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Abstract
Dependency pairs are a key concept at the core of modern automated termination provers for
first-order term rewriting systems. In this paper, we introduce an extension of this technique for
a large class of dependently-typed higher-order rewriting systems. This extends previous results
by Wahlstedt on the one hand and the first author on the other hand to strong normalization and
non-orthogonal rewriting systems. This new criterion is implemented in the type-checker Dedukti.
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1 Introduction

Termination, that is, the absence of infinite computations, is an important problem in
software verification, as well as in logic. In logic, it is often used to prove cut elimination and
consistency. In automated theorem provers and proof assistants, it is often used (together
with confluence) to check decidability of equational theories and type-checking algorithms.

This paper introduces a new termination criterion for a large class of programs whose
operational semantics can be described by higher-order rewriting rules [33] typable in the
λΠ-calculus modulo rewriting (λΠ/R for short). λΠ/R is a system of dependent types where
types are identified modulo the β-reduction of λ-calculus and a set R of rewriting rules given
by the user to define not only functions but also types. It extends Barendregt’s Pure Type
System (PTS) λP [3], the logical framework LF [16] and Martin-Löf’s type theory. It can
encode any functional PTS like System F or the Calculus of Constructions [10].

Dependent types, introduced by de Bruijn in Automath, subsume generalized algebraic
data types (GADT) used in some functional programming languages. They are at the core of
many proof assistants and programming languages: Coq, Twelf, Agda, Lean, Idris, . . .

Our criterion has been implemented in Dedukti, a type-checker for λΠ/R that we will
use in our examples. The code is available in [12] and could be easily adapted to a subset of
other languages like Agda. As far as we know, this tool is the first one to automatically
check termination in λΠ/R, which includes both higher-order rewriting and dependent types.

This criterion is based on dependency pairs, an important concept in the termination
of first-order term rewriting systems. It generalizes the notion of recursive call in first-
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9:2 Dependency Pairs Termination in Dependent Type Theory Modulo Rewriting

order functional programs to rewriting. Namely, the dependency pairs of a rewriting rule
f(l1, . . . , lp) → r are the pairs (f(l1, . . . , lp), g(m1, . . . ,mq)) such that g(m1, . . . ,mq) is a
subterm of r and g is a function symbol defined by some rewriting rules. Dependency pairs
have been introduced by Arts and Giesl [2] and have evolved into a general framework for
termination [13]. It is now at the heart of many state-of-the-art automated termination
provers for first-order rewriting systems and Haskell, Java or C programs.

Dependency pairs have been extended to different simply-typed settings for higher-order
rewriting: Combinatory Reduction Systems [23] and Higher-order Rewriting Systems [29],
with two different approaches: dynamic dependency pairs include variable applications [24],
while static dependency pairs exclude them by slightly restricting the class of systems that
can be considered [25]. Here, we use the static approach.

In [37], Wahlstedt considered a system slightly less general than λΠ/R for which he
provided conditions that imply the weak normalization, that is, the existence of a finite
reduction to normal form. In his system, R uses matching on constructors only, like in
the languages OCaml or Haskell. In this case, R is orthogonal: rules are left-linear (no
variable occurs twice in a left-hand side) and have no critical pairs (no two rule left-hand side
instances overlap). Wahlstedt’s proof proceeds in two modular steps. First, he proves that
typable terms have a normal form if there is no infinite sequence of function calls. Second,
he proves that there is no infinite sequence of function calls if R satisfies Lee, Jones and
Ben-Amram’s size-change termination criterion (SCT) [26].

In this paper, we extend Wahlstedt’s results in two directions. First, we prove a stronger
normalization property: the absence of infinite reductions. Second, we assume that R is
locally confluent, a much weaker condition than orthogonality: rules can be non-left-linear
and have joinable critical pairs.

In [5], the first author developed a termination criterion for a calculus slightly more
general than λΠ/R, based on the notion of computability closure, assuming that type-level
rules are orthogonal. The computability closure of a term f(l1, . . . , lp) is a set of terms that
terminate whenever l1, . . . , lp terminate. It is defined inductively thanks to deduction rules
preserving this property, using a precedence and a fixed well-founded ordering for dealing
with function calls. Termination can then be enforced by requiring each rule right-hand side
to belong to the computability closure of its corresponding left-hand side.

We extend this work as well by replacing that fixed ordering by the dependency pair
relation. In [5], there must be a decrease in every function call. Using dependency pairs
allows one to have non-strict decreases. Then, following Wahlstedt, SCT can be used to
enforce the absence of infinite sequence of dependency pairs. But other criteria have been
developed for this purpose that could be adapted to λΠ/R.

Outline
The main result is Theorem 11 stating that, for a large class of rewriting systems R, the
combination of β and R is strongly normalizing on terms typable in λΠ/R if, roughly
speaking, there is no infinite sequence of dependency pairs.

The proof involves two steps. First, after recalling the terms and types of λΠ/R in
Section 2, we introduce in Section 3 a model of this calculus based on Girard’s reducibility
candidates [15], and prove that every typable term is strongly normalizing if every symbol of
the signature is in the interpretation of its type (Adequacy lemma). Second, in Section 4, we
introduce our notion of dependency pair and prove that every symbol of the signature is in
the interpretation of its type if there is no infinite sequence of dependency pairs.
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In order to show the usefulness of this result, we give simple criteria for checking the
conditions of the theorem. In Section 5, we show that plain function passing systems belong
to the class of systems that we consider. And in Section 6, we show how to use size-change
termination to obtain the termination of the dependency pair relation.

Finally, in Section 7 we compare our criterion with other criteria and tools and, in Section
8, we summarize our results and give some hints on possible extensions.

For lack of space, some proofs are given in an appendix at the end of the paper.

2 Terms and types

The set T of terms of λΠ/R is the same as those of Barendregt’s λP [3]:

t ∈ T = s ∈ S | x ∈ V | f ∈ F | ∀x : t, t | tt | λx : t, t

where S = {TYPE,KIND} is the set of sorts1, V is an infinite set of variables and F is a set of
function symbols, so that S, V and F are pairwise disjoint.

Furthermore, we assume given a set R of rules l→ r such that FV(r) ⊆ FV(l) and l is of
the form f~l. A symbol f is said to be defined if there is a rule of the form f~l→ r. In this
paper, we are interested in the termination of

→ =→β ∪ →R

where →β is the β-reduction of λ-calculus and →R is the smallest relation containing R
and closed by substitution and context: we consider rewriting with syntactic matching only.
Following [6], it should however be possible to extend the present results to rewriting with
matching modulo βη or some equational theory. Let SN be the set of terminating terms and,
given a term t, let →(t) = {u ∈ T | t→ u} be the set of immediate reducts of t.

A typing environment Γ is a (possibly empty) sequence x1 : T1, . . . , xn : Tn of pairs of
variables and terms, where the variables are distinct, written ~x : ~T for short. Given an
environment Γ = ~x : ~T and a term U , let ∀Γ, U be ∀~x : ~T , U . The product arity ar(T ) of a
term T is the integer n ∈ N such that T = ∀x1 : T1, . . .∀xn : Tn, U and U is not a product.
Let ~t denote a possibly empty sequence of terms t1, . . . , tn of length |~t| = n, and FV(t) be
the set of free variables of t.

For each f ∈ F, we assume given a term Θf and a sort sf , and let Γf be the environment
such that Θf = ∀Γf , U and |Γf | = ar(Θf ).

The application of a substitution σ to a term t is written tσ. Given a substitution σ,
let dom(σ) = {x|xσ 6= x}, FV(σ) =

⋃
x∈dom(σ) FV(xσ) and [x 7→ a, σ] ([x 7→ a] if σ is the

identity) be the substitution {(x, a)} ∪ {(y, b) ∈ σ | y 6= x}. Given another substitution σ′,
let σ → σ′ if there is x such that xσ → xσ′ and, for all y 6= x, yσ = yσ′.

The typing rules of λΠ/R, in Figure 1, add to those of λP the rule (fun) similar to
(var). Moreover, (conv) uses ↓ instead of ↓β , where ↓ = →∗ ∗← is the joinability relation
and →∗ the reflexive and transitive closure of →. We say that t has type T in Γ if Γ ` t : T
is derivable. A substitution σ is well-typed from ∆ to Γ, written Γ ` σ : ∆, if, for all
(x : T ) ∈ ∆, Γ ` xσ : Tσ holds.

The word “type” is used to denote a term occurring at the right-hand side of a colon in
a typing judgment (and we usually use capital letters for types). Hence, KIND is the type
of TYPE, Θf is the type of f , and sf is the type of Θf . Common data types like natural
numbers N are usually declared in λΠ as function symbols of type TYPE: ΘN = TYPE and
sN = KIND.

1 Sorts refer here to the notion of sort in Pure Type Systems, not the one used in some first-order settings.

FSCD 2019
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(ax) ` TYPE : KIND

(var)
Γ ` A : s x /∈ dom(Γ)

Γ, x : A ` x : A

(weak)
Γ ` A : s Γ ` b : B x /∈ dom(Γ)

Γ, x : A ` b : B

(prod)
Γ ` A : TYPE Γ, x : A ` B : s

Γ ` (x : A)B : s

(abs)
Γ, x : A ` b : B Γ ` (x : A)B : s

Γ ` λx : A.b : (x : A)B

(app)
Γ ` t : (x : A)B Γ ` a : A

Γ ` ta : B[x 7→ a]

(conv)
Γ ` a : A A ↓ B Γ ` B : s

Γ ` a : B

(fun)
` Θf : sf

` f : Θf

Figure 1 Typing rules of λΠ/R.

The dependent product ∀x : A,B generalizes the arrow type A ⇒ B of simply-typed
λ-calculus: it is the type of functions taking an argument x of type A and returning a
term whose type B may depend on x. If B does not depend on x, we sometimes simply
write A⇒ B.

Typing induces a hierarchy on terms [4, Lemma 47]. At the top, there is the sort KIND that
is not typable. Then, comes the class K of kinds, whose type is KIND: K = TYPE | ∀x : t,K
where t ∈ T. Then, comes the class of predicates, whose types are kinds. Finally, at the
bottom lie (proof) objects whose types are predicates.

I Example 1 (Filter function on dependent lists). To illustrate the kind of systems we consider,
we give an extensive example in the new Dedukti syntax combining type-level rewriting rules
(El converts datatype codes into Dedukti types), dependent types (L is the polymorphic
type of lists parameterized with their length), higher-order variables (fil is a function
filtering elements out of a list along a boolean function f), and matching on defined function
symbols (fil can match a list defined by concatenation). Note that this example cannot be
represented in Coq or Agda because of the rules using matching on app. And its termination
can be handled neither by [37] nor by [5] because the system is not orthogonal and has no
strict decrease in every recursive call. It can however be handled by our new termination
criterion and its implementation [12]. For readability, we removed the & which are used to
identify pattern variables in the rewriting rules.
symbol Set: TYPE symbol arrow: Set ⇒ Set ⇒ Set

symbol El: Set ⇒ TYPE rule El (arrow a b) → El a ⇒ El b

symbol Bool: TYPE symbol true: Bool symbol false: Bool
symbol Nat: TYPE symbol zero: Nat symbol s: Nat ⇒ Nat

symbol plus: Nat ⇒ Nat ⇒Nat set infix 1 "+" := plus
rule zero + q → q rule (s p) + q → s (p + q)

symbol List: Set ⇒ Nat ⇒ TYPE
symbol nil: ∀a, List a zero
symbol cons:∀a, El a ⇒ ∀p, List a p ⇒ List a (s p)

symbol app: ∀a p, List a p ⇒ ∀q, List a q ⇒ List a (p+q)
rule app a _ (nil _) q m → m
rule app a _ (cons _ x p l) q m → cons a x (p+q) (app a p l q m)

symbol len_fil: ∀a, (El a ⇒ Bool) ⇒ ∀p, List a p ⇒ Nat
symbol len_fil_aux: Bool ⇒ ∀a, (El a ⇒ Bool) ⇒ ∀p, List a p ⇒ Nat
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rule len_fil a f _ (nil _) → zero
rule len_fil a f _ (cons _ x p l) → len_fil_aux (f x) a f p l
rule len_fil a f _ (app _ p l q m)

→ ( len_fil a f p l) + ( len_fil a f q m)
rule len_fil_aux true a f p l → s ( len_fil a f p l)
rule len_fil_aux false a f p l → len_fil a f p l

symbol fil: ∀a f p l, List a ( len_fil a f p l)
symbol fil_aux: ∀b a f, El a ⇒ ∀p l, List a ( len_fil_aux b a f p l)

rule fil a f _ (nil _) → nil a
rule fil a f _ (cons _ x p l) → fil_aux (f x) a f x p l
rule fil a f _ (app _ p l q m)

→ app a ( len_fil a f p l) (fil a f p l)
( len_fil a f q m) (fil a f q m)

rule fil_aux false a f x p l → fil a f p l
rule fil_aux true a f x p l

→ cons a x ( len_fil a f p l) (fil a f p l)

Assumptions. Throughout the paper, we assume that → is locally confluent (←→ ⊆ ↓)
and preserves typing (for all Γ, A, t and u, if Γ ` t : A and t→ u, then Γ ` u : A).

Note that local confluence implies that every t ∈ SN has a unique normal form t↓.
These assumptions are used in the interpretation of types (Definition 2) and the adequacy

lemma (Lemma 5). Both properties are undecidable in general. For confluence, Dedukti
can call confluence checkers that understand the HRS format of the confluence competition.
For preservation of typing by reduction, it implements an heuristic [31].

3 Interpretation of types as reducibility candidates

We aim to prove the termination of the union of two relations, →β and →R, on the set of
well-typed terms (which depends on R since ↓ includes →R). As is well known, termination
is not modular in general. As a β step can generate an R step, and vice versa, we cannot
expect to prove the termination of →β ∪→R from the termination of →β and →R. The
termination of λΠ/R cannot be reduced to the termination of the simply-typed λ-calculus
either (as done for λΠ alone in [16]) because of type-level rewriting rules like the ones defining
El in Example 1. Indeed, type-level rules enable the encoding of functional PTS like Girard’s
System F, whose termination cannot be reduced to the termination of the simply-typed
λ-calculus [10].

So, following Girard [15], to prove the termination of →β ∪ →R, we build a model of our
calculus by interpreting types into sets of terminating terms. To this end, we need to find an
interpretation J K having the following properties:

Because types are identified modulo conversion, we need J K to be invariant by reduction:
if T is typable and T → T ′, then we must have JT K = JT ′K.
As usual, to handle β-reduction, we need a product type ∀x : A,B to be interpreted by
the set of terms t such that, for all a in the interpretation of A, ta is in the interpretation
of B[x 7→ a], that is, we must have J∀x : A,BK = Πa ∈ JAK. JB[x 7→ a]K where Πa ∈
P.Q(a) = {t | ∀a ∈ P, ta ∈ Q(a)}.

First, we define the interpretation of predicates (and TYPE) as the least fixpoint of a
monotone function in a directed-complete (= chain-complete) partial order [28]. Second, we
define the interpretation of kinds by induction on their size.

FSCD 2019
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9:6 Dependency Pairs Termination in Dependent Type Theory Modulo Rewriting

I Definition 2 (Interpretation of types). Let I = Fp(T,P(T)) be the set of partial functions
from T to the powerset of T. It is directed-complete wrt inclusion, allowing us to define I as
the least fixpoint of the monotone function F : I→ I such that, if I ∈ I, then:

The domain of F (I) is the set D(I) of all the terminating terms T such that, if T reduces
to some product term ∀x : A,B (not necessarily in normal form), then A ∈ dom(I) and,
for all a ∈ I(A), B[x 7→ a] ∈ dom(I).
If T ∈ D(I) and the normal form2 of T is not a product, then F (I)(T ) = SN.
If T ∈ D(I) and T↓ = ∀x : A,B, then F (I)(T ) = Πa∈I(A). I(B[x 7→ a]).

We now introduce D = D(I) and define the interpretation of a term T wrt to a substitution
σ, JT Kσ (and simply JT K if σ is the identity), as follows:

JsKσ = D if s ∈ S,
J∀x : A,KKσ = Πa∈ JAKσ. JKK[x 7→a,σ] if K ∈ K and x /∈ dom(σ),
JT Kσ = I(Tσ) if T /∈ K ∪ {KIND} and Tσ ∈ D,
JT Kσ = SN otherwise.

A substitution σ is adequate wrt an environment Γ, σ |= Γ, if, for all x : A ∈ Γ, xσ ∈ JAKσ.
A typing map Θ is adequate if, for all f , f ∈ JΘf K whenever ` Θf : sf and Θf ∈ Jsf K.

Let C be the set of terms of the form f~t such that |~t| = ar(Θf ), ` Θf : sf , Θf ∈ Jsf K and,
if Γf = ~x : ~A and σ = [~x 7→ ~t], then σ |= Γf . (Informally, C is the set of terms obtained by
fully applying some function symbol to computable arguments.)

We can then prove that, for all terms T , JT K satisfies Girard’s conditions of reducibility
candidates, called computability predicates here, adapted to rewriting by including in neutral
terms every term of the form f~t when f is applied to enough arguments wrt R [5]:

I Definition 3 (Computability predicates). A term is neutral if it is of the form (λx : A, t)u~v,
x~v or f~v with, for every rule f~l→ r ∈ R, |~l| ≤ |~v|.

Let P be the set of all the sets of terms S (computability predicates) such that (a) S ⊆ SN,
(b) →(S) ⊆ S, and (c) t ∈ S if t is neutral and →(t) ⊆ S.

Note that neutral terms satisfy the following key property: if t is neutral then, for all u,
tu is neutral and every reduct of tu is either of the form t′u with t′ a reduct of t, or of the
form tu′ with u′ a reduct of u.

One can easily check that SN is a computability predicate.
Note also that a computability predicate is never empty: it contains every neutral term

in normal form. In particular, it contains every variable.
We then get the following results (the proofs are given in Appendix A):

I Lemma 4.
(a) For all terms T and substitutions σ, JT Kσ ∈ P.
(b) If T is typable, Tσ ∈ D and T → T ′, then JT Kσ = JT ′Kσ.
(c) If T is typable, Tσ ∈ D and σ → σ′, then JT Kσ = JT Kσ′ .
(d) If ∀x : A,B is typable and ∀x : Aσ,Bσ ∈ D,

then J∀x : A,BKσ = Πa∈ JAKσ. JBK[x 7→a,σ].
(e) If ∆ ` U : s, Γ ` γ : ∆ and Uγσ ∈ D, then JUγKσ = JUKγσ.
(f) Given P ∈ P and, for all a ∈ P , Q(a) ∈ P such that Q(a′) ⊆ Q(a) if a → a′. Then,

λx : A, b ∈ Πa∈P.Q(a) if A ∈ SN and, for all a ∈ P , b[x 7→ a] ∈ Q(a).

We can finally prove that our model is adequate, that is, every term of type T belongs to
JT K, if the typing map Θ itself is adequate. This reduces the termination of well-typed terms
to the computability of function symbols.

2 Because we assume local confluence, every terminating term T has a unique normal form T↓.
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I Lemma 5 (Adequacy). If Θ is adequate, Γ ` t : T and σ |= Γ, then tσ ∈ JT Kσ.

Proof. First note that, if Γ ` t : T , then either T = KIND or Γ ` T : s [4, Lemma 28].
Moreover, if Γ ` a : A, A ↓ B and Γ ` B : s (the premises of the (conv) rule), then Γ ` A : s
[4, Lemma 42] (because → preserves typing). Hence, the relation ` is unchanged if one
adds the premise Γ ` A : s in (conv), giving the rule (conv’). Similarly, we add the premise
Γ ` ∀x : A,B : s in (app), giving the rule (app’). We now prove the lemma by induction on
Γ ` t : T using (app’) and (conv’):
(ax) It is immediate that TYPE ∈ JKINDKσ = D.
(var) By assumption on σ.
(weak) If σ |= Γ, x : A, then σ |= Γ. So, the result follows by induction hypothesis.
(prod) Is (∀x : A,B)σ in JsKσ = D? Wlog we can assume x /∈ dom(σ) ∪ FV(σ). So,

(∀x : A,B)σ = ∀x : Aσ,Bσ. By induction hypothesis, Aσ ∈ JTYPEKσ = D. Let now a ∈
I(Aσ) and σ′ = [x 7→ a, σ]. Note that I(Aσ) = JAKσ. So, σ′ |= Γ, x : A and, by induction
hypothesis, Bσ′ ∈ JsKσ = D. Since x /∈ dom(σ) ∪ FV(σ), we have Bσ′ = (Bσ)[x 7→ a].
Therefore, (∀x : A,B)σ ∈ JsKσ.

(abs) Is (λx : A, b)σ in J∀x : A,BKσ? Wlog we can assume that x /∈ dom(σ) ∪ FV(σ).
So, (λx : A, b)σ = λx : Aσ, bσ. By Lemma 4d, J∀x : A,BKσ = Πa ∈ JAKσ. JBK[x7→a,σ].
By Lemma 4c, JBK[x7→a,σ] is an JAKσ-indexed family of computability predicates such
that JBK[x 7→a′,σ] = JBK[x7→a,σ] whenever a → a′. Hence, by Lemma 4f, λx : Aσ, bσ ∈
J∀x : A,BKσ if Aσ ∈ SN and, for all a ∈ JAKσ, (bσ)[x 7→ a] ∈ JBKσ′ where σ′ = [x 7→
a, σ]. By induction hypothesis, (∀x : A,B)σ ∈ JsKσ = D. Since x /∈ dom(σ) ∪ FV(σ),
(∀x : A,B)σ = ∀x : Aσ,Bσ and (bσ)[x 7→ a] = bσ′. Since D ⊆ SN, we have Aσ ∈ SN.
Moreover, since σ′ |= Γ, x : A, we have bσ′ ∈ JBKσ′ by induction hypothesis.

(app’) Is (ta)σ = (tσ)(aσ) in JB[x 7→ a]Kσ? By induction hypothesis, tσ ∈ J∀x : A,BKσ, aσ ∈
JAKσ and (∀x : A,B)σ ∈ JsK = D. By Lemma 4d, J∀x : A,BKσ = Πα∈ JAKσ. JBK[x 7→α,σ].
Hence, (tσ)(aσ) ∈ JBKσ′ where σ′ = [x 7→ aσ, σ]. Wlog we can assume x /∈ dom(σ) ∪
FV(σ). So, σ′ = [x 7→ a]σ. Hence, by Lemma 4e, JBKσ′ = JB[x 7→ a]Kσ.

(conv’) By induction hypothesis, aσ ∈ JAKσ, Aσ ∈ JsKσ = D and Bσ ∈ JsKσ = D. By
Lemma 4b, JAKσ = JBKσ. So, aσ ∈ JBKσ.

(fun) By induction hypothesis, Θf ∈ Jsf Kσ = D. Therefore, f ∈ JΘf Kσ = JΘf K since Θ is
adequate. J

4 Dependency pairs theorem

Now, we prove that the adequacy of Θ can be reduced to the absence of infinite sequences of
dependency pairs, as shown by Arts and Giesl for first-order rewriting [2].

I Definition 6 (Dependency pairs). Let f~l > g ~m iff there is a rule f~l→ r ∈ R, g is defined
and g ~m is a subterm of r such that ~m are all the arguments to which g is applied. The
relation > is the set of dependency pairs.

Let >̃ = →∗arg>s be the relation on the set C (Def. 2), where f~t →arg f~u iff ~t →prod ~u

(reduction in one argument), and >s is the closure by substitution and left-application of >:
ft1 . . . tp >̃ gu1 . . . uq iff there are a dependency pair fl1 . . . li > gm1 . . .mj with i ≤ p and
j ≤ q and a substitution σ such that, for all k ≤ i, tk →∗ lkσ and, for all k ≤ j, mkσ = uk.

In our setting, we have to close >s by left-application because function symbols are
curried. When a function symbol f is not fully applied wrt ar(Θf ), the missing arguments
must be considered as potentially being anything. Indeed, the following rewriting system:

FSCD 2019



9:8 Dependency Pairs Termination in Dependent Type Theory Modulo Rewriting

app x y → x y f x y → app (f x) y

whose dependency pairs are f x y > app (f x) y and f x y > f x, does not terminate,
but there is no way to construct an infinite sequence of dependency pairs without adding an
argument to the right-hand side of the second dependency pair.

I Example 7. The rules of Example 1 have the following dependency pairs (the pairs whose
left-hand side is headed by fil or fil_aux can be found in Appendix B):
A: El (arrow a b) > El a
B: El (arrow a b) > El b
C: (s p) + q > p + q
D: app a _ (cons _ x p l) q m > p + q
E: app a _ (cons _ x p l) q m > app a p l q m
F:len_fil a f _ (cons _ x p l) > len_fil_aux (f x) a f p l
G:len_fil a f _ (app _ p l q m) >

( len_fil a f p l) + ( len_fil a f q m)
H:len_fil a f _ (app _ p l q m) > len_fil a f p l
I:len_fil a f _ (app _ p l q m) > len_fil a f q m
J: len_fil_aux true a f p l > len_fil a f p l
K: len_fil_aux false a f p l > len_fil a f p l

In [2], a sequence of dependency pairs interleaved with →arg steps is called a chain. Arts
and Giesl proved that, in a first-order term algebra, →R terminates if and only if there are
no infinite chains, that is, if and only if >̃ terminates. Moreover, in a first-order term algebra,
>̃ terminates if and only if, for all f and ~t, f~t terminates wrt >̃ whenever ~t terminates wrt
→. In our framework, this last condition is similar to saying that Θ is adequate.

We now introduce the class of systems to which we will extend Arts and Giesl’s theorem.

I Definition 8 (Well-structured system). Let � be the smallest quasi-order on F such that
f � g if g occurs in Θf or if there is a rule f~l → r ∈ R with g (defined or undefined)
occurring in r. Then, let � = � \ � be the strict part of �. A rewriting system R is
well-structured if:
(a) � is well-founded;
(b) for every rule f~l→ r, |~l| ≤ ar(Θf );
(c) for every dependency pair f~l > g~m, |~m| ≤ ar(Θg);
(d) every rule f~l→ r is equipped with an environment ∆f~l→r such that, if Θf = ∀~x : ~T , U

and π = [~x 7→ ~l], then ∆f~l→r f̀~l r : Uπ, where f̀~l is the restriction of ` defined in Fig. 2.

Condition (a) is always satisfied when F is finite. Condition (b) ensures that a term of
the form f~t is neutral whenever |~t| = ar(Θf ). Condition (c) ensures that > is included in >̃.

The relation f̀~l corresponds to the notion of computability closure in [5], with the ordering
on function calls replaced by the dependency pair relation. It is similar to ` except that it
uses the variant of (conv) and (app) used in the proof of the adequacy lemma; (fun) is split
in the rules (const) for undefined symbols and (dp) for dependency pairs whose left-hand side
is f~l; every type occurring in an object term or every type of a function symbol occurring in
a term is required to be typable by using symbols smaller than f only.

The environment ∆f~l→r can be inferred by Dedukti when one restricts rule left hand-sides
to some well-behaved class of terms like algebraic terms or Miller patterns (in λProlog).

One can check that Example 1 is well-structured (the proof is given in Appendix B).
Finally, we need matching to be compatible with computability, that is, if f~l → r ∈ R

and ~lσ are computable, then σ is computable, a condition called accessibility in [5]:
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(ax)
f̀~l TYPE : KIND

(var)
Γ ≺̀f A : s x /∈ dom(Γ)

Γ, x : A f̀~l x : A

(weak)
Γ ≺̀f A : s Γ f̀~l b : B x /∈ dom(Γ)

Γ, x : A f̀~l b : B

(prod)
Γ f̀~l A : TYPE Γ, x : A f̀~l B : s

Γ f̀~l ∀x : A,B : s

(abs)
Γ, x : A f̀~l b : B Γ ≺̀f ∀x : A,B : s

Γ f̀~l λx : A, b : ∀x : A,B

(app’)
Γ f̀~l t : ∀x : A,B Γ f̀~l a : A Γ ≺̀f ∀x : A,B : s

Γ f̀~l ta : B[x 7→ a]

(conv’)
Γ f̀~l a : A A ↓ B Γ ≺̀f B : s Γ ≺̀f A : s

Γ f̀~l a : B

(dp)
≺̀f Θg : sg Γ f̀~l γ : Σ

Γ f̀~l g~yγ : V γ (Θg = (∀~y : ~U, V ),Σ = ~y : ~U, g~yγ < f~l)

(const) ≺̀f Θg : sg

f̀~l g : Θg
(g undefined)

and ≺̀f is defined

by the same rules as `, except (fun) replaced by:

(fun≺f )
≺̀f Θg : sg g ≺ f

≺̀f g : Θg

Figure 2 Restricted type systems f̀~l and ≺̀f .

I Definition 9 (Accessible system). A well-structured system R is accessible if, for all
substitutions σ and rules f~l → r with Θf = ∀~x : ~T , U and |~x| = |~l|, we have σ |= ∆f~l→r

whenever ` Θf : sf , Θf ∈ Jsf K and [~x 7→ ~l]σ |= ~x : ~T .

This property is not always satisfied because the subterm relation does not preserve
computability in general. Indeed, if C is an undefined type constant, then JCK = SN.
However, JC ⇒ CK 6= SN since ω = λx : C, xx ∈ SN and ωω /∈ SN. Hence, if c is an
undefined function symbol of type Θc = (C ⇒ C)⇒ C, then c ω ∈ JCK but ω /∈ JC ⇒ CK.

We can now state the main lemma:

I Lemma 10. Θ is adequate if >̃ terminates and R is well-structured and accessible.

Proof. Since R is well-structured, � is well-founded by condition (a). We prove that,
for all f ∈ F, f ∈ JΘf K, by induction on �. So, let f ∈ F with Θf = ∀Γf , U and
Γf = x1 : T1, . . . , xn : Tn. By induction hypothesis, we have that, for all g ≺ f , g ∈ JΘgK.

Since →arg and >̃ terminate on C and →arg >̃ ⊆ >̃, we have that →arg ∪ >̃ terminates.
We now prove that, for all f~t ∈ C, we have f~t ∈ JUKθ where θ = [~x 7→ ~t], by a second
induction on→arg ∪ >̃. By condition (b), f~t is neutral. Hence, by definition of computability,
it suffices to prove that, for all u ∈ →(f~t), u ∈ JUKθ. There are 2 cases:

u = f~v with ~t→prod ~v. Then, we can conclude by the first induction hypothesis.
There are fl1 . . . lk → r ∈ R and σ such that u = (rσ)tk+1 . . . tn and, for all i ∈ {1, . . . , k},
ti = liσ. Since f~t ∈ C, we have πσ |= Γf . Since R is accessible, we get that σ |= ∆f~l→r.
By condition (d), we have ∆f~l→r f̀~l r : V π where V = ∀xk+1 : Tk+1, . . .∀xn : Tn, U .
Now, we prove that, for all Γ, t and T , if Γ f̀~l t : T (Γ ≺̀f t : T resp.) and σ |= Γ,
then tσ ∈ JT Kσ, by a third induction on the structure of the derivation of Γ f̀~l t : T
(Γ ≺̀f t : T resp.), as in the proof of Lemma 5 except for (fun) replaced by (fun≺f ) in
one case, and (const) and (dp) in the other case.
(fun≺f ) We have g ∈ JΘgK by the first induction hypothesis on g.

FSCD 2019



9:10 Dependency Pairs Termination in Dependent Type Theory Modulo Rewriting

(const) Since g is undefined, it is neutral and normal. Therefore, it belongs to every
computability predicate and in particular to JΘgKσ.

(dp) By the third induction hypothesis, yiγσ ∈ JUiγKσ. By Lemma 4e, JUiγKσ = JUiKγσ.
So, γσ |= Σ and g~yγσ ∈ C. Now, by condition (c), g~yγσ<̃f~lσ since g~yγ < f~l.
Therefore, by the second induction hypothesis, g~yγσ ∈ JV γKσ.

So, rσ ∈ JV πKσ and, by Lemma 4d, u ∈ JUK[xn 7→tn,..,xk+1 7→tk+1,πσ] = JUKθ. J

Note that the proof still works if one replaces the relation � of Definition 8 by any
well-founded quasi-order such that f � g whenever f~l > g~m. The quasi-order of Definition
8, defined syntactically, relieves the user of the burden of providing one and is sufficient in
every practical case met by the authors. However it is possible to construct ad-hoc systems
which require a quasi-order richer than the one presented here.

By combining the previous lemma and the Adequacy lemma (the identity substitution is
computable), we get the main result of the paper:

I Theorem 11. The relation → =→β ∪→R terminates on terms typable in λΠ/R if → is
locally confluent and preserves typing, R is well-structured and accessible, and >̃ terminates.

For the sake of completeness, we are now going to give sufficient conditions for accessibility
and termination of >̃ to hold, but one could imagine many other criteria.

5 Checking accessibility

In this section, we give a simple condition to ensure accessibility and some hints on how to
modify the interpretation when this condition is not satisfied.

As seen with the definition of accessibility, the main problem is to deal with subterms
of higher-order type. A simple condition is to require higher-order variables to be direct
subterms of the left-hand side, a condition called plain function-passing (PFP) in [25], and
satisfied by Example 1.

I Definition 12 (PFP systems). A well-structured R is PFP if, for all f~l → r ∈ R with
Θf = ∀~x : ~T , U and |~x| = |~l|, ~l /∈ K ∪ {KIND} and, for all y : T ∈ ∆f~l→r, there is i such that
y = li and T = Ti[~x 7→ ~l], or else y ∈ FV(li) and T = D~t with D undefined and |~t| = ar(D).

I Lemma 13. PFP systems are accessible.

Proof. Let f~l → r be a PFP rule with Θf = ∀Γ, U , Γ = ~x : ~T , π = [~x 7→ ~l]. Following
Definition 9, assume that ` Θf : sf , Θf ∈ D and πσ |= Γ. We have to prove that, for all
(y : T ) ∈ ∆f~l→r, yσ ∈ JT Kσ.

Suppose y = li and T = Tiπ. Then, yσ = liσ ∈ JTiKπσ. Since ` Θf : sf , Ti /∈ K∪{KIND}.
Since Θf ∈ D and πσ |= Γ, we have Tiπσ ∈ D. So, JTiKπσ = I(Tiπσ). Since Ti /∈
K∪ {KIND} and ~l /∈ K∪ {KIND}, Tiπ /∈ K∪ {KIND}. Since Tiπσ ∈ D, JTiπKσ = I(Tiπσ).
Thus, yσ ∈ JT Kσ.
Suppose y ∈ FV(li) and T is of the form C~t with |~t| = ar(C). Then, JT Kσ = SN and
yσ ∈ SN since liσ ∈ JTiKσ ⊆ SN. J

But many accessible systems are not PFP. They can be proved accessible by changing
the interpretation of type constants (a complete development is left for future work).
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I Example 14 (Recursor on Brouwer ordinals).

symbol Ord: TYPE
symbol zero: Ord symbol suc: Ord⇒Ord symbol lim: (Nat⇒Ord)⇒Ord

symbol ordrec: A⇒(Ord⇒A⇒A)⇒(( Nat⇒Ord)⇒(Nat⇒A)⇒A)⇒Ord⇒A
rule ordrec u v w zero → u
rule ordrec u v w (suc x) → v x ( ordrec u v w x)
rule ordrec u v w (lim f) → w f (λn, ordrec u v w (f n))

The above example is not PFP because f:Nat⇒Ord is not argument of ordrec. Yet,
it is accessible if one takes for JOrdK the least fixpoint of the monotone function F (S) =
{t ∈ SN |if t→∗ lim f then f ∈ JNatK⇒ S, and if t→∗ sucu then u ∈ S} [5].

Similarly, the following encoding of the simply-typed λ-calculus is not PFP but can be
proved accessible by taking

JT cK = if c↓ = arrow a b then {t ∈ SN | if t→∗ lamf then f ∈ JT aK⇒ JT bK} else SN

I Example 15 (Simply-typed λ-calculus).

symbol Sort : TYPE symbol arrow : Sort ⇒ Sort ⇒ Sort

symbol T : Sort ⇒ TYPE
symbol lam : ∀ a b, (T a ⇒ T b) ⇒ T (arrow a b)
symbol app : ∀ a b, T (arrow a b) ⇒ T a ⇒ T b
rule app a b (lam _ _ f) x → f x

6 Size-change termination

In this section, we give a sufficient condition for >̃ to terminate. For first-order rewriting,
many techniques have been developed for that purpose. To cite just a few, see for instance
[17, 14]. Many of them can probably be extended to λΠ/R, either because the structure of
terms in which they are expressed can be abstracted away, or because they can be extended
to deal also with variable applications, λ-abstractions and β-reductions.

As an example, following Wahlstedt [37], we are going to use Lee, Jones and Ben-Amram’s
size-change termination criterion (SCT) [26]. It consists in following arguments along function
calls and checking that, in every potential loop, one of them decreases. First introduced for
first-order functional languages, it has then been extended to many other settings: untyped
λ-calculus [21], a subset of OCaml [32], Martin-Löf’s type theory [37], System F [27].

We first recall Hyvernat and Raffalli’s matrix-based presentation of SCT [20]:

I Definition 16 (Size-change termination). Let B be the smallest transitive relation such that
ft1 . . . tn B ti when f ∈ F. The call graph G(R) associated to R is the directed labeled graph
on the defined symbols of F such that there is an edge between f and g iff there is a dependency
pair fl1 . . . lp > gm1 . . .mq. This edge is labeled with the matrix (ai,j)i≤ar(Θf ),j≤ar(Θg) where:

if li Bmj, then ai,j = −1;
if li = mj, then ai,j = 0;
otherwise ai,j =∞ (in particular if i > p or j > q).

R is size-change terminating (SCT) if, in the transitive closure of G(R) (using the min-plus
semi-ring to multiply the matrices labeling the edges), all idempotent matrices labeling a loop
have some −1 on the diagonal.
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Figure 3 Matrix of dependency pair C and call graph of the dependency pairs of Example 7.

We add lines and columns of ∞’s in matrices associated to dependency pairs containing
partially applied symbols (cases i > p or j > q) because missing arguments cannot be
compared with any other argument since they are arbitrary.

The matrix associated to the dependency pair C: (s p) + q > p + q and the call graph
associated to the dependency pairs of Example 7 are depicted in Figure 3. The full list of
matrices and the extensive call graph of Example 1 can be found in Appendix B.

I Lemma 17. >̃ terminates if F is finite and R is SCT.

Proof. Suppose that there is an infinite sequence χ = f1~t1>̃f2~t2>̃ . . . Then, there is an
infinite path in the call graph going through nodes labeled by f1, f2, . . . Since F is finite,
there is a symbol g occurring infinitely often in this path. So, there is an infinite sequence
g~u1, g~u2, . . . extracted from χ. Hence, for every i, j ∈ N∗, there is a matrix in the transitive
closure of the graph which labels the loops of g corresponding to the relation between ~ui and
~ui+j . By Ramsey’s theorem, there is an infinite sequence (φi) and a matrix M such that M
corresponds to all the transitions g~uφi

, g~uφj
with i 6= j. M is idempotent, indeed g~uφi

, g~uφi+2

is labeled by M2 by definition of the transitive closure and by M due to Ramsey’s theorem,
so M = M2. Since, by hypothesis, R satisfies SCT, there is j such that Mj,j is −1. So, for
all i, u(j)

φi
(→∗ B)+u

(j)
φi+1

. Since B→ ⊆→B and →arg is well-founded on C, the existence of
an infinite sequence contradicts the fact that B is well-founded. J

By combining all the previous results, we get:

I Theorem 18. The relation → =→β ∪→R terminates on terms typable in λΠ/R if → is
locally confluent and preserves typing, F is finite and R is well-structured, plain-function
passing and size-change terminating.

The rewriting system of Example 1 verifies all these conditions (proof in the appendix).

7 Implementation and comparison with other criteria and tools

We implemented our criterion in a tool called SizeChangeTool [12]. As far as we know,
there are no other termination checker for λΠ/R.

If we restrict ourselves to simply-typed rewriting systems, then we can compare it with
the termination checkers participating in the category “higher-order rewriting union beta” of
the termination competition: Wanda uses dependency pairs, polynomial interpretations,

http://termination-portal.org/wiki/Termination_Competition
http://wandahot.sourceforge.net/
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HORPO and many transformation techniques [24]; SOL uses the General Schema [6] and other
techniques. As these tools implement various techniques and SizeChangeTool only one, it is
difficult to compete with them. Still, there are examples that are solved by SizeChangeTool
and not by one of the other tools, demonstrating that these tools would benefit from
implementing our new technique. For instance, the problem Hamana_Kikuchi_18/h17 is
proved terminating by SizeChangeTool but not by Wanda because of the rule:

rule map f (map g l) → map (comp f g) l

And the problem Kop13/kop12thesis_ex7.23 is proved terminating by SizeChangeTool
but not by Sol because of the rules:3

rule f h x (s y) → g (c x (h y)) y rule g x y → f (λ_,s 0) x y

One could also imagine to translate a termination problem in λΠ/R into a simply-typed
termination problem. Indeed, the termination of λΠ alone (without rewriting) can be reduced
to the termination of the simply-typed λ-calculus [16]. This has been extended to λΠ/R when
there are no type-level rewrite rules like the ones defining El in Example 1 [22]. However,
this translation does not preserve termination as shown by the Example 15 which is not
terminating if all the types Tx are mapped to the same type constant.

In [30], Roux also uses dependency pairs for the termination of simply-typed higher-order
rewriting systems, as well as a restricted form of dependent types where a type constant C is
annotated by a pattern l representing the set of terms matching l. This extends to patterns
the notion of indexed or sized types [18]. Then, for proving the absence of infinite chains, he
uses simple projections [17], which can be seen as a particular case of SCT where strictly
decreasing arguments are fixed (SCT can also handle permutations in arguments).

Finally, if we restrict ourselves to orthogonal systems, it is also possible to compare our
technique to the ones implemented in the proof assistants Coq and Agda. Coq essentially
implements a higher-order version of primitive recursion. Agda on the other hand uses SCT.

Because Example 1 uses matching on defined symbols, it is not orthogonal and can be
written neither in Coq nor in Agda. Agda recently added the possibility of adding rewrite
rules but this feature is highly experimental and comes with no guaranty. In particular,
Agda termination checker does not handle rewriting rules.

Coq cannot handle inductive-recursive definitions [11] nor function definitions with
permuted arguments in function calls while it is no problem for Agda and us.

8 Conclusion and future work

We proved a general modularity result extending Arts and Giesl’s theorem that a rewriting
relation terminates if there are no infinite sequences of dependency pairs [2] from first-order
rewriting to dependently-typed higher-order rewriting. Then, following [37], we showed how
to use Lee, Jones and Ben-Amram’s size-change termination criterion to prove the absence
of such infinite sequences [26].

This extends Wahlstedt’s work [37] from weak to strong normalization, and from ortho-
gonal to locally confluent rewriting systems. This extends the first author’s work [5] from
orthogonal to locally confluent systems, and from systems having a decreasing argument in
each recursive call to systems with non-increasing arguments in recursive calls. Finally, this
also extends previous works on static dependency pairs [25] from simply-typed λ-calculus to
dependent types modulo rewriting.

3 We renamed the function symbols for the sake of readability.
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To get this result, we assumed local confluence. However, one often uses termination to
check (local) confluence. Fortunately, there are confluence criteria not based on termination.
The most famous one is (weak) orthogonality, that is, when the system is left-linear and
has no critical pairs (or only trivial ones) [35], as it is the case in functional programming
languages. A more general one is when critical pairs are “development-closed” [36].

This work can be extended in various directions.
First, our tool is currently limited to PFP rules, that is, to rules where higher-order

variables are direct subterms of the left-hand side. To have higher-order variables in
deeper subterms like in Example 14, we need to define a more complex interpretation of
types, following [5].

Second, to handle recursive calls in such systems, we also need to use an ordering more
complex than the subterm ordering when computing the matrices labeling the SCT call
graph. The ordering needed for handling Example 14 is the “structural ordering” of Coq
and Agda [9, 6]. Relations other than subterm have already been considered in SCT but in
a first-order setting only [34].

But we may want to go further because the structural ordering is not enough to handle
the following system which is not accepted by Agda:

I Example 19 (Division). m/n computes dmn e.

symbol minus: Nat⇒Nat⇒Nat set infix 1 "-" := minus
rule 0 - n → 0 rule m - 0 → m rule (s m) - (s n) → m - n

symbol div: Nat⇒Nat⇒Nat set infix 1 "/" := div
rule 0 / (s n) → 0 rule (s m) / (s n) → s ((m - n) / (s n))

A solution to handle this system is to use arguments filterings (remove the second
argument of -) or simple projections [17]. Another one is to extend the type system with
size annotations as in Agda and compute the SCT matrices by comparing the size of
terms instead of their structure [1, 7]. In our example, the size of m - n is smaller than or
equal to the size of m. One can deduce this by using user annotations like in Agda, or by
using heuristics [8].

Another interesting extension would be to handle function calls with locally size-increasing
arguments like in the following example:

rule f x → g (s x) rule g (s (s x)) → f x

where the number of s’s strictly decreases between two calls to f although the first rule
makes the number of s’s increase. Hyvernat enriched SCT to handle such systems [19].
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If T↓ = (x : A)B, then F (I)(T ) = Πa ∈ I(A). I(B[x 7→ a]) and F (J)(T ) = Πa ∈
J(A). J(B[x 7→ a]). Since T ∈ D(I), we have A ∈ dom(I) and, for all a ∈ I(A), B[x 7→
a] ∈ dom(I). Since dom(I) ⊆ dom(J), we have J(A) = I(A) and, for all a ∈ I(A),
J(B[x 7→ a]) = I(B[x 7→ a]). Therefore, F (I)(T ) = F (J)(T ).

Now, if T↓ is not a product, then F (I)(T ) = F (J)(T ) = SN. J

A.2 Computability predicates

I Lemma 21. D is a computability predicate.

Proof. Note that D = D(I).
1. D ⊆ SN by definition of D.
2. Let T ∈ D and T ′ such that T → T ′. We have T ′ ∈ SN since T ∈ SN. Assume now that

T ′ →∗ (x : A)B. Then, T →∗ (x : A)B, A ∈ D and, for all a ∈ I(A), B[x 7→ a] ∈ D.
Therefore, T ′ ∈ D.

3. Let T be a neutral term such that →(T ) ⊆ D. Since D ⊆ SN, T ∈ SN. Assume now
that T →∗ (x : A)B. Since T is neutral, there is U ∈ →(T ) such that U →∗ (x : A)B.
Therefore, A ∈ D and, for all a ∈ I(A), B[x 7→ a] ∈ D. J

I Lemma 22. If P ∈ P and, for all a ∈ P , Q(a) ∈ P, then Πa∈P.Q(a) ∈ P.

Proof. Let R = Πa∈P.Q(a).
1. Let t ∈ R. We have to prove that t ∈ SN. Let x ∈ V. Since P ∈ P, x ∈ P . So, tx ∈ Q(x).

Since Q(x) ∈ P, Q(x) ⊆ SN. Therefore, tx ∈ SN, and t ∈ SN.
2. Let t ∈ R and t′ such that t→ t′. We have to prove that t′ ∈ R. Let a ∈ P . We have to

prove that t′a ∈ Q(a). By definition, ta ∈ Q(a) and ta→ t′a. Since Q(a) ∈ P, t′a ∈ Q(a).
3. Let t be a neutral term such that→(t) ⊆ R. We have to prove that t ∈ R. Hence, we take

a ∈ P and prove that ta ∈ Q(a). Since P ∈ P, we have a ∈ SN and →∗(a) ⊆ P . We now
prove that, for all b ∈ →∗(a), tb ∈ Q(a), by induction on→. Since t is neutral, tb is neutral
too and it suffices to prove that→(tb) ⊆ Q(a). Since t is neutral,→(tb) =→(t)b ∪ t→(b).
By induction hypothesis, t→(b) ⊆ Q(a). By assumption, →(t) ⊆ R. So, →(t)a ⊆ Q(a).
Since Q(a) ∈ P, →(t)b ⊆ Q(a) too. Therefore, ta ∈ Q(a) and t ∈ R. J

I Lemma 23. For all T ∈ D, I(T ) is a computability predicate.

Proof. Since Fp(T,P) is a chain-complete poset, it suffices to prove that Fp(T,P) is closed
by F . Assume that I ∈ Fp(T,P). We have to prove that F (I) ∈ Fp(T,P), that is, for all
T ∈ D(I), F (I)(T ) ∈ P. There are two cases:

If T↓ = (x : A)B, then F (I)(T ) = Πa∈I(A). I(B[x 7→ a]). By assumption, I(A) ∈ P and,
for a ∈ I(A), I(B[x 7→ a]) ∈ P. Hence, by Lemma 22, F (I)(T ) ∈ P.
Otherwise, F (I)(T ) = SN ∈ P. J

I Lemma 4a. For all terms T and substitutions σ, JT Kσ ∈ P.

Proof. By induction on T . If T = s, then JT Kσ = D ∈ P by Lemma 21. If T = (x : A)K ∈ K,
then JT Kσ = Πa∈ JAKσ. JKK[x 7→a,σ]. By induction hypothesis, JAKσ ∈ P and, for all a ∈ JAKσ,
JKK[x7→a,σ] ∈ P. Hence, by Lemma 22, JT Kσ ∈ P. If T /∈ K ∪ {KIND} and Tσ ∈ D, then
JT Kσ = I(Tσ) ∈ P by Lemma 23. Otherwise, JT Kσ = SN ∈ P. J
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A.3 Invariance by reduction
We now prove that the interpretation is invariant by reduction.

I Lemma 24. If T ∈ D and T → T ′, then I(T ) = I(T ′).

Proof. First note that T ′ ∈ D since D ∈ P. Hence, I(T ′) is well defined. Now, we have
T ∈ SN since D ⊆ SN. So, T ′ ∈ SN and, by local confluence and Newman’s lemma,
T↓ = T ′↓. If T↓ = (x : A)B then I(T ) = Πa ∈ I(A). I(B[x 7→ a]) = I(T ′). Otherwise,
I(T ) = SN = I(T ′). J

I Lemma 4b. If T is typable, Tσ ∈ D and T → T ′, then JT Kσ = JT ′Kσ.

Proof. By assumption, there are Γ and U such that Γ ` T : U . Since → preserves typing,
we also have Γ ` T ′ : U . So, T 6= KIND, and T ′ 6= KIND. Moreover, T ∈ K iff T ′ ∈ K since
Γ ` T : KIND iff T ∈ K and T is typable. In addition, we have T ′σ ∈ D since Tσ ∈ D and
D ∈ P.

We now prove the result, with T →= T ′ instead of T → T ′, by induction on T . If
T /∈ K, then T ′ /∈ K and, since Tσ, T ′σ ∈ D, JT Kσ = I(Tσ) = I(T ′σ) = JT ′Kσ by Lemma
24. If T = TYPE, then JT Kσ = D = JT ′Kσ. Otherwise, T = (x : A)K and T ′ = (x : A′)K ′
with A →= A′ and K →= K ′. By inversion, we have Γ ` A : TYPE, Γ ` A′ : TYPE,
Γ, x : A ` K : KIND and Γ, x : A′ ` K ′ : KIND. So, by induction hypothesis, JAKσ = JA′Kσ
and, for all a ∈ JAKσ, JKKσ′ = JK ′Kσ′ , where σ′ = [x 7→ a, σ]. Therefore, JT Kσ = JT ′Kσ. J

I Lemma 4c. If T is typable, Tσ ∈ D and σ → σ′, then JT Kσ = JT Kσ′ .

Proof. By induction on T .
If T ∈ S, then JT Kσ = D = JT Kσ′ .
If T = (x : A)K and K ∈ K, then JT Kσ = Πa ∈ JAKσ. JKK[x 7→a,σ] and JT Kσ′ = Πa ∈
JAKσ′ . JKK[x7→a,σ′]. By induction hypothesis, JAKσ = JAKσ′ and, for all a ∈ JAKσ,
JKK[x 7→a,σ] = JKK[x 7→a,σ′]. Therefore, JT Kσ = JT Kσ′ .
If Tσ ∈ D, then JT Kσ = I(Tσ) and JT Kσ′ = I(Tσ′). Since Tσ →∗ Tσ′, by Lemma 4b,
I(Tσ) = I(Tσ′).
Otherwise, JT Kσ = SN = JT Kσ′ . J

A.4 Adequacy of the interpretation
I Lemma 4d. If (x : A)B is typable, ((x : A)B)σ ∈ D and x /∈ dom(σ) ∪ FV(σ), then
J(x : A)BKσ = Πa∈ JAKσ. JBK[x 7→a,σ].

Proof. If B is a kind, this is immediate. Otherwise, since ((x : A)B)σ ∈ D, J(x : A)BKσ =
I(((x : A)B)σ). Since x /∈ dom(σ) ∪ FV(σ), we have ((x : A)B)σ = (x : Aσ)Bσ. Since
(x : Aσ)Bσ ∈ D and D ⊆ SN, we have J(x : A)BKσ = Πa∈I(Aσ↓). I((Bσ↓)[x 7→ a]).

Since (x : A)B is typable, A is of type TYPE and A /∈ K∪ {KIND}. Hence, JAKσ = I(Aσ)
and, by Lemma 24, I(Aσ) = I(Aσ↓).

Since (x : A)B is typable and not a kind, B is of type TYPE and B /∈ K∪{KIND}. Hence,
JBK[x 7→a,σ] = I(B[x 7→ a, σ]). Since x /∈ dom(σ)∪FV(σ), B[x 7→ a, σ] = (Bσ)[x 7→ a]. Hence,
JBK[x 7→a,σ] = I((Bσ)[x 7→ a]) and, by Lemma 24, I((Bσ)[x 7→ a]) = I((Bσ↓)[x 7→ a]).

Therefore, J(x : A)BKσ = Πa∈ JAKσ. JBK[x 7→a,σ]. J
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Note that, by iterating this lemma, we get that v ∈ J∀~x : ~T , UK iff, for all ~t such that
[~x 7→ ~t] |= ~x : ~T , v~t ∈ JUK[~x7→~t].

I Lemma 4e. If ∆ ` U : s, Γ ` γ : ∆ and Uγσ ∈ D, then JUγKσ = JUKγσ.

Proof. We proceed by induction on U . Since ∆ ` U : s and Γ ` γ : ∆, we have Γ ` Uγ : s.
If s = TYPE, then U,Uγ /∈ K ∪ {KIND} and JUγKσ = I(Uγσ) = JUKγσ since Uγσ ∈ D.
Otherwise, s = KIND and U ∈ K.

If U = TYPE, then JUγKσ = D = JUKγσ.
Otherwise, U = (x : A)K and, by Lemma 4d, JUγKσ = Πa∈ JAγKσ. JKγK[x 7→a,σ] and
JUKγσ = Πa∈ JAKγσ. JKK[x 7→a,γσ]. By induction hypothesis, JAγKσ = JAKγσ and, for
all a ∈ JAγKσ, JKγK[x 7→a,σ] = JKKγ[x 7→a,σ]. Wlog we can assume x /∈ dom(γ) ∪ FV(γ).
So, JKKγ[x 7→a,σ] = JKK[x 7→a,γσ]. J

I Lemma 4f. Let P be a computability predicate and Q a P -indexed family of computability
predicates such that Q(a′) ⊆ Q(a) whenever a→ a′. Then, λx : A.b ∈ Πa∈P.Q(a) whenever
A ∈ SN and, for all a ∈ P , b[x 7→ a] ∈ Q(a).

Proof. Let a0 ∈ P . Since P ∈ P, we have a0 ∈ SN and x ∈ P . Since Q(x) ∈ P and b = b[x 7→
x] ∈ Q(x), we have b ∈ SN. Let a ∈ →∗ (a0). We can prove that (λx : A, b)a ∈ Q(a0) by
induction on (A, b, a) ordered by (→,→,→)∀:.,Since Q(a0) ∈ P and (λx : A, b)a is neutral, it
suffices to prove that→((λx : A, b)a) ⊆ Q(a0). If the reduction takes place in A, b or a, we can
conclude by induction hypothesis. Otherwise, (λx : A, b)a→ b[x 7→ a] ∈ Q(a) by assumption.
Since a0 →∗ a and Q(a′) ⊆ Q(a) whenever a→ a′, we have b[x 7→ a] ∈ Q(a0). J

B Termination proof of Example 1

Here is the comprehensive list of dependency pairs in the example:

A: El (arrow a b) > El a
B: El (arrow a b) > El b
C: (s p) + q > p + q
D: app a _ (cons _ x p l) q m > p + q
E: app a _ (cons _ x p l) q m > app a p l q m
F:len_fil a f _ (cons _ x p l) > len_fil_aux (f x) a f p l
G:len_fil a f _ (app _ p l q m) >

( len_fil a f p l) + ( len_fil a f q m)
H:len_fil a f _ (app _ p l q m) > len_fil a f p l
I:len_fil a f _ (app _ p l q m) > len_fil a f q m
J: len_fil_aux true a f p l > len_fil a f p l
K: len_fil_aux false a f p l > len_fil a f p l
L: fil a f _ (cons _ x p l) > fil_aux (f x) a f x p l
M: fil a f _ (app _ p l q m) >

app a ( len_fil a f p l) (fil a f p l)
( len_fil a f q m) (fil a f q m)

N: fil a f _ (app _ p l q m) > len_fil a f p l
O: fil a f _ (app _ p l q m) > fil a f p l
P: fil a f _ (app _ p l q m) > len_fil a f q m
Q: fil a f _ (app _ p l q m) > fil a f q m
R: fil_aux true a f x p l > len_fil a f p l
S: fil_aux true a f x p l > fil a f p l
T: fil_aux false a f x p l > fil a f p l
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The whole callgraph is depicted below. The letter associated to each matrix corresponds
to the dependency pair presented above and in example 7, except for TC ’s which comes
from the computation of the transitive closure and labels dotted edges.

filfil_aux

len_fillen_fil_aux

El app

+

A,B

C

D

E

F
G

H,I

J,K

L

R

S,T M

N,P

O,QTC4 TC3

TC1 TC2

The argument a is omitted everywhere on the matrices presented below:

A,B=(−1 ), C=(−1 ∞
∞ 0 ), D=

( ∞ ∞
−1 ∞
∞ 0
∞ ∞

)
, E=

( ∞ ∞ ∞ ∞
−1 −1 ∞ ∞
∞ ∞ 0 ∞
∞ ∞ ∞ 0

)
, F=

(
∞ 0 ∞ ∞
∞ ∞ ∞ ∞
∞ ∞ −1 −1

)
, J=K=

(∞ ∞ ∞
0 ∞ ∞
∞ 0 ∞
∞ ∞ 0

)
,

G=
(
∞ ∞
∞ ∞
∞ ∞

)
, H=I=N=O=P=Q=

(
0 ∞ ∞
∞ ∞ ∞
∞ −1 −1

)
, L=

(
∞ 0 ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞
∞ ∞ −1 −1 −1

)
, M=

(
∞ ∞ ∞ ∞
∞ ∞ ∞ ∞
∞ ∞ ∞ ∞

)
,

R=S=T=
(∞ ∞ ∞

0 ∞ ∞
∞ ∞ ∞
∞ 0 ∞
∞ ∞ 0

)
.

Which leads to the matrices labeling a loop in the transitive closure:

TC1=J×F=
(∞ ∞ ∞ ∞
∞ 0 ∞ ∞
∞ ∞ ∞ ∞
∞ ∞ −1 −1

)
, TC4=S×L=

(∞ ∞ ∞ ∞ ∞
∞ 0 ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞
∞ ∞ −1 −1 −1

)
,

TC3=L×S=TC2=F×J=
( 0 ∞ ∞
∞ ∞ ∞
∞ −1 −1

)
=O=H.

It would be useless to compute matrices labeling edges which are not in a strongly connected
component of the call-graph (like S×R), but it is necessary to compute all the products which
could label a loop, especially to verify that all loop-labeling matrices are idempotent, which
is indeed the case here.

We now check that this system is well-structured. For each rule f~l → r, we take the
environment ∆f~l→r made of all the variables of r with the following types: a:Set, b:Set,
p:N, q:N, x:El a, l:L a p, m:L a q, f:El a⇒ B.

The precedence infered for this example is the smallest containing:
comparisons linked to the typing of symbols:

Set � arrow Set,L,0 � nil
Set � El Set,El,N,L,s � cons
B � true Set,N,L,+ � app
B � false Set,El,B,N,L � len_fil
N � 0 B,Set,El,N,L � len_fil_aux
N � s Set,El,B,N,L,len_fil � fil
N � + B,Set,El,N,L,len_fil_aux � fil_aux

Set,N � L
and comparisons related to calls:

s � + s,len_fil � len_fil_aux
cons,+ � app nil,fil_aux,app,len_fil � fil

0,len_fil_aux,+ � len_fil fil,cons,len_fil � fil_aux



F. Blanqui, G. Genestier, and O. Hermant 9:21

This precedence can be sum up in the following diagram, where symbols in the same box
are equivalent:

fil,fil_aux

len_fil,len_fil_auxapp

true false

B

cons nil +

Larrow El 0 s

Set N
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