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Abstract
We study the problem of finding an exact solution to the consensus halving problem. While recent
work has shown that the approximate version of this problem is PPA-complete [28, 29], we show
that the exact version is much harder. Specifically, finding a solution with n agents and n cuts is
FIXP-hard, and deciding whether there exists a solution with fewer than n cuts is ETR-complete. We
also give a QPTAS for the case where each agent’s valuation is a polynomial.

Along the way, we define a new complexity class BU, which captures all problems that can be
reduced to solving an instance of the Borsuk-Ulam problem exactly. We show that FIXP ⊆ BU ⊆ TFETR
and that LinearBU = PPA, where LinearBU is the subclass of BU in which the Borsuk-Ulam instance
is specified by a linear arithmetic circuit.
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1 Introduction

Dividing resources among agents in a fair manner is among the most fundamental problems
in multi-agent systems [16]. Cake cutting [6, 8, 7, 15], and rent division [14, 33, 25] are
prominent examples of problems that lie in this category. At their core, each of these problems
has a desired solution whose existence is usually proved via a theorem from algebraic topology
such as Brouwer’s fixed point theorem, Sperner’s lemma, or Kakutani’s fixed point theorem.

In this paper, we focus on a fair-division problem called consensus-halving: an object
A represented by [0, 1] is to be divided into two halves A+ and A−, so that n agents agree
that A+ and A− have the same value. Provided the agents have bounded and continuous
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valuations over A, this can always be achieved using at most n cuts, and this fact can be
proved via the Borsuk-Ulam theorem from algebraic topology [44]. The necklace splitting
and ham-sandwich problems are two other examples of fair-division problems for which the
existence of a solution can be proved via the Borsuk-Ulam theorem [4, 5, 37].

Recent work has further refined the complexity status of approximate consensus halving,
in which we seek a division of the object so that every agent agrees that the values of A+ and
A− differ by at most ε. Since the problem always has a solution, it lies in TFNP, which is the
class of function problems in NP that always have a solution. More recent work has shown
that the problem is PPA-complete [28], even for ε that is inverse-polynomial in n [29]. The
problem of deciding whether there exists an approximate solution with k-cuts when k < n

is NP-complete [27]. These results are particularly notable, because they identify consensus
halving as one of the first natural PPA-complete problems.

While previous work has focused on approximate solutions to the problem, in this paper
we study the complexity of solving the problem exactly. For problems in the complexity
class PPAD, which is a subclass of both TFNP and PPA, prior work has found that there is a
sharp contrast between exact and approximate solutions. For example, the Brouwer fixed
point theorem is the theorem from algebraic topology that underpins PPAD. Finding an
approximate Brouwer fixed point is PPAD-complete [37], but finding an exact Brouwer fixed
point is complete for (and the defining problem of) a complexity class called FIXP [26].

It is believed that FIXP is significantly harder than PPAD. While PPAD ⊆ TFNP ⊆ FNP,
there is significant doubt about whether FIXP ⊆ FNP. The reason for this is that there are
Brouwer instances for which all solutions are irrational. This is not particularly relevant
when we seek an approximate solution, but is a major difficulty when we seek an exact
solution. For example, the square-root-sum problem asks us to decide for integers a1, a2,
. . . , an, t, whether

∑n
i=1
√
ai ≤ t. This deceptively simple problem is not known to lie in

NP, and can be reduced to the problem of finding an exact Brouwer fixed point [26], which
provides evidence that FIXP may be significantly harder than FNP.

Our contribution. In this paper, we study the complexity of solving the consensus halving
problem exactly. In our formulation of the problem, the valuation function of the agents is
presented as an arbitrary arithmetic circuit, and the task is to cut A such that all agents
agree that A+ and A− have exactly the same valuation. We study two problems. The
(n, n)-Consensus Halving problem asks us to find an exact solution for n-agents using at
most n-cuts, while the (n, k)-Consensus Halving problem asks us to decide whether there
exists an exact solution for n-agents using at most k-cuts, where k < n.

Our results for (n, n)-Consensus Halving are intertwined with a new complexity class
that we call BU. This class consists of all problems that can be reduced in polynomial
time to the problem of finding a solution of the Borsuk-Ulam problem. We show that
(n, n)-Consensus Halving lies in BU, and is FIXP hard. The hardness for FIXP implies that
the exact variant of consensus halving is significantly harder than the approximate variant:
while the approximate problem is PPA-complete, the exact variant is unlikely to be in FNP.

We show that (n, k)-Consensus Halving is ETR-complete. The complexity class ETR
consists of all decision problems that can be formulated in the existential theory of the reals.
It is known that NP ⊆ ETR ⊆ PSPACE [17], and it is generally believed that ETR is distinct
from the other two classes. So our result again shows that the exact version of the problem
seems to be much harder than the approximate version, which is NP-complete [27].

Just as FIXP can be thought of as the exact analogue of PPAD, we believe that BU is the
exact analogue of PPA, and we provide some evidence to justify this. It has been shown that
LinearFIXP = PPAD [26], which is the version of the class in which arithmetic circuits are
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restricted to produce piecewise linear functions (FIXP allows circuits to compute piecewise
polynomials). We likewise define LinearBU, which consists of all problems that can be
reduced to a solution of a Borsuk-Ulam problem using a piecewise linear function, and we
show that LinearBU = PPA.

The containment LinearBU ⊆ PPA can be proved using similar techniques to the proof that
LinearFIXP ⊆ PPAD. However, the proof that PPA ⊆ LinearBU utilises our BU containment
result for consensus halving. In particular, when the input to the consensus halving problem
is a piecewise linear function, our containment result shows that the problem actually lies
in LinearBU. The PPA-hardness results for consensus halving show that piecewise-linear-
consensus halving is PPA-hard, which completes the containment [28, 29].

Finally, we show that, for the case where each agent has a non-piecewise polynomial
valuation of constant (resp. O(logn)) degree, an approximate solution to the problem can be
found using O(logn) (resp. O(poly logn)) cuts, which then yields a QPTAS for the problem.

For detailed proofs of the results presented, we refer the reader to the full version [22].

Related work. Although for a long period there were a few results about PPA, recently
there has been a flourish of PPA-completeness results. The first PPA-completeness result was
given by [32] who showed PPA-completeness of the Sperner problem for a non-orientable
3-dimensional space. In [30] this result was strengthened for a non-orientable and locally
2-dimensional space. In [3], 2-dimensional Tucker was shown to be PPA-complete; this result
was used in [28, 29] to prove PPA-completeness for approximate consensus halving. In [23]
PPA-completeness was proven for a special version of Tucker and for problems of the form
“given a discrete fixed point in a non-orientable space, find another one”. Finally, in [24] it was
shown that octahedral Tucker is PPA-complete. In [35], a subclass of 2DLinearFIXP ⊆ FIXP
that consists of 2-dimensional fixed-point problems was studied, and it was proven that
2DLinearFIXP = PPAD.

A large number of problems are now known to be ETR-complete: geometric intersection
problems [34, 39], graph-drawing problems [1, 9, 18, 40], matrix factorization problems [42,
43], the Art Gallery problem [2], and deciding the existence of constrained (symmetric) Nash
equilibria in (symmetric) normal form games with at least three players [10, 11, 12, 13, 31].

2 Preliminaries

2.1 Arithmetic circuits
An arithmetic circuit represents a continuous function f : Rn → Rm, and is defined by a pair
(V, T ), where V is a set of nodes and T is a set of gates. There are n nodes in V that are
input nodes, and m nodes in V that are output nodes. When a value x ∈ Rn is presented at
the input nodes, the circuit computes values for all other nodes v ∈ V , which we will denote
as x[v]. The values of x[v] for the m output nodes determine the value of f(x) ∈ Rm.

Every node in V , other than the input nodes, is required to be the output of exactly one
gate in T . Each gate g ∈ T enforces an arithmetic constraint on its output node, based on
the values of some other node in the circuit. Cycles are not allowed in these constraints.
We allow the operations {ζ,+,−, ∗ζ, ∗,max,min}, which correspond to the gates shown in
Table 1. Note that every gate computes a continuous function over its inputs, and thus any
function f that is represented by an arithmetic circuit of this form is also continuous.

We study two types of circuits in this paper. General arithmetic circuits are allowed to
use any of the gates that we have defined above. Linear arithmetic circuits allow only the
operations {ζ,+,−, ∗ζ,max,min}, and the ∗ operation (multiplication of two variables) is
disallowed. Observe that a linear arithmetic circuit computes a piecewise linear function.

ICALP 2019
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Table 1 The types of gates and their constraints.

Gate Constraint
Gζ(ζ, vout) x[vout] = ζ, where ζ ∈ Q
G+(vin1, vin2, vout) x[vout] = x[vin1] + x[vin2]
G−(vin1, vin2, vout) x[vout] = x[vin1]− x[vin2]
G∗ζ(ζ, vin, vout) x[vout] = x[vin1] · ζ, where ζ ∈ Q
G∗(vin1, vin2, vout) x[vout] = x[vin1] · x[vin2]
Gmax(vin1, vin2, vout) x[vout] = max{x[vin1], x[vin2]}
Gmin(vin1, vin2, vout) x[vout] = min{x[vin1], x[vin2]}

2.2 The Consensus Halving problem

In the consensus halving problem there is an object A that is represented by the [0, 1] line
segment, and there are n agents. We wish to divide A into two (not necessarily contiguous)
pieces such that every agent agrees that the two pieces have equal value. Simmons and
Su [44] have shown that, provided the agents have bounded and continuous valuations over
A, then we can find a solution to this problem using at most n cuts.

In this paper we consider instances of the consensus halving problem where the valuations
of the agents are presented as arithmetic circuits. Each agent has a valuation function
fi : [0, 1]→ R, but it is technically more convenient if they give us a representation of the
integral of this function. So for each agent i, we are given an arithmetic circuit computing
Fi : [0, 1] → R where for all x ∈ [0, 1] we have Fi(x) =

∫ x
0 f(y) dy. Then, the value of any

particular segment of [a, b] to agent i can be computed as Fi(b)− Fi(a).
A solution to the consensus halving problem is given by a k-cut of the object A,

which is defined by a vector of cut-points (t1, t2, . . . , tk) ∈ [0, 1]k, and a vector of signs
(s1, s2, . . . , sk+1) ∈ {−1,+1}k+1. The cut-points ti split A into up to k+ 1 pieces. Note that
they may in fact split A into fewer than k + 1 pieces in the case where two cut-points ti = tj
overlap. We define Xi to be the ith piece of A, meaning that X0 = [0, t1], Xi = [ti, ti+1] for
all i in the range 1 ≤ i < k, and Xk = [tk, 1].

The sign vector determines which half of A the piece belongs to. We define A+ :=
{Xi : si = +1} and A− := {Xi : si = −1} to be the two halves. For each agent i, we
denote the value A+ to agent i as Fi(A+) :=

∑
[a,b]∈A+

(Fi(b)− Fi(a)), and we define Fi(A−)
analogously. The k-cut is a solution to the consensus halving problem if Fi(A+) = Fi(A−)
for all agents i.

We define two computational problems. Simmons and Su [44] have proved that there
always exists a solution using at most n-cuts, and our first problem is to find that solution.

(n, n)-Consensus Halving

Input: For every agent i ∈ [n], an arithmetic circuit Fi computing the integral of
agent i’s valuation function.
Task: Find an n-cut for A such that Fi(A+) = Fi(A−), for every agent i ∈ [n].

For k < n a solution to the problem may or may not exist. So we define the following
decision variant of the problem.
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(n, k)-Consensus Halving

Input: For every agent i ∈ [n], an arithmetic circuit Fi computing the integral of
agent i’s valuation function.
Task: Decide whether there exists a k-cut for A such that Fi(A+) = Fi(A−), for
every agent i ∈ [n].

For either of these two problems, if all of the inputs are represented by linear arithmetic
circuits, then we refer to the problem as Linear Consensus Halving. We note that the
known hardness results [27, 28] for consensus halving fall into this class. Specifically, those
results produce valuations that are piecewise constant, and so the integral of these functions
is piecewise linear, and these functions can be written down as linear arithmetic circuits [36].

3 The Class BU

The Borsuk-Ulam theorem states that every continuous function from the surface of an
(d+ 1)-dimensional sphere to the d-dimensional Euclidean space maps at least one pair of
antipodal points to the same point.

I Theorem 1 (Borsuk-Ulam). Let f : Sd → Rd be a continuous function, where Sd is a
(d+ 1)-dimensional sphere. Then, there exists an x ∈ Sd such that f(x) = f(−x).

This theorem actually works for any domain D that is antipode-preserving homeomorph-
ism of Sd, where by “antipode-preserving” we mean that for every x ∈ D we have that
−x ∈ D. In this paper, we choose Sd to be the sphere in d+ 1 dimensions with respect to
L1 norm: Sd :=

{
x | x = (x1, x2, . . . , xd+1),

∑d+1
i=1 |xi| = 1

}
.

We define the Borsuk-Ulam problem as follows.

Borsuk-Ulam

Input: A continuous function f : Rd+1 → Rd presented as an arithmetic circuit.
Task: Find an x ∈ Sd such that f(x) = f(−x).

Note that we cannot constrain an arithmetic circuit to only take inputs from the domain
Sd, so we instead put the constraint that x ∈ Sd onto the solution.

The complexity class BU is defined as follows.

I Definition 2 (BU). The complexity class BU consists of all search problems that can be
reduced to Borsuk-Ulam in polynomial time.

3.1 LinearBU
When the input to a Borsuk-Ulam instance is a linear arithmetic circuit, then we call the
problem Linear Borsuk-Ulam, and we define the class LinearBU as follows.

I Definition 3 (LinearBU). The complexity class LinearBU consists of all search problems
that can be reduced to Linear Borsuk-Ulam in polynomial time.

We will show that LinearBU = PPA. The proof that LinearBU ⊆ PPA is similar to the
proof that Etessami and Yannakakis used to show that LinearFIXP ⊆ PPAD [26], while the
fact that PPA ⊆ LinearBU will follow from our results on consensus halving in Section 4.

ICALP 2019
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To prove LinearBU ⊆ PPA we will reduce to the approximate Borsuk-Ulam problem.
It is well known that the Borsuk-Ulam theorem can be proved via Tucker’s lemma, and
Papadimitriou noted that this implies that finding an approximate solution to a Borsuk-Ulam
problem lies in PPA [37]. This is indeed correct, but the proof provided in [37] is for a slightly
different problem1. Since our results will depend on this fact, we provide our own definition
and self-contained proof here. We define the approximate Borsuk-Ulam problem as follows.

ε-Borsuk-Ulam

Input: A continuous function f : Rd+1 → Rd presented as an arithmetic circuit,
along with two constants ε, λ ∈ R.
Task: Find one of the following.
1. A point x ∈ Sd such that ‖f(x)− f(−x)‖∞ ≤ ε.
2. Two points x, y ∈ Sd such that ‖f(x)− f(y)‖∞ > λ · ‖x− y‖∞.

The first type of solution is an approximate solution to the Borsuk-Ulam problem, while
the second type of solution consists of any two points that witness that the function is not
λ-Lipschitz continuous in the L∞-norm. The second type of solution is necessary, because an
arithmetic circuit is capable, through repeated squaring, of computing doubly-exponentially
large numbers, and the reduction to Tucker may not be able to find an approximate solution
for such circuits. We now re-prove the result of Papadimitriou in the following lemma.

I Lemma 4 ([37]). ε-Borsuk-Ulam is in PPA.

To show that LinearBU ⊆ PPA we will provide a polynomial time reduction from
Linear Borsuk-Ulam to ε-Borsuk-Ulam. To do this, we follow closely the technique
used by Etessami and Yannakakis to show that LinearFIXP ⊆ PPAD [26]. The idea is to
make a single call to ε-Borsuk-Ulam to find an approximate solution to the problem for a
suitably small ε, and to then round to an exact solution by solving a linear program. To
build the LP, we depend on the fact that we have access to the linear arithmetic circuit that
represents f .

I Lemma 5. Linear Borsuk-Ulam is in PPA.

4 Containment Results for Consensus Halving

4.1 (n, n)-Consensus Halving is in BU and LinearBU = PPA
We show that (n, n)-Consensus Halving is contained in BU. Simmons and Su [44] show the
existence of an n-cut solution to the consensus halving problem by applying the Borsuk-Ulam
theorem, and we follow their approach in this reduction. However, we must show that the
approach can be implemented using arithmetic circuits. We take care in the reduction to
avoid G∗ gates, and so if the inputs to the problem are all linear arithmetic circuits, then
our reduction will produce a Linear Borsuk-Ulam instance. Hence, we also show that
(n, n)-Linear Consensus Halving is in LinearBU.

I Theorem 6. The following two containments hold.
(n, n)-Consensus Halving is in BU.
(n, n)-Linear Consensus Halving is in LinearBU.

1 The problem used in [37] presents the function as a polynomial-time Turing machine rather than an
arithmetic circuit, and the Lipschitzness of the function is guaranteed by constraining the values that it
can take.
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We note that this also implies that PPA ⊆ LinearBU, thereby completing the proof that
PPA = LinearBU. Specifically, Filos-Ratsikas and Goldberg have shown that approximate-
(n, n)-Consensus Halving is PPA-complete, and their valuation functions are piecewise
constant. Therefore, the integrals of these functions are piecewise linear, and so their
approximate-(n, n)-Consensus Halving instances can be reduced to (n, n)-Linear Con-
sensus Halving. Hence (n, n)-Linear Consensus Halving is PPA-hard, which along with
Lemma 5 implies the following corollary.

I Corollary 7. PPA = LinearBU.

4.2 (n, k)-Consensus Halving is in ETR
The existential theory of the reals consists of all true existentially quantified formulae using
the connectives {∧,∨,¬} over polynomials compared with the operators {<,≤,=,≥, >}.
The complexity class ETR captures all problems that can be reduced in polynomial time to
the existential theory of the reals.

We prove that (n, k)-Consensus Halving is in ETR. The reduction simply encodes
the arithmetic circuits using ETR formulas, and then constrains Fi(A+) = Fi(A−) for
every agent i.

I Theorem 8. (n, k)-Consensus Halving is in ETR.

Using the same technique, we can also reduce Borsuk-Ulam to an ETR formula. In this
case, we get an ETR formula that always has a solution, and so this result places the problem
in TFETR, which is the subclass of ETR in which the formula is guaranteed to be true.

I Theorem 9. BU ⊆ TFETR.

5 Hardness Results for Consensus Halving

In this section we prove that (n, n)-Consensus Halving is FIXP-hard and that (n, n− 1)-
Consensus Halving is ETR-hard. These two reductions share a common step of embedding
an arithmetic circuit into a consensus halving instance. So we first describe this step, and
then move on to proving the two individual hardness results.

5.1 Embedding a circuit in a Consensus Halving instance
Our approach is inspired by [27], who provided a reduction from ε-GCircuit [19, 38] to
approximate consensus halving. However, our construction deviates significantly from theirs
due to several reasons.

Firstly, the reduction in [27] works only for approximate consensus halving. Specifically,
some valuations used in that construction have the form of 1/ε, where ε is the approximation
guarantee, so the construction is not well-defined when ε = 0 as it is in our case. Many of
the gate gadgets used in [27] cannot be used due to this issue, including the max gate, which
is crucially used in that construction to ensure that intermediate values do not get too large.
We provide our own implementations of the broken gates. Our gate gadgets only work when
the inputs and outputs lie in the range [0, 1], and so we must carefully construct circuits
for which this is always the case. The second major difference is that the reduction in [27]
does not provide any method of multiplying two variables, which is needed in our case. We
construct a gadget to do this, based on a more primitive gadget for squaring a single variable.

ICALP 2019
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Table 2 The special types of gates, their constraints and ranges of input.

Special Gate Constraint Ranges
G()2 (vin, vout) x[vout] = (x[vin])2 x[vin] ∈ [0, 1]
G

[0,1]
∗2 (vin, vout) x[vout] = x[vin] · 2 x[vin] ∈ [0, 1/2]

G
[0,1]
− (vin1, vin2, vout) x[vout] = max{x[vin1]− x[vin2], 0} x[vin1], x[vin2] ∈ [0, 1]

Special circuit. Our reduction from an arithmetic circuit to consensus halving will use a
very particular subset of gates. Specifically, we will not use Gmin, Gmax, or G∗, and we will
restrict G∗ζ so that ζ must lie in (0, 1]. We do however introduce three new gates, shown
in Table 2. The gate G()2 squares its input, the gate G[0,1]

∗2 multiplies its input by two, but
requires that the input be in [0, 1/2], and the gate G[0,1]

− is a special minus gate that takes
as inputs a, b ∈ [0, 1] and outputs max{a− b, 0}. We note that Gmin, Gmax, and G∗ can be
implemented in terms of our new gates according to the following identities.

max{a, b} = a+ b

2 + |a− b|2 = a

2 + b

2 + 1
2 max{a− b, 0}+ 1

2 max{b− a, 0},

min{a, b} = a+ b

2 − |a− b|2 = a

2 + b

2 −
1
2 max{a− b, 0} − 1

2 max{b− a, 0},

a · b = 2
[(

a

2 + b

2

)2
−

((a
2

)2
+
(
b

2

)2
)]

.

Also, a very important requirement of the special circuit is that both inputs of any G+
gate are in [0, 1/2]. To make sure of that, we downscale the inputs before reaching the gate,
and upscale the output, using the fact that a+ b = (a/2 + b/2) · 2.

The reduction to consensus halving. The reduction follows the general outline of the
reduction given in [27]. The construction is quite involved, and so we focus on the high-level
picture here. Each gate is implemented by 4 agents, namely ad,mid, cen, ex in the consensus
halving instance. The values computed by the gates are encoded by the positions of the cuts
that are required in order to satisfy these agents. Agent ad performs the exact mathematical
operation of the gate, and feeds the outcome in mid, who “trims” it in accordance with the
gate’s actual operation. Then mid feeds her outcome to cen and ex, who make a copy of
mid’s correct value of the gate, with “negative” and “positive” labels respectively. This value
with the appropriate label will be input to other gates.

The most important agents are the ones that perform the mathematical operation of
each gate, i.e. agents ad. Figure 1 shows the part of the valuation functions of these agents
that perform the operation. Each figure shows a valuation function for one of the agents,
meaning that the blue regions represent portions of the object that the agent desires. The
agent’s valuation for any particular interval is the integral of this function over that interval.

To understand the high-level picture of the construction, let us look at the construction
for G∗ζ . The precise valuation functions of the agents in the construction ensure that there
is exactly one input cut in the region v+

in. The leftmost piece due to that cut in that region
will belong to A+, while the rightmost will belong to A−. It is also ensured that there is
exactly one output cut in the region vaout, and that the first piece in that region will belong
to A− and the second will belong to A+.

Suppose that gate gi in the circuit is of type G∗ζ and we want to implement it through
a Consensus Halving instance. If we treat v+

in and vaout in Figure 1 as representing [0, 1],
then agent adi will take as input a cut at point x ∈ v+

in. In order to be satisfied, adi will



A. Deligkas, J. Fearnley, T. Melissourgos, and P. G. Spirakis 138:9

Valuation function

1 if t ∈ [vaout,l + ζ − 1
2, v

a
out,l + ζ + 1

2]

0 otherwise

1 if t ∈ v+in

0 otherwise

1/ζ if t ∈ [vaout,l, v
a
out,l + ζ ]

2(t− v+in,l) if t ∈ v+in

0 otherwise

1 if t ∈ vaout

1 if t ∈ [v+in2,l, v
+
in2,l +

1
2]

0 otherwise

1 if t ∈ vaout

1 if t ∈ [v+in1,l, v
+
in1,l +

1
2]

Gπ(t)

1 if t ∈ [v+in,l, v
+
in,l +

1
2]

0 otherwise

1/2 if t ∈ vaout

1 if t ∈ v−in2

0 otherwise

1 if t ∈ [vaout,l − 1, vaout,r]

1 if t ∈ v+in1
1

vaout

vaoutv+in

vaoutv+in2v+in1

vaoutv+in

v+in

vaoutv−in2v+in1

vaout

1

1

ζ

ζ

11 1

1 1 1

1

2

1

Gate
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G∗ζ

G+

G()2

G
[0,1]
∗2

1
2

1
2

1
2

1
2

1
2

1
2

1
ζ

G
[0,1]
−

Figure 1 Gates and their corresponding functions Gπ(t).

impose a cut at point y ∈ vaout, such that Fi(A+) = Fi(A−), where: Fi(A+) = x+ (ζ − y)/ζ
and Fi(A−) = (1− x) + y/ζ. Simple algebraic manipulation can be used to show that adi is
satisfied only when y = ζ · x, as required.

We show that the same property holds for each of the gates in Figure 1. Two notable
constructions are for the gates G()2 and G[0,1]

− . For the gate G()2 the valuation function of
agent ad is non-constant, which is needed to implement the non-linear squaring function.
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v+j v−k vai vmi v−i v+i· · · · · ·

adi

midi

ceni

exi

Figure 2 An example where the computation at the output vout := vi of a G[0,1]
− gate with inputs

vin1 := vj and vin2 := vk is simulated by the Consensus Halving instance. Here x[vj ] = 1/4 and
x[vk] = 3/4, hence x[vi] = 0. The information about the values of the inputs is encoded by the cuts
(red lines) in intervals v+

j , and v
−
k imposed by agents exj and cenk respectively. The blue and green

shapes depict the area below the valuation function of each of the 4 agents. The pink regions have
label “+” while the yellow have label “−”. Agent adi performs the subtraction, by demanding that
she is satisfied, and places a cut 1/10 to the left of the left endpoint of interval vai . Then agent midi
gets satisfied by placing a cut at exactly the left endpoint of interval vmi , thus encoding the value 0
which is the correct output value of the gate. Finally, agents ceni, exi copy this value by enforcing
similar cuts at the left endpoints of intervals v−

i and v+
i respectively. The encoded values in the

latter two intervals are the “negative” and “positive” version of x[vi].

For the gate G[0,1]
− , note that the output region vaout only covers half of the possible output

space. The idea is that if the result of x[vin1]− x[vin2] is negative, then the output cut will
lie before the output region, which will be interpreted as a zero output by agents mid, cen, ex
in the construction. On the other hand, if the result is positive, the result will lie in the usual
output range, and will be interpreted as a positive number. An example where x[vin1] = 1/4
and x[vin2] = 3/4 is shown in Figure 2.

Ultimately, this allows us to construct a consensus-halving instance that implements this
circuit. This means that for any x ∈ [0, 1]n, we can encode x as a set of cuts, which then force
cuts to be made at each gate gadget that encode the correct output for that gate. The full
details of the construction are quite involved, but we are able to show the following result.

I Lemma 10. Suppose that we are given an arithmetic circuit with the following properties.
The circuit uses the gates Gζ , G+, G∗ζ , G()2 , G

[0,1]
− , G

[0,1]
∗2 .

Every Gζ and G∗ζ has ζ ∈ Q ∩ (0, 1].
For every input x ∈ [0, 1]n, all intermediate values computed by the circuit lie in [0, 1].

We can construct a consensus-halving instance that implements this circuit.
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5.2 (n, n)-Consensus Halving is FIXP-hard
We show that (n, n)-Consensus Halving is FIXP-hard by reducing from the problem of
finding a Nash equilibrium in a d-player game, which is known to be a FIXP-complete [26].
As shown in [26], this problem can be reduced to the Brouwer fixed point problem: given
an arithmetic circuit computing a function F : [0, 1]n → [0, 1]n, find a point x ∈ [0, 1]n such
that F (x) = x. In a similar way to [27], we take this circuit and embed it into a consensus
halving instance, with the outputs looped back to the inputs. Since Lemma 10 implies that
our implementation of the circuit is correct, this means that any solution to the consensus
halving problem must encode a point x satisfying F (x) = x.

One difficulty is that we must ensure that the arithmetic circuit that we build falls into
the class permitted by Lemma 10. To do this, we carefully analyse the circuits produced in
[26], and we modify them so that all of the preconditions of Lemma 10 hold.

I Theorem 11. (n, n)-Consensus Halving is FIXP-hard.

This theorem, along with Theorem 6 give the following corollary.

I Corollary 12. FIXP ⊆ BU.

5.3 (n, n − 1)-Consensus Halving is ETR-complete
We will show the ETR-hardness of (n, n − 1)-Consensus Halving by reducing from the
following problem Feasible, which is known to be ETR-complete [41].

I Definition 13 (Feasible, Feasible[0,1]). Let p(x1, . . . , xm) be a polynomial. Feasible
asks whether there exists a point (x1, . . . , xm) ∈ Rm that satisfies p(x1, . . . , xm) = 0.
Feasible[0,1] asks whether there exists a point (x1, . . . , xm) ∈ [0, 1]m that satisfies p.

The idea is to turn the polynomial into a circuit, and then embed that circuit into a
consensus halving instance using Lemma 10. As before, the main difficulty is ensuring that
the preconditions of Lemma 10 are satisfied. To do this, we must ensure that the the inputs
to the circuit take values in [0, 1], which is not the case if we reduce directly from Feasible.
Instead, we first consider the problem Feasible[0,1], in which x is constrained to lie in [0, 1]n
rather than Rn, and we show the following result.

I Lemma 14. Feasible[0,1] is ETR-complete.

ETR[0,1] is the subclass of ETR in which variables are quantified over [0, 1]n rather than Rn.
The above lemma follows from the fact that ETR[0,1] = ETR, and the fact that Feasible[0,1]
is ETR[0,1]-hard. This equivalence of classes, together with the completeness of Feasible[0,1]
may be of independent interest.

We then proceed to reduce Feasible[0,1] to (n, n − 1)-Consensus Halving. We still
don’t quite meet the requirements of Lemma 10, because the intermediate terms may be
outside [0, 1]. We resolve this by implementing a circuit p+(x) implementing only the positive
terms of p(x) downscaled appropriately, and a circuit p−(x) implementing the positive terms
of −p(x) again downscaled appropriately. The check agent is then satisfied if p+(x) = p−(x),
which can only occur when p(x) = 0.

There will be n− 1 choice agents corresponding to the (n− 1)/4 nodes of the circuit, who
enforce that there is a cut for each of the nodes to the circuit, and together these cuts encode
an input x to the polynomial. Each agent introduced by Lemma 10 has an associated cut
that is forced by the construction used in that lemma, and these cuts compute the output of
the associated gate.

So far, every agent has a corresponding cut that is forced by the construction. There is,
however, one final check agent who has the following properties.
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If p(x) = 0, then the check agent agrees that A has been cut in half without an extra cut
being made.
If p(x) 6= 0, then the check agent requires one more cut to be made in order to be satisfied
that A has been cut in half.

Hence, if there is a solution to Feasible, then there is a solution to Feasible[0,1], and
there is a (n− 1)-cut that solves the Consensus Halving instance. Otherwise there is no
such solution.

I Theorem 15. (n, n− 1)-Consensus Halving is ETR-complete.

6 A QPTAS for Consensus Halving with polynomial valuation
functions

In this section we show that an approximate solution to the consensus halving problem
can be found in quasi-polynomial time when each agent’s valuation function is a single
polynomial of constant or even polylogarithmic degree. We will do so by formulating the
problem as a formula in the approximate existential theory of the reals, and then applying
the approximation theorem proved in [20, 21].

Our result implies that these instances can be solved approximately using a polylogarithmic
number of cuts. We note that this is one of the most general classes of instances for which we
could hope to prove such a result: any instance in which n agents desire completely disjoint
portions of the object can only be solved by an n-cut, and piecewise linear functions are
capable of producing such a situation. So in a sense, we are exploiting the fact that this
situation cannot arise when the agents have non-piecewise polynomial valuation functions.

I Lemma 16. For every Consensus Halving instance with n agents, and every ε > 0, if
each agent’s valuation function Fi is a single polynomial of degree at most O(poly logn), then
there exists a k-cut, where k := O(poly logn)/ε4, and pieces A+ and A− such that:

every cut point is a multiple of 1/k = ε4

O(poly logn) ;
|Fi(A+)− Fi(A−)| ≤ ε, for every agent i.

As a consequence, we can perform a brute force search over all possible k-cuts to find an
approximate solution, which can be carried out in nO(poly logn/ε4) time.

I Theorem 17. Consensus Halving admits a QPTAS when the valuation function of
every agent is a single polynomial of degree O(poly logn).
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