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—— Abstract

Let R = {R1, Ra, ..., R.} be a set of regions and let X = {z1,x2,...,2z,} be an (unknown) point set
with x; € R;. Region R; represents the uncertainty region of x;. We consider the following question:
how fast can we establish order if we are allowed to preprocess the regions in R? The preprocessing
model of uncertainty uses two consecutive phases: a preprocessing phase which has access only to
R followed by a reconstruction phase during which a desired structure on X is computed. Recent
results in this model parametrize the reconstruction time by the ply of R, which is the maximum
overlap between the regions in R. We introduce the ambiguity A(R) as a more fine-grained measure
of the degree of overlap in R. We show how to preprocess a set of d-dimensional disks in O(nlogn)
time such that we can sort X (if d = 1) and reconstruct a quadtree on X (if d > 1 but constant) in
O(A(R)) time. If A(R) is sub-linear, then reporting the result dominates the running time of the
reconstruction phase. However, we can still return a suitable data structure representing the result
in O(A(R)) time.

In one dimension, R is a set of intervals and the ambiguity is linked to interval entropy, which
in turn relates to the well-studied problem of sorting under partial information. The number of
comparisons necessary to find the linear order underlying a poset P is lower-bounded by the graph
entropy of P. We show that if P is an interval order, then the ambiguity provides a constant-factor
approximation of the graph entropy. This gives a lower bound of 2(A(R)) in all dimensions for
the reconstruction phase (sorting or any proximity structure), independent of any preprocessing;
hence our result is tight. Finally, our results imply that one can approximate the entropy of interval
graphs in O(nlogn) time, improving the O(n?") bound by Cardinal et al.
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Preprocessing Ambiguous Imprecise Points

1 Introduction

A fundamental assumption in classic algorithms research is that the input data given to an
algorithm is exact. Clearly this assumption is generally not justified in practice: real-world
data tends to have (measurement or labeling) errors, heterogeneous data sources introduce
yet other type of errors, and “big data” is compounding the effects. To increase the relevance
of algorithmic techniques for practical applications, various paradigms for dealing with
uncertain data have been introduced over the past decades. Many of these approaches have
in common that they represent the uncertainty, imprecision, or error of a data point as
a disk in a suitable distance metric which we call an uncertainty region. We focus on a
fundamental problem from the realm of computation with uncertainties and errors: given a
set of imprecise points represented by uncertainty regions, how much proximity information
do the regions contain about the imprecise points?

Preprocessing model. We study this problem within the preprocessing framework initially
proposed by Held and Mitchell [11]. In this framework we have a set R = {Ry, Ra, ..., Ry}
of regions and an point set X = {x1,29,...,2,} with z; € R; This model has 2 consecutive
phases: a preprocessing phase followed by a reconstruction phase. In the preprocessing phase
we have access only to R and we typically want to preprocess R in O(nlogn) time to create
some linear-size auxiliary data structure which we will denote by =. In the reconstruction
phase, we have access to X and we want to construct a desired output on X using Z faster
than would be possible otherwise. Loffler and Snoeyink [18] were the first to use this model
as a way to deal with data uncertainty: one may interpret the regions R as imprecise points,
and the points in X as their true (initially unknown) locations. This interpretation of the
preprocessing framework has been successfully applied to various problems in computational
geometry [2, 3, 6, 7, 16, 23]. Several results restrict R to be a set of disjoint (unit) disks in
the plane, while others consider partially overlapping disks. Traditionally, the ply A(R) of
R, which measures the maximal number of overlapping regions, has been used to measure
the degree of overlap, leading, for example, to reconstruction times of O(nlog A(R)).

The ply is arguably a somewhat coarse measure of the degree of overlap of the regions.
Consider the following example: suppose that we have a collection of v/n disks in the plane
that overlap in one point and that the remainder of R is mutually disjoint (see Figure 1 left).
Then A(R) = y/n and the resulting time complexity of the reconstruction phase is O(nlogn)
even though it might be possible to achieve better bounds (R is arguably not in a worst-case
configuration for that given ply, see Figure 1 right).

Ambiguity. We introduce the ambiguity A(R) as a more fine-grained measure of the degree
of overlap in R. The ambiguity is based on the number of regions each individual region
intersects (see Figure 1). We count this number with respect to particular permutations of
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Figure 1 Two sets of 16 disks each in the plane, both with a ply of 4. The ambiguity of the set
on the right is four times as large as the ambiguity of the set on the left.
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the regions: for each region we count only the overlap with regions that appear earlier in the
permutation. A proper technical definition of ambiguity can be found in Section 2. We also
show how to compute a 3-approximation of the ambiguity in O(nlogn) time.

Ambiguity and entropy. In one dimension, R is a set of intervals and the ambiguity is
linked to interval (and graph) entropy (refer to the full version for a definition), which in turn
relates to the well-studied problem of sorting under partial information. Fredman [9] shows
that if the only information we are given about a set of values is a partial order P, and e(P)
is the number of linear extensions (total orders compatible with) of P, then we need at least
Q(log e(P)) comparisons to sort the values. Brightwell and Winkler prove that computing
the number of linear extensions e(P) is #P-complete [1]. Hence efforts have concentrated on
computing approximations, most notably via the concept of graph entropy as introduced
by Korner [14]. Specifically, Khan and Kim [13] prove that loge(P) = ©(n - H(G)) where
H(G) denotes the entropy of the incomparability graph G of the poset P. To the best of our
knowledge there is currently no exact algorithm to compute H(G). Cardinal et al. [4] describe
the fastest known algorithm to approximate H(G), which runs in O(n?®) time. Refer to the
full version for a more in-depth discussion of sorting and its relation to graph entropy.

We consider the special case where the partial order is induced by uncertainty intervals. We
define the entropy H(R) of a set of intervals as the entropy of their intersection graph (which
is also an incomparability graph) using the definition of graph entropy given by Koérner. In
this setting we prove that the ambiguity A(R) provides a constant-factor approximation of the
interval entropy (see Section 2). Since we can compute a constant-factor approximation of the
ambiguity in O(nlogn) time, we can hence also compute a constant-factor approximation of
the entropy of interval graphs in O(nlogn) time, thereby improving the result by Cardinal et
al. [4] for this special case.

Ambiguity and reconstruction. Since Q(loge(P)) is a lower bound for the number of
comparisons needed to complete P into a total order, Q(A(R)) is a lower bound for the
reconstruction phase in the preprocessing model when R is a set of intervals and the goal is
to sort the unknown points in X. This lower bound extends to higher dimensions and to
proximity structures in general, independent of any preprocessing.

The ambiguity A(R) ranges between 0 and ©(nlogn) for a set of n regions R. If the
value of A(R) lies between O(n) and O(nlogn) then we can preprocess R in O(nlogn) time
and sort in O(A(R)) time (in one dimension for arbitrary intervals) or build a quadtree in
O(A(R)) time (in all dimensions for unit disks).

If the ambiguity lies between 0 and ©(n), then reporting the results explicitly in (n) time
dominates the reconstruction time. But the ambiguity suggests that the information-theoretic
amount of work necessary to compute the results should be lower than ©(n). To capture
this, we hence introduce a new variant of the preprocessing model, which allows us to return
a pointer to an implicit representation of the results.

Specifically, in one dimension, R is a set of intervals and we aim to return the sorted
order of the unknown points in X. If, for example, all intervals are mutually disjoint, then
A(R) = O(1) and we have essentially no time for the reconstruction phase. However, a
binary search tree T' on R, which we can construct in O(nlogn) time in the preprocessing
phase, actually captures all necessary information. In the reconstruction phase we can hence
return a pointer to T' as an implicit representation of the sorted order. In Section 3 we show
how to handle arbitrary sets of intervals in a similar manner. That is, we describe how to
construct in O(nlogn) time an auxiliary data structure = on R in the preprocessing phase
(without access to X), such that, in the reconstruction phase (using X), we can construct a
linear-size AVL-tree T on X in O(A(R)) = O(loge(R)) time, which is tight.
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Figure 2 A set of overlapping intervals with a permutation. In this figure I'] = {R1, R2, R3, Ra}.
In all figures, bottom intervals are indicated in blue (in this case this is only R;).

In all dimensions, we consider R to be a set of unit disks and our aim is to return a
quadtree T on the points in X where each point in X lies in a unique quadtree cell. Note that
in 2 dimensions, T also allows us to construct e.g. the Delaunay triangulation of X in linear
time [2]. However, we show that constructing such a quadtree explicitly in O(A(R)) time is
not possible, and the work necessary to distinguish individual points could dominate the
running time and overshadow the detail in the analysis brought by the ambiguity measure.
We hence follow Buchin et al. [2] and use so-called A-deflated quadtrees which contain up to a
constant A\ points in each leaf. From T one can construct a quadtree on X where each point
lies in a unique quadtree cell in linear time. In Section 4 we describe how to reconstruct
a linear-size A-deflated quadtree T' (with a suitable constant A) in O(A(R)) = O(loge(R))

time, which is tight (in fact, in one dimension our result also extends to non-unit intervals).

2  Ambiguity

We introduce a new measure on a set of regions R to reflect the degree of overlap, which we
call the ambiguity. The sequence in which we process regions matters (refer to Section 2.1),
thus we distinguish between the m-ambiguity defined on a given permutation of the regions
in R, and the minimum ambiguity defined over all possible permutations. We demonstrate
several properties of the ambiguity, and discuss its relation to graph entropy when R is a set
of intervals in one dimension.

Processing permutation. Let R be a set of n regions and let R™ = (R, Ra, ..., R,) (note
that for all 4, the region R; could be any region depending on the permutation 7) be the
sequence of elements in R according to a given permutation w. Then we say that 7 is a
processing permutation of R. Furthermore, let RZ, := {R; | j < i} be the prefix of R™, that
is, the first i elements in the sequence R™. A pgrmutation 7 is containment-compatible if
R; C R; implies i < j for all ¢ and j [8]. When 7 is clear from context, we denote R™ by R.

Contact set (for a permutation 7). For a region R, € R™ we define its contact set I'T to
be the set of regions which precede or are equal to R; in the order m, and which intersect
R;: I'T:={R; € RL, | RjNR; # @}. Note that a region is always in its own contact set.
A region R; whose contact set I'T contains only R; itself is called a bottom region (refer to
Figure 2).

Ambiguity. For a set of regions R and a fixed permutation m we define the m-ambiguity
A™(R) := )", 1og|I'T| (with the logarithm to the base 2). Observe that bottom regions do
not contribute to the value of the m-ambiguity. The ambiguity of R is now the minimal
m-ambiguity over all permutations 7, A(R) := min;er A™(R).
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A™(R) =logl+logl+logl+logl+logh A™(R) =log2 + log2 + log2 + log2 + log 1

Figure 3 An example of the m-ambiguity induced by two permutations 71 (on the left) and s
(on the right) of the same five intervals. The 7i-ambiguity is log5 and the ms-ambiguity is 4.

2.1 Properties of ambiguity

We show the following properties of ambiguity: (1) the m-ambiguity may vary significantly
with the choice of the processing permutation 7, (2) in one dimension, the m-ambiguity for
any containment-compatible permutation 7 on a set of intervals R implies a 3-approximation
on the entropy of the interval graph of R, and (3) the permutation that realizes the ambiguity
is containment-compatible. Therefore in one dimension, the ambiguity of a set of intervals R
implies a 3-approximation of the entropy of the interval graph of R.

We start with the first property: it is easy to see that the processing permutation 7 has
a significant influence on the value of the m-ambiguity (refer to Figure 3). Even though
m-ambiguity can vary considerably, we show that if we restrict the permutations to be
containment-compatible, their m-ambiguities lie within a constant factor of the ambiguity.

Interval entropy. The entropy of a graph G was first introduced by Korner [14]. Since then
several equivalent definitions appeared [22]. We define the interval entropy H(R), for a set of
intervals R, as the entropy of the intersection graph of R. While investigating the question of
sorting an arbitrary poset, Cardinal et al. [4] found an interesting geometrical interpretation
of the poset entropy, which applies to our interval entropy: let a poset P describe a set of
(open) intervals R combinatorially, that is, for each R; we know which intervals intersect R;,
are contained in R;, contain R;, and are disjoint from R;. Denote by E(R) the infinite set of
sets of intervals on the domain (0,1) (that is, each Z € E(R) is a set of intervals, where each
interval I; € Z has endpoints in (0,1)) which induce the same poset as R. Then Cardinal et
al. prove the following lemma (see Figure 4 for an illustration):

» Lemma 1 ([4], Lemma 3.2 paraphrased).

1
H(R) =logn — min ¢ — —log|L;| ¢ .
(R) = log I€E<R>{”,Z€:I g| }
We show that the m-ambiguity for any containment-compatible 7 is a 3-approximation of
n- H(R). To achieve this we rewrite the lemma from Cardinal et al. in the following way,

1 B 1 |
H(R) =logn— min {n > (logn — log(nlLl))} = max {n > log(nle)} :

LeT el
An embedding 7 gives each interval I; a size between 0 and 1. To simplify the algebra later,
we re-interpret this size as the fraction (weight) of the domain (0, 1) that I; occupies. We
associate with each Z € F(R) a set of weights W such that for all i, w; = |I;|; we write
W ~ E(R). From now on we consider embeddings on the domain (0,n): an interval then
has a size n|I;| = nw;. The formula for the entropy becomes:

1
H(R) = - WIB%?R) {log ( H nwi> } . (1)

w, EW
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1 1 3 1 1 3 1 1 3
0 1 3 7 L0 1 3 7 L0 1 3 11
7 I 13

Figure 4 Let R be a set of five intervals, where four intervals are mutually disjoint and contained
in one larger interval. We show three embeddings Z1,7>,7Z3 € E(R) of these intervals on the domain
(0,1) with the same combinatorial properties. Embedding Z; shows that H(R) > log5 — & log(1 -

1.4.1.1). I shows that H(R) >logh — tlog(3 - £ - 5 - 5 - 5) and T is the optimal embedding

which shows that H(R) =logh — +log(1-1-1-1.1)

Ambiguity and entropy. Next, we show that the interval entropy gives an upper bound
on the ambiguity. The entropy of R is the maximum over all embeddings on (0,n), so any
embedding of R on the domain (0,n) gives a lower bound on H(R). We will create an
embedding with a corresponding weight assignment W such that:

A™(R) :10g< II 7 |> < log< 11 (nw»?) <2nH(R). (2)
R,ER w; EW

We start with the original input embedding of R and we sort the coordinates of all the
endpoints (both left- and right-). To each endpoint p we assign a new coordinate % if p is
the kth endpoint in the sorted order (indexing from 0). Thus, we obtain an embedding of R
on (0,n — %) For any containment-compatible permutation 7, the length of each interval R;
in this embedding is at least 3|7, as each interval R; contains at least |I'T| — 1 endpoints
of the intervals from its contact set in its interior. Also note that the distance between
every right endpoint and the consecutive endpoint to the right is % Thus, we can increase
the coordinate of every right endpoint by % and obtain an embedding of R on (0,n) with
a corresponding weight assignment W, such that the length of each interval R; is at least
1(|TT| 4 1). This allows us to prove the following lemma:

» Lemma 2. For any containment-compatible permutation ™ of a set of intervals R,
A™(R) < 2nH(R).

Proof. Consider the embedding and corresponding weight assignment W constructed above.
Consider any containment-compatible permutation 7. We split the intervals of R into four
sets depending on the size of their contact set: let A :={R; | |IT| =1}, B:={R; | |IT| = 2},
C:={R;||I'T| =3} and D := R\{4, B,C}. Let these sets contain a, b, c and d intervals
respectively. Then, using Equation (1) for the entropy,

9nH(R) > H 7 +1 H |F§r|2+1 H |F§r|2‘f‘1 H IT7| + 1

2
R;cA R;eB R;eC R;eD

QOO

On the other hand,

2 H®) > ] Hﬂﬂ%_ IT 71 I 2|Ff| 11 ;IFfI 11 %Ifﬂ
R;eC

R;eR R,€A R;eB R;eD

O

\%
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as

1:|F;{r|, if R, € A,
%Z%H‘ﬂv ifRiGB,
=2[I7|, ifR;eC,

C7|+1
2

7| +1
2

K2

1
>5Ir7l, if R e D.

[\

Then, using Equation (3) we get

b c d b c d
gnH®R) gnH®R) < (3 (A (AY (3 (2) (L) 947 ®) 5 ga7(R)
=\2) \2) \2 1) \3) \2 = ’

and therefore

2nH(R) > A™(R). |
We continue by showing that the ambiguity also gives an upper-bound for the interval entropy.
Starting with a helper lemma:

» Lemma 3. Suppose R is partitioned into two sets X andY such that for each R € X, R’ €
Y, R and R’ are disjoint. In any weight assignment W that realizes H(R), the intervals in X
together have length | X| and the intervals in'Y together have length |Y'| on the domain (0,n).

Proof. In Equation (1) we rewrote the formula for entropy in terms of weights: for any
weight assignment W ~ E(R), w; is the proportion that R; occupies on the domain, and we
embedded R on the domain (0,n). We can similarly embed R on the domain (0, \) for an
arbitrary scalar A. We define the relative entropy of R (refer to Figure 5 (top)) as:

1
H(R,\) = — 1 Awg | b
= e ()

Observe that H(R,n) = H(R) and that:
(Y v ot _ (PN amxn
VA 1, pw; ()\)sz:>2 ()\) 2 . (4)

If the intervals in X can occupy a width of at most A, then it is always optimal to give the
intervals in Y a total width of n — A (since the entropy maximizes the product of the lengths
of intervals in X and Y'). This implies:

2nH(XUY) — max {2nH(X,)\) . 2nH(Y,n7)\)} )
A€[0,n]

See Figure 5 (bottom) for an illustration of the argument. If we now substitute Equation (4)
into this equation we get that the maximum is realized if A\ = | X| which proves the lemma. <«
» Lemma 4. Let 7 be any containment-compatible permutation, then nH(R) < 3A™(R).

Proof. We defined R<; as the prefix of R. We prove the lemma with induction on i.
Induction Hypothesis: Vj < ijH(R<;,j) < 3A™(R<;).

For ¢ = 1 both the lefthand and the righthand side are 0. So we assume that the lemma
holds for all j <4 and we prove it for j =i+ 1. H(R<it+1,i+ 1) is the relative entropy of
Rg(i+1) on the domain (O,Z + 1) We know that 3Aﬁ(R§(Z‘+1) = 3A7T(R§i) + 310g |Fi+1|-
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0 1 2 3 4 5 0 1 2 3
H(R) = H(R,5) H(R,3)
0 1 2 3 4 5 6 7 8 9 10

QLOH(XUY) — pax, {210H(XA) | g10H (¥;10-2)y

Figure 5 (top left) A set R of five intervals and their optimal embedding for the entropy relative
to A = 5. (top right) The optimal embedding of R for the entropy relative to A = 3. Observe that
the proportion that each interval obtains of the domain is the same in both embeddings. (bottom)
An illustration of the argument for Lemma 3: we see a set X of 7 intervals and a set Y of 3 intervals
with the intervals in X disjoint from the intervals in Y. If we vary A\, we vary the total width on
which X and Y are embedded. The entropy is given by the maximal embedding and therefore found
by optimizing A.

We make a distinction between two cases: |I';11] = 1 or otherwise. If |T';41] = 1 then R;4 is
disjoint from R<,. Lemma 3 guarantees, that if we want to embed R<; U{R;11} on (0,74 1)
that R;;+1 gets a size of 1. The remaining intervals get embedded with a total width of ¢
which they already had in the previous iteration. So:

(i+ l)H(Rg(i+1); i+1)=iH(R;,i)+1logl < 3AW(RSZ) +3log |Tiy1| = 3Aﬂ(R§(i+1)) .
In the second case |T'; 41| is at least 2. The other intervals used to be optimally embedded on
(0,4) and are now embedded on (0,7 + 1). So each of them expands with at most a factor
% or algebraically:
‘ . i+1)' .
nH(R<(iy1),1+1) <nH(R<i,i) + log - +log((i + Nwit1) <
nH(R<i,i) +loge +log((i + Dwi41) .

There are i — |T';41| intervals disjoint from R;11 so Lemma 3 guarantees that (i + 1)w;11 >
ITi41] > 2. It follows that:

TLH(RS(i+1), 1+ 1) < TLH(RSZ, Z) +3 IOg |Fi+1‘
which implies the Lemma. |
Lemmas 2 and 4 imply the following theorem.

» Theorem 5. For any set of intervals R in one dimension, for any containment-compatible
permutation ™ on R, A™(R) is a 3-approzimation of nH(R).

» Corollary 6. For any set of intervals R in one dimension, the ambiguity A(R) is a
3-approzimation of nH(R).
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Figure 6 A set of intervals with a containment graph with quadratic complexity.

Proof. The permutation which realizes the ambiguity of R must always be containment-
compatible. This is because swapping a region R with a region R’ that contains R in the
permutation 7 always improves the m-ambiguity. |

Let ¢(R) be the number of linear extensions of the poset induced by R. In the proof of
Lemma 3.2 [4] Cardinal et al. show that loge(R) < nH(R) < 2loge(R). This implies
that the interval graph entropy is a lower-bound for constructing any unique linear order
underlying a poset. Proximity structures depend on sorting [5]. Thus, we conclude:

» Theorem 7. Reconstructing a prozimity structure on R is lower-bounded by Q(A(R)).

3 Sorting

Let R = {R1,Ra,...,R,} be a set of intervals and let X = {x1,29,...,2,} be a set of
points (values) with z; € R;. We show how to construct an auxiliary structure = on R in
the preprocessing phase without using X, such that, in the reconstruction phase, we can
construct a linear-size binary search tree T on X in ©(A(R)) time. To achieve this, we first
construct a specific containment-compatible permutation 7 of R, and then show how to
maintain Z when we process the intervals in this order.

3.1 Level permutation

We need a processing permutation 7 of R with the following conditions:

(i) = is containment-compatible,

(ii) intervals containing no interval of R come first and are ordered from right to left and
(iii) we can construct 7 in O(nlogn) time.
In Section 2.1 we showed that if condition (i) holds, the m-ambiguity is a lower-bound for
sorting X. In Section 3.2 we show that condition (ii) is useful to reconstruct an AVL-tree on
X in O(A™(R)) time. Condition (iii) bounds the time used in the preprocessing phase.

Below, we define two natural partitions of R based on the containment graph of R: the

height partition and the depth partition. However, a permutation compatible with the height
partition satisfies conditions (i) and (ii) but not (iii), and a permutation compatible with the
depth partition satisfies conditions (i) and (iii) but not (ii). Therefore, we define a hybrid
partition, which we call the level partition, which implies a permutation which does satisfy
all three conditions, below.

Containment graph. For a set of intervals R, its containment graph G(R) represents the
containment relations on R. G(R) is a directed acyclic graph where R; contains R; if and
only if there is a directed path from R; to R; and all intervals R € R that are contained in
no other interval of R share a common root. The bottom intervals are a subset of the leaves
of this graph. Note that G(R) can have quadratic complexity (Figure 6).
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?
T'i' Hi D¢ —_
= E Ds =
Y I—% H, — —_— [u— Dy — — . '_.‘
Hy Hy iR = Dy =y || e I'?‘i RN

Figure 7 (left) A set of intervals R and the corresponding containment graph G(R), leaves of
G(R) are purple. (middle) The height partition. (right) The depth partition.

Height and Depth partition. We define the height partition as the partition of R into m
levels H = Hy ... Hp,, Hi C R where all R € H; have height (minimal distance from R to
a leaf) j+ 1 in G(R) or equivalently: the intervals in H;; contain no intervals in R\H<;
(Figure 7). We analogously define the depth partition as the partition of R into m levels
D=D;...D,,D; CR where all R € D; have depth (maximal distance from the root to R)
(m —j) in G(R). Clearly any permutation compatible with # or D satisfies condition (i).
All leaves of G(R) have height 1 so per definition are all in H; and thus any permutation
compatible with H that sorts H; satisfies condition (ii). Clearly the same is not true for
D. On the other hand, in Lemma 8 we show how to construct D in O(nlogn) time. It is
unknown whether the height partition can be created in O(nlogn) time (refer to the full
version).

» Lemma 8. For any set of intervals R we can construct D in O(nlogn) time.

Proof. We iteratively insert intervals from left to right; refer to the full version. <

Level partition. We now define the level partition: a hybrid between H and D: L =
Li...Ly, where all R € L; have depth (m — j) in G(R) except for the leaves of G(R),
which are in L; regardless of their depth. We can compute the level partition from D in
O(nlogn) time by identifying all leaves of G(R) with a range query. The level permutation
is the permutation where intervals in L; precede intervals in L; and where within each level
the intervals are ordered from right to left. It can be constructed from £ in O(nlogn) time
by sorting.

Theorem 9 follows directly from the preceding discussion.

» Theorem 9. The level permutation satisfies conditions (%), (it) and ().

3.2 Algorithm

We continue to describe a preprocessing and reconstruction algorithm to preprocess a set of
intervals R in O(nlogn) time such that we can sort X in ©(A(R)) time.

Anchors. Let 7w be the level permutation of R. In the preprocessing phase we build an
AVL-tree T on the bottom intervals. In the reconstruction phase, we insert each remaining
x; € X into T in the order 7 in O(A™(R)) time. This implies that for bottom intervals we
are not allowed to spend even constant time and for each non-bottom interval R;, we want to
locate z; in T in O(log [I'T|) time. To achieve this, we supply every non-bottom interval R
with an anchor denoted by L™(R;). For a non-bottom interval R ¢ Ly, we define its anchor
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L
L,

Ly —_— Y

Figure 8 The auxiliary structure Z. In the level L; all non-bottom intervals are shown their
anchor. (top) A schematic representation of intervals in the level permutation 7 (from bottom
to top). (bottom) The Fibonacci tree T' containing the subset X° corresponding to the bottom
intervals. Note that we added one dummy node in red.

as an arbitrary interval contained in R. All intervals in L; are ordered from right to left, so
for any non-bottom interval R € Ly, its right endpoint is contained in the interval preceding
it and we make this interval the anchor of R (refer to Figure 8).

Preprocessing phase. The auxiliary structure = is an AVL-tree T on the bottom intervals,
augmented with a set of pointers leading from intervals to their anchors. We will implement
T as a leaf-based AVL-tree, i.e., where values are stored in the leaves, and inner nodes are
decision nodes. Finally, we will use a doubly linked list to connect the leaves of the tree.
Let X® C X be the points corresponding to bottom intervals. Bottom intervals are
mutually disjoint and we can build an AVL-tree T on X® without knowing their true values.
Recall that a Fibonacci tree is a tree binary where for every inner node, its left subtree has a
depth 1 greater than its right subtree. A Fibonacci tree is a valid AVL-tree and we construct
the AVL-tree over X? as a Fibonacci tree where we add at most | X°| dummy leaves with
value oo to ensure that the total number of nodes is a Fibonacci number. Refer to Figure 8
for an example. We remove the bottom intervals from R and for each non-bottom interval R
we identify its anchor L™(R) and we supply R with a pointer to L™(R). As the final step of
the preprocessing phase we connect the leaves of T' in a doubly linked list. To summarize:
= consists of a graph of intervals connected by anchor pointers and an AVL-tree T. Each
bottom interval is in T" and each non-bottom interval has a directed path to a node in T

» Lemma 10. We can construct the auziliary structure = in O(nlogn) time.

Proof. The level partition and permutation can be constructed in O(nlogn) time and with
it we get access to the intervals in Ly sorted from right to left. We scan L; from right to left
and for each interval R € Ly we either identify it as a bottom interval or to supply it with
its anchor. We identify for each R ¢ L its anchor in logarithmic time using a range query.
We construct the Fibonacci tree on X® with leaf pointers in O(nlogn) time [20]. |

Reconstruction phase. During the reconstruction phase, we need to maintain the balance
of T when we insert new values. T' contains bottom intervals which we are not allowed to
charge even constant time, so the classical amortized-constant analysis [19] of AVL-trees
does not immediately apply. Nonetheless we show in the full version:
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L3

Lo

Ly

Figure 9 The tree T from Figure 8 after two iterations in the reconstruction phase. We inserted
the true values of the two orange intervals. Note that an orange interval requested the true value of
a bottom interval. At this iteration we want to insert the point x; of R; into T. R; is a non-bottom
interval in Wj so its anchor must be the interval preceding it.

» Lemma 11. Let T be an AVL-tree where each inner node has two subtrees with a depth
difference of 1. We can dynamically maintain the balance of T in amortized O(1) time.

» Theorem 12. Given =, we can reconstruct an AVL-tree on X in ©(A™(R)) time.

Proof. Given = and the level permutation m we want to sort the points in X (insert them
into T') in O(A™(R)) time. Because T starts as a Fibonacci tree, Lemma 11 guarantees that
we can dynamically maintain the balance of T with at most O(A™(R)) operations. The
bottom intervals are already in 7', thus we need to insert only the remaining z; € X\ X?, in
the order 7, into T in log |T'7| time plus some additional time which we charge to the anchor
(each anchor will only get charged once).

Whenever we process a non-bottom interval R; we know that its anchor is already inserted
in T. By construction, there are at most O(|I'T|) leaves in T' which have coordinates on the
domain of R; (because these values can come only from intervals in the contact set of R;).
We know that we must insert z; next to one of these O(|I'T|) leaves in T. This means that
if we have a pointer to any leaf on the domain of R;, then we locate x; in T with at most
O(log |T'T|) edge traversals. During these traversals, we collapse each interval we encounter
to a point. We obtain such a pointer from L™(R;). Assume 1™(R;) C R;. Then the leaf
corresponding to L7 (R;) must lie on the domain of R;. Otherwise, R; and L™ (R;) are both
in the level L; (illustrated in Figure 9) and 1™(R;) = R;—; and must contain the right
endpoint of R;. With a similar analysis, R;_; can locate the right endpoint of R; in T in
O(log |I'T_;| time. In both cases we found a leaf of T in R; and locate x; in T in O(log|T'7|)
time. Each interval in L; has a unique anchor, so each anchor in L; is charged this extra
work once. |

4 Quadtrees

Let R = {Ry, Ry, ..., R,} be a set of unit intervals in a bounding box (interval) B (we discuss
how to extend the approach later) and let X = {x1,x2,...,2,} be a set of points (values)
with x; € R;. We show how to construct an auxiliary structure = on R in the preprocessing
phase without using X, such that, in the reconstruction phase, we can construct a linear-size
quadtree T on X in ©(A(R)) time. We recall several standard definitions.
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Figure 10 A set of points R where the quadtree on R has linear depth. If the blue points lie
very close, the quadtree on R needs unbounded complexity.

Point quadtrees. Suppose that we have a d-dimensional point set X in a bounding hyper-
cube B. A quadtree on (B, X) is defined as follows: split operator is an operator that splits
any d-dimensional hypercube into 2¢ equal-sized hypercubes called cells. We recursively
split B until each point p € P lies within a unique cell [21]. A A-deflated quadtree is a more
relaxed quadtree where B is split until each leaf cell contains at most A points [3].

Region quadtrees. Let R be a set of d-dimensional disks in a bounding hypercube B. Let
T (B) be the infinite set of possible quadtree cells on B. For each R; € R, we define its storing
cell denoted by C; as the largest cell in T (B) that is contained in R; and contains the center
of R; [17]. T; is the subtree induced by C;. The neighborhood of R; is the set of possible
cells C' € T(B) with size |C;| that are intersected by R;. We consider the quadtree T on R
to be the unique compressed quadtree where for each R; € R, its neighborhood is in T

Edge oracle tree. Depending on B and X, the quadtree on (B, X) does not necessarily
have logarithmic depth (Figure 10) thus, point location in 7" is non-trivial. Har-Peled [10]
introduced a fast point-location structure (later dubbed edge-oracle tree [17]) for any quadtree
T. The edge-oracle tree E is created through centroid decomposition. Any tree with bounded
degree § has at least one centroid edge which separates a tree of n nodes into two trees with
at least & and at most n — % nodes each. Moreover, one of these 2 trees is a subtree of T'
(a tree induced by a node as a root). For any subtree T” of T', we define its corresponding
node in E (edge in T') as the lowest node in E which splits T" into two parts, one of which
contains 7" and the other contains the root of T'. This node must exist, is unique and the
subtree containing 7" has O(|T”]) nodes (refer to Figure 11).

Given a query point ¢, we can find the leaf cell C;, that contains ¢ in the following way:
each decision node v of E has 2 children where 1 child node w corresponds to a subtree T, of
T. We test whether ¢ is contained in w in O(1) time by checking the bounding box of T,,.

We wish to preprocess R such that we can reconstruct a linear-size A-deflated quadtree T’
for X with pointers between leaves. However, T" does not necessarily have linear size and
dynamically maintaining pointers between leaves is non-trivial. To achieve this, one needs
to maintain a compressed and smooth quadtree T (refer to the full version for details) and
Hoog et al. [12] show how to dynammically maintain a smooth compressed quadtree with
constant update time. We will build such a quadtree augmented with an edge-oracle tree
initialized as a Fibonacci tree. We proceed analogously to the approach in Section 3.

€1 €2 “
€7
€6
er €6 €5 €4

Figure 11 (left) A tree T with recursive centroid edges. (right) The corresponding edge-oracle
tree E. The orange leaf is a subtree of T and its corresponding node in F is es.
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4.1 1-dimensional quadtrees on unit-size intervals

We show how to construct an auxiliary structure = on R without using X, such that we can
construct a 2-deflated quadtree T' on (B, X) in ©(A(R)) time.

Preprocessing phase. The auxiliary structure = will be a smooth compressed quadtree
T on the intervals R augmented with an edge-oracle tree E on T, anchor pointers, and
a containment-compatible processing permutation 7 of R. Given T, we initialize F as a
Fibonacci tree, possibly adding dummy leaves'!. We supply each R; with a pointer to the
node in F corresponding to T; and we call this its anchor L™(R;).

» Lemma 13. The auziliary structure Z can be constructed in O(nlogn) time.

Proof. Hoog et al. [12] show that for any set of d-dimensional disks R, its smooth compressed
quadtree T' on R with corresponding edge-oracle tree E can be constructed in O(nlogn)
time and that this tree has a worst-case constant update time. We turn E into a Fibonacci
tree by inserting at most O(n) dummy leaves in O(nlogn) time in total. <

Reconstruction phase. By construction, each leaf in T" intersects at most 2 bottom intervals
of R (since these are mutually disjoint). Therefore, we can construct a 2-deflated quadtree
on X by inserting each x; € X\ X? in the order 7 into 7. We observe the following:

» Lemma 14. When we process an interval R; € R, R; intersects O(|I'T|) leaf cells of T.

Proof. There can be at most 2 bottom intervals (left and right) of R; whose neighborhood
intersects R;. All the other leaves on the domain of R; are caused by either already
processed points on the domain of R; or are dummy nodes. For each dummy node there is a
corresponding non-dummy node also on the domain of R;. <

» Lemma 15. When we process an interval R;, we can locate, for any point q € R;, the leaf
Cy € T which contains ¢ in O(log|T'T|) time.

Proof. If Cy € T; then R; has an anchor to T; and from this anchor we locate Cy in O(log |I'T|)
time. Suppose Cj is to the left of T;. We locate the left-most leaf of T; in O(log |I'7|) time
and traverse its neighbor pointer. The neighboring cell must lie in a subtree Tj neighboring
T; with O(|T'7|) nodes and this tree must contain C; (Lemma 14). We now have a pointer to
a node in Tj, and from this node we locate Cj; in O(log|I'7|) time. <

» Theorem 16. Given =, we can construct a 2-deflated quadtree on X in @(A™(R)) time.

Proof. Given = and any containment-compatible permutation 7, we want to insert X into
T in O(A™(R)) time. An insertion in 7" creates 2 additional leaves in T' (and therefore also
in E) and Lemma 11 guarantees that we can dynamically maintain the balance of E with
at most O(A™(R)) operations. If we only consider the point set X* C X corresponding to
the bottom intervals then 7T is already a 2-deflated quadtree on X independent of where
the points of X? lie in their uncertainty intervals. Therefore, we only need to insert the
remaining z; € X\ X?, in the order 7, into T in log |['F| time (potentially collapsing some of
the bottom intervals when necessary). Using Lemma 15 we can locate the quadtree leaf Cy,
that contains x; in O(log |T'T|) time. This leaf is intersected by at most 2 bottom intervals,
which we collapse into points whose location we locate in constant time using the leaf pointers.
Thus each non-bottom interval inserts at most 3 points into 7" in O(log |T'T|) time. <

! 'We may need to allow parents of leaves of T' to have a single dummy leaf.
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4.2 Generalization

If we stay in one dimension, then the result of Theorem 16 in fact generalizes to the case
where R is a set of arbitrary intervals since Lemma 14 and 15 do not depend on the intervals
being unit size. However, the result also generalizes to the case where R is a set of unit-size

disks in d (constant) dimensions: first of all, any permutation of R is containment-compatible.

If the disks are unit size then each disk intersects at most Ky bottom disks where K is
the kissing number so Lemma 14 generalizes. For any disk R; € R, recall that T; was the
subtree of the storing cell of R;. Any point ¢ € R; must lie in the perimeter of T; which
consists of at most O(5¢) subtrees of size O(|['T|) therefore, Lemma 15 also generalizes. The
result is even more general: this approach works for any collection R of unit-size fat convex
regions similar to, e.g. [2]. Interestingly, generalizing the result of Theorem 16 both to higher
dimensions and to non-unit regions at the same time is not possible: in the full version we
show that, independent of preprocessing, reconstructing a A-deflated quadtree has a lower
bound of Q(logn), which could be more than A(R).

5 Conclusion

We introduced the ambiguity A(R) of a set of regions R as a more fine-grained measure
of the degree of their overlap. We applied this concept to uncertainty regions representing
imprecise points. In the preprocessing model we show that the ambiguity is a natural lower
bound for the time complexity of the reconstruction of any proximity structure. We achieved
these results via a link to the entropy of partial orders which is of independent interest. If
the regions are intervals in 1D we show how to sort in ©(A(R)) time, if the regions are unit
balls in any dimension we show how to reconstruct quadtrees ©(A(R)) time.

In the future we plan to investigate if our results can be generalized to other promixity
structures such as Delaunay triangulations, minimum spanning trees, and convex hulls. In

principle it is possible to convert quadtrees into all of these structures in linear time [15].

However, it is not clear how to do so, when working with an implicit representation of the
results in the case that A(R) is sub-linear.
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