
Differentials and Distances in Probabilistic
Coherence Spaces
Thomas Ehrhard
CNRS, IRIF, Université de Paris, France
https://www.irif.fr/~ehrhard/
ehrhard@irif.fr

Abstract
In probabilistic coherence spaces, a denotational model of probabilistic functional languages, morph-
isms are analytic and therefore smooth. We explore two related applications of the corresponding
derivatives. First we show how derivatives allow to compute the expectation of execution time in
the weak head reduction of probabilistic PCF (pPCF). Next we apply a general notion of “local”
differential of morphisms to the proof of a Lipschitz property of these morphisms allowing in turn to
relate the observational distance on pPCF terms to a distance the model is naturally equipped with.
This suggests that extending probabilistic programming languages with derivatives, in the spirit of
the differential lambda-calculus, could be quite meaningful.

2012 ACM Subject Classification Theory of computation → Lambda calculus; Theory of com-
putation → Probabilistic computation; Theory of computation → Abstract machines; Theory of
computation → Linear logic

Keywords and phrases Denotational semantics, probabilistic coherence spaces, differentials of pro-
grams

Digital Object Identifier 10.4230/LIPIcs.FSCD.2019.17

Acknowledgements We thank Raphaëlle Crubillé, Paul-André Melliès, Michele Pagani and Christine
Tasson for many enlightening discussions on this work. We also thank the referees for their precious
comments and suggestions.

Introduction

Currently available denotational models of probabilistic functional programming (with full
recursion, and thus partial computations) can be divided in three classes.

Game based models, first proposed in [6] and further developed by various authors (see [2]
for an example of this approach). From their deterministic ancestors they typically inherit
good definability features.
Models based on Scott continuous functions on domains endowed with additional probab-
ility related structures. Among these models we can mention Kegelspitzen [13] (domains
equipped with an algebraic convex structure) and ω-quasi Borel spaces [15] (domains
equipped with a generalized notion of measurability), this latter semantics, as far as we
understand the situation, requiring the use of an adapted probabilistic powerdomain
construction.
Models based on (a generalization of) Berry stable functions. The first category of
this kind was that of probabilistic coherence spaces (PCSs) and power series with non-
negative coefficients (the Kleisli category of the model of Linear Logic developed in [5])
for which we could prove adequacy and full abstraction with respect to a probabilistic
version of PCF [10]. We extended this idea to “continuous data types” (such as R)
by substituting PCSs with positive cones and power series with functions featuring

© Thomas Ehrhard;
licensed under Creative Commons License CC-BY

4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019).
Editor: Herman Geuvers; Article No. 17; pp. 17:1–17:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-5231-5504
https://www.irif.fr/~ehrhard/
mailto:ehrhard@irif.fr
https://doi.org/10.4230/LIPIcs.FSCD.2019.17
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

17:2 Differentials in Pcoh

an hereditary monotonicity property that we called stability1 and [3] showed that this
extension is actually conservative (stable functions on PCSs, which are special positive
cones, are exactly power series).

The main feature of this latter semantics is the extreme regularity of its morphisms.
Being power series, they must be smooth. Nevertheless, the category Pcoh is not a model of
differential linear logic in the sense of [9]. This is due to the fact that general addition of
morphisms is not possible (only sub-convex linear combinations are available) thus preventing,
e.g., the Leibniz rule to hold in the way it is presented in differential LL. Also a morphism
X → Y in the Kleisli category Pcoh! can be considered as a function from the closed unit
ball of the cone P associated with X to the closed unit ball of the cone Q associated with Y .
From a differential point of view such a morphism is well behaved only in the interior of the
unit ball. On the border derivatives can typically take infinite values.

Contents

We already used the analyticity of the morphisms of Pcoh! to prove full abstraction results [10].
We provide here two more corollaries of this properties, involving now also derivatives.
For both results, we consider a paradigmatic probabilistic purely functional programming
language2 which is a probabilistic extension of Scott and Plotkin’s PCF. This language pPCF
features a single data type ι of integers, a simple probabilistic choice operator coin(r) : ι
which flips a coin with probability r to get 0 and 1 − r to get 1. To make probabilistic
programming possible, this language has a let(x,M,N) construct restricted to M of type ι
which allows to sample an integer according to the sub-probability distribution represented
by M . The operational semantics is presented by a deterministic “stack machine” which
is an environment-free version of Krivine machine parameterized by a choice sequence
∈ C0 = {0, 1}<ω, presented as a partial evaluation function. We adopt a standard discrete
probability approach, considering C0 as our basic sample space and the evaluation function as
defining a (total) probability density function on C0. We also introduce an extension pPCFlab
of pPCF where terms can be labeled by elements of a set L of labels, making it possible to
count the use of labeled subterms during a reduction. Evaluation for this extended calculus
gives rise to a random variable (r.v.) on C0 ranging in the setMfin(L) of finite multisets of
elements of L. The number of uses of terms labeled by a given l ∈ L (which is a measure of
the computation time) is then an N-valued r.v. the expectation of which we want to evaluate.
We prove that, for a given labeled closed term M of type ι, this expectation can be computed
by taking a derivative of the interpretation of this term in the model Pcoh! and provide a
concrete example of computation of such expectations. This result can be considered as a
probabilistic version of [7, 8]. The fact that derivatives can become infinite on the border of
the unit ball corresponds then to the fact that this expectation of “computation time” can
be infinite.

In the second application, we consider the contextual distance on pPCF terms generalizing
Morris equivalence as studied in [4] for instance. The probabilistic features of the language
make this distance too discriminating, putting e.g. terms coin(0) and coin(ε) at distance 1
for all ε > 0 (probability amplification). Any cone (and hence any PCS) is equipped with a
norm and hence a canonically defined metric. Using a locally defined notion of differential

1 Because, when reformulated in the domain-theoretic framework of Girard’s coherence spaces, this
condition exactly characterizes Berry’s stable functions.

2 One distinctive feature of our approach is to not consider probabilities as an effect.

T. Ehrhard 17:3

of morphisms in Pcoh!, we prove that these morphisms enjoy a Lipschitz property on all
balls of radius p < 1, with a Lipschitz constant 1/(1− p) (thus tending towards ∞ when p
tends towards 1). Modifying the definition of the operational distance by not considering
all possible contexts, but only those which “perturb” the tested terms by allowing them to
diverge with probability 1− p, we upper bound this p-tamed distance by the distance of the
model with a ratio p/(1− p). Being in some sense defined wrt. linear semantic contexts, the
denotational distance does not suffer from the probability amplification phenomenon. This
suggests that p-tamed distances might be more suitable than ordinary contextual distances
to reason on probabilistic programs.

Notations

We use R≥0 for the set of real numbers x such that x ≥ 0, and we set R≥0 = R≥0 ∪ {+∞}.
Given two sets S and I we use SI for the set of functions I → S, often considered as I-indexed
families ~s of elements of S (the purpose of the arrow is to stress the fact that this object
is such a family), the indexing set I being usually easily derivable from the context. The
elements of such a family ~s are denoted si or s(i) depending on the context. Given i ∈ I we
use i for the function I → R≥0 such that i(i) = 1 and i(j) = 0 if j 6= i. We useMfin(I) for
the set of finite multisets of elements of I. Such a multiset is a function µ : I → N such that
supp(µ) = {i ∈ I | µ(i) 6= 0} is finite. We use additive notations for operations on multisets
(0 for the empty multiset, µ+ ν for their pointwise sum). We use [i1, . . . , ik] for the multiset
µ such that µ(i) = #{j ∈ N | ij = i}. If µ, ν ∈Mfin(I) with µ ≤ ν (pointwise order), we set(
ν
µ

)
=
∏
i∈I
(
ν(i)
µ(i)
)
where

(
n
m

)
= n!

m!(n−m)! is the usual binomial coefficient. We use I<ω for
the set of finite sequences 〈i1, . . . , ik〉 of elements of I and αβ for the concatenation of such
sequences. We use 〈〉 for the empty sequence.

1 Probabilistic coherence spaces (PCS)

For the general theory of PCSs we refer to [5, 10]. We recall briefly the basic definitions and
provide a characterization of these objects. PCSs are particular cones (a notion borrowed
from [14]) as we used them in [10], so we start with a few words about these more general
structures to which we plan to extend the constructions of this paper.

1.1 A few words about cones
A (positive) pre-cone is a cancellative3 commutative R≥0-semi-module P equipped with a
norm ‖_‖P , that is a map P → R≥0, such that ‖r x‖P = r ‖x‖P for r ∈ R≥0, ‖x+ y‖P ≤
‖x‖P + ‖y‖P and ‖x‖P = 0 ⇒ x = 0. It is moreover assumed that ‖x‖P ≤ ‖x+ y‖P , this
condition expressing that the elements of P are positive. Given x, y ∈ P , one says that x is
less than y (notation x ≤ y) if there exists z ∈ P such that x+ z = y. By the cancellation
property, if such a z exists, it is unique and we denote it as y − x. This subtraction obeys
usual algebraic laws (when it is defined). Notice that if x, y ∈ P satisfy x+ y = 0 then since
‖x‖P ≤ ‖x+ y‖P , we have x = 0 (and of course also y = 0). Therefore, if x ≤ y and y ≤ x
then x = y and so ≤ is an order relation.

A (positive) cone is a positive pre-cone P whose unit ball BP = {x ∈ P | ‖x‖P ≤ 1} is
ω-order-complete in the sense that any increasing sequence of elements of BP has a least
upper bound in BP . In [10] we show how a notion of stable function on cones can be defined,
which gives rise to a cartesian closed category.

3 Meaning that x+ y = x′ + y ⇒ x = x′.

FSCD 2019

17:4 Differentials in Pcoh

The following construction will be crucial in Section 3.2. Given a cone P and x ∈ BP ,
we define the local cone at x as the set Px = {u ∈ P | ∃ε > 0 x+ εu ∈ BP}. Equipped with
the algebraic operations inherited from P , this set is clearly a R≥0-semi-ring. We equip it
with the following norm: ‖u‖Px = inf{ε−1 | ε > 0 and x+ εu ∈ BP} and then it is easy to
check that Px is indeed a cone. It is reduced to 0 exactly when x is maximal in BP . In that
case one has ‖x‖P = 1 but notice that the converse is not true in general.

1.2 Basic definitions on PCSs
Given an at most countable set I and u, u′ ∈ R≥0

I , we set 〈u, u′〉 =
∑
i∈I uiu

′
i ∈ R≥0. Given

P ⊆ R≥0
I , we define P⊥ ⊆ R≥0

I as P⊥ = {u′ ∈ R≥0
I | ∀u ∈ P 〈u, u′〉 ≤ 1}. Observe that

if P satisfies ∀a ∈ I ∃x ∈ P xa > 0 and ∀a ∈ I ∃m ∈ R≥0∀x ∈ P xa ≤ m then P⊥ ∈ (R≥0)I
and P⊥ satisfies the same two properties.

A probabilistic pre-coherence space (pre-PCS) is a pair X = (|X|,PX) where |X| is an
at most countable set4 and PX ⊆ R≥0

|X| satisfies PX⊥⊥ = PX. A probabilistic coherence
space (PCS) is a pre-PCS X such that ∀a ∈ |X| ∃x ∈ PX xa > 0 and ∀a ∈ |X| ∃m ∈
R≥0∀x ∈ PX xa ≤ m so that PX ⊆ (R≥0)|X|.

Given any PCS X we can define a cone PX as follows:

PX = {x ∈ (R≥0)|X| | ∃ε > 0 εx ∈ PX}

that we equip with the following norm: ‖x‖PX = inf{r > 0 | x ∈ rPX} and then it is easy
to check that B(PX) = PX. We simply denote this norm as ‖_‖X .

Given t ∈ R≥0
I×J considered as a matrix (where I and J are at most countable sets) and

u ∈ R≥0
I , we define t u ∈ R≥0

J by (t u)j =
∑
i∈I ti,jui (usual formula for applying a matrix

to a vector), and if s ∈ R≥0
J×K we define the product s t ∈ R≥0

I×K of the matrix s and t
as usual by (s t)i,k =

∑
j∈J ti,jsj,k. This is an associative operation.

Let X and Y be PCSs, a morphism from X to Y is a matrix t ∈ (R≥0)|X|×|Y | such that
∀x ∈ PX tx ∈ PY . It is clear that the identity matrix is a morphism from X to X and that
the matrix product of two morphisms is a morphism and therefore, PCS equipped with this
notion of morphism form a category Pcoh.

The condition t ∈ Pcoh(X,Y) is equivalent to ∀x ∈ PX ∀y′ ∈ PY ⊥ 〈t x, y′〉 ≤ 1
but 〈t x, y′〉 = 〈t, x ⊗ y′〉 where (x ⊗ y′)(a,b) = xay

′
b. This strongly suggests to introduce

a construction X ⊗ Z, given two PCSs X and Z, by setting |X ⊗ Z| = |X| × |Z| and
P(X ⊗ Z) = {x⊗ z | x ∈ PX and z ∈ PZ}⊥⊥ where (x⊗ z)(a,c) = xazc. Then it is easy to
see that X ⊗Z is not only a pre-PCS, but actually a PCS and that we have equipped in that
way the category Pcoh with a symmetric monoidal structure for which it is ∗-autonomous
wrt. a dualizing object ⊥ = 1 = ({∗}, [0, 1]) (it is at the same time the unit of ⊗ and
X⊥ ' (X (⊥) up to a trivial iso).

The category Pcoh is cartesian: if (Xi)i∈I is an at most countable family of PCSs,
then (&i∈I Xi, (πi)i∈I) is the cartesian product of the Xis, with |&i∈I Xi| = ∪i∈I{i} × |Xi|,
(πi)(j,a),a′ = 1 if i = j and a = a′ and (πi)(j,a),a′ = 0 otherwise, and x ∈ P(&i∈I Xi) if πi x ∈
PXi for each i ∈ I (for x ∈ (R≥0)|&i∈I Xi|). Given ti ∈ Pcoh(Y,Xi), the unique morphism
t = 〈ti〉i∈I ∈ Pcoh(Y,&i∈I Xi) such that πi t = ti is simply defined by tb,(i,a) = (ti)a,b. The

4 This restriction is not technically necessary, but very meaningful from a philosophic point of view; the
non countable case should be handled via measurable spaces and then one has to consider more general
objects as in [10] for instance.

T. Ehrhard 17:5

dual operation ⊕i∈I Xi, which is a coproduct, is characterized by |⊕i∈I Xi| = ∪i∈I{i} × |Xi|
and x ∈ P(⊕i∈I Xi) and

∑
i∈I ‖πi x‖Xi ≤ 1. A particular case is N = ⊕n∈NXn where Xn = 1

for each n. So that |N| = N and x ∈ (R≥0)N belongs to PN if
∑
n∈N xn ≤ 1 (that is, x

is a sub-probability distribution on N). There are successor and predecessor morphisms
suc, pred ∈ Pcoh(N,N) given by sucn,n′ = δn+1,n′ and predn,n′ = 1 if n = n′ = 0 or n = n′+1
(and predn,n′ = 0 in all other cases). An element of Pcoh(N,N) is a (sub)stochastic matrix
and our model should be understood as this kind of representation of programs.

As to the exponentials, one sets |!X| =Mfin(|X|) and P(!X) = {x! | x ∈ PX}⊥⊥ where,
given µ ∈ Mfin(|X|), x!

µ = xµ =
∏
a∈|X| x

µ(a)
a . Then given t ∈ Pcoh(X,Y), one defines

!t ∈ Pcoh(!X, !Y) in such a way that !t x! = (t x)! (the precise definition is not relevant here;
it is completely determined by this equation). We do not need here to specify the monoidal
comonad structure of this exponential. The resulting cartesian closed category5 Pcoh! can
be seen as a category of functions (actually, of stable functions as proved in [3]). Indeed,
a morphism t ∈ Pcoh!(X,Y) = Pcoh(!X,Y) = P(!X (Y) is completely characterized
by the associated function t̂ : PX → PY such that t̂(x) = t x! =

(∑
µ∈|!X| tµ,bx

µ
)
b∈|Y |

so

that we consider morphisms as power series (they are in particular monotonic and Scott
continuous functions PX → PY). In this cartesian closed category, the product of a family
(Xi)i∈I is &i∈I Xi (written XI if Xi = X for all i), which is compatible with our viewpoint
on morphisms as functions since P(&i∈I Xi) =

∏
i∈I PXi up to trivial iso. The object of

morphisms from X to Y is !X (Y with evaluation mapping (t, x) ∈ P(!X (Y)× PX to
t̂(x) that we simply denote as t(x) from now on. The well defined function P(!X (X)→ PX
which maps t to supn∈N tn(0) is a morphism of Pcoh! (and thus can be described as a power
series in the vector t = (tm,a)m∈Mfin(|X|),a∈|X|) by standard categorical considerations using
cartesian closeness: it provides us with fixed point operators at all types.

2 Probabilistic PCF, time expectation and derivatives

We introduce now the probabilistic functional programming language considered in this
paper. The operational semantics is presented using elementary probability theoretic tools.

2.1 The core language
The types and terms are given by

σ, τ, . . . := ι | σ ⇒ τ

M,N, P . . . := n | succ(M) | pred(M) | x | coin(r) | let(x,M,N) | if(M,N,P)
| (M)N | λxσM | fix(M)

See Fig. 1 for the typing rules, with typing contexts Γ = (x1 : σ1, . . . , xn : σn).

2.1.1 Denotational semantics
We survey briefly the interpretation of pPCF in PCSs thoroughly described in [10]. Types
are interpreted by JιK = N and Jσ ⇒ τK = !JσK (JτK. Given M ∈ pPCF such that
Γ ` M : σ (with Γ = (x1 : σ1, . . . , xk : σk)) one defines JMKΓ ∈ Pcoh!(&k

i=1JσiK, JσK) (a

5 This is the Kleisli category of “!” which has actually a comonad structure that we do not make explicit
here, again we refer to [5, 10].

FSCD 2019

17:6 Differentials in Pcoh

Γ ` n : ι Γ, x : σ ` x : σ
Γ `M : ι

Γ ` succ(M) : ι
Γ `M : ι

Γ ` pred(M) : ι

Γ `M : ι Γ ` N : σ Γ ` P : σ
Γ ` if(M,N,P) : σ

Γ `M : ι Γ, z : ι ` N : σ
Γ ` let(z,M,N) : σ

Γ, x : σ `M : τ
Γ ` λxσM : σ ⇒ τ

Γ `M : σ ⇒ τ Γ ` N : σ
Γ ` (M)N : τ

Γ `M : σ ⇒ σ

Γ ` fix(M) : σ
r ∈ [0, 1] ∩Q
Γ ` coin(r) : ι

ι ` ε
`M : σ τ ` π
σ ⇒ τ ` arg(M) · π

ι ` π
ι ` succ · π

ι ` π
ι ` pred · π

` N : σ ` P : σ σ ` π
ι ` if(N,P) · π

x : ι ` N : σ σ ` π
ι ` let(x,N) · π

Figure 1 Typing rules for pPCF terms and stacks.

“Kleisli morphism”) that we see as a function
∏k
i=1 PJσiK→ PJσK as explained in Section 1.2.

For instance JxiKΓ(~u) = ui, JnKΓ(~u) = n (remember that n ∈ PN is defined by ni = δn,i),
Jsucc(M)KΓ(~u) = suc JMKΓ(~u) and similarly for pred(M), more importantly

Jcoin(r)KΓ(~u) = r 0 + (1− r) 1 Jlet(x,M,N)KΓ =
∑
n∈N

JMKΓ(~u)n JN [n/x]KΓ(~u)

Jif(M,N,P)KΓ(~u) = JMKΓ(~u)0 JNKΓ(~u) +
(∑
n∈N

JMKΓ(~u)n+1

)
JP KΓ(~u) .

Application and λ-abstraction are interpreted as usual in a cartesian closed category (in
particular J(M)NKΓ(~u) = (JMKΓ(~u))(JNKΓ(~u))). Last Jfix(M)KΓ(~u) = supn∈N(JMKΓ(~u))n(0).

2.1.2 Operational semantics
In former papers we have presented the operational semantics of pPCF as a discrete Markov
chain on states which are the closed terms of pPCF. This Markov chain implements the
standard weak head reduction strategy of PCF which is deterministic for ordinary PCF
but features branchings in pPCF because of the coin(r) construct (see [10]). Here we prefer
another, though strictly equivalent, presentation of this operational semantics, based on an
environment-free Krivine Machine (thus handling states which are pairs made of a closed
term and a closed stack) further parameterized by an element of {0, 1}<ω to be understood
as a “random tape” prescribing the values taken by the coin(r) terms during the execution
of states. We present this machine as a partial function taking a state s, a random tape α
and returning an element of [0, 1] to be understood as the probability that the sequence α
of 0/1 choices occurs during the execution of s. We allow only execution of ground type
states and accept 0 as the only terminating value: a completely arbitrary choice, sufficient
for our purpose in this paper. Also, we insist that a terminating computation from (s, α)
completely consumes the random tape α. These choices allow to fit within a completely
standard discrete probability setting.

Given an extension Λ of pPCF (with the same format for typing rules), we define the
associated language of stacks (called Λ-stacks).

π := ε | arg(M) · π | succ · π | pred · π | if(N,P) · π | let(x,N) · π

where M and N range over Λ. A stack typing judgment is of shape σ ` π (meaning that it
takes a term of type σ and returns an integer) and the typing rules are given in Fig. 1.

T. Ehrhard 17:7

Ev(〈let(x,M,N), π〉, α) = Ev(〈M, let(x,N) · π〉, α) Ev(〈λxσM, arg(N) · π〉, α) = Ev(〈M [N/x] , π〉, α)
Ev(〈n, let(x,N) · π〉, α) = Ev(〈N [n/x] , π〉, α) Ev(〈fix(M), π〉, α) = Ev(〈M, arg(fix(M)) · π〉, α)
Ev(〈if(M,N,P), π〉) = Ev(〈M, if(N,P) · π〉, α) Ev(〈coin(r), π〉, 〈0〉α) = Ev(〈0, π〉, α) · r
Ev(〈0, if(N,P) · π〉, α) = Ev(〈N,π〉, α) Ev(〈coin(r), π〉, 〈1〉α) = Ev(〈1, π〉, α) · (1− r)
Ev(〈n+ 1, if(N,P) · π〉, α) = Ev(〈P, π〉, α) Ev(〈0, ε〉, 〈〉) = 1

Figure 2 The pPCF Krivine Machine.

A state is a pair 〈M,π〉 (where we say that M is in head position) such that `M : σ and
σ ` π for some (uniquely determined) type σ, let S be the set of states. Let C0 = {0, 1}<ω be
the set of finite lists of booleans (random tapes), we define a partial function Ev : S×C0 → R≥0
in Fig. 2. Let D(s) be the set of all α ∈ C0 such that Ev(s, α) is defined. When α ∈ D(s),
the number Ev(s, α) ∈ [0, 1] is the probability that the random tape α occurs during the
execution. When all coins are fair (all the values of the parameters r are 1/2), this probability
is 2−len(α). The sum of these (possibly infinitely many) probabilities is ≤ 1. For fitting within
a standard probabilistic setting, we define a total probability distribution Ev(s) : C0 → [0, 1]
as follows

Ev(s)(α) =


Ev(s, β) if α = 〈0〉β and β ∈ D(s)
1−

∑
β∈D(s) Ev(s, β) if α = 〈1〉

0 in all other cases

Let Ps be the associated probability measure6 (we are in a discrete setting so simply
Ps(A) =

∑
α∈A Ev(s)(α) for all A ⊆ C0).

The event (s ↓ 0) = 〈0〉D(s) is the set of all random tapes (up to 0-prefixing) making
s reduce to 0. Its probability is Ps(s ↓ 0) =

∑
β∈D(s) Ev(s, β). In the case s = 〈M, ε〉 (with

`M : ι) this probability is exactly the same as the probability of M to reduce to 0 in the
Markov chain setting of [10] (see e.g. [1] for more details on the connection between these
two kinds of operational semantics). So the Adequacy Theorem of [10] can be expressed as
follows.

I Theorem 1. Let M ∈ pPCF with `M : ι. Then JMK0 = P〈M,ε〉(〈M, ε〉 ↓ 0).

We use sometimes P(M ↓ 0) as an abbreviation for P〈M,ε〉(〈M, ε〉 ↓ 0).

2.2 Probabilistic PCF with labels and the associated random variables
In order to count the number of times a given subterm N of a closed term M of type ι
is used (that is, arrives in head position) during the execution of 〈M, ε〉 in the Krivine
machine of Section 2.1.2, we extend pPCF into pPCFlab by adding a term labeling construct
N l. The typing rule for this new construct is simply Γ ` N : σ

Γ ` N l : σ
. Of course pPCFlab-stacks

involve now such labeled terms but their syntax is not extended otherwise; let Slab be the
corresponding set of states. Then we define a partial function Evlab : Slab × C0 →Mfin(L)
exactly as Ev apart for the following cases,

Evlab(〈M l, π〉, α) = Evlab(〈M,π〉, α) + [l]
Evlab(〈coin(r), π〉, 〈i〉α) = Evlab(〈i, π〉, α) Evlab(〈0, ε〉, 〈〉) = 0 the empty multiset.

6 The choice of accumulating on 〈1〉 all the complementary probability is completely arbitrary and has no
impact on the result we prove because all the events of interest for us will be subsets of 〈0〉C0 ⊂ C0.

FSCD 2019

17:8 Differentials in Pcoh

When applied to 〈M, ε〉, this function counts how often labeled subterms of M arrive in head
position during the reduction; this number depends of course on the random tape provided
as argument together with the state. The result is a finite multiset of labels.

Let Dlab(s) be the set of αs such that Evlab(s, α) is defined. Defining s ∈ S as s stripped
from its labels, we clearly have Dlab(s) = D(s). We define a r.v.7 Evlab(s) : C0 →Mfin(L) by

Evlab(s)(α) =
{

Evlab(s, β) if α = 〈0〉β and β ∈ D(s)
0 in all other cases.

Let l ∈ L and let Evlab(s)l : C0 → N be the integer r.v. defined by Evlab(s)l(α) = Evlab(s)(α)(l).
Its expectation is

E(Evlab(s)l) =
∑
n∈N

nPs(Evlab(s)l = n) =
∑
n∈N

n
∑

µ∈Mfin(L)
µ(l)=n

Ps(Evlab(s) = µ)

=
∑

µ∈Mfin(L)

µ(l)Ps(Evlab(s) = µ) . (1)

This is the expected number of occurrences of l-labeled subterms of s arriving in head position
during successful executions of s. It is more meaningful to condition this expectation under
convergence of the execution of s (that is, under the event s ↓ 0). We have E(Evlab(s)l |
s ↓ 0) = E(Evlab(s)l)/Ps(s ↓ 0) as the r.v. Evlab(s)l vanishes outside the event s ↓ 0 since
Dlab(s) = D(s).

Our goal now is to extract this expectation from the denotational semantics of a term M

such that `M : ι, which contains labeled subterms, or rather of a term suitably definable
from M . The general idea is to replace in M each N l (where N has type σ) with if(xl, N,Ωσ)
where ~x = (xl)l∈L (for some finite subset L of L containing all the labels occurring in M) is
a family of pairwise distinct variables of type ι and Ωσ = fix(λxσ x). We obtain in that way
a term sp~xM whose semantics Jsp~xMK~x is an element of Pcoh!(NL,N) that we can consider
as an analytic function (PN)L → PN and which therefore induces an analytic function
f : [0, 1]L → [0, 1] by f(~r) = JM ′K((rl0)l∈L)0 (where ~r 0 = (rl 0)l∈L ∈ PNL for ~r ∈ [0, 1]L).
Our main claim is that the expectation of the number of uses of subterms labeled by l is
∂f(~r)
∂rl

(1, . . . , 1).
In order to reduce this problem to Theorem 1, we need a further “Krivine machine”

with has as many random tapes as elements of L (plus one for the plain coin(_) constructs
occurring in M).

2.3 Probabilistic PCF with labeled coins
Let pPCFlc be pPCF extended with a construct lcoin(l, r) typed as r ∈ [0, 1] ∩Q and l ∈ L

Γ ` lcoin(l, r) : ι
This language features the usual coin(r) construct for probabilistic choice as well as a supply
of identical constructs labeled by L that we will use to simulate the counting of Section 2.2.
Of course pPCFlc-stacks involve now terms with labeled coins but their syntax is not extended
otherwise; let Slc be the corresponding set of states. We use lab(M) for the set of labels
occurring in M (and similarly lab(s) for s ∈ Slc). Given a finite subset L of L, we use
pPCFlc(L) for the set of terms M such that lab(M) ⊆ L and we define similarly Slc(L). We
also use the similar notations pPCFlab(L) and Slab(L).

7 That is, simply, a function since we are in a discrete probability setting.

T. Ehrhard 17:9

The partial function Evlc : Slc(L) × C0 × CL0 → R≥0 is defined exactly as Ev (for the
unlabeled coin(r), we use only the first parameter in C0), extended by the following rules:

Evlc(〈lcoin(l, r), π〉, α, ~β) =
{

Evlc(〈0, π〉, α, ~β [γ/l]) · r if β(l) = 〈0〉γ
Evlc(〈1, π〉, α, ~β [γ/l]) · (1− r) if β(l) = 〈1〉γ

where ~β = (β(l))l∈L stands for an L-indexed family of elements of C0 and ~β [γ/l] is the family
~δ such that δ(l′) = β(l′) if l′ 6= l and δ(l) = γ. We define Dlc(s) ⊆ C0 × CL0 as the domain of
the partial function Evlc(s,_,_). Let s ∈ S be obtained by stripping s from its labels (so
that lcoin(l, r) = coin(r)). And M ∈ pPCF is defined similarly.

I Lemma 2. For all s ∈ Slc(L)

Ps(s ↓ 0) =
∑

(α,~β)∈Dlc(s)

Evlc(s, α, ~β) .

Proof. (Sketch) With each (α, ~β) ∈ Dlc(s) we can associate a uniquely defined ηs(α, ~β) ∈ D(s)
which is a shuffle of α and of the β(l)’s (for l ∈ L) such that Evlc(s, α, ~β) = Ev(s, ηs(α, ~β)),
uniquely determined by the run of (s, α, ~β) in the “machine” Evlab. This mapping ηs (which
is defined much like Evlc(s,_,_)) is easily seen to be bijective. J

2.3.1 Spying labeled terms in pPCF
We arrive to the last step, which consists in turning a closed labeled term M (with labels
in the finite set L) into the already mentioned term sp~x(M), defined in such a way that
Jlc~r(M)K has a simple expression in terms of sp~x(M) (Lemma 5), allowing to relate the
coefficients of the power series interpreting sp~x(M) in terms of probability of reduction of
the machine Evlab with given resulting multisets of labels (Equation (2)). This in turn is the
key to the proof of Theorem 6.

Given ~r = (rl)l∈L ∈ (Q ∩ [0, 1])L, we define a (type preserving) translation lc~r :
pPCFlab(L)→ pPCFlc by induction on terms. For all term constructs but labeled terms, the
transformation does nothing (for instance lc~r(x) = x, lc~r(λxσM) = λxσ lc~r(M) etc), the
only non trivial case being lc~r(M l) = if(lcoin(l, rl), lc~r(M),Ωσ) where σ is the type8 of M .

I Lemma 3. Let s ∈ Slab(L). Then Dlab(s) = D(s), Dlc(lc~r(s)) = {(α, (〈0〉Evlab(s,α)(l))l∈L) |
α ∈ D(s)} and Evlc(lc~r(s), α, 〈0〉Evlab(s,α)(l)) = Ps({〈0〉α})(~r)Evlab(s,α).

Of course 〈0〉n stands for the sequence 〈0, . . . , 0〉 (with n occurrences of 0). The proof is by
induction on the length of α and boils down to the observation that D(〈Ωσ, π〉) = ∅ for any
(well typed) stack π. Remember that Ps({〈0〉α}) = Ev(s, α) and that (~r)µ =

∏
l∈l r

µ(l)
l for

all µ ∈Mfin(L).
We consider a last type preserving translation from pPCFlab(L) to pPCF: let ~x be a

L-indexed family of pairwise distinct variables (that we identify with the typing context
(xl : ι)l∈L). If M ∈ pPCFlab(L) with Γ `M : σ (assuming that no free variable of M occurs
in ~x) we define sp~x(M) with Γ, ~x ` sp~x(M) : σ by induction on M . The unique non trivial
case is sp~x(M l) = if(xl, sp~x(M),Ωσ) where σ is the type of M .

8 A priori this type is known only if we know the type of the free variables of M , so to be more precise
this translation should be specified in a given typing context; this can easily be fixed by adding a further
parameter to lc at the price of heavier notations.

FSCD 2019

17:10 Differentials in Pcoh

I Lemma 4. Let M ∈ pPCFlab(L) with ` M : σ. If ~ρ ∈ Mfin(N)L = Mfin(L× N) and
a ∈ |JσK| satisfy (Jsp~x(M)K~x)(~ρ,a) 6= 0 then ρl(n) 6= 0⇒ n = 0.

The proof is a simple induction on M (of course we also have to consider open terms) and
uses the fact that JΩσK = 0.

Given µ ∈Mfin(L), we use µ [0] for the element ρ ofMfin(N)L such that ρl(n) = µ(l) if
n = 0 and ρl(n) = 0 otherwise.

I Lemma 5. Let ~r ∈ (Q∩[0, 1])L andM ∈ pPCFlab(L) with `M : σ. Then Jsp~x(M)K~x(~r 0) =
Jlc~r(M)K.

Easy induction on M based on the fact that Jcoin(r)K = r0 + (1− r)1 (again, one needs a
more general statement involving open terms).

By Lemma 5, Jlc~r(M)K
0

=
∑
µ∈Mfin(L)(Jsp~x(M)K~x)(µ [0],0)(~r)µ. By Theorem 1, we have

Jlc~r(M)K
0

= Plc~r(〈M,ε〉)(lc~r(〈M, ε〉) ↓ 0)

=
∑

(α,~β)∈Dlc(lc~r(〈M,ε〉))

Evlc(lc~r(〈M, ε〉), α, ~β) by Lemma 2

=
∑

α∈D(〈M,ε〉)

Ev(〈M, ε〉, α)
∏
l∈L

r
Evlab(〈M,ε〉,α)(l)
l by Lemma 3

=
∑

µ∈Mfin(L)

 ∑
α∈〈0〉C0

Evlab(〈M,ε〉)(α)=µ

Ev(〈M, ε〉)(α)

 (~r)µ

and since this holds for all ~r ∈ (Q ∩ [0, 1])L, we must have, for all µ ∈Mfin(L),

(Jsp~x(M)K~x)(µ [0],0) =
∑

α∈〈0〉C0
Evlab(〈M,ε〉)(α)=µ

Ev(〈M, ε〉)(α) = P〈M,ε〉(Evlab(〈M, ε〉) = µ) (2)

Let l ∈ L, we have

E(Evlab(〈M, ε〉)l) =
∑

µ∈Mfin(L)

µ(l)P〈M,ε〉(Evlab(〈M, ε〉) = µ) by Equation (1)

=
∑

µ∈Mfin(L)

µ(l)Jsp~x(M)K~x)(µ [0],0) by Equation (2)

= ∂Jsp~xMK~x(~r0)0

∂rl
(1, . . . , 1) .

Indeed, given ~r ∈ [0, 1]L one has Jsp~xMK~x(~r0)0 =
∑
µ∈Mfin(L)Jsp~x(M)K~x)(µ [0],0)~r

µ and
∂~rµ

∂rl
(1, ..., 1) = µ(l), whence the last equation.

I Theorem 6. Let M ∈ pPCFlab(L) with `M : ι. Then

E(Evlab(〈M, ε〉)l | 〈M, ε〉 ↓ 0) = ∂Jsp~xMK(~r0)
∂rl

(1, . . . , 1)/JMK0 .

I Example 7. The point of this formula is that we can apply it to algebraic expressions of
the semantics of the program. Consider the following termMq (for q ∈ Q∩ [0, 1]) such that `
Mq : ι⇒ ι: Mq = fix(λf ι⇒ι λxι if(coin(q), if((f)x, if((f)x, 0,Ωι),Ωι), if(x, if(x, 0,Ωι),Ωι))) ,
we study (Mq)0l (for a fixed label l ∈ L). So in this example, “time” means “number of uses

T. Ehrhard 17:11

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0 0.25 0.5 0.75 1

0

0.2

0.4

0.6

0.8

1

0 0.25 0.5 0.75 1

0

5

10

2

Figure 3 Plot of ϕ0.5(u) with u on the x-axis (vertical slope at u = 1). Plots of ϕq(1) and
E(Evlab(〈(Mq)0l, ε〉)l | 〈(Mq)0, ε〉 ↓ 0) with q on the x-axis. See Example 7.

of the parameter 0”. For all v ∈ PN, we have JMqK(v) = ϕq(v0) 0 where ϕq : [0, 1] → [0, 1]
is such that ϕq(u) is the least element of [0, 1] which satisfies ϕq(u) = (1− q)u2 + q ϕq(u)2.
So ϕq(u) = (1−

√
1− 4q(1− q)u2)/2q if q > 0 and ϕ0(u) = u2, the choice between the two

solutions of the quadratic equation being determined by the fact that the resulting function
ϕq must be monotonic in u. So by Theorem 1 (for q ∈ (0, 1])

P((Mq)0 ↓ 0) = ϕq(1) = 1− |2q − 1|
2q =

{
1 if q ≤ 1/2
1−q
q if q > 1/2 .

(3)

Observe that we have also P(M0 ↓ 0) = ϕ0(1) = 1 so that Equation (3) holds for all
q ∈ [0, 1] (the corresponding curve is the second one in Fig. 3). Then by Theorem 6 we have
E(Evlab(〈(Mq)0l, ε〉)l | 〈(Mq)0, ε〉 ↓ 0) = ϕ′q(1)/ϕq(1). Since ϕq(u) = (1 − q)u2 + q ϕq(u)2

we have ϕ′q(u) = 2(1 − q)u + 2qϕ′q(u)ϕq(u) and hence ϕ′q(1) = 2(1 − q)/(1 − 2qϕq(1)), so
that ϕ′q(1)/ϕq(1) = 2(1 − q)/(1 − 2q) if q < 1/2, ϕ′1/2(1)/ϕq(1) = ∞ and ϕ′q(1)/ϕq(1) =
2(1− q)/(2q − 1) if q > 1/2 (using the expression of ϕq(1) given by Equation (3)), see the
third curve in Fig. 3. For q > 1/2 notice that the conditional time expectation and the
probability of convergence decrease when q tends to 1. When q is very close to 1, (Mq)0 has
a very low probability to terminate, but when it does, it uses its argument only twice. For
q = 1/2 we have almost sure termination with an infinite expected computation time.

3 Differentials and distances

3.1 Order theoretic characterization of PCSs
The following simple lemma will prove quite useful in the sequel. It is proven in [12] in a
rather sketchy way, we provide here a detailed proof for further references. We say that a
partially ordered set S is ω-complete if any increasing sequence of elements of S has a least
upper bound.

I Lemma 8. Let I be a countable set and let P ⊆ (R≥0)I . Then (I, P) is a probabilistic
coherence space iff the following properties hold (equipping P with the product order).
1. P is downwards closed and closed under barycentric combinations
2. P is ω-complete
3. and for all a ∈ I there is ε > 0 such that εea ∈ P and Pa ⊆ [0, 1/ε].

Proof. The ⇒ implication is easy (see [5]), we prove the converse, which uses the Hahn-
Banach theorem in finite dimension. Let y ∈ (R≥0)I such that y /∈ P . We must prove
that there exists x′ ∈ P⊥ such that 〈y, x′〉 > 1 and ∀x ∈ P 〈x, x′〉 ≤ 1. Given J ⊆ I and
z ∈ (R≥0)I , let z|J be the element of (R≥0)I which takes value zj for j ∈ J and 0 for j /∈ J .

FSCD 2019

17:12 Differentials in Pcoh

Then y is the lub of the increasing sequence {y|{i1,...,in} | n ∈ N} (where i1, i2, . . . is any
enumeration of I) and hence there must be some n ∈ N such that y|{i1,...,in} /∈ P . Therefore it
suffices to prove the result for I finite, what we assume now. Let Q = {x ∈ RI | (|xi|)i∈I ∈ P}
which is a convex subset of RI . Let t0 = sup{t ∈ R≥0 | ty ∈ P}. By our closeness assumption
on P , we have t0y ∈ P and therefore t0 < 1. Let h : Ry → R be defined by h(ty) = t/t0
(t0 6= 0 by our assumption (3) about P and because I is finite). Let q : RI → R≥0 be the
gauge of Q, which is the semi-norm given by q(z) = inf{ε > 0 | z ∈ εQ}. It is actually a
norm by our assumptions on P . Observe that h(z) ≤ q(z) for all z ∈ Ry: this boils down to
showing that t ≤ t0q(ty) = |t| t0q(y) for all t ∈ R which is clear since t0q(y) = 1 by definition
of these numbers. Hence, by the Hahn-Banach Theorem, there exists a linear l : RI → R
which is ≤ q and coincides with h on Ry. Let y′ ∈ RI be such that 〈z, y′〉 = l(z) for all
z ∈ RI (using again the finiteness of I). Let x′ ∈ (R≥0)I be defined by x′i = |y′i|. It is clear
that 〈y, x′〉 > 1: since y ∈ (R≥0)I we have 〈y, x′〉 ≥ 〈y, y′〉 = l(y) = h(y) = 1/t0 > 1. Let
N = {i ∈ I | y′i < 0}. Given z ∈ P , let z̄ ∈ RI be given by z̄i = −zi if i ∈ N and z̄i = zi
otherwise. Then 〈z, x′〉 = 〈z̄, y′〉 = l(z̄) ≤ 1 since z̄ ∈ Q (by definition of Q and because
z ∈ P). It follows that x′ ∈ P⊥ . J

3.2 Local PCS and derivatives
Let X be a PCS and let x ∈ PX. We define a new PCS Xx as follows. First we set
|Xx| = {a ∈ |X| | ∃ε > 0 x+ εea ∈ PX} and then P(Xx) = {u ∈ (R≥0)|Xx| | x+ u ∈ PX}.
There is a slight abuse of notation here: u is not an element of (R≥0)|X|, but we consider it
as such by simply extending it with 0 values to the elements of |X| \ |Xx|. Observe also that,
given u ∈ PX, if x+ u ∈ PX, then we must have u ∈ P(Xx), in the sense that u necessarily
vanishes outside |Xx|. It is clear that (|Xx|,P(Xx)) satisfies the conditions of Lemma 8 and
therefore Xx is actually a PCS, called the local PCS of X at x.

Let t ∈ Pcoh!(X,Y) and let x ∈ PX. Given u ∈ P(Xx), we know that x + u ∈
PX and hence we can compute t(x + u) ∈ PY : t(x + u)b =

∑
µ∈|!X| tµ,b(x + u)µ =∑

µ∈|!X| tµ,b
∑
ν≤µ

(
µ
ν

)
xµ−νuν . Upon considering only the u-constant and the u-linear

parts of this summation (and remembering that actually u ∈ P(Xx)), we get t(x) +∑
a∈|X| ua

∑
µ∈|!X|(µ(a)+1)tµ+[a],bx

µ ≤ t(x+u) ∈ PY . Given a ∈ |Xx| and b ∈ |Yt(x)|, we set
t′(x)a,b =

∑
µ∈|!X|(µ(a) + 1)tµ+[a],bx

µ and we have proven that actually t′(x) ∈ P(Xx, Yt(x)).
By definition, this linear morphism t′(x) is the derivative (or differential, or Jacobian) of t
at x9. It is uniquely characterized by the fact that, for all x ∈ PX and u ∈ PXx, we have

t(x+ u) = t(x) + t′(x)u+ t̃(x, u) (4)

where t̃ is a power series in x and u whose all terms have global degree ≥ 2 in u.
As a typical example, consider the case where Y = !X and t = δ = Id!X ∈ Pcoh!(X, !X),

so that δ(x) = x!. Given a ∈ |Xx| and ν ∈ [!Xx!], we have

δ′(x)a,ν =
∑
µ∈|!X|

(µ(a) + 1)δµ+[a],νx
µ =

{
0 if ν(a) = 0
ν(a)xν−[a] if ν(a) > 0 .

We know that δ′(x) ∈ P(Xx (!Xx!) so that δ′(x) is a “local version” of DiLL’s coderel-
iction [9]. Observe for instance that δ′(0) satisfies δ′(0)a,ν = δν,[a] and therefore coincides
with the ordinary definition of codereliction.

9 But unlike our models of Differential LL, this derivative is only defined locally; this is slightly reminiscent
of what happens in differential geometry.

T. Ehrhard 17:13

I Proposition 9 (Chain Rule). Let s ∈ Pcoh!(X,Y) and t ∈ Pcoh!(Y, Z). Let x ∈ PX and
u ∈ PXx. Then we have (t ◦ s)′(x)u = t′(s(x)) s′(x)u.

Proof. It suffices to write

(t ◦ s)(x+ u) = t(s(x+ u)) = t(s(x) + s′(x)u+ s̃(x, u))
= t(s(x)) + t′(s(x)) (s′(x)u+ s̃(x, u))) + t̃(s(x), s′(x)u+ s̃(x, u))
= t(s(x)) + t′(s(x)) (s′(x)u) + t′(s(x)) (s̃(x, u)) + t̃(s(x), s′(x)u+ s̃(x, u))

by linearity of t′(s(x)) which proves our contention by the observation that, in the power
series t′(s(x)) (s̃(x, u)) + t̃(s(x), s′(x)u+ s̃(x, u)), u appears with global degree ≥ 2 by what
we know on s̃ and t̃. J

3.3 Glb’s, lub’s and distance
Since we are working with probabilistic coherence spaces, we could deal directly with families
of real numbers and define these operations more concretely. We prefer not to do so to have a
more canonical presentation which can be generalized to cones such as those considered in [10].

Given x, y ∈ PX, observe that x∧y ∈ PX, where (x∧y)a = min(xa, ya), and that x∧y is
the glb of x and y in PX (with its standard ordering). It follows that x and y have also a lub
x ∨ y ∈ PX which is given by x ∨ y = x+ y − (x ∧ y) (and of course (x ∨ y)a = max(xa, ya)).

Let us prove that x+ y− (x∧ y) is actually the lub of x and y. First, x ≤ x+ y− (x∧ y)
simply because x ∧ y ≤ y. Next, let z ∈ PX be such that x ≤ z and y ≤ z. We must prove
that x+ y − (x ∧ y) ≤ z, that is x+ y ≤ z + (x ∧ y) = (z + x) ∧ (z + y), which is clear since
x+ y ≤ z + x, z + y. We have used the fact that + distributes over ∧ so let us prove this
last fairly standard property: z + (x ∧ y) = (z + x) ∧ (z + y). The “≤” inequation is obvious
(monotonicity of +) so let us prove the converse, which amounts to x∧y ≥ (z+x)∧(z+y)−z
(observe that indeed that z ≤ (z + x) ∧ (z + y)). This in turn boils down to proving that
x ≥ (z + x) ∧ (z + y)− z (and similarly for y) which results from x+ z ≥ (z + x) ∧ (z + y)
and we are done.

We define the distance between x and y by dX(x, y) = ‖x− (x ∧ y)‖X + ‖y − (x ∧ y)‖X .
The only non obvious fact to check for proving that this is actually a distance is the triangular
inequality, so let x, y, z ∈ PX. We have x− (x∧ z) ≤ x− (x∧ y ∧ z) = x− (x∧ y) + (x∧ y)−
(x ∧ y ∧ z) and hence ‖x− (x ∧ z)‖X ≤ ‖x− (x ∧ y)‖X + ‖(x ∧ y)− (x ∧ y ∧ z)‖X . Now we
have (x ∧ y) ∨ (y ∧ z) ≤ y, that is (x ∧ y) + (y ∧ z)− (x ∧ y ∧ z) ≤ y, that is (x ∧ y)− (x ∧
y ∧ z) ≤ y − (y ∧ z). It follows that ‖x− (x ∧ z)‖X ≤ ‖x− (x ∧ y)‖X + ‖y − (y ∧ z)‖X and
symmetrically ‖z − (x ∧ z)‖X ≤ ‖z − (z ∧ y)‖X + ‖y − (y ∧ x)‖X and summing up we get,
as expected dX(x, z) ≤ dX(x, y) + dX(y, z).

3.4 A Lipschitz property
First of all, observe that, if w ∈ P(X (Y) and x ∈ PX, we have ‖w x‖Y ≤ ‖w‖X(Y ‖x‖X .
Indeed w

‖w‖X(Y
∈ P(X (Y) and x

‖x‖X ∈ PX, therefore w
‖w‖X(Y

x
‖x‖X ∈ PY and our

contention follows.
Let p ∈ [0, 1). If x ∈ PX and ‖x‖X ≤ p, observe that, for any u ∈ PX, one has

‖x+ (1− p)u‖X ≤ ‖x‖X + (1− p)‖u‖X ≤ 1 and hence (1− p)u ∈ P(Xx). Therefore, given
w ∈ P(Xx (Y), we have ‖w (1− p)u‖Y ≤ 1 for all u ∈ PX and hence (1−p)w ∈ P(X (Y).

Let t ∈ P(!X (1). We have seen that, for all x ∈ PX we have t′(x) ∈ P(Xx (1t(x)) ⊆
P(Xx (1). Therefore, if we assume that ‖x‖X ≤ p, we have

(1− p)t′(x) ∈ P(X (1) = PX⊥ . (5)

FSCD 2019

17:14 Differentials in Pcoh

Let x ≤ y ∈ PX be such that ‖y‖X ≤ p. Observe that 2−p > 1 and that x+(2−p)(y−x) =
y + (1 − p)(y − x) ∈ PX (because ‖y‖X ≤ p and y − x ∈ PX). We consider the function
h : [0, 2− p]→ [0, 1] defined by h(θ) = t(x+ θ(y − x)), which is clearly analytic on [0, 2− p).
More precisely, one has h(θ) =

∑∞
n=0 cnθ

n for some sequence of non-negative real numbers
cn such that

∑∞
n=0 cn(2− p)n ≤ 1.

Therefore the derivative of h is well defined on [0, 1] ⊂ [0, 2 − p) and one has h′(θ) =
t′(x+ θ(y − x)) (y − x) ≤ ‖y−x‖X1−p by (5), using Proposition 9. We have

0 ≤ t(y)− t(x) = h(1)− h(0) =
∫ 1

0
h′(θ) dθ ≤ ‖y − x‖X1− p . (6)

Let now x, y ∈ PX be such that ‖x‖X , ‖y‖X ≤ p (we don’t assume any more that they are
comparable). We have |t(x)− t(y)| = |t(x)− t(x ∧ y) + t(x ∧ y)− t(y)| ≤ |t(x)− t(x ∧ y)|+
|t(y)− t(x ∧ y)| ≤ 1

1−p (‖x− (x ∧ y)‖X + ‖y − (x ∧ y)‖X) = dX(x,y)
1−p by (6) since x∧ y ≤ x, y.

I Theorem 10. Let t ∈ P(!X (1). Given p ∈ [0, 1), the function t is Lipschitz with
Lipschitz constant 1

1−p on {x ∈ PX | ‖x‖X ≤ p} when PX is equipped with the distance dX ,
that is

∀x, y ∈ PX ‖x‖X , ‖y‖X ≤ p⇒ |t(x)− t(y)| ≤ dX(x, y)
1− p .

4 Application to the observational distance in pPCF

Given a termM such that `M : ι, remember that we use P(M ↓ 0) for the probability ofM to
reduce to 0 in the probabilistic reduction system of [10], so that P(M ↓ 0) = P〈M,ε〉(〈M, ε〉 ↓ 0)
with the (admittedly heavy) notations of Section 2. Remember that P(M ↓ 0) = JMK0 by
the Adequacy Theorem of [10].

Given a type σ and two pPCF terms M,M ′ such that ` M : σ and ` M ′ : σ, we
define the observational distance dobs(M,M ′) between M and M ′ as the sup of all the
|P((C)M ↓ 0)− P((C)M ′ ↓ 0)| taken over terms C such that ` C : ι (testing contexts).

If ε ∈ [0, 1] ∩Q we have dobs(coin(0), coin(ε)) = 1 as soon as ε > 0. It suffices indeed to
consider the context C = fix f ι⇒ι λxι if(x, (f)x, z · 0). The semantics JCK ∈ P(!N (N) is a
function c : PN→ PN such that ∀u ∈ PN c(u) = u0c(u) + (

∑∞
i=1 ui)0 and which is minimal

(for the order relation of P(!N (N)). If follows that

c(u) =
{

0 if u0 = 1
1

1−u0

∑∞
i=1 ui otherwise .

Then c((1− ε)0 + ε1) = 0 if ε = 0 and c((1− ε)0 + ε1) = 1 is ε > 0. This is a well known
phenomenon called “probability amplification” in stochastic programming.

Nevertheless, we can control a tamed version of the observational distance. Given a closed
pPCF term C such that ` C : σ ⇒ ι we define C〈p〉 = λzσ (C)if(coin(p), z,Ωσ) and a tamed
version of the observational distance is defined by

d〈p〉obs(M,M ′) = sup
{∣∣∣P((C〈p〉)M ↓ 0)− P((C〈p〉)M ′ ↓ 0)

∣∣∣ | ` C : σ ⇒ ι
}
.

I Theorem 11. Let p ∈ [0, 1)∩Q. Let M and M ′ be terms such that `M : σ and `M ′ : σ.
Then we have

d〈p〉obs(M,M ′) ≤ p

1− p dJσK(JMK, JM ′K) .

T. Ehrhard 17:15

Proof.

d〈p〉obs(M,M ′) = sup{|JCK(pJMK)0 − JCK(pJM ′K)0| | ` C : σ ⇒ ι}
≤ sup{|t(pJMK)− t(pJM ′K|) | t ∈ P(!JσK (1)}

≤
dJσK(pJMK, pJM ′K)

1− p = p

1− p dJσK(JMK, JM ′K) .

by the Adequacy Theorem and by Theorem 10. J

Since p/(1−p) = p+p2 + · · · and dJσK(_,_) is an over-approximation of the observational
distance restricted to linear contexts, this inequation carries a rather clear operational intuition
in terms of execution in a Krivine machine as in Section 2.1.2 (thanks to Paul-André Melliès
for this observation). Indeed, using the stacks of Section 2.1.2, a linear observational distance
on pPCF terms can easily be defined as follows, given terms M and M ′ such that `M : σ
and `M ′ : σ:

dlin(M,M ′) = sup
σ`π

∣∣P〈M,π〉(〈M,π〉 ↓ 0)− P〈M ′,π〉(〈M ′, π〉 ↓ 0)
∣∣ .

In view of Theorem 11 and of the fact that dlin(M,M ′) ≤ dJσK(JMK, JM ′K) (easy to prove,
since each stack can be interpreted as a linear morphism in Pcoh), a natural and purely
syntactic conjecture seems to be

d〈p〉obs(M,M ′) ≤ p

1− p dlin(M,M ′) . (7)

This seems easy to prove in the case P〈M ′,π〉(〈M ′, π〉 ↓ 0) = 0: it suffices to observe that a
path which is a successful reduction of 〈(C〈p〉)M, ε〉 in the “Krivine Machine” of Section 2.1.2
(considered here as a Markov chain) can be decomposed as

〈(C〈p〉)M, ε〉 →∗ 〈if(coin(p),M,Ωσ), π1(C,M)〉 →∗ 〈if(coin(p),M,Ωσ), π2(C,M)〉
→∗ · · · →∗ 〈if(coin(p),M,Ωσ), πk(C,M)〉 →∗ 〈0, ε〉

where (πi(C,M))ki=1 is a finite sequence of stacks such that σ ` πi(M) for each i. Notice
that this sequence of stacks depends not only on C and M but also on the considered path
of the Markov chain.

In the general case, Inequation (7) seems less easy to prove because, for a given common
initial context C, the sequences of reductions (and of associated stacks) starting with
〈(C〈p〉)M, ε〉 and 〈(C〈p〉)M ′, ε〉 differ. This divergence has low probability when dlin(M,M ′)
is small, but it is not completely clear how to evaluate it. Coinductive methods like
probabilistic bisimulation as in the work of Crubillé and Dal Lago are certainly relevant here.

Our Theorem 10 shows that another and more geometric approach, based on a simple de-
notational model, is also possible to get Theorem 11 which, though weaker than Inequation (7),
allows nevertheless to control the p-tamed distance.

We finish the paper by observing that the equivalence relations induced on terms by these
observational distances coincide with the ordinary observational distance if p 6= 0.

I Theorem 12. Assume that 0 < p ≤ 1. If d〈p〉obs(M,M ′) = 0 then M ∼M ′ (that is, M and
M ′ are observationally equivalent).

Proof. If ` M : σ we set Mp = if(coin(p),M,Ωσ). If d〈p〉obs(M,M ′) = 0 then Mp ∼ M ′p
by definition of observational equivalence, hence JMpK = JM ′pK by our Full Abstraction
Theorem [10], but JMpK = pJMK and similarly for M ′. Since p 6= 0 we get JMK = JM ′K and
hence M ∼M ′ by adequacy [10]. J

FSCD 2019

17:16 Differentials in Pcoh

So for each p ∈ (0, 1) and for each type σ we can consider d〈p〉 as a distance on the
observational classes of closed terms of type σ. We call it the p-tamed observational distance.
Our Theorem 11 shows that we can control this distance using the denotational distance. For
instance we have d〈p〉obs(coin(0), coin(ε)) ≤ 2pε

1−p so that d〈p〉obs(coin(0), coin(ε)) tends to 0 when ε
tends to 0.

Conclusion

The two results of this paper are related: both use derivatives wrt. probabilities to evaluate
the number of times arguments are used. We think that they provide motivations for
investigating further differential extensions of pPCF and related languages in the spirit of [11].

References
1 Johannes Borgström, Ugo Dal Lago, Andrew D. Gordon, and Marcin Szymczak. A lambda-

calculus foundation for universal probabilistic programming. In Jacques Garrigue, Gabriele
Keller, and Eijiro Sumii, editors, Proceedings of the 21st ACM SIGPLAN International
Conference on Functional Programming, ICFP 2016, Nara, Japan, September 18-22, 2016,
pages 33–46. ACM, 2016.

2 Simon Castellan, Pierre Clairambault, Hugo Paquet, and Glynn Winskel. The concurrent
game semantics of Probabilistic PCF. In Anuj Dawar and Erich Grädel, editors, Proceedings
of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2018, Oxford,
UK, July 09-12, 2018, pages 215–224. ACM, 2018. doi:10.1145/3209108.

3 Raphaëlle Crubillé. Probabilistic Stable Functions on Discrete Cones are Power Series. In Anuj
Dawar and Erich Grädel, editors, Proceedings of the 33rd Annual ACM/IEEE Symposium on
Logic in Computer Science, LICS 2018, Oxford, UK, July 09-12, 2018, pages 275–284. ACM,
2018. doi:10.1145/3209108.3209198.

4 Raphaëlle Crubillé and Ugo Dal Lago. Metric Reasoning About Lambda-Terms: The General
Case. In Hongseok Yang, editor, Programming Languages and Systems - 26th European
Symposium on Programming, ESOP 2017, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017,
Proceedings, volume 10201 of Lecture Notes in Computer Science, pages 341–367. Springer,
2017. doi:10.1007/978-3-662-54434-1_13.

5 Vincent Danos and Thomas Ehrhard. Probabilistic coherence spaces as a model of higher-order
probabilistic computation. Information and Computation, 152(1):111–137, 2011.

6 Vincent Danos and Russell Harmer. Probabilistic game semantics. In Proceedings of the 15th
Annual IEEE Symposium on Logic in Computer Science. IEEE Computer Society, 2000.

7 Daniel de Carvalho. Execution Time of lambda-Terms via Denotational Semantics and
Intersection Types. CoRR, abs/0905.4251, 2009. arXiv:0905.4251.

8 Daniel de Carvalho. Execution time of λ-terms via denotational semantics and intersection
types. MSCS, 28(7):1169–1203, 2018.

9 Thomas Ehrhard. An introduction to differential linear logic: proof-nets, models and an-
tiderivatives. Mathematical Structures in Computer Science, 28(7):995–1060, 2018. doi:
10.1017/S0960129516000372.

10 Thomas Ehrhard, Michele Pagani, and Christine Tasson. Full Abstraction for Probabilistic
PCF. Journal of the ACM, 65(4):23:1–23:44, 2018. doi:10.1145/3164540.

11 Thomas Ehrhard and Laurent Regnier. The differential lambda-calculus. Theoretical Computer
Science, 309(1-3):1–41, 2003.

12 Jean-Yves Girard. Between logic and quantic: a tract. In Thomas Ehrhard, Jean-Yves Girard,
Paul Ruet, and Philip Scott, editors, Linear Logic in Computer Science, volume 316 of London
Mathematical Society Lecture Notes Series, pages 346–381. Cambridge University Press, 2004.

http://dx.doi.org/10.1145/3209108
http://dx.doi.org/10.1145/3209108.3209198
http://dx.doi.org/10.1007/978-3-662-54434-1_13
http://arxiv.org/abs/0905.4251
http://dx.doi.org/10.1017/S0960129516000372
http://dx.doi.org/10.1017/S0960129516000372
http://dx.doi.org/10.1145/3164540

T. Ehrhard 17:17

13 Klaus Keimel and Gordon D. Plotkin. Mixed powerdomains for probability and nondeterminism.
Logical Methods in Computer Science, 13(1), 2017. doi:10.23638/LMCS-13(1:2)2017.

14 Peter Selinger. Towards a semantics for higher-order quantum computation. In Proceedings
of the 2nd International Workshop on Quantum Programming Languages, Turku, Finland,
number 33 in TUCS General Publication. Turku Centre for Computer Science, 2004.

15 Matthijs Vákár, Ohad Kammar, and Sam Staton. A domain theory for statistical probabilistic
programming. PACMPL, 3(POPL):36:1–36:29, 2019.

FSCD 2019

http://dx.doi.org/10.23638/LMCS-13(1:2)2017

	Probabilistic coherence spaces (PCS)
	A few words about cones
	Basic definitions on PCSs

	Probabilistic PCF, time expectation and derivatives
	The core language
	Denotational semantics
	Operational semantics

	Probabilistic PCF with labels and the associated random variables
	Probabilistic PCF with labeled coins
	Spying labeled terms in pPCF

	Differentials and distances
	Order theoretic characterization of PCSs
	Local PCS and derivatives
	Glb's, lub's and distance
	A Lipschitz property

	Application to the observational distance in pPCF

