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Abstract
It is folklore that effect handlers and delimited control operators are closely related: recently, this
relationship has been proved in an untyped setting for deep handlers and the shift0 delimited
control operator. We positively resolve the conjecture that in an appropriately polymorphic type
system this relationship can be extended to the level of types, by identifying the necessary forms of
polymorphism, thus extending the definability result to the typed context. In the process, we identify
a novel and potentially interesting type system feature for delimited control operators. Moreover, we
extend these results to substantiate the folklore connection between shallow handlers and control0
flavour of delimited control, both in an untyped and typed settings.
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1 Introduction

Computational effects in programming languages are as pervasive as they are problematic.
Virtually any programming language must allow its programmer some interaction with the
outside world, at the very least through input and output channels, yet this concession
tends to open Pandora’s box of effects, built-in or user-defined, ranging from mutable state
or logging mechanisms to complex nondeterminism or concurrency, and beyond. In most
commonly used functional languages, such as OCaml or Scheme, control over occurrences
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30:2 Typed Equivalence of Effect Handlers and Delimited Control

of such effects is lax at best: this, however, leads to loss of strong reasoning principles, like
β-equivalence, and invalidates many common program optimisations by making observational
equivalence a very small relation.

Two main approaches to control and contain the rise of complexity brought by the presence
of effects exist: monads [17, 21], as used in Haskell, is the more common in today’s practice,
but type-and-effect systems [15, 20] appear rather often in many of the more experimental
programming languages. Both these approaches feature means of establishing that a program
fragment is pure, which intuitively means that all the usual reasoning principles and program
transformations should apply, and both allow the programmer to control which particular
effects can arise in a given program fragment. Although the original type-and-effect systems
were geared towards particular computational effects, such as mutable state, they have since
been used also for languages with user-defined effects. In the following, we consider two
families of such user-defined effectful abstraction: delimited control operators and algebraic
effect handlers.

Delimited control operators were invented, in different flavours, by Felleisen [5] and
Danvy and Filinski [4], and have been used to encode effects ever since (see for instance [3]).
Algebraic effects and handlers, proposed by Plotkin and Pretnar [18] form an alternative
approach to user-defined effects, generalising exceptions and their handlers in a more direct
fashion than the delimited control operators, which arise more naturally by studying the
shape of effectful programs in continuation-passing style. Both these families of abstractions
admit diverse type systems: in this work we focus on a particular family of type-and-effect
systems with effect rows, which allows a large degree of control over what effects the program
performs and what is their order in the computation.

In this paper, we work within the program outlined by Forster et al. [8]: we study local
syntax-directed translations (Felleisen’s macro translations [6]) between mutually expressible
extensions of a base calculus, thus studying the relationships between different modes of
programming with user-defined effects. In this line, we make two contributions: first, we
pinpoint the precise mode of polymorphism that is required for the macro translations between
effect handlers and delimited control operators to preserve typings, and in the process we
discover a novel extension of a type system for delimited control operators. Furthermore,
we extend these results to the case of shallow effect handlers and the control0 operator,
thus substantiating the folklore claim that the shallow handlers behave in a “control-like”
fashion. In contrast to Forster et al., we focus solely on control operators with type-and-effect
systems, leaving out the monadic approach to structuring effectful computations. The results
presented in this paper are formalised using the Coq proof assistant.

2 The Common Core

In this paper, we discuss two calculi for delimited control operators (shift0 and control0) and
two for effect handlers (deep and shallow), all of which are given as extensions of the core
calculus defined in this section. This core calculus is a polymorphic λ-calculus with only
basic infrastructure for effects that is shared by all four final calculi. For readability, we keep
the calculi minimal, that is, they are equipped only with the features necessary to discuss
control effects and their relationships. In some examples, however, we assume some basic
types and constants, but this is only for readability, as they are clearly a feature orthogonal
to control.

The syntax of the core calculus is given in Figure 1. The type-level variables are denoted
α, β, . . ., while the term-level variables are denoted f, r, x, y, . . . The syntax of terms consists
of variables, λ-abstractions, applications, and, as a part of the infrastructure for effects,
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TVar 3 α, β, . . . (type-level variables)
Var 3 f, r, x, y, . . . (term-level variables)

Kind 3 κ ::= T | E | R (kinds)
Typelike 3 σ, τ, ε, ρ ::= α | τ→ρτ | ∀α :: κ . τ | ι | ε · ρ (types and rows)

Val 3 u, v ::= x | λx. e (values)
Exp 3 e ::= v | e e | [e] (expressions)

ECont 3 E ::= � | E e | v E | [E] (evaluation contexts)

Figure 1 Syntax of the common core of the calculi.

α :: κ ∈ ∆
∆ ` α :: κ

∆ ` τ1 :: T ∆ ` ρ :: R ∆ ` τ2 :: T
∆ ` τ1→ρτ2 :: T

∆, α :: κ ` τ :: T
∆ ` ∀α :: κ . τ :: T

∆ ` ι :: R
∆ ` ε :: E ∆ ` ρ :: R

∆ ` ε · ρ :: R

Figure 2 Well-formedness of types and rows.

Biernacki et al.’s [2] lift operator [e], which we discuss below. Note that the core calculus is
given à la Curry, so the variable in a λ-abstraction is not labelled with a type. Moreover, we
have the universal quantifier as a type former, but it is not reflected in the term-level syntax:
generalisations and instantiations of the quantifier take place only in type derivations.

The core calculus is equipped with a type-and-effect system organised into three kinds: T
for types, E for single effects, and R for rows of effects. Considering the well-formedness rules
given in Figure 2, we read that the types are given by the mentioned universal quantifier
(in which we quantify over variables of any kind), type variables, and arrows, which are
decorated with rows of effects. Intuitively, a row of effects specifies what effects can happen
when we evaluate an expression or call an effectful function (for a discussion on row-based
type-and-effect systems see, for instance, [14]). Importantly, the specific calculi that we
present in the subsequent sections do not distinguish effects by any sort of names, but by
their position in the row associated to an expression. This means that the order of effects in
a row is important and, intuitively, corresponds to the order of delimiters (handlers, resets)
that can be placed around the expression – or, from another point of view, to the order in
which a closing context introduces these effects. This is why we include the lift operator, as
it allows us to manipulate the order of effects in a row and so, as discussed in Section 3.1,
simulate a calculus with named effects. Formally, a row of effects can be given by a row
variable, an empty row, written ι, or can be built by placing an effect in front of an existing
row. In other words, each row is either closed, which means that it is a list of effects (in this
case, we tend to omit the trailing ι when this does not lead to confusion), or open, which
means that it is a list of effects that ends with a row variable. Note that the core calculus
does not say much about single effects, except for the fact that we can quantify over effects
as well as over types or rows. However, it captures how effects are organised into rows, as
this aspect is common to all four final calculi.

FSCD 2019



30:4 Typed Equivalence of Effect Handlers and Delimited Control

∆ ` σ <: σ
∆ ` τ1

2 <: τ1
1 ∆ ` ρ1 <: ρ2 ∆ ` τ2

1 <: τ2
2

∆ ` τ1
1→ρ1τ

2
1 <: τ1

2→ρ2τ
2
2

∆, α :: κ ` τ1 <: τ2

∆ ` ∀α :: κ . τ1 <: ∀α :: κ . τ2

∆ ` ρ :: R
∆ ` ι <: ρ

∆ ` ρ1 <: ρ2

∆ ` ε · ρ1 <: ε · ρ2

Figure 3 Subtyping.

x : τ ∈ Γ
∆; Γ ` x : τ / ι

∆ ` τ1 :: T ∆; Γ, x : τ1 ` e : τ2 / ρ

∆; Γ ` λx. e : τ1→ρτ2 / ι

∆; Γ ` e1 : τ1→ρτ2 / ρ ∆; Γ ` e2 : τ1 / ρ

∆; Γ ` e1 e2 : τ2 / ρ

∆ ` ε :: E ∆; Γ ` e : τ / ρ
∆; Γ ` [e] : τ / ε · ρ

∆, α :: κ; Γ ` e : τ / ι
∆; Γ ` e : ∀α :: κ . τ / ι

∆ ` σ :: κ ∆; Γ ` e : ∀α :: κ . τ / ρ
∆; Γ ` e : τ{σ /α} / ρ

∆ ` τ1 <: τ2 ∆ ` ρ1 <: ρ2 ∆; Γ ` e : τ1 / ρ1

∆; Γ ` e : τ2 / ρ2

Figure 4 Core typing rules.

Figure 3 shows the subtyping rules. The purpose of subtyping is to express the idea that
one expression can perform “more” effects than another. In particular, it means that the
empty row is a subtype of any other row, while two functions are in the relation if they
satisfy the usual “contravariant-in-argument, covariant-in-result” condition together with the
appropriate subtyping of their rows of effects.

With this, we can define the typing relation ∆; Γ ` e : τ / ρ, shown in Figure 4. It uses
two contexts, ∆ to assign a kind to a free type-level variable, and Γ to assign a type to
a free term-level variable.1 A term e is given a type τ and a row of effects ρ, which may
be performed when evaluating e. The rules for variables, λ-abstractions, and applications
are rather straightforward; the only deviation from the classic formulation of Talpin and
Jouvelot [20] is that in the application rule we require the same effect on all premises, which is
natural, as our system includes explicit subtyping. Additionally, we have the aforementioned
rules that allow us to introduce and instantiate a universal quantifier, and a rule to apply
subtyping. The rule for [e] reveals some intuition about the purpose of the lift operator, as it
allows us to add any effect in front of the row to “mask” the actual first effect. As hinted
before, this is due to the fact that order of the effects matters: thus, we might be allowed to
freely pretend that a given computation has more effects “outside” the ones that are actually
present, via subeffecting, but we need to be explicit, and use an operator with some runtime
content, when we want to manipulate effects at the beginning of the row. As it is much more
natural to discuss the details of the semantics of lift with some actual effects at hand, we
return to this discussion in more depth in Section 3.1, where we define deep effect handlers.

1 We treat contexts as lists of bindings, allowing ourselves to write types of the form ∀ ∆ . τ , with the
natural expansion as a chain of nested quantifiers of appropriate length.
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λx. e v 7→ e{v / x} [v] 7→ v
e1 7→ e2

E[e1]→ E[e2]

Figure 5 Single-step reduction and core contraction rules.

0−free(�)
n−free(E)
n−free(E e)

n−free(E)
n−free(v E)

n−free(E)
n+ 1−free([E])

Figure 6 Freeness for core evaluation contexts.

Figure 5 together with the syntax of evaluation contexts from Figure 1 define the call-
by-value operational semantics in terms of contractions, that is, single-step reductions in an
evaluation context, in the standard style of Felleisen and Friedman [7]. Note that while the
lift operator does not have any computational content on its own, it is used to manipulate the
freeness of evaluation contexts defined in Figure 6. The freeness judgment was introduced by
Biernacki et al. [2] to judgmentally match an effect handler to the operation, but it readily
scales to the other systems, allowing us to move the lift to the common part of the calculus.
Of course, since the core calculus does not contain any effect delimiters, the freeness can
only increase, and only via the lift, but its use will become apparent when we consider
particular effects.

3 Deep Effect Handlers and Delimited Control

We now turn to study the connection between the deep handlers and the shift0 calculus of
delimited control operators. The operational semantics of the calculi and their (untyped)
equivalence are a slight variation on the ones studied by Forster et al. [8]. The correspondence
between the type systems is our contribution.

3.1 Deep Handler Calculus
The calculus of deep effect handlers is given in Figure 7 as an extension of the core calculus.
We extend the syntax of expressions with two forms: the first one, do v, is an operation with
a single argument. Note that while the argument is necessarily a value, this restriction is
purely a matter of convenience. The second new form is a handler, handle e {x, r. e; x. e},
in which the first expression is the handled computation, the x, r. e part is an interpretation
of the operation, while x. e is the “return” clause, which describes the behaviour of the
handler on effect-free computations. Handlers come with one new form of evaluation contexts,
which allows reductions in the handled expression.

The reduction semantics for handlers is given by two contraction rules. The first one
states that if we handle a 0-free context that has an operation in the evaluation position, the
handler takes over, and proceeds according to the x, r. eh part, where eh is the computation
that we proceed with, in which x is bound to the value of the argument of the operation,
while r is bound to the resumption, which allows us to continue evaluating the handled
computation with a given value in place of the operation. Note that the resumption vc is
again wrapped in the same handler, which is why such handlers are called deep, as opposed

FSCD 2019
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σ ::= . . . | ∆ . τ1⇒τ2

e ::= . . . | do v | handle e {x, r. e; x. e}
E ::= . . . | handle E {x, r. e; x. e}

∆,∆′ ` τ1 :: T ∆,∆′ ` τ2 :: T
∆ ` ∆′ . τ1⇒τ2 :: E

n+ 1−free(E)
n−free(handle E {x, r. eh; x. er})

0−free(E) vc = λ z. handle E[z] {x, r. eh; x. er}
handle E[do v] {x, r. eh; x. er} 7→ eh{v / x}{vc / r}

handle v {x, r. eh; x. er} 7→ er{v / x}

∆; Γ ` v : δ(τ1) / ι ∆ ` δ :: ∆′ ∆ ` ∆′ . τ1⇒τ2 :: E
∆; Γ ` do v : δ(τ2) / (∆′ . τ1⇒τ2)

∆; Γ ` e : τ / (∆′ . τ1⇒τ2) · ρ
∆,∆′; Γ, x : τ1, r : τ2→ρτr ` eh : τr / ρ ∆; Γ, x : τ ` er : τr / ρ

∆; Γ ` handle e {x, r. eh; x. er} : τr / ρ

Figure 7 Calculus of deep handlers.

to shallow handlers discussed in Section 4.1. The second single-step reduction rule is used
when we handle a value. In such a case, the entire handler evaluates to er from the x. er
part, in which x is bound to the handled value.

A single effect in the type system is given as ∆ . τ1⇒τ2, which, intuitively, specifies
the type of the do operation. This means that its argument is of the type τ1, while the
operation applied to an argument can be used in contexts that expect an expression of the
type τ2. Importantly, each effect may bind any number of type variables of appropriate kinds,
denoted by ∆, which means that the effect τ1⇒τ2 can be polymorphic. One example of why
such a feature is useful is the error effect, in which the operation is “raise an exception”.
Since we need to be able to do it regardless of the expected type, such an effect is captured
by α :: T . unit⇒α. For our purposes, such polymorphic effects are needed for the typed
translations between deep handlers and the shift0/reset delimited control operators. Such
polymorphic operations have been considered before, for instance by Kammar et al. [11], and
indeed such an extension to the type system with effects seems rather natural.

The typing rule for the do operation indeed matches the shape of the effect: the argument
is required to have the type τ1 and the entire expression has type τ2. Moreover, we may
pick any type-level substitution δ that is well-formed in ∆, and apply it to both types, thus
instantiating the polymorphic operation. For example, in the error effect, if we want to raise
an exception in a context in which we expect a value of the type int, we instantiate α to int.
Formally, we define the well-formedness of a substitution as

∆ ` δ :: ∆′ 4= dom(δ) = dom(∆′) ∧ ∀α ∈ dom(δ),∆ ` δ(α) :: ∆′(α).

The typing rule for handle e {x, r. eh; x. er} reveals that we handle the first effect in the
row of the handled expression. The overall result of the handler has a type τr, which needs
to be the type of both eh and er. Importantly, the handler needs to be polymorphic in ∆′,
which means that for each particular occurrence of the operation, the expression eh must be
oblivious to the concrete instantiation of the variables of ∆′.
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This type system is sound with respect to the operational semantics, as shown by
the following result, obtained by the standard technique of progress and preservation (cf.
Harper [9], Wright and Felleisen [22]:

I Theorem 1. If ·; · ` e : τ / ι and e→∗ e′ 6→ in the calculus of deep handlers, then there
exists a value v such that e′ = v and ·; · ` v : τ / ι.

One aspect that distinguishes our approach from most calculi for algebraic effects in
the literature is that, for the simplicity of presentation, we have only one operation, do.
Usually, one assumes a number of operations, often grouped in named effects, which is
much more convenient in a programmer-level language, but is not necessary for our semantic
considerations. This is the reason why we include the lift operator [e] in our calculi, since
it allows us to express programs with multiple effects. To see that this is the case, we now
briefly discuss the relationship with multiple effects and multiple operations in an effect.

In most settings with multiple effects, each operation is associated with a particular
effect [2, 13]. Then, operationally, it is assigned to the nearest enclosing handler of this
effect. On the level of types, one then takes the rows ε1 · ε2 · ρ and ε2 · ε1 · ρ as equivalent for
any two distinct effects ε1 and ε2, which allows freely swapping a pair of different effects in
a row. Then, in a typing derivation, one needs to apply enough swaps to move the effect
handled by a particular handler to the front of the row of the handled expression. However,
as shown by Biernacki et al. [2], in a language with the lift operator, we can express a term-
level swap function for any two positions in the row. For example, consider the expression
do 2 + [do ()] : int / ( . int⇒int) · ( . unit⇒int). Then, swapping the first two effects in the
row would yield an expression equivalent to [do 2] + do () : int / ( . unit⇒int) · ( . int⇒int).
This means that our calculus can simulate a multiple-effect setting by manually placing
enough lifts and swaps.

Another issue is the presence of multiple operations in an effect, which are handled
together by a single handler. One can simulate this by tagging the argument of do, in a way
that allows to distinguish between the operations. The difficulty is that different operations
can have different types, depending on the tag. Thus, to simulate multiple operations in an
effect, we could use GADTs, possibly encoded via equality types [23]. This aspect, however,
is orthogonal to the aspects of control that we consider in this paper.

3.2 The shift0 Delimited Control Calculus
The calculus of the shift0 flavour of delimited control is given in Figure 8. It extends the
core calculus with two new syntactic constructs: the shift0 operator and the reset delimiter,
〈e|x. er〉, where the expression e is the delimited computation, while x. er is the “return” part.

Operationally, an expression shift0 k. e aborts the evaluation of the appropriate enclosing
reset, replacing it with the expression e. However, the evaluation of the entire reset is not
all-lost, as it is captured as a continuation bound to the variable k in e. If it happens that
no shift0 is evaluated inside e in 〈e|x. er〉, the value of the entire reset is given by the value
of er in which x is bound to the value of e.

The type-and-effect system is a generalisation of the calculus introduced by [8]. A
single effect ∆ . τ / ρ can intuitively be seen as a specification of the type and effect of
the continuation captured by any shift within the expression. Thus, if we consider the
computation 〈e|x. er〉 and assume it has some type τr and effect row ρr, this type and row
will be preserved as the first effect in the row associated with e. Then, in each shift0 k. es
within e, the expression es is supposed to have this precise type and effect row – after all,
the entire reset is replaced by es, so their types must agree. As a novel feature in our

FSCD 2019
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σ ::= . . . | ∆ . τ / ρ

e ::= . . . | shift0 k. e | 〈e|x. e〉
E ::= . . . | 〈E|x. e〉

∆,∆′ ` τ :: T ∆,∆′ ` ρ :: R
∆ ` ∆′ . τ / ρ :: E

n+ 1−free(E)
n−free(〈E|x. e〉)

0−free(E) vc = λ z. 〈E[z]|x. er〉
〈E[shift0 k. e]|x. er〉 7→ e{vc / k}

〈v|x. e〉 7→ e{v / x}

∆,∆′; Γ, k : τ ′→ρτ ` e : τ / ρ′
∆,∆′ ` ρ′ <: ρ ∆ ` τ ′ :: T ∆ ` (∆′ . τ / ρ) · ρ′ :: R

∆; Γ ` shift0 k. e : τ ′ / (∆′ . τ / ρ) · ρ′

∆ ` δ :: ∆′ ∆; Γ ` e : τ ′ / (∆′ . τ / ρ) · δ(ρ) ∆; Γ, x : τ ′ ` er : δ(τ) / δ(ρ)
∆; Γ ` 〈e|x. er〉 : δ(τ) / δ(ρ)

Figure 8 Calculus of shift0/reset.

calculus, parts of the type and row captured as an effect by the reset may be abstracted:
thus, both τ and ρ in an effect specification might depend on type variables bound by ∆
– by the typing rule in Figure 8 we would have τr = δ(τ), and likewise for ρ. This can be
intuitively understood as akin to existential quantification: the are concrete types known to
a reset are abstracted within its body, but they are not revealed to the shifts within, which
thus have to treat them parametrically, somewhat like an unpack operation.

This novel feature of the system should make us wonder if it is ever practical, particularly
so given the long history of delimited control operators – and we believe it is. As an
example, imagine a library that implements simple exceptions, with the signature given as
two functions, throw : ∀α :: T . unit→εα and try : ∀α :: T . (unit→εα)→α→α,2 for some, as
yet unknown, effect ε. Can we express such a library using shift0 and reset and, if so, what
is the definition of ε? Clearly, throw needs to capture the context and discard it, and try
should delimit the context – but how can throw procure the result it should return? In fact,
it cannot produce such a result directly, since at definition site the type of the result is
unknown – indeed, throw can (and should) be used in multiple contexts, where the return
types expected by try are different.

This is where parametricity comes in. We can have throw capture the context and
return an identity function, which will return whatever value the enclosing try would feed it,
giving us throw () 4= shift0 _. λx. x, which matches the signature given ε 4= α :: T . α→α / ι.
Similarly, we have try th v 4= 〈th ()|x. λ_. x〉 v, which also matches its signature with the
given definition of ε. This simple example shows that this novel form of polymorphism gives us
a certain separation of concerns, where the programmer may write effectful library functions
and eliminate them using other constructs that insert reset delimiters in the appropriate
places, instantiating the polymorphic effect at the same time.

2 The second argument of try denotes the result of the entire expression if the exception was raised; this
example could clearly be generalised, but as an illustration it is sufficient.
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Jshift0 k. eKDH 4= do (λ k. JeKDH)

J〈e|x. er〉KDH 4= handle JeKDH {x, r. x r; x. JerKDH}

J∆ . τ / ρKDH 4= α :: T .
(
∀∆ . (α→JρKDHJτKDH)→JρKDHJτKDH)

⇒α

Figure 9 Shift0 as deep handlers.

Note that our calculus has additional constructs over the usual presentations of shift0 and
reset. In particular, we have the return clause in resets and the lift operator inherited from
the core calculus. However, these constructs can be both macro-expressed in the standard
setting for well-typed programs: the former was shown by Materzok and Biernacki [16], while
the latter is definable as [e] 4= shift0 k. k e.

Like with the deep handlers, we use progress and preservation lemmas to obtain the
following soundness theorem:

I Theorem 2. If ·; · ` e : τ / ι and e→∗ e′ 6→ in the calculus of shift0 and reset, then there
exists a value v such that e′ = v and ·; · ` v : τ / ι.

3.3 Typed Correspondence
We show the typed correspondence of the calculi presented in previous sections by presenting
two local syntax-directed translations between calculi and showing that they preserve types
and semantics. The translations of expressions are simple adaptations of those of Forster et
al. [8], but the novel parts are translations of types and identifying which kind of polymorphism
is required to obtain type preservation.

The translation from the calculus of shift0 to deep handlers is shown in Figure 9. We
only show translations of those parts of the language which need to be “macro expanded”,
i.e., the control constructs shift0 k. e and 〈e|x. er〉 at the level of expressions and the single
effects at the level of types. For other constructs the translation behaves homomorphically:
λ-abstraction is translated to a λ-abstraction, application to an application, etc.

The control operator shift0 performs en effect, so it is translated to do operation. The
body of shift0 operator is expressed as a λ-abstraction and then passed as an argument to
the operation, while a handler is responsible for providing the captured continuation. Indeed,
the translation of reset follows this protocol: reset is turned into a handler which applies an
argument of operation directly to the resumption.

In order to explain the translation of single effects, consider the following example. The
expression 〈E[shift0 k. e]|x. er〉 of type τ0 where E is a 0-free evaluation context, will be
translated into

handle (JEKDH[do (λ k. JeKDH)]) {x, r. x r; x. JerKDH},

so the effect handled by this handler should have the shape ((τ ′→ρτ)→ρτ)⇒τ ′ where
τ = Jτ0KDH and τ ′ is a translation of the type of shift0 k. e expression. The main difficulty
of assigning types to this translation is that type τ ′ is not known by the handler, and can be
different for any of the shift0 constructs, potentially even within the same reset: type τ ′ in a
typing rule of shift0 does not occur in the effect. To solve this problem we use polymorphic
effects and quantify over all possible τ ′ in the translated effect: thus, the result has the shape
of α :: T . ((α→ρτ)→ρτ)⇒α.
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Jdo vKDD 4= shift0 k. λh. h JvKDD (λx. k x h)

Jhandle e {x, r. eh; x. er}KDD 4= 〈JeKDD|x. λh. JerKDD〉 (λx. λ r. JehKDD)

J∆ . τ1⇒τ2KDD 4= α :: T, β :: R .
(
(∀∆ . Jτ1KDD→(Jτ2KDD→βα)→βα)→βα

)
/ β

Figure 10 Deep handlers as shift0.

Polymorphic variables of the delimited-control effect (bound by ∆), behave, intuitively,
as if they were existentially quantified, so they cannot be directly translated as polymorphic
variables of the algebraic effect, which behave akin to universal quantification. Therefore, we
express them as a chain of universal quantifiers on the left-hand-side of an arrow type: thus,
the body of shift0 is polymorphic in ∆.

The translation preserves types and semantics, which is expressed by the following
theorems.

I Theorem 3. If ∆; Γ ` e : τ / ρ in the calculus of shift0, then ∆; JΓKDH ` JeKDH : JτKDH /

JρKDH in the calculus of deep handlers.

I Theorem 4 (after Forster et al.). If e→ e′ in the calculus of shift0, then in the calculus of
deep handlers we have JeKDH →+ Je′KDH.

The translation in the opposite direction is shown in Figure 10 and is slightly more
complex. When the do v construct is reduced in the source language, the control is passed
to the handler. After the translation, the shift0 operator needs to somehow obtain the code
that “handles” the operation: thus, the body of shift0 immediately returns a λ-abstraction
which expects the translated code of the handler as an argument. Therefore, the translation
of the handler is itself more involved: it is translated into a reset applied to the body of the
handler, itself expressed as a function.

Since the translation of a handler is not just a reset, but a reset applied to an argument,
we have to take care about this argument in two places. First, the return clause of a
handler is translated into a λ-abstraction which throws away the handler code. Secondly, the
continuation k captured by the shift0 in the translation of do contains the reset, but does not
contain the handler code. So the resumption passed to the h is not just k, but λx. k x h.

The type part of the translation of an effect ∆ . τ1⇒τ2 is the type of a reset in the
translation of a handler. This reset is a function which expects the translated handler
clause of type ∀∆ . Jτ1KDD→(Jτ2KDD→βα)→βα and returns α, where α is a type of the
entire translated handler expression. The type α and the effect β of translated handler
expression are not known at the site where do is performed, so we quantify over them in the
translated effect, similarly to the previous translation. Now we can show that the translation
preserves types.

I Theorem 5. If ∆; Γ ` e : τ / ρ holds in the calculus of deep handlers, then ∆; JΓKDD `
JeKDD : JτKDD / JρKDD holds in the calculus of shift0.

As noted by Forster et al., we cannot obtain a direct analogue of Theorem 4. Instead, we
let →i be a relation on expressions in target calculus, defined by the following rule

e1 7→ e2

C[e1]→i C[e2]
,
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where C is a general context with one hole, not necessarily in the evaluation position, and
obtain the following theorem.

I Theorem 6 (after Forster et al.). If e → e′ holds in the calculus of deep handlers, then
JeKDD →+

i Je′KDD.

4 Shallow Effect Handlers and Delimited Control

We now turn to the calculi of shallow handlers and control0. While these flavours of operators
are arguably less popular than those studied in the previous section, they are nonetheless
an interesting part of the spectrum of user-defined control operators. In the following, we
formally capture the inter-expressibility of these two forms of delimited control, and comment
on the differences with respect to the translations and results obtained in the case of deep
handlers and shift0.

4.1 Shallow Handler Calculus
Much like in the case of deep handlers, the calculus of shallow handlers is given in Figure 11.
These handlers do not differ syntactically from their deep counterparts: the only difference
lies within their semantics.

The operational semantics proceeds in a fashion that is very similar to the deep handlers:
a do operation matches an enclosing handler using a freeness judgment, and both the value,
and the captured continuation are passed to the handler. The only difference is that the
captured continuation does not contain the handler itself – rather, only the evaluation context
within the handler is captured. This lack of replication is often intuitively explained via the
analogy to the case analysis and recursors, with the deep handlers’ replication of the context
making them behave in a more fold-like fashion [10].

Much like in the case of deep handlers, the calculus has a single effect constructor that
denotes the type of the do operation. However, in addition to the polymorphic quantification
that we have already seen in the previous section, this effect is recursive: it is prefixed with a
form µα, which binds α in the body of the effect as an effect-kinded variable. In both typing
rules, when we access the “input” and “output” types of the effect, we substitute the entire
effect for α in their body, thus effectively performing a single unfolding of the recursive effect.
The only other difference with respect to the type system for the deep handlers lies in the
type of the resumption in the rule for handle: since the resumption does not contain the
handler, its return type is τ rather than τr, and it may still perform the same effect ε.

While recursive effect declarations abound in the literature, we are unaware of a prior
formulation where the recursion is entirely confined to the type level, without making any
appearance at the expression level. Note also that, much like polymorphic effects, the
recursive effects are not necessary to establish soundness of the type system: we use them to
establish inter-expressibility with the calculus of control0.

As with the previous calculi, we prove type soundness via progress and preservation:

I Theorem 7. If ·; · ` e : τ / ι and e→∗ e′ 6→ in the calculus of shallow handlers, then there
exists a value v such that e′ = v and ·; · ` v : τ / ι.

4.2 The control0 Delimited Control Calculus
Finally, we turn to the last of our calculi, the delimited control calculus of control0, presented
in Figure 12. Much like the difference between deep and shallow handlers, the differences
between various delimited control operators are rather subtle. The common intuition refers to
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σ ::= . . . | µα . ∆ . τ1⇒τ2

e ::= . . . | do v | handle e {x, r. e; x. e}
E ::= . . . | handle E {x, r. e; x. e}

∆, α :: E,∆′ ` τ1 :: T
∆, α :: E,∆′ ` τ2 :: T

∆ ` µα . ∆′ . τ1⇒τ2 :: E

n+ 1−free(E)
n−free(handle E {x, r. eh; x. er})

0−free(E)
handle E[do v] {x, r. eh; x. er} 7→ eh{v / x}{λ z. E[z] / r}

handle v {x, r. eh; x. er} 7→ er{v / x}

ε = µα . ∆′ . τ1⇒τ2 δ′ = δ[α 7→ ε]
∆; Γ ` v : δ′(τ1) / ι ∆ ` δ :: ∆′ ∆ ` ε :: E

∆; Γ ` do v : δ′(τ2) / ε

ε = µα . ∆′ . τ1⇒τ2 ∆; Γ ` e : τ / ε · ρ ∆; Γ, x : τ ` er : τr / ρ
∆,∆′; Γ, x : τ1{ε /α}, r : τ2{ε /α}→ε·ρτ ` eh : τr / ρ

∆; Γ ` handle e {x, r. eh; x. er} : τr / ρ

Figure 11 Calculus of shallow handlers with recursive effects.

the treatment of the reset delimiters – see the account of Shan [19] for the complete picture,
including shift and control. In our formulation, we keep the same shape of delimiters equipped
with “return” clauses that we used with shift0, and the control operator has an analogous
form, while the operational semantics changes in the standard way, by not wrapping the
captured continuation with delimiter.

The effect constructor for this calculus is the most complex of the ones we consider. In
addition to the quantified variables (three, in this case: two types and a row) and the effect
being recursive, like the one introduced for shallow effects, the underlying structure also
contains an additional type. This is due to the mismatch between the return type of the
continuation and the type of the expression under the control0 operator: mirroring the case
of shallow effects, this is caused by the fact that the captured continuation discards the
return clause of the delimiter. Thus, leaving out the polymorphic quantifiers, in an effect
τ1 ⇒ τ2 / ρ we have τ1 as the type of the expression within the delimiter and the return type
of the captured continuation, while τ2 as the type of the return clause in the delimiter and
the type of the expression under the control0 operator.

As with the previous calculi, we prove type soundness via progress and preservation:

I Theorem 8. If ·; · ` e : τ / ι and e →∗ e′ 6→ in the calculus of control0 and reset, then
there exists a value v such that e′ = v and ·; · ` v : τ / ι.

4.3 Typed Correspondence
The translation from the control0 calculus to shallow handlers is presented in Figure 13.
Note that the translation on expressions is precisely analogous to the case of shift0 and
deep handlers.
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σ ::= . . . | µα . ∆ . τ ⇒ τ / ρ

e ::= . . . | control0 k. e | 〈e|x. e〉
E ::= . . . | 〈E|x. e〉

∆, α :: E,∆′ ` τ1 :: T
∆, α :: E,∆′ ` τ2 :: T
∆, α :: E,∆′ ` ρ :: R

∆ ` µα . ∆′ . τ1 ⇒ τ2 / ρ :: E

n+ 1−free(E)
n−free(〈E|x. e〉)

0−free(E)
〈E[control0 k. e]|x. er〉 7→ e{λ z. E[z] / k}

〈v|x. e〉 7→ e{v / x}

ε = µα . ∆′ . τ1 ⇒ τ2 / ρ ∆,∆′; Γ, k : τ ′→ε·ρ{ε /α}τ1{ε /α} ` e : τ2{ε /α} / ρ′

∆,∆′ ` ρ′ <: ρ ∆ ` τ ′ :: T ∆ ` ε · ρ′ :: R
∆; Γ ` control0 k. e : τ ′ / ε · ρ′

ε = µα . ∆′ . τ1 ⇒ τ2 / ρ δ′ = δ[α 7→ ε] τe = δ′(τ1) τr = δ′(τ2)
ρr = δ′(ρ) ∆ ` δ :: ∆′ ∆; Γ ` e : τe / ε · ρr ∆; Γ, x : τe ` er : τr / ρr

∆; Γ ` 〈e|x. er〉 : τr / ρr

Figure 12 Calculus of control0 with recursive and polymorphic effects.

The new elements appear in the translation of the effect constructor. Like before, an
effect τ1 ⇒ τ2 / ρ after translation has the shape β :: T . ((β→ρc

τ ′1)→ρ′τ ′2)⇒β, where
the ρc is a translated row of effects of the captured continuation. However, in this case
the captured continuation does not contain the delimiter, so ρc is a nonempty row that
contains the entire translated effect in its head position: this is why we need recursive
effects to type-check the translated expressions. Now, the translated effect has the form
µα . β :: T . ((β→α·ρ′τ ′1)→ρ′τ ′2)⇒β. The translation of polymorphic variables of an effect is
analogous to what we have seen in the case of “deep” control, with variables quantifiers of
the effect turning into universal quantifiers in proper types.

We show the following theorems, which say that the translation preserves both types
and semantics.

I Theorem 9. If ∆; Γ ` e : τ / ρ in the calculus of control0, then ∆; JΓKSH ` JeKSH : JτKDH /

JρKSH in the calculus of shallow handlers.

I Theorem 10. If e→ e′ in the calculus of control0, then in the calculus of shallow handlers
we have JeKSH →+ Je′KSH.

The translation from shallow handlers to the control0 calculus is shown in Figure 14. The
translation for expressions is almost the same as for the deep case with one minor difference:
the continuation captured by control0 does not contain a delimiter, so it can be directly
passed as a resumption to a handler code. The translation also requires recursive effects, for
the same reasons as the translation in the other direction.

The translation preserves types and reduction semantics, as we show in the following
theorems.
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Jcontrol0 k. eKSH 4= do λ k. JeKSH

J〈e|x. er〉KSH 4= handle JeKSH {x, r. x r; x. JerKSH}

Jµα . ∆ . τ1 ⇒ τ2 / ρKSH 4= µα . β :: T .
(
∀∆ . (β→α·JρKSHJτ1KSH)→JρKSHJτ2KSH)

⇒β

Figure 13 The control0 calculus via shallow handlers.

Jdo vKSD 4= control0 k. λh. h JvKSD k

Jhandle e {x, r. eh; x. er}KSD 4= 〈JeKSD|x. λh. JerKSD〉 (λx, r. JehKSD)

Jµα . ∆ . τ1⇒τ2KSD 4=
µα . β1 :: T, β2 :: T, γ :: R . β1 ⇒

(
∀∆ . Jτ1KSD→(Jτ2KSD→α·γβ1)→γβ2

)
→γβ2 / γ

Figure 14 Shallow handlers as shallow delimited control.

I Theorem 11. If ∆; Γ ` e : τ / ρ in the calculus of shallow handlers, then ∆; JΓKSD `
JeKSD : JτKSD / JρKSD in the calculus of control0.

I Theorem 12. If e→ e′ in the calculus of shallow handlers, then in the calculus of control0
we have JeKSD →+ Je′KSD.

Since we do not modify the captured continuation before passing it as a resumption, we are
able to prove Theorem 12 for a reduction in evaluation contexts instead of general contexts.

5 Discussion and Further Work

We have shown how the untyped correspondence between deep effect handlers and shift0,
known from prior work can be extended to the typed setting, given an appropriately expressive
type system. In the process, we have identified a novel type system for the shift0/reset
calculus, in which the shift expressions are parametric in the type and effect. To our
knowledge, such a system has not been considered before in the extensive literature on
delimited control operators, although further work is necessary to explore the relation of our
system to those presently found in literature – one aspect to consider would certainly be
answer-type modification.

At the same time, we believe it is useful to contrast the parametric shift0, which remains
rather difficult to grasp, to the apparently natural move to polymorphic effect handlers,
which indeed have been considered before. We feel that the fact that the effect handlers
give an interpretation to the control effect at the delimiter, rather than at the capture point
– which causes the translations studied in this paper to have to “invert” the direction of
control – may be the reason behind the recent surge in popularity of effect handlers as the
main control abstraction provided by a language, while delimited control operators have
been, throughout their history, somewhat of a niche interest.
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We have also adapted the translations, for both terms and types, to the shallow handlers
and a control0/reset calculus. While the translation for terms is barely different from the
case for deep handlers and shift0, the type systems that are required in order to achieve
inter-expressibility evidence the folklore notion that shallow handlers are “case-like” (while
the deep variant behaves “fold-like”): thus the need for explicit recursion within the effects.

Finally, since we work within a common type-and-effect system with effect rows, we
managed to extend the calculi with both a simple notion of subeffecting and a variant of
Biernacki et al.’s lift operator that allows “masking” effects at the front of the effect row
without any effect on the complexity of the translation.

While this work resolves a conjecture of Forster et al. [8], there remains a wide array of
topics for future work. The most obvious line of work that we chose not to pursue at this
point is answer-type modification [1, 12], which is a common feature of type systems for
delimited control operators. Whether it can be reconciled with the polymorphic effects of our
calculi remains to be investigated: if so, it is certainly interesting to see how it would translate
to the effect handler calculi. Relating our type systems to the monadic representation is
another aspect that would require further attention.
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