
λ!-calculus, Intersection Types, and Involutions
Alberto Ciaffaglione
Department of Mathematics, Computer Science and Physics, University of Udine, Italy
alberto.ciaffaglione@uniud.it

Pietro Di Gianantonio
Department of Mathematics, Computer Science and Physics, University of Udine, Italy
pietro.digianantonio@uniud.it

Furio Honsell
Department of Mathematics, Computer Science and Physics, University of Udine, Italy
furio.honsell@uniud.it

Marina Lenisa
Department of Mathematics, Computer Science and Physics, University of Udine, Italy
marina.lenisa@uniud.it

Ivan Scagnetto
Department of Mathematics, Computer Science and Physics, University of Udine, Italy
ivan.scagnetto@uniud.it

Abstract
Abramsky’s affine combinatory algebras are models of affine combinatory logic, which refines

standard combinatory logic in the direction of Linear Logic. Abramsky introduced various universal
models of computation based on affine combinatory algebras, consisting of partial involutions over
a suitable formal language of moves, in order to discuss reversible computation in a Geometry of
Interaction setting. We investigate partial involutions from the point of view of the model theory of
λ!-calculus. The latter is a refinement of the standard λ-calculus, corresponding to affine combinatory
logic. We introduce intersection type systems for the λ!-calculus, by extending standard intersection
types with a !u-operator. These induce affine combinatory algebras, and, via suitable quotients,
models of the λ!-calculus. In particular, we introduce an intersection type system for assigning
principal types to λ!-terms, and we state a correspondence between the partial involution interpreting
a combinator and the principal type of the corresponding λ!-term. This analogy allows for explaining
as unification between principal types the somewhat awkward linear application of involutions arising
from Geometry of Interaction.

2012 ACM Subject Classification Theory of computation → Program semantics; Theory of compu-
tation → Linear logic

Keywords and phrases Affine Combinatory Algebra, Affine Lambda-calculus, Intersection Types,
Geometry of Interaction

Digital Object Identifier 10.4230/LIPIcs.FSCD.2019.15

Funding Work supported by the Italian departmental research project “LambdaBridge” (D.R.N.
427/2018 of 03/08/2018, University of Udine).

1 Introduction

In [1], S. Abramsky discusses reversible computation in a game-theoretic setting. In particu-
lar, he introduces various kinds of reversible pattern-matching automata whose behaviour
can be described in a finitary way as partial injective functions, actually involutions, over
a suitable language of moves. These automata are universal in that they yield affine
combinatory algebras.

© Alberto Ciaffaglione, Pietro Di Gianantonio, Furio Honsell, Marina Lenisa, and Ivan Scagnetto;
licensed under Creative Commons License CC-BY

4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019).
Editor: Herman Geuvers; Article No. 15; pp. 15:1–15:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:alberto.ciaffaglione@uniud.it
mailto:pietro.digianantonio@uniud.it
mailto:furio.honsell@uniud.it
mailto:marina.lenisa@uniud.it
mailto:ivan.scagnetto@uniud.it
https://doi.org/10.4230/LIPIcs.FSCD.2019.15
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

15:2 λ!-calculus, Intersection Types, and Involutions

The crucial notion is that of application between automata, or between partial involutions.
This is essentially the application between history-free strategies used in Game Semantics,
which itself stems from Girard’s Execution Formula, or Abramsky’s symmetric feedback [3].
The former was introduced by J. Y. Girard [15, 16] in the context of “Geometry of Inter-
action” (GoI) to model, in a language-independent way, the fine semantics of Linear Logic.
Constructions similar to the Combinatory Algebra of partial involutions, introduced in [1],
appear in various papers by S. Abramsky, e.g. [2, 4], and are special cases of a general
categorical paradigm explored by E. Haghverdi [17] (Sections 5.3, 6), called “Abramsky’s
Programme”. This Programme amounts to defining a linear λ-algebra starting from a GoI
Situation in a “traced symmetric monoidal category”.

In the present paper we carry out an analysis of Abramsky’s algebras from the point
of view of the model theory of λ-calculus. It is a follow up to [8, 9], where only the purely
linear and affine fragments of Affine Combinatory Algebras are considered. Here we extend
the involutions-as-principal types/GoI application-as-resolution analogy introduced in [8, 9]
to the full calculus, offering a new perspective on Girard’s Geometry of Interaction and how
its reversible dynamics arises.

More specifically, we focus on the notion of affine combinatory logic, its λ-calculus
counterpart, the λ!-calculus, and their models, i.e. affine-combinatory algebras and affine-
combinatory λ-algebras1.

Our approach stems from realizing the existence of a structural analogy, introduced in [9],
which to our knowledge had not been hitherto pointed out in the literature, between the
Geometry of Interaction interpretation of a λ-term in Abramsky’s model of partial involutions
and the principal type of that term, with respect to an intersection type discipline for the
λ!-calculus. This we termed involutions-as-types analogy. Intersection types originated in
[6] and have been utilised in discussing games in a different approach also in [13, 14]. In
particular, we define an algorithm which, given a principal type of a λ-term, reads off the
partial involution corresponding to the interpretation of that term. Thus we show that
the principal type of an affine λ-term provides a characterisation of the partial involution
interpreting the term in Abramsky’s model. Conversely, we show how to extract a “principal
type” from any partial involution, possibly not corresponding to any λ-term.

The involutions-as-types analogy is very fruitful. It allows for simply explaining as
a unification between principal types the somewhat awkward linear application between
involutions used in [1], deriving from the notion of application used throughout the literature
on GoI and Game Semantics. We call this the “GoI application-as-resolution of principal
types” analogy, or more simply the application-as-resolution analogy. The overall effect of
linear application amounts, indeed, to unifying the left-hand side of the principal type of
the operator with the principal type of the operand, and applying the resulting substitution
to the right hand side of the operator. Hence, the notion of application between partial
involutions, corresponding to λ-termsM and N , can be explained as computing the involution
corresponding to the principal type of MN , given the principal types of M and N . Actually
this unification mechanism works even if the types are not the types of any concrete λ-term.

Our analysis, therefore, unveils three conceptually independent, but ultimately equivalent,
accounts of application in the λ-calculus: β-reduction, the GoI application of involutions
based on symmetric feedback/Girard’s Execution Formula, and resolution of principal types.
In order to check our theoretical results, we have implemented in Erlang [12, 5] application
of involutions, as well as compilation of λ-terms as combinators and their interpretation
as involutions.

1 This notion was originally introduced by D. Scott for the standard λ-calculus as the appropriate notion
of categorical model for the calculus, see Section 5.2 of [7].

A. Ciaffaglione, P. Di Gianantonio, F. Honsell, M. Lenisa, and I. Scagnetto 15:3

Synopsis. In Section 2, we collect the definitions of affine combinatory logic, λ!-calculus,
affine combinatory algebra, and λ-algebra. In Section 3, we recall Abramsky’s combinatory
algebra of partial involutions. In Section 4, we provide an intersection type system for the
λ!-calculus, and we study its properties. In Section 5, we define a correspondent principal
type assignment system for assigning only the most general types to λ!-terms. In Section 6,
we explore the relationships between principal types and partial involutions, giving evidence
to the involutions-as-types analogy. Concluding remarks appear in Section 7. The Web
Appendix [19] includes the detailed Erlang programs implementing compilations and effective
operations on partial involutions.

2 Affine Combinatory Logic and the λ!-calculus

In this section, we collect the notions of affine combinatory logic, λ!-calculus, affine combin-
atory algebra, and λ-algebra. These notions amount to the Linear Logic refinements of the
corresponding standard notions.

I Definition 1 (Affine Combinatory Logic). The language of affine combinatory logic CL!

includes variables x, y, . . ., distinguished constants (combinators) B,C, I,K,W,D, δ, F, and it
is closed under application and promotion, i.e.:
M ∈ CL! N ∈ CL!

MN ∈ CL!
M ∈ CL!

!M ∈ CL!

Combinators satisfy the following equations for all terms of CL!, M,N,P (we associate · to
the left and we assume ! to have order of precedence greater than ·):
BMNP = M(NP) IM = M CMNP = (MP)N KMN = M

WM !N = M !N !N δ!M = !!M D!M = M F !M !N = !(MN)

The λ!-calculus is the λ-calculus counterpart of affine combinatory logic:

I Definition 2 (Affine λ!-calculus). The language Λ! of the affine λ!-calculus is inductively
defined from variables x, y, z, . . ., and it is closed under the following formation rules:

M ∈ Λ! N ∈ Λ!

MN ∈ Λ!
M ∈ Λ!

!M ∈ Λ!
M ∈ Λ! O!(x,M)

λx.M ∈ Λ!
M ∈ Λ! M!(x,M)

λ!x.M ∈ Λ! ,

where O!(x,M) means that the variable x appears free in M at most once, and it is not in
the scope of a !, whileM!(x,M) means that the variable x appears free in M at least once.

The reduction rules of the λ!-calculus are the restrictions of the standard β-rule and
ξ-rule to linear abstractions, the pattern-β-reduction rule, which defines the behaviour of the
!-pattern abstraction operator, the str !-structural rule, and the ξ!-rule, namely:

(β) (λx.M)N →M [N/x] (β!) (λ!x.M)!N →M [N/x]

(ξ) M → N λx.M, λx.N ∈ Λ!

λx.M → λx.N
(str !) M → N

!M →!N (ξ!) M → N
λ!x.M → λ!x.N

All the remaining rules are as in the standard case. We denote by =λ! the induced
congruence relation.

The λ!-calculus introduced above is quite similar to the calculus introduced in [18], the
only differences being that our calculus is affine, while the one in [18] is linear, moreover
reduction under the scope of a !-operator is forbidden in [18], while we allow for it.

I Proposition 3. Well-formedness in Λ! is preserved under λ!-conversion. The corresponding
reduction λ!-calculus is Church-Rosser.

FSCD 2019

15:4 λ!-calculus, Intersection Types, and Involutions

The correspondence between affine combinatory logic and λ!-calculus is formalized below.

I Definition 4. We define two homomorphisms w.r.t. ! and application:
(i) ()λ! : CL! → Λ!, given a term M of CL!, yields the term of Λ! obtained from M by
replacing, in place of each combinator, the corresponding Λ!-term as follows

(B)λ! = λxyz.x(yz) (W)λ! = λx!y.x!y!y
(C)λ! = λxyz.(xz)y (D)λ! = λ!x.x
(I)λ! = λx.x (δ)λ! = λ!x.!!x
(K)λ! = λxy.x (F)λ! = λ!x!y.!(xy)

(ii) ()CL! : Λ! → CL!, given a term M of the λ!-calculus, replaces each λ-abstraction by
a λ∗-abstraction. Terms with λ∗-abstractions amount to CL!-terms via the Abstraction
Operation defined below.

I Definition 5 (Abstraction Operation). The following algorithm is defined by induction on
ML ∈ CL!:

λ∗x.x = I λ∗!x.x = D λ∗!x.!x = F (!I)

λ∗x.MN =
{
C(λ∗x.M)N if x ∈ FV (M),
BM(λ∗x.N) if x ∈ FV (N).

λ∗!x.MN = W (C(BB(λ∗!x.M))(λ∗!x.N)) λ∗!x.!M = B(F (!λ∗!x.M))δ, for M 6≡ x.

Notice that, alternatively, λ∗!x.MN can be defined permuting C and B, i.e. λ∗!x.MN =
W (B(Cλ∗!x.M)(λ∗!x.N)). This ambivalence is a source of problems which ultimately makes
affine combinatory algebras fail to be λ-algebras (see Definition 9 below).

I Theorem 6 (Affine Abstraction Theorem). For all terms λx.M,N ∈ CL!,
(λ∗x.M)N = M [N/x] and (λ∗!x.M)!N = M [N/x].

The semantical counterpart of CL! is the notion of affine combinatory algebra:

I Definition 7 (Affine Combinatory Algebra, [1]). An affine combinatory algebra (ACA),
A = (A, ·, !) is an applicative structure (A, ·) with a unary (injective) operation !, and
combinators B,C, I,K,W,D, δ, F satisfying the following equations: for all x, y, z ∈ A,

Bxyz = x(yz) Ix = x Cxyz = (xz)y Kxy = x

Wx!y = x!y!y δ!x = !!x D!x = x F !x!y = !(xy).

I Definition 8. Given an affine combinatory algebra A = (A, ·, !), we define the set of affine
combinatory terms T (A) as the extension of CL! with constants ca for any point a ∈ A.

I Definition 9 (Affine λ-algebra). An ACA A is an affine λ-algebra if, for all M,N ∈ T (A),

` (M)λ! =λ! (N)λ! =⇒ [[M]]A = [[N]]A ,

where [[]]A denotes the natural interpretation of terms in T (A) over the ACA A.

One can prove that there exists an equivalent characterisation of the notion of affine
λ-algebra via equations involving combinators. For lack of space, we omit this characterisation.

A. Ciaffaglione, P. Di Gianantonio, F. Honsell, M. Lenisa, and I. Scagnetto 15:5

3 The Model of Partial Involutions

In [1], Abramsky exploits the connection between automata and strategies, and he introduces
various reversible universal models of computation. Building on earlier work, e.g. [4, 17],
Abramsky defines models arising from Geometry of Interaction Situations, consisting of
history-free strategies. He discusses a model of partial injections and P, its substructure
consisting of partial involutions. Partial involutions are defined over a suitable language of
moves, and they can be endowed with a structure of an affine combinatory algebra:

I Definition 10 (The Model of Partial Involutions P).
(i) TΣ, the language of moves, is defined by the signature Σ0= {ε}, Σ1 = {l,r}, Σ2 =
{< , >} (where Σi is the set of constructors of arity i); terms r(x) are output words,
while terms l(x) are input words (often denoted simply by rx and lx);

(ii) P is the set of partial involutions over TΣ, i.e. the set of all partial injective functions
f : TΣ ⇀ TΣ such that f(u) = v ⇔ f(v) = u;

(iii) the operation of replication is defined by !f = {(< t, u >,< t, v >) | t ∈ TΣ ∧ (u, v) ∈
f};

(iv) the notion of linear application is defined by f · g = frr ∪ (frl; g; (fll; g)∗; flr), where
fij = {(u, v)|(i(u), j(v)) ∈ f}, for i, j ∈ {r, l} (see Fig. 1), where “;” denotes postfix
composition.

in // •
frr //

frl

��

• // out

•
g // •
fll

oo

flr

OO

Figure 1 Flow of control in executing f · g.

Following [1], we make a slight abuse of notation and assume that TΣ contains pattern
variables for terms. The intended meaning will be clear from the context. In the sequel, we
will use the notation u1 ↔ v1, . . . , un ↔ vn, for u1, . . . , un, v1, . . . , vn ∈ TΣ, to denote the
graph of the (finite) partial involution f defined by ∀i.(f(ui) = vi ∧ f(vi) = ui). Again,
following [1], we will use the above notation in place of a more automata-like presentation of
the partial involution.

I Proposition 11 ([1], Th.5.1). P can be endowed with the structure of an affine combin-
atory algebra, (P, ·, !), where combinators are defined by the following partial involutions:
B : r3x↔ lrx , l2x↔ rlrx , rl2x↔ r2lx I : lx↔ rx

C : l2x↔ r2lx , lrlx↔ rlx , lr2x↔ r3x K : lx↔ r2x

F : l〈x, ry〉 ↔ r2〈x, y〉 , l〈x, ly〉 ↔ rl〈x, y〉 δ : l〈〈x, y〉, z〉 ↔ r〈x, 〈y, z〉〉
W : r2x↔ lr2x , l2〈x, y〉 ↔ rl〈lx, y〉 , lrl〈x, y〉 ↔ rl〈rx, y〉 D : l〈ε, x〉 ↔ rx .

4 The !Intersection Type Discipline for the λ!-calculus

In this section, we introduce an intersection type system for the λ!-calculus, and we study its
properties. In particular, we prove that subject reduction holds up-to an appropriate relation
on types, while subject conversion holds when we consider some restrictions of β-reduction,
e.g. lazy reduction or closed reduction. Reduction is lazy when it is not applied under a
λ-abstraction, it is closed when only β-redexes with closed arguments can be reduced.

FSCD 2019

15:6 λ!-calculus, Intersection Types, and Involutions

Types in this system include a(-constructor, a !u-constructor, for u ranging over indexes,
and a ∧-constructor. We introduce the !u-constructor in order to establish a connection
between types and partial involutions, this correspondence will be formally stated in Section 6.
From a more intuitive point of view, the !u-constructors are associated to the parts of terms
that can be potentially replicated: free or bound variables that can be used several times
inside a term; terms that are used as function arguments and that can be replicated inside
the function. The indexes u are mainly used to distinguish one (potential) replica from
the other. Moreover one can observe that there are dependencies among replications, for
example, the replication of a term leads also to the replication of the several instances of
the same variable that the term may contain; indexes are also used to keep track of these
dependencies among replications.

For technical reasons, we include also a !-constructor without index. It essentially behaves
as !ε, however they are dealt with differently in the !-introduction rule. This choice allows us
to maintain the correspondence between types and the interpretations of combinators in the
algebra of partial involutions, as we will see in Sections 5 and 6 below.

I Definition 12 (!Intersection Types). We introduce the following set of types:

(Type 3) τ, σ ::= α | τ (σ | !τ | !uτ | τ ∧ σ

where α denotes a type variable in TVar, and u, v ∈ TΣ[IV ar], where IV ar is a set of index
variables ranged over by i, j,

I Definition 13 (!Intersection Type System). The !intersection type system for the λ!-calculus
derives judgements Γ; ∆
M : τ , where τ ∈ Type and

the linear environment Γ is a set x1 : σ1, . . . , xm : σm;
the non-linear environment ∆ is a set !x′1 : τ1, . . . , !x′n : τn, with τ1, . . . , τn having a bang
(!, !u) as main connective;
dom(Γ) ∩ dom(∆) = ∅;
each variable in Γ occurs at most once, while multiple occurrences of the same variable
are possible in ∆.

The rules for assigning !intersection types are the following:

x : τ ; 〈〉 ` x : τ (ax1) 〈〉; !x :!τ ` x : τ (ax2)

〈〉; ∆1 `M : τ1 . . . 〈〉; ∆n `M : τn u1, ..., un distinct
〈〉; !̂u1∆1, . . . , !̂un

∆n `!M :!u1τ1 ∧ . . .∧!un
τn

(!)

Γ; ∆ `M : σ(τ Γ′; ∆′ ` N : σ dom(Γ) ∩ dom(Γ′) = ∅ dom(Γ,Γ′) ∩ dom(∆,∆′) = ∅
Γ,Γ′; ∆ ∧∆′ `MN : τ

(app)

Γ, x : σ; ∆ `M : τ O!(x,M)
Γ; ∆ ` λx.M : σ(τ

(λL) Γ; ∆ `M : τ x, σ fresh
Γ; ∆ ` λx.M : σ(τ

(λA)

Γ; ∆, !x : σ1, . . . , !x : σn `M : τ x 6∈ dom(∆)
Γ; ∆ ` λ!x.M : (σ1 ∧ · · · ∧ σn)(τ

(λ!)

where

A. Ciaffaglione, P. Di Gianantonio, F. Honsell, M. Lenisa, and I. Scagnetto 15:7

!̂u(!x1 : τ1, . . . , !xn : τn) ≡ !x1 : !̂uτ1, . . . , !xn : !̂uτn,

where !̂uτ is defined by:
{̂

!u(!τ) =!uτ
!̂u(!vτ) =!〈u,v〉τ

∆ ∧∆′ is the environment ∆′′ defined by: !x : τ ∈ ∆′′ if and only if
!x : τ ∈ ∆ and x 6∈ dom(∆′),
or !x : τ ∈ ∆′ and x 6∈ dom(∆),
or τ ≡ !luτ ′ and !x : !uτ ∈ ∆ and x ∈ dom(∆′),
or τ ≡ !ruτ ′ and !x : !uτ ′ ∈ ∆′ and x ∈ dom(∆).
In rule (app), by abuse of notation, the subtype σ in the type σ(τ assigned to M and
the type σ assigned to N coincide only up-to equating occurrences of ! and !ε.

A few remarks on the definition above are in order.
The !-constructor on types with no index can be eliminated by replacing the axiom (ax2)
with an alternative axiom (ax′2) having form: 〈〉; !x :!ετ ` x : τ (ax′2)
With this last axiom one obtains a type system quite similar to the original one (and in
some sense simpler): the derivable types will differ just by the presence of some extra ε
symbols; all the properties for the type system stated in the paper still hold. However, the
interpretation of the combinatory constants induced by the alternative type system will
be different from the one given on the algebra of partial involutions P. To preserve the
interpretation of combinatory constants, we preferred to use a more ad-hoc type system.
In derivations of type judgements, the order in which hypotheses are derived is relevant, i.e.
the nature of the ∧-operator is non-commutative and non-associative. In the present type
assignment system, we take into account the order of hypotheses by prefixing {l, r}-tags
in !-indexes, when we merge non-linear environments in the (app)-rule. As a consequence,
tags describe the structure of a ∧-type, and ∧ is considered to be commutative and
associative in the present system. Of course, we could have equivalently omitted {l, r}-
tags in merging non-linear environments and explicitly used a non-commutative and
non-associative ∧-operator, both in the environments and in the assigned types. Our
choice is justified by the fact that this presentation of the type assignment system makes
the correspondence between types and partial involutions more direct (see Section 6).

Some immediate consequences on the shape of judgments derivable in the type system
are the following:

I Lemma 14. If Γ; ∆ `M : τ , then
(i) for all !x : σ ∈ ∆, σ is in the form !τ or !uτ
(ii) FV (M) = dom(Γ) ∪ dom(∆) and x ∈ dom(Γ)⇔ O!(x,M).

Intuitively, the λ!-terms which are typable in the system are essentially the terms
which strongly normalize to terms not containing forever stuck applications, in the sense of
Lemma 15(iv) below.

I Lemma 15.
(i) If Γ; ∆ ` λ!x.M : τ , then there exist σ, σ′ ∈ Type such that τ = σ (σ′, and σ is a

!-type or a ∧-type.
(ii) If Γ; ∆ ` N : τ , where τ is a !-type or a ∧-type, then N is not a λ-abstraction.
(iii) If Γ; ∆ `!N : τ , then Γ = ∅ and τ is a !-type or a ∧-type.
(iv) Terms which contain subterms of the shape (λ!x.M)(λy.N), or (λ!x.M)(λ!y.N), !MN

are not typable.

FSCD 2019

15:8 λ!-calculus, Intersection Types, and Involutions

Proof. The proof of items (i), (ii), (iii), is straightforward, by induction on derivations. Item
(iv) follows from the previous ones. J

Now we study subject reduction and conversion properties of the system. We will show
that subject reduction holds up-to an equivalence relation on types, while subject conversion
fails in general. However, there are two interesting cases in which subject conversion holds,
either up-to an equivalence relation on types or in its full form, respectively: when β-reduction
is lazy, i.e. it is not applied under a λ-abstraction, or when we allow for reducing only
β-redexes whose argument is a closed λ-term.

Intuitively, the reasons why an equivalence relation is necessary for ensuring subject
reduction in the general case and subject conversion in the lazy case are the following.

Intuitively, in β-reducing, the order in which hypotheses are used to type the resulting
term is different from the order in which these are used to type the starting term.
Therefore subject reduction holds only up a suitably renaming of tags in ∧-types and
environments. This is related to the behaviour of the !-operator in history-free game
models, where also appropriate equivalences renaming !-indexes are required.
The behaviour of the !-index ε is peculiar in the present type system: namely, it may
happen that a redex is typable with a type τ where 〈ε, u〉 or 〈u, ε〉 appear as !-indexes, but
the reduced term is typable only with a type τ ′ differing from τ because the indexes 〈ε, u〉
or 〈u, ε〉 are replaced by u. For example, z :!〈ε,i〉α ` (λ!x.x)!!z :!iα, but !z :!iα `!z :!iα
and !z :!〈ε,i〉α 6`!z :!iα.

Moreover, notice that subject conversion fails already on the purely affine fragment when
we allow for β-reducing under λ-abstractions, e.g. we cannot derive ` λxyz.(λw.x)(yz) :
α1 (α2 (α3 (α1, but only ` λxyz.(λw.x)(yz) : α1 ((α2 (α3)(α2 (α1, but we
have ` λxyz.x : α1 (α2 (α3 (α1 (see [9] for more details).

To formalize the above facts, we start by introducing the following relation on types:

I Definition 16.
Let ≈I be the least congruence relation on TΣ[IV ar] such that, for any u ∈ TΣ[IV ar],
u ≈I 〈ε, u〉 ≈I 〈u, ε〉, u ≈I lu ≈I ru, and 〈u1, 〈u2, u3〉〉 ≈I 〈〈u1, u2〉, u3〉.
Let ≈ be the least congruence relation on types such that, for any permutation p on
TΣ[IV ar] satifying the condition ∀u ∈ TΣ[IV ar] . u ≈I p(u), we have:

(!u1σ1 ∧ . . .∧!un
σn)(τ ≈ (!p(u1)σ1 ∧ . . .∧!p(un)σn)(τ

For ∆,∆′ non-linear environments, we define ∆ ≈ ∆′ if, for each variable x with bindings
!x :!u1σ1, . . . , !x :!un

σn in ∆, there exist a permutation p on TΣ[IV ar] and a list of types
σ′1, . . . , σ

′
n such that

the binding for x in ∆′ are !x :!p(u1)σ
′
1, . . . , !x :!p(un)σ

′
n,

∀u ∈ TΣ[IV ar] . u ≈ p(u),
∀i.σi ≈ σ′i.

I Lemma 17 (Substitution).
(i) If x ∈ FV (M) and O!(x,M), then

Γ; ∆ ` (λx.M)N : τ ⇐⇒ Γ; ∆′ `M [N/x] : τ , with ∆′ ≈ ∆.
If N is closed, then ∆′ = ∆.

(ii) Γ; ∆ ` (λ!x.M)!N : τ ⇐⇒ Γ; ∆′ `M [N/x] : τ , with ∆′ ≈ ∆.
If N is closed, then ∆′ = ∆.

A. Ciaffaglione, P. Di Gianantonio, F. Honsell, M. Lenisa, and I. Scagnetto 15:9

(iii) If N is a typable term and x 6∈ FV (M), then
Γ; ∆ ` (λx.M)N : τ ⇐⇒ Γ′; ∆′ `M : τ , with Γ′ = Γ|FV (M) and ∆′ ⊆ ∆.
If N is closed, then Γ′ = Γ and ∆′ = ∆.

Proof.
(i) The thesis follows from (a) and (b) below:

(a) Γ, x : σ; ∆ `M : τ & Γ′; ∆′ ` N : σ & dom(Γ)∩dom(Γ′) = ∅ =⇒ ∃∆′′.(Γ∪Γ′; ∆′′ `
M [N/x] : τ & (∆′′ ≈ ∆ ∧∆′)|dom(∆)∩dom(∆′)),
where (∆′′ ≈ ∆ ∧∆′)|dom(∆)∩dom(∆′) means that, for any variable in dom(∆) ∩
dom(∆′), the corresponding types in ∆′′ and ∆ ∧∆′ are ≈-equivalent, while for
other variables, the corresponding types are equal.

(b) (b) Γ′′; ∆′′ ` M [N/x] : τ & Γ′; ∆′ ` N : σ =⇒ ∃∆.(Γ, x : σ; ∆ ` M : τ & Γ′′ =
Γ ∪ Γ′ & (∆′′ ≈ ∆ ∧∆′)|dom(∆)∩dom(∆′)).

Facts (a) and (b) above can be proved by induction on the structure of M .
(ii) The thesis follows from (a) and (b) below:

(a) Γ; ∆, !x :!u1σ1, . . . , !x :!unσn `M : τ & 〈〉; ∆1 ` N : σ1 & . . . & 〈〉; ∆n ` N : σn
=⇒ ∃∆′′ . (Γ; ∆′′ `M [N/x] : τ & ∆′′ ≈ ∆, !̂u1∆1, . . . , !̂un

∆n).
(b) Γ; ∆′′ `M [N/x] : τ =⇒ ∃∆,∆1, . . . ,∆n . ∆′′ ≈ ∆, !̂u1∆1, . . . , !̂un

∆n

& Γ; ∆, !x :!u1σ1, . . . , !x :!un
σn `M : τ & 〈〉; ∆1 ` N : σ1 & . . . & 〈〉; ∆n ` N : σn.

Facts (a) and (b) above can be proved by induction on the structure of M .
(iii) The thesis follows from a direct analysis of the derivations. J

Using the above lemma, one can prove that subject reduction holds up-to-�, where � is
the relation on types combining ≈ with type inclusion:

I Definition 18.
Let � be the least preorder relation on types, compatible with the type constructors and
such that:

(!u1σ1 ∧ . . .∧!um
σm)(τ � (!u1σ1 ∧ . . .∧!un

σn)(τ when m ≤ n
σ ≈ τ implies σ � τ

For ∆,∆′ non-linear environments, we define ∆ � ∆′ if there exists a non-linear
environment ∆′′ such that ∆′′ ⊆ ∆′ and for all variables x there exists a one to one
correspondence between the types associated to x in ∆ and ∆′′, and the corresponding
types are �-related.

I Theorem 19 (Subject Reduction). If Γ; ∆ `M : τ & M →β M
′, then ∃Γ′,∆′, τ ′. (Γ′; ∆′ `

M ′ : τ ′ & Γ′ = Γ|FV (M ′) & ∆′ � ∆ & τ ′ � τ).

Proof. The thesis can be proved for one reduction step, C[(λx.M)N] →β C[M [N/x]], by
induction on the context C[], using the fact that: for σ′ � σ
Γ; ∆ `M : σ ⇐⇒ Γ′; ∆′ `M : σ′, for ∆′ � ∆. J

However, as noticed above, subject conversion fails already on the purely affine fragment,
when β-reduction is allowed under λ-abstraction. Nevertheless, if we restrict ourselves to
lazy reduction, subject conversion holds up-to-∼, where ∼ is the least equivalence including
�. In what follows, we will denote lazy conversion by =L

β .

I Theorem 20 (Lazy Subject Conversion). If Γ; ∆ ` M : τ , M =L
β M

′ and M ′ is typable,
then ∃Γ′,∆′. (Γ′; ∆′ ` M ′ : τ & Γ′|FV (M)∩FV (M ′) = Γ|FV (M)∩FV (M ′) & ∆′ ∼ ∆), where ∼
denotes the least equivalence relation including �.

FSCD 2019

15:10 λ!-calculus, Intersection Types, and Involutions

Moreover, subject conversion holds exactly (not up-to-∼), in the case in which β-reduction
is applied only if the argument is a closed term. In what follows, we will denote closed
conversion by =C

β .

I Theorem 21 (Closed Subject Conversion). If Γ; ∆ `M : τ , M =C
β M ′ and M ′ is typable,

then Γ; ∆ `M ′ : τ .

Moreover, we have:

I Proposition 22. The !Intersection Type System induces an affine combinatory algebra
(G, ·G , !G), where:
G is the set of sets of types in Type;
combinatory constants are represented by the sets of types assigned to the Λ!-terms
corresponding to combinators;
for Σ,Σ′ ∈ G, the application is defined by Σ ·G Σ′ = {τ | σ → τ ∈ Σ & σ ∈ Σ′};
!GΣ = {!uσ | σ ∈ Σ & u ∈ TΣ[IV ar]}.

5 The !Intersection Principal Type Discipline for the λ!-calculus

In this section, we introduce a type system, where only the most general type schemes are
assigned to λ!-terms. As we will show, all type judgements derivable in the intersection
type system of Definition 13 can be recovered as instances of judgements derivable in this
system, and vice versa all instances of judgements derivable in the principal type system
are derivable in the previous one. Moreover, one can prove that for any typable term M

there exists a judgement/type of minimal complexity which can be derived/assigned to M ,
which we call principal judgement/type. The crucial rule of the principal type system below
is the application rule, where a unification mechanism between the types of the function
and the argument is involved. The remaining rules reflect the rules of the type system of
Definition 13. As we will see in Section 6, principal types assigned to λ!-terms correspond to
partial involutions interpreting the terms in the combinatory algebra of partial involutions.

I Definition 23 (!Intersection Principal Type System). The !intersection principal type system
for the λ!-calculus derives judgements Γ; ∆
M : τ , where τ ∈ Type and

the linear environment Γ is a set x1 : σ1, . . . , xm : σm;
the non-linear environment ∆ is a set !x′1 : τ1, . . . , !x′n : τn, with τ1, . . . , τn having a bang
(!, !u) as main connective;
dom(Γ) ∩ dom(∆) = ∅;
each variable in Γ occurs at most once, while multiple occurrences of the same variable
are possible in ∆.

The rules for assigning principal !intersection types are the following:

x : α; 〈〉
 x : α (ax1) 〈〉; !x :!α
 x : α (ax2)

〈〉; ∆1
M : τn . . . 〈〉; ∆n
M : τn i1, . . . in fresh
〈〉; !̂i1∆1, . . . , !̂in∆n
!M :!i1τ1 ∧ . . .∧!inτn

(!)

Γ; ∆
M : σ Γ′; ∆′
 N : τ dom(Γ) ∩ dom(Γ′) = ∅ Var(Γ; ∆, σ) ∩Var(Γ′; ∆′, τ) = ∅
U = MGU(σ, α(β) α, β fresh U ′ = MGU(U(α), τ)

(U ′ ◦ U)(Γ ∪ Γ′; ∆ ∧∆′)
MN : (U ′ ◦ U)(β)
(app)

A. Ciaffaglione, P. Di Gianantonio, F. Honsell, M. Lenisa, and I. Scagnetto 15:11

Γ, x : σ; ∆
M : τ O!(x,M)
Γ; ∆
 λx.M : σ(τ

(λL) Γ; ∆
M : τ x, α fresh
Γ; ∆
 λx.M : α(τ

(λA)

Γ; ∆, !x : σ1, . . . , !x : σn `M : τ x 6∈ dom(∆)
Γ; ∆ ` λ!x.M : (σ1 ∧ · · · ∧ σn)(τ

(λ!)

where !̂i and ∆ ∧∆′ are defined as in Definition 13, Var(Γ; ∆, σ) denotes the set of type
and index variables in Γ, ∆, σ, and (U ′ ◦ U)(Γ ∪ Γ′; ∆ ∧∆′) stands for the component wise
application of the substitution (U ′ ◦ U) to types in the contexts Γ ∪ Γ′; ∆ ∧∆′.

The MGU algorithm is defined as follows:

I Definition 24 (MGU(σ, τ)). Given two types σ and τ , the partial algorithm MGU yields
a substitution U on types and index variables such that U(σ) = U(τ).

α ∈ TVar α 6∈ τ
MGU(τ, α) = id[τ/α]

α ∈ TVar α 6∈ τ
MGU(α, τ) = id[τ/α]

MGU(u, v) = U ′

MGU(!uσ, !vτ) = U MGU(U ′(σ), U ′(τ)) = U

MGU(σ1, τ1) = U1 MGU(U1(σ2), U1(τ2)) = U2
MGU(σ1 (σ2, τ1 (τ2) = U2 ◦ U1

MGU(σ1, τ1) = U1 MGU(U1(σ2), U1(τ2)) = U2
MGU(σ1 ∧ σ2, τ1 ∧ τ2) = U2 ◦ U1

i ∈ IVar i 6∈ u
MGU(u, i) = id[u/i]

i ∈ IVar i 6∈ u
MGU(i, u) = id[u/i]

MGU(u, v) = U
MGU(lu, lv) = U

MGU(u, v) = U
MGU(ru, rv) = U

MGU(u1, v1) = U1 MGU(u2, v2) = U2
MGU(〈u1, u2〉, 〈v1, v2〉) = U2 ◦ U1

where we assume that !ε unifies with !.

As it is well known, the above algorithm yields a substitution which factors any other
unifier.

One can easily prove the analogue of Lemmata 14 and 15 for the principal type system.
Moreover, an important property of the present system is that types and type judgements

have a special shape: each type variable occurs at most twice. As we will see, this is a key
observation in relating principal types to partial involutions.

I Definition 25 (Binary Type/Judgement).
A binary type is a type τ ∈ Type in which each variable occurs at most twice.
A binary judgement is a judgement Γ; ∆
M : τ in which each variable occurs at most
twice.

I Lemma 26. If Γ; ∆
M : τ , then Γ; ∆
M : τ is a binary judgement.

Proof. By induction on derivations. J

In general, a λ-term M can be assigned different types in a given environment. However,
there exists a minimal judgment w.r.t. the complexity of types, assigning a type to M , which
we call principal judgement. For example
 λ!x.!!x :!<i,j>α(!i!jα is the principal judgement
(type) for λ!x.!!x, but we can also derive
 λ!x.!!x :!<i,j1>α1∧!<i,j2>α2 (!i(!j1α1∧!j2α2);
namely, using the ∧-rule, we can replicate a !-type more times. In the following definition,
we introduce a relation on types formalizing this.

FSCD 2019

15:12 λ!-calculus, Intersection Types, and Involutions

I Definition 27. Let ≤ be the least reflexive and transitive relation on types defined by:

σ ≤ σ ∧ τ σ ≤ τ ∧ σ
σ ≤ σ′ τ ≤ τ ′
σ(τ ≤ σ′(τ ′

σ ≤ σ′
!uσ ≤!uσ′

σ ≤ σ′ τ ≤ τ ′
σ ∧ τ ≤ σ′ ∧ τ ′

For ∆,∆′ non-linear environments such that dom(∆) = dom(∆′), we define ∆ ≤ ∆′ if for
all variables in the domain of the environments the corresponding types in ∆ and ∆′ are
≤-related.
For any termM , two judgements assigning types toM are ≤-related if the linear environments
are equal, while the non-linear environments and the assigned types are ≤-related.

I Lemma 28. If the term M is typable, then there exists a principal judgement Γ; ∆
M : τ ,
i.e. a minimal judgement w.r.t. ≤, which is unique up-to α-renaming.

Proof. By induction on derivations. In order to deal with the (app)-rule, we need to
prove that, if Γ; ∆
 M : σ (σ′, Γ′; ∆′
 N : τ , and U = MGU(σ, τ), then either the
principal type of M is a variable or there exist minimal judgements Γ1; ∆1
M : σ1 (σ′1,
Γ′1; ∆′1
 N : τ1 such that U ′ = MGU(σ1, τ1). J

Here are the principal types of the combinators:
I λx.x α(α

K λxy.x α(β (α

B λxyz.x(yz) (α(γ)((β (α)(β (γ

C λxyz.xzy (α(β (γ)(β (α(γ

D λ!x.x !εα(α

δ λ!x.!!x !<i,j>α(!i!jα
F λ!x!y.!(xy) !i(α(β)(!iα(!iβ
W λx!y.x!y!y (!iα(!jβ (γ)((!liα∧!rjβ)(γ

As we will see in Secion 6, the principal types of the combinators induce, via the
transformation I of Definition 32, the corresponding partial involutions (see Proposition 11).

Another intriguing example of the involutions-as-types analogy is the following.
Let us consider the CL!-terms F (!I), B(F !D)δ, and BDδ. Despite having the same

applicative behaviour on !-arguments, as can be easily seen by reducing them, these terms
are interpreted by three different partial involutions in the combinatory algebra P:

F (!I) : l〈x, y〉 ↔ r〈x, y〉,
B(F !D)δ : l〈〈x, ε〉, y〉 ↔ r〈x, y〉,
BDδ : l〈〈ε, x〉, y〉 ↔ r〈x, y〉.

Quite correctly, the three terms above turn out to have also different principal types (in
what follows we denote, by abuse of notation, the λ!-terms corresponding to the CL!-terms
directly by the CL!-terms themselves):

 F (!I) :!iα(!iα,

 B(F !D)δ :!〈i,ε〉α(!iα,

 BDδ :!〈ε,i〉α(!iα.

As we will see in Section 6, the above principal types exactly correspond to the expected
partial involutions.

5.1 Relating the Principal Type System to the Type System
In the following, we study the relationships between the two typing systems. As expected,
they are related via substitutions U . In order to state precisely the correspondence between
the two intersection type systems, we need the following lemma, which can be proved by
induction on derivations:

I Lemma 29. If Γ; ∆ `M : σ, then, for all substitutions U , U(Γ);U(∆) `M : U(σ).

A. Ciaffaglione, P. Di Gianantonio, F. Honsell, M. Lenisa, and I. Scagnetto 15:13

I Theorem 30. For all M ∈ Λ!:
(i) if Γ; ∆
M : σ, then, for all substitutions U , U(Γ);U(∆) `M : U(σ);
(ii) if Γ; ∆ `M : σ, then there exist a derivation Γ′,∆′
M : σ′ and a type substitution U

such that U(Γ′) = Γ, U(∆′) = ∆, U(σ′) = σ.

Proof. Both items can be proved by induction on derivations. Lemma 29 above is used to
prove item (i) in the case of (app)-rule. J

As a consequence of the above theorem, subject reduction/conversion results analogous
to those in Theorems 19, 20, 21 hold for principal types:

I Theorem 31 (Subject Reduction/Conversion).
(i) If Γ; ∆
M : τ is a principal judgement and M →β M

′, then ∃Γ′,∆′, τ ′.(Γ′; ∆′
M ′ :
τ ′ & Γ′ = Γ|FV (M ′) & ∆′ � ∆ & τ ′ � τ).

(ii) If Γ; ∆
 M : τ is a principal judgement and M =L
β M

′, then ∃Γ′,∆′.(Γ′; ∆′
 M ′ :
τ & Γ′|FV (M)∩FV (M ′) = Γ|FV (M)∩FV (M ′) & ∆′ ∼ ∆).

(iii) If Γ; ∆
M : τ is a principal judgement, M =C
β M ′, M ′ is typable, then Γ; ∆
M ′ : τ .

Proof. We proof item(i), the proof of the remaining items being similar. If Γ; ∆
M : τ , then
by Theorem 30(i) Γ; ∆ ` M : τ , and by Theorem 19, Γ′; ∆′ ` M ′ : τ ′, with Γ′ = Γ|FV (M ′),
∆′ � ∆, τ ′ � τ . Then, by Theorem 30(ii), Γ′′; ∆′′
M ′ : τ ′′, with U(Γ′′) = Γ′, U(∆′′) = ∆′,
U(τ ′′) = τ ′, for some substitution U . Hence, by Theorem 30(i), Γ′′; ∆′′ ` M ′ : τ ′′. Then,
since M is typable in `, the converse implication in Theorem 19 holds, and we have
Γ′′′; ∆′′′ ` M : τ ′′′, with Γ′′ = Γ′′′|FV (M ′), ∆′′ � ∆′′′, τ ′′ � τ ′′′. Then, by Theorem 30(ii),
Γ; ∆
M : τ , with U ′(Γ) = Γ′′′, U ′(∆) = ∆′′′, U ′(τ) = τ ′′′, for some substitution U ′. Hence,
by unicity of the principal judgement, Γ = Γ, ∆ = ∆, τ = τ . Finally, we are left to prove
that Γ′′ = Γ|FV (M ′), ∆′′ � ∆, τ ′′ � τ . From U(Γ′′) = Γ′ = Γ|FV (M ′) = Γ|FV (M ′) and
U ′(Γ|FV (M ′)) = Γ′′′|FV (M ′) = Γ′′ it follows Γ′′ = Γ|FV (M ′). From U(∆′′) = ∆′ � ∆ = ∆ and
U ′(∆) = ∆′′′ � ∆′′ it follows ∆′′ � ∆. Similarly, we get τ ′′ � τ . J

6 Relating Principal Types and Partial Involutions

In this section, we state precisely the correspondence between principal type schemes and
partial involutions, giving evidence to the involutions-as-types analogy. In particular, we
provide procedures for building the partial involution corresponding to a type, and back.

The following algorithm, given a principal type scheme, produces the corresponding
involution:

I Definition 32. For α type variable and τ type, we define the judgement I(α, τ), which, if
it terminates, gives a pair in the graph of the partial involution, if α occurs twice in τ , or an
element of TΣ, if α occurs once in τ :

I(α, α) = α

I(α, σ(α)(τ(α)) = lI(α, σ(α)) ↔ rI(α, τ(α))
I(α, σ(α)(τ) = lI(α, σ(α))
I(α, σ(τ(α)) = rI(α, τ(α))
I(α, σ(α) ∧ τ(α)) = I(σ(α))↔ I(τ(α))
I(α, σ(α) ∧ τ) = I(α, σ(α))
I(α, τ ∧ σ(α)) = I(α, σ(α))
I(α, !uτ(α)) = 〈u, I(α, τ(α))〉

FSCD 2019

15:14 λ!-calculus, Intersection Types, and Involutions

where, by abuse of notation, when r, l apply to a pair, we mean that they apply to the single
components.

We define the partial involution induced by the type τ :

fτ = {I(α, τ) | α appears twice in τ}.

I Definition 33. Having selected a special type variable ω, we define a partial function T
which, given a partial involution term t ∈ TΣ, returns a type:

T (α) = α

T (lt) = T (t)(ω

T (rt) = ω(T (t)
T (〈t1, t2〉) = !t1T (t2)

On types we define a partial operation ∪ as follows:

ω ∪ τ = τ ∪ ω = τ

(σ1 (τ1) ∪ (σ2 (τ2) = (σ1 ∪ σ2)((τ1 ∪ τ2)
!uτ ∪ !vσ = U(!u(τ ∪ σ)) if ∃U = MGU(u, v)
!uτ ∪ (!vσ1 ∧ σ2) = U(!u(τ ∪ σ1) ∧ σ2) if ∃U = MGU(u, v)
!uτ ∪ (!v1σ1 ∧ · · · ∧!vn

σn) =!uτ∧!v1σ1 ∧ · · · ∧!vn
σn if ∀i . 6 ∃U = MGU(vi, u)

For each partial involution π = {t1 ↔ t′1, . . . , tn ↔ t′n}, we define its associated type as:
T (π) = T (t1) ∪ (T (t′1) ∪ (T (t2) ∪ . . . ∪ (T (tn) ∪ T (t′n) . . .).

Finally, we can show that type unification corresponds to application of involutions:

I Theorem 34. Let σ(τ , σ′ be binary types such that U = MGU(σ, σ′).
Then I(σ(τ) · I(σ′) = I(U(τ)).

Proof. (Sketch) One can prove that, under the hypothesis that MGU(σ, σ′) exists, in
evaluating I(σ(τ) · I(σ′) one constructs, in a series of steps, the unifier between the types
σ and σ′, and the final step of a linear application interaction corresponds to the application
of the unifier to τ . J

As a consequence of the above theorem, principal types of λ!-terms correspond to partial
involutions interpreting the terms in the combinatory algebra of partial involutions:

I Theorem 35. Given a closed term of CL!, say M , such that (M)λ! is typable, the partial
involution interpreting M , namely [[M]]P , can be read off from the principal type scheme of
(M)λ! , i.e.
 (M)λ! : τ if and only if [[M]]P = fτ .

Proof. The thesis follows from Theorem 34 and from the fact that λ!-terms corresponding to
combinatory constants receive the principal types inducing the partial involutions interpreting
the combinatory constants. J

7 Final Remarks and Directions for Future Work

In this paper, we have analysed from the point of view of the model theory of λ-calculus
the affine combinatory algebra of partial involutions, P, introduced in [1]. The key insight
which has allowed us to analyze the fine structure of the partial involutions interpreting

A. Ciaffaglione, P. Di Gianantonio, F. Honsell, M. Lenisa, and I. Scagnetto 15:15

combinators has been what we termed the involutions-as-principal types/application-as-
resolution analogy, introduced in [8, 9], which highlights a form of structural duality between
involutions and principal types, w.r.t. a suitable intersection type discipline. We feel that
it offers a new perspective on Girards’s Geometry of Interaction and especially on how its
reversible dynamics arises. Our next step is to explore how to apply this paradigm to other
instances of Game Semantics and GoI situations.

There are also many interesting lines of future work that remain to be addressed as far as
partial involutions are concerned. In particular, the type assignment systems can be refined
or extended in several directions.

First of all, both type systems introduced in this paper could be further fine-tuned in order
to capture even more smoothly the partial involutions corresponding to the constants of
affine combinatory algebras. E.g. the functorial nature of F could be taken as a rule.
Our type system is able to type only normalizable λ-terms. By introducing an extra
type constant ω representing an undefined type, it is possible to assign types to general
λ-terms. In this case, λ-terms generating infinitary Böhm trees will be characterized by a
set of principal types, each type defining a finite approximation of the term.
The present principal type system is not completely “deterministic”, i.e. in general a set
of types can be assigned to a λ-term, but only one is principal. We aim at developing an
alternative type assignment system where only principal types are derivable.
The type assignment systems defined in this paper induce combinatory algebras but
fail to be λ-algebras. It would be interesting to explore suitable quotients inducing full
λ-algebras.
Similarly, the combinatory algebra of partial involutions also fails to be a λ-algebra, and
therefore it would be worth to investigate how to quotient it to get a λ-algebra.
A further interesting problem to address is to characterize the fine theory of P. This
should be done by proving a suitable Approximation Theorem, relying on a complexity
measure on involutions, induced by a complexity measure on words in TΣ.
Building on the results of this paper, we should be able to provide an answer to the open
problem raised in [1] of characterising the partial involutions which arise as denotations
of combinators, extending the solution given in [9] for the purely affine fragment.
Comparison with alternate λ-calculi for describing reversible computations, e.g. [11], or
other typing systems inspired to Linear Logic, e.g. [10], should be carried out.

References
1 Samson Abramsky. A structural approach to reversible computation. Theoretical Computer

Science, 347(3):441–464, 2005. doi:10.1016/j.tcs.2005.07.002.
2 Samson Abramsky, Esfandiar Haghverdi, and Philip Scott. Geometry of Interaction and linear

combinatory algebras. Mathematical Structures in Computer Science, 12(5):625–665, 2002.
doi:10.1017/S0960129502003730.

3 Samson Abramsky and Radha Jagadeesan. Games and full completeness for multiplicative
linear logic. Journal of Symbolic Logic, 59(2):543–574, 1994. doi:10.2307/2275407.

4 Samson Abramsky and Marina Lenisa. Linear realizability and full completeness for typed
lambda-calculi. Annals of Pure and Applied Logic, 134(2):122–168, 2005. doi:10.1016/j.
apal.2004.08.003.

5 Joe Armstrong. Making reliable distributed systems in the presence of software errors. PhD
thesis, KTH, Microelectronics and Information Technology, IMIT, 2003. NR 20140805.

6 Henk Barendregt, Mario Coppo, and Mariangiola Dezani-Ciancaglini. A filter lambda model
and the completeness of type assignment. Journal of Symbolic Logic, 48(4):931–940, 1983.
doi:10.2307/2273659.

FSCD 2019

http://dx.doi.org/10.1016/j.tcs.2005.07.002
http://dx.doi.org/10.1017/S0960129502003730
http://dx.doi.org/10.2307/2275407
http://dx.doi.org/10.1016/j.apal.2004.08.003
http://dx.doi.org/10.1016/j.apal.2004.08.003
http://dx.doi.org/10.2307/2273659

15:16 λ!-calculus, Intersection Types, and Involutions

7 HP Barendregt. The Lambda Calculus. Its Syntax and Semantics. North-Holland, Amsterdam,
1984. (revised edition).

8 Alberto Ciaffaglione, Pietro Di Gianantonio, Furio Honsell, Marina Lenisa, and Ivan Scagnetto.
Reversible Computation and Principal Types in λ!-calculus. The Bulletin of Symbolic Logic,
2018.

9 Alberto Ciaffaglione, Furio Honsell, Marina Lenisa, and Ivan Scagnetto. The involutions-
as-principal types/application-as-unification Analogy. In Gilles Barthe, Geoff Sutcliffe,
and Margus Veanes, editors, LPAR, volume 57 of EPiC Series in Computing, pages 254–
270. EasyChair, 2018. URL: http://dblp.uni-trier.de/db/conf/lpar/lpar2018.html#
CiaffaglioneHLS18.

10 Ugo Dal Lago and Barbara Petit. The geometry of types. In The 40th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL’13, Proceedings, pages
167–178. ACM, 2013.

11 Alessandra Di Pierro, Chris Hankin, and Herbert Wiklicky. Reversible combinatory lo-
gic. Mathematical Structures in Computer Science, 16(4):621–637, 2006. doi:10.1017/
S0960129506005391.

12 Erlang official website. Last access: 19/01/2018. URL: http://www.erlang.org.
13 Pietro Di Gianantonio, Furio Honsell, and Marina Lenisa. A type assignment system for

game semantics. Theoretical Computer Science, 398(1):150–169, 2008. Calculi, Types and
Applications: Essays in honour of M. Coppo, M. Dezani-Ciancaglini and S. Ronchi Della
Rocca. doi:10.1016/j.tcs.2008.01.023.

14 Pietro Di Gianantonio and Marina Lenisa. Innocent Game Semantics via Intersection Type
Assignment Systems. In Simona Ronchi Della Rocca, editor, Computer Science Logic 2013
(CSL 2013), volume 23 of Leibniz International Proceedings in Informatics (LIPIcs), pages
231–247, Dagstuhl, Germany, 2013. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:
10.4230/LIPIcs.CSL.2013.231.

15 Jean-Yves Girard. Geometry of interaction 2: Deadlock-free algorithms. In Per Martin-Löf
and Grigori Mints, editors, COLOG-88, pages 76–93, Berlin, Heidelberg, 1990. Springer Berlin
Heidelberg.

16 Jean-Yves Girard. Geometry of interaction III: accommodating the additives. London
Mathematical Society Lecture Note Series, pages 329–389, 1995.

17 Esfandiar Haghverdi. A categorical approach to linear logic, geometry of proofs and full
completeness. University of Ottawa (Canada), 2000.

18 Alex Simpson. Reduction in a Linear Lambda-Calculus with Applications to Operational
Semantics. In Jürgen Giesl, editor, Term Rewriting and Applications, pages 219–234, Berlin,
Heidelberg, 2005. Springer Berlin Heidelberg.

19 Web Appendix with Erlang code. URL: http://www.dimi.uniud.it/scagnett/pubs/
automata-erlang.pdf.

http://dblp.uni-trier.de/db/conf/lpar/lpar2018.html#CiaffaglioneHLS18
http://dblp.uni-trier.de/db/conf/lpar/lpar2018.html#CiaffaglioneHLS18
http://dx.doi.org/10.1017/S0960129506005391
http://dx.doi.org/10.1017/S0960129506005391
http://www.erlang.org
http://dx.doi.org/10.1016/j.tcs.2008.01.023
http://dx.doi.org/10.4230/LIPIcs.CSL.2013.231
http://dx.doi.org/10.4230/LIPIcs.CSL.2013.231
http://www.dimi.uniud.it/scagnett/pubs/automata-erlang.pdf
http://www.dimi.uniud.it/scagnett/pubs/automata-erlang.pdf

	Introduction
	Affine Combinatory Logic and the lambda!-calculus
	The Model of Partial Involutions
	The !Intersection Type Discipline for the lambda!-calculus
	The !Intersection Principal Type Discipline for the lambda!-calculus
	Relating the Principal Type System to the Type System

	Relating Principal Types and Partial Involutions
	Final Remarks and Directions for Future Work

