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Abstract
We translate the usual class of partial/primitive recursive functions to a pointer recursion framework,
accessing actual input values via a pointer reading unit-cost function. These pointer recursive
functions classes are proven equivalent to the usual partial/primitive recursive functions. Complexity-
wise, this framework captures in a streamlined way most of the relevant sub-polynomial classes.
Pointer recursion with the safe/normal tiering discipline of Bellantoni and Cook corresponds to
polylogtime computation. We introduce a new, non-size increasing tiering discipline, called tropical
tiering. Tropical tiering and pointer recursion, used with some of the most common recursion
schemes, capture the classes logspace, logspace/polylogtime, ptime, and NC. Finally, in a fashion
reminiscent of the safe recursive functions, tropical tiering is expressed directly in the syntax of the
function algebras, yielding the tropical recursive function algebras.

2012 ACM Subject Classification Software and its engineering → Recursion; Theory of computation
→ Complexity theory and logic; Theory of computation → Complexity classes

Keywords and phrases Implicit Complexity, Recursion Theory

Digital Object Identifier 10.4230/LIPIcs.FSCD.2019.29

Funding Paulin Jacobé de Naurois: Work partially supported by ANR project ELICA - ANR-14-
CE25-0005.

Acknowledgements I am grateful to the anonymous referees for their insightful and useful feedback.

Introduction

Characterizing complexity classes without explicit reference to the computational model
used for defining these classes, and without explicit bounds on the resources allowed for the
calculus, has been a long term goal of several lines of research in computer science. One
rather successful such line of research is recursion theory. The foundational work here is the
result of Cobham [8], who gave a characterization of polynomial time computable functions
in terms of bounded recursion on notations - where, however, an explicit polynomial bound
is used in the recursion scheme. Later on, Leivant [12] refined this approach with the notion
of tiered recursion: explicit bounds are no longer needed in his recursion schemes. Instead,
function arguments are annotated with a static, numeric denotation, a tier, and a tiering
discipline is imposed upon the recursion scheme to enforce a polynomial time computation
bound. A third important step in this line of research is the work of Bellantoni and Cook [3],
whose safe recursion scheme uses only syntactical constraints akin to the use of only two tier
values, to characterize, again, the class of polynomial time functions.

Cobham’s approach has also later on been fruitfully extended to other, important com-
plexity classes. Results relevant to our present work, using explicitly bounded recursion, are
those of Lind [16] for logarithmic space, and Allen [1] and Clote [7] for small parallel classes.

Later on, Bellantoni and Cook’s purely syntactical approach proved also useful for
characterizing other complexity classes. Leivant and Marion [15, 14] used a predicative
version of the safe recursion scheme to characterize alternating complexity classes, while
Bloch [4], Bonfante et al [5] and Kuroda[11], gave characterizations of small, polylogtime,
parallel complexity classes. An important feature of these results is that they use, either
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explicitly or not, a tree-recursion on the input. This tree-recursion is implicitly obtained
in Bloch’s work by the use of an extended set of basic functions, allowing for a dichotomy
recursion on the input string, while it is made explicit in the recursion scheme in the two
latter works. As a consequence, these characterizations all rely on the use of non-trivial basic
functions, and non-trivial data structures. Moreover, the use of distinct basic function sets
and data structures make it harder to express these characterizations in a uniform framework.

Among all these previous works on sub-polynomial complexity classes, an identification
is assumed between the argument of the functions of the algebra, on one hand, and the
computation input on the other hand: an alternating, logspace computation on input x
is denoted by a recursive function with argument x. While this seems very natural for
complexity classes above linear time, it actually yields a fair amount of technical subtleties
and difficulties for sub-linear complexity classes. Indeed, following Chandra et al. [6] seminal
paper, sub-polynomial complexity classes need to be defined with a proper, subtler model
than the one-tape Turing machine: the random access Turing machine (RATM), where
computation input is accessed via a unit-cost pointer reading instruction. RATM input is
thus accessed via a read-only instruction, and left untouched during the computation - a
feature quite different to that of a recursive function argument. Our proposal here is to use
a similar construct for reading the input in the setting of recursive functions: our functions
will take as input pointers on the computation input, and one-bit pointer reading will be
assumed to have unit cost. Actual computation input are thus implicit in our function
algebras: the fuel of the computational machinery is only pointer arithmetics. This proposal
takes inspiration partially from the Rational Bitwise Equations of [5].

Following this basic idea, we then introduce a new tiering discipline, called tropical
tiering, to enforce a non-size increasing behavior on our recursive functions, with some
inspirations taken from previous works of M. Hofmann [9, 10]. Tropical tiering induces a
polynomial interpretation in the tropical ring of polynomials - the ring of polynomials over
the tropical ring Z ∪ {−∞}, with max and + operations - and yields a characterization of
logarithmic space. Compared to the characterization of logarithmic space of Neergaard [17],
our algebra does not rely on an affine upper bound on the occurrences of safe arguments
in the recursion and composition schemes, which proves useful for combining this approach
with others. Worth mentioning also, Bellantoni [2] provides a characterization of logspace
over unary numerals.

Subsequently, the use of different, classical recursion schemes over this new tropical
tiering discipline yields characterizations of other, sub-polynomial complexity classes such as
polylogtime, NC, and the full polynomial time class. Following the approach of Bellantoni
and Cook, we furthermore embed the tiering discipline directly in the syntax, with only
finitely many different tier values - four tier values in our case, instead of only two tier
values for the safe recursive functions, and provide purely syntactical characterizations of
these complexity classes in a unified, simple framework. Compared to previous works, our
framework uses a unique, and rather minimal set of unit-cost basic functions, computing
indeed basic tasks, and a unique and also simple data structure. While the syntax of our
tropical composition and recursion schemes may appear overwhelming at first sight, it has
the nice feature, shared with the safe recursion functions of [3], of only adding a fine layer of
syntactic sugar over the usual composition and primitive recursion schemes. Removing this
sugar allows to retrieve the classical schemes. In that sense, we claim our approach to be
simpler than the previous ones of [4, 5, 11].

The paper is organized as follows. Section 1 introduces the notations, and the framework
of pointer recursion. Section 2 applies this framework to primitive recursion. Pointer
partial/primitive recursive functions are proven to coincide with their classical counterparts
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in Theorem 2. Section 3 applies this framework to safe recursion on notations. Pointer
safe recursive functions are proven to coincide with polylogtime computable functions in
Theorem 3. Tropical tiering is defined in Section 4. Proposition 4 establishes the tropical
interpretation induced by tropical tiering. Tropical recursive functions are then introduced in
Subsection 4.3. Section 5 gives a sub-algebra of the former, capturing logspace/polylogtime
computable functions in Theorem 9. Finally, Section 6 explores tropical recursion with
substitutions, and provides a characterization of P in Theorem 11 and of NC in Theorem 13.

1 Recursion

1.1 Notations, and Recursion on Notations
Data structures considered in our paper are finite words over a finite alphabet. For the sake
of simplicity, we consider the finite, boolean alphabet {0,1}. The set of finite words over
{0,1} is denoted as {0,1}∗.

Finite words over {0,1} are denoted with overlined variables names, as in x. Single
values in {0,1} are denoted as plain variables names, as in x. The empty word is denoted
by ε, while the dot symbol “.” denotes the concatenation of two words as in a.x, the finite
word obtained by adding an a in front of the word x. Finally, finite arrays of boolean words
are denoted with bold variable names, as in x = (x1, · · · , xn). When defining schemes, we
will often omit the length of the arrays at hand, when clear from context, and use bold
variable names to simplify notations. Similarly, for mutual recursion schemes, finite arrays of
mutually recursive functions are denoted by a single bold function name. In this case, the
width of this function name is the size of the array of the mutually recursive functions.

Natural numbers are identified with finite words over {0,1} via the usual binary encoding.
Yet, in most of our function algebras, recursion is not performed on the numerical value of an
integer, as in classical primitive recursion, but rather on its boolean encoding, that is, on the
finite word over {0,1} identified with it: this approach is denoted as recursion on notations.

1.2 Turing Machines with Random Access
When considering sub-polynomial complexity class, classical Turing Machines often fail to
provide a suitable cost model. A crucial example is the class DLOGTIME: in logarithmic
time, a classical Turing machine fails to read any further than the first k. log(n) input bits.
In order to provide a suitable time complexity measure for sub-polynomial complexity classes,
Chandra et al [6] introduced the Turing Machine with Random Access (RATM), whose
definition follows.

I Definition 1 (RATM). A Turing Machine with Random Access (RATM) is a Turing
machine with no input head, one (or several) working tapes and a special pointer tape, of
logarithmic size, over a binary alphabet. The Machine has a special Read state such that,
when the binary number on the pointer tape is k, the transition from the Read state consists
in writing the kth input symbol on the (first) working tape.

1.3 Recursion on Pointers
In usual recursion theory, a function computes a value on its input, which is given explicitly
as an argument. This, again, is the case in classical primitive recursion. While this is suitable
for describing explicit computation on the input, as, for instance for single tape Turing
Machines, this is not so for describing input-read-only computation models, as, for instance,
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RATMs. In order to propose a suitable recursion framework for input-read-only computation,
we propose the following pointer recursion scheme, whose underlying idea is pretty similar to
that of the RATM.

As above, recursion data is given by finite, binary words, and the usual recursion on
notation techniques on these recursion data apply. The difference lies in the way the actual
computation input is accessed: in our framework, we distinguish two notions, the computation
input, and the function input: the former denotes the input of the RATM, while the latter
denotes the input in the function algebra. For classical primitive recursive functions, the
two coincide, up to the encoding of integer into binary strings. In our case, we assume an
explicit encoding of the former into the latter, given by the two following constructs.

Let w = w1. · · · .wn ∈ {0,1}∗ be a computation input. To w, we associate two constructs,
the Offset: a finite word over {0,1}, encoding in binary the length n of w, and
the Read construct, a 1-ary function, such that, for any binary encoding i of an integer
0 < i ≤ n, Read(i) = wi, and, for any other value v, Read(v) = ε.

Then, for a given computation input w, we fix accordingly the semantics of the Read and
Offset constructs as above, and a Pointer Recursive function over w is evaluated with sole
input the Offset, accessing computation input bits via the Read construct. For instance,
under these conventions, Read(hd(Offset)) outputs the first bit of the computational input
w. In some sense, the two constructs depend on w, and can be understood as functions on w.
However, in our approach, it is important to forbid w from appearing explicitly as a function
argument in the syntax of the function algebras we will define, and from playing any role in
the composition and recursion schemes. Since w plays no role at the syntactical level - its
only role is at the semantical level- we chose to remove it completely from the syntactical
definition of our functions algebras.

2 Pointers Primitive Recursion

Let us first detail our pointer recursive framework for the classical case of primitive recursion
on notations.

Basic pointer functions

Basic pointer functions are the following kind of functions:

1. Functions manipulating finite words over {0,1}. For any a ∈ {0,1}, x ∈ {0,1}∗,

hd(a.x) = a tl(a.x) = x s0(x) = 0.x
hd(ε) = ε tl(ε) = ε s1(x) = 1.x

2. Projections. For any n ∈ N, 1 ≤ i ≤ n,

Prn
i (x1, · · · , xn) = xi

3. and, finally, the Offset and Read constructs, as defined above.

Composition

Given functions g, and h1, · · · , hn, we define f by composition as

f(x) = g(h1(x), · · · , hn(x)).
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Primitive Recursion on Notations

Let ⊥ denote non-terminating computation. Given functions h, g0 and g1, we define f by
primitive recursion on notations as

f(ε,y) = h(y)

f(sa(x),y) =
{

ga(x, f(x,y),y) if f(x,y) 6=⊥
⊥ otherwise.

Minimization

For a function s, denote by s(n) its nth iterate. Then, given a function h, we define f by
minimization on x as

µx(h(x,y)) =
{
⊥ if ∀t ∈ N, hd(h(s(t)

0 (ε),y)) 6= s1(ε)
s(k)

0 (ε) where k = min{t : hd(h(s(t)
0 (ε),y)) = s1(ε)} otherwise.

In other words, a function f defined by minimization on h produces the shortest sequence of
0 symbols satisfying a simple condition on h , if it exists.

Let now PRpoint
not be the closure of basic pointer functions under composition and primitive

recursion on notations, and RECpoint
not be the closure of basic pointer functions under

composition, primitive recursion on notations, and minimization. Then, as expected,

I Theorem 2. Modulo the binary encoding of natural integers, PRpoint
not is the classical class

of primitive recursive functions, and RECpoint
not is the classical class of recursive functions.

Proof. It is already well known that primitive recursive functions on notations are the
classical primitive recursive functions, and recursive functions on notations are the classical
recursive functions. Now, for one direction, it suffices to express the Read and Offset basic
pointer functions as primitive recursive functions on the computation input. For the other
direction, it suffices to reconstruct with pointer primitive recursion the computation input
from the Read and Offset basic pointer functions. J

A Simple Example

Let us define the following functions.

ifε(ε, y, z) = y

ifε(sa(x), y, z) = z

RmvLastBit(ε) = ε

RmvLastBit(sa(x)) = ifε(x, ε, sa(RmvLastBit(x)))

Then, Read(RmvLastBit(Offset)) reads the middle bit of the computation input, in
logarithmic time. This exemplifies the purpose of recursion on pointers: this simple task
cannot be performed in less than linear time by the usual primitive recursion on notations,
nor by the classical Turing machine. However, switching the model definition from Turing
machines to RATMs, and from primitive recursion to pointer primitive recursion, allows to
perform this simple task in logarithmic time, in a straightforward way.
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3 Pointer Safe Recursion

We recall the tiering discipline of Bellantoni and Cook [3]: function arguments are divided
into two tiers, normal arguments and safe arguments. Notation-wise, both tiers are separated
by a semicolon symbol in a block of arguments, the normal arguments being on the left,
and the safe arguments on the right. We simply apply this tiering discipline to our pointer
recursion framework.

Basic Pointer Safe Functions

Basic pointer safe functions are the basic pointer functions of the previous section, all their
arguments being considered safe.

Safe Composition

Safe composition is somewhat similar to the previous composition scheme, with a tiering
discipline, ensuring that safe arguments cannot be moved to a normal position in a function
call. The reverse however is allowed.

f(x; y) = g(h1(x; ), · · · , hm(x; );hm+1(x; y), · · · , hm+n(x; y)).

Calls to functions hm+i, where safe arguments are used, are placed in safe position in the
argument block of g. A special case of safe composition is f(x; y) = g(;x, y), where a normal
argument x is used in safe position in a call. Hence, we liberally use normal arguments in
safe position, when necessary.

Safe Recursion

The recursion argument is normal. The recursive call is placed in safe position, a feature
that prevents nesting recursive calls exponentially.

f(ε,y; z) = h(y; z)
f(a.x,y; z) = ga(x,y; f(x,y; z), z).

Let now SRpoint
not be the closure of the basic pointer safe functions under safe composition

and safe recursion.

I Theorem 3. SRpoint
not is the class DTIME(polylog) of functions computable in poly-

logarithmic time.

Proof. The proof is essentially the same as for the classical result by Bellantoni and Cook [3].
Here however, it is crucial to use the RATM as computation model. Simulating a polylogtime
RATM with safe recursion on pointers is very similar to simulating a polytime TM with safe
recursion - instead of explicitly using the machine input as recursion data, we use the size of
the input as recursion data, and access the input values via the Read construct, exactly as
is done by the RATM model. The other direction is also similar: the tiering discipline of
the safe recursion on pointers enforces a polylog bound on the size of the strings (since the
initial recursion data - the Offset - has size logarithmic in the size n of the computation
input), and thus a polylog bound on the computation time. J
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4 Tropical Tiering

We present here another, stricter tiering discipline, that we call tropical Tiering. The adjective
“tropical” refers to the fact that this tiering induces a polynomial interpretation in the tropical
ring of polynomials. This tiering discipline takes some inspiration from Hofmann’s work on
non-size increasing types [9], and pure pointer programs [10]. The idea however is to use here
different tools than Hofmann’s to achieve a similar goal of bounding the size of the function
outputs. We provide here a non-size increasing discipline via the use of tiering, and use it
in the setting of pointer recursion to capture not only pure pointer programs (Hoffman’s
class), but rather pointer programs with pointer arithmetics, which is in essence the whole
class Logspace.

Basic Pointer Functions

We add the following numerical successor basic function. Denote by E : N → {0,1}∗ the
usual binary encoding of integers, and D : {0,1}∗ → N the decoding of binary strings to
integers. Then,

s(x) = E(D(x) + 1)

denotes the numerical successor on binary encodings, and, by convention, ε is the binary
encoding of the integer 0.

Primitive Recursion on Values

Primitive recursion on values is the usual primitive recursion, encoded into binary strings:

f(ε,y) = h(y)
f(s(x),y) = g(x, f(x,y),y).

4.1 Tropical Tier
As usual, tiering consists in assigning function variables to different classes, called tiers. In
our setting, these tiers are identified by a numerical value, called tropical tier, or, shortly,
tropic. The purpose of our tropical tiers is to enforce a strict control on the increase of the
size of the binary strings during computation. Tropics take values in Z ∪ {−∞}. The tropic
of the ith variable of a function f is denoted Ti(f). The intended meaning of the tropics is to
provide an upper bound on the linear growth of the function output size with respect to the
corresponding input size, as per Proposition 4. Tropics are inductively defined as follows.

1. Basic pointer functions:

Tj 6=i(Prn
i ) = −∞ T1(hd) = −∞ T1(Read) = −∞

T1(tl) = −1
Ti(Prn

i ) = 0
T1(s0) = 1 T1(s1) = 1 T1(s) = 1

2. Composition:

Tt(f) = max
i
{Ti(g) + Tt(hi)}.

3. Primitive recursion on notations. Two cases arise:

FSCD 2019
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T2(g0) ≤ 0 and T2(g1) ≤ 0. In that case, we set
a. T1(f) = max {T1(g0), T1(g1), T2(g0), T2(g1)}, and,
b. for all t > 1,

Tt(f) = max{Tt+1(g0), Tt+1(g1), Tt−1(h), T2(g0), T2(g1)}.
the previous case above does not hold, T2(g0) ≤ 1, and T2(g1) ≤ 1. In that case,
we also require that T1(g0) ≤ 0, T1(g1) ≤ 0, and, for all t ≥ 2, Tt(g0) = Tt(g1) =
Tt−2(h) = −∞. Then, we set T1(f) = max{T1(g0), T1(g1), T2(g0)− 1, T2(g1)− 1, ch},
where ch is a constant for h given in Proposition 4 below, and, for t > 1, Tt(f) = −∞.

Other cases than the two above do not enjoy tropical tiering.
4. Primitive recursion on values. Only one case arises:

T2(g) ≤ 0 . In that case, we set
a. T1(f) = max {T1(g), T2(g)}, and,
b. for all t > 1, Tt(f) = max{Tt+1(g), Tt−1(h), T2(g)}.

Again, other cases than the one above do not enjoy tropical tiering.

Furthermore, when using tropical tiering, we use mutual recursion schemes. For f =
(f1, · · · , fn), mutual primitive recursion (on values) is classically defined as follows,

f(ε,y) = h(y)

f(s(x),y) =
{

g(x, f(x,y),y) if ∀i (fi(x,y) 6=⊥)
⊥ otherwise.

and similarly for mutual primitive recursion on notations. Tropical tiering is then extended
to mutual primitive recursion in a straightforward manner.

We define the set of L-primitive pointer recursive functions as the closure of the basic
pointer functions of Sections 2 and 4 under composition, (mutual) primitive recursion on
notations and (mutual) primitive recursion on values, with tropical tiering.

4.2 Tropical Interpretation
Tropical tiering induces a non-size increasing discipline. More formally,

I Proposition 4. The tropical tiering of a L-primitive recursive function f induces a poly-
nomial interpretation of f on the tropical ring of polynomials, as follows.

For any L-primitive recursive function f with n arguments, there exists a computable
constant cf ≥ 0 such that

|f(x1, · · · , xn)| ≤ max
t
{Tt(f) + |xt|, cf}.

Proof. The proof is given for non-mutual recursion schemes, by induction on the definition
tree. Mutual recursion schemes follow the same pattern.
1. For basic pointer functions, the result holds immediately.
2. Let f be defined by composition, and assume that the result holds for the functions g,

h1, · · · , hn . Then, for any i = 1, · · · , n, |hi(x)| ≤ maxt{Tt(hi)+|xt|, chi
}. Moreover, there

exists by induction cg such that |g(h1(x), · · · , hn(x))| ≤ maxi{Ti(g) + |hi(x)|, cg}. Com-
posing the inequalities above yields |g(h1(x), · · · , hn(x))| ≤ maxi{Ti(g) + maxt{Tt(hi) +
|xi|, chi

}, cg} = maxt{Tt(f) + |xt|,maxi{cfi
, cg}}.

3. Let f be defined by primitive recursion on notations, and assume that the first case holds.
Let f(a.x,y) = ga(x, f(x,y),y), for a ∈ {0, 1}, and assume T2(g0) ≤ 0 and T2(g1) ≤ 0.
We apply the tropical interpretation on g, and we show by induction the result for f on
the length of a.x.
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a. If maxx,f(x,y),t{|x| + T1(ga), |f(x,y)| + T2(ga), |yt| + Tt+2(ga), cga} = |x| + T1(ga):
|f(a.x,y)| ≤ |x|+ T1(ga) ≤ |x|+ T1(f), and the result holds.

b. If maxx,f(x,y),t{|x|+T1(ga), |f(x,y)|+T2(ga), |yt|+Tt+2(ga), cga
} = |f(x,y)|+T2(ga):

Since T2(ga) ≤ 0, |f(a.x,y)| ≤ |f(x,y)|, and the induction hypothesis applies.
c. If maxx,f(x,y),t{|x| + T1(ga), |f(x,y)| + T2(ga), |yt| + Tt+2(ga), cga

} = |yt| + Tt+2(ga)
for some t: the result applies immediately by structural induction on ga.

d. If maxx,f(x,y),t{|x| + T1(ga), |f(x,y)| + T2(ga), |yt| + Tt+2(ga), cga} = cga , the result
holds immediately.

e. The base case f(ε,y) is immediate.
4. Let f be defined by primitive recursion on notations, and assume now that the second

of the two corresponding cases holds. Let f(a.x,y) = ga(x, f(x,y),y), for a ∈ {0, 1}.
Since the first case does not hold, T2(g0) = 1 or T2(g1) = 1: assume that T2(g0) = 1
(the other case being symmetric). Assume also that, T1(g0) ≤ 0 and T1(g1) ≤ 0, and
for all t ≥ 2, Tt(g0) = Tt(g1) = Tt−2(h) = −∞. Then, we set T1(f) = max{0, ch}. We
apply the tropical interpretation on g, and prove by induction on the length of a.x that
|f(a.x,y)| ≤ |a.x|+ max{cg1 , cg2 , ch}.
a. If maxt≥2{|x| + T1(ga), |f(x,y)| + T2(ga), |yt| + Tt(ga), cga

} = |x| + T1(ga). Since
T1(ga) ≤ 0 and T1(f) ≥ 0, |f(a.x,y)| ≤ |x| ≤ T1(f) + |x|, and the result holds.

b. If maxt≥2{|x|+ T1(ga), |f(x,y)|+ T2(ga), |yt|+ Tt(ga), cga
} = |f(x)|+ T2(ga). Since

T2(ga) ≤ 1, |f(a.x)| ≤ 1 + |f(x)|, and the induction hypothesis allows to conclude.
c. If maxt≥2{|x| + T1(ga), |f(x,y)| + T2(ga), |yt| + Tt(ga), cga} = cga , the result holds

immediately.
d. The case maxt≥2{|x|+ T1(ga), |f(x,y)|+ T2(ga), |yt|+ Tt(ga), cga

} = |yt|+ Tt(ga) is
impossible since Tt(ga) = −∞ for t ≥ 2.

e. The base case f(ε,y) is immediate.
5. Let now assume f is define by primitive recursion on values. Then, the only possible case

is similar to the first case of primitive recursion on notation.

The proof by induction above emphasizes the critical difference between recursion on
notation and recursion on values: the second case of the safe recursion on notations correspond
to the linear, non-size increasing scanning of the input, as in, for instance,

f(a.x) = sa(f(x)).

This, of course, is only possible in recursion on notation, where the height of the recursive
calls stack is precisely the length of the scanned input. Recursion on values fails to perform
this linear scanning, since, for a given recursive argument x, the number of recursive calls is
then exponential in |x|. J

Proposition 4 proves that the tropical tiering of a function yields actually a tropical
polynomial interpretation for the function symbols: The right hand side of the Lemma
inequality is indeed a tropical interpretation. Moreover, this interpretation is directly given
by the syntax.

Furthermore, the proof also highlights why we use mutual recursion schemes instead of
more simple, non-mutual ones: non-size increasing discipline forbids the use of multiplicative
constants in the size of the strings. So, in order to capture a computational space of size
k. log(n), we need to use k binary strings of length log(n), defined by mutual recursion.

I Corollary 5. L-primitive pointer recursive functions are computable in logarithmic space.
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Proof. Proposition 4 ensures that the size of all binary strings is logarithmically bounded.
A structural induction on the definition of f yields the result. The only critical case is
that of a recursive construct. When evaluating a recursive construct, one needs simply
to store all non-recursive arguments (the yi’s) in a shared memory, keep a shared counter
for keeping track of the recursive argument x, and use a simple while loop to compute
successively all intermediate recursive calls leading to f(x,y). All these shared values have
logarithmic size. The induction hypothesis ensures then that, at each step in the while
loop, all computations take logarithmic space. The two other cases, composition and basic
functions, are straightforward. J

In the following section, we prove the converse: logarithmic space functions can be
computed by a sub-algebra of the L-primitive pointer recursive functions.

4.3 Tropical Recursion
In this section we restrict our tropical tiering approach to only four possible tier values: 1, 0,
−1 and −∞. While doing so, we still retain the same expressiveness. The rules for tiering are
adapted accordingly. More importantly, the use of only four tier values allows us to denote
these tropics directly in the syntax, in an approach similar to that of Bellantoni and Cook,
by adding purely syntactical features to the composition and primitive recursion schemes.
Let us take as separator symbol the following o symbol, with leftmost variables having the
highest tier. As with safe recursive functions, we allow the use of a high tier variable in a
low tier position, as in, for instance,

f(x o y o z o t) = g( o y o x, z o t).

Our tropical recursive functions are then as follows.

Basic tropical pointer functions

Basic tropical pointer functions are the following.

hd( o o o a.x) = a tl( o o a.x o ) = x

hd( o o o ε) = ε tl( o o ε o ) = ε

s0(x o o o ) = 0.x s1(x o o o ) = 1.x
s(x o o o ) = E(D(x) + 1) Read( o o o x) = a ∈ {0, 1}

Prn
i ( o xi o o x1, · · · , xi−1, xi+1, · · · , xn) = xi

Tropical composition

Define t = t1, t2, t3, t4. The tropical composition scheme is then

f(x o y o z o t) = g(h1( o x o y o t), · · · , ha( o x o y o t) o
ha+1(x o y o z o t), · · · , hb(x o y o z o t) o
hb+1(y o z o o t), · · · , hc(y o z o o t) o
hc+1(t1 o t2 o t3 o t4), · · · , hd(t1 o t2 o t3 o t4))

Tropical Recursion on Notations – case 1

f(x o ε,y o z o t) = h(x o y o z o t)
f(x o sa(r o o o ),y o z o t) = ga(x o r, f(x o r,y o z o t),y o z o t)
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Tropical Recursion on Notations – case 2 (Linear scanning)

f( o ε o o t) = ε

f( o sa(r o o o ) o o t) = ga(f( o r o o t) o r o o t)

Tropical Recursion on Values

f(x o ε,y o z o t) = h(x o y o z o t)
f(x o s(r o o o ),y o z o t) = g(x o r, f(x o r,y o z o t),y o z o t)

As above, we use the mutual version of these recursion schemes, with the same tiering
discipline. Note that, unlike previous characterizations of sub-polynomial complexity classes [4,
5, 11], our tropical composition and recursion schemes are only syntactical refinements of the
usual composition and primitive recursion schemes - removing the syntactical sugar yields
indeed the classical schemes.

I Definition 6 (L-tropical functions). The class of L-tropical functions is the closure of our
basic tropical pointer functions, under tropical composition, tropical mutual recursion on
notations, and tropical mutual recursion on values.

The restriction of only four tier values suffices to capture the computational power of
RATMs. More precisely,

I Theorem 7. The class of L-tropical functions is the class of functions computable in
logarithmic space, with logarithmic size output.

Proof. L-tropical functions are L- primitive pointer recursive functions with tropics 1, 0, −1
and −∞. Following Corollary 5, they are computable in logspace. The converse follows from
the simulation of a logarithmic space RATM, as follows.

Some Assumptions on the RATM being simulated. Let f be a function computable in
deterministic space k log(n), with output of size k log(n), computed by a RATM M . We
assume the following.

The machineM uses one pointer tape, of size dlog(n+1)e, and exactly one computation
tape.
For every input x of length n, the machine uses exactly k.dlog(n + 1)e cells on the
computation tape.
At the start of the computation, the computation tape is as follows.
1. The computation tape is on a cell containing the 0 symbol, followed by k.dlog(n+

1)e − 1 0 cells on the right.
2. The cells on the left of the computation head, and the cells on the right of the

k.dlog(n+ 1)e 0 symbols, contain only blank symbols.
Moreover, during the computation, the following holds.
1. The computation head never goes on any cell on the left of its initial position.
2. The machine never writes a blank symbol.
The same assumptions are made for the pointer tape.

It is easy to check that these assumptions are benign. They enable us to ignore the blank
symbol in the simulation, and have a strict correspondence between the binary symbols
of the RATM and those of the L-tropical algebra.
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Encoding the machine configurations. Assume the machineM works in space kdlog(n+1)e.
A configuration of M is then encoded by 2k + 3 binary strings of length less than
dlog(n+ 1)e:
1. one string, of constant length, encodes the machine state,
2. one string, of length dlog(n+ 1)e, encodes the pointer tape,
3. one string, of length dlog(n+ 1)e, encodes the head of the pointer tape. It contains 0

symbols everywhere, but on the position of the head (where it contains a 1).
4. k strings, of length dlog(n+ 1)e, encode the content of the work tape, and
5. k strings, of length dlog(n+ 1)e, encode the position of the work tape head, with (as

for the pointer tape) 0 everywhere but on the position of the head.
Reading and Updating a configuration. Linear scanning of the recursive argument in trop-

ical recursion, corresponding to case 2 of the definition of tropical recursion on notations,
is used to read and to update the encoding of the configuration. In order to do so,
1. we encode booleans false and true with s0(ε o o o ) and s1(ε o o o ) respectively. We

define the following match construct
match x with

| s0(r o o o )→ A

| s1(r o o o )→ B

| ε→ C

as the following degenerate tropical recursion on notations.
match( o s0(r o o o ), a, b, c o o ) = a

match( o s1(r o o o ), a, b, c o o ) = b

match( o ε, a, b, c o o ) = c

Then, if then esle, and AND and OR boolean functions are obtained by trivial
applications of the match construct above. We also use a function isempty, for testing
if a string equals ε.

2. we define the following function, which adds one-bit in first position.
1BC(y o x o o ) = match x with

| s0(t o o o )→ s0(y o o o )
| s1(t o o o )→ s1(y o o o )
| ε→ y

For notational purposes we sometimes use hd( o o o x).y instead.
3. we define the following tail extraction, extracting the tail of a string, for a given prefix

length.

Te( o sa(x o o o ) o e o ) = tl( o o Te( o x o e o ) o )
Te( o ε o e o ) = e

4. we define the following bit extraction, extracting one bit of a string, for a given prefix
length.

Be( o o o x, e) = hd( o o o Te( o x o e o ))
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5. we define the following head extraction, extracting the head of a string, for a given
prefix length.

He( o sa( o o o x) o o e) = Be( o o o sa( o o o x), e).He( o x o o e)
He( o ε o o e) = ε

6. we define the prefix length computation, which extracts the initial subsequence of 0
only symbols, followed by the first 1. This function is used for computing the prefix
length corresponding to the position of the head in our encoding of the tapes of the
RATM.

Prefix( o ε o o ) = ε

Prefix( o s0( o o o x) o o ) = s0(Prefix( o x o o ) o o o )
Prefix( o s1( o o o x) o o ) = s1(ε o o o )

7. we define a predicate for comparing string lengths

SameLength( o x, y o o ) =

AND( o isempty( o Te( o x o o y) o o ), isempty( o Te( o y o o x) o o ) o o ).

8. we define the one bit replacement function: Replacing exactly one bit in a string e by
the first bit of b, for a given prefix length x.

Cb( o sa(x o o o ) o o y, e, b) =
if SameLength( o sa(x o o o ), y o o )

then hd( o o o b).Cb( o x o o y, e, b)
else Be( o o o Te( o sa(x o o o ) o e o ), e).Cb( o x o o y, e, b)

Cb( o ε o o y, e, b) = ε

and

ChBit( o s o o x, e, b) = Cb( o s o o Te( o x o o e), e, b)

for any s with |s| = |e|.
With all these simple bricks, and especially with the in-place one-bit replacement, one is
then able to read a configuration, and to update it, with L-tropical functions. None of
these L-tropical functions uses recursion on values.

Computing the Transition map of the Machine. Given the functions above, the transition
map Next of the machine is then computed by a simple L-tropical function of width
(2k + 3): For a recursive argument s of size dlog(n+ 1)e, Next( o s, c o o ) computes the
configuration reached from c in one transition step.
The Prefix function above computes the prefix corresponding the position of the head of
the pointer and of the computation tapes in our encoding. Used in conjunction with the
boolean constructs on the k strings encoding the computation tape, and in conjunction
with the bit extraction function Be above, it allows to read the current symbol on the
computation tape, and on the pointer tape, of the encoding of the RATM. Updating
these two symbols is performed with the ChBit in-place one-bit replacement function.
Similarly, moving the heads of these two tapes can easily be performed with this ChBit,
in conjunction with the tl and s1 basic tropical functions.
Let us now describe how we can read and update the machine state: This machine state is
encoded in binary by a string of length dlog(S + 1)e, where S is the number of the states
of M . The length of this string is fixed, and does not depend on the input. Therefore, we
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can safely assume that we have a fixed decision tree of depth dlog(S + 1)e, for reading
each bit of this string. The leaves of this decision tree are in one-to-one correspondence
with the states of M . This decision tree can moreover be encoded with basic tropical
functions and tropical composition only. Similarly, overwriting the machine state can be
done with basic tropical functions and tropical composition only.
Finally, when in an input reading state, the input tape symbol is obtained simply by
using the basic tropical function Read, with the pointer tape as argument.
The transition map Next of the RATM is then obtained by a boolean composition of
the above functions. Similarly, computing an encoding of the initial configuration, and
reading a final configuration, is simple.

Simulating the RATM. The simulation of the RATM is then obtained by iterating its
transition map Next a suitable number of times. The time upper bound is here obtained
by nesting k tropical recursive functions on values: on an input of size dlog(n+ 1)e, the
unfolding of these recursive calls takes time nk. At each recursive step, this function
needs to apply the transition map. The transition map having width (2k + 3), we use
here a mutual recursion scheme, of width (2k + 3). Again, for a recursive argument s of
size dlog(n+ 1)e, we define

Step1( o ε, s, c o o ) = c
Step1( o s(t o o o ), s, c o o ) = Next( o s,Step1( o t, n, c o o ) o o )

Step2( o ε, s, c o o ) = c
Step2( o s(t o o o ), s, c o o ) = Step1( o s, s,Step2( o t, s, c o o ) o o )

...
Stepk( o ε, s, c o o ) = c

Stepk( o s(t o o o ), s, c o o ) = Stepk−1( o s, s,Stepk( o t, s, c o o ) o o ).
Replacing s by the Offset in the above gives the correct bounds.
Finally, one simply needs to use simple L-tropical functions for computing the initial
configuration, and reading the final configuration. J

5 Logarithmic Space, Polylogarithmic Time

The polynomial time bound in Theorem 7 relies on the use of tropical recursion on values,
for clocking the simulation of the RATM. Restricting the algebra to tropical recursion on
notations only yields a straightforward time bound restriction, as follows.

I Definition 8 (LP-tropical functions). The class of LP-tropical functions is the closure of
our basic tropical pointer functions, under tropical composition and tropical mutual recursion
on notations.

I Theorem 9. The class of LP-tropical functions is the class of functions computable in
logarithmic space, polylogarithmic time, with logarithmic size output.

Proof. Mutual recursion on notations, with recursive arguments of logarithmic size, are
computable in polylogarithmic time, following similar arguments as in the proof of Theorem 7.
The converse follows from the simulation in the proof of Theorem 7 above, where mutual
recursion on values for the functions Stepi is replaced by mutual recursion on notations. J



P. Jacobé de Naurois 29:15

6 Alternation

In this section we extend the approach of Leivant and Marion [13] to our setting. Let us
define a similar tropical recursion on notations with substitutions. Note that the tropical
tiering discipline prevents using substitutions in case 2 of the tropical recursion on notations.
Substitutions are therefore only defined for case 1 of this recursion scheme, and only in
non-size increasing position.

Tropical Recursion with substitutions on Notations

Given functions h, g0, g1, k1 and k2,

f(x o ε,u,y o z o t) = h(x o u,y o z o t)
f(x o sa(r o o o ),u,y o z o t) = ga(x o r, f(x o r, k1( o u o o ),y o z o t),

f(x o r, k2( o u o o ),y o z o t),u,y o z o t) .

Tropical Recursion with substitutions on Values

Given functions h, g, k1 and k2,

f(x o ε,u,y o z o t) = h(x o u,y o z o t)
f(x o s(r o o o ),u,y o z o t) = g(x o r, f(x o r, k1( o u o o ),y o z o t),

f(x o r, k2( o u o o ),y o z o t),u,y o z o t) .

Again, as above, we assume these recursion schemes to be mutual. Tropical Recursion with
substitutions allows two recursive calls, where one parameter (u) is modified by the so-called
substitution function k1 or k2. This allows to denote branching, or parallel computations,
where a given configuration being accepting or rejecting depends on two distinct transition
steps. This is precisely the definition of an alternating Turing machine, whose relation with
parallel computation is well documented [6, 18].

I Definition 10 (P-tropical functions). The class of P-tropical functions is the closure of our
basic tropical pointer functions, under tropical composition, tropical recursion on notations
and on values, and tropical recursion with substitutions on notations and on values.

I Theorem 11. The class of P-tropical functions with binary output is the class P.

Proof. The result follows from Alogspace = P [6], and Theorem 7. Substitutions in the
tropical recursion scheme on notations amounts to alternation. Restriction to decision classes
instead of function classes comes from the use of alternating Turing machines, which compute
only decision problems.

Let us first see how to simulate a logspace alternating machine with P-tropical functions.
Recall the notations and functions of the proof of Theorem 7. Since we now need to simulate
a non-deterministic, alternating machine, we assume without loss of generality that we now
have two kinds of machine states:

non-deterministic universal
non-deterministic existential

and that non-deterministic transitions have at most two branches. Therefore, we also
assume that we have one predicate that determines the kind of a state in a configuration c:
IsUniversal( o s, c o o ). This predicate is assumed to output false or true.
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We also assume that we have two transition maps, Next0( o s, c o o ), and Next1( o s, c o o ),
for computing both branches of non-deterministic transitions. For deterministic transitions,
we assume both branches are the same. Finally, we also assume we have a predicate
isPositive( o s, c o o ), which returns true if the configuration c is final and accepting, and
false otherwise.

We define now, with substitutions, the following:

Accept( o ε, s, c o o ) = isPositive( o s, c o o )
Accept( o s(t), s, c o o )) = match IsUniversal( o s, c o o ) with
|true→ AND ( o Accept( o t, Next0( o s, c o o ), c o o ),

Accept( o t, Next1( o s, c o o )) o o )
|false→ OR ( o Accept( o t, Next0( o s, c o o )), c o o ),

Accept( o t, Next1( o s, c o o )) o o ) .

Then, for t and s large enough, and an initial configuration c, Accept( o t, s, c o o ) outputs
the result of the computation of the machine. Finally, nesting up to k layers of such recursion
on values schemes allows, as in the proof of Theorem 7, to simulate a polynomial computation
time.

The other direction is pretty straightforward: For any instance of a recursion scheme
with substitutions, for any given values r, u, x, y and z, each bit of
g(x o r, f(x o r, k1( o u o o ),y o z o t), f(x o r, k2( o u o o ),y o z o t),u,y o z o t) is a boolean
function of the bits of f(x o r, k1( o u o o ),y o z o t) and f(x o r, k2( o u o o ),y o z o t). Hence,
it can be computed by an alternating procedure. The space bound follows from the bound
on the size of the strings, provided by the tiering discipline. J

Recall now that the time bound in Theorem 9 follows from 7 by removing recursion on
values from the algebra. The same applies here, as follows.

I Definition 12 (NC-tropical functions). The class of NC-tropical functions is the closure
of our basic pointer tropical functions, under tropical composition, tropical recursion on
notations and tropical recursion with substitutions on notations.

I Theorem 13. The class of NC-tropical functions with binary output is NC.

Proof. The result follows from A(logspace, polylogtime) = NC [18], and Theorem 7. Sub-
stitutions in the tropical recursion scheme on notations amounts to alternation. The proof is
similar to that of Theorem 11, where additionally,

The time bound on the computation of the machine needs only to be polylogarithmic,
instead of polynomial. As in Theorem 9, tropical recursion on notations suffices to obtain
this bound, and tropical recursion on values is no longer needed.
For the other direction, any bit of ga(x o r, f(x o r, k1( o u o o ),y o z o t),
f(x o r, k2( o u o o ),y o z o t),u,y o z o t) is again a boolean function of the bits of
f(x o r, k1( o u o o ),y o z o t) and f(x o r, k2( o u o o ),y o z o t). Here, this boolean function
can be computed by a boolean circuit of polylogarithmic depth, hence, by an alternating
procedure in polylogarihtmic time. The arguments behind this remark are the same as
the ones in the proof of A(logspace, polylogtime) = NC. J

7 Concluding Remarks

Theorems 7, 9, 11, and 13 rely on mutual recursive schemes. As stated above, we use these
mutual schemes to express a space computation of size k log(n) for any constant k, with
binary strings of length at most log(n) + c. If we were to use only non-mutual recursion



P. Jacobé de Naurois 29:17

schemes, we would need to have longer binary strings. This can be achieved by taking as
input to our functions, not simply the Offset, but some larger string #k(Offset), where
#k is a function that appends k copies of its argument.

It also remains to be checked wether one can refine Theorem 13 to provide characterizations
of the classes NCi as in [14]. A first step in this direction is to define a recursion rank,
accounting for the nesting of recursion schemes: then, check wether NC-tropical functions of
rank i are computable in NCi. Conversely, check also whether the simulation of Theorem 7
induces a fixed overhead, and wether NCi can be encoded by NC-tropical functions of rank
i+ c for some constant c small enough.

Finally, note that we characterize logarithmic space functions with logarithmically long
output (Theorem 9), and NC functions with one-bit output (Theorem 13). As usual,
polynomially long outputs for these classes can be retrieved via a pointer access: it suffices
to parameterize these functions with an additional, logarithmically long input, denoting the
output bit one wants to compute. In order to retrieve functions with polynomially long
output, this approach could also be added to the syntax, with a Write construct similar to
our Read construct, for writing the output.
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