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Abstract
Maximal completion (Klein and Hirokawa 2011) is an elegantly simple yet powerful variant of
Knuth-Bendix completion. This paper extends the approach to ordered completion and theorem
proving as well as normalized completion. An implementation of the different procedures is described,
and its practicality is demonstrated by various examples.
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1 Introduction

Knuth-Bendix completion [18] constitutes a milestone in the history of equational theorem
proving and automated deduction in general. Given a set of input equalities E0, it can
generate a presentation of the equational theory as a complete rewrite system R which may
serve to decide the validity problem for the theory.

I Example 1. In order to simplify proofs found by SMT solvers, Wehrman and Stump [32]
pursue an algebraic approach: proofs are represented by first-order terms, and the equivalences
usable for simplification are described by 20 equations like the following ones:

(x · y) · z ≈ x · (y · z) (refl · x) ≈ x (x · refl) ≈ x
or1(refl) ≈ refl and1(refl) ≈ refl not(refl) ≈ refl

or1(x) · orT
2 ≈ orT

2 and1(x) · andF
2 ≈ andF

2 or2(x) · orF
1 ≈ (orF

1 · x)
or1(x) · orF

2 ≈ (orF
2 · x) not(x) · not(y) ≈ not(x · y) or2(x) · orT

1 ≈ orT
1

Here · denotes concatenation, refl is the reflexivity proof, the symbols andi, ori and not are
used for congruence, and constants like orT

1 stand for operations with boolean constants.
A Knuth-Bendix completion procedure can transform this set of equations into a termin-

ating and confluent rewrite system R consisting of 45 rules, including the following:

(x · y) · z → x · (y · z) or1(x) · orT
2 → orT

2 (refl · x)→ x

(or2(x) · or1(y)) · orT
1 → or1(y) · orT

1 or2(x) · orT
1 → orT

1 or1(refl)→ refl
(x · and2(y)) · and2(z)→ x · and2(y · z) or2(refl)→ refl or2(x) · orT

1 → orT
1

This rewrite system can be used to simplify an arbitrary proof (represented by a term) into
its unique normal form. Moreover, any two proofs can be tested for equivalence simply by
checking whether their normal forms are the same.
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3:2 Extending Maximal Completion
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Figure 1 Maximal completion.

Knuth and Bendix presented completion as a concrete algorithm. Pioneered by Bachmair,
Dershowitz, and Hsiang [5], it is nowadays more common to describe completion by an
inference system, thus abstracting from concrete implementations.

More recently, Klein and Hirokawa [17] proposed a radically different approach: Maximal
completion first approximates a complete presentation by extracting a terminating rewrite
system from an equation pool. It then checks whether the candidate system is complete, and
if a counterexample was found the procedure is repeated with an extended equation pool.
Figure 1 illustrates the approach. Maximal completion has the advantage that the reduction
order, a typically critical input parameter, need not be fixed in advance and can be changed
at any point. The candidate rewrite systems are generated by means of SAT/SMT solvers;
thus also advanced termination methods can be used in this setting and the search can be
guided towards different objectives [25]. Despite the simple, declarative formulation of the
procedure, the authors’ implementation resulted in a competitive tool [17, 25].

Apart from these improvements of classical Knuth-Bendix completion, numerous variants
have by now joined the family of completion calculi, aiming to make completion more versatile
and powerful. One of the most prominent variants is ordered completion. It was developed
by Bachmair, Dershowitz, and Plaisted to remedy the shortcoming that classical completion
fails if unorientable equations like commutativity are encountered [6].

Another line of research tackled the development of dedicated completion procedures
for equational systems which incorporate common algebraic theories such as associativity
and commutativity [23, 12]. The latest and most generally applicable method of this kind is
normalized completion, developed by Marché [22].

In this paper maximal completion is revisited (Section 3) and extended to ordered and
normalized completion. More specifically, the contributions of this paper are as follows:

Maximal ordered completion and an according equational theorem proving method are
explained in detail. In particular a completeness proof is presented, showing that a ground
complete system can always be found.
The proofs for (ordered) completion require only prime critical pairs to be considered.
For the case of linear input equalities, it is proven that even a complete system can be
found if it exists (Section 4.2), and a bound on the number of iterations is derived.
A maximal completion version of normalized completion (Section 5) is presented. This
covers AC completion, as well as the computation of Gröbner bases [22].

Section 6 is devoted to the implementation of these procedures in the tool MædMax. Some
example use cases from different application areas are demonstrated along the way. Finally,
Section 7 concludes.
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2 Preliminaries

In the sequel familiarity with the basics of term rewriting is assumed [2], but some key notions
are recalled in this section. Let T (F ,V) denote the set of all terms over a signature F and
an infinite set of variables V, and T (F) the set of all ground terms over F . A substitution
σ is a mapping from variables to terms. As usual, tσ denotes the application of σ to the
term t. A pair of terms (s, t) is sometimes considered an equation, which is expressed by
writing s ≈ t, and sometimes a (rewrite) rule, denoted s→ t. An equational system (ES) is
a set of equations, a term rewrite system (TRS) is a set of rewrite rules. Given an ES E ,
we write E± to denote its symmetric closure E ∪ {t ≈ s | s ≈ t ∈ E}. A reduction order is a
proper and well-founded order on terms which is closed under contexts and substitutions. It
is ground total if it is total on T (F). In the remainder most examples use the Knuth-Bendix
order (KBO), written >kbo, and the lexicographic path order (LPO), written >lpo.

A TRS R is terminating if →R is well-founded. It is (ground) confluent if s ∗R← · →∗R t

implies s→∗R · ∗R← t for all (ground) terms s and t. It is (ground) complete if it is terminating
and (ground) confluent. We say that R is a complete presentation of an ES E if R is complete
and ↔∗R =↔∗E . Similarly, R is a ground complete presentation of an ES E if R is ground
complete and the equivalence ↔∗R =↔∗E holds on ground terms. For a TRS R and terms
s and t, the notation s ↓R t expresses existence of a joining sequence s →∗R · ∗R← t. If R
is terminating then t↓R denotes some fixed normal form of t, and NF(R) denotes the set
of all normal forms of R. This notation is extended to ESs E by writing E↓R for the ES
{s↓R ≈ t↓R | s ≈ t ∈ E and s↓R 6= t↓R}.

Completion procedures are based on critical pair analysis. To that end, an overlap of
a TRS R is a triple 〈`1 → r1, p, `2 → r2〉 such that `1 → r1 and `2 → r2 are variants of
rules in R without common variables, p ∈ PosF (`2), `1 and `2|p are unifiable, and if p = ε

then `1 → r1 and `2 → r2 are not variants of each other. Suppose 〈`1 → r1, p, `2 → r2〉 is
an overlap of a TRS R and σ is a most general unifier of `1 and `2|p. Then the equation
`2[r1]pσ ≈ r2σ is a critical pair of R. The set of all critical pairs of R is denoted by CP(R).
A critical pair is prime if no proper subterm of `1σ is reducible in R. The set of all prime
critical pairs of R is denoted by PCP(R). It is known that only prime critical pairs need to
be considered for confluence of terminating TRSs:

I Lemma 2 ([14]). A terminating TRS R is confluent if and only if PCP(R) ⊆ ↓R.

Further preliminaries will be introduced in later sections as necessary.

3 Maximal Completion

This section recapitulates the maximal completion approach by Klein and Hirokawa [17]. A
TRS R is said to be over an ES E if R ⊆ E±. The set of all terminating TRSs R over E is
denoted T(E). We assume two functions R and Ext such that R(E) ⊆ T(E) returns a set of
terminating TRSs over E , and the extension function Ext satisfies Ext(E) ⊆ ↔∗E for all ESs
E . We define maximal completion by means of the following transformation.

I Definition 3. Given a set of input equalities E0 and an ES E, let

ϕ(E) =
{
R if R ∈ R(E) such that PCP(R) ∪ E0 ⊆ ↓R
ϕ(E ∪ Ext(E)) otherwise.

Note that this definition differs from [17, Definition 2] by the use of prime critical pairs.
In general ϕ does not need to be defined, nor is it necessarily unique. But if ϕ(E0) is
defined then we can assume a sequence of ESs E1, . . . , Ek called maximal completion sequence

FSCD 2019



3:4 Extending Maximal Completion

such that Ei+1 = Ei ∪ Ext(Ei) for all 0 6 i < k, and there is some R ∈ R(Ek) such that
PCP(R) ∪ E0 ⊆ ↓R. The following theorem expresses correctness of maximal completion [17,
Theorem 3]:

I Lemma 4. If ϕ(E0) is defined then it is a complete presentation of E0.

Proof. Let ϕ(E0) = R and E1, . . . , Ek be an according maximal completion sequence. The
TRS R must be terminating since it was returned by R. Because of PCP(R) ⊆ ↓R it is
confluent by Lemma 2, and hence complete.

A simple induction argument using the global assumption Ext(E) ⊆ ↔∗E for all ESs E
shows that Ei ⊆ ↔∗E0

for all i > 0. Since R is over Ek, also ↔∗R ⊆ ↔∗E0
holds. Conversely,

E0 ⊆ ↓R ensures ↔∗E0
⊆ ↔∗R. So R is a complete presentation of E0. J

Note that maximal completion is based on just three ingredients: (1) completeness is
overapproximated by termination using the function R, (2) a success check determines
whether some TRS R ∈ R(E) is complete, and (3) the current set of equations E is extended
by means of a theory-preserving function Ext.

It is natural to choose Ext(E) such that Ext(E) ⊆
⋃
R∈R(E) CP(R)↓R. Klein and Hirokawa

moreover proposed R(E) to return elements of T(E) with maximal cardinality, hence the
name. The rationale for this choice is that adding rules to a complete presentation R of E0
does not hurt this property, as long as termination and the equational theory are preserved.
This is formally expressed by the following lemma.

I Lemma 5 ([17, Lemma 4]). Let R be a complete presentation of E0 and R′ a terminating
TRS such that R ⊆ R′ ⊆ ↔∗E0

. Then also R′ is a complete presentation of E0. J

Nevertheless a maximal terminating TRS may constitute an unfortunate choice in maximal
completion, as illustrated by the next example.

I Example 6. Let E0 consist of the following four equations:

x+ 0 ≈ x s(x+ y) ≈ x+ s(y) z(x) ≈ 0 z(s(x+ y)) ≈ z(x+ s(0))

Let R1 be the TRS obtained by orienting all equations from left to right:

x+ 0→ x s(x+ y)→ x+ s(y) z(x)→ 0 z(s(x+ y))→ z(x+ s(0))

Termination of R1 can e.g. be verified using a KBO with s > + and w0 = w(f) = 1 for all
function symbols f . Thus R(E0) = {R1} is a valid choice for maximal completion. Now the
first two rules admit the overlap s(x) ← s(x + 0) → x + s(0) which creates an irreducible
critical pair s(x) ≈ x+ s(0). There are also three critical pairs involving the last rule, but
they are all joinable. Let thus E1 be E0 ∪ {s(x) ≈ x+ s(0)}. Using the same reduction order,
all equations can be oriented into the TRS R2 = R1 ∪ {x+ s(0)→ s(x)}. Suppose R(E1) is
{R2}. There is only one new non-joinable overlap: s(s(x))← s(x+ s(0))→ x+ s(s(0)), so
let E2 = E1 ∪ {s(s(x)) ≈ x + s(s(0))}. Repeating this strategy will fail to produce a finite
complete system, as it gives rise to infinitely many equations sn(x) ≈ x+ sn(0).

So this reduction order does not lead to a finite complete presentation of E0. But in
fact R1 is the only terminating TRS over E0 which has four rules: This is because the last
equation can only be oriented from left to right, and the second cannot be oriented from
right to left in combination with the last without violating termination.

Suppose that R(E0) contains instead the following TRS R′1 which has only three rules:

x+ 0→ x x+ s(y)→ s(x+ y) z(x)→ 0

Termination of R′1 can be shown by changing the precedence in the above KBO to + > s.
There are no critical pairs, and R′1 joins the input equalities E0. So maximal completion can
succeed immediately by returning R′1.
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In the implementation in the tool MædMax the function R chooses rewrite systems R
over E which can reduce rather than orient a maximal number of equations in E . Note that
the TRS R′1 in Example 6 is optimal in this sense, since it reduces all equations in E0.

I Example 7. In nine iterations of maximal completion, that is within nine recursive calls
of the procedure ϕ, the proof reduction system described in Example 1 can be transformed
into a complete rewrite system R. The maximal completion run produces 150 equations and
takes about 10 seconds. It is worth noting that to complete this system, LPO or KBO alone
do not suffice; advanced termination techniques like dependency pairs are required, see [25].

4 Ordered Completion and Theorem Proving

This section is devoted to the extension of maximal completion to ordered completion and
equational theorem proving. The basic procedure was already outlined in [36].

First some concepts specific to this setting are introduced. In this section a ground total
reduction order > is considered, unless stated otherwise. Given a reduction order > and an
ES E , the ordered rewrite system E> consists of all rules sσ → tσ such that s ≈ t ∈ E and
sσ > tσ. A triple (R, E , >) of a TRS R, an ES E , and a reduction order > is called ground
complete if the (possibly infinite) TRS R∪ E> is. An equation s ≈ t is ground joinable over
a TRS R if sσ ↓R tσ for all grounding substitutions σ. Ordered completion uses a relaxed
definition of critical pairs. Given a reduction order > and an ES E , an extended overlap
consists of two variable-disjoint variants `1 ≈ r1 and `2 ≈ r2 of equations in E± such that
p ∈ PosF (`2) and `1 and `2|p are unifiable with most general unifier σ. An extended overlap
which satisfies r1σ 6> `1σ and r2σ 6> `2σ gives rise to the extended critical pair `2[r1]pσ ≈ r2σ.
The set CP>(E) consists of all extended critical pairs between equations in E . An extended
critical pair is prime if all proper subterms of `1σ are E>-normal forms. The set of prime
extended critical pairs among equations in E is denoted by PCP>(E).

Next, an ordered version of maximal completion gets defined. Let Ro be a function such
that Ro(E) ⊆ T(E) returns a set of totally terminating TRSs over E , that is TRSs R which
are contained in a ground total reduction order >. Moreover, the extension function Exto is
supposed to satisfy Exto(E) ⊆ ↔∗E for all ESs E .

I Definition 8. Given a set of input equalities E0 and an ES E, let

ϕo(E) =


(R, E↓R, >) if R ∈ Ro(E) and all equations in E0 ∪ PCP>(E↓R ∪R)

are ground joinable in R∪ (E↓R)>
ϕo(E ∪ Exto(E)) otherwise.

In order to show correctness of this procedure, the following auxiliary result is useful:

I Lemma 9. Suppose R ⊆ >, R ∪ E ⊆ ↔∗E0
and all equations in E0 ∪ PCP>(E ∪ R) are

ground joinable in R∪ E>. Then (R, E , >) is a ground complete presentation of E0.

Proof. Let S denote the TRS R∪ E>, which terminates because it is contained in >. We
can thus show ground confluence of S via local ground confluence. The inclusion

←−−−−→
PCP(S)

⊆ ←−−−−−−−→
PCP>(R∪E)

∪↓S (1)

holds on ground terms according to [11, Lemma 26]. By assumption we have S-ground
joinability of PCP>(R∪ E), and hence ↔PCP(S) ⊆ ↓S on ground terms. So by Lemma 2 the
TRS S is confluent on ground terms.

FSCD 2019



3:6 Extending Maximal Completion

Since R∪E ⊆ ↔∗E0
was assumed, also↔∗S ⊆ ↔∗E0

holds. Moreover E0 is S-ground joinable
by assumption. Hence the equivalence ↔∗S = ↔∗E0

is satisfied on ground terms, so S is a
ground complete presentation of E0. J

Now correctness of the transformation ϕo is obvious:

I Lemma 10. If ϕo(E0) is defined then it is a ground complete presentation of E0.

Note that Definition 8 uses the idea of Definition 3 in the setting of ground completeness
but suffers the major drawback of an undecidable success check since ground joinability
of ordered rewriting is undecidable [20]. An implementation thus has to rely on sufficient
ground joinability criteria, an example of which is stated next. Its correctness follows from
the more sophisticated test presented in [33].

I Lemma 11. An equation s ≈ t is ground joinable in R∪ E> if s ↓R t or s↓R ≈ t↓R ∈ E.

In our implementation Exto(E) is chosen as a subset of
⋃
R∈Ro(E) PCP>(R∪ E↓R)↓R.

Bachmair, Dershowitz, and Plaisted showed that their ordered completion procedures
always succeed in producing a ground complete system (though possibly in the limit) [6].
Next, we derive a similar property for maximal ordered completion, under the assumption
that all prime critical pairs are considered. To this end, we consider an infinite maximal
ordered completion sequence E0, E1, E2, . . . such that Ei+1 = Ei ∪ Exto(Ei) for all i > 0. Let
moreover E∞ denote the limit

⋃
i Ei. The following statement holds by the global assumption

on Exto.

I Lemma 12. The conversion equivalence ↔∗E0
=↔∗Ei

holds for all i > 0.

It is known that ground complete systems remain ground complete when they get
(moderately) reduced, the following result follows from Lemma 5 and [11, Theorem 43].

I Lemma 13. If R∪ E> is ground complete then so is R∪ (E↓R)>.

Next we show the main completeness result for maximal ordered completion:

I Theorem 14. Suppose Exto(E) ⊇
⋃
R∈Ro(E) PCP>(R ∪ E)↓R for all ESs E. For any

R ∈ Ro(E∞) the system R∪ (E∞↓R)> is a ground complete presentation of E0.

Proof. Let R ∈ Ro(E∞). The following arguments show that S = R ∪ (E∞)> is ground
complete. The claim then follows from Lemma 13.

The TRS S is terminating because S ⊆ >. In order to show that S considered as a TRS
on ground terms is also confluent, according to Lemma 2 applied to S it suffices to show that
all prime critical pairs of S are joinable. So consider an equation s ≈ t ∈ PCP(S). Like in
the proof of Lemma 9, we can use [11, Lemma 26] to obtain inclusion (1). So we have s ↓S t,
or there is some equation u ≈ v ∈ PCP>(R∪ E∞) such that s↔u≈v t. In the former case,
there is nothing to show. Otherwise, we have u↓R ≈ v↓R ∈ Exto(E∞) ⊆ E∞ by assumption.
But then u↓R ≈ v↓R is S-ground joinable by Lemma 11, and hence s ≈ t is joinable.

By Lemma 12 and the definition of E∞, the inclusion E∞ ⊆ ↔∗E0
holds. The equivalence

↔∗E∞ =↔∗E0
thus follows from E0 ⊆ E∞. Because > is ground complete, ↔S =↔E∞ holds

on ground terms, which implies ↔∗S =↔∗E0
. J
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I Example 15. Consider the following ES E0 axiomatizing a Boolean ring, where multiplica-
tion is denoted by concatenation.

(1) (x+ y) + z ≈ x+ (y + z) (2) x+ y ≈ y + x (3) 0 + x ≈ x
(4) x(y + z) ≈ xy + xz (5) (xy)z ≈ x(yz) (6) xy ≈ yx
(7) (x+ y)z ≈ xz + yz (8) xx ≈ x (9) x+ x ≈ 0
(10) 1x ≈ x

Let (i) denote equation (i) oriented from left to right, and (i) the reverse orientation. Suppose
R1 is the TRS {(1), (3), (4), (5), (7), (8), (9), (10)}, and Ro(E0) = {R1}. Now the set Exto(E0)
may consist of the following extended critical pairs of rules among R1 and the unorientable
commutativity equation:

(11) x+ (y + z) ≈ y + (x+ z) (12) x(yz) ≈ y(xz) (13) x+ 0 ≈ x
(14) y + (x+ y) ≈ x (15) x(yx) ≈ xy (16) x1 ≈ x
(17) y + (y + x) ≈ x (18) x(xy) ≈ xy (19) 0x ≈ 0

(where all R1-joinable critical pairs, like x + (x + 0) ≈ 0 or x0 ≈ y0, are omitted). We
obtain E1 = E0 ∪ Exto(E0). Now Ro(E1) may contain the TRS R2 consisting of the rules
(1), (3), (4), (5), (7), . . . , (10), (13), . . . , (19). This TRS is LPO-terminating, so there is a
ground-total reduction order > that contains →R2 . We have E1↓R2 = {(2), (6), (11), (12)},
and it can be shown that for E = E1↓R2 the system R2 ∪ E> is ground complete. Despite its
simplicity, neither WM [1] nor E [28] or Vampire [19] succeed on this example.

4.1 Theorem Proving
Next the approach is extended to purely equational theorem proving: Given a set of equations
E0 and a goal equation s ≈ t as input, the aim is to decide whether s↔∗E0

t holds. Let Extg
be a binary function on ESs such that Extg(G, E) ⊆ ↔∗E∪G \↔∗E for all ESs E and G. In our
implementation, Extg(G, E) consists of extended critical pairs between an equation in G and
an equation in E . The following relation ϕg maps a pair of ESs E and G to YES or NO.

I Definition 16. Given an ES E0, an initial ground goal s0 ≈ t0 and ESs E and G, let

ϕg(E ,G) =


YES if s ↓R∪E> t for some s ≈ t ∈ G and R ∈ Ro(E),
NO if R∪ (E↓R)> is a ground complete presentation of E0

but s0 6↓R∪E>
t0, for some R ∈ Ro(E), and

ϕg(E ∪ E ′,G ∪ G′) for G′ = Extg(G,R∪ E) and E ′ = Exto(E).

For a set of input equations E0 and an initial goal s0 ≈ t0, a maximal ordered completion
procedure can then be run on the tuple (E0, {s0 ≈ t0}). Note that the parameter G of ϕg
denotes a disjunction of goals, not a conjunction. Due to the declarative nature of ϕg the
following correctness result is straightforward.

I Lemma 17. Let E0 be an ES and s0 ≈ t0 be a ground goal. If ϕg(E0, {s0 ≈ t0}) is defined
then ϕg(E0, {s0 ≈ t0}) = YES if and only if s0 ↔∗E0

t0.

I Example 18. The conditional confluence tool ConCon [29] interfaces equational theorem
provers like MædMax to show infeasibility of conditional critical pairs, which can be used
to prove confluence of conditional TRSs. Here a conditional critical pair is called infeasible
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3:8 Extending Maximal Completion

if the involved conditions s1 ≈ t1, . . . , sn ≈ tn do not admit a substitution σ such that
siσ ↔∗E0

tiσ for all i. For example, ConCon encounters for Cops #340 the axioms E0:

f(x1, y1) ≈ g(z1) f(x1, h(y1)) ≈ g(z1)

and the conditions x1 ≈ y1, h(x2) ≈ y1, x1 ≈ y2, x2 ≈ y2. Let s ≈ t be the goal equation
conds(x1, h(x2), x1, x2) ≈ conds(y1, y1, y2, y2), using a fresh symbol conds. In order to decide
whether there is a substitution σ such that sσ ↔∗E0

tσ holds, a common trick is used [6]:
existence of such a σ can be refuted if the (ground) goal true ≈ false is not entailed by E0
extended with the following two equations:

eq(x, x) ≈ true (1) eq(conds(x1, h(x2), x1, x2), conds(y1, y1, y2, y2)) ≈ false (2)

For this extended ES E ′0 a maximal ordered procedure call ϕg(E ′0, {true ≈ false}) can result
in the answer NO immediately because a ground complete system exists, consisting of the
two rewrite rules obtained when orienting (1) and (2) from left to right plus the following
(unoriented) equations:

f(x1, y1) ≈ g(z1) f(x1, y1) ≈ f(x2, y2) g(x1) ≈ g(y1)

Both true and false are in normal form with respect to this system, so no suitable σ exists.

4.2 Completeness for Linear Systems
We conclude this section with a completeness result. A natural question in the context of
completion is whether a complete system can be found by a completion procedure whenever it
exists. For standard completion, it is well known that this is not the case: for example, the ES
consisting of the equations f(x) ≈ f(a) and f(b) ≈ b cannot be completed by Knuth-Bendix
completion, or (standard) maximal completion if Ext(E) ⊆

⋃
R∈R(E) CP(R). Nevertheless a

complete presentation is given by the TRS {f(x)→ b} [16].
For ordered completion, two sufficient conditions are known to answer this question

in the positive: Bachmair, Dershowitz, and Plaisted showed that a complete system can
always be found if the reduction order is ground total [6], and Devie proved that complete
representations are invariably found for linear systems, irrespective of the order’s totality [8].

Next, a completeness result for linear systems in the spirit of the result by Devie [8] is
presented. To that end, the reduction order > does not need to be ground total. In order
to express that the reduction order leading to the presupposed completion system must be
considered by the procedure, the function R is said to support a reduction order > if R(E)
contains a maximal TRS R such that R ⊆ >, for all ESs E .

Devie’s notion of linear overlaps refers to extended overlaps which satisfy `1 > r1 and
r2 6> `2, or `2 > r2 and r1 6> `1. Critical pairs originating from such overlaps are called linear
critical pairs, and the set of all linear critical pairs formed using equations in E is denoted
by LCP>(E). A TRS R is called reduced if for all rules ` → r in R both r ∈ NF(R) and
` ∈ NF(R \ {`→ r}) hold.

I Theorem 19. Let E0 be a linear ES which admits a complete and reduced presentation
as the TRS C such that C ⊆ >. Suppose moreover that R supports >, Exto(E) is linear
whenever E is linear, and Exto(E) ⊇

⋃
R∈R(E) LCP>(R∪ E) for all ESs E.

Then ϕo(E0) is defined and constitutes a complete TRS.

Proof. Let E0, E1, E2, . . . be a maximal ordered completion sequence, and Si denote the
TRS Ei>. It can be assumed that Ei is linear for all i > 0, because E0 is linear and Exto is
supposed to preserve linearity.

http://cops.uibk.ac.at/?q=340
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Consider a cost function c defined on equation steps as follows: for ` ≈ r ∈ Ei, let
c(s = C[`σ] ↔`≈r C[rσ] = t) be {t} if `σ > rσ, {s} if rσ > `σ, and {s, t} otherwise. This
measure is extended to conversions P : t0 ↔ t1 ↔ . . .↔ tn by defining c(P ) as the multiset
union

⋃
06i<n c(ti ↔ ti+1). In the sequel P � Q is written to abbreviate c(P ) >mul c(Q).

Consider a rule `→ r in C. As C is assumed to be a complete presentation of E0, there is
a conversion `↔∗E0

r. According to Lemma 12, also `↔∗Ei
r holds for all i > 0. Let P i`→r be

fixed conversions `↔∗Ei
r which are minimal with respect to �, for all i > 0.

We show that for every i, if P i`→r is not of the form `→∗Si
r then there is a conversion

P i+1
`→r which has fewer steps and satisfies P i`→r � P i+1

`→r. Note that all conversions `↔∗Ei
r

must have at least one step: otherwise, we would have ` = r, which contradicts C ⊆ >

because > is well-founded.
Let P i`→r be a minimal conversion `↔∗Ei

r. Since it has at least one step, we can assume
some term r′ such that P i`→r has the form ` ↔∗Ei

r′ ↔Ei
r, and r′ 6= r. Note that the last

step r′ ↔Ei
r must satisfy r′ > r: By conversion equivalence, we must have r′ ↔∗C r. Since C

is complete, r′ ↓C r holds. Because C is also reduced, the term r is irreducible, so we have
r′ →∗C r. By the above assumption that r′ 6= r this means that r′ →+

C r, which implies r′ > r

because C ⊆ >. So the equation step r′ ↔Ei r is an ordered rewrite step r′ →Si r.
If ` ↔∗Ei

r is not of the form ` →∗Si
r then it must therefore contain a peak involving

non-Si step followed by an Si step, that is, a peak of the form

Q : s←−−−−→
`1≈r1,σ

u −−−−−→
`2≈r2,σ

t

for some terms s, t, and u, equations `1 ≈ r1, `2 ≈ r2 ∈ Ei, and a substitution σ such that
`1σ 6> r1σ but `2σ > r2σ, so `2σ → r2σ ∈ Si. Note that c(Q) = {s, u, t}.
(a) If `1 ≈ r1 and `2 ≈ r2 form a proper overlap then s↔LCP>(Ei) t because `1σ 6> r1σ and

`2σ > r2σ. By assumption LCP>(Ei) ⊆ Ei+1. Hence there is a conversion P i+1
`→r : `↔∗Ei+1

r

where Q is replaced by Q′ : s↔Ei+1 t and c(Q) >mul {s, t} >mul c(Q′). Moreover, P i+1
`→r

has fewer steps than P i`→r.
(b) Suppose `1 ≈ r1 and `2 ≈ r2 occur in parallel. Then the two steps can be swapped, so

there is a term v which allows for the conversion Q′ : s →`2σ→r2σ v ↔`1σ≈r1σ t. This
contradicts the assumption that P i`→r was minimal: we have c(Q) >mul {v, v, t} = c(Q′)
because s > v.

(c) Similarly, if `1 ≈ r1 and `2 ≈ r2 form a variable overlap then because Ei is linear there is
a term v such that there is a conversion Q : s →=

`2σ→r2σ
v ↔=

`1σ≈r1σ
t. But this again

contradicts minimality of P i`→r because C(Q) >mul {v, v, t} >mul c(Q′) due to s > v.
Let k be the maximal number of steps of P 0

`→r, for `→ r ∈ C. The above argument shows
that `→∗Sk

r holds for all `→ r ∈ C. Hence we have NF(Sk) ⊆ NF(C).
Let S be the TRS R∪ (Ek↓R)>. Any term reducible by Sk must also be reducible in S,

which implies NF(S) ⊆ NF(Sk) and hence NF(S) ⊆ NF(C). Since moreover R∪ Ek ⊆ ↔∗C
implies →Sk

⊆ ↔∗C and S is terminating because S ⊆ >, the TRS S is complete according
to [11, Lemma 31]. J

Note that the above proof implies a bound on the number of iterations needed to derive
a complete system, namely the number of E0-steps required for conversions of the rules in
the complete system C. Naturally, due to incompleteness of implementations, this bound
cannot be kept up in practice.
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I Example 20. Consider the linear ES E consisting of the following three equations:

f(a, i(x)) ≈ f(b, b) g(b, x) ≈ g(a, a) f(a, x) ≈ f(a, y)

The TRS R = {f(a, x)→ f(b, b), g(b, x)→ g(a, a)} is terminating and confluent, as is easily
checked by state-of the art tools. We also have E0 ⊆ ↓R, and from the conversion

f(a, x)↔ f(a, i(x))↔ f(b, b) (2)

we can conclude↔∗E0
=↔∗R, so R is a complete presentation of E0. By Theorem 19, maximal

ordered completion supporting > =→+
R will succeed with a complete system, and according

to the bound derived in the proof, this takes at most two iterations since (2) has two steps.

5 Normalized Completion

Many algebraic theories like groups and rings feature associative and commutative operators.
However, since the commutativity equation cannot be oriented into a terminating rewrite
rule, such theories cannot be handled by standard Knuth-Bendix completion. This triggered
the development of dedicated completion calculi that can deal with such cases [23, 12].

Various generalizations have been proposed to extend completion to different algebraic
theories, apart from plain AC. A version for general theories T has been proposed in [12, 4],
provided that T admits finitary unification and the subterm ordering modulo T is well-
founded. Constrained completion [13] constitutes an attempt to overcome these restrictions
on the theory, it admits for instance completion modulo AC with a unit element (ACU).
However, it excludes other theories such as Abelian groups.

Normalized completion [21, 22, 34] can be seen as the last result in this line of research.
It has three advantages over earlier methods. (1) It allows completion modulo any theory T
that can be represented as an AC-complete rewrite system S. (2) Critical pairs need not be
computed for the theory T , which may not be finitary or even have a decidable unification
problem. Instead, any theory between AC and T can be used. (3) The AC-compatible
reduction order used to establish termination need not be compatible with T . This is
beneficial for theories like ACU where no T -compatible simplification order exists.

I Example 21. Consider an Abelian group with AC operator · and an endomorphism f as
described by the following three equations:

e · x ≈ x i(x) · x ≈ e f(x · y) ≈ f(x) · f(y)

together with ACRPO [24] with precedence f > i > · > e. Using AC completion, or
equivalently normalized completion with respect to S = ∅, one obtains the following AC
complete TRS RAC:

e · x→ x i(x) · x→ e i(e)→ e
i(i(x))→ x i(x · y)→ i(x) · i(y) f(x · y)→ f(x) · f(y)

f(e)→ e f(i(x))→ i(f(x))

Alternatively, one can perform normalized completion with respect to an AC complete
representation of Abelian groups, like for example the following TRS SG [3]:

e · x→ x i(x) · x→ e i(e)→ e i(i(x))→ x i(x · y)→ i(x) · i(y)

Note that SG ⊆ >. Normalized completion with respect to SG results in the TRS RG:

f(x · y)→ f(x) · f(y) f(e)→ e f(i(x))→ i(f(x))
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Before proposing a maximal normalized completion procedure, we recall some concepts
and notations related to AC rewriting and normalized rewriting.

AC Rewriting and Unification. A TRS R terminates modulo AC whenever the relation
→R/AC is well-founded. To establish AC termination we will consider AC-compatible
reduction orders >, i.e., reduction orders that satisfy ↔∗AC ·> · ↔∗AC ⊆ >. The TRS R is
complete modulo AC if it terminates modulo AC and the relation ↔∗AC∪R coincides with
→∗R/AC · ↔

∗
AC · ←∗R/AC. It is an AC-complete presentation of an ES E if R is AC complete

and ↔∗E∪AC =↔∗R∪AC.
Let L be a theory with finitary and decidable unification problem. A substitution σ

constitutes an L-unifier of two terms s and t if sσ ↔∗L tσ holds. An L-overlap is a quadruple
〈`1 → r1, p, `2 → r2〉Σ consisting of rewrite rules `1 → r1, `2 → r2, a position p ∈ PosF (`2),
and a complete set Σ of L-unifiers of `2|p and `1. Then `2[r1]pσ ≈ r2σ constitutes an L-critical
pair for every σ ∈ Σ. For two sets of rewrite rules R1 and R2, we also write CPL(R1,R2) for
the set of all L-critical pairs emerging from an overlap where `1 → r1 ∈ R1 and `2 → r2 ∈ R2,
and CPL(R1) for the set of all L-critical pairs such that `1 → r1, `2 → r2 ∈ R1.

We assume there is a fixed set of AC symbols FAC ⊆ F . For a rewrite rule `→ r with
+ ∈ FAC the notation (` → r)e refers to the extended rule ` + x → r + x, where x ∈ V is
fresh. The TRS Re contains all rules in R plus all extended rules `+ x→ r + x such that
`→ r ∈ R [3].

Normalized Rewriting. We define normalized rewriting as in [22] but use a different notation
to distinguish it from the common notation for rewriting modulo. Let T be a theory which
has an AC-complete presentation as a TRS S.

Two terms s and t admit an S-normalized R-rewrite step if

s
!−−−−→

S/AC
· ∗←−→

AC
· p−−−→
`→r

· ∗←−→
AC

t (3)

for some rule ` → r in R and position p. We abbreviate (3) by s →p
`→r\S t and write

s→R\S t if s→p
`→r\S t for a rule `→ r in R and position p. Let > be an AC-compatible

reduction order such that S ⊆ >. For any set of rewrite rules R satisfying R ⊆ > the
normalized rewrite relation →R\S is well-founded [21, 22], so we can consider equational
proofs of the form s→!

R\S · ↔
∗
T · ←!

R\S t. These normal form proofs play a special role and
are called normalized rewrite proofs. Because S is AC-complete for T , any such proof can be
transformed into a proof s ⇓R\S t, where ⇓R\S abbreviates the relation

!−−−→
R\S

· !−−−−→
S/AC

· ∗←−→
AC
· !←−−−−
S/AC

· !←−−−
R\S

A TRS R is an S-complete presentation of a set of equations E if →R\S is terminating and
the relations ↔∗E ∪T and →!

R\S · ↔
∗
T · ←!

R\S , hence ⇓R\S , coincide.
In the remainder of this section we assume that RS(E) is a finite set of rewrite systems

R such that R∪ S is AC terminating, for all ESs E . Moreover, let the function ExtS satisfy
ExtS(E) ⊆ ↔∗AC∪S ∪E for all ESs E . We write CPS(R) for the set of critical pairs

CPL(Re) ∪ CPAC(Se,Re) ∪ CPAC(Re,Se)

I Definition 22. Given a set of input equalities E0 and an ES E, let

ϕS(E) =
{
R if R ∈ RS(E) such that CPS(R) ∪ E0 ⊆ ⇓R\S
ϕS(E ∪ ExtS(E)) otherwise.
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The proof of the following correctness statement is a straightforward adaptation of the
respective result for standard completion (Lemma 4).

I Lemma 23. If ϕS(E) is defined then it is an S-complete presentation of E0.

Proof. Suppose ϕS(E0) = R, soR∪S is AC terminating since it was returned byRS . Because
of CPS(R) ⊆ ⇓R\S the TRS R is S-complete according to the results by Marché [22].

Let E1, . . . , Ek be a sequence of normalized maximal completion, that is Ei+1 = Ei ∪
ExtS(Ei) for all 1 6 i < k and there is some R ∈ RS(Ek) such that CPS(R) ∪ E0 ⊆ ⇓R\S .
A simple induction argument using the global assumption that ExtS(E) ⊆ ↔∗AC∪S ∪E for
all ESs E shows that Ek ⊆ ↔∗AC∪S ∪E0

. Since R is over Ek, also ↔∗R ⊆ ↔∗AC∪S ∪E0
holds.

Conversely, E0 ⊆ ⇓R\S is assumed. So R is an S-complete presentation of E0. J

The maximal normalized completion implementation in MædMax can for instance complete
the ES in Example 21 with respect to both AC (so S = ∅) or group theory (using SG).

6 Implementation

In this section we briefly summarize an implementation of the discussed variants of maximal
completion in the tool MædMax [36]. MædMax is implemented in OCaml and available as a
command-line tool as well as via a web interface, on the accompanying website also example
input can be found.1 Input problems can be submitted in the TPTP [31] as well as the trs
format.2 The tool supports standard maximal completion, maximal ordered completion and
theorem proving, as well as normalized completion. However, many modules are used for all
of these modes. For the former, MædMax incorporates the extended Maxcomp version [25]
which supports advanced termination techniques like dependency pairs.

In the following paragraphs we comment on the implementation of the three components
corresponding to the main steps in maximal completion: (1) finding (AC) terminating TRSs,
(2) success checks, and (3) selection of new equations and goals.

Finding rewrite systems. In order to find (AC) terminating rewrite systems that play the
role of R(E) and RS(E), respectively, MædMax adheres to the basic approach of Maxcomp [17]
in that it solves optimization problems by means of a maxSAT/maxSMT solver. The objective
of this optimization can be to (a) maximize the number of oriented equations as done in
Maxcomp, or (b) the equations in E that are reducible, or to (c) minimize the number of rules
or (d) the number of critical pairs. These optimization targets can also be combined, and
completeness requirements as described in [25] can be added. Strategy (b) in combination
with (c) has proved to be particularly useful, because it prefers small TRSs which can simplify
many equations. This is especially beneficial in presence of AC symbols, where many rewrite
rules and hence many critical pairs can drastically impact performance.

In order to guarantee termination of the resulting system, SMT encodings of termination
techniques are used. These are LPO, KBO, and linear polynomials for ordered completion,
where a ground-total reduction order is desired. For standard completion, MædMax addition-
ally supports dependency pairs, a dependency graph approximation, and argument filterings
for LPO and KBO, as described earlier [25]. These techniques can also be combined in a
strategy involving sequential composition and choice. As a means to ensure AC termination,
ACRPO is encoded [24]. The supported SMT solvers are Yices 1.0 [10] and Z3 [7].

1 http://cl-informatik.uibk.ac.at/software/maedmax/
2 https://www.lri.fr/~marche/tpdb/format.html

http://cl-informatik.uibk.ac.at/software/maedmax/
https://www.lri.fr/~marche/tpdb/format.html
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Success checks. For standard and normalized completion, it is straightforward to check
whether all critical pairs are joinable. In the latter case, MædMax only supports AC critical
pairs. To conclude ground confluence, our tool supports the criterion of [33].

Selection. The extension functions Ext, Extg, and ExtS are implemented to add a subset
of (extended, AC) critical pairs among rules in R, and equations/goal for the case of ordered
completion. In any case the selected equations get reduced to R-normal form before they are
added. MædMax severely limits the number of critical pairs that are added in every iteration
to confine the exponential blowup. The selection heuristic prefers small equations and old,
but not yet reducible equations.

Furthermore, MædMax can output equational (dis)proofs and ground completion proofs
in a format that can be validated by the proof checker CeTA [30]. Further implementation
details and evaluations on standard benchmark sets can be found in [36, 25].

We conclude with a final example illustrating a practical application. The tool AQL3
performs functorial data integration by means of a category-theoretic approach [27], taking
advantage of (ground) completion. The following problem was communicated by the authors.

I Example 24. Consider two database tables yIsAL and yIsAW relating amphibians to land
and water animals, respectively. The relationship between their entries are described by 400
ground equations over symbols yIsAL, yIsALL, yIsAW, yIsAWW (which correspond to fields in
the schemas) and 449 constants of the form ai,wi, li representing data items. The following
six example equations may convey an impression:

yIsAW(a1) ≈ w29 yIsAW(a78) ≈ w16 yIsAW(a61) ≈ w30

yIsAL(a37) ≈ l80 yIsAL(a84) ≈ l6 yIsAL(a29) ≈ l47

In addition, the equation yIsALL(yIsAL(x)) ≈ yIsAWW(yIsAW(x)) describes a mapping to
a second database schema. A ground complete presentation of the entire system thus
constitutes a representation of the data, translated to the second schema. MædMax discovers
a complete presentation of 889 rules in less then 20 seconds, while AQL’s internal completion
prover fails. MædMax’ automatic mode switches to linear polynomials for such systems with
many symbols, which turned out to be faster than LPO or KBO in this situation.

7 Conclusion

This paper explored variants of maximal completion, corresponding to ordered and normalized
completion. These methods have multiple advantages over earlier approaches:

The reduction order, a notoriously critical parameter, need not be fixed in advance. This
also holds for tools with an automatic mode such as RRL [15], but there it is unsound to
change the order once it was fixed [26]. In contrast, no such problem occurs in maximal
completion.
Using maxSMT encodings, the choice of an ordering can be “steered” towards beneficial
properties of the resulting system (e.g. to orient a maximal number of equations, to
reduce a maximal number of equations, or to stimulate complete systems [25]).
Maximal completion exploits the advantage of parallelization in that multiple reduction
orders can be considered (by choosing multiple rewrite systems in every iteration).
Theorem 19 shows that in the linear case any complete system for a supported ordering
will be found. But at the same time rewriting and critical pair computation are shared
among the processes corresponding to the different choices of an ordering.

3 http://categoricaldata.net/aql.html
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Efficiency is gained by orienting multiple equations at the same time. Theorem 19 shows
that this also admits a (theoretical) bound on the number of required iterations.
Finally, the definitions and the corresponding proofs are concise and simple: neither proof
orders [5] nor notions like peak or source decreasingness [11] are required.

Several directions for future work arise. First, we believe that also the completeness
result for ground-total reduction orders carries over to maximal ordered completion [6].
The general case of completeness is still an open problem. Another interesting because
practically relevant variant of completion operates on logically constrained rewrite systems
(LCTRSs) [35]. Supporting maximal completion procedure for this setting might thus be
a useful addition to MædMax. Maximal completion can be considered an approximation-
and conflict-based approach: complete TRSs are overapproximated by terminating TRSs,
and if a conflict (that is a non-joinable critical pair) is encountered, the approximation is
refined. It would be interesting to investigate connections to other conflict-driven learning
approaches such as lazy SMT solving or DPLL [9].
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