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Abstract
While many applications of automata in formal methods can use nondeterministic automata, some
applications, most notably synthesis, need deterministic or good-for-games automata. The latter
are nondeterministic automata that can resolve their nondeterministic choices in a way that only
depends on the past. The minimization problem for nondeterministic and deterministic Büchi and
co-Büchi word automata are PSPACE-complete and NP-complete, respectively. We describe a
polynomial minimization algorithm for good-for-games co-Büchi word automata with transition-based
acceptance. Thus, a run is accepting if it traverses a set of designated transitions only finitely often.
Our algorithm is based on a sequence of transformations we apply to the automaton, on top of
which a minimal quotient automaton is defined.
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1 Introduction

Automata theory is one of the longest established areas in Computer Science. A classical
problem in automata theory is minimization: generation of an equivalent automaton with
a minimal number of states. For automata on finite words, the picture is well understood:
For nondeterministic automata, minimization is PSPACE-complete [16], whereas for determ-
inistic automata, a minimization algorithm, based on the Myhill-Nerode right congruence
[28, 29], generates in polynomial time a canonical minimal deterministic automaton [14].
Essentially, the canonical automaton, a.k.a. the quotient automaton, is obtained by merging
equivalent states.

A prime application of automata theory is specification, verification, and synthesis of
reactive systems [36, 8]. The automata-theoretic approach considers relationships between
systems and their specifications as relationships between languages. Since we care about the
on-going behavior of nonterminating systems, the automata run on infinite words. Acceptance
in such automata is determined according to the set of states that are visited infinitely
often along the run. In Büchi automata [5] (NBW and DBW, for nondeterministic and
deterministic Büchi word automata, respectively), the acceptance condition is a subset α of
states, and a run is accepting iff it visits α infinitely often. Dually, in co-Büchi automata
(NCW and DCW), a run is accepting iff it visits α only finitely often. In spite of the
extensive use of automata on infinite words in verification and synthesis algorithms and tools,
some fundamental problems around their minimization are still open. For nondeterministic
automata, minimization is PSPACE-complete, as it is for automata on finite words. Before
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100:2 Minimizing GFG Transition-Based Automata

we describe the situation for deterministic automata, let us elaborate some more on the
power of nondeterminism in the context of automata on infinite words, as this would be
relevant to our contribution.

For automata on finite words, nondeterminism does not increase the expressive power, yet
it leads to an exponential succinctness [31]. For automata on infinite words, nondeterminism
may increase the expressive power and also leads to an exponential succinctness. For ex-
ample, NBWs are strictly more expressive than DBWs [21]. In some applications of automata
on infinite words, such as model checking, algorithms can proceed with nondeterministic
automata, whereas in other applications, such as synthesis and control, they cannot. There,
the advantages of nondeterminism are lost, and the algorithms involve complicated determin-
ization constructions [32] or acrobatics for circumventing determinization [20]. Essentially,
the inherent difficulty of using nondeterminism in synthesis lies in the fact that each guess of
the nondeterministic automaton should accommodate all possible futures.

The study of nondeterministic automata that can resolve their nondeterministic choices
in a way that only depends on the past and still accept all words in the language started
already in 1996 [19], where the setting is modeled by means of tree automata for derived
languages. It then continued by means of good for games (GFG) automata, introduced in
[13].1 Formally, a nondeterministic automaton A over an alphabet Σ is GFG if there is a
strategy g that maps each finite word u ∈ Σ∗ to the transition to be taken after u is read;
and following g results in accepting all the words in the language of A. Note that a state q
of A may be reachable via different words, and g may suggest different transitions from q

after different words are read. Still, g depends only on the past, namely on the word read
so far. Obviously, there exist GFG automata: deterministic ones, or nondeterministic ones
that are determinizable by pruning (DBP); that is, ones that just add transitions on top of a
deterministic automaton. In fact, the GFG automata constructed in [13] are DBP.2

In terms of expressive power, it is shown in [19, 30] that GFG automata with an acceptance
condition γ (e.g., Büchi) are as expressive as deterministic γ automata. The picture in
terms of succinctness is diverse. For automata on finite words, GFG automata are always
DBP [19, 26]. For automata on infinite words, in particular NBWs and NCWs, GFG
automata need not be DBP [3]. Moreover, the best known determinization construction
for GFG-NBWs is quadratic, whereas determinization of GFG-NCWs has an exponential
blow-up lower bound [17]. Thus, in terms of succinctness, GFG automata on infinite words
are more succinct (possibly even exponentially) than deterministic ones. Further research
studies characterization, typeness, complementation, and further constructions and decision
procedures for GFG automata [17, 4, 2].

Back to the minimization problem. Recall that for finite words, an equivalent minimal
deterministic automaton can be obtained by merging equivalent states. A similar algorithm
is valid for determinisitic weak automata on infinite words: DBWs in which each strongly
connected component is either contained in α or is disjoint form α [27, 23]. For general
DBWs (and hence, also DCWs, as the two dualize each other), merging of equivalent states
fails, and minimization is NP-complete [33].

The intractability of the minimization problem has led to a development of numerous
heuristics. The heuristics either relax the minimality requirement, for example algorithms
based on fair bisimulation [10], which reduce the state space but need not return a minimal

1 GFGness is also used in [6] in the framework of cost functions under the name “history-determinism”.
2 As explained in [13], the fact that the GFG automata constructed there are DBP does not contradict their

usefulness in practice, as their transition relation is simpler than the one of the embodied deterministic
automaton and it can be defined symbolically.
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automaton, or relax the equivalence requirement, for example algorithms based on hyper-
minimization [1, 15] or almost-equivalence [33], which come with a guarantee about the
difference between the language of the original automaton and the ones generated by the
algorithm. In some cases, these algorithms do generate of a minimal equivalent automaton
(in particular, applying relative minimization based on almost equivalence on a deterministic
weak automaton results in an equivalent minimal weak automaton [33]), but in general, they
are only heuristics. In an orthogonal line of work, researchers have studied minimization in
richer settings of automata on finite words. One direction is to allow some nondeterminism.
As it turns out, however, even the slightest extension of the deterministic model towards
a nondeterministic one, for example by allowing at most one nondeterministic choice in
every accepting computation or allowing just two initial states instead of one, results in
NP-complete minimization problems [24]. Another direction is a study of quantitative
settings. Here, the picture is diverse. For example, minimization of deterministic lattice
automata [18] is polynomial for automata over linear lattices and is NP-complete for general
lattices [11], and minimization of deterministic weighted automata over the tropical semiring
is polynomial [25], yet the problem is open for general semirings.

Proving NP-hardness for DBW minimization, Schewe used a reduction from the vertex-
cover problem [33]. Essentially3, given a graph G = 〈V,E〉, we seek a minimal DBW for the
language LG of words of the form v+

i1
· v+
i2
· v+
i3
· · · ∈ V ω, where for all j ≥ 1, we have that

〈vij , vij+1〉 ∈ E. We can recognize LG by an automaton obtained from G by adding self loops
to all vertices, labelling each edge by its destination, and requiring a run to traverse infinitely
many original edges of G. Indeed, such runs correspond to words that traverse an infinite
path in G, possibly looping at vertices, but not getting trapped in a self loop, as required by
LG. When, however, the acceptance condition is defined by a set of vertices, rather than
edges, we need to duplicate some states, and a minimal duplication corresponds to a minimal
vertex cover. Thus, a natural question arises: Is there a polynomial minimization algorithms
for DBWs and DCWs whose acceptance condition is transition based? Beyond the theoretical
interest, there is recently growing use of transition-based automata in practical applications,
with evidences they offer a simpler translation of LTL formulas to automata and enable
simpler constructions and decision procedures [9, 7, 34, 22].

In this paper we present a significant step towards a positive answer to this question and
describe a polynomial-time algorithm for the minimization of GFG transition-based NCWs.
Consider a GFG-NCW A. Our algorithm is based on a chain of transformations we apply to
A. Some of the transformations are introduced in [17], in algorithms for deciding GFGness.
We add two more transformations and prove that they guarantee minimality. Our reasoning
is based on a careful analysis of the safe components of A, namely the components obtained
by removing transitions in α. We show that a minimal GFG-NCW equivalent to A can be
obtained by defining an order on the safe components, and applying the quotient construction
on a GFG-NCW obtained by restricting attention to states that belong to components that
form a frontier in this order.

The paper is organized as follows. In Section 2, we define GFG-NCWs and some properties
of GFG-NCWs that can be attained in polynomial time using existing results. In Section 3,
we describe two additional properties and prove that they guarantee minimality. Then, in
Sections 4 – 5, we show how the two properties can be attained in polynomial time, thus
concluding our minimization procedure. In Section 6, we discuss how our results contribute
to the quest for efficient DBW and DCW minimization.

3 The exact reduction is more complicated and involves an additional letter that is required for cases in
which vertices in the graph have similar neighbours.
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2 Preliminaries

For a finite nonempty alphabet Σ, an infinite word w = σ1 ·σ2 · · · ∈ Σω is an infinite sequence
of letters from Σ. A language L ⊆ Σω is a set of words. We denote the empty word by ε, the
set of finite words over Σ by Σ∗. For i ≥ 0, we use w[1, i] to denote the (possibly empty)
prefix σ1 · σ2 · · ·σi of w and use w[i+ 1,∞] to denote its suffix σi+1 · σi+2 · · · .

A nondeterministic automaton over infinite words is A = 〈Σ, Q, q0, δ, α〉, where Σ is an
alphabet, Q is a finite set of states, q0 ∈ Q is an initial state, δ : Q×Σ→ 2Q \∅ is a transition
function, and α is an acceptance condition, to be defined below. For states q and s and a
letter σ ∈ Σ, we say that s is a σ-successor of q if s ∈ δ(q, σ). The size of A, denoted |A|, is
defined as its number of states, thus, |A| = |Q|. Note that A is total, in the sense that it has
at least one successor for each state and letter, and that A may be nondeterministic, as the
transition function may specify several successors for each state and letter. If |δ(q, σ)| = 1
for every state q ∈ Q and letter σ ∈ Σ, then A is deterministic.

When A runs on an input word, it starts in the initial state and proceeds according
to the transition function. Formally, a run of A on w = σ1 · σ2 · · · ∈ Σω is an infinite
sequence of states r = r0, r1, r2, . . . ∈ Qω, such that r0 = q0, and for all i ≥ 0, we have
that ri+1 ∈ δ(ri, σi+1). We sometimes extend δ to sets of states and finite words. Then,
δ : 2Q × Σ∗ → 2Q is such that for every S ∈ 2Q, finite word u ∈ Σ∗, and letter σ ∈ Σ, we
have that δ(S, ε) = S, δ(S, σ) =

⋃
s∈S δ(s, σ), and δ(S, u · σ) = δ(δ(S, u), σ). Thus, δ(S, u) is

the set of states that A may reach when it reads u from some state in S.
The transition function δ induces a transition relation ∆ ⊆ Q× Σ×Q, where for every

two states q, s ∈ Q and letter σ ∈ Σ, we have that 〈q, σ, s〉 ∈ ∆ iff s ∈ δ(q, σ). We sometimes
view the run r = r0, r1, r2, . . . on w = σ1 · σ2 · · · as an infinite sequence of successive
transitions 〈r0, σ1, r1〉, 〈r1, σ2, r2〉, . . . ∈ ∆ω. The acceptance condition α determines which
runs are “good”. We consider here transition-based automata, in which α refers to the set
of transitions that are traversed infinitely often during the run; specifically, α ⊆ ∆. We
use the terms α-transitions and ᾱ-transitions to refer to transitions in α and in ∆ \ α,
respectively. We also refer to restrictions δα and δᾱ of δ, where for all q, s ∈ Q and σ ∈ Σ,
we have that s ∈ δα(q, σ) iff 〈q, σ, s〉 ∈ α, and s ∈ δᾱ(q, σ) iff 〈q, σ, s〉 ∈ ∆ \ α. For a run
r ∈ ∆ω, let inf (r) ⊆ ∆ be the set of transitions that r traverses infinitely often. Thus,
inf (r) = {〈q, σ, s〉 ∈ ∆ : q = ri, σ = σi+1 and s = ri+1 for infinitely many i’s}. In co-Büchi
automata, a run r is accepting iff inf (r) ∩ α = ∅, thus if r traverses transitions in α only
finitely often. A run that is not accepting is rejecting. A word w is accepted by A if there is
an accepting run of A on w. The language of A, denoted L(A), is the set of words that A
accepts. Two automata are equivalent if their languages are equivalent. We use tNCW and
tDCW to abbreviate nondeterministic and deterministic transition-based co-Büchi automata
over infinite words, respectively.

For a state q ∈ Q of an automaton A = 〈Σ, Q, q0, δ, α〉, we define Aq to be the automaton
obtained from A by setting the initial state to be q. Thus, Aq = 〈Σ, Q, q, δ, α〉. We say that
two states q, s ∈ Q are equivalent, denoted q ∼A s, if L(Aq) = L(As). The automaton A
is semantically deterministic if different nondeterministic choices lead to equivalent states.
Thus, for every state q ∈ Q and letter σ ∈ Σ, all the σ-successors of q are equivalent: for
every two states s, s′ ∈ Q such that 〈q, σ, s〉 and 〈q, σ, s′〉 are in ∆, we have that s ∼A s′.
The following proposition follows immediately from the definitions.

I Proposition 1. Consider a semantically deterministic automaton A, states q, s ∈ Q, letter
σ ∈ Σ, and transitions 〈q, σ, q′〉, 〈s, σ, s′〉 ∈ ∆. If q ∼A s, then q′ ∼A s′.
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A tNCW A is safe deterministic if by removing its α-transitions, we get a (possibly not
total) deterministic automaton. Thus, A is safe deterministic if for every state q ∈ Q and
letter σ ∈ Σ, it holds that |δᾱ(q, σ)| ≤ 1. We refer to the components we get by removing A’s
α-transitions as the safe components of A, and we denote the set of safe components of A by
S(A). For a safe component S ∈ S(A), the size of S, denoted |S|, is the number of states in
S. Note that an accepting run of A eventually gets trapped in one of A’s safe components.

An automaton A is good for games (GFG, for short) if its nondeterminism can be resolved
based on the past, thus on the prefix of the input word read so far. Formally, A is GFG if
there exists a strategy f : Σ∗ → Q such that the following holds:
1. The strategy f is consistent with the transition function. That is, for every finite word

u ∈ Σ∗ and letter σ ∈ Σ, we have that 〈f(u), σ, f(u · σ)〉 ∈ ∆.
2. Following f causes A to accept all the words in its language. That is, for every infinite

word w = σ1 · σ2 · · · ∈ Σω, if w ∈ L(A), then the run f(w[1, 0]), f(w[1, 1]), f(w[1, 2]), . . .,
which we denote by f(w), is accepting.

We say that the strategy f witnesses A’s GFGness. For an automaton A, we say that a
state q of A is GFG if Aq is GFG. Finally, we say that a GFG-tNCW A is minimal if for
every equivalent GFG-tNCW B, it holds that |A| ≤ |B|.

Consider a directed graph G = 〈V,E〉. A strongly connected set in G (SCS, for short) is a
set C ⊆ V such that for every two vertices v, v′ ∈ C, there is a path from v to v′. A SCS is
maximal if it is maximal w.r.t containment, that is, for every non-empty set C ′ ⊆ V \ C, it
holds that C ∪C ′ is not a SCS. The maximal strongly connected sets are also termed strongly
connected components (SCCs, for short). The SCC graph of G is the graph defined over
the SCCs of G, where there is an edge from a SCC C to another SCC C ′ iff there are two
vertices v ∈ C and v′ ∈ C ′ with 〈v, v′〉 ∈ E. A SCC is ergodic iff it has no outgoing edges
in the SCC graph. The SCC graph of G can be computed in linear time by standard SCC
algorithms [35]. An automaton A = 〈Σ, Q, q0, δ, α〉 induces a directed graph GA = 〈Q,E〉,
where 〈q, q′〉 ∈ E iff there is a letter σ ∈ Σ such that 〈q, σ, q′〉 ∈ ∆. The SCSs and SCCs of
A are those of GA. We say that a tNCW A is normal if all the safe components of A are
SCSs. That is, for all states q and s of A, if there is a path of ᾱ-transition from q to s, then
there is also a path of ᾱ-transition from s to q.

We now combine several properties defined above and say that a GFG-tNCW A is nice
if all the states in A are reachable and GFG, and A is normal, safe deterministic, and
semantically deterministic. In the theorem below we combine arguments from [17] showing
that each of these properties can be obtained in at most polynomial time, and without the
properties being conflicting. For some properties, we give an alternative and simpler proof.

I Theorem 2. [17] Every GFG-tNCW A can be turned, in polynomial time, into an equivalent
nice GFG-tNCW B such that |B| ≤ |A|.

Proof. It is shown in [17] that one can decide the GFGness of a tNCW A in polynomial
time. The proof goes through an intermediate step where the authors construct a two-players
game such that if the first player does not win the game, then A is not GFG, and otherwise a
winning strategy for him induces a safe-deterministic GFG-tNCW B equivalent to A. As we
start with a GFG-tNCW A, such a winning strategy is guaranteed to exist, and we obtain
an equivalent safe-deterministic GFG-tNCW B in polynomial time. In fact, it can be shown
that B is also semantically deterministic. Yet, for completeness we give below a general
procedure for semantic determinization.

For a tNCW A, we say that a transition 〈q, σ, s〉 ∈ ∆ is covering if for every transition
〈q, σ, s′〉, it holds that L(As′) ⊆ L(As). If A is GFG and f is a strategy witnessing its
GFGness, we say that a state q of A is used by f if there is a finite word u with f(u) = q, and
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we say that a transition 〈q, σ, q′〉 of A is used by f if there is a finite word u with f(u) = q

and f(uσ) = q′. Since states that are not GFG can be detected in polynomial time, and as
all states that are used by a strategy that witnesses B’s GFGness are GFG, the removal of
non-GFG states does not affect B’s language. Note that removing the non-GFG states may
result in a non-total automaton, in which case we add a rejecting sink. Now, using the fact
that language containment of GFG-tNCWs can be checked in polynomial time [12, 17], and
transitions that are used by strategies are covering [17], one can semantically determinize B
by removing non-covering transitions.

States that are not reachable are easy to detect, and their removal does not affect B’s
language. Normalization is also easy to obtain and involves adding some existing transitions
to α [17]. Indeed, if the safe components of B are not SCSs, then every ᾱ-transition connecting
different SCCs of B’s safe components can be added to α without affecting the acceptance of
runs in B, as every accepting run traverses such transitions only finitely often. Thus, the
language and GFGness of all states are not affected. Finally, it is not hard to verify that
the properties, in the order we obtain them in the proof, are not conflicting, and thus the
described sequence of transformations results in a nice GFG-tNCW. J

3 A Sufficient Condition for GFG-tNCW Minimality

In this section, we define two additional properties for nice GFG-tNCWs, namely safe-
centralized and safe-minimal, and we prove that nice GFG-tNCWs that attain these properties
are minimal. In Sections 4 – 5, we are going to show that the two properties can be attained
in polynomial time. Before we start, let us note that a GFG-tNCW may be nice and still
not be minimal. A simple example is a GFG-tNCW Afm for the language (a+ b)∗ · aω that
has two states, both with a ᾱ-self-loop labeled a and an α-transition labeled b to the other
state. It is easy to see that Afm is nice but not minimal.

Consider a tNCW A = 〈Σ, Q, q0, δ, α〉. A run r of A is safe if it does not traverse
α-transitions. The safe language of A, denoted Lsafe(A), is the set of infinite words w, such
that there is a safe run of A on w. Recall that two states q, s ∈ Q are equivalent (q ∼A s)
if L(Aq) = L(As). Then, q and s are strongly-equivalent, denoted q ≈A s, if q ∼A s and
Lsafe(Aq) = Lsafe(As). Finally, q is subsafe-equivalent to s, denoted q -A s, if q ∼A s and
Lsafe(Aq) ⊆ Lsafe(As). Note that the three relations are transitive. When A is clear from
the context, we omit it from the notations, thus write Lsafe(q), q - s, etc. The tNCW A is
safe-minimal if it has no strongly-equivalent states. Then, A is safe-centralized if for every
two states q, s ∈ Q, if q - s, then q and s are in the same safe component of A.

I Example 3. The nice GFG-tNCW Afm described above is neither safe-minimal (its
two states are strongly-equivalent) nor safe-centralized (its two states are in different safe
components). As another example, consider the tDCW A appearing in Figure 1. The dashed
transitions are α-transitions. All the states of A are equivalent, yet they all differ in their
safe language. Accordingly, A is safe-minimal. Since aω = Lsafe(Aq2) ⊆ Lsafe(Aq0), we
have that q2 - q0. Hence, as q0 and q2 are in different safe components, the tDCW A is not
safe-centralized.

I Proposition 4. Consider a nice GFG-tNCW A and states q and s of A such that q ≈ s
(q - s). For every letter σ ∈ Σ and ᾱ-transition 〈q, σ, q′〉, there is an ᾱ-transition 〈s, σ, s′〉
such that q′ ≈ s′ (q′ - s′, respectively).
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Figure 1 The tDCW A.

Proof. We prove the proposition for the case q ≈ s. The case q - s is similar. Since A is
normal, the existence of the ᾱ-transition 〈q, σ, q′〉 implies that there is a safe run from q′ back
to q. Hence, there is a word z ∈ Lsafe(Aq

′). Clearly, σ · z is in Lsafe(Aq). Now, since q ≈ s,
we have that Lsafe(Aq) = Lsafe(As). In particular, σ · z ∈ Lsafe(As), and thus there is a
ᾱ-transition 〈s, σ, s′〉. We prove that q′ ≈ s′. Since L(Aq) = L(As) and A is semantically
deterministic, then, by Proposition 1, we have that L(Aq′) = L(As′). It is left to prove that
Lsafe(Aq

′) = Lsafe(As
′). We prove that Lsafe(Aq

′) ⊆ Lsafe(As
′). The second direction is

similar. Since A is safe deterministic, the transition 〈s, σ, s′〉 is the only σ-labeled ᾱ-transition
from s. Hence, if by contradiction there is a word z ∈ Lsafe(Aq

′) \ Lsafe(As
′), we get that

σ · z ∈ Lsafe(Aq) \ Lsafe(As), contradicting the fact that Lsafe(Aq) = Lsafe(As). J

We continue with propositions that relate two automata, A = 〈Σ, QA, q0
A, δA, αA〉 and

B = 〈Σ, QB, q0
B, δB, αB〉. We assume that QA and QB are disjoint, and extend the ∼, ≈, and

- relations to states in QA ∪QB in the expected way. For example, for q ∈ QA and s ∈ QB,
we use q ∼ s to indicate that L(Aq) = L(Bs).

I Proposition 5. Let A and B be equivalent nice GFG-tNCWs. For every state q ∈ QA,
there is a state s ∈ QB such that q - s.

Proof. Let g be a strategy witnessing B’s GFGness. Consider a state q ∈ QA. Let u ∈ Σ∗
be such that q ∈ δA(q0

A, u). Since A and B are equivalent and semantically deterministic, an
iterative application of Proposition 1 implies that for every state q′ ∈ δB(q0

B, u), we have q ∼ q′.
In particular, q ∼ g(u). If Lsafe(Aq) = ∅, then we are done, as Lsafe(Aq) ⊆ Lsafe(Bg(u)). If
Lsafe(Aq) 6= ∅, then the proof proceeds as follows. Assume by way of contradiction that for
every state s ∈ QB that is equivalent to q, it holds that Lsafe(Aq) 6⊆ Lsafe(Bs). We define
an infinite word z such that A accepts u · z, yet g(u · z) is a rejecting run of B. Since A and
B are equivalent, this contradicts the fact that g witnesses B’s GFGness.

We define z as follows. Let s0 = g(u). Since Lsafe(Aq) 6⊆ Lsafe(Bs0), there is a finite
nonempty word z1 such that there is a safe run of Aq on z1, but every run of Bs0 on z1 is
not safe. In particular, the run of Bs0 that is induced by g, namely g(u), g(u · z1[1, 1]), g(u ·
z1[1, 2]), . . . , g(u · z1), traverses an α-transition. Since A is normal, we can define z1 so the
safe run of Aq on z1 ends in q. Let s1 = g(u · z1). We have so far two finite runs: q z1−→ q and
s0

z1−→ s1, where the first run is safe, and the second is not. Now, since q ∼ s0, then again by
Proposition 1 we have that q ∼ s1, and by applying the same considerations, we can define a
finite nonempty word z2 and s2 = g(u · z1 · z2) such that q z2−→ q and s1

z2−→ s2, where the
first run is safe, and the second is not. After at most |QB| iterations, we get that there are
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100:8 Minimizing GFG Transition-Based Automata

0 ≤ j1 < j2 ≤ |QB| such that sj1 = sj2 , and define z = z1 · · · z2 · · · zj1 · (zj1+1 · · · zj2)ω. Since
j1 < j2, the extension zj1+1 · · · zj2 is nonempty and thus z is infinite. On the one hand, since
q ∈ δA(q0

A, u) and there is a safe run of Aq on z, we have that u · z ∈ L(A). On the other
hand, the run g(u · z) traverses an α-transitions infinitely often, and is thus rejecting. J

I Proposition 6. Let A and B be equivalent nice GFG-tNCWs. For every state p ∈ QA,
there are states q ∈ QA and s ∈ QB such that p - q and q ≈ s.

Proof. The proposition follows from the combination of Proposition 5 with the transitivity
of - and the fact QA and QB are finite. Formally, consider the directed bipartite graph
G = 〈QA ∪QB, E〉, where E ⊆ (QA ×QB)∪ (QB ×QA) is such that 〈p1, p2〉 ∈ E iff p1 - p2.
Proposition 5 implies that E is total. That is, from every state in QA there is an edge to
some state in QB, and from every state in QB there is an edge to some state in QA. Since
QA and QB are finite, this implies that for every p ∈ QA, there is a path in G that starts in
p and reaches a state q ∈ QA (possibly q = p) that belongs to a nonempty cycle. We take s
to be some state in QB in this cycle. By the transitivity of -, we have that p - q, q - s,
and s - q. The last two imply that q ≈ s, and we are done. J

I Lemma 7. Consider a nice GFG-tNCW A. If A is safe-centralized and safe-minimal,
then for every nice GFG-tNCW B equivalent to A, there is an injection η : S(A) → S(B)
such that for every safe component T ∈ S(A), it holds that |T | ≤ |η(T )|.

Proof. We define η as follows. Consider a safe component T ∈ S(A). Let pT be some state in
T . By Proposition 6, there are states qT ∈ QA and sT ∈ QB such that pT - qT and qT ≈ sT .
Since A is safe-centralized, the states pT and qT are in the same safe component, thus qT ∈ T .
We define η(T ) to be the safe component of sT in B. We show that η is an injection; that is,
for every two safe components T1 and T2 in S(A), it holds that η(T1) 6= η(T2). Assume by
way of contradiction that T1 and T2 are such that sT1 and sT2 , chosen as described above,
are in the same safe component of B. Then, there is a safe run from sT1 to sT2 . Since
sT1 ≈ qT1 , an iterative application of Proposition 4 implies that there is a safe run from qT1

to some state q such that q ≈ sT2 . Since the run from qT1 to q is safe, the states qT1 and q
are in the same safe component, and so q ∈ T1. Since qT2 ≈ sT2 , then q ≈ qT2 . Since A is
safe-centralized, the latter implies that q and qT2 are in the same safe component, and so
q ∈ T2, and we have reached a contradiction.

It is left to prove that for every safe component T ∈ S(A), it holds that |T | ≤ |η(T )|. Let
T ∈ S(A) be a safe component of A. By the definition of η, there are qT ∈ T and sT ∈ η(T )
such that qT ≈ sT . Since A is normal, there is a safe run q0, q1, . . . qm of A that starts in qT
and traverses all the states in T . Since A is safe-minimal, no two states in T are strongly
equivalent. Therefore, there is a subset I ⊆ {0, 1, . . . ,m} of indices, with |I| = |T |, such that
for every two different indices i1, i2 ∈ I, it holds that qi1 6≈ qi2 . By applying Proposition 4
iteratively, there is a safe run s0, s1, . . . sm of B that starts in sT and such that for every
0 ≤ i ≤ m, it holds that qi ≈ si. Since the run is safe, it stays in η(T ). Then, however,
for every two different indices i1, i2 ∈ I, we have that si1 6≈ si2 , and so si1 6= si2 . Hence,
|η(T )| ≥ |I| = |T |. J

We can now prove that the additional two properties imply the minimality of nice
GFG-tNCWs.

I Theorem 8. Consider a nice GFG-tNCW A. If A is safe-centralized and safe-minimal,
then A is a minimal GFG-tNCW for L(A).
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Proof. Let B be a GFG-tNCW equivalent to A. By Theorem 2, we can assume that B is nice.
Indeed, otherwise we can make it nice without increasing its state space. Then, by Lemma 7,
there is an injection η : S(A)→ S(B) such that for every safe component T ∈ S(A), it holds
that |T | ≤ |η(T )|. Hence,

|A| =
∑

T∈S(A)

|T | ≤
∑

T∈S(A)

|η(T )| ≤
∑

T ′∈S(B)

|T ′| = |B|.

Indeed, the first inequality follows from the fact |T | ≤ |η(T )|, and the second inequality
follows from the fact that η is injective. J

I Remark 9. Recall that we assume that the transition function of GFG-tNCWs is total.
Clearly, a non-total GFG-tNCW can be made total by adding a rejecting sink. One may
wonder whether the additional state that this process involves interferes with our minimality
proof. The answer is negative: if B in Theorem 8 is not total, then, by Proposition 5, A has
a state s such that qrej - s, where qrej is a rejecting sink we need to add to B if we want to
make it total. Thus, L(As) = ∅, and we may not count it if we allow GFG-tNCWs without a
total transition function.

4 Safe Centralization

Consider a nice GFG-tNCW A = 〈Σ, QA, q0
A, δA, αA〉. Recall that A is safe-centralized if

for every two states q, s ∈ QA, if q - s, then q and s are in the same safe component. In
this section we describe how to turn a given nice GFG-tNCW into a nice safe-centralized
GFG-tNCW. The resulted tNCW is also going to be α-homogenous: for every state q ∈ QA
and letter σ ∈ Σ, either δαA(q, σ) = ∅ or δᾱA(q, σ) = ∅.

Let H ⊆ S(A) × S(A) be such that for all safe components S, S′ ∈ S(A), we have
that H(S, S′) iff there exist states q ∈ S and q′ ∈ S′ such that q - q′. That is, when
S 6= S′, then the states q and q′ witness that A is not safe-centralized. Recall that q - q′ iff
L(Aq) = L(Aq′) and Lsafe(Aq) ⊆ Lsafe(Aq

′). Since language containment for GFG-tNCWs
can be checked in polynomial time [12, 17], the first condition can be checked in polynomial
time. Since A is safe deterministic, the second condition reduces to language containment
between deterministic automata and can also be checked in polynomial time. Hence, the
relation H can be computed in polynomial time.

I Lemma 10. Consider safe components S, S′ ∈ S(A) such that H(S, S′). Then, for every
p ∈ S there is p′ ∈ S′ such that p - p′.

Proof. Since H(S, S′), then, by definition, there are states q ∈ S and q′ ∈ S′ such that
q - q′. Let p be a state in S. Since A is normal, there is a safe run from q to p in S. Since
q - q′, an iterative application of Proposition 4 implies that there is a safe run from q′ to
some state p′ in S′ for which p - p′, and we are done. J

I Lemma 11. The relation H is transitive: for every safe components S, S′, S′′ ∈ S(A), if
H(S, S′) and H(S′, S′′), then H(S, S′′).

Proof. Let S, S′, S′′ ∈ S(A) be safe components of A such that H(S, S′) and H(S′, S′′).
Since, H(S, S′), there are states q ∈ S and q′ ∈ S′ such that q - q′. Now, since H(S′, S′′),
we get by Lemma 10 that that for all states in S′, in particular for q′, there is a state q′′ ∈ S′′
such that q′ - q′′. The transitivity of - then implies that q - q′′, and so H(S, S′′). J
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We say that a set S ⊆ S(A) is a frontier of A if for every safe component S ∈ S(A),
there is a safe component S′ ∈ S with H(S, S′), and for all safe components S, S′ ∈ S such
that S 6= S′, we have that ¬H(S, S′) and ¬H(S′, S). Once H is calculated, a frontier of A
can be found in linear time. For example, as H is transitive, we can take one vertex from
each ergodic SCC in the graph 〈S(A), H〉. Note that all frontiers of A are of the same size,
namely the number of ergodic SCCs in this graph.

Given a frontier S of A, we define the automaton BS = 〈Σ, QS , q0
S , δS , αS〉, where

QS = {q ∈ QA : q ∈ S for some S ∈ S}, and the other components are defined as follows.
The initial state q0

S is chosen such that q0
S ∼A q0

A. Specifically, if q0
A ∈ QS , we take q0

S = q0
A.

Otherwise, by Lemma 10 and the definition of S, there is a state q′ ∈ QS such that q0
A - q′,

and we take q0
S = q′. The transitions in BS are either ᾱ-transitions of A, or α-transitions

that we add among the safe components in S in a way that preserves language equivalence.
Formally, consider a state q ∈ QS and a letter σ ∈ Σ. If δᾱA(q, σ) 6= ∅, then δᾱS (q, σ) = δᾱA(q, σ)
and δαS(q, σ) = ∅. If δᾱA(q, σ) = ∅, then δᾱS(q, σ) = ∅ and δαS(q, σ) = {q′ ∈ QS : there is q′′ ∈
δαA(q, σ) such that q′ ∼A q′′}. Note that BS is α-homogenous.

I Example 12. Consider the tDCW A appearing in Figure 1. Recall that the dashed
transitions are α-transitions. Since A is normal and deterministic, it is nice. By removing
the α-transitions of A, we get the safe components described in in Figure 2. Since q2 - q0,
we have that A has a single frontier S = {{q0, q1}}. The automaton BS appears in Figure 3.
As all the states of A are equivalent, we direct a σ-labeled α-transition to q0 and to q1, for
every state with no σ-labeled transition in S.

q0

q2

q1

c

b

a

a

Figure 2 The safe components of A.

q0 q1

c

a, b

b

ca

c

a, b

Figure 3 The tNCW B{{q0,q1}}.

We extend Proposition 1 to the setting of A and BS :

I Proposition 13. Consider states q and s of A and BS , respectively, a letter σ ∈ Σ, and
transitions 〈q, σ, q′〉 and 〈s, σ, s′〉 of A and BS , respectively. If q ∼A s, then q′ ∼A s′.

Proof. If 〈s, σ, s′〉 is an ᾱ-transition of BS , then, by the definition of ∆S , it is also an ᾱ-
transition of A. Hence, since q ∼A s and A is nice, in particular, semantically deterministic,
we get by Proposition 1 that q′ ∼A s′. If 〈s, σ, s′〉 is an α-transition of BS , then, by the
definition of ∆S , there is some s′′ ∈ δA(s, σ) with s′ ∼A s′′. Again, since q ∼A s and A is
semantically deterministic, we have by Proposition 1 that s′′ ∼A q′, and thus s′ ∼A q′. J

I Proposition 14. Let q and s be states of A and BS , respectively, with q ∼A s. It holds
that BsS is a GFG-tNCW equivalent to Aq.

Proof. We first prove that L(BsS) ⊆ L(Aq). Consider a word w = σ1σ2 . . . ∈ L(BsS). Let
s0, s1, s2, . . . be an accepting run of BsS on w. Then, there is i ≥ 0 such that si, si+1, . . . is a
safe run of Bsi

S on the suffix w[i+ 1,∞]. Let q0, q1, . . . qi be a run of Aq on the prefix w[1, i].
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Since q0 ∼A s0, we get, by an iterative application of Proposition 13, that qi ∼A si. In
addition, as the run of Bsi

S on the suffix w[i+ 1,∞] is safe, it is also a safe run of Asi . Hence,
w[i+ 1,∞] ∈ L(Aqi), and thus q0, q1, . . . , qi can be extended to an accepting run of Aq on w.

Next, we prove that L(Aq) ⊆ L(BsS) and that BsS is a GFG-tNCW. We do this by defining
a strategy g : Σ∗ → QS such that for all words w ∈ L(Aq), we have that g(w) is an accepting
run of BsS on w. First, g(ε) = s. Then, for u ∈ Σ∗ and σ ∈ Σ, we define g(u · σ) as follows.
Recall that A is nice. So, in particular, Aq is GFG. Let f be a strategy witnessing Aq’s
GFGness. If δᾱS (g(u), σ) 6= ∅, then g(u · σ) = q′ for some q′ ∈ δᾱS (g(u), σ). If δᾱS (g(u), σ) = ∅,
then g(u · σ) = q′ for some state q′ ∈ QS such that f(u · σ) -A q′. Note that since S
is a frontier, such a state q′ exists. We prove that g is consistent with ∆S . In fact, we
prove a stronger claim, namely for all u ∈ Σ∗ and σ ∈ Σ, we have that f(u) ∼A g(u) and
〈g(u), σ, g(u · σ)〉 ∈ ∆S .

The proof proceeds by an induction on |u|. For this induction base, as f(ε) = q, g(ε) = s,
and q ∼A s, we are done. Given u and σ, consider a transition 〈g(u), σ, s′〉 ∈ ∆S . Since BS
is total, such a transition exists. We distinguish between two cases. If δᾱS (g(u), σ) 6= ∅, then,
as BS is α-homogenous and safe deterministic, the state s′ is the only state in δᾱS(g(u), σ).
Hence, by the definition of g, we have that g(u · σ) = s′ and so 〈g(u), σ, g(u · σ)〉 ∈ ∆S . If
δᾱS (g(u), σ) = ∅, we claim that g(u · σ) ∼A s′ Then, as s′ ∈ δαS (g(u), σ), the definition of ∆S
for the case δᾱS (g(u), σ) = ∅ implies that 〈g(u), σ, g(u ·σ)〉 ∈ ∆S . By the induction hypothesis,
we have that f(u) ∼A g(u). Hence, as 〈f(u), σ, f(u ·σ))〉 ∈ δA and 〈g(u), σ, s′〉 ∈ ∆S , we have,
by Proposition 13, that f(u · σ) ∼A s′. Recall that g is defined so that f(u · σ) -A g(u · σ).
In particular, f(u · σ) ∼A g(u · σ). Hence, by transitivity of ∼A, we have that g(u · σ) ∼A s′.
In addition, by the induction hypothesis, we have that f(u) ∼A g(u), and so, in both cases,
Proposition 13 implies that f(u · σ) ∼A g(u · σ).

It is left to prove that for every infinite word w = σ1σ2 . . . ∈ Σω, if w ∈ L(Aq), then g(w)
is accepting. Assume that w ∈ L(Aq) and consider the run f(w) of Aq on w. Since f(w) is
accepting, there is i ≥ 0 such that f(w[1, i]), f(w[1, i+ 1]) . . . is a safe run of Af(w[1,i]) on the
suffix w[i+1,∞]. We prove that g(w) may traverse at most one α-transition when it reads the
suffix w[i+1,∞]. Assume that there is some j ≥ i such that 〈g(w[1, j]), σj+1, g(w[1, j+1])〉 ∈
αS . Then, by g’s definition, we have that f(w[1, j + 1]) -A g(w[1, j + 1]). Therefore, as BS
follows the safe components in S, we have that Lsafe(Af(w[1,j+1])) ⊆ Lsafe(Ag(w[1,j+1])) =
Lsafe(Bg(w[1,j+1])

S ), and thus w[j + 2,∞] ∈ Lsafe(Bg(w[1,j+1])
S ). Since BS is α-homogenous

and safe-deterministic, there is a single run of Bg(w[1,j+1])
S on w[j + 2,∞], and this is the run

that g follows. Therefore, g(w[1, j + 1]), g(w[1, j + 2]), . . . is a safe run, and we are done. J

I Proposition 15. For every frontier S, the GFG-tNCW BS is nice, safe-centralized, and
α-homogenous.

Proof. It is easy to see that the fact A is nice implies that BS is normal and safe deterministic.
It can be shown that all the states in BS are reachable, yet anyway states that are nonreachable
are easy to detect and their removal affects neither BS ’s language nor its other properties.
Finally, Proposition 14 implies that all its states are GFG. To conclude that BS is nice, we
prove below that it is semantically deterministic. Consider transitions 〈q, σ, s1〉 and 〈q, σ, s2〉
in ∆S . We need to show that s1 ∼BS s2. By the definition of ∆S , there are transitions
〈q, σ, s′1〉 and 〈q, σ, s′2〉 in ∆A for states s′1 and s′2 such that s1 ∼A s′1 and s2 ∼A s′2. As A is
semantically deterministic, we have that s′1 ∼A s′2, thus by transitivity of ∼A, we get that
s1 ∼A s2. Then, Proposition 14 implies that L(As1) = L(Bs1

S ) and L(As2) = L(Bs2
S ), and so

we get that s1 ∼BS s2. Thus, BS is semantically deterministic.
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As we noted in the definition of its transitions, BS is α-homogenous. It is thus left to
prove that BS is safe-centralized. Let q and s be states of BS such that q -BS s; that
is, L(BqS) = L(BsS) and Lsafe(BqS) ⊆ Lsafe(BsS). Let S, T ∈ S be the safe components of
q and s, respectively. We need to show that S = T . By Proposition 14, we have that
L(Aq) = L(BqS) and L(As) = L(BsS). As BS follows the safe components in S, we have
that Lsafe(Aq) = Lsafe(BqS) and Lsafe(As) = Lsafe(BsS). Hence, q -A s, implying H(S, T ).
Since S is a frontier, this is possible only when S = T . J

I Theorem 16. Every nice GFG-tNCW can be turned in polynomial time into an equivalent
nice, safe-centralized, and α-homogenous GFG-tNCW.

5 Safe Minimization

In the setting of finite words, a quotient automaton is obtained by merging equivalent states,
and is guaranteed to be minimal. In the setting of co-Büchi automata, it may not be possible
to define an equivalent language on top of the quotient automaton. For example, all the
states in the GFG-tNCW A in Figure 1 are equivalent, and still it is impossible to define
its language on top of a single-state tNCW. In this section we show that when we start
with a nice, safe-centralized, and α-homogenous GFG-tNCW B, the transition to a quotient
automaton, namely merging of strongly-equivalent states, is well defined and results in a
GFG-tNCW equivalent to B that attains all the helpful properties of B, and is also safe
minimal4. By Theorem 8, it is also minimal.

Consider a nice, safe-centralized, and α-homogenous GFG-tNCW B = 〈Σ, Q, q0, δ, α〉. For
a state q ∈ Q, define [q] = {q′ ∈ Q : q ≈B q′}. We define the tNCW C = 〈Σ, QC , [q0], δC , αC〉,
where QC = {[q] : q ∈ Q}, the transition function is such that 〈[q], σ, [p]〉 ∈ ∆C iff there are
q′ ∈ [q] and p′ ∈ [p] such that 〈q′, σ, p′〉 ∈ ∆, and 〈[q], σ, [p]〉 ∈ αC iff 〈q′, σ, p′〉 ∈ α. Note that
B being α-homogenous implies that αC is well defined; that is, independent of the choice of
q′ and p′. To see why, assume that 〈q′, σ, p′〉 ∈ ᾱ and let q′′ be a state in [q]. As q′ ≈B q′′,
we have by Proposition 4 that there is p′′ ∈ [p] such that 〈q′′, σ, p′′〉 ∈ ᾱ. Thus, as B is
α-homogenous, there is no σ-labeled α-transition from q′′ to a state in [p]. Note that we have
proved that if 〈[q], σ, [p]〉 is an ᾱ-transition of C, then for every q′ ∈ [q], there is p′ ∈ [p] such
that 〈q′, σ, p′〉 is an ᾱ-transition of B, and thus the ⊇-direction of the following proposition,
suggesting that a safe run in C induces a safe run in B, follows by a simple induction. The
⊆-direction follows immediately from the definition of C.

I Proposition 17. For every [p] ∈ QC and every s ∈ [p], it holds that Lsafe(Bs) = Lsafe(C[p]).

We extend Propositions 1 and 13 to the setting of B and C:

I Proposition 18. Consider states s ∈ Q and [p] ∈ QC, a letter σ ∈ Σ, and transitions
〈s, σ, s′〉 and 〈[p], σ, [p′]〉 of B and C, respectively. If s ∼ p, then s′ ∼ p′.

Proof. As 〈[p], σ, [p′]〉 is a transition of C, there are states t ∈ [p] and t′ ∈ [p′], such that
〈t, σ, t′〉 ∈ ∆. If s ∼ p, then s ∼ t. Since B is nice, in particular, semantically deterministic,
and 〈s, σ, s′〉 ∈ ∆, we get by Proposition 1 that s′ ∼ t′. Thus, as t′ ∼ p′, we are done. J

I Proposition 19. For every [p] ∈ QC and s ∈ [p], we have that C[p] is a GFG-tNCW
equivalent to Bs.

4 In fact, α-homogeneity is not required, but as the GFG-tNCW BS obtained in Section 4 is α-homogenous,
which simplifies the proof, we are going to rely on it.
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Proof. We first prove that L(C[p]) ⊆ L(Bs). Consider a word w = σ1σ2 . . . ∈ L(C[p]). Let
[p0], [p1], [p2], . . . be an accepting run of C[p] on w. Then, there is i ≥ 0 such that [pi], [pi+1], . . .
is a safe run of C[pi] on the suffix w[i+ 1,∞]. Let s0, s1, . . . si be a run of Bs on the prefix
w[1, i]. Note that s0 = s. Since s0 ∈ [p0], we have that s0 ∼ p0, and thus an iterative
application of Proposition 18 implies that si ∼ pi. In addition, as w[i+1,∞] is in Lsafe(C[pi]),
we get, by Proposition 17, that w[i + 1,∞] ∈ Lsafe(Bpi). Since Lsafe(Bpi) ⊆ L(Bpi) and
si ∼ pi, we have that w[i + 1,∞] ∈ L(Bsi). Hence, s0, s1, . . . si can be extended to an
accepting run of Bs on w.

Next, we prove that L(Bs) ⊆ L(C[p]) and that C[p] is a GFG-tNCW. We do this by
defining a strategy h : Σ∗ → QC such that for all words w ∈ L(Bs), we have that h(w) is an
accepting run of C[p] on w. We define h as follows. Recall that B is nice. So, in particular,
Bs is GFG. Let g be a strategy witnessing Bs’s GFGness. We define h(u) = [g(u)], for
every finite word u ∈ Σ∗. Consider a word w ∈ L(Bs), and consider the accepting run
g(w) = g(w[1, 0]), g(w[1, 1]), g(w[1, 2]), . . . of Bs on w. Note that by the definition of C, we
have that h(w) = [g(w[1, 0])], [g(w[1, 1])], [g(w[1, 2])], . . . is an accepting run of C[p] on w, and
so we are done. J

I Proposition 20. The GFG-tNCW C is nice, safe-centralized, and safe-minimal.

The proof of the proposition is in the full version. The considerations are similar to those
in the proof of Proposition 15. In particular, for safe minimality, note that for states q and s
of B, we have that [q] ≈ [s] iff [q] - [s] and [s] - [q]. Thus, it is sufficient to prove that if
[q] - [s] then q - s. Thus, we can now conclude the following:

I Theorem 21. Every nice, safe-centralized, and α-homogenous GFG-tNCW can be turned
in polynomial time into an equivalent nice, safe-centralized, and safe-minimal GFG-tNCW.

6 Discussion

We presented a polynomial minimization algorithm for GFG-tNCWs. In contrast, minim-
ization of DCWs is NP-complete [33]. This raises a natural question, as to whether both
relaxations of the problem, namely the consideration of GFG automata, rather than determin-
istic ones, and the consideration of transition-based acceptance, rather than state-based one,
are crucial for efficiency. Our conjecture is that minimization of transition-based DCWs (and
hence, also transition-based DBWs) can be solved in polynomial time. Thus, the relaxation
to GFG is not needed. Our conjecture is based on the understanding that the quotient
construction fails for automata on infinite words as it does not capture traversal of transitions.
Moreover, the study of GFG automata so far shows that their behavior is similar to that
of deterministic automata. In particular, it is not hard to see that the NP-hardness proof
of Schewe for DBWs minimization applies also to GFG-NBWs. The use of transition-based
acceptance is related to another open problem in the context of DBW minimization: is there
a 2-approximation polynomial algorithm for it, that is one that generates a DBW that is at
most twice as big as a minimal one. Note that a tight minimization for the transition-based
case would imply a positive answer here. Note also that the vertex-cover problem, used in
Schewe’s reduction has a polynomial 2-approximation. As described in Section 1, there is
recently growing use of automata with transition-based acceptance. Our work here is another
evidence to their usefulness.

We find the study of minimization of GFG automata of interest also beyond being an
intermediate result in the quest for efficient transition-based DBW minimization. Indeed,
GFG automata are important in practice, as they are used in synthesis and control, and in
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the case of the co-Büchi acceptance condition, they may be exponentially more succinct than
their deterministic equivalences. Another open problem, which is interesting from both the
theoretical and practical points of view, is minimization of GFG-tNBW. Note that unlike
the deterministic case, GFG-tNBW and GFG-tNCW are not dual. Also, experience shows
that algorithms for GFG-tNBW and GFG-tNCW are quite different [3, 17, 4, 2].

Finally, recall that there may be different minimal tDCWs for a given language of infinite
words. Our results show that the picture for minimal GFG-tNCWs is cleaner: Consider a
language L ⊆ Σω, and let A be a minimal GFG-tNCW for L obtained by safe-centralizing
and safe-minimizing a nice GFG-tNCW for it. Consider a nice minimal GFG-tNCW B for
L. Then, the injection η : S(A)→ S(B) from Lemma 7 is actually a bijection; that is, η is
one-to-one and onto. Indeed, for every safe component T ∈ S(A) it holds that |T | = |η(T )|.
Moreover, as both A and B are nice, related safe components are isomorphic, thus there
is an bijection κ : QA → QB such that for every q ∈ QA, we have that q ≈ κ(q), and for
every ᾱ-transition 〈q, σ, s〉 of A, we have that 〈κ(q), σ, κ(s)〉 is an ᾱ-transition of B. Thus, all
nice minimal GFG-tNCWs for L have the same set of safe components, and they differ only
in α-transitions among these safe components. An interesting research direction is a study
of these safe components and in particular a characterization of L by a congruence-based
relation on finite words that is induced by them.
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