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—— Abstract

The diameter, radius and eccentricities are natural graph parameters. While these problems have
been studied extensively, there are no known dynamic algorithms for them beyond the ones that
follow from trivial recomputation after each update or from solving dynamic All-Pairs Shortest Paths
(APSP), which is very computationally intensive. This is the situation for dynamic approzimation
algorithms as well, and even if only edge insertions or edge deletions need to be supported.

This paper provides a comprehensive study of the dynamic approximation of Diameter, Radius
and Eccentricities, providing both conditional lower bounds, and new algorithms whose bounds are
optimal under popular hypotheses in fine-grained complexity. Some of the highlights include:

Under popular hardness hypotheses, there can be no significantly better fully dynamic ap-

proximation algorithms than recomputing the answer after each update, or maintaining full

APSP.

Nearly optimal partially dynamic (incremental/decremental) algorithms can be achieved via

efficient reductions to (incremental/decremental) maintenance of Single-Source Shortest Paths.

For instance, a nearly (3/2+ €)-approximation to Diameter in directed or undirected n-vertex, m-

edge graphs can be maintained decrementally in total time m'*°®1)/n/e®. This nearly matches

the static 3/2-approximation algorithm for the problem that is known to be conditionally optimal.
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1 Introduction

Computing the shortest paths distances between all pairs of vertices in a graph, the All-Pairs
Shortest Paths (APSP) problem, has been studied since the beginning of computer science as
a field. Nevertheless, the fastest known algorithms [26, 20, 19] for APSP in n-vertex m-edge
graphs are only slightly faster (by n°(!) factors) than the simple O(mn) time! algorithm
running Dijkstra’s algorithm from every vertex?. For dense graphs with small integer weights
there are improved algorithms [22, 28] using fast matrix multiplication [23, 17], but these
algorithms are not faster than mn for sparser graphs or when the weights can be large.

There are many important graph parameters that can be easily computed when all the
distances are known. These include the eccentricity of each vertex (the maximum length of a
shortest path from the vertex to another vertex), the graph diameter (the maximum over
all eccentricities), the radius (the minimum over all eccentricities) and many more. These
parameters are of particular importance in the analysis of social networks (e.g. [3]), but also
in graphs generated for entities such as images and search queries (and web pages).

Unfortunately, there are no significantly faster algorithms to compute these parameters
than just solving APSP, and this is far from practical. In many cases the analyzed networks
are so large that even enumerating all pairs of vertices is prohibitively expensive. Thus,
obtaining all pairwise distances is essentially impossible. For graph parameters, on the other
hand, the output is a single number; in principle looking at all vertex pairs might not be
necessary, and subquadratic time algorithms (in the number of vertices) might exist for
sparse graphs (whereas quadratic time is necessary for APSP as this is the size of the output).
The existence of such fast algorithms is an important, practically motivated question.

In recent years, much progress has been made in understanding the complexity of graph
parameter computation. Results from fine-grained complexity give that even obtaining a
(3/2 — ¢)-approximation for graph diameter [21] or radius [2], or a (5/3 — €)-approximation
of all eccentricities [8] (for € > 0) requires n?~°()
the Strong Exponential Time Hypothesis (SETH) and related conjectures. Even stronger
hardness results were obtained by Backurs et al. [6], altogether showing that most of the
known algorithms for diameter, radius and eccentricities are conditionally optimal.

time even in very sparse graphs, assuming

In addition to computing graph parameters in a static graph, a very natural goal is to
maintain estimates of these parameters in a dynamic graph, where edges are inserted and
deleted. In this setting, we would like to have a fast algorithm which preprocesses the given
graph, and builds a data structure which can support edge updates efficiently and can answer
queries about the parameter of interest in the current state of the data structure. This
dynamic version of the problems is even more practically motivated, as real networks are
naturally dynamic.

Unfortunately, the state of the art of dynamic algorithms for graph parameters such as
Diameter is somewhat disappointing. The best known dynamic algorithms either just use
the best known dynamic algorithms for APSP, or recompute the parameter estimate from
scratch after each update. This leads to the following bounds:

(1) Demetrescu and Italiano [10] obtained a fully dynamic exact APSP algorithm with
an amortized update time of O(n?) and O(1) query time; this is the best exact dynamic
algorithm for the graph parameters as well. Abboud and Vassilevska W. [1] showed that under
SETH, any (4/3 — €)-approximation fully dynamic algorithm for diameter (for € > 0) requires

1O notation supresses polylogarithmic factors.
2 after Johnson’s trick to make the weights nonnegative
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n?~°(1) amortized update or query time even in sparse graphs. Thus the APSP approach
is conditionally optimal for fully dynamic (4/3 — €)-approximate diameter algorithms. It
is unclear however whether a 4/3-approximation with better update time is possible, and
whether the APSP bounds are best for Radius.

(2) By recomputing the parameter estimates after each query, one can maintain a 2-
approximation for Diameter in directed graphs and Radius in undirected graphs in worst
case O(m + n) time per update, and a (2 + €)-approximation for all Eccentricities in directed
graphs for all € in O(m/€) time per update using the algorithm of Backurs et al. [6]. One
can also maintain a 3/2-approximation for Diameter and Radius, and a 5/3-approximation
of all Eccentricities in worst case time O(m?/2) per update using the algorithms of [21, 8] .
More algorithms follow from the static results of Cairo, Grossi and Rizzi [7]. Can any of
these algorithms be improved or are they conditionally optimal? The only related lower
bounds here are (a) by Henzinger et al. [14] which showed that under the Online Matrix
Vector hypothesis (OMv), any fully dynamic Diameter algorithm that achieves a (2 — ¢)-
approximation for undirected weighted graphs, or any finite approximation in directed graphs

0-5-0(1) amortized update time and (b) by Henzinger et al. [15] which proved under

needs n
the combinatorial Boolean Matrix Multiplication conjecture any fully dynamic Diameter or
Eccentricity algorithm that achieves a (4/3 — ¢)-approximation in undirected unweighted

3=0(1) preprocessing time requires n?>~°() update or query time (and the same

graphs with n
result for undirected weighted graph using the APSP conjecture). While these results give
some limitation, they are far from tight.

The first contributions of our paper are strong conditional lower bounds for fully dynamic
graph parameter estimation. Our first result is a strengthening of the conditional lower

bound for Diameter of [1]: we increase the approximation ratio from (4/3 — ¢€) to (3/2 — €).

» Theorem 1. Under SETH, every fully dynamic (3/2 — €)-approximation algorithm for
Diameter with polynomial preprocessing time requires n?>~°Y) amortized update or query time
in the word-RAM model of computation with O(logn) bit words, even for dynamic undirected
unweighted graphs that are always sparse.

The same limitation applies for fully dynamic (5/3 — €)-approximation algorithms for Eccent-
ricities with polynomial preprocessing time, and for fully dynamic (3/2 — €)-approximation
algorithms for Radius with polynomial preprocessing time, under the related Hitting Set
hypothesis.

These conditional lower bounds imply that the O(m?’/ 2) time estimation algorithms that
recompute the answer from scratch are optimal in the sense that any improvement of the
approximation factor causes the update time to grow to n?, and Demetrescu and Italiano’s
algorithm achieves O(n?) update time even for the exact maintenance of APSP.

We also show that recomputing a 2-approximation from scratch in linear time is close to
optimal under SETH.

» Theorem 2. Under SETH, any fully dynamic algorithm with polynomial preprocessing time
that can maintain for e > 0 any of the following in an n node, m-edge undirected unweighted
graph requires either m*~°1) amortized update or query time, even when m = O(n):

a (2 — €)-approzimation of the eccentricity of a fized vertex, or
a (2 — €)-approxzimation of the Radius, or

a (2 — €)-approximation of the Diameter.

13:3
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This result significantly strengthens the OMv based lower bound of [14]: the update time
lower bound is now linear as opposed to /n, the result holds for unweighted graphs as well,
it also holds for Radius and single-node eccentricity, and it has implications for partially
dynamic algorithms with worst case time bounds, unlike the one of [14]. Furthermore, the
lower bound for the eccentricity of a fixed vertex is tight in the sense that one can simply
recompute the answer exactly from scratch in time O(m).

Much stronger lower bounds are possible for directed graphs. Our first hardness result
for directed graphs is that under SETH and the Hitting Set hypothesis, respectively, nearly
quadratic time is needed for Eccentricities and Radius, even for (2—e€)-approximation. (Recall
that for undirected graphs we could only show this for (3/2 — €)-approximate Radius and
(5/3 — ¢)-approximate Eccentricities.) This means that for directed graphs, recomputing a
2-approximation from scratch (in linear time) after each update is very much optimal — for
any better approximation one might as well use the exact dynamic APSP algorithms.

» Theorem 3. Every fully dynamic algorithm with polynomial preprocessing time for (2 —¢€)-
approxzimate (for € > 0) Eccentricities (under SETH) or Radius (under a version of the
Hitting Set Hypothesis) in directed, unweighted graphs with n vertices and m = O(n) edges
requires amortized update or query time m2—°().

Surprisingly, we also show conditionally that no finite approximation can be maintained in
sublinear time. Henzinger et al. [14], building upon [1], showed that any finite approximation
for Diameter in directed graphs requires m%>=°(1) time under the OMv Hypothesis. We
strengthen the lower bound to linear, using a very natural hypothesis on the complexity of
k-Cycle.

All known algorithms for detecting k-cycles in sparse directed graphs with m edges run
at best in time m2~¢/* for various small constants ¢ [27, 4, 9], even if you use powerful tools
such as fast matrix multiplication. A natural hypothesis completely consistent with the state
of the art of cycle detection is that one needs m?~/(*)=°(1) time to find a k-cycle, for some
continuous (over the reals) f(k) that goes to 0 as k goes to infinity. Let us call this the
k-Cycle Hypothesis. We obtain:

» Theorem 4. Under the k-Cycle Hypothesis, any fully dynamic algorithm with polynomial
preprocessing time that can maintain a finite approximation for any of the following in an n
node, m = O(n)-edge directed unweighted graph requires either m*=°") amortized update or
query time:

the eccentricity of a fized vertex, or

the Radius, or

the Diameter.

All known approaches to estimating graph proximity parameters such as the Diameter,
at the very least require maintaining approximate distances from a single node, up to some
distance. The conditional lower bounds above say that even if we only want to maintain an
estimate of the largest distance from a fixed node, and even if that distance is never more
than a constant, we still need linear update time. Thus, to have better than 2 approximations
of our undirected distance parameters or any finite approximation in the directed case that
can be maintained in sublinear time we probably need to abandon our need for fully dynamic
algorithms. We thus turn to partially dynamic algorithms that handle either only edge
insertions (incremental) or only edge deletions (decremental).

Our conditional lower bounds for the fully dynamic setting also apply to incremental and
decremental algorithms that have worst case update and query time guarantees. This is due
to the nature of our reductions: they all produce an initial graph on which we perform update
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stages that only insert or only delete (we can choose which) a small batch of edges, ask a query
and undo the changes just made, returning to the initial graph. An incremental/decremental
algorithm can be used to implement such reductions by performing the deletions/insertions
by rolling back the data structure. Because of this, we have very strong worst case lower
bounds, and it makes sense to focus on amortized guarantees instead.

The strong conditional lower bounds in the static case, imply strong limitations for
partially dynamic algorithms as well. For undirected graphs, these limitations are as follows:
Due to [21, 6, 8], under SETH, every incremental and decremental algorithm for Diameter in
n node undirected unweighted graphs requires total time at least m?/2=°() to maintain a
(8/5—€)-approximation, and at least m2~°(1) total time to maintain a (3/2 —¢)-approximation
for € > 0 under m = O(n) insertions or deletions. For Eccentricities, the static conditional
lower bounds are slightly stronger. For partially dynamic algorithms they imply that under
SETH, for every k > 1, maintaining a ((3k +2)/(k + 2) — €)-approximation for € > 0 requires
total time m!'*t'/* for m = O(n) insertions or deletions. For Radius, they just imply that
under the Hitting Set hypothesis [24, 2] maintaining a (3/2 — ¢)-approximation requires total
time m2~°(1) even in a sparse graph.

For directed graphs, there are stronger lower bounds: maintaining a (2 — €)-approximation
for Radius and Eccentricities requires total time m2?~°(1) under Hitting Set and SETH,
respectively [2, 6].

The incremental lower bounds directly follow from the static ones by starting from an
empty graph and inserting edges until we reach the graph from the static construction. The
decremental lower bounds hold since the static lower bound instances are all subgraphs of
the same global graph, independent of the SAT/Hitting Set instance that the reduction is
trying to solve; thus we start with the global graph and delete edges until reaching the graph
from the static construction.

A natural question is, are these conditional lower bounds tight? Can one create partially
dynamic algorithms that can achieve the same total runtime as the known static approximation
algorithms? We give positive answers to these questions by developing new partially dynamic
algorithms that are essentially optimal. Our algorithms are actually very efficient reductions
to incremental and decremental single source shortest paths (SSSP), so that any improvement
over dynamic SSSP would improve our parameter estimation algorithms.

Let Dy and Dy be the initial and final values of the diameter, respectively. Let
Tinc(n,m, k,€) (resp., Tgec(n,m,k,€)) be the total time of an incremental (decremental)
approximate SSSP algorithm from source u that maintains an estimate d’(u,v) for all v such
that if d(u,v) < k then (1 — €)d(u,v) < d'(u,v) < d(u,v). For directed graphs we assume
that the approximate SSSP algorithm works in directed graphs, and for undirected graphs,
the SSSP algorithm only needs to work in undirected graphs. Our black-box reductions can
be summarized in the theorem below.

» Theorem 5. There is a Las Vegas randomized algorithm for incremental (resp., decre-
mental) diameter in unweighted, directed graphs against an oblivious (resp., adaptive) ad-

VLAY

versary that given € > 0, runs in total time O(maXngD’ng {Tine(n,m, D', €)¥—

\/n/D’

(resp., O(maxp,<pr<p,{Tuec(n,m, D', €)4=1})) with high probability, and maintains an
estimate D such that %D — % < D < D where D 1is the diameter of the current graph.

We obtain similar black-box reductions for nearly (5/3 + €)-approximate Eccentricities
and (3/2 + ¢)-approximate Radius in undirected graphs.

Henzinger et al. [13] obtained a randomized (1 + €)-approximate decremental algorithm
for SSSP in undirected unweighted graphs against an oblivious adversary with total expected
update time m!'+°(1/9) As an immediate corollary we obtain:

13:5
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» Corollary 6. There is a Las Vegas randomized algorithm for decremental diameter in
unweighted, undirected graphs against an oblivious adversary that given € > 0, runs in total
time m1+°(1/€)\/ﬁ/62 in expectation, and maintains an estimate %D — % < D < D,
where D is the diameter of the current graph.

Due to lower bounds in the static setting described above, this result is conditionally
optimal in terms of both running time and approximation factor except for a small loss in
the approximation factor. A similar result hold for decremental undirected Radius with
a conditionally essentially optimal approximation factor. A similar result also holds for
Eccentricities, which is conditionally essentially optimal in terms of both running time and
approximation factor.

For decremental algorithms in directed graphs and for incremental algorithms in undirected
or directed graphs, the best known algorithms for SSSP up to distance k are achieved by the
Even and Shiloach Trees data structure [11], giving amortized update time O(k). Henzinger
and King recognized that this data structure can be extended to directed graphs [12]. As a
corollary we obtain:

» Corollary 7. There is a Las Vegas randomized algorithm for incremental/decremental
diameter in unweighted, directed graphs that given € > 0, runs in total time O(m~/nDyax/€?)
with high probability where Dyax is the mazximum diameter throughout the algorithm, and
maintains an estimate D such that @D —1<D< D, where D is the diameter of the
current graph. The incremental algorithm works against an oblivious adversary and the

decremental algorithm works against an adaptive adversary.

Similar results hold for Radius and Eccentricities but only for undirected graphs. Recall
that static conditional lower bounds rule out such algorithms in directed graphs.

The algorithms so far are all randomized. We present some deterministic incremental
algorithms as well, again via a reduction to incremental SSSP. Let Dy, Dy and Tipc(n, m, k, €)
be as before.

» Theorem 8. There is a deterministic algorithm for incremental diameter in unweighted,
directed graphs that, for any e with 0 < € < 2, runs in total time

O(maXngDA'gDO{(Tmc(n, m, D', €)+m)n/(€2D")}), and maintains an estimate D such that
(1—¢€)D < D < D, where D is the diameter of the current graph.

Using Even and Shiloach trees we obtain as a corollary a deterministic incremental
(1 + €)-approximation algorithm for diameter with total update time O(mn/e®). The running
time is essentially tight for e < 1/2 by the SETH based quadratic lower bound for (3/2 — §)-
approximate static diameter [21]. Similar algorithms with essentially tight running times
hold for radius in directed graphs and eccentricities in directed, strongly connected graphs.

1.1 Our techniques for partially dynamic algorithms

Our partially dynamic nearly 3/2-approximation algorithms for diameter and radius and
our nearly 5/3-approximation algorithm for eccentricities are based on known algorithms
in the static setting [21, 8]. These static algorithms work by carefully choosing a set U of
vertices, performing SSSP from every vertex in U, and showing that at least one of these
SSSP instantiations yields a good estimate for the parameter of interest. The set U is chosen
as follows. We pick a random sample S of ©(y/n) vertices and let w* be the vertex that
is farthest from S; that is, w* is the vertex that maximizes mingecg d(w*, s). Then, letting
N(w, /n) be the closest \/n vertices to w, we set U = S U {w*} U N(w*, /n).
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Adapting these static algorithms to the dynamic setting presents two main challenges:

(1) Firstly, given a set S of vertices, the farthest vertex w* from S can change over time.
We wish to minimize the total number of vertices that we ever run dynamic SSSP from,
as reinitializing dynamic SSSP from a new vertex is expensive. Suppose we run dynamic
SSSP from every vertex in N(w*,/n) at all times. Then, every time w* changes, we must
reinitialize the dynamic SSSP data structure from /n new vertices. If w* changes frequently,
this is prohibitively slow. To overcome this issue, we show that it suffices to choose a vertex
w that approzimates w* (for a careful notion of approximation); and furthermore, by doing
so we can limit the number of times we choose a new w.

Due to inherent differences between the incremental and decremental settings, we choose
w in different ways in the different settings. In the decremental setting, distances can only
increase, so our current choice of w can only become a poor approximation for w* if d(w*, S)
increases. Then, we use the fact that d(w*,S) is monotonically increasing to bound the
number of times we need to choose a new w.

The incremental setting is more involved. Since distances can only decrease, our current
choice of w becomes a poor approximation of w* if d(w,S) decreases. A challenge arises
because unlike d(w*,S), the distance d(w,S) does not change monotonically. One can
imagine a scenario in which whenever we choose a new w, an edge is added causing d(w, S)
to immediately decrease to 1, which mandates that we choose a new w. We address this
challenge by carefully employing randomness against an oblivious adversary. We argue that
by randomly sampling w from a specifically chosen set of vertices, in expectation it will take
a long time for w to become a poor approximation for w*.

(2) Secondly, we wish to apply a partially dynamic SSSP algorithm as a subroutine,
however the state of such algorithms is much better for undirected graphs than directed graphs.
For instance, for undirected decremental graphs, there is a randomized (1 + €)-approximate
SSSP algorithm that runs amortized m°®) time [13] (and it is believed, but not published,
than a similar result is possible for incremental graphs), while for incremental/decremental
directed graphs the best known algorithms for SSSP up to distance k run in amortized
time O(k) [11]. To address this discrepancy, we carefully exploit the fact that longer paths
are easier to hit by randomly sampling: we augment the algorithm with an additional
subsampling routine that quadratically decreases the time dependence on the diameter D.

2 Preliminaries

Let G = (V, E) be a graph, where |V| =n and |E| = m. For every u,v € V let dg(u,v) be
the length of the shortest path from u to v. We omit the subscript when G is clear from
context. Let Ny (v,s) (resp., Nin(v,s)) be the set of the s closest outgoing (incoming)
vertices of v, where ties are broken by taking the vertex with the smaller ID. The eccentricity
e(v) of a vertex v is defined as maxyey d(v,u). The diameter D of a graph is max,cy £(v).
The radius R of a graph is min,ey €(v).

2.1 Algorithms

For all of our algorithms for diameter, radius, and eccentricities in undirected graphs as well
as diameter in directed graphs, we assume that the diameter is finite. One can easily check if
this is the case by running a dynamic reachability algorithm from a single vertex. For our
partially dynamic algorithms, we let Dy and Dy be the initial and final values of the diameter,
respectively. Similarly, Ry and Ry are the initial and final values of the radius, respectively.

13:7
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The running times of our randomized algorithms are with high probability, which we
take to mean with probability at least 1 — 1/n¢ for all constants ¢. The running times of our
algorithms is written in terms of n and m, which refer to an upper bound on the number of
vertices and edges, respectively, over the entire sequence of updates. That is, for incremental
algorithms, the running time is written in terms of the final values of n and m and for
decremental algorithms the running time written is in terms of the initial values of n and m.

Each of our algorithms is written as a reduction to a black-box incremental or decremental
approximation algorithm for truncated SSSP; that is, SSSP which provides a distance
estimate for all nodes whose distance from the source is at most a given value k. For
generality, our algorithms are written for directed graphs and use directed SSSP algorithms,
however if the graph is undirected one can simply run an undirected SSSP algorithm
instead. Let out-A;nc(u, k, ) (resp., out-Agec(u, k,0)) be an incremental (resp., decremental)
algorithm that maintains for all v an estimate d’(u,v) such that if d(u,v) < k then (1 —
§d(u,v) < d'(u,v) < d(u,v). Analogously, let in-A;n.(u, k,d) (resp., in-Agec(u, k,d)) be an
incremental (decremental) algorithm that maintains an estimate d’(v,u) for all v such that
if d(u,v) <k then (1 —§)d(v,u) < d'(v,u) < d(v,u). We assume that after every update,
these algorithms output all nodes whose distance estimate has changed. Let Tj,.(n,m, k, 9)
(resp., Tgec(n,m, k,0)) be the total time of out-A;p,c(u, k, ) and in-A;pc(u, k, §) (resp., out-
Ainec(u, k, ) and in-A;pc(u, k, 6)) (or the corresponding undirected algorithms).

The running times of our algorithms are written as the maximum of an expression over all
values of the diameter D (or radius R) throughout the entire sequence of updates. Although
the maximum value of D and R in a partially dynamic graph either occurs at the beginning
or end of the update sequence, the maximum value of the running time expression could
occur for any value of D or R.

Suppose we run in-A;,., in-Agee, out-A;ne, or out-Age. from a vertex v. Then, let
Byut(v,7) be the set of vertices u with d'(v,u) < r.

For a subset S C V of vertices and a vertex v € V' we define d(S,v) := mingeg d(s,v).
Similarly, d(v,S) := mingegs d(v, s). When the algorithms call for an approximation d'(S,v)
of d(S,v), we add a dummy vertex x with an edge to every vertex in .S and run out-A;,. (or
out-Age.) from z; let d'(S,v) = d'(z,v) — 1. We define and maintain d’(v,.S) analogously by
adding a dummy vertex with an edge from every vertex in S.

> Claim 9. Forall u ¢ S, (1 —20)d(u,S) < d'(u,S) <d(u,S).

Proof. (1 — 20)d(u,S) = (1 —20)(d(u,z) — 1) = d(u,z) — dd(u,z) — 14+ 6(2 — d(u,z)) <
d(u,z)—dd(u,x)—1 = (1-96)d(u,2)—1 < d'(u,z)—1 =d'(u,S) and d'(u, S) = d'(u, ) —1 <
d(u,z) — 1 =d(u, S). <

For all of our algorithms for diameter and eccentricities, the bulk of the argument is to
prove a lemma of the following form: if one is given values P’ and e such that P’ is at most
the true value P of the parameter of interest, then there is an algorithm that outputs an
estimate P such that a(l—e)P' =8 < P < P for appropriate o and 8. Lemma 10, whose
proof we defer to the full version [5], states that a lemma of the above form suffices to prove
our theorems. (In Lemma 10, the number k of parameters is 1 for the case of diameter and n
for the case of eccentricities.) Lemma 10 also requires a fast constant-factor approximation
for the parameter of interest in the static setting. Such algorithms exist for directed diameter
and eccentricities in near-linear time.

Lemma 10 does not apply to radius since radius is a minimization problem, however an
analogous lemma holds for radius; we defer it to the full version [5].
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» Lemma 10. Let my,ma, ..., 7 be a set of graph parameters (e.g. eccentricities). Suppose
there is a static O(T'(n,m)) time algorithm that gives a constant-factor approzimation for
all m;. Let Py, Py, ..., Py be the dynamically changing values of my,mo, ..., T, respectively.
Suppose there is an algorithm P that given a partially dynamic graph and values P’ and
e > 0, runs in total time T(n,m, P’ €) where T is a polynomial, and maintains a set of
estimates P, < Py,..., P, < P, such that for all i, if P! < P;, then P, > a(l —€)P' — 8 for
constants o and [3.

Let Ppin and Ppqz be the minimum and mazimum respectively over all P; over the entire
sequence of updates. Then there is an algorithm P’ that given a partially dynamic graph and
e > 0, runs in total time O(T'(n,m) + maxp,, <p'<p,.. L (n,m, P’ €)/e) and maintains

m

estimates Py, . .. ,Pk such that for all i, a(l —e)P; — 8 < P <P,

2.2 Lower bounds

Let k > 2. The k-Orthogonal Vectors Problem (k-OV) is as follows: given k sets Si, ..., Sk,
where each S; contains n vectors in {0, 1}%, determine whether there exist v; € Si,..., v, € S
so that their generalized inner product is 0, i.e. Zle Hle v;j[i] = 0. The k-OV Hypothesis
is that k-OV requires n*~°() time in the word-RAM model of computation with O(logn)

bit words, even for randomized algorithms.

The unbalanced version of k-OV has the sets S; potentially have different sizes, |S;| = n;.
The unbalanced k-OV Hypothesis is that unbalanced k-OV requires (], n;)'~°M) time. When
each n; is polynomial in n, the unbalanced k-OV Hypothesis is known to be equivalent to
the k-OV Hypothesis.

R. Williams [25] (see also [24]) showed that if for some € > 0 there is an n*~poly (d)
time algorithm for k-OV, then CNF-SAT on formulas with N variables and m clauses can
be solved in 2N(1=¢/*¥)poly (m) time. In particular, such an algorithm would contradict the
Strong Exponential Time Hypothesis (SETH) of Impagliazzo, Paturi and Zane [16] which
states that for every € > 0 there is a K such that K-SAT on N variables cannot be solved
in 20=9Npoly N time (on a word-RAM with O(log N) bit words) even by randomized
algorithms. Thus SETH implies the k-OV Hypothesis for all constants k. Each of our lower
bounds conditional upon SETH is a reduction from either unbalanced 2 or 3-OV

The Hitting Set (HS) problem [2] is: given two sets U and V of n vectors each in {0, 1}, is
there u € U so that for allv € V, u-v # 0? The HS Hypothesis states that HS requires n?—°(1)
time in the word-RAM model with O(logn) bit words, even for randomized algorithms.

We introduce the unbalanced version of HS, for three unbalanced sets. Unbalanced 3-HS
is the problem, given U,V,W C {0,1}? with |U| = n,|V| = n® [W| = n® for constants
a,b > 0, are there u € U,w € W so that for all v € V, u-v - w # 07 This is in similar spirit
to unbalanced 3-OV. The unbalanced 3-HS Hypothesis is that unbalanced 3-HS requires
(U - |V] - [W])t—e) = pltatb=ol) time in the word-RAM model with O(logn) bit words,
even for randomized algorithms. Due to its similarity to 3-OV and the lack of good algorithms,
the 3-HS Hypothesis is believable. Refuting it would imply some very interesting improved
algorithms for a balanced variant of Quantified Boolean Formulas with 2 quantifiers [18].

As mentioned in the introduction, the k-Cycle Hypothesis is that in the word-RAM model
with O(logn) bit words, any possibly randomized algorithm needs m?~/(*)—=°() time to find
a k-cycle in an m-edge graph, for some continuous (over the reals) f(k) that goes to 0 as k
goes to infinity. The Hypothesis is completely consistent with the state of the art k-Cycle
algorithms (e.g. [27, 4, 9]).
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3 Nearly 3/2-approximation of Diameter

In this section we present a nearly 3/2-approximation for incremental/decremental diameter,
given access to a black-box incremental/decremental approximate SSSP algorithm as specified
in the preliminaries. We defer the remaining algorithms to the full version [5].

» Theorem 11. There is a Las Vegas randomized algorithm for incremental (resp., decre-
mental) diameter in unweighted, directed graphs against an oblivious (resp., adaptive) ad-
versary that given € > 0, runs in O(maxp,<p'<py{Linc(n,m, D', )~ ZQ/D/ b

(resp., O(maXDOSngpf {T4ec(n,m, D', 6)7MZD/})) total time with high probability, and main-
tains an estimate D such that @D — % < D < D where D is the diameter of the current
graph.

By Lemma 10, the following lemma implies Theorem 11.

» Lemma 12. There is a Las Vegas algorithm for incremental (resp., decremental) diameter
in unweighted, directed graphs against an oblivious (resp., adaptive) adversary that given

D',e > 0, runs in O <Tmc(n,m,D’,6)Vn€/D/) (resp., O (Tdec(n,m,D’,e)Vne/D/)) total

time with high probability, and maintains an estimate D < D such that if D' < D then
D> @D’ - % where D is the diameter of the current graph.

Algorithm

Here we give the algorithm for Lemma 12. We defer the proof to the full version [5]. Let
d = 2¢/11. Throughout the incremental (resp., decremental) algorithm we will run in-Aj;,.
(in-Agec) and out-Ajy,. (out-Age.) from certain sets of vertices. For ease of notation, we let
in-A denote either in-A;,. or in-Ag.., depending on the setting, and similarly we let out-A
denote either out-A;,. or out-Agec.

Initialization. Let a be such that D’ = ©(n'~2%). We randomly sample a set S of size
O(n* log? n) so that with high probability, for every vertex v, after every update, S hits
Nout(v,n179).
in-A(s, D’,0). Additionally, we maintain the approximate distance d’(v, S) from every vertex
v to S as described in the preliminaries. Let W be the dynamically changing set of vertices
v that satisfy d'(v,.S) > D'/3.

Throughout the entire execution of the algorithm, for all s € S we run

Phases. In the incremental setting on the other hand, distances can decrease so vertices can
leave W. The incremental algorithm may have many phases, and at the beginning of each
phase, we choose w € W uniformly at random. The beginning of a new phase is triggered
when w leaves the set W.

Throughout the phase, we run out-A(w, D’,d). Also, we will define a subset S’ C
Byt (w, %’) and for all s’ € §’, we run in-A(s’, D', §). S’ is initially empty and we independ-
ently add each vertex in Boy:(w, %) to S" with probability min{1, %}. In the incremental
setting (but not the decremental setting), Boy:(w, %) can grow, and whenever a vertex u

joins Byt (w, %) we add u to S” with probability min{1, l%g;,"}.
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Reinitialization. We reinitialize the entire algorithm if at any point during the execution of
’ l—a

the algorithm, any of the following/occur: (1) [Bout(w, B-)| > n'=>, (2) |S'| > %, or

(3) there is a vertex v € Boy:(w, 2-) such that d’(v,S") > §D’. We will show in the analysis

that with high probability we never reinitialize the algorithm.

Query. Following each update, the return value D is the maximum distance estimate found
over all instantiations of out-A and in-A. That is,
D= max{max,cy d (w,v), maxyev,sesus d (v, s)}.

To maintain this value, we maintain the following heaps. For every vertex v that we run
out-A (resp., out-A) from, we keep a max-heap H(v) that stores for each other vertex u the
estimate d’(v,u) (resp., d'(u,v)). Let doy:(v) be the value that H(v) outputs. Additionally

PN

we keep a max-heap H which stores each dyyt(v).

4 (2 — €)-approximation requires linear update time

In this section we give a linear lower bound per update for (2 — €)-approximation for diameter,
radius, and fixed-vertex eccentricity of undirected graphs. We defer the remaining proofs to
the full version [5].

» Theorem 13. Let t, €, and € be positive constants. SETH implies that there exists no fully
dynamic algorithm for (2 — €)-approximate Diameter, Radius, or fized-vertex Eccentricity
on undirected, unweighted graphs with n vertices and O(n) edges, which has preprocessing
time p(n) = O(n'), amortized update time u(n) = O(n*~), and amortized query time
q(n) = O(n'=¢). The same holds for the incremental/ decremental settings, for worst-case
update and query times.

Proof of Theorem 13.

Initialization

Let a = [%4<]+1and § = 1;‘/. We begin with an instance of 2-OV with vector sets U and
V of vectors, with |U| = N° and |V| = N'7%. We create a graph G as follows. Add a node
s and for each coordinate c, create two paths of length 2a beginning at s, and denote the
endpoints of the paths by cjcr+ and cpigns.

Next, create two paths of length a for each vector u € U. Denote the endpoints of one
path by u?e 7 and uy, ¢, and the endpoints of the other by ugight right- Finally, we
encode each vector u € U in the graph by connecting uj, ¢, to ¢yt with a path of length a if

uf[e] = 1, and doing the same on the right side of G. If u has no coordinates equal to 1, then

and u

we may report that there is an orthogonal pair and halt; thus there will be no disconnected
nodes in G.

Dynamic stages

We proceed in N'~? stages, one for each element v € V. For the current v, for each coordinate
¢ where v[c] = 1, we add edges (s, cjeri) and (s, crignt). We then query the diameter or radius
of G or the eccentricity of s. We will show that the eccentricity of s is always equal to the
radius, and that if the diameter is least 8a or the radius is at least 4a, then there is an

orthogonal pair u, v; otherwise, the diameter is at most 4a + 2 or the radius is at most 2a + 1.

We have set a so that a (2 — €)-approximation algorithm for diameter, radius or eccentricity
of s distinguishes between these two cases and thus detects an orthogonal pair. If the query
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does not detect an orthogonal pair, we undo the edge additions for the stage and continue to
the next v. We can modify the stage to be decremental by beginning with edges from s to
all nodes ciep: and crignt, and removing the excess edges each stage.

3
S
7
@
3
o

O——(
O——C0O

Figure 1 Sketch of Theorem 13 Construction. Bold edges represent paths, whose labels denote
their length.

Correctness

We claim that the node s is always the center of G, so the eccentricity of s is always the
radius of G. Let x,i4n; be the node farthest from s on the right side of G. Since the graph is
symmetrical, the counterpart zjcs; of Zyigns is such that d(s, zyignt) = d(s, Tiest). Any node
y to the left of s must pass through s to reach x,;gnt, so y has a higher eccentricity than s
because it is farther from the node farthest from s. Symmetrically, any node y to the right
of s must pass through s to reach zjcs¢, so y has a higher eccentricity than s because it is
farther from the node farthest from s.

If for the current stage, for all u, u - v # 0, then for each u there must be some coordinate
¢ such that u[c] = v[c] = 1. Then there is a path of length 1 from s to ¢jef¢, and a path of
length a from cjct to uf, o for all w. The same is true on the right side. Then since all nodes
;‘;ght for some u' € U, all nodes are
accessible in at most 2a + 1 steps from s. This means that the radius and eccentricity of s is
2a + 1, and the diameter is at most 4a + 2.

If for the current stage there is some u such that v - v = 0, then there is no direct path
from s to u® on either side via a vector coordinate ¢ and u®. A path via a different u/, would
be of length at least 4a + 1, because returning to a ¢’ where u[¢’/| = 1 would cost an additional
2a from the direct path. The shortest path would thus be along the length-2a path from s
to ¢, giving d(s,u’) = 4a. The radius and eccentricity of s must be at least 4a and diameter

must be at least 8a, because d(up), y, ul; p,) = d(s,up, ;) + d(s,ud;,,) = 4a + 4a = 8a.

. ’
except s are of distance at most a from a node ulgﬁ or u

Running time

We assume for the sake of contradiction that the algorithm of Theorem 13 exists. Let
n = N? be the size of G. We have that u(n) = g(n) = O((N®)'~¢). After initialization
and |V| = N'79 stages, the total update and query time is then at most O(N'~%"). The
preprocessing time p(n) for the algorithm on G is O((N%)*) = O(N'~¢). Thus the total
time of the algorithm is O(N 1€ 4 N 1“*’). This contradicts SETH, because SETH implies
that no algorithm exists for 2-OV in O((|U] - [V|)}=<") = O(N'~¢") time for any ¢’ > 0. <
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