
From Nondeterministic to Multi-Head
Deterministic Finite-State Transducers
Martin Raszyk
Department of Computer Science, ETH Zürich, Universitätstrasse 6, 8092, Switzerland
martin.raszyk@inf.ethz.ch

David Basin
Department of Computer Science, ETH Zürich, Universitätstrasse 6, 8092, Switzerland
basin@inf.ethz.ch

Dmitriy Traytel
Department of Computer Science, ETH Zürich, Universitätstrasse 6, 8092, Switzerland
traytel@inf.ethz.ch

Abstract
Every nondeterministic finite-state automaton is equivalent to a deterministic finite-state automaton.
This result does not extend to finite-state transducers – finite-state automata equipped with a
one-way output tape. There is a strict hierarchy of functions accepted by one-way deterministic
finite-state transducers (1DFTs), one-way nondeterministic finite-state transducers (1NFTs), and
two-way nondeterministic finite-state transducers (2NFTs), whereas the two-way deterministic
finite-state transducers (2DFTs) accept the same family of functions as their nondeterministic
counterparts (2NFTs).

We define multi-head one-way deterministic finite-state transducers (mh-1DFTs) as a natural ex-
tension of 1DFTs. These transducers have multiple one-way reading heads that move asynchronously
over the input word. Our main result is that mh-1DFTs can deterministically express any function
defined by a one-way nondeterministic finite-state transducer. Of independent interest, we formulate
the all-suffix regular matching problem, which is the problem of deciding for each suffix of an input
word whether it belongs to a regular language. As part of our proof, we show that an mh-1DFT can
solve all-suffix regular matching, which has applications, e.g., in runtime verification.

2012 ACM Subject Classification Theory of computation → Transducers

Keywords and phrases Formal languages, Nondeterminism, Multi-head automata, Finite transducers

Digital Object Identifier 10.4230/LIPIcs.ICALP.2019.127

Category Track B: Automata, Logic, Semantics, and Theory of Programming

Funding This research is supported by the Swiss National Science Foundation grant “Big Data
Monitoring” (167162).

1 Introduction

Finite-state automata (FAs) are a fundamental model of computation. In its simplest form,
a finite-state automaton reads an input word once, from left to right, while updating its
state deterministically. FAs accept the regular languages. It is well-known that neither
allowing the reading head to move in both directions on the input word nor updating the
state nondeterministically extends their expressiveness beyond the regular languages.

A generalization of the finite-state automata are finite-state transducers (FTs). FTs
extend a finite-state automaton with an output tape and each transition also outputs a
(possibly empty) sequence of symbols from an output alphabet. The language accepted
by a finite-state transducer is a relation (transduction) between input and output words.
A finite-state transducer is functional (f -FT) if the relation represents a function. Any
deterministic finite-state transducer is functional (hence, we just write DFT instead of

EA
T

C
S

© Martin Raszyk, David Basin, and Dmitriy Traytel;
licensed under Creative Commons License CC-BY

46th International Colloquium on Automata, Languages, and Programming (ICALP 2019).
Editors: Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi;
Article No. 127; pp. 127:1–127:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:martin.raszyk@inf.ethz.ch
mailto:basin@inf.ethz.ch
mailto:traytel@inf.ethz.ch
https://doi.org/10.4230/LIPIcs.ICALP.2019.127
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

127:2 Multi-Head Deterministic Finite-State Transducers

L(1DFA) = L(1NFA) (L(mh-1DFA)

=

L(2DFA) = L(2NFA)

L(1DFT) (L(f -1NFT) (L(mh-1DFT)(

L(2DFT) = L(f -2NFT)

Figure 1 The language hierarchy accepted by models of automata (left) and transducers (right).

f -DFT). For transducers, nondeterminism makes a difference: adding nondeterminism
extends the expressiveness of a finite-state transducer to nonfunctional relations. One can
also classify finite-state transducers as one-way or two-way (1FTs or 2FTs) depending on
whether the reading head can only move forwards or in both directions on the input word.

Another generalization of finite-state automata adds multiple reading heads that move
asynchronously over the input word (see, e.g., [6] for a survey). This results in an expressive
computational model with problems like emptiness, finiteness, and equivalence not being
semi-decidable already for two reading heads [6]. Multi-head finite-state automata induce a
strict hierarchy of languages when increasing the number of reading heads [10]. The problem
of simulating two-head one-way nondeterministic finite-state automata by multi-head two-way
deterministic finite-state automata is equivalent to the L ?= NL problem [9].

We combine the previous two generalizations to the notion of multi-head finite-state trans-
ducers (Section 2). We show that multi-head one-way deterministic finite-state transducers
(mh-1DFTs) can simulate any functional one-way nondeterministic finite-state transducer
(f -1NFT), and thereby establish inclusion between the classes of languages accepted by these
models. Central to our proof is the ability of an mh-1DFT to decide for each suffix of an
input word whether it belongs to a regular language (Section 3); we call this transduction
all-suffix regular matching. Computing this transduction allows us to deterministically find
an accepting computation of the nondeterministic transducer, whenever it exists (Section 4).

Figure 1 shows how our contributions, the transducer model and the proper inclusion of
language classes, highlighted in gray, fit into the landscape of other well-studied language
classes. We discuss the remaining inclusions in Section 5.

Preliminaries. Let I be the set of all finite intervals over the positive integers. We denote
an interval I ∈ I by [a..b] = {x | a ≤ x ≤ b}. We define [a..b) := ∅, if a ≥ b, and
[a..b) := [a..(b− 1)], if a < b. Moreover, we write [k] for [1..k]. Given a finite alphabet Σ, we
denote the set of all finite words over Σ by Σ∗, the empty word by ε, and the length of a
word w ∈ Σ∗ by |w|. Given a tuple of positions ps ∈ [|w|]|ps| of length |ps|, w[ps] denotes
w[ps1]w[ps2] . . . w[ps|ps|], i.e., the word consisting of symbols from w at the positions ps.

A one-way deterministic finite-state automaton (1DFA) is a tuple A = (Σ, Q, qs, QF , δ),
where Σ is the input alphabet, Q is a finite set of states, qs ∈ Q is the initial state, QF ⊆ Q
is the set of accepting states, and δ : Q× Σ→ Q is the transition function. We extend the
function δ to δ∗ : Q× Σ∗ → Q in the natural way. A one-way nondeterministic finite-state
automaton (1NFA) is obtained by replacing the transition function in the definition of a
1DFA by a transition relation δ ⊆ Q× Σ×Q.

A one-way nondeterministic finite-state transducer (1NFT) is derived from an underlying
1NFA by extending its transition relation with output words over an output alphabet Γ,
i.e., the transition relation becomes δ ⊆ Q × Σ × Q × Γ∗. We extend the relation δ to
δ∗ ⊆ Q×Σ∗×Q×Γ∗ in the natural way. A 1NFT is functional if the transduction it defines
is a function.

I Example 1. Figure 2a shows a f -1NFT computing the function f that maps a non-empty
binary word w to 0|w|, if w ends with a zero, and 1|w|, otherwise. In the first step, the
transducer guesses the last symbol and moves to a state qi,j , where i is the guess and j is

M. Raszyk, D. Basin, and D. Traytel 127:3

qs

q0,0 q0,1

q1,0 q1,1

0,0

1,0

0,1

1,1

0,0

1,0

1,0

0,0

0,1

1,1

1,1

0,1

(a) The f -1NFT from Example 1. A
transition labeled by i, j represents a
transition when reading the symbol i
and producing the output j.

qs

q0

q1

q′0

q′1

qf

(0,
b),

ǫ, (
1,
0)

(0, b), ǫ, (1, 0)

(1, b), ǫ, (1, 0)

(1, b), ǫ, (1, 0)

(0
,b
),
ǫ,
(1
,0
) (1

,b),ǫ,(1
,0
)

(⊣, b), 0, (0, 1)

(⊣, b), 1, (0, 1)

(⊣, b), 0, (0, 1)

(⊣, b), 1, (0, 1)

(⊣,⊣), ǫ, (0, 0)

(⊣,⊣), ǫ, (0, 0)

(b) The mh-1DFT from Example 3. A transition labeled by
(s1, s2), o, (m1,m2) represents a transition when reading the sym-
bols (s1, s2), producing the output o, and advancing the reading
heads by the offsets (m1,m2). Here, b ∈ {0, 1}.

Figure 2 The transducers from Examples 1 and 3.

the current (i.e., first) symbol. In the subsequent steps, the transducer updates the current
state based on the current symbol. In each transition, the transducer outputs its original
guess. Finally, the transducer accepts if the last symbol equals its guess.

2 Multi-Head One-Way Deterministic Finite-State Transducer

We define multi-head one-way deterministic finite-state transducers (mh-1DFTs) by adapting
the definition of multi-head two-way finite-state automata [6] to multi-head one-way deter-
ministic finite-state automata and extending the transition function with output symbols.

The following definition of an mh-1DFT formalizes a transition on a non-final state that
reads a κ-tuple of symbols, enters a new state, produces some output, and advances some
of the reading heads. We use a special symbol a to mark the end of the input tape, on
the right-hand side. We further impose two conditions on the transition function. First,
no reading head moves out of the input tape. Second, some reading head advances at each
transition except when the new state is accepting. Without loss of generality, the transition
relation δ forbids ε-transitions to non-final states. Hence, an mh-1DFT can only reject an
input word by permitting no further transition. If δ is total, then no input word is rejected
and the transduction is a total function.

I Definition 2. A multi-head one-way deterministic finite-state transducer (mh-1DFT) is
a tuple A = (Σ,a,Γ, κ,Q, qs, QF , δ), where Σ is an input alphabet, a 6∈ Σ is the right
endmarker, Γ is an output alphabet, κ is the number of reading heads, Q is a finite
set of states, qs ∈ Q is the initial state, QF ⊆ Q is a set of accepting states, and
δ : (Q \QF)× (Σ ∪ {a})κ → Q× Γ∗ × {0, 1}κ is the partial transition function such that:

δ(q, es) = (q′, õ,ms) and esi = a, for any i ∈ [κ], implies that msi = 0, and
δ(q, es) = (q′, õ,~0) implies that q′ ∈ QF .

A configuration of an mh-1DFT A = (Σ,a,Γ, κ,Q, qs, QF , δ) is a tuple c = (w, o, q, ps) ∈
CA, where w ∈ Σ∗ is the input word, o ∈ Γ∗ is the output word produced by A so far,
q ∈ Q is the current state, and ps ∈ [|w| + 1]κ are the positions of the κ reading heads
on the input tape. A configuration is accepting if q ∈ QF . A step sA is a relation on

ICALP 2019

127:4 Multi-Head Deterministic Finite-State Transducers

CA such that ((w, o, q, ps), (w′, o′, q′, ps′)) ∈ sA if and only if w = w′, o′ = o · õ, for some
õ ∈ Γ∗, and δ(q, w[ps]) = (q′, õ, ps′ − ps). A computation of an mh-1DFT A on a word w is a
maximal finite sequence of configurations c1, c2, . . . , cl that starts with the initial configuration
c1 = (w, ε, qs,~1) and in which all pairs of consecutive configurations are contained in the
step relation sA. (The finiteness is given because ps′ − ps 6= ~0 except when q′ ∈ QF by
Definition 2.) A computation is accepting if its last configuration cl is accepting. Otherwise,
it is rejecting.

We say that an mh-1DFT A accepts a language L ⊆ Σ∗ × Γ∗ if the computation on an
input word w producing some output o satisfies (w, o) ∈ L if and only if it is accepting. One
can also view a language L ⊆ Σ∗ × Γ∗ accepted by an mh-1DFT A as a function f : X → Γ∗,
where X is the set of all input words w such that (w, o) ∈ L for some (unique) output o
and f(w) = o.

I Example 3. Figure 2b shows a two-head mh-1DFT computing the function f from
Example 1. Initially, the first reading head reads the entire input word to determine the
last symbol. Subsequently, the second reading head outputs the last symbol for each input
symbol it reads. Once the second reading head has arrived at the right endmarker a, the
mh-1DFT accepts without advancing any reading head. The empty word ε is not mapped to
any output as there is no transition from the initial state qs when reading (a,a).

3 All Suffix Regular Matching

All-suffix regular matching is the problem of deciding for each suffix of an input word whether
it belongs to a regular language. More formally, for a regular language L, we define a function
tL : Σ∗ → {0, 1}∗ that maps a word w to a binary word tL(w) of length |w|+ 1 such that,
for any 1 ≤ i ≤ |w|+ 1, tL(w)[i] = 1 if and only if the suffix w[i..|w|] is in the language L.
The last symbol in tL(w) denotes whether the empty word ε is in the language L.

We show that, for any regular language L, all-suffix regular matching can be solved by
an mh-1DFT, i.e., there exists an mh-1DFT computing the function tL. This construction is
subsequently used in our simulation of any f -1NFT by an mh-1DFT (Section 4).

3.1 Informal Account
Let A be a 1DFA with |Q| states. A naive approach to all-suffix regular matching is to run A
on each suffix of the input word, i.e., starting from every position. The mh-1DFT solving this
problem must output the decisions sequentially starting from the leftmost suffix (the entire
word). Suppose we already know the decision for some past suffixes and want to compute
the decision for a current suffix. To reuse the decisions for the past suffixes, we can first
run the automaton A again on these suffixes until we reach the current position. Now we
continue to run the automaton A on the past suffixes and also run A from its starting state
on the current suffix. If the state of A in the run on the current suffix equals at some point
the state of A in a run on a past suffix, then we know that the decision for the current suffix
is the same as the decision for that past suffix and we can output it without the need to
run A further.

Our mh-1DFT keeps a list of decisions and states for past suffixes such that running A
on them until the current position yields different states. The length of this list is at most
|Q|. To compute the decision for the current suffix, our mh-1DFT uses a reading head h
positioned at the current position to run A from all the stored states for past suffixes as well
as from the initial state for the current suffix. The reading head h stops once the state for
the current suffix equals the state for a past suffix (or the end of the input word is reached).

M. Raszyk, D. Basin, and D. Traytel 127:5

q0

q1

1

0, 1

0

0

0

1

0

1

0

0

0

1

1

⊣

1

mh-1DFT accept

0

0

1 1 0 1 ⊣

mh-1DFT q0 : ⊥ q1 : 0

input tape

output tape

0

0

1

0

1 0 1 ⊣

mh-1DFT q0 : 0 q1 : 0

0

0

1

0

1

0

0 1 ⊣

mh-1DFT q0 : 0 q1 : 0

0

0

1

0

1

0

0

0

1 ⊣

mh-1DFT q0 : ⊥ q1 : 0

0

0

1

0

1

0

0

0

1

1

⊣

mh-1DFT q0 : 1 q1 : 0

Figure 3 The automaton and configurations of the mh-1DFT from Example 4.

It remains to be shown that a finite number of reading heads suffice, independently of
the input word’s length. To this end, observe that whenever the reading head h moves on,
the list of decisions and different states for past suffixes at that position expands (otherwise,
the decision for the current suffix would have been known and h would have stopped). As
the length of the list at any position is at most |Q|, it suffices to use |Q|+ 1 reading heads in
total. The extra reading head updates the stored states after a decision for the current suffix
is computed.

I Example 4. Consider the regular language L consisting of all binary words without zero.
A two-state deterministic automaton A accepting L is depicted in Figure 3. We describe a
computation of our mh-1DFT with three reading heads on the input word w = 01101.

To compute the decision for the first suffix, one reading head reads the entire input.
The remaining two reading heads advance and the decision 0 is stored (with the updated
initial state δ(q0, 0) = q1) and output (to the output tape, which is below the input tape
in Figure 3).

To compute the decision for the second suffix, another reading head positioned at the
second symbol advances to the fifth symbol until the two states (for the past and current
suffix) become a single state q1. The only remaining reading head advances and the decision 0
is stored (with the updated initial state δ(q0, 1) = q0) and output.

Since the initial state q0 is now stored with a decision, the decision for the third suffix
can be immediately output, the last reading head advanced, and the stored states updated.
The decision for the fourth suffix can again be immediately output, the last reading head
advanced, and the stored states updated (to a single state q1 since δ(q0, 0) = δ(q1, 0) = q1).
For the last suffix, the initial state q0 is no longer stored with a decision, so a reading head
reads the last symbol to compute and output the decision 1. Then the last reading head
advances and the decision is stored (with an updated initial state δ(q0, 1) = q0). Finally, as
the last reading head has arrived at the right endmarker, our mh-1DFT outputs the Boolean
decision 1 for the empty suffix (the initial state q0 is accepting) and accepts.

3.2 The Multi-Head Transducer
We now formally define an mh-1DFT that solves the all-suffix regular matching problem
for a regular language L. Let A be a 1DFA accepting L. Suppose A’s set of states is
Q = {q1, q2, . . . , qn} and that the current suffix of an input word w starts at the position

ICALP 2019

127:6 Multi-Head Deterministic Finite-State Transducers

1 δ̃((qbs, q), es) :
2 D := {qj | qbsj 6= ⊥};D′ := {qj′ | ∃j. qbsj = (qj′ ,_)}
3 k := |D|+ 1; k′ := |D′|+ 1
4 if esk′ = a then b := q ∈ QF
5 else if ∃j, qj′ , βj . qbsj = (qj′ , βj) ∧ q = qj′ then b := βj
6 else b := ⊥ fi
7 if b ∈ {0, 1} then
8 if esn+1 = a then output b and return q̃f fi
9 qbs′ := ⊥n

10 ∀qj ∈ D. let qj′ := δ(qj , esn+1), (_, βj) := qbsj in qbs′j′ := (qj′ , βj)
11 let qj′ := δ(qs, esn+1) in qbs′j′ := (qj′ , b)
12 output b
13 let k̃ := k + (qs 6∈ D) in advance reading heads k̃, . . . , n+ 1
14 return (qbs′, qs)
15 else
16 qbs′ := qbs
17 ∀qj ∈ D. let (qj′ , βj) := qbsj in qbs′j := (δ(qj′ , esk′), βj)
18 advance reading head k′ fi
19 return (qbs′, δ(q, esk′))

Figure 4 The transition function δ̃ of the mh-1DFT ÃL.

i. Let Q̃i = {δ∗(qs, w[j..i)) | j ∈ [1..i)} be the set of stored states for the past suffixes. For
each i′ ∈ [i, |w|+ 1], let Q̃i,i′ = {δ∗(qj , w[i..i′)) | qj ∈ Q̃i} be the states obtained by running
the stored states for the past suffixes from the current position i up to the position i′. Let
βw,i(q) equal one if and only if A accepts the word w[i..|w|] when run from the state q.

We define our mh-1DFT ÃL = (Σ,a,Γ, κ, Q̃, q̃s, Q̃F , δ̃) as follows. We set the output
alphabet to Γ = {0, 1} and the number of reading heads to κ = |Q| + 1 = n + 1. The
set of states is Q̃ = (((Q× {0, 1}) ∪ ⊥)|Q| ×Q) ∪ {q̃f}, where q̃f is a designated accepting
state. With the last reading head at the position i, i.e., psn+1 = i, and the reading head
for the current suffix at the position i′ (the current suffix starts at the position i), a state
(qbs, q) ∈ Q̃ consists of an n-tuple qbs whose j-th component qbsj = (qj′ , βw,i(qj)) stores the
decision βw,i(qj) for a past suffix corresponding to the stored state qj ∈ Q̃i and the state qj′

obtained by running A from the state qj on w[i..i′). If the state qj is not among the stored
states for the current position i, then qbsj = ⊥. Furthermore, the state q from the state
(qbs, q) ∈ Q̃ of the mh-1DFT ÃL is the state obtained by running A on the current suffix up
to the position i′, i.e., q = δ∗(qs, w[i..i′)). We point out that the positions i and i′ themselves
are not explicitly stored in the state (but i = psn+1 and i′ = psk′ , with k′ as in Figure 4).
The initial state is q̃s = (⊥n, qs). The set of accepting states is Q̃F = {q̃f}. The transition
function δ̃ : (Q̃ \ Q̃F)× (Σ ∪ {a})n+1 → Q̃× Γ∗ × {0, 1}n+1 is defined using pseudocode in
Figure 4. The transition function of the mh-1DFT from Example 4 is shown in Figure 5.
We use the notation let qj′ := δ(qs, esn+1) in qbs′j′ := (qj′ , b) for pattern-matching, i.e., j′
denotes the index of the state δ(qs, esn+1) in the expression qbs′j′ := (qj′ , b).

The last reading head is at the current position i = psn+1 and all reading heads j and j′
with j > j′ satisfy psj ≤ psj′ (the reading heads do not overtake each other). The transducer
maintains the invariant that the number of reading heads beyond the position i′ of the
reading head for the current suffix equals |Q̃i,i′ |. The sets D and D′ (Line 2) equal the set of

M. Raszyk, D. Basin, and D. Traytel 127:7

(⊥,⊥, q0) ((q0, 1), (q1, 0), q0) ((q0, 0),⊥, q0) (⊥,⊥, q1) ((q0, 0), (q1, 0), q0)

((q0, 1),⊥, q0) (⊥, (q1, 0), q0) (⊥, (q1, 0), q1)qf

(111, ǫ, 100) (⊣⊣1, 1, 001) (⊣11, 0, 011) (b′bb, ǫ, 100) (⊣∗1, 0, 001)

(⊣11, 1, 011) (⊣11, ǫ, 010)

(0bb, ǫ, 100)

(⊣
1
1
,1
,0
1
1
)

(⊣⊣⊣, 1, 000)

(⊣⊣⊣
,1
,0
0
0
)

(⊣⊣1, 1, 001)

(⊣⊣⊣, 1, 000)(⊣⊣⊣, 1, 000)

(⊣
0
0
,0
,0
1
1
)

(⊣11, 0, 011)

(⊣0
0,
0,
01
1)

(⊣
∗1

,0
,0
0
1
)

(⊣∗0
, 0,

001
)

(⊣0b, ǫ, 010)

(⊣∗0, 0, 001)

Figure 5 The transition function of the mh-1DFT from Example 4. A transition labeled by
(s1s2s3, o,m1m2m3) represents a transition when reading the symbols (s1, s2, s3), producing the
output o, and advancing the reading heads by the offsets (m1,m2,m3). Here, b, b′ ∈ {0, 1} denote
arbitrary symbols from the input alphabet, whereas ∗ ∈ {0, 1,a} denotes an arbitrary input symbol.
(Only states and transitions reachable in a computation on an input word are shown.)

stored states Q̃i and the set of states Q̃i,i′ , obtained by running A from the stored states
Q̃i on w[i..i′). The invariant implies that k′ = |D′|+ 1 (Line 3) is the reading head for the
current suffix.

The transducer ÃL first tries to determine the decision for the current suffix (Lines 4–6).
If this can be determined, then ÃL updates the stored states (Lines 9–11), outputs the
decision, advances all reading heads at the current position i, and sets the state for the
current suffix to the initial state of A (Line 14). If A’s initial state is not among the stored
states D = Q̃i, the reading head for the current suffix has already advanced, i.e., ÃL only
needs to advance the remaining reading heads k + 1 = k̃, . . . , n+ 1 at the current position.

If the decision for i has not been determined, then the states D′ and q are updated (Lines
16–17 and 19) and the reading head for the current suffix advances (Line 18).

3.3 Proof of Correctness
To prove that the mh-1DFT ÃL computes tL, we formulate an invariant on a configuration of
ÃL that is satisfied by each configuration from a computation on an input. For the accepting
state q̃f , the invariant states that the output is correct: I(w, o, q̃f , ps) ≡ (o = tL(w)) (c0).

For a state (qbs, q) ∈ Q̃, the invariant captures the properties of a state and the reading
heads’ positions mentioned previously. In addition, it states that correct output has been
produced for all positions preceding the current position i = psn+1. In the following, we use
the definitions from Lines 2–3 in Figure 4. We further define i′ = psk′ to be the position of
the reading head for the current suffix. To capture the expansion of the set of stored states
by running A on the current suffix, we define Q̃′j = Q̃i,j ∪ {δ∗(qs, w[i..j))}, for all j ∈ [i..i′),
and Q̃′j = Q̃i,j , for all j ∈ [i′..(|w|+ 1)]. Then the invariant is as follows:

I(w, o, (qbs, q), ps) ≡ (|o| = psn+1 − 1 ∧ ∀j ∈ [|o|]. oj = tL(w)[j]) ∧ (c1)
∀j ∈ [n]. ∀qj′ , βj . (qbsj = (qj′ , βj) =⇒ qj′ = δ∗(qj , w[i..i′)) ∧ βj = βw,i(qj))∧ (c2)
q = δ∗(qs, w[i..i′)) ∧ (c3)
D = Q̃i ∧ (c4)

ICALP 2019

127:8 Multi-Head Deterministic Finite-State Transducers

D′ = Q̃i,i′ ∧ (c5)
∀j ∈ [i..i′). Q̃i,j (Q̃′j ∧ (c6)
(psn+1 ≤ · · · ≤ ps1) ∧ (c7)
∀j ∈ [i..|w|]. |{h | psh > j}| = |Q̃′j |. (c8)

I Lemma 5. For any input word w, the initial configuration of ÃL satisfies the invariant,
i.e., I(w, ε, (⊥n, qs), 1n+1) holds.

Proof. Observe that i = i′ = 1 and D = D′ = Q̃i = Q̃i,j = ∅, for all j ∈ [i..|w|]. J

I Lemma 6. Let c1 = (w, o, (qbs, q), ps) and c2 = (w, o′, q′, ps′) be two configurations of ÃL
such that I(c1) holds and (c1, c2) ∈ sÃL . Then I(c2) holds.

Proof. We refer to Line l in Figure 4 as ll. Furthermore, we refer to the i-th conjunct in
I(c1) and I(c2) as ci and ci’, respectively and to the i-th fact labeled in the proof as fi. Let
us denote by ij , i′j , Dj , D′j , kj , k′j , jQ̃′j′ , jps, j ∈ {1, 2}, the respective definitions for the
configuration cj . To derive that I(c2) holds, we analyze the transition function δ̃ in Figure 4.

First we show that b 6= ⊥ =⇒ b = tL(w)[i1] (f1). If esk′
1

= a, then i′1 = |w|+ 1, c3, and
l4 imply that b = tL(w)[i1]. If l5’s condition holds, then c2 and c3 imply that b = tL(w)[i1].

Consider the case b ∈ {0, 1} (l8–14). If esn+1 = a, then i1 = i′1 = |w| + 1 and b 6= ⊥
(due to i′1 = |w|+ 1 and l4) which with f1 implies b = tL(w)[i1]. c1 and b = tL(w)[i1] imply
c0, i.e., I(c2) holds since c2 is accepting and thus I(c2) ≡ c0. Otherwise (if esn+1 6= a),
we have i1 ≤ |w|. Because k̃ = |D1| + 1 + (qs 6∈ D1) ≤ n + 1, the last reading head
advances, i.e., i2 = i1 + 1 (f2). Now, f1, f2, and c1 imply c1’. Next we show that
|{h | 1psh > i1}| = k̃ − 1 (f3). From c4, we have D1 = Q̃i1 . It follows that |1Q̃′i1 | =
|D1| + (qs 6∈ D1). c8 then implies |{h | 1psh > i1}| = k̃ − 1, i.e., that precisely those
readings heads at the position i1 advanced (l13). In particular, this implies c7’. l9–11
and c4 imply D2 = D′2 = Q̃i1+1

f2= Q̃i2 (f4). This immediately implies c4’. Next we show
that i2 = i′2 (f5). If i2 = |w| + 1, then i2 = i′2 follows from c7’. Suppose that i2 ≤ |w|.
It follows that |{h | 2psh > i2}|

f2–3,l13= |{h | 1psh > i1 + 1| c8= |1Q̃′i1+1|. If i′1 > i1 + 1,

we derive |1Q̃′i1+1|
i′1>i1+1

= |Q̃i1+1|. If i′1 ≤ i1 + 1, we derive |1Q̃′i1+1|
l5= |Q̃i1+1|. Hence,

|{h | 2psh > i2}| = |Q̃i1+1|
f2= |Q̃i2 |

f4= D′2, which implies that i2 = i′2. f5 implies c6’ and
f5 together with l14 imply c3’. f4–5 imply c5’. l9–11, c2, f1, and f5 further imply c2’.
f3 and l13 imply that those reading heads at i1 advanced. Hence for c8’, it suffices to
show |2Q̃′j | = |1Q̃′j |, for all j ∈ [(i1 + 1)..|w|]. We derive |2Q̃′j |

f2,f5= |Q̃i1+1,j |. If i′1 ≤ j, then

|Q̃i1+1,j |
l5,i′1≤j= |Q̃i1,j |

i′1≤j= |1Q̃′j |. If i′1 > j, then |Q̃i1+1,j |
i′1>j= |1Q̃′j |. This completes the

proof of c8’. Thus, I(c2) holds in the case b ∈ {0, 1}.
We continue with the case b = ⊥ (l17–19). Together with l5, b = ⊥ implies |D′1| < n.

We obtain k′1 ≤ n and that i2 = 2psn+1 = 1psn+1 = i1 (f6). Moreover, l17 implies
D2

l17= D1
c4= Q̃i1

f6= Q̃i2 which yields c4’. Since no output is produced, f6 immediately yields
c1’. Together with l4, b = ⊥ implies i′1 ≤ |w|. Next we show that i′2 = i′1 + 1 (f7). We
derive |{h | 1psh > i′1}|

c8,i′1≤|w|= |1Q̃′i′1 |
c5= |D′1|

l3= k′1 − 1 (f8). The fact f8 implies that the
single advancing reading head k′1 is the first reading head at the position i′1, which further

implies c7’. If i′1 + 1 = |w|+ 1, then i′2 = i′1 + 1 follows from |D′2|
l17
≤ |D′1|. If i′1 + 1 ≤ |w|,

then i′2 = i′1 + 1 follows from |D′2|
l17= |1Q̃′i′1+1| and |{h | 1psh > i′1 + 1}|

c8,i′1+1≤|w|
= |1Q̃′i′1+1|.

Then, l17, the facts f6–7 and c2, c4–5 imply c2’ and c5’. Furthermore, l19, f6–7
and c3 imply c3’. Together with l5 and f6–7, b = ⊥ implies that Q̃i1,i′1 (2Q̃′i′1

(f9).

M. Raszyk, D. Basin, and D. Traytel 127:9

f6–7 and f9 together with c6 yield c6’. It suffices to show c8’ for j = i′1; otherwise
1Q̃′j = 2Q̃′j and the number of heads at positions > j did not change. For j = i′1, we derive
|{h | 2psh > i′1}|

l18= |{h | 1psh > i′1}|+ 1 c8= |1Q̃′i′1 |+ 1 b=⊥,l5= |2Q̃′i′1 |. This completes the proof
of c8’. Thus, I(c2) holds in the case b = ⊥. J

I Theorem 7. For any input word w, the output produced by ÃL is tL(w).

Proof. Let c1, c2, . . . , cl be ÃL’s computation on w. Lemmas 5 and 6 imply that I(ci) holds
for all configurations ci, i ∈ [l]. Since ÃL’s transition function δ̃ is total (the transducer
cannot get stuck), Definition 2 implies that cl is an accepting configuration. The invariant
I(w, o, q̃f , ps) for the last configuration cl = (w, o, q̃f , ps) then implies that o = tL(w). J

4 Simulation

Let A be a f -1NFT and let L ⊆ Σ∗×Γ∗ be the language accepted by A. We show that there
exists an mh-1DFT accepting the same language L. This establishes inclusion between the
classes of languages accepted by these models. Because two-head finite-state automata strictly
extend the expressiveness of one-head finite-state automata [10], the inclusion is proper.

4.1 Informal Account
To simulate the f -1NFT A with |Q| states on an input w, we first check if w is accepted by
A’s underlying automaton. This can be done using a single head that reads the entire input.
If the automaton rejects, then clearly no (w, o) ∈ L and our mh-1DFT simulating A may also
immediately reject. Otherwise there is exactly one (w, o) ∈ L, since A is functional. Hence,
it suffices to follow an accepting computation of the underlying automaton and concatenate
the outputs from A’s transition relation to produce the output o. A problem with this
straightforward approach is the nondeterminism of A that may have multiple transitions
from a given state of A on the same symbol. Nonetheless, if we are able to determine a
transition to a state from which A’s underlying automaton accepts the rest of the input word,
then we can follow it, since this transition is part of an accepting computation. So now our
problem is reduced to checking from which states a 1NFA accepts a suffix of an input word.
But since the language accepted by a 1NFT run from a particular state is regular, this is
precisely an instance of all-suffix regular matching, for which we have already constructed an
mh-1DFT in the previous section.

Our mh-1DFT simulating A follows the described approach. It tries to find an accepting
computation of the underlying automaton of A starting from its initial state. To this end, our
mh-1DFT runs |Q| instances of the (distinct) mh-1DFTs for the regular languages accepted by
the underlying finite-state automaton of A when run from one of its states. If at some point,
no transition can be made from the current state to a new state from which the remainder
of the input word is accepted, then our mh-1DFT rejects the input word. Otherwise, it
follows one such transition (an arbitrary one if there are multiple transitions) and outputs
the output word from the transition of the transducer A. Upon reaching the right endmarker
of the input word, our mh-1DFT accepts if the current simulated state is accepting with
respect to A.

I Example 8. We revisit the f -1NFT A from Example 1. In Example 3, we proposed an
ad-hoc mh-1DFT that simulates A. Here, we show how to obtain an mh-1DFT that simulates
A by following the general approach. First we construct a 1DFA for each regular language
accepted by A’s underlying automaton when run from one of its states. For instance, the

ICALP 2019

127:10 Multi-Head Deterministic Finite-State Transducers

regular language Ls for the initial state of A contains all non-empty binary words (note that
this is the set of all input words w such that (w, o) ∈ L for some o) and can be accepted by
a simple two-state 1DFA. For the states q0,0 and q0,1, the regular languages L0,0 and L0,1
contain all non-empty binary words that end with a zero. Analogously, for the states q1,0
and q1,1, the regular languages L1,0 and L1,1 contain all non-empty binary words that end
with a one. Each of these four regular languages L0,0, L0,1, L1,0, and L1,1 can be accepted
by a simple three-state 1DFA.

Now, for each of the five regular languages (Ls, L0,0, L0,1, L1,0, and L1,1), we construct
an mh-1DFT solving all-suffix-pattern matching. The mh-1DFT for Ls has three reading
heads and the mh-1DFTs for L0,0, L0,1, L1,0, and L1,1 have four reading heads each. Hence,
the resulting mh-1DFT Ã simulating A has 1 + 3 + 4 · 4 = 20 reading heads.

Let us analyze Ã’s computation on the input word w = 01101. The mh-1DFT for Ls
computes that the entire input word is accepted by the underlying automaton of A (because
w is non-empty). Hence, there exists an accepting computation of A on w that Ã will
simulate. The mh-1DFTs for L0,0 and L0,1 compute that neither of the first two suffixes is
in either of these two regular languages (because w does not end with a zero). In contrast,
the mh-1DFTs for L1,0 and L1,1 compute that both the first two suffixes are in both these
regular languages (because w ends with a one). Now, the mh-1DFT Ã simulating A must
decide between the states q1,0 and q1,1 based on the actual transition relation of A. Since
the first symbol of w is a zero, the next simulated state of A is going to be q1,0 and the first
output symbol is 1 (which is the correct guess of A about the last symbol of the input word).
The rest of A’s computation on w is in fact deterministic and we omit it.

4.2 The Multi-Head Transducer
We define an mh-1DFT simulating a f -1NFT A = (Σ,Γ, Q, qs, QF , δ). Suppose the set of
states of A is Q = {q1, q2, . . . , qn}. For each i ∈ [n], let Li be the regular language accepted
by the 1NFA Ai = (Σ, Q, qi, QF , δ′), where δ′ ⊆ Q×Σ×Q is the transition relation obtained
from δ by ignoring the output word Γ∗. In particular, note that As is the underlying
automaton of A and Ai is obtained from As by changing the initial state to qi.

By Theorem 7, there exists an mh-1DFT ÃLi
= (Σ,a, {0, 1}, κi, Q̃i, q̃is, Q̃iF , δ̃i) computing

the function tLi
, for each i ∈ [n]. We define our mh-1DFT Ã = (Σ,a,Γ, κ, Q̃, q̃s, Q̃F , δ̃)

simulating A as follows. We set the number of reading heads to κ = 1 +
∑n
k=1 κi (the extra

reading head is needed to simulate the actual step of A using its transition relation δ, in
particular, to obtain the output word õ ∈ Γ∗). The set of states is Q̃ = (Q×(Q̃1×{ε, 0, 1}2)×
· · · × (Q̃n ×{ε, 0, 1}2))∪ {q̃f}, where q̃f is a designated accepting state. The first component
of a state q̃ ∈ Q̃ stores the current simulated state q = qij ∈ Q of A. The (i+1)-th component
of a state q̃ ∈ Q̃ stores a tuple (q̃i, ti,j , ti,j+1), where q̃i ∈ Q̃i is a state of the mh-1DFT ÃLi

,
and ti,j and ti,j+1 are the decision for the current and next suffix (or ε if they have not been
computed yet). The initial state is q̃s = (qs, (q̃1

s , ε, ε), . . . , (q̃ns , ε, ε)). The set of accepting
states is Q̃F = {q̃f}. The transition function δ̃ : (Q̃ \ Q̃F)× (Σ ∪ {a})κ → Q̃× Γ∗ × {0, 1}κ
is defined using pseudocode in Figure 6. We point out that the next simulated state qj′ of A
(Line 14 in Figure 6) needs not be unique and the mh-1DFT Ã chooses (deterministically)
an arbitrary state if it is not unique.

Recall that the only way for an mh-1DFT to reject an input is by getting stuck. In
Figure 6, this is represented by the command “reject” (Lines 4 and 19). If the control flow
reaches “reject”, then the transition function is not defined for the respective input arguments.

M. Raszyk, D. Basin, and D. Traytel 127:11

1 δ̃((q, (q̃1, t1,1, t1,2), . . . , (q̃n, tn,1, tn,2)), es) :
2 if es1 = a then
3 if q ∈ QF then return q̃f
4 else reject fi fi
5 let i be the smallest index such that (ti,1, ti,2) 6∈ {0, 1}2

6 let esi be the symbols belonging to the reading heads of ÃLi

7 (q̃i, t,msi) := δ̃i(q̃i, esi)
8 advance reading heads belonging to ÃLi according to the offsets msi
9 if t ∈ {0, 1} then

10 if ti,1 = ε then ti,1 := t

11 else ti,2 := t fi fi
12 if ∀i ∈ [n]. (ti,1, ti,2) ∈ {0, 1}2 then
13 let qj := q

14 if ∃j′ ∈ [n]. tj,1 = 1 ∧ tj′,2 = 1 ∧ (qj , es1, qj′) ∈ δ′ then
15 let õ be the output of a transition δ(qj , es1, qj′ , õ, 1) in output õ
16 advance reading head 1
17 return (qj′ , (q̃1, t1,2, ε), . . . , (q̃n, tn,2, ε))
18 else
19 reject fi fi
20 return (q, (q̃1, t1,1, t1,2), . . . , (q̃n, tn,1, tn,2))

Figure 6 The transition function δ̃ of the mh-1DFT Ã.

The first reading head simulates the only reading head of the f -1NFT A. If it reads the
right endmarker a, then the computation is accepted if and only if the current simulated
state q is accepting (Lines 2–4). Otherwise, the mh-1DFT Ã performs a transition of an
mh-1DFT ÃLi

for which either ti,1 or ti,2 have not been computed yet (Lines 5–8). The
mh-1DFT Ã maintains the invariant that one such unknown decision exists. Then it updates
ti,1, ti,2 accordingly (Lines 9–11). The definition of the transition function δ̃i (Figure 4)
implies that at most a single Boolean decision is produced in each transition.

Once all the decisions ti,1 and ti,2 have been computed, a step of the f -1NFT A can be
simulated (Lines 13–19). If there exists a transition from the current state q = qj to a new
state qj′ from which the next suffix is accepted by A, then it is taken (Lines 15–17). The
decisions for the next suffix become the decisions for the current suffix and the decisions for
the next suffix become unknown (Line 17). Otherwise, the input word is rejected (Line 19).

4.3 Proof of Correctness

To prove that the mh-1DFT Ã simulates the f -1NFT A, we formulate an invariant on a
configuration of Ã that is satisfied by each configuration from a computation on an input
word. For the accepting state q̃f , the invariant merely states that the input word is accepted
by A and the output is correct: J (w, o, q̃f , ps) ≡ (w, o) ∈ L (d0).

For a state (q, (q̃1, t1,1, t1,2), . . . , (q̃n, tn,1, tn,2)) ∈ Q̃, the invariant captures the properties
of a state mentioned previously. To express them, it uses the invariant I on the configurations
of the mh-1DFT ÃLi . In addition, it guarantess the existence of the index i from Line 5 in
Figure 6 and that the simulation does not get stuck after it successfully performs its first

ICALP 2019

127:12 Multi-Head Deterministic Finite-State Transducers

step. We denote the positions of the reading heads belonging to ÃLi
, i ∈ [n], by psi.

J (w, o, (q, (q̃1, t1,1, t1,2), . . . , (q̃n, tn,1, tn,2)), ps) ≡ (qs, w[1..ps1), q, o) ∈ δ∗ ∧ (d1)
∀i ∈ [n]. ∃ts. (|ts| = ps1 − 1 ∧ I(w, ts · ti1 · ti,2, q̃i, psi)) ∧ (d2)
∃i ∈ [n]. (ti,1, ti,2) 6∈ {0, 1}2 ∧ (d3)
(ps1 > 1 =⇒ ∃qf ∈ QF . ∃o′. (q, w[ps1..|w|], qf , o′) ∈ δ∗) (d4)

I Lemma 9. For any input word w, the initial configuration of Ã satisfies the invariant,
i.e., I(w, ε, (qs, (q̃1

s , ε, ε), . . . , (q̃ns , ε, ε)), 1κ) holds.

Proof. The invariant follows directly from Lemma 5. J

I Lemma 10. Let c1 = (w, o, (q, (q̃1, t1,1, t1,2), . . . , (q̃n, tn,1, tn,2)), ps) and c2 = (w, o′, q′, ps′)
be two configurations of Ã such that J (c1) holds and (c1, c2) ∈ sÃ. Then J (c2) holds.

Proof. We refer to Line l in Figure 6 as ll (e.g., l7 denotes Line 7). Furthermore, we refer
to the i-th conjunct from J (c1) and J (c2) as di and di’, respectively and to the i-th fact
labeled in the proof as fi. To derive that J (c2) holds, we analyze the transition function δ̃
in Figure 6.

If es1 = a, then ps1 = |w|+ 1 and d1 implies (qs, w[1..|w|], q, o) ∈ δ∗ (f1). The fact that
a step from c1 to c2 was taken implies that q ∈ QF (otherwise, the transition from c1 would
be undefined, due to l3–4). The fact f1 together with q ∈ QF imply d0, i.e., J (c2) holds as
c2 is accepting and thus J (c2) ≡ (w, o) ∈ L ≡ d0.

Suppose that es1 6= a. Conjunct d3 implies that the index from l5 is well-defined. Lines
l5–11, Conjunct d2, and Lemma 6 imply d2’ after l11. Furthermore, l16–17 imply d2’
also if the branch l15–17 is reached. If the branch l13–19 is not reached, then d1, d4
immediately imply d1’, d4’, and l12 implies d3’. Otherwise, the branch l15–17 must be
reached (otherwise, the transition from c1 would be undefined, due to l19). Then Conjunct
d1 and Lines l14–17 imply d1’. Furthermore, Lines l12 and l17 directly imply d3’ (note
that reaching l19 would make the transition from c1 to c2 undefined, which is a contradiction).
Finally, Lines l13–14 and conjuncts d1–2 together with the definition of the invariant I
imply d4’. J

I Theorem 11. For any f-1NFT A, there exists an equivalent mh-1DFT Ã, i.e., both A
and Ã accept the same language.

Proof. We again refer to Line l in Figure 6 as ll. Let LÃ denote the language accepted
by Ã. Let c1, c2, . . . , cl be the computation of Ã on an input word w. We refer to the i-th
conjunct from J (cl) as di. Let o be the output of the computation of Ã on w. Lemmas 9
and 10 imply that J (ci) holds for all configurations ci, i ∈ [1..l].

If the computation is accepting (i.e., (w, o) ∈ LÃ), then J (cl) implies that (w, o) ∈ L.
Moreover, since A is functional and Ã deterministic, there exists no o′ 6= o such that
(w, o′) ∈ L or (w, o′) ∈ LÃ. If the computation is rejecting, then the transition from cl is
undefined due to l4 or l19. If l4 is reached, then ps1 = 1 (otherwise, d4 would imply
q ∈ QF , which is a contradiction). With d1 and l2, this implies that q = qs and w = ε. The
facts that q = qs, w = ε, and q 6∈ QF (due to l3–4) imply that the input word w is rejected
by A (i.e., no (w, o) ∈ L). Moreover, no (w, o) ∈ LÃ, since the deterministic computation of
Ã on w is rejecting.

If l19 is reached, then again ps1 = 1 (otherwise, the branch l15–17 would have been
taken by d4 and d2). Then l14 and d2 imply that the input word is rejected by A (i.e.,
no (w, o) ∈ L). Moreover, no (w, o) ∈ LÃ, since the deterministic computation of Ã on w
is rejecting. J

M. Raszyk, D. Basin, and D. Traytel 127:13

5 Discussion and Related Work

We review results on the expressiveness of transducer models (as depicted in Figure 1) and
connections to a practical application.

Expressiveness of Related Formalisms. It is well-known that neither nondeterminism nor a
two-way reading head extends the expresiveness of a one-head finite-state automaton beyond
the regular languages [7]. Formally, L(1DFA) = L(1NFA) = L(2DFA) = L(2NFA). But
adding reading heads does make a difference: in fact, there is a strict hierarchy of languages
accepted by finite-state automata when increasing the number of reading heads [10]. Formally,
L(2NFA) (L(mh-1DFA). By viewing a finite-state automaton as a functional finite-state
transducer that does not produce any output, this further implies that L(mh-1DFT) 6⊆
L(f -2NFT). Theorem 11 implies that L(f -1NFT) ⊆ L(mh-1DFT). This yields the proper
inclusion L(f -1NFT) (L(mh-1DFT).

Let us consider the function f that maps a non-empty binary word w to 0|w|, if w ends
with a zero, and 1|w|, otherwise. The function f can be computed by the f -1NFT from
Example 1. Nevertheless, f cannot be computed by a 1DFT. Intuitively, a 1DFT cannot
start producing any output before seeing the last symbol of the input word; but it cannot
remember the input word’s length needed to produce the output. We conclude that the
expressiveness of f -1NFTs strictly extends that of 1DFTs, i.e., L(1DFT) (L(f -1NFT).

Now consider the function w 7→ wR that maps a binary word to its reverse. It can be
computed by a f -2NFT that first moves its reading head to the end of the input word
and then reads the word backwards while outputting its symbols in the reversed order (in
fact, this transducer behaves deterministically). Nevertheless, w 7→ wR cannot be computed
by a f -1NFT [5]. We conclude that the expressiveness of f -2NFTs strictly extends the
expressiveness of f -1NFTs, i.e., L(f -1NFT) (L(f -2NFT). Surprisingly, adding nondeter-
minism to functional two-way finite-state transducers does not extend their expressiveness [4],
i.e., L(2DFT) = L(f -2NFT). We further conjecture that the function w 7→ wR cannot be
computed by a mh-1DFT either, and thus the languages accepted by mh-1DFT and 2DFT
are incomparable.

We also conjecture that mh-1DFTs are closed under composition, i.e., whenever f : X → Y

and g : Y → Z are computed by some mh-1DFTs, then there exists an mh-1DFT computing
g ◦ f : X → Z. Such a composition result could give rise to a more modular construction of
mh-1DFTs from f -1NFTs, which would recast our mh-1DFT from Figure 6 as a composition.

Monitoring. The use of mh-1DFT and all-suffix regular matching has applications to
monitoring (also called runtime verification), which is the problem of checking the compliance
of an event stream, at each position in the stream, to a policy formalized in a specification
language. Our recent work [8] provides evidence that exploiting multiple one-way reading
heads significantly improves the efficiency of monitoring policies formalized in metric temporal
logic (MTL). Since MTL is less expressive than (timed) regular expressions [3], the monitor
from [8] does not implement the proposed solution to all-suffix regular matching. Moreover,
its underlying transducer’s space complexity depends logarithmically on the input length.

6 Conclusion

We proposed multi-head finite-state transducers as a combination of multi-head finite-state
automata and finite-state transducers. We showed that multiple one-way reading heads can
replace nondeterminism on functions computable by finite-state transducers. The key insight
is that multiple one-way reading heads suffice to solve the all-suffix regular matching problem.

ICALP 2019

127:14 Multi-Head Deterministic Finite-State Transducers

As future work, we plan to use the mh-1DFT construction for all-suffix regular matching
to implement an efficient monitor for timed regular expressions [1], which are strictly more
expressive than metric temporal logic supported by our multi-head monitor [8]. The problem
of all-suffix regular matching has already inspired another monitor of ours [2]. In that
monitor, as soon as two past suffixes yield the same state of the automaton, the equivalence
between them is output (namely, the monitor outputs that the positions associated with the
suffixes will have the same verdict); outputting the actual Boolean value for the equivalent
positions is postponed, potentially until the input’s end. We envision designing an mh-1DFT
that outputs an explicit Boolean value for each position in the input word in the order of
their appearance.

References
1 Eugene Asarin, Paul Caspi, and Oded Maler. Timed regular expressions. J. ACM, 49(2):172–

206, 2002.
2 David Basin, Bhargav Bhatt, Srđan Krstić, and Dmitriy Traytel. Almost Event-Rate Indepen-

dent Monitoring. Form. Meth. Sys. Des., 2019 (published online February 2019).
3 Patricia Bouyer, Fabrice Chevalier, and Nicolas Markey. On the expressiveness of TPTL and

MTL. Inf. Comput., 208(2):97–116, 2010.
4 Joost Engelfriet and Hendrik Jan Hoogeboom. Two-Way Finite State Transducers and Monadic

Second-Order Logic. In Jirí Wiedermann, Peter van Emde Boas, and Mogens Nielsen, editors,
ICALP 1999, volume 1644 of LNCS, pages 311–320. Springer, 1999.

5 Emmanuel Filiot, Olivier Gauwin, Pierre-Alain Reynier, and Frédéric Servais. From Two-Way
to One-Way Finite State Transducers. In LICS 2013, pages 468–477. IEEE Computer Society,
2013.

6 Markus Holzer, Martin Kutrib, and Andreas Malcher. Complexity of multi-head finite
automata: Origins and directions. Theor. Comput. Sci., 412(1-2):83–96, 2011.

7 Michael O. Rabin and Dana S. Scott. Finite Automata and Their Decision Problems. IBM
Journal of Research and Development, 3(2):114–125, 1959.

8 Martin Raszyk, David Basin, Srđan Krstić, and Dmitriy Traytel. Multi-head monitoring of
metric temporal logic. In Yu-Fang Chen, Chih-Hong Cheng, and Javier Esparza, editors,
ATVA 2019, LNCS. Springer, 2019. To appear. http://people.inf.ethz.ch/trayteld/
papers/atva19-hydra/hydra.pdf.

9 Ivan Hal Sudborough. On Tape-Bounded Complexity Classes and Multihead Finite Automata.
J. Comput. Syst. Sci., 10(1):62–76, 1975.

10 Andrew Chi-Chih Yao and Ronald L. Rivest. k+1 Heads Are Better than k. J. ACM,
25(2):337–340, 1978.

http://people.inf.ethz.ch/trayteld/papers/atva19-hydra/hydra.pdf
http://people.inf.ethz.ch/trayteld/papers/atva19-hydra/hydra.pdf

	Introduction
	Multi-Head One-Way Deterministic Finite-State Transducer
	All Suffix Regular Matching
	Informal Account
	The Multi-Head Transducer
	Proof of Correctness

	Simulation
	Informal Account
	The Multi-Head Transducer
	Proof of Correctness

	Discussion and Related Work
	Conclusion

