. Specifically, given a constant α ∈ (0, 1), a point c ∈ Rd is an
α-centerpoint if all closed halfspaces containing c also contain at least αn points of P . It
is currently unknown if one can compute a Ω(1/d)-centerpoint in polynomial time (in the
dimension). A randomized polynomial time algorithm was presented by Clarkson et al. [1],
that computes (roughly) a 1/(4d2)-centerpoint in Õ(d9) time.

Weak ε-nets

Consider the range space (P, C), where P is a set of n points in Rd, and C is the set of all
convex shapes in Rd. This range space has infinite VC dimension, and as such it is impervious
to the standard ε-net constructions. Weak ε-nets bypass this issue by using points outside the
point set. While there is significant amount of work on weak ε-nets, the constructions known
are not easy and result in somewhat large sets. The state of the art is the work by Matoušek
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41:2 Journey to the Center of the Point Set

and Wagner [10], which shows a weak ε-net construction of size O(ε−d(log ε−1)O(d2 log d)).
Rubin recently improved this result for points in R2, proving the existence of weak ε-nets of
size O

(
ε−(1.5+γ)) for arbitrarily small γ > 0 [15]. Such a weak ε-net W has the guarantee

that any convex set C that contains at least εn points of P , must contain at least one point
of W. See [13] for a recent survey of ε-nets and related concepts. See also the recent work
by Rok and Smorodinsky [14] and references therein.

Basis of weak ε-nets

Mustafa and Ray [12] showed that one can pick a random sample S of size cdε−1 log ε−1 from
P , and then compute a weak ε-net for P directly from S, showing that the size of the support
needed to compute a weak ε-net is (roughly) the size of a regular ε-net. Unfortunately, the
constant in their sample cd = O

(
dd(log d)cd

3 log d) is doubly exponential in the dimension.
This constant cd is related to the ((d+ 1)2, d+ 1)-Hadwiger-Debrunner number (the best
known upper bounds on (p, q)-Hadwiger-Debrunner numbers can be found in [7, 6]).

In particular, all current results about weak ε-nets suffer from the “curse of dimensionality”
and have constants that are at least doubly exponential in the dimension.

Our results

Let P be a set of n points in Rd. In addition to the improved algorithm for computing
approximate centerpoints, we also suggest two alternatives to weak ε-nets as applications,
and obtain some related results:
(a) Approximating centerpoints. We revisit the algorithm of Clarkson et al. [1] for

approximating a centerpoint. We present an improved algorithm, which is a variant of
their algorithm which runs in Õ(d7) time, and computes roughly a 1/(d+ 2)2-centerpoint.
This improves both the running time, and the quality of centerpoint computed. While
the improvements are small (a factor of d2 roughly in the running time, and a factor
of four in the centerpoint quality), we believe that the new algorithm is simpler. The
analysis is cleaner, and is of independent interest. In particular, the analysis uses a
random walk argument, which is quite uncommon in computational geometry, and (we
believe) is of independent interest. See Theorem 18. This is the first improvement of the
randomized algorithm of Clarkson et al. [1] in over twenty years. Miller and Sheehy also
derandomized the algorithm of Clarkson et al., computing a Ω(1/d2)-centerpoint in time
nO(log d) [11].

(b) Lowerbounding convex functions. Given a convex function f in Rd, such that one
can compute its value and gradient at a point efficiently, we present an algorithm that
computes quickly a realizable lower-bound on the value of f over P . Formally, the
algorithm computes a point q ∈ Rd, such that f(q) ≤ minp∈P f(p). The algorithm is
somewhat similar in spirit to the ellipsoid algorithm. The running time of the algorithm
is Õ

(
d9). See Theorem 22.

(c) Functional nets. Let C ⊆ Rd be a convex body. Suppose we are only given access to C
via a separation oracle: given a query point q, the oracle either returns that q is in C,
or alternatively, the oracle returns a hyperplane separating q and C. We show that a
random sample of size

O
(
ε−1d3 log d log3 ε−1 + ε−1 logϕ−1) = Õ

(
d3/ε

)
,

with probability ≥ 1 − ϕ, can be used to decide if a query convex body C is ε-light.
Formally, the algorithm, using only the sample, performs O(d2 log ε−1) oracle queries – if
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any of the query points generated stabs C, then C is considered as (potentially) containing
more than εn points. Alternatively, if all the queries missed C, then C contains less
than εn points of P . The query points can be computed in polynomial time, and we
emphasize that the dependency in the running time and sample size are polynomial in ε
and d. See Theorem 28. As such, this result can be viewed as slightly mitigating the
curse of dimensionality in the context of weak ε-nets.

(d) Center nets. Using the above, one can also construct a weak ε-net directly from such a
sample – this improves over the result of Mustafa and Ray [12] as far as the dependency
on the dimension is concerned. This is construction is described in Lemma 33.
Surprisingly, by using ideas from Theorem 28 one can get a stronger form of a weak
ε-net, which we refer to as an (ε, α)-center net. Here α = Ω(1/(d log ε−1)) and one can
compute a set W of size (roughly) Õd

(
ε−O(d2)), such that if a convex body C contains

≥ εn points of P , then W contains a point q which is an α-centerpoint of C∩P . Namely,
the net contains a point that stabs C in the “middle” as far as the point set C ∩ P . See
Theorem 38.

Paper organization

The improved centerpoint approximation algorithm is described in Section 3. Two applications
of the improved centerpoint algorithm are presented in Section 4. The construction of center
nets is described in Section 5. Background and standard tools used are described in Section 2.

2 Background

2.1 Ranges spaces, VC dimension, samples and nets
The following is a quick survey of (standard) known results about ε-nets, ε-samples, and
relative approximations [2].

I Definition 1. A range space S is a pair (X̂,R), where X̂ is a ground set (finite or
infinite) and R is a (finite or infinite) family of subsets of X̂. The elements of X̂ are points
and the elements of R are ranges.

For technical reasons, it will be easier to consider a finite subset X ⊆ X̂ as the underlining
ground set.

I Definition 2. Let S = (X̂,R) be a range space, and let X be a finite (fixed) subset of X̂.
For a range r ∈ R, its measure is the quantity m(r) = |r ∩ X|/|X|. For a subset S ⊆ X, its
estimate of m(r), for r ∈ R, is the quantity s(r) = |r ∩ S|/|S|.

I Definition 3. Let S = (X̂,R) be a range space. For Y ⊆ X̂, let R|Y =
{

r ∩ Y
∣∣∣ r ∈ R

}
denote the projection of R on Y . The range space S projected to Y is S|Y =

(
Y,R|Y

)
. If

R|Y contains all subsets of Y (i.e., if Y is finite, we have
∣∣R|Y ∣∣ = 2|Y |), then Y is shattered

by R (or equivalently Y is shattered by S).
The VC dimension of S, denoted by dimVC(S), is the maximum cardinality of a shattered

subset of X̂. If there are arbitrarily large shattered subsets, then dimVC(S) =∞.

I Definition 4. Let S = (X̂,R) be a range space, and let X be a finite subset of X̂. For
0 ≤ ε ≤ 1, a subset S ⊆ X is an ε-sample for X if for any range r ∈ R, we have
|m(r) − s(r)| ≤ ε, see Definition 2. Similarly, a set S ⊆ X is an ε-net for X if for any
range r ∈ R, if m(r) ≥ ε (i.e., |r ∩ X| ≥ ε |X|), then r contains at least one point of S (i.e.,
r ∩ S 6= ∅).

SoCG 2019



41:4 Journey to the Center of the Point Set

A generalization of both concepts is relative approximation. Let p, ε̂ > 0 be two fixed
constants. A relative (p, ε̂)-approximation is a subset S ⊆ X that satisfies (1− ε̂)m(r) ≤
s(r) ≤ (1 + ε̂)m(r), for any r ∈ C such that m(r) ≥ p. If m(r) < p then the requirement is
that |s(r)−m(r)| ≤ ε̂p.

I Theorem 5 (ε-net theorem, [5]). Let (X̂,R) be a range space of VC dimension ξ, let X be
a finite subset of X̂, and suppose that 0 < ε ≤ 1 and ϕ < 1. Let N be a set obtained by m
random independent draws from X, where m ≥ max

(
4
ε lg 4

ϕ ,
8ξ
ε lg 16

ε

)
. Then N is an ε-net

for X with probability at least 1− ϕ.

The following is a slight strengthening of the result of Vapnik and Chervonenkis [16] –
see [2, Theorem 7.13].

I Theorem 6 (ε-sample theorem). Let ϕ, ε > 0 be parameters and let
(
X̂,R

)
be a range space

with VC dimension ξ. Let X ⊂ X̂ be a finite subset. A sample of size O
(
ε−2(ξ + logϕ−1))

from X is an ε-sample for S = (X,R) with probability ≥ 1− ϕ.

I Theorem 7 ([8, 3]). A sample S of size O
(
ε̂−2p−1(ξ log p−1 + logϕ−1)) from a range

space with VC dimension ξ, is a relative (p, ε̂)-approximation with probability ≥ 1− ϕ.

The following is a standard statement on the VC dimension of a range space formed by
mixing several range spaces together (see [2]).

I Lemma 8. Let S1 = (X̂1, C1), . . . ,Sk = (X̂, Ck) be k range spaces, which all have VC
dimension ξ. Consider the new set of ranges Ĉ = {r1 ∩ . . . ∩ rk | r1 ∈ R1, . . . , rk ∈ Rk} .
Then the range space Ŝ = (X̂, Ĉ) has VC dimension O(ξk log k).

2.2 Weak ε-nets
A convex body C ⊆ Rd is ε-heavy (or just heavy) if m(C) ≥ ε (i.e., |C ∩ P | ≥ ε |P |).
Otherwise, C is ε-light.

I Definition 9 (Weak ε-net). Let P be a set of n points in Rd. A finite set S ⊂ Rd is a
weak ε-net for P if for any convex set C with m(C) ≥ ε, we have S ∩ C 6= ∅.

Note, that like (regular) ε-nets, weak ε-nets have one-sided error – if C is heavy then the
net must stab it, but if C is light then the net may or may not stab it.

2.3 Centerpoints
Given a set P of n points in Rd, and a constant α ∈ (0, 1/(d + 1)], a point c ∈ Rd is an
α-centerpoint if for any closed halfspace that contains c, the halfspace also contains at least
αn points of P . It is a classical consequence of Helly’s theorem that a 1/(d+ 1)-centerpoint
always exists. If a point c ∈ Rd is a 1/(d+ 1)-centerpoint for P , we omit the 1/(d+ 1) and
simply say that c is a centerpoint for P .

3 Approximating the centerpoint via Radon’s urn

We revisit the algorithm of Clarkson et al. [1] for approximating a centerpoint. We give a
variant of their algorithm, and present a different (and we believe cleaner) analysis of the
algorithm. In the process we improve the running time from being roughly Õ

(
d9) to Õ(d7),

and also improve the quality of centerpoint computed.
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3.1 Radon’s urn
3.1.1 Setup
In the Radon’s urn game there are r red balls, and b = n − r blue balls in an urn, and
there is a parameter t. An iteration of the game goes as follows:
(a) The player picks a random ball, marks it for deletion, and returns it to the urn.
(b) The player picks a sample S of t balls (with replacement – which implies that we might

have several copies of the same ball in the sample) from the urn.
(c) If at least two of the balls in the sample S are red, the player inserts a new red ball into

the urn. Otherwise, the player inserts a new blue ball.
(d) The player returns the sample to the urn.
(e) Finally, the player removes the ball marked for deletion from the urn.

Note that in each stage of the game, the number of balls in the urn remains the same.
We are interested in how many rounds of the game one has to play till there are no red balls
in the urn with high probability. Here, the initial value of r (i.e., r0) is going to be relatively
small compared to n.

3.2 Analysis
Let P (r) be the probability of picking two or more red balls into the sample, assuming that
there are r red balls in the urn. We have that

P (r) =
t∑
i=2

(
t

i

)( r
n

)i(
1− r

n

)t−i
≤
(
t

2

)( r
n

)2
≤ t2

2

( r
n

)2
.

Note, that P (r) ≤ 1/8 if n ≥ 2tr. Let P+(r) be the probability that the number of red balls
increased in this iteration. For this to happen, at least two red balls had to be in the sample,
and the deleted ball must be blue. Let P−(r) be the probability that the number of red balls
decreases – the player needs to pick strictly less than two red balls in the sample, and delete
a red ball. This implies

P+(r) = P (r)(1− r/n) ≤ P (r) and P−(r) = (1− P (r))(r/n).

The probability for a change in the number of red balls at this iteration is

P±(r) = P+(r) + P−(r) = P (r)(1− r/n) + (1− P (r))(r/n) = (1− 2r/n)P (r) + r/n.

I Lemma 10. Let ξ ∈ (0, 1/4) be a parameter. If r ≤ R, then

P+(r) ≤ 1/2− ξ
1/2 + ξ

P−(r), where R = (1− 2ξ) n
t2
.

To simplify exposition, we choose ξ = 1/6 so that P+(r) ≤ P−(r)/2. In the remaining
analysis, the proofs involving tedious calculations are given in the full version of this paper [4],
with the modification that the statement of the lemmas and proofs involve the parameter ξ.

What are we analyzing?

The value R/n is an upper bound on the ratio of red balls that the urn can have and still,
with good probability, end with zero red balls at the end of the game. If this ratio is violated
anytime during the game, then the urn might end up consisting of only red balls. We want
to start the game with an urn initially having close to R red balls, but still end up with an
entirely blue urn with sufficiently high probability.

SoCG 2019



41:6 Journey to the Center of the Point Set

The question

Let ϑ ∈ (0, 1) and r0 = (1− ϑ)R be the number of red balls in the urn at the start of the
game (note that both r0 and R are functions of n and t). Let ϕ > 0 be a parameter. The key
question is the following: How large does n need to be so that if we start with r0 red balls
(and n− r0 blue balls), the game ends with all balls being blue with probability ≥ 1− ϕ?

The game as a random walk

An iteration of the game where the number of red balls changes is an effective iteration.
Considering only the effective iterations, this can be interpreted as a random walk starting
at X0 = (1− ϑ)R and at every iteration either decreasing the value by one with probability
at least 2/3, and increasing the value with probability at most 1/3 (since P+(r) ≤ P−(r)/2).
This walk ends when either it reaches 0 or R. If the walks reaches R, then the process fails.
Otherwise if the walk reaches 0, then there are no red balls in the urn, as desired.

3.2.1 Analyzing the related walk
Consider the random walk that starts at Y0 = (1− ϑ)R. In the ith iteration, Yi = Yi−1 − 1
with probability 2/3 and Yi = Yi−1 + 1 with probability 1/3. Let Y = Y1, Y2, . . . be the
resulting random walk which stochastically dominates the walk X0, X1, . . .. This walk is
strongly biased towards going to 0, and as such it does not hang around too long before
moving on, as testified by the following lemma.

I Lemma 11. Let I be any integer number, and let ϕ > 0 be a parameter. The number of
times the random walk Y visits I is at most 9 ln(9/ϕ) times, and this holds with probability
≥ 1− ϕ.

We next bound the probability that the walk fails.

I Lemma 12. Let ϕ > 0 be a parameter. If R ≥ 3
ϑ

ln 9
ϕ

then the probability that the random

walk ever visits R (and thus fails) is bounded by ϕ.

3.2.2 Back to the urn
The number of red balls in the urn is stochastically dominated by the random walk above.
The challenge is that the number of iterations one has to play before an effective iteration
happens (thus, corresponding to one step of the above walk), depends on the number of red
balls, and behaves like the coupon collector problem. Specifically, if there are r ≤ R red balls
in the urn, then the probability for an effective step is P±(r) ≥ (1− P (r))(r/n) ≥ r/2n, as
P (r) ≤ 1/2. This implies that, in expectation, one has to wait at most 2n/r iterations before
an effective iteration happens.

I Lemma 13. Let ϕ > 0 be the probability of failure. For any value r ≤ R, the urn spends
at most O

(
(n/r) log(ϕ−1)

)
regular iterations, throughout the game, having exactly r balls in

it, with probability ≥ 1− ϕ.

I Lemma 14. Let ϕ > 0 and ϑ ∈ (0, 1) be parameters, and assume that n = Ω
(
t2

ϑ
ln 1
ϕ

)
.

The total number of regular iterations one has to play till the urn contains only blue balls, is
O
(
n logn log(nϕ−1)

)
, and this bound holds with probability ≥ 1− ϕ.
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3.3 Approximating a centerpoint
3.3.1 The algorithm
Before describing the algorithm, we need the following well known facts [9]:
(a) Radon’s theorem: Given a set T of d+ 2 points in Rd, one can partition T into two

non-empty sets T1, T2, such that CH(T1) ∩ CH(T2) 6= ∅. A point p ∈ CH(T1) ∩ CH(T2)
is a Radon point.

(b) Computing a Radon point can be done by solving a system of d+ 1 linear equalities in
d+ 2 variables. This can be completed in O(d3) time using Gaussian elimination.

(c) A Radon point is a 2/(d+ 2)-centerpoint of T .
(d) Let h+ be a halfspace containing only one point of T . Then, a Radon point p of T is

contained in Rd \ h+ [1].

The algorithm in detail

Let P be a set of n points in Rd for which we would like to approximate its centerpoint. To
this end, let Q be initially P . In each iteration the algorithm randomly picks d+ 2 points
(with repetition) from Q, computes their Radon point, randomly deletes any point of Q, and
inserts the new Radon point into the point set Q. The claim is that after a sufficient number
of iterations, any point of Q is a f(d)-centerpoint of P , where f(d) = Θ(1/d2) (its exact
value is specified below in Eq. (3.1)).

I Remark 15. The algorithm above is a variant of the algorithm of Clarkson et al. [1].
Their algorithm worked in rounds, in each round generating n new Radon points, and then
replacing the point set with this new set, repeating this sufficient number of times. Our
algorithm on the other hand is a “continuous” process.

Intuition

A Radon point is a decent center for the points defining it. Visually, the above algorithm
causes the points to slowly migrate towards the center region of the original point set.

To see why this is true, pick an arbitrary halfspace h+ that contains exactly f(d)n points
of P . In each iteration, only if we picked two (or more) points that are in Q ∩ h+, the new
point might be in h+. Observe that we are in the setting of Radon’s urn with t = d + 2.
Indeed, color all the points inside h+ as red, and all the points outside as blue. To apply
the Radon’s urn analysis above, we require that (1− ϑ)R = f(d)n, which by the choice of
R = (1− 2ξ)n/t2 in Lemma 10 (and recalling ξ = 1/6) implies that

(1− ϑ) 2n
3(d+ 2)2 = f(d)n ⇐⇒ f(d) = 2(1− ϑ)

3(d+ 2)2 ≥
1− ϑ

2(d+ 2)2 (3.1)

where ϑ ∈ (0, 1). We can now apply the Radon’s urn analysis to argue that after sufficient
number of iterations, all the points of Q are outside h+. Naturally, we need to apply this
analysis to all halfspaces.

3.3.2 Analysis
Consider all half-spaces that might be of interest. To this end, consider any hyperplane
passing through d points of P , and translate it so that it contains on one of its sides
exactly f(d)n points (naturally, the are two such translations). Each such hyperplane thus
defines two natural halfspaces. Let H be the resulting set of halfspaces. Observe that

SoCG 2019



41:8 Journey to the Center of the Point Set

|H| ≤ 2
(
n
d

)
≤ 2(ne/d)d. If Q does not contain any point in any of the halfspaces of H then

all its points are f(d)-centerpoints. In particular, one can think about this as playing |H|
parallel Radon’s urn games. We want the algorithm to succeed with probability ≥ 1 − ϕ.
Setting the probability of success for each halfplane of H to be ϕ/ |H|, and by Lemma 14,
we have that all of these halfspaces are empty after playing

O
(
n logn log(n|H|ϕ−1)

)
= O

(
dn logn log(n/ϕ)

)
iterations, with probability of success being 1− |H| (ϕ/ |H|) = 1− ϕ by the union bound.
Using Lemma 14 requires that n = Ω

(
t2ϑ−1 ln(|H|/ϕ)

)
= Ω

(
ϑ−1d3 lnn + ϑ−1d2 lnϕ−1)

which holds for n = Ω(ϑ−1d3 ln d+ ϑ−1d2 lnϕ−1).
Using the fact that computing a Radon point for d+ 2 points in Rd can be done in O(d3)

time, we obtain the following result.

I Lemma 16. Let ϕ > 0 and ϑ ∈ (0, 1) be parameters, and let P be a set of n =
Ω(ϑ−1d3 ln d + ϑ−1d2 lnϕ−1) points in Rd. Let α = 1−ϑ

2(d+2)2 . Then, one can compute a
α-centerpoint of P via a randomized algorithm. The running time of the randomized algo-
rithm is O

(
d3 · dn logn log(n/ϕ)

)
= O(d4n logn log(n/ϕ)), and it succeeds with probability

≥ 1− ϕ.

I Theorem 17. Given a set P of n points in Rd, a parameter ϕ, and a constant ϑ ∈
(0, 1), one can compute a 1−ϑ

2(d+2)2 -centerpoint of P . The running time of the algorithm is
O
(
ϑ−3d7 log3 d log3 ϕ−1), and it succeeds with probability ≥ 1− ϕ.

Proof. The idea is to pick a random sample S from P that is a (ρ, ϑ/8)-relative approximation
for halfspaces, where ρ = 1/(10d2). This range space has VC dimension d + 1, and by
Theorem 7, a sample of size

µ = O
(
ρ−1ϑ−2(d log ρ−1 + logϕ−1)

)
= O

(
d2ϑ−2(d log d+ logϕ−1)

)
is a (ρ, ϑ/8)-relative approximation.

Running the algorithm of Lemma 16 on S with ϑ/8 yields a τ -centerpoint c of S, where
τ = 1−ϑ/8

2(d+2)2
≥ ρ for d ≥ 2. By the relative approximation property, this is a (1 ± ϑ/8)τ -

centerpoint of P . Therefore c is an α-centerpoint for P , where

α = (1− ϑ/8)τ = (1− ϑ/8)2

(d+ 2)2 ≥ 1− ϑ
(d+ 2)2 .

By Lemma 16, the running time of the resulting algorithm is

O(d4µ logµ log(µ/ϕ)) = O
(
ϑ−2 log2 ϑ−1d7 log3 d log3 ϕ−1) = O

(
ϑ−3d7 log3 d log3 ϕ−1).J

Now, one can repeat the above calculations with the parameter ξ. Intuitively, as ξ
approaches zero, the random walk becomes less unbalanced since it will move left with
probability 1/2 + ξ and right with probability 1/2− ξ. Because of this, there is an increased
chance that the random walk will reach R (and thus fail). In order to preserve that the
random walk succeeds with probability at least 1 − ϕ, the sample size n must depend on
the parameter ξ. In fact, the parameter ξ allows us to compute centerpoints with quality
arbitrarily close to 1/(d+ 2)2.

I Theorem 18. Given a set P of n points in Rd, a parameter ϕ, and a constant γ ∈
(0, 1), one can compute a 1−γ

(d+2)2 -centerpoint of P . The running time of the algorithm is
O
(
γ−4d7 log3d log3(γ−1ϕ−1)), and it succeeds with probability ≥ 1− ϕ.
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I Remark 19. The above compares favorably to the result of [1, Corollary 3] – they get
a running time of O(d9 log d+ d8 log2 ϕ−1), which is slower by roughly a factor of d2, and
computes a 1

4.08(d+2)(d+1) -centerpoint of P – the quality of the centerpoint is roughly worse
by a factor of four.

4 Application I: Algorithms with oracle access

In this section we discuss two applications of the improved centerpoint algorithm. Both
applications revolve around the idea of oracle access. In the first application, we are interested
in lower bounding a convex function given an oracle to compute it’s gradient. In the second,
we utilize centerpoints in order to determine whether a given convex body C is ε-heavy using
a separation oracle.

4.1 Lowerbounding a function with a gradient oracle
I Definition 20. Let f : Rd → R be a convex function. For a number c ∈ R, define the level
set of f as Lf (c) =

{
p ∈ Rd

∣∣ f(p) ≤ c
}
. If f is a convex function, then Lf (c) is a convex

set for all c ∈ R.

I Definition 21. Let f : Rd → R be a convex (and possibly non-differentiable) function.
For a point p ∈ Rd, a vector v ∈ Rd is a subgradient of f at p if for all q ∈ Rd, f(q) ≥
f(p) + 〈v, q − p〉. The subdifferential of f at p ∈ Rd, denoted by ∂f(p), is the set of all
subgradients v ∈ Rd of f at p. When the domain of f is Rd and f is convex, then ∂f(p) is a
non-empty set for all p ∈ Rd.1

I Theorem 22. Let f : Rd → R be a convex (possibly non-differentiable) function and P a
set of n points in Rd. Assume that one has access to an oracle which given p ∈ Rd returns
an arbitrary element in the subdifferential ∂f(p). With O(d2 logn) queries to the oracle, one
can compute a point q ∈ Rd (not necessarily in P ) such that f(q) ≤ minp∈P f(p).

Proof. Let P1 = P , and Pi ⊆ P denote the set of remaining points at the beginning of the
ith iteration. In iteration i, for some constant c > 0, compute a (c/d2)-centerpoint ci of Pi
using Theorem 17 in time O(d7 log3 d) with success probability 1/2. Define Ci = Lf (f(ci)).
We now use the oracle to obtain subgradient vector v ∈ ∂f(ci). Using v, we obtain a
d-dimensional hyperplane hi which is tangent to Ci at ci. Let h+

i be the halfspace formed
from hi which contains the interior of Ci. If

∣∣h−i ∩ Pi∣∣ ≥ c |Pi| /d2, then such an iteration
is successful and we set Pi+1 = Pi \ (h−i ∩ Pi) and continue to iteration i + 1. Otherwise
the iteration has failed and we repeat the ith iteration. This procedure is repeated until we
reach an iteration τ in which |Pτ | is of constant size. At this stage, the algorithm returns
the point achieving the minimum of min1≤i≤τ f(ci) and minp∈Pτ

f(p). Because f is convex,
the algorithm returns a point q such that f(q) ≤ f(p) for all p ∈ P .

As for the number of queries, note that in each iteration the expected number of centerpoint
calculations (and thus queries) until a successful iteration is O(1). It remains to bound the
number of successful iterations. In each successful iteration, a c/d2-fraction of points are
discarded. Therefore there are at most τ iterations, for which τ is the smallest number with
(1− c/d2)τn smaller than some constant. This implies τ = O(d2 logn). J

1 Indeed, consider the epigraph of the function f , S =
{

(x, c)
∣∣ x ∈ Rd, c ∈ R, f(x) ≤ c

}
⊆ Rd+1. Observe

that S is a convex set. For a given point p ∈ Rd, by the supporting hyperplane theorem, there is some
hyperplane h tangent to S at the point (p, f(p)) ∈ Rd+1. The normal to this tangent hyperplane h is
one possible subgradient of f at p.
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4.2 Functional nets: A weak net in the oracle model
4.2.1 The model, construction, and query process
Model

Given a convex body C ⊆ Rd, we assume oracle access to it. This is a standard model in
optimization. Specifically, given a query point q, the oracle either returns that q ∈ C, or
alternatively it returns a (separating) hyperplane h, such that C lies completely on one side
of h, and q lies on the other side.

Our purpose here is to precompute a small subset S ⊆ P , such that given any convex
body C (with oracle access to it), one can decide if C is ε-light. Specifically, the query
algorithm (using only S, and not the whole point set P ) generates an (adaptive) sequence of
query points q1, q2, . . ., such that if any of these query points are in C, then the algorithm
considers C to be heavy. Otherwise, if all the query points miss C, then the algorithm outputs
(correctly) that C is light (i.e., m(C) < ε).

Construction

Given P , the set S is a random sample from P of size

µ = O
(
ε−1d3 log d log3 ε−1 + ε−1 logϕ−1) = Õ

(
d3/ε

)
, (4.1)

where ϕ > 0 is a prespecified parameter.

Query process

Given a convex body C (with oracle access to it), the algorithm starts with S0 = S. In the
ith iteration, the algorithm computes a Ω(1/d2)-centerpoint qi of Si using the algorithm of
Theorem 17, with failure probability at most 1/4. If the oracle returns that qi ∈ C, then
the algorithm returns qi as a proof of why C is considered to be heavy. Otherwise, the
oracle returns a separating hyperplane hi, such that the open halfspace h−i contains qi. Let
S′i = Si−1 \ h−i . If |S′i| ≤ (1 − γ) |Si−1|, where γ = 1/16d2 then we set Si = S′i (such an
iteration is called successful). Otherwise, we set Si = Si−1. The algorithm stops when
|Si| ≤ ε |S| /8.

4.2.2 Correctness
Let I be the set of indices of all the successful iterations, and consider the convex set
CI = ∩i∈Ih+

i . The set CI is an outer approximation to C. In particular, for an index j, let
Cj = ∩i∈I,i≤jh+

i be this outer approximation in the end of the jth iteration. We have that
Sj = S ∩ Cj .

The proofs of the following results can be found in the full version of the paper [4].

I Lemma 23. There are at most τ = O(d2 log ε−1) successful iterations. For any j, the
convex polyhedron Cj is defined by the intersection of at most τ closed halfspaces.

Let Hτ be the set of all of convex polyhedra in Rd that are formed by the intersection of
τ closed halfspaces.

I Observation 24. The VC dimension of (Rd,Hτ ) is

D = O(dτ log τ) = O
(
d
(
d2 log ε−1) log

(
d2 log ε−1)) = O(d3(log d) log2 ε−1).

This follows readily, as the VC dimension of the range space of points in Rd and halfspaces is
d+ 1, and by the bound of Lemma 8 for the intersection of τ such ranges.
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I Lemma 25. The set S is a relative (ε/8, 1/4)-approximation for (P,Hτ ), with probability
1− ϕ.

Proof. Using Theorem 7 with p = ε/8, ε̂ = 1/4, and ξ = D, implies that a random sample
of P of size

O
(
ε̂−2p−1(ξ log p−1 + logϕ−1)) = O

(
ε−1(D log ε−1 + logϕ−1))

= O
(
ε−1(d3 log d log3 ε−1 + logϕ−1))

is the desired relative (p, ε̂)-approximation with probability ≥ 1− ϕ. And this is indeed the
size of S, see Eq. (4.1). J

I Lemma 26. Given a convex query body C, the expected number of oracle queries per-
formed by the algorithm is O(d2 log ε−1), and the expected running time of the algorithm is
O(d9ε−1polylog), where polylog = O

(
log(dε−1ϕ−1)O(1)).

I Lemma 27. Assuming that S is the desired relative approximation, then for any query
body C, if the algorithm declares that it is ε-light, then |C ∩ P | < εn.

The above implies the following.

I Theorem 28. Let P be a set of points in Rd, and let ε, ϕ > 0 be parameters. Let S be a
random sample of P of size

µ = O
(
ε−1d3 log d log3 ε−1 + ε−1 logϕ−1) = Õ(ε−1d3).

Then, for a given query convex body C endowed with an oracle access, the algorithm
described above, which uses only S, computes a sequence of query points q1, . . . , qm, such that
either:
(i) one of the points qi ∈ C, and the algorithm outputs qi as a “proof” that C is ε-heavy, or
(ii) the algorithm outputs that |C ∩ P | < εn.

The query algorithm has the following performance guarantees:
(a) The expected number of oracle queries is E[m] = O(d2 log ε−1).
(b) The algorithm itself (ignoring the oracle queries) runs in Õ

(
d9ε−1) time

The output of the algorithm is correct, for all convex bodies, with probability ≥ 1− ϕ.

I Remark 29. One may hope to bound the probability of the algorithm reporting a false
positive. However this is inherently not possible for any weak ε-net construction. Indeed, the
algorithm can fail to distinguish between a polygon that contains at least εn of the points
of P and a polygon that contains none of the points of P . Consider n points P lying on a
circle in R2. Choose εn of these points on the circle, and let C be the convex hull of these
points. Clearly C contains at least εn points of P . Now, take each vertex in C and “slice” it
off, forming a new polygon C′ that contains no points from P . However, C′ is still a large
polygon and as such may contain a centerpoint during the execution of the above algorithm.
Therefore our algorithm may report that C′ contains a large fraction of the points, even
though C′ is contains no points of P , and so it fails to distinguish between C and C′.
I Remark 30. Clarkson et al. [1] provide also a randomized algorithm that finds a

( 1
d+1 − γ

)
-

centerpoint with probability 1− δ in time O
([
dγ−2 log(dγ−1)

]d+O(1) log δ−1). We could use
this algorithm instead of Theorem 17 in the query process. Since we are computing a better
quality centerpoint, the number of iterations τ and sample size µ would be smaller by a
factor of d. Specifically, τ = O(d log ε−1) and from Lemma 8, the VC dimension of the range
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space S = (P,Hτ ) becomes D = O(d2 log d log2 ε−1). Following the proof of Lemma 25, we
can construct a sample S which is (ε/8, 1/4)-relative approximation for S with probability
1− ϕ of size

µ = O
(
ε−1(D log ε−1 + logϕ−1)

)
= O

(
ε−1(d2 log d log3 ε−1 + logϕ−1)

)
. (4.2)

5 Application II: Constructing center nets

We next introduce a strengthening of the concept of a weak ε-net. Namely, we require that
there is a point p in the net which stabs an ε-heavy convex body C, and that p is also a good
centerpoint for C ∩ P .

I Definition 31. For a set P of n points in Rd, and parameters ε, α ∈ (0, 1), a subset
W ⊆ Rd is an (ε, α)-center net if for any convex shape C, such that |P ∩ C| ≥ εn, we have
that there is an α-centerpoint of P ∩ C in W.

In this section we prove existence of an (ε, α)-center netW of size roughly Od(ε−d
2), where

α = c1

(d+ 1) log ε−1 ,

and c1 ∈ (0, 1) is some fixed constant to be specified shortly. Note that the quality of the
centerpoint is worse by a factor of log ε−1 than the best one can hope for.

5.1 The construction
The construction of the center net will be based an algorithm for constructing a weak ε-net
for P . In particular, the construction algorithm will use the following two results (the proofs
can be found in the full version of the paper [4]).

I Lemma 32. Given a set P of n points in Rd, one can compute a set Q of O
(
nd

2) points,
such that for any subset P ′ ⊆ P , there is a 1/(d+ 1)-centerpoint of P ′ in Q.

I Lemma 33. Let P be a set of n points in Rd. Let S be a random sample from P of size
µ = Õ(ε−1d2), see Eq. (4.2) for the exact bound. Then, one can compute a set of points W
from S, of size

O(µd
2
) = O

((
ε−1(d2 log d log3 ε−1 + logϕ−1)

)d2
)

which is a weak ε-net for P with probability ≥ 1− ϕ.

I Remark 34. A similar construction of a weak ε-net, to the one in Lemma 33, from a small
sample was described by Mustafa and Ray [12]. Their sample has exponential dependency
on the dimension, so the resulting weak ε-net has somewhat worse dependency on the
dimension than our construction. In any case, these constructions are inferior as far as the
dependency on ε, compared to the work of Matoušek and Wagner [10], which shows a weak
ε-net construction of size Od(ε−d(log ε−1)O(d2 log d)).

The idea will be to repeat the construction of the net of Lemma 33, with somewhat worse
constants. Specifically, take a sample S of size µ = Õ(ε−1d2) from P , see Eq. (4.2) for the
exact bound. Next, we construct the set W for S, using the result of Lemma 32. Return W
as the desired (ε, α)-center net.
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5.2 Correctness
The proof is algorithmic. Fix any convex ε-heavy body C, and let S1 = S be the active set
and let P1 = C ∩ P be the residual set in the beginning of the first iteration.

We now continue in a similar fashion to the algorithm of Theorem 28. In the ith iteration,
the algorithm computes the 1/(d+ 1)-centerpoint qi of Si (running times do not matter here,
so one can afford computing the best possible centerpoint). If qi is a 2α-centerpoint for Pi,
then qi is intuitively a good centerpoint for P , and the algorithm returns qi as the desired
center point. Observe that by construction, qi ∈ W as desired.

If not, then there exists a closed halfspace h+
i containing qi and at most 2α |Pi| points of

Pi. Let

Pi+1 = Pi \ h+
i and Si+1 = Si \ h+

i .

The algorithm now continues to the next iteration.

Analysis

The key insight is that the active set Si shrinks much faster than the residual set Pi. However,
by construction, Si provides a good upper bound to the size of P . Now once the upper
bound provided by Si on the size of Pi is too small, this would imply that the algorithm
must have stopped earlier, and found a good centerpoint.

I Lemma 35. Let τ =
⌈
1 + 3(d+ 1) + (d+ 1) log ε−1⌉ , and α = 1/(4τ). Assuming that S

is a relative (ε/8, 1/4)-approximation for the range space S = (P,Hτ ), the above algorithm
stops after at most τ iterations.

I Lemma 36. The above algorithm outputs a α-centerpoint of P ∩ C.

Arguing as in Remark 30 implies the following.

I Corollary 37. For the above algorithm to succeed with probability ≥ 1− ϕ, the sample S
needs to be a sample of the size specified by Eq. (4.2).

5.3 The result
I Theorem 38. Let P be a set of n points in Rd, and ε > 0 be a parameter. For γ = log(1/ε),
there exists a

(
ε,Ω(1/(dγ))

)
-center netW (which is also a weak ε-net) of P (see Definition 31).

The size of the net W is O(µd2) ≈ Od(ε−d
2), where µ = Õ(ε−1d2), see Eq. (4.2) for the exact

bound.

Proof. The theorem follows readily from the above, by setting ϕ = 1/2. J
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