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Abstract
We show that the full set of solutions to systems of equations and inequations in a hyperbolic group,
with or without torsion, as shortlex geodesic words, is an EDT0L language whose specification can be
computed in NSPACE(n2 log n) for the torsion-free case and NSPACE(n4 log n) for the torsion case.
Our work combines deep geometric results by Rips, Sela, Dahmani and Guirardel on decidability
of existential theories of hyperbolic groups, work of computer scientists including Plandowski, Jeż,
Diekert and others on PSPACE algorithms to solve equations in free monoids and groups using
compression, and an intricate language-theoretic analysis.

The present work gives an essentially optimal formal language description for all solutions in all
hyperbolic groups, and an explicit and surprising low space complexity to compute them.

2012 ACM Subject Classification Theory of computation → Formal languages and automata
theory; Theory of computation → Grammars and context-free languages; Theory of computation →
Complexity classes; Mathematics of computing → Combinatorics on words

Keywords and phrases Hyperbolic group, Existential theory, EDT0L language, PSPACE

Digital Object Identifier 10.4230/LIPIcs.ICALP.2019.110

Category Track B: Automata, Logic, Semantics, and Theory of Programming

Related Version https://arxiv.org/abs/1902.07349

Funding Research supported by Australian Research Council (ARC) Project DP160100486, and a
Follow-On Grant from the International Centre of Mathematical Sciences (ICMS), Edinburgh.
Laura Ciobanu: Supported by EPSRC grant EP/R035814/1.

Acknowledgements The authors wish to thank Yago Antolín, Alex Bishop, François Dahmani,
Volker Diekert, Michal Ferov and Jim Howie for helpful conversations, and the anonymous reviewers
for their feedback and corrections.

1 Introduction

Hyperbolic groups were introduced by Gromov in 1987 [25], and play a significant role in
group theory and geometry [12, 33, 40]. Virtually free groups, small cancellation groups, and
the fundamental groups of extensive classes of negative curvature manifolds are important
examples (see [1] for background). In a certain probabilistic sense made precise in [26, 37, 41],
almost all finitely generated groups are hyperbolic. They admit very efficient solutions to the
word and conjugacy problems [21, 27, 28], and extremely nice language-theoretic properties,
for example the set of all geodesics over any generating set is regular (see Lemma 16), and
forms a biautomatic structure [22]. They are exactly the groups which admit context-free
multiplication tables [23], and have a particularly simple characterisation in terms of rewriting
systems [6, 35] (see Lemma 13).
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110:2 Solutions to Equations in Hyperbolic Groups

In this paper we consider systems of equations and inequations in hyperbolic groups,
building on and generalising work done in the area of solving equations over various groups
and monoids in PSPACE. Starting with work of Plandowski [38], many prominent researchers
have given PSPACE algorithms [7, 14, 16, 17, 18, 30, 31] to find (all) solutions to systems of
equations over free monoids, free groups, partially commutative monoids and groups, and
virtually free groups (that is, groups which have a free subgroup of finite index).

The satisfiability of equations over torsion-free hyperbolic groups is decidable by the work
of Rips and Sela [39], who reduced the problem in hyperbolic groups to solving equations in
free groups, and then calling on Makanin’s algorithm [36]. Kufleitner proved PSPACE for
decidability in the torsion-free case [34], without an explicit complexity bound, by following
Rips-Sela and then using Plandowski’s result [38]. Dahmani and Guirardel radically extended
Rips and Sela’s work to all hyperbolic groups (with torsion), by reducing systems of equations
to systems over virtually free groups, which they then reduced to systems of twisted equations
over free groups [11]. In terms of describing solution sets, Grigorchuck and Lysionok gave
efficient algorithms for the special case of quadratic equations [24].

Here we combine Rips, Sela, Dahmani and Guirardel’s approach with recent work of the
authors with Diekert [7, 14, 15] to obtain the following results.

I Theorem 1 (Torsion-free). Let G be a torsion-free hyperbolic group with finite symmetric
generating set S. Let Φ be a system of equations and inequations of size n (see Section 2 for
a precise definition of input size). Then the set of all solutions, as tuples of shortlex geodesic
words over S, is EDT0L. Moreover there is an NSPACE(n2 logn) algorithm which on input
Φ prints a description for the EDT0L grammar.

I Theorem 2 (Torsion). Let G be a hyperbolic group with torsion with finite symmetric
generating set S. Let Φ be a system of equations and inequations of size n (see Section 2 for
a precise definition of input size). Then the set of all solutions, as tuples of shortlex geodesic
words over S, is EDT0L. Moreover there is an NSPACE(n4 logn) algorithm which on input
Φ prints a description for the EDT0L grammar.

A corollary of Theorems 1 and 2 is that the existential theory for hyperbolic groups can be
decided in NSPACE(n2 logn) for torsion-free and NSPACE(n4 logn) for groups with torsion.
Another consequence of our work is that we can decide in the same space complexity as
above whether or not the solution set is empty, finite or infinite (see [8]).

EDT0L is a surprisingly low language complexity for this problem. EDT0L languages are
playing an increasingly useful role in group theory, not only in describing solution sets to
equations in groups [7, 14, 17], but more generally [4, 5, 9].

The paper is organised as follows. We briefly set up some notation for solution sets and
input size in Section 2. We then give an informal description of the entire argument for the
torsion-free case in Section 3. This overview uses various concepts which are defined more
carefully afterwards, but we hope that having the entire argument in one place is useful
for the reader to understand the “big picture” before descending into the details. Section 4
develops necessary material on EDT0L and space complexity. Section 5 covers the necessary
background on hyperbolic groups, including the key step to obtain a full solution set (as tuples
of shortlex geodesics) from a covering solution set (see Definition 3(iii)). In Section 6 we use
Rips and Sela’s canonical representatives (see [8, Appendix A]) in torsion-free hyperbolic
groups, to reduce the problem of finding solutions in a torsion-free hyperbolic group to
finding solutions in the free group on the same generators as the hyperbolic one. We show
that if the input system has size n then the resulting system in the free group has size O(n2).
Applying [7] produces a covering solution set in O(n2 logn) nondeterministic space, from
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which we obtain the full set of solutions as shortlex geodesics in the original group, as an
EDT0L language, in the same space complexity. In Section 7 we prove the general case for
hyperbolic groups with torsion, following Dahmani and Guirardel who construct canonical
representatives in a graph containing the Cayley graph of the hyperbolic group, and working
in an associated virtually-free group.

2 Notations for equations and solution sets

Let G be a fixed group with finite symmetric generating set S. Let π : S∗ → G be the
natural projection map. Let {X1, . . . , Xm}, m > 1, be a set of variables to which we
adjoin their formal inverses X−1

i and denote by X the union {Xi, X
−1
i | 1 6 i 6 m}. Let

C = {a1, . . . , ak} ⊆ G be a set of constants and

Φ = {ϕj(X , C) = 1}hj=1 ∪ {ϕj(X , C) 6= 1}sj=h+1 (1)

be a set of s equations and inequations in G, where the length of each (in)equation is li.
Then the total length of the equations is n =

∑s
i=1 li, and we take |Φ| = n as the input size

in the remainder of the paper.
A tuple (g1, . . . , gm) ∈ Gm solves an equation [resp. inequation] ϕj in Φ if replacing

each variable Xi by gi (and X−1
i by g−1

i ) produces an identity [resp. inequality] in the
group as follows:

ϕj(g1, . . . , gm, a1, . . . , ak) = 1 [resp. ϕj(g1, . . . , gm, a1, . . . , ak) 6= 1].

A tuple (g1, . . . , gm) ∈ Gm solves Φ if it simultaneously solves ϕj for all 1 6 j 6 s.

I Definition 3.
(i) The group element solution set to Φ is the set

SolG(Φ) = {(g1, . . . , gm) ∈ Gm | (g1, . . . , gm) solves Φ}.

(ii) Let T ⊆ S∗ and # a symbol not in S. The full set of T -solutions is the set

SolT,G(Φ) = {w1# . . .#wm | wi ∈ T, (π(w1), . . . , π(wm)) solves Φ}.

(iii) A set L ⊆ {w1# . . .#wm | wi ∈ S∗, 1 6 i 6 m} is a covering solution set to Φ if

{(π(w1), . . . , π(wk)) | w1# . . .#wm ∈ L} = SolG(Φ).

3 Overview of the proof

In a free group, the equation xy = z has a solution in reduced words (that is, words which
do not contain factors aa−1 for any a ∈ S) if and only if there exist words P,Q,R with
x = PQ, y = Q−1R, z = PR in the free monoid with involution over S ([7, Lemma 4.1]). In
a hyperbolic group this direct reduction to cancellation-free equations is no longer true: a
triangle xy = z where x, y, z are replaced by geodesics looks as in Figure 1a.

Rips and Sela [39] proved that in a torsion-free hyperbolic group one can define certain
special words called canonical representatives so that a system of equations of the form
XjYj = Zj , 1 6 j 6 O(n) has solutions which are canonical representatives with the
properties that their prefixes and suffixes coincide, as shown in Figure 1b, and the inner
circle is the concatenation of three words with lengths in O(n). Moreover, these canonical
representatives are (λ, µ)-quasigeodesics (Definition 15) where the constants λ, µ depend only
on the group.

ICALP 2019
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(a) Using geodesics.

y1 y3

y2

c1 c2

c3

4

(b) Using canonical representatives.

Figure 1 Solutions to xy = z in the Cayley graph of a hyperbolic group.

We use these facts to devise the following algorithm, presented here for the torsion-free
case. We treat the hyperbolic group G with finite generating set S as a constant. On input
a system of equations and inequations as in (1) of size n:
1. Replace inequations by equations (by using a new variable and requiring that this variable

is not trivial in the group, as explained in Section 6.3).
2. Triangulate the system, so that all equations have the form XjYj = Zj . The size of the

resulting system is still in O(n). Suppose there are q ∈ O(n) such equations.
3. Enumerate, one at a time, all possible tuples c = (c11, c12, c13, . . . , cq1, cq2, cq3) of words

(say, in lex order) so that the length `(cji) with respect to S is bounded by a constant in
O(n). Note that the size of each tuple (the sum of the lengths of the cij) is in O(n2).

4. For each tuple c, run Dehn’s algorithm to check cj1cj2cj3 =G 1 for 1 6 j 6 q. If this
holds for all j, write down a system of 3q equations

Xj = Pjcj1Qj , Yj = Q−1
j cj2Rj , Zj = Pjcj3Rj .

Note that the resulting system, Φc, has size in O(n2).
5. We now call the algorithm of the authors and Diekert [7] to find all solutions to Φc

in the free group generated by S. This algorithm, on input of size O(n2), runs in
NSPACE(n2 logn), and prints a description of the EDT0L grammar which generates all
tuples of solutions as reduced words in S∗. Specifically it prints nodes and edges of a
trim NFA which is the rational control for the EDT0L grammar (see Definition 4 below).
Modify the algorithm so that the nodes printed include the label c which has length
O(n2) (so does not affect the complexity).

6. Delete the current system stored, and move to the next tuple c.
7. At the end, print out a new start node and ε edges to the start node of the NFA for the

system Φc for all c already printed.

The NFA that is printed gives an EDT0L grammar that generates a language of tuples
which is a covering solution to the original system in the hyperbolic group. To obtain the
full set of solutions as shortlex geodesic words we need to perform further steps. Using the
facts that canonical representatives are (λ, µ)-quasigeodesics, and

the full set of (λ, µ)-quasigeodesics, QS,λ,µ
the set of all pairs {(u, v) ∈ QS,λ,µ | u =G v}
the set of all shortlex geodesics in G

are all regular, we can obtain from the covering solution an ET0L language, in the same space
complexity (by Proposition 9 below), which represents the full set of solutions in shortlex
geodesic words. Then finally, because of the special form of our solutions, we can apply a
version of the Copying Lemma of Ehrenfeucht and Rozenberg [19] to show that in fact the
resulting language of shortlex representatives is EDT0L in NSPACE(n2 logn).
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Details for handling the case of hyperbolic groups with torsion also follows this general
scheme, however finding the analogue of canonical representatives is harder in this case, so
further work is required, and we describe this in Section 7.

4 E(D)T0L in PSPACE

4.1 ET0L and EDT0L languages
Let C be an alphabet. A table for C is a finite subset of C × C∗. If (c, v) is in some table t,
we say that (c, v) is a rule for c. A table t is deterministic if for each c ∈ C there is exactly
one v ∈ C∗ with (c, v) ∈ t.

If t is a table and u ∈ C∗ then we write u −→t v to mean that v is obtained by applying
rules from t to each letter of u. That is, u = a1 . . . an, ai ∈ C, v = v1 . . . vn, vi ∈ C∗, and
(ai, vi) ∈ t for 1 6 i 6 n. If H is a set of tables and r ∈ H∗ then we write u −→r v to mean
that there is a sequence of words u = v0, v1, . . . , vn = v ∈ C∗ such that vi−1 −→ti vi for
1 6 i 6 n where r = t1 . . . tn. If R ⊆ H∗ we write u −→R v if u −→r v for some r ∈ R.

I Definition 4 ([2]). Let Σ be an alphabet. We say that L ⊆ Σ∗ is an ET0L language if
there is an alphabet C with Σ ⊆ C, a finite set H ⊂ P(C × C∗) of tables, a regular language
R ⊆ H∗ and a letter c0 ∈ C such that

L = {w ∈ Σ∗ | c0 −→R w}.

In the case when every table h ∈ R is deterministic, i.e. each h ∈ R is in fact a homomorphism,
we write L = {r(c0) ∈ Σ∗ | r ∈ R} and say that L is EDT0L. The set R is called the rational
control, the symbol c0 the start symbol and C the extended alphabet.

4.2 Space complexity for E(D)T0L
Let f : N→ N be a function. Recall an algorithm is said to run in NSPACE(f(n)) if it can be
performed by a non-deterministic Turing machine with a read-only input tape, a write-only
output tape, and a read-write work tape, with the work tape restricted to using O(f(n))
squares on input of size n. The following definition formalises the idea of producing some
E(D)T0L language (such as the solution set of some system of equations) in NSPACE(f(n)),
where the language is the output of a computation with input (such as a system of equations)
of size n. We use the notation L(A) to denote the language accepted by an automaton A.

I Definition 5. Let Σ be a (fixed) alphabet and f : N → N a function. If there is an
NSPACE(f(n)) algorithm that on input Ω of size n outputs the specification of an ET0L
language LΩ ⊆ Σ∗, then we say that LΩ is ET0L in NSPACE(f(n)).

Here the specification of LΩ consists of:
an extended alphabet C ⊇ Σ,
a start symbol c0 ∈ C,
a finite list of nodes of a (trim) NFA A, labeled by some data, some possibly marked as
initial and/or final,
a finite list {(u, v, h)} of edges of A where u, v are nodes and h ∈ P(C × C∗) is a table

such that LΩ = {w ∈ Σ∗ | c0 →L(A) w}.
A language LΩ is EDT0L in NSPACE(f(n)) if, in addition, every table h labelling an

edge of A is deterministic.

Note that the entire print-out is not required to be in O(f(n)) space. Previous results of
the authors with Diekert can now be restated as follows.

ICALP 2019



110:6 Solutions to Equations in Hyperbolic Groups

I Theorem 6 ([7, Theorem 2.1]). The set of all solutions to a system of size n of equations
(with rational constraints), as reduced words, in a free group is EDT0L in NSPACE(n logn).

I Theorem 7 ([15, Theorem 45]). The set of all solutions to a system of size n of equations
(with rational constraints), as words in a particular quasigeodesic normal form over a certain
finite generating set, in a virtually free group is EDT0L in NSPACE(n2 logn).

I Remark 8. In our applications below we have Ω representing some system of equations
and inequations, with |Ω| = n, and we construct algorithms where the extended alphabet
C has size |C| ∈ O(n) in the torsion-free case and |C| ∈ O(n2) in the torsion case. This
means we can write down the entire alphabet C as binary strings within our space bounds.
Moreover, each element (c, v) of any table we construct has v of (fixed) bounded length, so
we can write down entire tables within our space bounds.

4.3 Closure properties
It is well known [32, Theorem 2.8] that ET0L is a full AFL (closed under homomorphism,
inverse homomorphism, finite union, intersection with regular languages). Here we show the
space complexity of an ET0L language is not affected by these operations.

I Proposition 9. Let Σ,Γ be finite alphabets of fixed size, M an NFA of constant size with
L(M) ⊆ Σ∗, and ϕ : Γ∗ → Σ∗, ψ : Σ∗ → Γ∗ homomorphisms. If LΩ1 , LΩ2 ⊆ Σ∗ are E(D)T0L
in NSPACE(f(n)) (on inputs Ω1,Ω2, respectively, with |Ω1|, |Ω2| ∈ O(n)) then

(homomorphism) ψ(LΩ1) is E(D)T0L in NSPACE(f(n)),
(intersection with regular) LΩ1 ∩ L(M) is E(D)T0L in NSPACE(f(n)),
(union) LΩ1 ∪ LΩ2 is E(D)T0L in NSPACE(f(n)),
(inverse homomorphism) ϕ−1(LΩ1) is ET0L in NSPACE(f(n)).

The proof is straightforward keeping track of complexity in the standard proofs [3, 10].
Note EDT0L is not closed under inverse homomorphism [20].

I Proposition 10 (Projection onto a factor). If LΩ ⊆ Σ∗ is E(D)T0L in NSPACE(f(n)) on
an input Ω of size n, and for some fixed integer s all words in LΩ have the form u1# . . .#us
with ui ∈ (Σ \ {#})∗, and 1 6 i 6 j 6 s, then

L = {ui# . . .#uj | u1# . . .#ui# . . .#uj# . . .#us ∈ LΩ}

is E(D)T0L in NSPACE(f(n)).

4.4 From ET0L to EDT0L
In computing the full solution set to equations as shortlex geodesic words, we will need to take
inverse homomorphism. Even though in general the image under an inverse homomorphism
of an EDT0L language is just ET0L, because of the special structure of solution sets we can
apply the Copying Lemma of Ehrenfeucht and Rozenberg [19] to show the following.

I Proposition 11. Let S be an alphabet and h : S → S′ be a homomorphism of from S to a
disjoint alphabet S′ = {s′ | s ∈ S} defined by h(s) = s′. Let o be a symbol not in S ∪ S′ and
define h(o) = o. Let L1 be a set of words of the form w o h(w) where w ∈ S∗. If L1 is ET0L
in NSPACE(f(n)), then L2 = {w | w o h(w) ∈ L1} is EDT0L in NSPACE(f(n)).



L. Ciobanu and M. Elder 110:7

Proof. By [19], any nondeterministic table in the grammar for L1 can be replaced by a finite
number of deterministic tables (essentially, if nondeterminism allowed some letter c ∈ C to
produce two different results, then some word in L1 would not have the form w o h(w)). So
without loss of generality we can replace a table f containing (c, v1), . . . , (c, vk) by k tables
fi containing (c, vi) only). This modification is clearly in the same space bound. Project
onto the prefix using Proposition 10. J

5 Hyperbolic groups

5.1 Definitions
Recall the Cayley graph for a group G with respect to a finite symmetric generating set S is
a directed graph Γ(G,S) with vertices labeled by g ∈ G and a directed edge (g, h) labeled by
s ∈ S whenever h =G gs. Let `(p), i(p) and f(p) resp. be the length, initial and terminal
vertices of a path p in the Cayley graph. A path p is geodesic if `(p) is minimal among the
lengths of all paths q with the same endpoints. If x, y are two points in Γ(G,S), we define
d(x, y) to be the length of a shortest path from x to y in Γ(G,S).

I Definition 12 (δ-hyperbolic group (Gromov)). Let G be a group with finite symmetric
generating set S, and let δ > 0 be a fixed real number. If p, q, r are geodesic paths in Γ(G,S)
with f(p) = i(q), f(q) = i(r), f(r) = i(p), we call [p, q, r] a geodesic triangle. A geodesic
triangle is δ-slim if p is contained in a δ-neighbourhood of q ∪ r, that is, every point on one
side of the triangle is within δ of some point on one of the other sides. (See for example
Figure 1a.) We say (G,S) is δ-hyperbolic if every geodesic triangle in Γ(G,S) is δ-slim. We
say (G,S) is hyperbolic if it is δ-hyperbolic for some δ > 0.

It is a straightforward to show that being hyperbolic is independent of choice of finite
generating set. Thus we say G is hyperbolic if (G,S) is for some finite generating set S.

I Lemma 13 (Dehn presentation). G is hyperbolic if and only if there is a finite list of pairs
of words (ui, vi) ∈ S∗ × S∗ with |ui| > |vi| and ui =G vi such that the following holds: if
w ∈ S∗ is equal to the identity of G then it contains some ui as a factor.

This gives an algorithm to decide whether or not a word w ∈ S∗ is equal to the identity:
while `(w) > 0, look for some ui factor. If there is none, then w 6=G 1. Else replace ui by vi
(which is shorter). This procedure is called Dehn’s algorithm.

I Lemma 14. Dehn’s algorithm runs in (linear time and) linear space.

I Definition 15 (Quasigeodesic). For λ > 1, µ > 0 real numbers, a path p in Γ(G,S) is a
(λ, µ)-quasigeodesic if for any subpath q of p we have `(q) 6 λd(i(q), f(q)) + µ.

Throughout this article, we assume G is a fixed hyperbolic group which we treat as a
constant for complexity purposes. We assume we are given (G,S), the constant δ, the finite
list of pairs for Dehn’s algorithm, and any other constants depending only on the group.

5.2 Languages in hyperbolic groups
I Proposition 16. Let G be a fixed hyperbolic group with finite generating set S, λ > 1, µ > 0
constants with λ ∈ Q and µ sufficiently large. Then the following sets are regular languages.
1. The set of all geodesics over S.
2. The set of all shortlex geodesics over S.
3. The set of all (λ, µ)-quasigeodesics, QS,λ,µ ⊆ S∗.
Furthermore, the set of all pairs of words (u, v) ∈ Q2

S,λ,µ such that u =G v is accepted by an
asynchronous 2-tape automaton.

See [22, 29].

ICALP 2019
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5.3 Main reduction result
Here is our key technical result.

I Proposition 17 (Covering to full solution sets). Let G be a hyperbolic group with finite
symmetric generating set S. Let h : S → S′ and QS,λ,µ be as defined above, #, o symbols
not in S ∪ S′, h(#) = #, h(o) = o, and T ⊆ QS,λ,µ a regular set of quasigeodesic words in
bijection with G. Suppose L1 ⊆ (S ∪ S′ ∪ {#, o})∗ consists of words of the form

u1# . . .#ur o h(v1)# . . .#h(vr), ui, vi ∈ QS,λ,µ, ui =G vi, 1 6 i 6 r.

If L1 is ET0L in NSPACE(f(n)), then
1. LQ = {w1# . . .#wr o h(z1)# . . .#h(zr) | ∃u1# . . .#ur o h(v1)# . . .#h(vr) ∈ L1, wi =G

zi =G ui, wi, zi ∈ QS,λ,µ} is ET0L in NSPACE(f(n)).
2. LT = {w1# . . .#wr | ∃u1# . . .#ur o h(v1)# . . .#h(vr) ∈ L1, wi =G ui, wi ∈ T } is

EDT0L in NSPACE(f(n)).
The proof involves a series of operations as in Proposition 9–11, see [8] for further details.
Note that the set of all shortlex geodesics is a suitable choice for T in the proposition.

6 Reduction from torsion-free hyperbolic to free groups

Section 3 contains an overview of the general algorithm for solving equations in torsion-free
hyperbolic groups. Here we provide further details, and give a proof of the soundness and
completeness of our algorithm. The algorithm relies on the existence and special properties
of canonical representatives, whose construction is very technical (details are provided in [8]).
Their existence guarantees that the solutions of a system in a torsion-free hyperbolic group
generated by S can be found by solving an associated system in the free group on S, while
the fact that they are quasigeodesics (see [8, Prop. 30]) allows us to apply the results of the
previous sections to obtain the EDT0L characterisation of solutions in shortlex normal form.

I Proposition 18. Let G be a torsion-free hyperbolic group, with finite symmetric generating
set S. Let Φ be a system of equations and inequations of input size n as in Section 2. Let
h : S → S′,#, o be as in Proposition 17. Then there exist λ > 1, µ > 0 and

L = {w1# . . .#wm o h(w1)# . . .#h(wm) | wi ∈ QS,λ,µ, 1 6 i 6 m}

such that {w | woh(w) ∈ L} is a covering solution for Φ, and L is EDT0L in NSPACE(n2 logn).

Applying Proposition 17 immediately gives Theorem 1.

Proof. We produce a language L of quasigeodesic words over S such that the projection
of any tuple in L is in the group element solution set SolG(Φ) (soundness). We then prove
(using [39, Corollary 4.4]) that any solution in SolG(Φ) is the projection of some tuple in L
(completeness). Our proof follows the outline presented in Section 3.

1. Preprocessing.
(Remove inequations) We first transform Φ into a system consisting entirely of equations
by adding a variable xD to X and replacing any inequation ϕj(X ,A) 6= 1 by ϕj(X ,A) =
xD, with the constraint xD 6=G 1.
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(Triangulation) We transform each equation into several equations of length 3, by
introducing new variables. This can always be done (see the discussion in [7, Section
4]), and it produces approximately

∑s
i=1 li ∈ O(n) triangular equations with set of

variables Z where m 6 |Z| ∈ O(n) and X ⊂ Z. From now on assume that the system
Φ consists of q ∈ O(n) equations of the form XjYj = Zj where 1 6 j 6 q.

2. Lifting Φ to the free group on S. In [39, Theorem 4.2] Rips and Sela define a constant,
which they call “bp”, that roughly bounds the circumference of the “centres” of the
triangles whose edges are canonical representatives. We denote here bp by ρ, and note
that ρ ∈ O(q) = O(n) depends on δ and linearly on q. As described in Section 3 we
run in lex order through all possible tuples of words c = (c11, c12, c13, . . . , cq1, cq2, cq3)
with cji ∈ S∗, `(cji) 6 ρ ∈ O(n). For each tuple c we use Dehn’s algorithm to check
cj1cj2cj3 =G 1, and if this holds for all 1 6 j 6 q we then construct a system Φc of
equations of the form

Xj = Pjcj1Qj , Yj = Q−1
j cj2Rj , Zj = Pjcj3Rj , 1 6 j 6 q, (2)

which has size O(n2). In order to avoid an exponential size complexity we write down each
system Φc one at a time, so the space required for this step is O(n2). Let Y ⊃ Z ⊃ X be
the new set of variables.

3. Some observations. We pause to make the following observations. Any solution to Φc in
the free group F (S) is guaranteed to be a solution to Φ in the original hyperbolic group
G. Thus if S1 ⊆ F (S)m is a group element solution to Φc then π(S1) is a group element
solution to Φ in G. This will show soundness below.
Secondly, if (g1, . . . , gm) ∈ Gm is a solution to Φ in the original hyperbolic group, [39,
Theorem 4.2 and Corollary 4.4] (see Theorem 31 in [8]) guarantees that there exist
canonical representatives wi ∈ QS,λ,µ with wi =G gi for 1 6 i 6 m, which have reduced
forms ui =G wi for 1 6 i 6 m, and our construction is guaranteed to capture any such
collection of words. This will show completeness below.
Thirdly, note that the constraint that a word w ∈ S∗ must be a (λ, µ)-quasigeodesic
and satisfy w =G 1 implies that `(w) 6 µ. Therefore we can construct a DFA D which
accepts all words in S∗ equal to 1 in the hyperbolic group G of length at most µ in
constant space (using for example Dehn’s algorithm). In our next step, we will use this
rational constraint to handle the variable xD added in the first step above (to remove
inequalities).
Now let us complete the construction by finding the covering solution required.

4. Covering solution set. We now run the algorithm from [7] (which we will refer to as
the CDE algorithm) which takes input Φc, which has size in O(n2), plus the rational
constraint xD 6∈ L(D), plus for each y ∈ Y the rational constraint that the solution for y
is a word in QS,λ,µ. Since these constraints have constant size (depending only on the
group G, not the system Φ), they do not contribute to the O(n2) size of the input to the
CDE algorithm.
We make two modifications to the details of the CDE algorithm. First, every node printed
by the algorithm should include the additional label c. (This ensures the NFA we print
for each system Φc is distinct.) This does not affect the complexity since c has size in
O(n2).
Second, so that we can apply Proposition 11 later, we modify the form of “extended
equations” in [7] by inserting the factor oh(W ) in the appropriate position(s). This simply
increases the size of the nodes by a factor (of two).
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We run the CDE algorithm to print an NFA (possibly empty) for each Φc, which is the
rational control for an EDT0L grammar that produces all solutions as freely reduced
words for elements of F (S) which correspond to solutions as (λ, µ)-quasigeodesics to
the same system Φc in the hyperbolic group. If (w1, . . . , wm) is a solution in canonical
representatives to Φ then (u1, . . . , um, . . . u|Y|) will be included in the solution to Φc
output by the CDE algorithm, with ui the reduced forms of wi for 1 6 i 6 m. This
shows completeness once we union the grammars from all systems Φc together.
Adding a new start node with edges to each of the start nodes of the NFA’s with label
c, we obtain a rational control for the EDT0L grammar generating L as required. The
space required is exactly that required by the CDE algorithm on input O(n2), which is
NSPACE(n2 logn). J

7 Reduction from hyperbolic with torsion to virtually free groups

In the case of a hyperbolic group G with torsion, the general approach of Rips and Sela
can still be applied, but the existence of canonical representatives is not always guaranteed
(see Delzant [13, Rem.III.1]). To get around this, Dahmani and Guirardel “fatten” the
Cayley graph Γ(G,S) of G to a larger graph K which contains Γ(G,S) (in fact Γ(G,S) with
midpoints of edges included), and solve equations in G by considering equalities of paths in
K. More precisely, K is the 1-skeleton of the barycentric subdivision of a Rips complex of G
(see [8] for definitions).

I Definition 19. Let γ, γ′ be paths in K.
(i) We denote by i(γ) the initial vertex of γ, by f(γ) the final vertex of γ, and by γ the

reverse of γ starting at f(γ) and ending at i(γ).
(ii) We say that γ is reduced if it contains no backtracking, that is, no subpath of length 2

of the form ee.
(iii) We write γγ′ for the concatenation of γ, γ′ if i(γ′) = f(γ).
(iv) Two paths in K are homotopic if one can obtain a path from the other by adding or

deleting backtracking subpaths. Each homotopy class has a unique reduced representative.

Let V be the set of all homotopy classes [γ] of paths γ in K with i(γ) = 1G, and f(γ) ∈ G.
For [γ], [γ′] ∈ V define their product [γ][γ′] = [γvγ′], where γvγ′ denotes the concatenation
of γ and the translate vγ′ of γ′ by v = f(γ), and let [γ]−1 be the homotopy class of v−1

γ.
Then V is a group that projects onto G by the final vertex map f , that is, f : V � G is a
surjective homomorphism. Moreover, since G has an action on K induced by the natural
action on its Rips complex, V will act on K as well. This gives rise to an action of V onto
the universal cover T (which is a tree) of K, and [11, Lemma 9.9] shows that the quotient
T/V is a finite graph (isomorphic to K/G) of finite groups, and so V is virtually free.

We assume that the algorithmic construction (see [11, Lemma 9.9]) of a presentation for
V is part of the preprocessing of the algorithm, will be treated as a constant, and will not be
included in the complexity discussion.

The first step in solving a system Φ of equations in G is to translate Φ into identities
between quasigeodesic paths (with start and end point in G) in K, defined as QGλ1,µ1(V ) in
(5) in [8], paths which can be seen as the analogues of the canonical representatives from the
torsion-free case. This can be done by Proposition 9.8 [11]. The second step in solving Φ is
to express the equalities of quasigeodesic paths in K in terms of equations in the virtually
free group V based on K. Finally, Proposition 9.10 [11] shows it is sufficient to solve the
systems of equations in V in order to obtain the solutions of the system Φ in G.
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In the virtually free group V we will use the results from [15]. Let Y be the generating
set of V and T ⊆ Y ∗ the set of normal forms for V over Y as in [15, Remark 44, page 50],
and let

SolT,V (Ψ) = {w1# . . .#wm) ∈ Tn | (π(w1), . . . , π(wm)) solves Ψ in V }

be the language of T -solutions in V of a system Ψ of size |Ψ| = O(k); by [15] the language
SolT,V (Ψ) consists of (λY , µY )-quasigeodesics and is EDT0L in NSPACE(k2 log k) over Y .

I Proposition 20. Let G be a hyperbolic group with torsion, with finite symmetric generating
set S. Let Φ be a system of equations and inequations with |Φ| = n as in Section 2. Let
h : S → S′,#, o be as in Proposition 17. Then there exist λ > 1, µ > 0 and

L = {w1# . . .#wm o h(v1)# . . .#h(vm) | wi, vi ∈ QS,λ,µ, wi =G vi, 1 6 i 6 m}

such that {w | w oh(v) ∈ L} is a covering solution for Φ, and L is ET0L in NSPACE(n4 logn).

Again applying Proposition 17 immediately gives Theorem 2.
Before proving Proposition 20 we need to show how one can translate between elements

and words in V over the generating set Y , and elements and words in G over S via the graph
K, so that the EDT0L characterisation of languages is preserved.

I Notation. Let Z be some generating set of V and let π : Z∗ → V be the standard projection
map from words to group elements in V .
(i) For each zi ∈ Z there exists a unique reduced path pi in K with i(pi) = 1G and

f(pi) ∈ G; by concatenation for each word w = zi1 . . . zik over Z there is then a unique
path denoted

pw = pi1 . . . pik (3)

with i(pw) = 1K = 1G and f(pw) ∈ G.
(ii) For each zi ∈ Z, assign a geodesic path γi in the Cayley graph Γ(G,S) such that

i(γi) = 1G and f(γi) = f(pi) ∈ G, where pi as in (i). Let σ : Z∗ → S∗ be the
map/substitution given by σ(zi) = γi; by concatenation one can associate to each word
w = zi1 . . . zik over Z a path in Γ(G,S) denoted

γw = γi1 . . . γik = σ(w) (4)

with i(pw) = 1G and f(γw) = f(w) ∈ G.
(iii) There exists a unique reduced path, denoted pπ(w), which is homotopic to pw.

Proof of Proposition 20. The algorithm to produce the language of solutions for Φ is similar
to that outlined in Section 3 and detailed in the proof of Proposition 18, but it applies
to different groups. The triangulation of Φ and introduction of a variable with rational
constraint to deal with the inequations proceeds in the same manner. Again, we suppose
after preprocessing we have q ∈ O(n) triangular equations.

Then for κ ∈ O(n) as in [8, Prop 36] define V6κ = {[γ] ∈ V | γ reduced and `K(γ) 6 κ}.
One lifts the system Φ in G to a finite set of systems Ψc in the virtually free group V , one
system for each q-tuple c of triples (c1, c2, c3) with ci ∈ V6κ and such that f(c1c2c3) = 1G,
as in [8, Prop 36]. We enumerate these tuples by enumerating triples of words (v1, v2, v3)
over the generating set Y of V with `Y (vi) 6 κY , where κY ∈ O(q) is a constant depending
on κ, as in Lemma 21(ii). By Lemma 21(ii) the tuples of path triples (pv1 , pv2 , pv3) (see (3))
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in K contain all q-tuples of triples (c1, c2, c3) with ci ∈ V6κY
, up to homotopy. Then for each

triple (v1, v2, v3) we check whether f(v1v2v3) = 1G, and this is done by checking whether
σ(v1)σ(v2)σ(v3) =G 1 using the Dehn algorithm in G.

Then each system Ψc is obtained as in (2) in the proof of Proposition 18 and has input size
O(q2) ∈ O(n2) since it has O(q) equations, each of length in O(q), and the factors ci inserted
also have length in O(q). For each system Ψc over V we apply the algorithm in [15] and obtain
the set of solutions SolT,V (Ψc) as an EDT0L in NSPACE((q2)2 log(q2)) = NSPACE(n4 logn)
of (λY , µY )-quasigeodesics over Y .

Now let QSolT,V (Ψc) be the set of all (λ′1, µ′1)-quasigeodesics which represent solutions
of Ψc in V over Y . By Proposition 17 this language is ET0L and by Corollary 22 it contains
at least one word over Y for each solution in QGλ1,µ1(V ).

Then σ(QSolT,V (Ψc)) is ET0L since ET0L languages are preserved by substitutions, and
by [8, Prop 36] S = ∪cσ(QSolT,V (Ψc)) contains SolG(Φ), so it is a covering solution set of
Φ. By Lemma 23 the set S consists of at least one (λG, µG)-quasigeodesic over S for each
solution, and then by intersection with the regular set QS,λG,µG

of quasigeodesics in G over
S we obtain a set of solutions for Φ consisting of (λG, µG)-quasigeodesics.

Finally, we run the modified DE algorithm (inserting the additional oh(W ) and label c
for each node printed) to print an NFA for each Φc for the EDT0L grammar for SolT,V (Ψc),
which we union using an extra start node as before. From the above work this grammar
generates the language L as required. J

I Lemma 21.
(i) If c ∈ V and the reduced path representing c in K is an (a, b)-quasigeodesic, then there

exists a word w on Y representing c such that w is an (a′, b′)-quasigeodesic, where a′, b′
depend on a, b and Y .

(ii) If c ∈ V and the length of the reduced path representing c in K is 6 L, then there exists
a word w on Y representing c such that `Y (w) 6 LY , where LY depends on L and Y .

I Corollary 22. For any element v ∈ QGλ1,µ1(V ) there is a (λ′1, µ′1)-quasigeodesic word over
Y representing v, where λ′1, µ′1 depend on λ1, µ1 and Y .

I Lemma 23. Let w be a (λ′1, µ′1)-quasigeodesic word over Y . Then if the reduced path pπ(w)
is (a, b)-quasigeodesic in K the (unreduced) path pw is (aK, bK)-quasigeodesic in K, where
(aK, bK) depend on a, b, λ′1, µ′1 and Y .

Moreover, σ(w) is a (λG, λG)-quasigeodesic over S in the hyperbolic group G, where
λG, λG depend on λ1, µ1 and Y .

Proof. Consider the generating set Z = Y ∪V63 for V and let λZ , µZ be such that any (λ′1, µ′1)-
quasigeodesic over Y is (λZ , µZ)-quasigeodesic over Z. Let M = max{lK(py) | y ∈ Y }. That
is, M is the maximal length of a generator in Y with respect to the associated reduced path
length in K. We will show the statement in the lemma holds for (aK, bK) = (a, b+MµZ).

We say that a subpath sw of pw is a maximal backtrack if pw = pswp
′, sw is homotopic

to an empty path (via the elimination of backtrackings), and sw is not contained in a longer
subpath of pw with the same property. This implies there is a point A on pw such that
sw starts and ends at A, and such a maximal backtrack traces a tree in K. We can then
write pw = a1s1a2 . . . sn−1an, where ai are (possibly empty) subpaths of pw and si are
maximal backtracks; thus pπ(w) = a1a2 . . . an. If lK(si) 6 MµZ for all i, then the result
follows immediately. Otherwise there exists an si with lK(si) > MµZ , and we claim that we
can write si in terms of a word over Z that is not a quasigeodesic, which contradicts the
assumption that w is quasigeodesic.
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To prove the claim, suppose i(si) = f(si) = A. We have two cases: in the first case A ∈ G
then π(si) =V 1 and si corresponds to a subword v of w for which lK(pv) > MµZ . But v
represents a word over Z, so lK(pv) 6 lZ(v)M , and altogether MµZ 6 lK(pv) 6 lZ(v)M.

Since |v|Z = 0 and v is a (λZ , µZ)-quasigeodesic word over Z∗, lZ(v) 6 µZ , which contradicts
lZ(v) > µZ from above.

In the second case A /∈ G, so take a point B ∈ G at distance 1 from A in K (this can
always be done), and modify the word w to get w′ over Z so that pw′ in K includes the
backtrack [AB,BA] off the path pw. Also modify si to obtain a new backtrack s′i. Clearly
π(pw) = π(pw′) and π(si) = π(s′i), and s′i becomes a maximal backtrack of pw′ which can be
written as a word over the generators Z that represents the trivial element in V . We can the
apply the argument from the first case.

The fact that σ(w) is a (λG, µG)-quasigeodesic over S in the hyperbolic group G follows
from the fact that K and Γ(G,S) are quasi-isometric. J
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