
Reachability for Branching Concurrent Stochastic
Games
Kousha Etessami
School of Informatics, University of Edinburgh, UK
kousha@inf.ed.ac.uk

Emanuel Martinov
School of Informatics, University of Edinburgh, UK
eo.martinov@gmail.com

Alistair Stewart
Department of Computer Science, University of Southern California, Los Angeles, CA, USA
stewart.al@gmail.com

Mihalis Yannakakis
Department of Computer Science, Columbia University, New York City, NY, USA
mihalis@cs.columbia.edu

Abstract
We give polynomial time algorithms for deciding almost-sure and limit-sure reachability in Branching
Concurrent Stochastic Games (BCSGs). These are a class of infinite-state imperfect-information
stochastic games that generalize both finite-state concurrent stochastic reachability games ([8]) and
branching simple stochastic reachability games ([13]).

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases stochastic games, multi-type branching processes, concurrent games, minimax-
polynomial equations, reachability, almost-sure, limit-sure

Digital Object Identifier 10.4230/LIPIcs.ICALP.2019.115

Category Track B: Automata, Logic, Semantics, and Theory of Programming

Related Version A full preprint is available on arXiv at https://arxiv.org/abs/1806.03907.

Funding Research partially supported by an EPSRC studentship EP/N509644/1-1789473 (Martinov),
and by NSF Grants CCF-1703925,CCF-1763970 (Yannakakis).

1 Introduction

Branching Processes (BP) are infinite-state stochastic processes that model the stochastic
evolution of a population of entities of distinct types. In each generation, every entity of
each type t produces, as offsprings, a set of entities of various types in the next generation,
according to a given probability distribution on offsprings associated with type t. BPs are
fundamental stochastic models that have been used to model phenomena in many fields,
including biology (see, e.g., [24]), population genetics ([20]), physics and chemistry (e.g.,
particle systems, chemical chain reactions), medicine (e.g. cancer growth [2, 28]), marketing,
and others. In many cases, the process is not purely stochastic but there is the possibility of
taking actions (for example, adjusting the conditions of reactions, applying drug treatments
in medicine, advertising in marketing, etc.) which can influence the probabilistic evolution of
the process to bias it towards achieving desirable objectives. Some of the factors that affect
the reproduction may be controllable (to some extent) while others are not and also may not
be sufficiently well-understood to be modeled accurately by specific probability distributions,
and thus it may be more appropriate to consider their effect in an adversarial (worst-case)

EA
T

C
S

© Kousha Etessami, Emanuel Martinov, Alistair Stewart, and Mihalis Yannakakis;
licensed under Creative Commons License CC-BY

46th International Colloquium on Automata, Languages, and Programming (ICALP 2019).
Editors: Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi;
Article No. 115; pp. 115:1–115:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kousha@inf.ed.ac.uk
mailto:eo.martinov@gmail.com
mailto:stewart.al@gmail.com
mailto:mihalis@cs.columbia.edu
https://doi.org/10.4230/LIPIcs.ICALP.2019.115
https://arxiv.org/abs/1806.03907
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

115:2 Reachability for BCSGs

sense. Branching Concurrent Stochastic Games (BCSG) are a natural model to represent
such settings. There are two players and, for each type t, each player has a set of available
actions, which can affect the reproduction of entities of type t. The evolution of the process
starts with some initial population of entities. For each entity of type t, the two players
each select (concurrently and independently) an action from their available set (possibly in a
randomized manner) and their join choices of actions determine the probability distribution
for the offsprings of that entity. The first player represents a controller who can control some
of the parameters of the reproduction and the second player represents other parameters that
are not controlled and are treated adversarially. The first player wants to select a strategy
that optimizes some objective. In this paper we focus on reachability objectives, a basic and
natural class of objectives. Some types are designated as undesirable (for example, malignant
cells), in which case we want to minimize the probability of ever reaching any entity of such
a type. Or conversely, some types may be designated as desirable, in which case we want to
maximize the probability of reaching an entity of such a type.

BCSGs generalize purely stochastic multi-type BPs as well as Branching Markov Decision
Processes (BMDP) and Branching Simple Stochastic Games (BSSG) which were studied for
reachability objectives in [13]. In BMDPs there is only one player who aims to maximize
or minimize a reachability objective. In BSSGs there are two opposing players, but they
control different types. These models were studied previously also under another basic
objective, namely optimization of extinction probability, i.e., the probability that the process
will eventually become extinct, that is, that the population will become empty [11, 15]. We
will later discuss in detail the prior results and compare them with the results in this paper.

BCSGs can also be seen as a generalization of finite-state concurrent (stochastic) games
[8] (see also [18]); namely they extend such finite-state games with branching. Concurrent
games have been used in the verification area to model the dynamics of open systems, where
one player represents the system and the other player the environment. Such a system
moves sequentially from state to state depending on the actions of the two players (the
system and the environment). Branching concurrent games model the more general setting
in which processes can spawn new processes that then proceed independently in parallel (e.g.,
new threads are created and terminated). We note incidentally that even if there are no
probabilities in the system itself, in the case of concurrent games, probabilities arise naturally
from the fact that the optimal strategies are in general randomized; as a consequence it can
be shown that branching concurrent stochastic games are expressively and computationally
equivalent to the non-stochastic version (see [15]).

We now summarize our main results and compare and contrast them with previous
results on related models. First, we show that a Branching concurrent stochastic game
(BCSG), G, with a reachability objective has a well-defined value, i.e., given an initial (finite)
population µ of entities of various types and a target type t∗, if the sets of all possible (mixed)
strategies of the two players are respectively Ψ1, Ψ2, and if Υσ,τ (µ, t∗) denotes the probability
of eventually reaching an entity of type t∗ when starting from initial population µ under
strategy σ ∈ Ψ1 for player 1 and strategy τ ∈ Ψ2 for player 2, then infσ∈Ψ1 supτ∈Ψ2 Υσ,τ (µ, t∗)
= supτ∈Ψ2 infσ∈Ψ1 Υσ,τ (µ, t∗), which is the value, v∗, of the game. Furthermore, we show
that the player who wants to minimize the reachability probability always has an optimal
(mixed) static strategy that achieves the value, i.e., a strategy σ∗ which uses, for all entities of
each type t generated over the entire history of the game, the same probability distribution
on the available actions for type t, independent of the past history, and which has the
property that v∗ = supτ∈Ψ2 Υσ∗,τ (µ, t∗). The optimal strategy in general has to be mixed
(randomized); this is the case even for finite-state concurrent games [8]. On the other hand,

K. Etessami, E. Martinov, A. Stewart, and M. Yannakakis 115:3

the player that wants to maximize the reachability probability of a BCSG need not have any
optimal strategy (whether static or not), and it was known that this holds even for BMDPs,
i.e., even when there is only one player [13]. The same holds for finite-state CSGs: the player
maximizing reachability probability need not have any optimal strategy [8].

To analyze BCSGs reachability games, we model them by a system of equations x = P (x),
called a minimax Probabilistic Polynomial System (minimax-PPS for short), where x is a
tuple of variables corresponding to the types of the BCSG. There is one equation xi = Pi(x)
for each type ti, where Pi(x) is the value of a (one-shot) two-player zero-sum matrix game,
whose payoff for every pair of actions is given by a polynomial in x whose coefficients are
positive and sum to at most 1 (a probabilistic polynomial). The function P (x) defines
a monotone operator from [0, 1]n to itself, and thus it has, in particular, a greatest fixed
point (GFP) g∗ in [0, 1]n. We show that the coordinates g∗i of the GFP give the optimal
non-reachability probabilities for the BCSG game when started with a population that
consists of a single entity of type ti. The value of the game for any initial population µ can
be derived easily from the GFP g∗ of the minimax-PPS. This generalizes a result in [13],
which established an analogous result for the special case of BSSGs. It also follows from our
minimax-PPS equational characterization that quantitative decision problems for BCSGs,
such as deciding whether the reachability game value is ≥ p for a given p ∈ (0, 1) are all
solvable in PSPACE.

Our main algorithmic results concern the qualitative analysis of the reachability problem,
that is, the problem of determining whether one of the players can win the game with
probability 1, i.e., if the value of the game is 0 or 1. We provide the first polynomial-time
algorithms for qualitative reachability analysis for branching concurrent stochastic games.
For the value=0 problem, the algorithm and its analysis are very simple. If the value is
0, the algorithm computes an optimal strategy σ∗ for the player that wants to minimize
the reachability probability, where σ∗ is in fact static and deterministic, i.e., it selects for
each type, deterministically, a single available action, and guarantees Υσ∗,τ (µ, t∗) = 0 for all
τ ∈ Ψ2. If the value is positive then the algorithm computes a static mixed strategy τ for
the player maximizing reachability probability that guarantees infσ∈Ψ1 Υσ,τ (µ, t∗) > 0.

The value=1 problem is much more complicated. There are two versions of it, because it
is possible that the game value is 1 but no strategy for the maximizing player guarantees
reachability with probability 1. Thus, we have two versions of the problem. In the first
version, called the almost-sure problem, we want to decide whether there exists a strategy τ∗
for player 2 that guarantees that the target type t∗ is reached with probability 1 regardless of
the strategy of player 1, i.e., such that Υσ,τ∗(µ, t∗) = 1 for all σ ∈ Ψ1. In the second version,
called the limit-sure problem, we want to decide if the value v∗ = supτ∈Ψ2 infσ∈Ψ1 Υσ,τ (µ, t∗)
is 1, i.e., if for every ε > 0 there is a strategy τε of player 2 that guarantees that the probability
of reaching the target type is at least 1− ε regardless of the strategy σ of player 1; such a
strategy τε is called ε-optimal. We provide polynomial-time algorithms for both versions of
the problem. The algorithms non-trivially generalize the algorithms of both [8] and [13], both
of which address different special subcases of qualitative BCSG reachability. Our positive
results on qualitative reachability for BCSG are surprising especially in view of the known
major obstacles in resolving the analogous questions for the extinction problem for BCSG,
as explained below in the review of related work.

In the almost-sure problem, if the answer is positive, our algorithm constructs (a compact
description of) a strategy τ∗ of player 2 that achieves value 1; the strategy is a randomized
non-static strategy, and this is inherent (i.e., there may not exist a static strategy that achieves
value 1). If the answer is negative, our algorithm constructs a (non-static, randomized)

ICALP 2019

115:4 Reachability for BCSGs

strategy σ for the opposing player 1 such that Υσ,τ (µ, t∗) < 1 for all strategies τ of player
2. In the limit-sure problem, if the answer is positive, i.e., the value is 1, our algorithm
constructs for any given ε > 0, a static, randomized ε-optimal strategy, i.e., a strategy τε such
that Υσ,τε(µ, t∗) ≥ 1− ε for all σ ∈ Ψ1. If the answer is negative, i.e., the value is < 1, our
algorithm constructs a static randomized strategy σ′ for player 1 such that supτ∈Ψ2 Υσ′,τ < 1.
Due to space limits, most proofs are omitted; see the full version.

Related Work. As mentioned, the two works most closely related to ours are [8] and [13].
Our results generalize both. de Alfaro, Henzinger, and Kupferman [8] studied finite-state
concurrent (stochastic) games (CSGs) with reachability objectives and provided polynomial
time algorithms for their qualitative analysis, both for the almost-sure and the limit-sure
reachability problem. See also [22, 19, 21, 5] for more recent results on finite-state CSG
reachability; in particular, there are finite-state CSGs with value= 1 for which (near-)optimal
strategies need to have some action probabilities that are doubly-exponentially small [22, 5]
(unlike simple, turned-based stochastic games), and thus must be represented succinctly to
ensure polynomial space. This is of course the case also for branching CSGs, and the optimal
or ε-optimal strategies constructed by our algorithms are represented compactly so that the
algorithms run in polynomial time.

BMDPs and BSSGs with reachability objectives were studied in [13], which provided
polynomial-time algorithms for their qualitative analysis, and also gave polynomial time
algorithms for approximate quantitative analysis of BMDPs, i.e., approximate computation
of the optimal reachability probability for maximizing and minimizing BMDPs, and it showed
that this problem for BSSGs is in TFNP. Note that even for finite-state simple stochastic
games the question of whether the value of the game can be computed in polynomial time
is a well-known long-standing open problem [7]. It was also shown in [13] that the optimal
non-reachability probabilities of maximizing or minimizing BMDPs and BSSGs are captured
by the GFP of a system of min/max-PPS equations, x = P (x), where each right-hand side
Pi(x) is the maximum or minimum of a set of probabilistic polynomials in x; note that these
types of equation systems are special cases of minimax-PPSs and are much simpler.

Another important objective, the probability of extinction, has been studied previously
for Branching Concurrent Stochastic Games, as well as BMDPs and BSSGs, and the purely
stochastic model of Branching Processes (BPs). These branching models under the extinction
objective are equivalent to corresponding subclasses of recursive Markov models, called
respectively, 1-exit Recursive Concurrent Stochastic Games (1-RCSG), Markov Decision
Processes (1-RMDP), and Markov Chains (1-RMC), and related subclasses of probabilistic
pushdown processes under a termination objective [16, 12, 17, 11, 15, 10]. The extinction
probabilities for these models are captured by the least fixed point (LFP) solutions of
similar systems of probabilistic polynomial equations; for example, the optimal extinction
probabilities of a BCSG are given by the LFP of a minimax-PPS. Polynomial time-algorithms
for qualitative analysis, as well as for the approximate computation of the optimal extinction
probabilities of Branching MDPs (and 1-RMDPs) were given in [17, 11]. However, negative
results were shown also which indicate that the problem is much harder for branching
concurrent (or even simple) stochastic games, even for the qualitative extinction problem.
Specifically, it was shown in [17] that the qualitative extinction (termination) problem for
BSSG (equivalently, 1-RSSG) is at least as hard as the well-known open problem of computing
the value of a finite-state simple stochastic game [7]. Furthermore, it was shown in [15] that
(both the almost-sure and limit-sure) qualitative extinction problems for BCSGs (equivalently
1-RCSGs) are at least as hard as the square-root sum problem, which is not even known to be

K. Etessami, E. Martinov, A. Stewart, and M. Yannakakis 115:5

in NP. Thus, the qualitative reachability problem for BCSGs seems to be very different than
the extinction problem for BCSGs: obtaining analogous results for the qualitative extinction
to those of the present paper for qualitative reachability would resolve two major open
problems. This is despite the fact that there is a natural “duality” between the extinction
and reachability objectives (see [13]).

The equivalence between branching models (like BMDPs, BCSGs) and recursive Markov
models (like 1-RMDPs, 1-RCSGs) with respect to extinction does not hold for the reachability
objective. For example, almost-sure and limit-sure reachability coincide for a BMDP, i.e., if
the supremum probability of reaching the target is 1 then there exists a strategy that ensures
reachability with probability 1. However, this is not the case for 1-RMDPs. Furthermore,
almost-sure reachability for 1-RMDPs can be decided in polynomial time [3, 4], but limit-sure
reachability for 1-RMDPs is not even known to be decidable. The qualitative reachability
problem for 1-RMDPs and 1-RSSGs (and equivalent probabilistic pushdown models) was
studied in [4, 1]. These results do not apply to the corresponding branching models (BMDP,
BSSG). Another objective considered in prior work is the expected total reward objective for
1-RSSGs ([14]) and 1-RCSGs ([31]) with positive rewards. None of these prior results have
any implications for BCSGs with reachability objectives.

For richer objectives beyond reachability or extinction, Chen et. al. [6] studied model
checking of purely stochastic branching processes (BPs) with respect to properties expressed
by deterministic parity tree automata, and showed that the qualitative problem is in P-time
(hence this holds in particular for reachability probability in BPs), and that the quantitative
problem of comparing the probability with a rational is in PSPACE. Michalevski and Mio [25]
extended this to properties of BPs expressed by “game automata”, a subclass of alternating
parity tree automata. More recently, Przybyłko and Skrzypczak [27] considered existence
and complexity of game values of Branching turn-based (i.e., simple) stochastic games, with
regular objectives, where the two players aim to maximize/minimize the probability that
the generated labeled tree belongs to a regular language (given by a tree automaton). They
showed that (unlike our case of simpler reachability games) already for some basic regular
properties these games are not even determined, meaning they do not have a value. They
furthermore showed that for a probabilistic turn-based branching game, with a regular
tree objective, it is undecidable to compare the value that a given player can force to
1/2; whereas for deterministic turn-based branching games they showed it is decidable and
2-EXPTIME-complete (respectively, EXPTIME-complete), to determine whether the player
aiming to satisfy (respectively, falsify) a given regular tree objective has a pure winning
strategy. Other past research includes work in operations research on (one-player) Branching
MDPs [26, 29, 9]. None of these prior works bear on any of the results on BCSG reachability
problems established in this paper.

2 Background

A Branching Concurrent Stochastic Game (BCSG) consists of a finite set V = {T1, . . . Tn} of
types, two finite non-empty sets Γimax,Γimin ⊆ Σ of actions (one for each player) for each
type Ti (Σ is a finite action alphabet), and a finite set R(Ti, amax, amin) of probabilistic rules
associated with each tuple (Ti, amax, amin), where i ∈ [n], amax ∈ Γimax, & amin ∈ Γimin.
Each rule r ∈ R(Ti, amax, amin) is a triple (Ti, pr, αr), which we can denote by Ti

pr−→ αr,
where αr ∈ Nn is a n-vector of natural numbers that denotes a finite multi-set over the
set V , and where pr ∈ (0, 1] ∩ Q is the probability of the rule r (which we assume to

ICALP 2019

115:6 Reachability for BCSGs

be a rational number, for computational purposes), where we assume that for all Ti ∈ V
and amax ∈ Γimax, amin ∈ Γimin, the rule probabilities in R(Ti, amax, amin) sum to 1, i.e.,∑
r∈R(Ti,amax,amin) pr = 1.
If for all types Ti ∈ V , either |Γimax| = 1 or |Γimin| = 1, then the model is a “turn-

based” perfect-information game and is called a Branching Simple Stochastic Game (BSSG).
If for all Ti ∈ V , |Γimax| = 1 (respectively, |Γimin| = 1), then it is called a minimizing
Branching Markov Decision Process (BMDP) (respectively, a maximizing BMDP). If both
|Γimin| = 1 = |Γimax| for all i ∈ [n], then the process is a classic, purely stochastic, multi-type
Branching Process (BP) ([23]).

A play of a BCSG defines a (possibly infinite) node-labeled forest, whose nodes are
labeled by the type of the object they represent. A play contains a sequence of “generations”,
X0, X1, X2, . . . (one for each integer time t ≥ 0, corresponding to nodes at depth/level t in
the forest). For each t ∈ N, Xt consists of the population (set of objects of given types), at
time t. X0 is the initial population at generation 0 (these are the roots of the forest). Xk+1
is obtained from Xk in the following way: for each object e in the set Xk, assuming e has
type Ti, both players select simultaneously and independently actions amax ∈ Γimax, and
amin ∈ Γimin (or distributions on such actions), according to their strategies; thereafter a rule
r ∈ R(Ti, amax, amin) is chosen randomly and independently (for object e) with probability
pr; each such object e in Xk is then replaced by the set of objects specified by the multi-set αr
associated with the corresponding randomly chosen rule r. This process is repeated in each
generation, as long as the current generation is not empty, and if for some k ≥ 0, Xk = ∅
then we say the process terminates or becomes extinct.

The strategies of players can in general be arbitrary functions from any finite history
tree, to (distributions on) actions, for each object in the current population. The history
of the process up to time k is a forest of depth k that includes not only the populations
X0, X1, . . . , Xk, but also all the information regarding past actions and rules applied at each
object, and all the parent-child relationships between objects up to generation k. The history
can be represented by a forest of depth k, with internal nodes labeled by rules and actions,
and whose leaves at level k form the current population Xk. Thus, formally, a strategy of
player 1 (player 2, respectively) is a function that maps every finite history (i.e., a labelled
forest of some finite depth, k, as above) and each object e in the current population Xk

(leaf at depth k) to a probability distribution on the actions Γimax (to the actions Γimin,
respectively), assuming that object e has type Ti.1

Let Ψ1,Ψ2 be the set of all strategies of players 1, 2. We say that a strategy is deterministic
if for every history it maps each object e in the current population to a single action with
probability 1 (in other words, it does not randomize on actions). We say that a strategy is
static if for each type Ti ∈ V , and for any object e of type Ti, the player always chooses the
same distribution on actions, irrespective of the history.

Different objectives can be considered for BCSGs. This paper considers (existential)
reachability, where the aim of the players is to maximize/minimize the probability of reaching
a generation that contains at least one object of a given target type Tf∗ . The BCSG
reachability game can of course also be viewed as a “non-reachability” (“safety”) game,
by just reversing the role of the players. We will exploit this alternative view in crucial
ways (and this was also exploited in [13] for BSSGs). Given an initial population µ ∈ Nn,

1 Note: this very general notion of a “strategy” permits the action (or distribution on actions) chosen for
a given object e to depend not only on e’s “ancestors” in the history forest, but also on siblings, cousins,
etc., in the entire forest, up to and including the generation of the population that e belongs to.

K. Etessami, E. Martinov, A. Stewart, and M. Yannakakis 115:7

with µf∗ = 0, and given strategies σ ∈ Ψ1, τ ∈ Ψ2, let g∗σ,τ (µ) denote the probability that
(Xl)f∗ = 0 for all l ≥ 0. Let g∗σ,∗(µ) = infτ∈Ψ2 g

∗
σ,τ (µ), let g∗∗,τ (µ) = supσ∈Ψ1 g

∗
σ,τ (µ), and

let g∗(µ) = supσ∈Ψ1 infτ∈Ψ2 g
∗
σ,τ (µ) denote the value of the game under the non-reachability

objective and for the initial population µ. We will show that these games do have a value,
meaning g∗(µ) = supσ∈Ψ1 infτ∈Ψ2 g

∗
σ,τ (µ) = infτ∈Ψ2 supσ∈Ψ1 g

∗
σ,τ (µ).

In the case where the initial population µ is a single object of some type Ti, then for the
value of the game we write g∗i , and similarly, when one or both of the strategies σ, τ are
fixed, we write (g∗σ,∗)i, (g∗∗,τ)i, or (g∗σ,τ)i. The vector g∗ of g∗i ’s, is called the vector of the
non-reachability values of the game. We will see that, having the vector of g∗i ’s, the non-
reachability value for any starting population µ can be computed simply as g∗(µ) =

∏
i(g∗i)µi .

So given a BCSG, the goal is to compute the vector g∗ of non-reachability values. As
our original objective is reachability, we point out that the vector of reachability values is
r∗ = 1− g∗ (where 1 is the all-1 vector), and hence the reachability value r∗(µ) of the game
starting with population µ is r∗(µ) = 1− g∗(µ).

We will associate with any given BCSG a system of minimax probabilistic polynomial
equations (minimax-PPS), x = P (x), for the non-reachability objective. This system will
have one variable xi, and one equation xi = Pi(x), for each type Ti other than the target type
Tf∗ . We will show that the vector of non-reachability values g∗ for different starting types is
precisely the Greatest Fixed Point (GFP) solution of the system x = P (x) in [0, 1]n. To define
these equations, some shorthand notation will be useful. We use xv to denote the monomial
xv1

1 x
v2
2 · · ·xvnn for an n-vector of variables x = (x1, · · · , xn) and a vector v ∈ Nn. Considering

a multi-variate polynomial Pi(x) =
∑
r∈R prx

αr for some rational coefficients pr, r ∈ R, we
will call Pi(x) a probabilistic polynomial, if pr ≥ 0 for all r ∈ R and

∑
r∈R pr ≤ 1. A minimax

probabilistic polynomial system of equations (minimax-PPS), x = P (x), is a system of n
equations in n variables x = (x1, . . . , xn), where for each i ∈ {1, . . . , n}, Pi(x) := V al(Ai(x)),
where Ai(x) is a matrix whose entries are probabilistic polynomials, and V al(Ai(x)) is the
minimax value of the finite two-player zero-sum game with payoff matrix Ai(x) for each
x ∈ Rn. Note that as special cases, when Ai(x) has only one row or only one column, then
V al(Ai(x)) is the maximum or minimum of a set of probabilistic polynomials, and when it
has only one row and column, then V al(Ai(x)) is simply a probabilistic polynomial.

For computational purposes, we assume that all coefficients are rational and that there are
no zero terms in the probabilistic polynomials, and we assume the coefficients and non-zero
exponents of each term are given in binary. We denote by |P | the total bit encoding length
of a system x = P (x) under this representation. Since P (x) defines a monotone function
P : [0, 1]n → [0, 1]n, it follows from Tarski’s theorem ([30])) that any such system has both a
Least Fixed Point (LFP) solution q∗ ∈ [0, 1]n, and a Greatest Fixed Point (GFP) solution,
g∗ ∈ [0, 1]n. In other words, q∗ = P (q∗) and g∗ = P (g∗) and moreover, for all s∗ ∈ [0, 1]n
such that s∗ = P (s∗), we have q∗ ≤ s∗ ≤ g∗ (coordinate-wise inequality).

For convenience in proofs and algorithms throughout the paper and to simplify the
structure of the matrices involved, we shall observe that minimax-PPSs can always be cast
in the following normal form. A minimax-PPS in simple normal form (SNF), x = P (x), is a
system of n equations in n variables {x1, · · · , xn}, where each Pi(x) for i = 1, 2, . . . , n is one
of three forms:

Form L: Pi(x) = ai,0 +
∑n
j=1 ai,jxj , where for all j, ai,j ≥ 0, and

∑n
j=0 ai,j ≤ 1

Form Q: Pi(x) = xjxk for some j, k
Form M: Pi(x) = V al(Ai(x)), where Ai(x) is a (ni × mi) matrix, such that for all
j ∈ [ni] and k ∈ [mi], the entry (Ai(x))j,k ∈ {x1, . . . , xn} ∪ {1}.

We shall often assume a minimax-PPS in its SNF form, and say that a variable xi is “of
form/type” L, Q, or M, meaning that Pi(x) has the corresponding form.

ICALP 2019

115:8 Reachability for BCSGs

I Proposition 1 (informal statement; see full version for formal statement and proof). Every
minimax-PPS, x = P (x), can be transformed in P-time to an “equivalent” minimax-PPS,
y = Q(y) in SNF form, such that |Q| ∈ O(|P |).

Thus, for the rest of this paper we may assume, without loss of generality, that all
minimax-PPSs are in SNF normal form.

3 Non-reachability values for BCSGs and the Greatest Fixed Point

We show that for a given BCSG with a target type Tf∗ , a minimax-PPS, x = P (x), can be
constructed such that its greatest fixed point (GFP) g∗ ∈ [0, 1]n is precisely the vector g∗ of
non-reachability values for the BCSG. For simplicity, from now on let us call a maximizer
(respectively, a minimizer) the player that aims to maximize (respectively, minimize) the
probability of not reaching the target type. That is, we swap the roles of the players for
the benefit of less confusion in analysing the minimax-PPS which captures non-reachability
values in its GFP.

For each type Ti 6= Tf∗ , the minimax-PPS will have an associated variable xi and an
equation xi = Pi(x), and the Pi(x) is defined as follows. For each action amax ∈ Γimax
of the maximizer (i.e., the player aiming to maximize the probability of not reaching the
target) and action amin ∈ Γimin of the minimizer, in Ti, let R′(Ti, amax, amin) = {r ∈
R(Ti, amax, amin) | (αr)f∗ = 0} be the set of probabilistic rules r for type Ti and players’
action pair (amax, amin) that generate a multi-set αr which does not contain an object of the
target type. For each action pair for Ti, there is a probabilistic polynomial qi,amax,amin(x) :=∑
r∈R′(Ti,amax,amin) prx

αr . Now we let Pi(x) ≡ V al(Ai(x)) be the value of a finite zero-sum
game with matrix Ai(x), where the matrix is constructed as follows: (1) rows belong to the
max player in the minimax-PPS (i.e., the player trying to maximize the non-reachability
probability), and columns belong to the min player; (2) for each row and column (i.e., pair
of actions (amax, amin)) the matrix entry Ai(x)amax,amin is the corresponding probabilistic
polynomial qi,amax,amin(x).

The following theorem captures the fact that the optimal non-reachability values g∗ in
the BCSG game exist (meaning these game do have a value) and correspond to the GFP of
the minimax-PPS x = P (x) that was just defined.

I Theorem 2. The non-reachability game values g∗ ∈ [0, 1]n of a BCSG reachability game
exist, and correspond to the GFP of the minimax-PPS, x = P (x), in [0, 1]n. That is,
g∗ = P (g∗), and for all other fixed points g′ = P (g′) in [0, 1]n, it holds that g′ ≤ g∗.
Moreover, for an initial population µ, the optimal non-reachability value is g∗(µ) =

∏
i(g∗i)µi

and the game is determined, i.e., g∗(µ) = supσ∈Ψ1 infτ∈Ψ2 g
∗
σ,τ (µ) = infτ∈Ψ2 supσ∈Ψ1 g

∗
σ,τ (µ).

Finally, the player maximizing non-reachability probability in the BCSG has a (mixed) static
optimal strategy.

I Corollary 3. Given a BCSG reachability game, and a probability p ∈ (0, 1), deciding
whether the game value is ≥ p is in PSPACE.

The PSPACE upper bound follows from Theorem 2, by appealing to decision procedures
for the (existential) theory of reals to answer quantitative questions about the GFP of the
corresponding minimax-PPS equations. This is entirely analogous to very similar arguments
in [15, 13, 16], so we do not elaborate. Any substantial improvement on PSPACE for such
quantitative decision problems would require a major breakthrough on exact numerical
computation, even for BPs or BMDPs (see [16, 13, 15]).

K. Etessami, E. Martinov, A. Stewart, and M. Yannakakis 115:9

4 P-time algorithm for almost-sure reachability for BCSGs

Before considering almost-sure reachability, we first show there is a simple P-time algorithm
for computing the variables xi with value g∗i = 1 for the GFP in a given minimax-PPS,
x = P (x), or in other words, for a given BCSG, deciding whether the reachability value,
starting with an object of a given type Ti, is 0. The algorithm is easy, amounts to an AND-OR
graph reachability analysis, and is very similar to the algorithm given for deciding g∗i = 1 for
BSSGs in [13]. Let W = {x1, . . . , xn} denote the set of all variables of the minimax-PPS.
The algorithm is given in Figure 1.

1. Initialize S := {xi ∈W | Pi(1) < 1}.
2. Repeat until no change has occurred:

a. if there is a variable xi 6∈ S of form L or Q such that Pi(x) contains a variable already
in S, then add xi to S.

b. if there is a variable xi 6∈ S of form M such that for every action amax ∈ Γimax, there
exists an action amin ∈ Γimin, such that Ai(x)(amax,amin) ∈ S, then add xi to S.

3. Output the set S̄ := W − S.

Figure 1 Simple P-time algorithm for computing the set of types with reachability value 0 in a
given BCSG, or equivalently the set of variables {xi | g∗

i = 1} of the associated minimax-PPS.

I Proposition 4. There is a P-time algorithm that, given a BCSG or equivalently a corres-
ponding minimax-PPS, x = P (x), with n variables and with GFP g∗ ∈ [0, 1]n, and given
i ∈ [n], determines whether g∗i = 1 or g∗i < 1. In case g∗i = 1, the algorithm can produce a
deterministic static strategy σ for the max player (maximizing non-reachability) that forces
g∗i = 1. Otherwise, if g∗i < 1, the algorithm can produce a mixed static strategy τ for the min
player (minimizing non-reachability) that guarantees g∗i < 1.

We are now ready to present a P-time algorithm for almost-sure reachability for BCSGs.
First, as a preprocessing step, we apply the algorithm of Proposition 4, which identifies in
P-time all the variables xi where g∗i = 1. We then remove these variables from the system,
substituting the value 1 in their place. We then simplify and reduce the resulting SNF-form
minimax-PPS into a reduced form, with GFP g∗ < 1. Note that the resulting reduced
SNF-form minimax-PPS may contain some variables xj of form M, whose corresponding
matrix Aj(x) has some entries that contain the value 1 rather than a variable (because
we substituted 1 for removed variables xj , where g∗j = 1). Note also that in the reduced
SNF-form minimax-PPS each variable xi of form Q has an associated quadratic equation
xi = xjxk, because if one of the variables (say xk) on the right-hand side was set to 1
during preprocessing, the resulting equation (xi = xj) would have been declared to have
form L in the reduced minimax-PPS. We henceforth assume that the minimax-PPS is in
SNF-form, with g∗ < 1, and we let X be its set of (remaining) variables. We now apply the
algorithm of Figure 2 to the minimax-PPS with g∗ < 1, which identifies the variables xi in
the minimax-PPS (equivalently, the types in the BCSG), from which we can almost-surely
reach the target type Tf∗ (i.e., g∗i = 0 and there is a strategy τ∗ for the player minimizing
non-reachability probability that achieves this value, no matter what the other player does).

I Theorem 5. Given a BCSG with minimax-PPS, x = P (x), such that the GFP g∗ < 1,
the algorithm in Figure 2 terminates in polynomial time and returns the set of variables
{xi ∈ X | ∃τ ∈ Ψ2 (g∗∗,τ)i = 0}.

ICALP 2019

115:10 Reachability for BCSGs

1. Initialize S := {xi ∈ X | Pi(0) > 0, that is Pi(x) has a constant term }.
Let γi0 := Γimin for every variable xi ∈ X − S. Let t := 1.

2. Repeat until no change has occurred to S:
a. if there is a variable xi ∈ X − S of form L where Pi(x) contains a variable already in

S, then add xi to S.
b. if there is a variable xi ∈ X − S of form Q where both variables in Pi(x) are already

in S, then add xi to S.
c. if there is a variable xi ∈ X − S of form M and if for all amin ∈ Γimin, there exists a
amax ∈ Γimax such that Ai(x)(amax,amin) ∈ S ∪ {1}, then add xi to S.

3. For each xi ∈ X − S of form M, let:
γit := {amin ∈ γit−1 | ∀amax ∈ Γimax, Ai(x)(amax,amin) 6∈ S ∪{1}}. (Note that γit ⊆ γit−1.)

4. Let F := {xi ∈ X − S | Pi(1) < 1, or Pi(x) is of form Q }
5. Repeat until no change has occurred to F :

a. if there is a variable xi ∈ X− (S∪F) of form L where Pi(x) contains a variable already
in F , then add xi to F .

b. if there is a variable xi ∈ X − (S ∪ F) of form M such that for ∀amax ∈ Γimax, there is
a min player’s action amin ∈ γit such that Ai(x)(amax,amin) ∈ F , then add xi to F .

6. If X = S ∪ F , return F , and halt.
7. Else, let S := X − F , t := t+ 1, and go to step 2.

Figure 2 P-time algorithm for computing almost-sure reachability types {xi | ∃τ ∈ Ψ2 (g∗
∗,τ)i = 0}

for a minimax-PPS (in SNF), associated with a given BCSG.

The proof is in the full version. Here we give very brief intuition for why the algorithm
works. The set S will accumulate variables xi ∈ X, such that regardless of the strategy τ ∈ Ψ2
of the player minimizing non-reachability (i.e., maximizing reachability), the probability of
reaching the target type is < 1. The loop in Step (2.) is a basic “attractor set” construction
that adds to S any variable xi that should be in S by virtue of prior membership in S of
variables (types) occurring in Pi(x). In step (3.), for each variable xi ∈ X − S we maintain
the remaining “useful” set of actions γit ⊆ Γimin that can avoid the set S (or extinction).
The loop in Step (5.) accumulates a set F ⊆ X − S, such that for every xi ∈ F there is a
strategy τ ∈ Ψ2 to either reach the target or a branching (quadratic) type in F , with positive
probability, regardless of the opponent’s strategy. The key assertion is this: if in step (6.) we
find all variables are already either in S or in F , we are done; F must be the set of types
from which we can force almost-sure reachability of the target type; otherwise, all variables
in X − (F ∪ S) can be added to S. The reason this assertion holds is not obvious (see the
detailed proof). The proof of the theorem also yields the following:

I Corollary 6. Let F be the set of variables output by the algorithm in Figure 2.
1. Let S = X − F . There is a randomized non-static strategy σ̂ for the max player

(maximizing non-reachability) such that for all xi ∈ S, and for all strategies τ of the min
player (minimizing non-reachability), starting with one object of type Ti the probability of
reaching the target type is < 1.

2. There is a randomized non-static strategy τ̂ for the min player (minimizing non-reach-
ability) such that for all strategies σ of the max player (maximizing non-reachability),
and for all xi ∈ F , starting at one object of type Ti the probability of reaching the
target type is 1.

K. Etessami, E. Martinov, A. Stewart, and M. Yannakakis 115:11

The non-static strategies σ̂ and τ̂ mentioned above both have suitably compact descriptions
(as functions that map finite histories to distributions over actions for entities in the current
population) and can be described in such a compact form in polynomial time, as a function
of the encoding size of the input BCSG.

The strategies need to be represented compactly because some of the actions probabilities
may be doubly-exponentially small (or doubly-exponentially close to 1), and this is inherent.

5 P-time algorithm for limit-sure reachability for BCSGs

In this section we focus on the limit-sure reachability problem, i.e., starting with one object
of a type Ti, decide whether the reachability value is 1. Since we translate reachability into
non-reachability when analysing the corresponding minimax-PPS, we are asking whether
there exists a sequence of strategies 〈τ∗εj | j ∈ N〉 for the min player, such that ∀j ∈ N,
εj > εj+1 > 0, and where limj→∞ εj = 0, such that the strategy τ∗εj forces non-reachability
probability to be at most εj , regardless of the strategy σ used by the max player. In other
words, for a given starting object of type Ti, we ask whether infτ∈Ψ2(g∗∗,τ)i = 0.

1. Initialize S := {xi ∈ X | Pi(0) > 0, that is Pi(x) has a constant term }.
2. Repeat until no change has occurred to S:

a. if there is a variable xi ∈ X − S of form L where Pi(x) contains a variable already in
S, then add xi to S.

b. if there is a variable xi ∈ X − S of form Q where both variables in Pi(x) are already
in S, then add xi to S.

c. if there is a variable xi ∈ X − S of form M and if for all amin ∈ Γimin, there exists
amax ∈ Γimax such that Ai(x)(amax,amin) ∈ S ∪ {1}, then add xi to S.

3. Let F := {xi ∈ X − S | Pi(1) < 1, or Pi(x) is of form Q }
4. Repeat until no change has occurred to F :

a. if there is a variable xi ∈ X− (S∪F) of form L where Pi(x) contains a variable already
in F , then add xi to F .

b. if there is a variable xi ∈ X − (S ∪F) of form M and if the following procedure returns
“Yes”, then add xi to F .
i. Set L0 := ∅, B0 := ∅, k := 0. Let O := X − (S ∪ F).
ii. Repeat:

k := k + 1.
Lk := {amin ∈ Γimin −

⋃k−1
j=0 Lj | ∀amax ∈ Γimax − Bk−1, Ai(x)(amax,amin) ∈

F ∪O}.
Bk := Bk−1 ∪ {amax ∈ Γimax −Bk−1 | ∃amin ∈ Lk s.t. Ai(x)(amax,amin) ∈ F}.

Until Bk = Bk−1.
iii. Return: “Yes” if Bk = Γimax, and “No” otherwise.

5. If X = S ∪ F , return F , and halt.
6. Else, let S := X − F , and go to step 2.

Figure 3 P-time algorithm for computing the set of types that satisfy limit-sure reachability in a
given BCSG, i.e., the set of variables {xi | g∗

i = 0} in the associated minimax-PPS.

Again, as in the almost-sure case, we first, as a preprocessing step, use the P-time
algorithm from Proposition 4 to remove all variables xi such that g∗i = 1, and we substitute
1 for these variables in the remaining equations. We hence obtain a reduced SNF-form

ICALP 2019

115:12 Reachability for BCSGs

minimax-PPS, for which we can assume g∗ < 1. The set of all remaining variables in the
SNF-form minimax-PPS is again denoted by X. Thereafter, we apply the algorithm in
Figure 3, which computes the set of variables, xi, such that g∗i = 0. In other words, we
compute the set of types, such that starting from one object of that type the value of the
reachability game is 1.

I Theorem 7. Given a BCSG with minimax-PPS, x = P (x), with GFP g∗ < 1, the algorithm
in Figure 3 terminates in polynomial time, and returns the set of variables {xi ∈ X | g∗i = 0}.

The proof is in the full version. We again give very brief intuition for why the algorithm
works. The algorithm is similar in structure to that of almost-sure reachability, but differs
in crucial aspects. Firstly, step (2.) now accumulates the variables xi for which we know
g∗i > 0. In step (3.), as before, the set F is initialized to variables xi ∈ X − S (types) where
either Pi(x) is quadratic, or the target type is generated with positive probability in the next
step, i.e., (Pi(1) < 1). In step (4.) the algorithm makes crucial use of a “limit-escape” set
construction (inside inner loop 4.(b)), a variant of which was used by de Alfaro, Henzinger,
and Kupferman in [8], in the context of finite-state CSGs, but which has been adapted here
to the context of BCSGs. This loop adds a variable xi to the set F whenever it is the case
that, for any ε > 0, the player minimizing non-reachability can play a distribution on actions
(depending on ε) at any object e of type Ti such that (regardless of the action distribution
of the other player) the probability that e produces an offspring in the next generation
whose type is in S is at most ε times the probability that it produces an offspring that is
already in F . Unlike the almost-sure case (where we maintain remaining sets of “useful”
actions γit ⊂ Γimin that can avoid the set S), in the limit-sure case the player minimizing
non-reachability may not have any (distribution on) actions that entirely avoid the set S,
but it nevertheless may have a series of distributions on actions that make the ratio of the
probability of the “bad” event of generating an offspring in S, compared to the probability
of the “good” event of generating an offspring in F , arbitrarily small. Similar to the case of
almost-sure reachability, a key assertion is that if in step (5.) all variables in X are already in
S ∪F then we are done: F consists of precisely those variables (types) that satisfy limit-sure
reachability; otherwise, we can add X − (S ∪ F) to the set S. The reason why this holds is
again subtle (see the detailed proof in the full version).

The proof of the theorem also yields the following corollary:

I Corollary 8. Suppose the algorithm in Figure 3 outputs the set F when it terminates. Let
S := X − F .

1. There is a randomized static strategy σ̂ for the max player (maximizing non-reachability)
such that for all variables xi ∈ S, we have (g∗σ̂,∗)i > 0.

2. For all ε > 0, there is a randomized static strategy τε, for the min player (minimizing
non-reachability), such that for all variables xi ∈ F , (g∗∗,τε)i ≤ ε.

The static strategies σ̂ and τε mentioned above can both be described, in a suitably compact
form, in polynomial time, as a function of the encoding size of the input BCSG. However,
these static strategies, specifically in the case of τε, involve probabilities that are double-
exponentially small (and double-exponentially close to 1), as a function of the encoding size
of the BCSG, so these probabilities have to be encoded in a suitable succinct notation in order
for the output to have polynomial encoding size.

K. Etessami, E. Martinov, A. Stewart, and M. Yannakakis 115:13

References
1 R. Bonnet, S. Kiefer, and A. W. Lin. Analysis of Probabilistic Basic Parallel Processes. In

Proc. of FoSSaCS’14, pages 43–57, 2014.
2 Bozic and et. al. Evolutionary dynamics of cancer in response to targeted combination therapy.

eLife, 2:e00747, 2013.
3 T. Brázdil, V. Brozek, V. Forejt, and A. Kucera. Reachability in recursive markov decision

processes. Inf. Comput., 206(5):520–537, 2008.
4 T. Brázdil, V. Brozek, A. Kucera, and J. Obdrzálek. Qualitative reachability in stochastic

BPA games. Inf. Comput., 209(8):1160–1183, 2011.
5 K. Chatterjee, K. A. Hansen, and R. Ibsen-Jensen. Strategy complexity of concurrent safety

games. In Proc. of 42nd Inter. Symp. on Math. Found. of Computer Science (MFCS), volume 83
of LIPIcs, pages 55:1–55:13, 2017.

6 T. Chen, K. Dräger, and S. Kiefer. Model Checking Stochastic Branching Processes. In Proc.
of MFCS’12, volume 7464 of Springer LNCS, pages 271–282, 2012.

7 A. Condon. The complexity of stochastic games. Inf. & Comput., 96(2):203–224, 1992.
8 L. de Alfaro, T. A. Henzinger, and O. Kupferman. Concurrent reachability games. Theoretical

Computer Science, 386(3):188–217, 2007. (Conference version in FOCS’98).
9 E. Denardo and U. Rothblum. Totally expanding multiplicative systems. Linear Algebra Appl.,

406:142–158, 2005.
10 J. Esparza, A. Kučera, and R. Mayr. Model checking probabilistic pushdown automata. Logical

Methods in Computer Science, 2(1):1–31, 2006.
11 K. Etessami, A. Stewart, and M. Yannakakis. Polynomial-time algorithms for Branching

Markov Decision Processes, and probabilistic min(max) polynomial Bellman equations. In
Proc. of 39th Int. Coll. on Automata, Languages and Programming (ICALP), 2012. (All
references are to the full preprint Arxiv:1202.4789).

12 K. Etessami, A. Stewart, and M. Yannakakis. A polynomial-time algorithm for computing
extinction probabilities of multitype branching processes. SIAM J. Computing, 46(5):1515–1553,
2017. (Conference version in STOC’12).

13 K. Etessami, A. Stewart, and M. Yannakakis. Greatest Fixed Points of Probabilistic Min/Max
Polynomial Equations, and Reachability for Branching Markov Decision Processes. Information
and Computation, 261:355–382, 2018. (special issue for ICALP’15).

14 K. Etessami, D. Wojtczak, and M. Yannakakis. Recursive stochastic games with positive
rewards. In Proc. of 35th ICALP (1), volume 5125 of Springer LNCS, pages 711–723, 2008.

15 K. Etessami and M. Yannakakis. Recursive Concurrent Stochastic Games. Logical Methods in
Computer Science, 4(4), 2008.

16 K. Etessami and M. Yannakakis. Recursive Markov chains, stochastic grammars, and monotone
systems of nonlinear equations. Journal of the ACM, 56(1), 2009.

17 K. Etessami and M. Yannakakis. Recursive Markov decision processes and recursive stochastic
games. Journal of the ACM, 62(2):1–69, 2015.

18 H. Everett. Recursive games. Contributions to the Theory of Games, 3(39):47–78, 1957.
19 S. K. S Frederiksen and P. B. Miltersen. Approximating the Value of a Concurrent Reachability

Game in the Polynomial Time Hierarchy. In Proc. of 24th ISAAC, pages 457–467, 2013.
20 P. Haccou, P. Jagers, and V. A. Vatutin. Branching Processes: Variation, Growth, and

Extinction of Populations. Cambridge U. Press, 2005.
21 K. A. Hansen, R. Ibsen-Jensen, and P. B. Miltersen. The Complexity of Solving Reachability

Games using Value and Strategy Iteration. Theory Comput. Syst., 55(2):380–403, 2014.
22 K. A. Hansen, M. Koucky, and P. B. Miltersen. Winning Concurrent Reachability Games

Requires Doubly-Exponential Patience. In Proc. of 24th Annual IEEE Symp. on Logic in
Computer Science, pages 332–341, 2009.

23 T. E. Harris. The Theory of Branching Processes. Springer-Verlag, 1963.
24 M. Kimmel and D. E. Axelrod. Branching processes in biology. Springer, 2002.

ICALP 2019

115:14 Reachability for BCSGs

25 H. Michalewski and M. Mio. On the problem of computing the probability of regular sets of
trees. In Proc. of FSTTCS’15, pages 489–502, 2015.

26 S. Pliska. Optimization of multitype branching processes. Management Sci., 23(2):117–124,
1976/77.

27 M. Przybyłko and M. Skrzypczak. On the complexity of branching games with regular
conditions. In Proc. of MFCS’16, volume 78 of LIPIcs, 2016.

28 G. Reiter, I. Bozic, K. Chatterjee, and M. A. Nowak. TTP: Tool for tumor progression. In
Proc. of CAV’2013, volume 8044 of Springer LNCS, pages 101–106, 2013.

29 U. Rothblum and P. Whittle. Growth optimality for branching Markov decision chains. Math.
Oper. Res., 7(4):582–601, 1982.

30 A. Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific Journal of
Mathematics, 5(2):285–309, 1955.

31 D. Wojtczak. Expected termination time in BPA games. In Proc of ATVA’2013, pages 303–318,
2013.

	Introduction
	Background
	Non-reachability values for BCSGs and the Greatest Fixed Point
	P-time algorithm for almost-sure reachability for BCSGs
	P-time algorithm for limit-sure reachability for BCSGs

