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Abstract

We prove that deciding if a diagram of the unknot can be untangled using at most k Reidemeister
moves (where k is part of the input) is NP-hard. We also prove that several natural questions
regarding links in the 3-sphere are NP-hard, including detecting whether a link contains a trivial
sublink with n components, computing the unlinking number of a link, and computing a variety
of link invariants related to four-dimensional topology (such as the 4-ball Euler characteristic, the
slicing number, and the 4-dimensional clasp number).
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49:2 The Unbearable Hardness of Unknotting

1 Introduction

Unknot recognition via Reidemeister moves. The unknot recognition problem asks whether
a given knot is the unknot. Decidability of this problem was established by Haken [10], and
since then several other algorithms were constructed (see, e.g., the survey of Lackenby [20]).

One can ask, naively, if one can decide whether a given knot diagram represents the
unknot simply by untangling the diagram: trying various Reidemeister moves until there
are no more crossings. The problem is knowing when to stop: if we have not been able to
untangle the diagram using so many moves, is the knot in question necessarily knotted or
should we keep on trying? “Hard unknots” can be found, for example, in [14].

In [11], Hass and Lagarias gave an explicit (albeit rather large) bound on the number of
Reidemeister moves needed to untangle a diagram of the unknot. Lackenby [18] improved the
bound to polynomial thus showing that the unknot recognition problem is in NP (this was
previously proved in [12]). The unknot recognition problem is also in co-NP [19] (assuming
the Generalized Riemann Hypothesis, this was previously shown by Kuperberg [16]). Thus if
the unknot recognition problem were NP-complete (or co-NP-complete) we would have that
NP and co-NP coincide which is commonly believed not to be the case; see, for example, [9,
Section 7.1]. This suggests that the unknot recognition problem is not NP-hard.

It is therefore natural to ask if there is a way to use Reidemeister moves leading to a
better solution than a generic brute-force search. Our main result suggests that there may
be serious difficulties in such an approach: given a 3-SAT instance Φ we construct an unknot
diagram and a number k, so that the diagram can be untangled using at most k Reidemeister
moves if and only if Φ is satisfiable. Hence any algorithm that can calculate the minimal
number of Reidemeister moves needed to untangle unknot diagrams will be robust enough to
tackle any problem in NP:

I Theorem 1. Given an unknot diagram D and an integer k, deciding if D can be untangled
using at most k Reidemeister moves is NP-complete.

NP-membership follows from the result of Lackenby [18], so we only show NP-hardness.
For the reduction in the proof of Theorem 1 we have to construct arbitrarily large diagrams
of the unknot. The difficulty in the proof is to establish tools powerful enough to provide
useful lower bounds on the minimal number of Reidemeister moves needed to untangle these
diagrams. For instance, the algebraic methods of Hass and Nowik [13] do not appear strong
enough for our reduction. It is also quite easy to modify the construction and give more
easily lower bounds on the number of Reidemeister moves needed to untangle unlinks if one
allows the use of arbitrarily many components of diagrams with constant size, but those
techniques too cannot be used for Theorem 1. We develop the necessary tools in Section 4.

Computational problems for links. Our approach for proving Theorem 1 partially builds
on techniques to encode satisfiability instances using Hopf links and Borromean rings, that we
previously used in [7] (though the technical details are very different). With these techniques,
we also show that a variety of link invariants are NP-hard to compute. Precisely, we prove:

I Theorem 2. Given a link diagram L and an integer k, the following problems are NP-hard:
(a) deciding whether L admits a trivial unlink with k components as a sublink.
(b) deciding whether an intermediate invariant has value k on L,
(c) deciding whether χ4(L) = 0,
(d) deciding whether L admits a smoothly slice sublink with k components.
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We refer to Definition 13 for the definitions of χ4(L), the 4-ball Euler characteristic,
and intermediate invariants. These are broadly related to the topology of the 4-ball, and
include the unlinking number, the ribbon number, the slicing number, the concordance
unlinking number, the concordance ribbon number, the concordance slicing number, and the
4-dimensional clasp number. See, e.g., [25] for a discussion of many intermediate invariants.

Related results. The complexity of problems with knots and links is poorly understood. In
particular, only very few computational lower bounds are known, and, as far as we know,
almost none concern classical knots (i.e., knots embedded in S3): apart from our Theorem 1,
the only other such hardness proof we know of [17, 24] concerns counting coloring invariants
of knots. More lower bounds are known for classical links. Lackenby [21] showed that
determining if a link is a sublink of another one is NP-hard. Our results strengthen this by
showing that even finding a trivial sublink is already NP-hard. Agol, Hass and Thurston [1]
showed that computing the genus of a knot in a 3-manifold is NP-hard, and Lackenby [21]
showed that computing the Thurston complexity of a link in S3 is also NP-hard. Our results
complement this by showing that the 4-dimensional version of this problem is also NP-hard.

Regarding upper bounds, the current state of knowledge is only slightly better. While, as
we mentioned before, it is now known that the unknot recognition problem is in NP∩ co-NP,
many natural link invariants are not even known to be decidable. In particular, this is the
case for all the invariants for which we prove NP-hardness, except for the problem of finding
the maximal number of components of a trivial sublink, which is in NP (see Theorem 5).

Shortly before we finished our manuscript, Koenig and Tsvietkova posted a preprint [15]
that also shows that certain computational problems on links are NP-hard, with some
overlap with the results obtained in this paper (the trivial sublink problem and the unlinking
number). They also show NP-hardness of computing the number of Reidemeister moves
for turning one unlink diagram into another, but their construction does not untangle the
diagram and requires arbitrarily many components. Theorem 1 of the current paper is
stronger and answers Question 17 of [15].

Organization. After some preliminaries in Section 2, we start by sketching the hardness
of the trivial sublink problem in Section 3 because it is very simple and provides a good
introduction for our other reductions. We then proceed to prove Theorem 1 in Sections 4
and 5 and the hardness of the unlinking number and the other invariants in Sections 6 and 7.
These three proofs are mostly independent and the reader can read any of them separately.

2 Preliminaries

Notation. Most of the notation we use is standard. By knot we mean a tame piecewise
linear embedding of the circle S1 into the 3-sphere S3. By link we mean a tame, piecewise
linear embedding of the disjoint union of any finite number of copies of S1. We assume basic
familiarity with computational complexity and knot theory, and refer to basic textbooks
such as Arora and Barak [5] for the former and Rolfsen [23] for the latter.

Diagram of a knot or a link. All the computational problems that we study in this paper
take as input the diagram of a knot or a link, which we define here. A diagram of a knot is a
piecewise linear map D : S1 → R2 in general position, obtained by composing the embedding
S1 → R3 with a projection R3 → R2. For such a map, every point in R2 has at most two
preimages, and there are finitely many points in R2 with exactly two preimages (called
crossings); at each crossing we indicate which arc crosses over and which crosses under. We
similarly define a link diagram; for details see, for example [23].

SoCG 2019
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t

Figure 1 LΦ for Φ = (x ∨ y ∨ z) ∧ (x ∨ ¬y ∨ t), a satisfying assignment is dashed.

By an arc in the diagram D we mean a set D(α) where α is an arc in S1, i.e., a subset of
S1 homeomorphic to the closed interval (note that this definition is slightly non-standard).

The size of a knot or a link diagram is its number of crossings plus number of components
of the link. Up to a constant factor, this complexity exactly describes the complexity of
encoding the combinatorial information contained in a knot or link diagram.

3-satisfiability. In our reductions, we use the NP-hardness of the 3-SAT problem. An input
is a formula in conjunctive normal form and we assume that each clause contains exactly
three literals. For the proof of Theorem 1, we need a slightly restricted form of the 3-SAT
problem given in the lemma below. The proof is simple (see Lemma 5 of the full version [8]).

I Lemma 3 (Probably folklore). Deciding whether a formula Φ in conjunctive normal form
is satisfiable is NP-hard even if we assume the following conditions on Φ.

Each clause contains exactly three literals.
No clause contains both x and ¬x for some variable x.
Each pair of literals {`1, `2} occurs in at most one clause.

3 Trivial sublink

Informally, the trivial sublink problem asks, given a link L and a positive integer n, whether
L admits the n-component unlink as a sublink. We define:

I Definition 4 (The Trivial Sublink Problem). An unlink, or a trivial link, is a link in S3

whose components bound disjointly embedded disks. A trivial sublink of a link L is an unlink
formed by a subset of the components of L. The trivial sublink problem asks, given a link L
and a positive integer n, whether L admits an n component trivial sublink.

I Theorem 5. The trivial sublink problem is NP-complete.

For a complete proof of this theorem see Theorem 4 of the full version [8], yet it is simple
and intuitive enough to be explained in a few words and a picture here.
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Figure 2 Reidemeister moves.

Sketch. NP membership follows from Hass, Lagarias and Pippenger [12] (also Lackenby [18]).
For NP-hardness, starting with a 3-SAT instance Φ with n variables, we construct a 2n-
component link LΦ (see Figure 1) consisting of a Hopf link for each variable and Borromean
rings for each clause (each component corresponds to a literal as labeled). Each Borromean
rings component is banded to the Hopf link component with the same label.

Given a satisfying assignment (x = z = false, y = t = true in Figure 1), remove the
components of satisfied literals (dashed yellow). Then from each set of Borromean rings at
least one ring was removed; thus the sublink retracts into n separated unknots.

Conversely, let Un be an n-component trivial sublink of LΦ (black in Figure 1). Since the
Hopf link cannot be found in Un, for each variable x, one of the components corresponding
to x and ¬x is in Un, and the other is not. Since the Borromean rings cannot be found
in Un from each set Borromean rings at least one ring is not in Un. We conclude that the
components not in Un define a satisfying assignment for Φ. J

4 The defect

Reidemeister moves. Reidemeister moves are local modifications of a diagram depicted in
Figure 2 (the labels at the crossings in a III move will be used only later on). We distinguish
the I move (left), the II move (middle) and the III move (right). The first two moves affect the
number of crossings, thus we further distinguish the I− and the II− moves which reduce the
number of crossings from the I+ and the II+ moves which increase the number of crossings.

The number of Reidemeister moves for untangling a knot. A diagram of the unknot
is untangled if it does not contain any crossings. The untangled diagram is denoted by
U . Given a diagram D of an unknot, an untangling of D is a sequence D = (D0, . . . , Dk)
where D0 = D, Dk = U (recall that diagrams are only considered up to isotopy) and Di is
obtained from Di−1 by a single Reidemeister move. The number of Reidemeister moves in
D is denoted by rm(D), that is, rm(D) = k. We also define rm(D) := min rm(D) where the
minimum is taken over all untanglings D of D.

The defect. Let us denote by cross(D) the number of crossings in D. We define the defect
of an untangling D by the formula

def(D) := 2 rm(D)− cross(D).

The defect of a diagram D is defined as def(D) := 2 rm(D) − cross(D). Equivalently,
def(D) = min def(D) where the minimum is taken over all untanglings D of D. The defect
is a convenient way to reparametrize 2 rm(D) due to the following observation.

I Observation 6. For any diagram D of the unknot and any untangling D of D we have
def(D) ≥ 0. Equality holds if and only if D uses only II− moves.

SoCG 2019
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This notion of defect is different from the one that was introduced by Chang and
Erickson [6] (following Arnold [3, 4] and Aicardi [2]) to study homotopy moves.

Proof. A Reidemeister move in D = (D0, . . . , Dk) removes at most two crossings and the
II− move is the only move that removes exactly two crossings. Thus, the number of crossings
in D = D0 is at most 2k and equality holds if and only if every move is a II− move. J

Crossings contributing to the defect. Let D = (D0, . . . , Dk) be an untangling of a diagram
D = D0 of an unknot. Given a crossing ri in Di, for 0 ≤ i ≤ k − 1, it may vanish by the
move transforming Di into Di+1 if this is a I− or a II− move affecting the crossing. In all
other cases it survives and we denote by ri+1 the corresponding crossing in Di+1. Note that
in the case of a III move there are three crossings affected by the move and three crossings
afterwards. Both before and after, each crossing is the unique intersection between a pair of
the three arcs of the knot that appear in this portion of the diagram. So we may say that
these three crossings survive the move though they change their actual geometric positions
(they swap the order in which they occur along each of the three arcs); see Figure 2.

With a slight abuse of terminology, by a crossing in D we mean a maximal sequence
r = (ra, ra+1, . . . , rb) such that ri+1 is the crossing in Di+1 corresponding to ri in Di for any
a ≤ i ≤ b− 1. By maximality we mean that rb vanishes after the (b+ 1)st move and either
a = 0 or ra is introduced by the ath Reidemeister move (which must be a I+ or II+ move).

An initial crossing is a crossing r = (r0, r1, . . . , rb) in D. Initial crossings in D are in
one-to-one correspondence with crossings in D = D0. For simplicity of notation, r0 is also
denoted r (as a crossing in D).

A Reidemeister II− move in D is economical if both crossings removed by this move are
initial crossings; otherwise, it is wasteful. Let m3(r) be the number of III moves affecting a
crossing r. The weight of an initial crossing r is defined in the following way.

w(r) = 2
3m3(r) +


0 if r vanishes by an economical II− move;
1 if r vanishes by a I− move;
2 if r vanishes by a wasteful II− move.

For later purposes, we also define w(r) := w(r) and w(R) :=
∑

r∈R w(r) for a subset R
of the set of all crossings in D.

I Lemma 7. Let D be an untangling of a diagram D. Then

def(D) ≥
∑

r
w(r),

where the sum is over all initial crossings r of D. If, in addition, D uses only the the I−
and II− moves only, then (for the same sum) we get

def(D) =
∑

r
w(r) = number of I− moves.

The proof uses a discharging technique; see Lemmas 7 and 8 of the full version [8].

Twins and the preimage of a bigon. Let r be an initial crossing in an untangling D =
(D0, . . . , Dk) removed by an economical II− move. The twin of r, denoted by t(r) is the
other crossing in D removed by the same II− move. Note that t(r) is also an initial
crossing (because the move is economical). We also get t(t(r)) = r. If r = (r0, . . . , rb), then
we extend the definition of a twin to Di in such a way that t(ri) is uniquely defined by
t(r) = (t(r0), . . . , t(rb)). In particular, t(r) is a twin of a crossing r = r0 in D (if it exists).
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Furthermore, the crossings rb and t(rb) in Db form a bigon that is removed by the
forthcoming II− move. Let αb(r) and βb(r) be the two arcs of the bigon (with endpoints
rb and t(rb)) so that αb(r) is the arc that, after extending slightly, overpasses the crossings
rb and t(rb) whereas a slight extension of βb(r) underpasses these crossings. (The reader
may remember this as α is “above” and β is “below”.) Now we can inductively define arcs
αi(r) and βi(r) for 0 ≤ i ≤ b − 1 so that αi(r) and βi(r) are the unique arcs between ri

and t(ri) which are transformed to (already defined) αi+1(r) and βi+1(r) by the (i+ 1)st
Reidemeister move. We also set α(r) = α0(r) and β(r) = β0(r). Intuitively, α(r) and β(r)
form a preimage of the bigon removed by the bth move and we call them the preimage arcs
between r and t(r).

Close neighbors. Let R be a subset of the set of crossings in D. Let r and s be any two
crossings in D (not necessarily in R) and let c ≥ 0 be an integer. We say that r and s are
c-close neighbors with respect to R if r and s can be connected by two arcs α and β such that

α enters r and s as an overpass and β enters r and s as an underpass;
α and β may have self-crossings; however, neither r nor s is in the interior of α or β; and
α and β together contain at most c crossings from R in their interiors. (If there is a
crossing in the interior of both α and β, this crossing is counted only once.)

I Lemma 8. Let R be a subset of the set of crossings in D, let c ∈ {0, 1, 2, 3}. Let r be the
crossing in R which is the first of the crossings in R removed by an economical II− move (we
allow a draw). If w(R) ≤ c, then r and its twin t(r) are c-close neighbors with respect to R.

Sketch. See Lemma 9 of the full version [8]. Let α(r) and β(r) be the preimage arcs between
r and t(r). We want to verify that they satisfy the properties of the arcs from the definition
of the close neighbors. The first item follows immediately from the definition of preimage
arcs. For the second item, if we had r or t(r) in the interior of α or β then we cannot get a
bigon between rb and t(rb) by subsequent moves. The third item is verified by an analysis
of Reidemeister moves removing the crossings of α and β before we get a bigon between rb

and t(rb), using c ≤ 3: if r and t(r) are not c-close with respect to R, then the Reidemeister
moves needed to “clean” the bigon for the II− move contribute more than c to w(R). J

5 The reduction

Let Φ be a formula in conjunctive normal form satisfying the conditions stated in Lemma 3 and
let n be the number of variables. Our aim is to build a diagram D(Φ) by a polynomial-time
algorithm such that def(D(Φ)) ≤ n if and only if Φ is satisfiable.

The variable gadget. First we describe the variable gadget. For every variable x we consider
the diagram depicted at Figure 3 and we denote it V (x).

The gadget contains 17 crossings p[x], p[¬x], q[x], q[¬x], r(x) and si(x) for 1 ≤ i ≤ 12.
The variable gadget also contains six distinguished arcs γi[x] and γi[¬x] (for i = 1, 2),

δ(x) and ε(x) and six distinguished auxiliary points a1(x), . . . , a6(x) which will be useful
later on in order to describe how the variable gadget is used in the diagram D(Φ).

We also call the arc between a1(x) and a2(x) which contains γ1[¬x] and γ2[¬x] the ¬x
tentacle, and similarly, we have removed ¬x tentacle between a2(x) and a3(x). Informally, a
satisfying assignment to Φ will correspond to the choice whether we will decide to remove
first the loop at p[x] by a I− move and simplify the x tentacle or whether we remove first
the loop at p[¬x] and remove the ¬x tentacle in the final construction of D(Φ).

SoCG 2019
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δ(x)

ε(x)

p[x] q[x]

p[¬x] q[¬x]
r(x)

s10(x)

s12(x)s9(x)

s11(x)

s5(x)

s6(x)

s8(x)

s7(x)

s2(x)

s4(x)s1(x)

s3(x)

γ1[x]

γ2[x]

γ1[¬x]

γ2[¬x]

x tentacle

¬x tentacle

a1(x) a5(x)

a2(x)

a4(x) a6(x)

a3(x)

Figure 3 The variable gadget V (x).

`1
`2

`3

Figure 4 The clause gadget for clause c = (`1 ∨ `2 ∨ `3).

We also remark that in the notation, we use square brackets for objects that come in
pairs and will correspond to a choice of literal ` ∈ {x,¬x}. This regards p[`], q[`], γ1[`] and
γ2[`] whereas we use parentheses for the remaining objects.

The clause gadget. Given a clause c = (`1 ∨ `2 ∨ `3) in Φ, the clause gadget is depicted at
Figure 4.The construction is based on the Borromean rings. It contains three pairs of arcs
(distinguished by color) and with a slight abuse of notation, we refer to each of the three
pairs of arcs as a “ring”. Note that each ring has four pendent endpoints (or leaves) as in the
picture. Each ring corresponds to one of the literals `1, `2, and `3.

A blueprint for the construction. Now we build a blueprint for the construction of D(Φ).
Let x1, . . . , xn be the variables of Φ and let c1, . . . , cm be the clauses of Φ. For each clause
cj = (`1 ∨ `2 ∨ `3) we take a copy of the graph K1,3 (also known as the star with three leaves).
We label the vertices of degree 1 of such a K1,3 by the literals `1, `2, and `3. Now we draw
these stars into the plane sorted along a horizontal line; see Figure 5. Next for each literal
` ∈ {x1, . . . , xn,¬x1, . . . ,¬xn} we draw a piecewise linear segment containing all vertices
labelled with that literal according to the following rules (follow Figure 5).
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Φ = (x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x4) ∧ (x1 ∨ ¬x3 ∨ ¬x4)

x1 x2

x3

¬x1
x2

¬x3

¬x1 ¬x2

x4

x1
¬x3

¬x4

x1
x2
x3
x4

¬x1
¬x2
¬x3
¬x4

x1

¬x1

x2

¬x2

x3

¬x3

x4

¬x4

c1 c2 c3 c4

Figure 5 A blueprint for the construction of D(Φ).

The segments start on the right of K1,3’s in the top down order x1,¬x1, x2, . . . , xn,¬xn.
They continue to the left while we permute them to the order x1, . . . , xn, ¬x1, . . . ,¬xn.
We also require that x1, . . . , xn occur above the graphs K1,3 and ¬x1, . . . ,¬xn occur
below these graphs (everything is still on the right of the graphs).
For each literal ` the segment for ` continues to the left while it makes a “detour” to each
vertex v labelled `. If v is not the leftmost vertex labelled `, then the detour is done by a
“finger” of two parallel lines. Each finger avoids K1,3’s except of v. If v is the leftmost,
then we perform only a half of the finger so that v is the endpoint of the segment.

Note that the segments often intersect each other; however, for any i the segments for xi

and ¬xi do not intersect (as we assume that no clause contains both xi and ¬xi).

The final diagram. Finally, we explain how to build the diagram D(Φ) from the blueprint.

Step I (four parallel segments): We replace each segment for a literal ` with four parallel
segments; see Figure 6. The outer two will correspond to the arc γ1[`] from the variable
gadget and the inner two will correspond to γ2[`]; compare with Figure 3.

x1

γ1[x1]

γ1[x1]

γ2[x1]
γ2[x1]

Step I

Figure 6 Step I: Replacing segments.

Step II (clause gadgets): We replace each copy of K1,3 by a clause gadget for the cor-
responding clause c; see Figure 7. Now we aim to describe how is the clause gadget
connected to the quadruples of parallel segments obtained in Step I. Let v be a degree 1
vertex of the K1,3 we are just replacing. Let ` be the literal which is the label of this
vertex. Then c may or may not be the leftmost clause containing a vertex labelled `.
If c is the leftmost clause containing a vertex labelled `, then there are four parallel
segments for ` with pendent endpoints (close to the original position of v) obtained in

SoCG 2019
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¬x1 ¬x2

x4

¬x1

¬x2

x4

γ1[¬x2]

γ1[¬x2]

γ2[x4]

Step II

γ1[¬x1]

γ1[¬x1]

Figure 7 Step II: Replacing the K1,3.

Step I. We connect them to the pendent endpoints of the clause gadget (on the ring for `);
see ¬x2 and x4 in Figure 7. Note also that at this moment the two γ1[`] arcs introduced
in Step I merge as well as the two γ2[`] arcs merge.
If c is not the leftmost clause labelled ` then there are four parallel segments passing
close to v (forming a tip of a finger from the blueprint). We disconnect the two segments
closest to the tip of the finger and connect them to the pendent endpoints of the clause
gadget (on the ring for `); see ¬x1 in Figure 7.

Step III (resolving crossings): If two segments in the blueprint, corresponding to literals
` and `′ cross, Step I blows up each such crossing into 16 crossing of corresponding
quadruples. We resolve overpasses/underpasses at these crossings in the same way; see
Figure 8.

Step I Step III
`
`′

γ1[`′]
γ2[`′]
γ2[`′]
γ1[`′]

γ1[`]

γ2[`]

Figure 8 Step III: Resolving crossings.

However, we require one additional condition on the choice of overpasses/underpasses. If
` and `′ appear simultaneously in some clause c we have 8 crossings on the rings for `
and `′ in the clause gadget for c. We can assume that the ring of ` passes over the ring
of `′ at all these crossings (otherwise we swap ` and `′). Then for the 16 crossings on
segments for ` and `′ we pick the other option, that is we want that the γ1[`] and γ2[`]
arcs underpass the γ1[`′] and γ2[`′] arcs at these crossings. This is a globally consistent
choice because we assume that there is at most one clause containing both ` and `′, this
is the third condition in the statement of Lemma 3.

Step IV (the variable gadgets): For each variable xi, the segments γ1[xi], γ2[xi], γ1[¬xi]
and γ2[¬xi] do not intersect each other. We extend them to a variable gadget as in
Figure 9. Namely, to the bottom right endpoints of γ1[xi], γ2[xi], γ1[¬xi] and γ2[¬xi]
we glue the parts of the variable gadget containing the crossings p[xi] and p[¬xi] and
to the top right endpoints of γ1[xi], γ2[xi], γ1[¬xi] and γ2[¬xi] we glue the remainder of
the variable gadget. At this moment, we obtain a diagram of a link, where each link
component has a diagram isotopic to the diagram on Figure 3.
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δ(x1)

ε(x1)

γ1[x1]

γ1[x1]

γ2[¬x1]

x1

¬x1

Step I Step IV

Figure 9 Step IV: Adding the variable gadgets.

δ(x1)

V (x1)

V (x2)

a4(x1) = a1(x2) a6(x1) = a5(x2)

Figure 10 Step V: Interconnecting the variable gadgets.

Step V (interconnecting the variable gadgets): Finally, we form a connected sum of indi-
vidual components. Namely, for every 1 ≤ i ≤ n− 1 we perform the knot sum along the
arcs δ(xi) and ε(xi+1) by removing them and identifying a4(xi) with a1(xi+1) and a6(xi)
with a5(xi+1) as on Figure 10. The arcs δ(x1) and ε(xn) remain untouched. This way we
obtain the desired unknot diagram D(Φ); see Figure 11.

The core of the NP-hardness reduction is the following theorem.

I Theorem 9. Let Φ be a formula with n variables in conjunctive normal form satisfying the
conditions in the statement of Lemma 3. Then def(D(Φ)) ≤ n if and only if Φ is satisfiable.

Theorem 1 immediately follows from Theorem 9 and Lemma 3:

Proof of Theorem 1 modulo Theorem 9. Due to the definition of the defect, the minimum
number of Reidemeister moves required to untangle D equals 1

2 (def(D(Φ)) + cross(D(Φ)).
Therefore, with k = 1

2 (n+ cross(D(Φ)), Theorem 9 gives that D(Φ) can be untangled with
at most k moves if and only if Φ is satisfiable. This gives the required NP-hardness via
Lemma 3. (Note that D(Φ) and k can be obtained in polynomial time in the size of Φ.) J

The remainder of this section is devoted to the proof of Theorem 9.

5.1 Satisfiable implies small defect
In this subsection we show that given a satisfying assignment for Φ, def(D(Φ)) ≤ n.
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Φ = (x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x4) ∧ (x1 ∨ ¬x3 ∨ ¬x4)

x1

x2 x3
x4

¬x1
¬x2

¬x3
¬x4

Figure 11 The final construction for the formula Φ = (x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨
¬x2 ∨ x4) ∧ (x1 ∨ ¬x3 ∨ ¬x4). For simplicity of the picture, we do not visualize how the crossings
are resolved in Step III. (Unfortunately, we cannot avoid tiny pictures of gadgets.)

I− II− II− II−p[`]

Figure 12 Initial simplifications.

For any literal ` = true, we remove the crossing p[`] by a I− move (see Figure 3). This
uses exactly n I− moves. Next we finish the untangling of the diagram by II− moves only.
Once this is done, we get an untangling with defect n by Lemma 7, completing the proof.

Thus it remains to finish the untangling with II− moves only. For any ` = true, we
shrink the ` tentacle by II− moves (see Figure 12). By construction of D(Φ) we can continue
shrinking the ` tentacle until we get a loop next to the q[`] vertex; see Figure 13.

We continue the same process for every literal ` = true. Along the way, some of the arcs
meeting γ1[`] and γ2[`] might have already been removed but it is still possible to simplify
the ` tentacle as before. See Figure 14 for the result after shrinking all satisfied tentacles.

Because the assignment was satisfying, in each clause gadget at least one ring of the
Borromean rings disappears. Consequently, if there are two remaining rings in some clause
gadget, then they can be pulled apart from each other by II− moves as in Figure 15.

After this step, for each ` = true, the γ1[¬`] and γ2[¬`] form “fingers” of four parallel
curves that can be further simplified by II− moves so that any crossings among different

V (xi)

q[¬`]

q[`]
p[¬`]

` = ¬xi

Figure 13 The ` tentacle was shrunk to a loop next to q[`]. In this example we have ` = ¬xi.
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Φ = (x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x4) ∧ (x1 ∨ ¬x3 ∨ ¬x4)
TRUE

TRUE

FALSE

TRUE

V (x1)

V (x2)

V (x3)

V (x4)

Figure 14 Simplified D(Φ) following a satisfying assignment x1 = x2 = x4 = true and
x3 = false.

2 steps

Figure 15 Untangling two rings in the clause gadget via II− moves.

fingers are removed; see Figure 16. For each variable gadget we get one of the two pictures
at Figure 17 left, and can be simplified to the picture on the right using II− moves.

Finally, we recall how the variable gadgets are interconnected (compare the right picture
at Figure 17 with Figure 10). Then it is easy to remove all remaining 2n crossings by II−

moves gradually from top to bottom. This finishes the proof of the “if” part of Theorem 9.

5.2 Small defect implies satisfiable
The purpose of this subsection is to sketch a proof of the “only if” part of the statement of
Theorem 9. Recall that this means that we assume def(D(Φ)) ≤ n and we want to deduce
that Φ is satisfiable. (Along the way we will actually also deduce that def(D(Φ)) = n.) In
this subsection, we heavily use the terminology introduced in Section 4.

Let D = (D0, . . . , Dk) be an untangling of D with def(D) ≤ n. For a variable x let
R(x) = {p[x], p[¬x], q[x], q[¬x], s1(x), . . . , s12(x)} be the set of 16 out of the 17 self-crossings
in the variable gadget V (x) (we leave out r(x)) and let the weight of x, denoted by w(x), be
the sum of weights of the crossings in R(x).

Figure 16 Simplifying γ1[¬`] and γ2[¬`] via II− moves. First, we untangle the inner (horizontal)
“finger” and then we untangle the outer (horizontal) “finger”.
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p[x] q[x]

q[¬x]

p[¬x]

q[x]

q[¬x]

x assigned TRUE

x assigned FALSE

Figure 17 Results of the simplifications on the previous picture on the level of variable gadgets.

Now we provide two claims on the order of removals of the crossings. Both claims are
proved using Lemma 8 via a careful case analysis, see Claims 10.1 and 10.2 of the full
version [8]. The first claim analyzes the first economical II− move that removes some of the
crossings in R(x). For these claims, recall Figure 3.

B Claim 10. Let x be a variable with w(x) ≤ 1. Let r be the first crossing in R(x) which
is removed by an economical II− move (we allow a draw). Then one of the following cases
holds (note that in both cases w(x) = 1):
(i) {r, t(r)} = {s1(x), s2(x)}, w(p[x]) = w(x) = 1 and p[x] is removed by a I− move prior

to removing r and t(r).
(ii) {r, t(r)} = {s1(x), s3(x)}, w(p[¬x]) = w(x) = 1 and p[¬x] is removed by a I− move

prior to removing r and t(r).

Now, let us set ` := `(x) := x if the conclusion (i) of Claim 10 holds and ` := `(x) := ¬x
if (ii) holds (assuming w(x) ≤ 1). (We identify ¬¬x with x, that is, if ` = ¬x, then ¬` = x.)

B Claim 11. If w(x) ≤ 1, then p[¬`] and q[¬`] are twins. In addition, the preimage arcs α
and β between p[¬`] and q[¬`] contain γ1[¬`] and γ2[¬`].

Now, we have acquired enough tools to finish the proof of the theorem. By Claim 10, we
have w(x) ≥ 1 for any variable x. By Lemma 7, we deduce

def(D) ≥
∑

x

w(x) ≥ n,

where the sum is over all variables. On the other hand, we assume def(D) ≤ n. Therefore
both inequalities above have to be equalities and in particular w(x) = 1 for any variable x.
In particular, the assumptions of Claims 10 and 11 are satisfied for any variable x.
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γ1[`1] γ1[`2]

γ1[`3]

u′

u

z′ γ2[`2]γ2[`1]

γ2[`3]

z p[`2] or q[`2]

Figure 18 The clause gadget and some of the crossings of R′′(c).

Given a variable x, we assign x with true if the conclusion (i) of Claim 10 holds (that
is, if x = `(x)). Otherwise, if the conclusion (ii) of Claim 10 holds (i.e. ¬x = `(x)), we set x
to false. It remains to prove that we get a satisfying assignment this way.

For contradiction, suppose there is a clause c = (`1 ∨ `2 ∨ `3) which is not satisfied with
this assignment. Let xi be the variable of `i, that is, `i = xi or `i = ¬xi. The fact that c is
not satisfied with the assignment above translates as `(xi) = ¬`i for any i ∈ {1, 2, 3}.

By Claim 11, we get that p[`i] and q[`i] are twins for any i ∈ {1, 2, 3}. Let R′′(c) be the
set of crossings in the clause gadget of c union the sets {p[`i], q[`i]} for i ∈ {1, 2, 3}. All the
crossings in R′′(c) have weight 0 and they have to be removed by economical II− moves as
all defect is realized on points p[`(x)] (but p[`i] = p[¬`(xi)] are not among these points).

Let r be the first removed crossing among the crossings in R′′(c). Our aim is to rule
out all options in which a crossing of R′′(c) can be r. This way, we will obtain the required
contradiction. First, we observe that r cannot be any of p[`i] or q[`i] for i ∈ {1, 2, 3}. This
follows from Claim 11 as the arcs γ1[`i] and γ2[`i] contain some crossings in R′′(c).

Next we apply Lemma 8 (for 0-close neighbors) with R = R′′(c). For sake of example, in
this sketch we rule out the (interesting) option r = u, where u is the vertex on Figure 18.
Let α and β be the arcs between r and t(r) from the definition of 0-close neighbors (α and β
exist by Lemma 8). In particular, neither α nor β has a crossing from R′′(c) in its interior.
The only option for α is to emanate to the left reaching the crossing u′ as emanating to the
right reaches a crossing z ∈ R′′(c) as an underpass. In particular, t(u) = u′. Consequently, β
has to emanate to the right since emanating to the left would reach z′. However, before β
reaches u′, it has to pass through p[`2] or q[`2] in R′′(c) which rules out this option.

6 Intermediate invariants

In this section we describe the family of link invariants from the statement of Theorem 2.
The material presented here is standard and details can be found in various textbooks; since
every piecewise linear knot can be smoothed in a unique way, we assume that the knots
discussed are smooth. In Sections 6 and 7 we work in the smooth category. We first define:
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Figure 19 Some Whitehead doubles.

I Definition 12. Let L be a link in the 3-sphere. We now give a list of the invariants that
we will be using; for a detailed discussion see, for example, [23].
1. A smooth slice surface for L is an orientable surface with no closed components, properly

and smoothly embedded in the 4-ball, whose boundary is L.
2. The 4-ball Euler characteristic of L, denoted χ4(L), is the largest integer so that L bounds

a smooth slice surface of Euler characteristic χ4(L).
3. A link is called smoothly slice if it bounds a slice surface that consists entirely of disks;

equivalently, the χ4(L) equals the number of components of L.
4. The unlinking number, denoted u(L), is the smallest nonnegative integer so that L admits

some diagram D so that after u(L) crossing changes on D a trivial link is obtained.
5. By transversality, every link L bounds smoothly immersed disks in B4 with finitely many

double points. The 4-dimensional clasp number (sometimes called the 4-ball crossing
number) of L, denoted cs(L), is the minimal number of double points for such disks.

Finally, we define intermediate invariants, whose existence follows from Theorem 2 of [25].

I Definition 13 (intermediate invariant). A real valued link invariant i(L) is called an
intermediate invariant if u(L) ≥ i(L) ≥ cs(L).

Many invariants are known to be intermediate (see, for example, [25]). We list a few (and
prove that they are intermediate) in Lemma 13 of the full version [8]. Shibuya [25] proved:

I Lemma 14. Let L be a link with µ components. Then χ4(L) ≥ µ− 2cs(L).

7 Unlinking, 4-ball Euler characteristic, and intermediate invariants

In this section we will show that the link invariants defined in the previous section are
NP-hard. Our reduction relies on the use of Whitehead doubles, which we now define:

I Definition 15 (Whitehead Double). Let L be a link. A Whitehead double of L is a link
obtained by taking two parallel copies of each component of L and joining them together with
a clasp (see Figure 19). A Whitehead double is called positive if the crossings at the clasp
are positive. If the linking number of the two copies of each component is zero the Whitehead
double is called untwisted. It is easy to see that the untwisted positive Whitehead double is
uniquely determined by L.

One last piece of background we will need is a result of Levine [22, Theorem 1.1]:

I Lemma 16. The untwisted positive Whitehead double of the Hopf link, and that of the
Borromean rings, are not smoothly slice.

We are now ready to describe our construction:
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The construction of LWH
Φ . Given a 3-SAT instance Φ, recall the link LΦ from Section 3,

and let LWH
Φ be its positive untwisted Whitehead double. There is a natural bijection between

components before and after taking a Whitehead double; let κWH
xi

denote the component
corresponding to κxi and let κWH

¬xi
denote the component corresponding to κ¬xi

The goal of this section is to prove:

I Theorem 17. Given a 3-SAT instance Φ with n variables, let LWH
Φ be the link constructed

above. Then the following are equivalent, where here i is any intermediate invariant:
1. Φ is satisfiable.
2. u(LWH

Φ ) = n.
3. i(LWH

Φ ) = n.
4. cs(LWH

Φ ) = n.
5. χ4(LWH

Φ ) = 0.
6. LWH

Φ admits a smoothly slice sublink with n components.

Theorem 2(b) – (d) directly follows from Theorem 17.

Proof. The proof of this Theorem is split in the following steps:
(a) Φ is satisfiable implies that u(LWH

Φ ) ≤ n.
(b) cs(LWH

Φ ) ≤ i(LWH
Φ ) ≤ u(LWH

Φ ).
(c) χ4(LWH

Φ ) ≥ 2n− 2cs(LWH
Φ ).

(d) If χ4(LWH
Φ ) ≥ 0 then the following two conditions hold:

(d.I) χ4(LWH
Φ ) = 0

(d.II) LWH
Φ admits a smoothly slice sublink with n components.

(e) If LWH
Φ admits a smoothly slice sublink with n components, then Φ is satisfiable.

We first show how (a) – (e) prove Theorem 17. Assume first that Φ is satisfiable. Then
by (a) and (b) we have that cs(LWH

Φ ) ≤ n, and by (c) we have that χ4(LWH
Φ ) ≥ 0. Then (d.I)

shows that χ4(LWH
Φ ) = 0. Working our way back, we see that cs(LWH

Φ ) = i(LWH
Φ ) = u(LWH

Φ ) =
n, establishing (1)⇒ (2)⇒ (3)⇒ (4)⇒ (5). In addition, (d.II) shows directly that (5)⇒ (6).
Finally, (e) establishes (6)⇒ (1).

We complete the proof of Theorem 17 by establishing (a) – (e):
(a) Suppose we have a satisfying assignment for Φ (for this implication, cf. the proof of

Theorem 5). By a single crossing change we resolve the clasp of every component that
correspond to a satisfied literal, that is, if xi = true we change one of the crossings
of the clasp of κWH

xi
and if xi = false we do it for κWH

¬xi
; as a result, the components

corresponding to satisfied literals now form unlinks that are not linked with the remaining
components, and we can isotope them away. Since the assignment is satisfying, from each
copy of the Borromean rings at least one ring is removed, and the remaining components
retract into the first n disks that contained the Hopf links. In each disk we have an
untwisted Whitehead double of the unknot which is itself an unknot. Thus we see that
the unlink on 2n component is obtained, showing that u(LWH

Φ ) ≤ n.
(b) By definition of intermediate invariant we have that cs ≤ i ≤ u.
(c) This is Lemma 14.
(d) This step is the crux of the proof and relies on the computation of the signature of our

link; see step (d) in the proof of Theorem 20 of the full version [8].
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(e) Finally, assume that LWH
Φ admits an n component smoothly slice sublink Lslice. By

Lemma 16 we have that the positive untwisted Whitehead double of the Hopf link is not
a sublink of Lslice and therefore for each i exactly one of κWH

xi
and κWH

¬xi
is in Lslice. If κWH

xi

is in Lslice we set xi = false and if κWH
¬xi

is in Lslice we set xi = true. Using Lemma 16
again we see that Lslice does not admit the positive untwisted Whitehead double of the
Borromean rings as a sublink. Therefore, from every set of Borromean rings, at least
one component does not belong to Lslice; therefore the assignment is satisfying. J

References
1 Ian Agol, Joel Hass, and William Thurston. The computational complexity of knot genus

and spanning area. Transactions of the American Mathematical Society, 358:3821–3850, 2006.
doi:10.1090/S0002-9947-05-03919-X.

2 Francesca Aicardi. Tree-like curves. Singularities and bifurcations, 21:1–31, 1994.
3 Vladimir I Arnold. Plane curves, their invariants, perestroikas and classifications. Advances in

Soviet Mathematics, 21:33–91, 1994.
4 Vladimir Igorevich Arnold. Topological invariants of plane curves and caustics, volume 5.

American Mathematical Soc., 1994.
5 Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach. Cambridge

University Press, Cambridge, 2009. doi:10.1017/CBO9780511804090.
6 Hsien-Chih Chang and Jeff Erickson. Untangling planar curves. Discrete & Computational

Geometry, 58(4):889–920, 2017. doi:10.1007/s00454-017-9907-6.
7 Arnaud de Mesmay, Yo’av Rieck, Eric Sedgwick, and Martin Tancer. Embeddability in R3 is

NP-hard. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 1316–1329. Society for Industrial and Applied Mathematics, 2018. Full
version on arXiv:1604.00290. doi:10.1137/1.9781611975031.86.

8 Arnaud de Mesmay, Yo’av Rieck, Eric Sedgwick, and Martin Tancer. The unbearable hardness
of unknotting. arXiv:1810.03502 (for numbering of claims, we refer to the version v1), 2018.

9 Michael R. Garey and David S. Johnson. Computers and intractability. W. H. Freeman and
Co., San Francisco, Calif., 1979. A guide to the theory of NP-completeness, A Series of Books
in the Mathematical Sciences.

10 Wolfgang Haken. Theorie der Normalflächen. Acta Mathematica, 105(3-4):245–375, 1961.
11 Joel Hass and Jeffrey Lagarias. The number of Reidemeister moves needed for unknot-

ting. Journal of the American Mathematical Society, 14(2):399–428, 2001. doi:10.1090/
S0894-0347-01-00358-7.

12 Joel Hass, Jeffrey C. Lagarias, and Nicholas Pippenger. The computational complexity of
knot and link problems. Journal of the ACM (JACM), 46(2):185–211, 1999. doi:10.1145/
301970.301971.

13 Joel Hass and Tahl Nowik. Unknot diagrams requiring a quadratic number of Reidemeister
moves to untangle. Discrete & Computational Geometry, 44(1):91–95, 2010. doi:10.1007/
s00454-009-9156-4.

14 Louis H Kauffman and Sofia Lambropoulou. Hard unknots and collapsing tangles. In
Introductory Lectures on Knot Theory, 2014. doi:10.1142/9789814313001_0009.

15 Dale Koenig and Anastasiia Tsvietkova. NP-hard problems naturally arising in knot theory,
2018. arXiv:1809.10334.

16 Greg Kuperberg. Knottedness is in NP, modulo GRH. Adv. Math., 256:493–506, 2014.
doi:10.1016/j.aim.2014.01.007.

17 Greg Kuperberg and Eric Samperton. Coloring invariants of knots and links are often
intractable. Manuscript.

18 Marc Lackenby. A polynomial upper bound on Reidemeister moves. Ann. Math. (2), 182(2):491–
564, 2015. doi:10.4007/annals.2015.182.2.3.

http://dx.doi.org/10.1090/S0002-9947-05-03919-X
http://dx.doi.org/10.1017/CBO9780511804090
http://dx.doi.org/10.1007/s00454-017-9907-6
https://arxiv.org/abs/1604.00290
http://dx.doi.org/10.1137/1.9781611975031.86
https://arxiv.org/abs/1810.03502
http://dx.doi.org/10.1090/S0894-0347-01-00358-7
http://dx.doi.org/10.1090/S0894-0347-01-00358-7
http://dx.doi.org/10.1145/301970.301971
http://dx.doi.org/10.1145/301970.301971
http://dx.doi.org/10.1007/s00454-009-9156-4
http://dx.doi.org/10.1007/s00454-009-9156-4
http://dx.doi.org/10.1142/9789814313001_0009
http://arxiv.org/abs/1809.10334
http://dx.doi.org/10.1016/j.aim.2014.01.007
http://dx.doi.org/10.4007/annals.2015.182.2.3


A. de Mesmay, Y. Rieck, E. Sedgwick, and M. Tancer 49:19

19 Marc Lackenby. The efficient certification of knottedness and Thurston norm, 2016. arXiv:
1604.00290.

20 Marc Lackenby. Elementary knot theory. In Lectures on Geometry (Clay Lecture Notes).
Oxford University Press, 2017.

21 Marc Lackenby. Some conditionally hard problems on links and 3-manifolds. Discrete &
Computational Geometry, 58(3):580–595, 2017. doi:10.1007/s00454-017-9905-8.

22 Adam Simon Levine. Slicing mixed Bing–Whitehead doubles. Journal of Topology, 5(3):713–
726, 2012. doi:10.1112/jtopol/jts019.

23 Dale Rolfsen. Knots and links, volume 7 of Mathematics Lecture Series. Publish or Perish,
Inc., Houston, TX, 1990. Corrected reprint of the 1976 original.

24 Eric Samperton. Computational Complexity of Enumerative 3-Manifold Invariants. arXiv
preprint, 2018. arXiv:1805.09275.

25 Tetsuo Shibuya. Some relations among various numerical invariants for links. Osaka J.
Math., 11:313–322, 1974. URL: http://0-projecteuclid.org.library.uark.edu/euclid.
ojm/1200757391.

SoCG 2019

http://arxiv.org/abs/1604.00290
http://arxiv.org/abs/1604.00290
http://dx.doi.org/10.1007/s00454-017-9905-8
http://dx.doi.org/10.1112/jtopol/jts019
http://arxiv.org/abs/1805.09275
http://0-projecteuclid.org.library.uark.edu/euclid.ojm/1200757391
http://0-projecteuclid.org.library.uark.edu/euclid.ojm/1200757391

	Introduction
	Preliminaries
	Trivial sublink
	The defect
	The reduction
	Satisfiable implies small defect
	Small defect implies satisfiable

	Intermediate invariants
	Unlinking, 4-ball Euler characteristic, and intermediate invariants

