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Abstract
We present a constant-time randomized distributed algorithms in the congested clique model that
computes an O(α)-vertex-coloring, with high probability. Here, α denotes the arboricity of the
graph, which is, roughly speaking, the edge-density of the densest subgraph. Congested clique
is a well-studied model of synchronous message passing for distributed computing with all-to-all
communication: per round each node can send one O(logn)-bit message algorithm to each other
node. Our O(1)-round algorithm settles the randomized round complexity of the O(α)-coloring
problem. We also explain that a similar method can provide a constant-time randomized algorithm
for decomposing the graph into O(α) edge-disjoint forests, so long as α ≤ n1−o(1).
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1 Introduction and Related Work

This paper settles the randomized complexity of the graph coloring problem with a number
of colors linear in its arboricity, in the congested clique model of distributed computing: we
show that constant time suffices. Before formally stating our result, let us start by reviewing
the model and the problem statement, as well as state of the art.

1.1 Background: Model, Problem Statement, and State of the Art
The Congested Clique Model. We work with the congested clique model of distributed
computing, which was introduced by Lotker et al. [18] and has received extensive attention
over the past seven years1. There are n processors in the system. We are also given an
n-node graph G = (V,E), which has one node corresponding to each processor. This graph

1 There are many paper, and it is well-beyond the scope of this paper to survey them all. As a prominent
example, see the beautiful line of developments for the minimum spanning tree problem [18, 12, 11, 14],
which also settled its complexity to be O(1) rounds [14].
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can abstract various things. For instance, it might be abstracting the dependencies in
a contention resolution setting, as follows: processors that are adjacent in the graph are
dependent and cannot perform their tasks simultaneously, e.g., they should not transmit their
wireless messages simultaneously or they should not read/write to the same memory location
simultaneously, or many other similar settings of accessing shared resources. We assume
that the graph G is known to the processors in a distributed fashion: each processor/node
knows its own neighboring processors/nodes in G. In the congested clique model, we assume
that processors can communicate in synchronous rounds, in an all-to-all fashion. Per round,
each processor can send one O(logn)-bit message to each other processor. At the end, each
processor should know its own part of the output, e.g., the color of its own node.

A discussion about the model, in contrast with other distributed models. Two other
well-studied, and in fact more classic, models of distributed computing are CONGEST and
LOCAL [23]. In these models, the communication network among the processors is the same
as the graph G for which they want to solve the graph problem. In the CONGEST model, per
round, each node can send one O(logn) bit message to each of its neighbors (in the graph,
which abstract both the problem and the communication network). The LOCAL model is
the variant where there is no upper bound on the message sizes.

These models CONGEST and LOCAL are perfectly suitable for settings such as computer
networks, where we want to solve a graph problem about the communication network. This
was in fact the original motive of these models. Moreover, there has been a host of beautiful
and powerful algorithmic and impossibility results developed in the context of these two
models. For some other applications, these models may be less suitable. In particular, when
the graph problem is a logical one – as in the abstraction used in the above above example
to capture contentions among processor – such a coincidence of communication graph and
problem graph may look strange. This is perhaps a partial explanation for the surge of
recent interest in distributed algorithms in the congested clique model. Some other reasons
are more theoretical and have to do with setting the limitation of locality aside, see the
introduction of [11] for a more extensive discussion of this aspect.

The congested clique model is more permissive than CONGEST and we can easily simulate
CONGEST-model algorithms in congested clique. But that would not be enough for us, as
there is no constant-algorithm for our problem in CONGEST. In fact, in the CONGEST and
LOCAL models, the problem has an Ω(logn) lower bound [17]. We build on the techniques
developed in the CONGEST and LOCAL model, but we also present and use several other
algorithmic ideas which allow us to go much further and solve the problem in constant time.

Problem Statement – Arboricity-Dependent Graph Coloring. The graph coloring problem
is a well-studied problem with a wide range of applications. It asks for coloring the vertices
with few colors in a way that no two adjacent nodes have the same color. For instance, in
the context of the contention resolution example mentioned above, this would allow the
processors to perform their tasks in a few time slots, without any two dependent processors
working concurrently.

Our objective is to compute a coloring whose number of colors is O(α), where α denotes
the arboricity of the graph. We recall that arboricity is a measure of sparsity of the graph.
For a graph G = (V,E), its arboricity is defined as the maximum edge-density d E(V ′)

|V ′|−1e
among all induced subgraphs on vertices V ′ ⊆ V with |V ′| > 1. Alternatively, by a beautiful
result of Nash-Williams[19], an equivalent formulation can be given as the minimum number
of edge-disjoint forests into which we can decompose the edges of G. We assume that α is
given as an input parameter and the input graph has arboricity at most α.
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Any graph with arboricity α admits a coloring with 2α colors and this bound is sharp.
For the former, note that we can arrange vertices as a1 to an such that each vi has at most
2α− 1 neighbors vj with a higher index j > i. For the latter, a graph consisting of disjoint
cliques, each having 2α vertices, gives the sharpness example.

Following [3, 5], we set out target to be obtaining a coloring close to this existentially
optimal bound; ideally we would want a coloring with (2 + ε)α colors for a small constant
ε > 0, but we relax it further to O(α) colors, for this paper. Note that α ≤ ∆, where ∆
denotes the maximum degree of the graph. Hence, coloring with O(α) colors also directly
gives a coloring with O(∆) colors. However, α can be much smaller than ∆; take for instance
a star graph where ∆ = n− 1 and α = 1. For many graph problems in practice, α is indeed
much smaller than ∆: even though they might have a few nodes of high degree, typically
they do not contain very dense subgraph, at least not as dense as average degree of ∆.

State-of-the-Art – LOCAL and CONGEST. As it will become clear soon, there is a large
body of work on distributed algorithms for graph coloring, and other related problems, and
it is well beyond the scope of this paper to review them all. For a survey of the results
prior to 2013 on algorithms in the LOCAL and CONGEST models, we refer the reader to the
Distributed Graph Coloring book by Barenboim and Elkin [3]. We will just mention the best
known result in randomized and deterministic settings:

In the LOCAL model, the best known randomized upper bound for (∆ + 1)-coloring
problem is 2O(

√
log logn) [7] and the best known deterministic upper bound for (∆ + 1)-

coloring is 2O(
√

logn)[20]. Only if we relax the number of colors to ∆1+ε for some constant
ε > 0, a polylogarithmic-time – and particularly O(log ∆ logn)-round – algorithm is known,
thanks a breakthrough of Barenboim and Elkin [2]. For the CONGEST model, the best
known randomized algorithm for (∆ + 1)-coloring runs in O(log ∆) + 2O(

√
log logn) rounds [9].

If we parameterize the algorithm’s complexity by ∆, the best known algorithm runs in
Õ(
√

∆) +O(log∗ n) rounds [4].
Regarding coloring dependent on α, Linial [17] showed that any coloring with O(α)

colors, or even poly(α) colors, needs at least Ω(logn) rounds, even in the LOCAL model.
Barenboim and Elkin[1] gave a deterministic algorithm that gives a Θ(α2) coloring in O(logn)
rounds, and an O(α1+ε) coloring in O(logα logn) rounds. Ghaffari and Lymouri [10] gave a
randomized algorithm that computes a (2 + ε)α colors, for constant ε > 0, if α = Ω̃(logn),
an O(α logα)-coloring in O(logn) rounds, and an O(α)-coloring running in Õ(logn) rounds.

State-of-the-Art – CONGESTED-CLIQUE. There has been a sequence of improvements,
for coloring with a number of colors dependent on the maximum degree ∆, as we overview
next: Hegeman and Pemmaraju [12] gave algorithms for O(∆)-coloring in the CONGESTED-
CLIQUE model, which run in O(1) rounds if ∆ ≥ Θ(log4 n) and in O(log logn) rounds
otherwise. For (∆+1) coloring problem, recently Parter [21] designed the first sublogarithmic-
time (∆ + 1) coloring algorithm for CONGESTED-CLIQUE, which runs in O(log log ∆ log∗∆)
rounds. Parter and Su [22] improved the bound to O(log∗∆) round. Finally, the round
complexity of (∆ + 1)-coloring was settled very recently O(1), by a recent work of Chang,
Fischer, Ghaffari, Uitto, and Zheng [6].

For coloring with the number of colors dependent on the arboricity α, we are aware
only one prior work in the CONGESTED-CLIQUE: Barenboim and Khazanov[5] gave a
deterministic O(α)-coloring which runs in αε rounds, for a constant ε > 0, and an O(α2+ε)-
coloring, which runs in O(log∗ n) rounds. For randomized algorithms, we are not aware of
any faster algorithm than these deterministic ones, or the randomized algorithms of the
CONGEST model (which need at least Ω(logn) rounds).

ICALP 2019
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1.2 Our Results
Coloring. We settle the randomized complexity of O(α)-coloring in the congested clique
model, by showing that constant rounds suffice.

I Theorem 1. There is a randomized distributed algorithm that computes an O(α)-coloring
in constant rounds of the congested clique model, with high probability.

Forest Decomposition. Our techniques also allow us to compute a decomposition of the
graph into O(α) edge-disjoint forests in constant time, so long as α ≤ n1−o(1). The best
known previous algorithm for this problem was by Barenboim and Khazanov [5] and it uses
O(logα) rounds. The statement of our result appears in the following theorem.

I Theorem 2. There is a randomized distributed algorithm that computes a decomposition
of the graph into O(α) edge-disjoint forests in constant rounds of the congested clique model,
whenever α ≤ n

1−O( 1√
logn

)
, with high probability.

1.3 Technical Overview
On a high-level, our result makes use of a number of technical ingredients, and puts them
together – along with several smaller ideas – in a way that results in the claimed constant-
round algorithm for O(α) coloring. We start with a brief list of these technical ingredients:
1. The iterative peeling algorithm of Barenboim and Elkin [1], which partitions vertices into

successive layers, along with an orientation from lower layers to higher layers, such that
each node has out-degree at most (2 + ε)α.

2. A topology-gathering procedure which allows us to exponentially speed up some LOCAL
model algorithms, on sparse graphs and up to a small locality bound [16, 8].

3. An opportunistic topology-gathering idea which allows us to speed up some LOCAL model
algorithms to just O(1) rounds of the CONGESTED-CLIQUE model. Variants of this idea
have been used by [14, 6].

4. Some ad-hoc but simple random sampling ideas which allow us to use a much sparser
subgraph to perform an approximate peeling about the original graph.

5. A simple random partition idea which allows us to break the case of graphs with large
arboricity to several graphs with smaller arboricity, or sometimes graphs that are almost
small aboricity, in the sense that they have some number of extra edges.

6. A simple randomized coloring algorithm where per round each node chooses a random
color from its palette and keeps it, if none of the neighbors (or sometimes neighbors in
certain subsets) chose that color. Variants of this simple idea are standard in distributed
coloring algorithms, perhaps the first appearance was in the work of [13].

7. A routing method of Lenzen [15], which by now has become a staple in CONGESTED-
CLIQUE algorithms. It is worth noting that the topology gathering ingredients mentioned
in items 2 and 3 above also make use of this routing method.

From a bird’s eye viewpoint, our algorithm works as follows: we use the random par-
titioning of item (5) to break the graph into several graphs of much lower arboricity, plus
some additional edges. We use the oppurtunistic topology-gathering of item (3) to learn
some sufficent local topology in each of these subgraphs, so that we can locally simulate a
non-constant number of iterations of the peeling algorithm of item (1) and then apply a
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suitable variant of the randomized coloring algorithm of item (6). This will be only a partial
coloring, but the number of nodes that remain uncolored will be considerably smaller. Then,
we can apply the sampling idea of item (5) and gather the sampled sparse graph, using the
routing method of (7), so that we can solve the problem in a centralized fashion, and make
even more progress in reducing the number of nodes that remain uncolored. This number at
the end will be so small that we can gather all the induced edges by the remaining nodes,
using the routing of item (7), and solve the problem in a centralized way. There are several
subtleties in this rough outline; we leave the details to the technical sections.

Roadmap. We start with a warm up in Section 2 where we present an O(log log logn)
round algorithm for forest-decomposition. Of course, that O(log log logn) complexity is much
higher than our claimed bound of O(1) round complexity, but we can introduce a number of
the key algorithmic ideas that we use in the context of this simpler but slower algorithm.
Then, in Section 3, we present our O(1)-round algorithm for O(α)-coloring.

2 Warm up: Forest Decomposition in O(log log logn) rounds

In this section, as a warm up, we describe an algorithm for (2 +O(ε))α forest decomposition
for graphs with α ≤ n1−O( (log logn)2

logn ), in O(log log logn) rounds of the congested clique model,
for any desirably small constant ε > 0. This allows us to introduce some of the basics of our
end-results, in a simpler setting.

Studying α = O(logn) Suffices. Before starting our forest-decomposition algorithm, we
comment that almost without loss of generality, we can assume that α = O(logn/ε2). The
reason is as follows: suppose that α = Ω(logn). Partition the edges into k = ε2α/(10 logn)
parts E1, . . . , Ek, randomly. Then, as we show in a simple lemma below, we can see that each
group is a subgraph with arboricity α′ = (1 + ε)α/k ≤ Θ(logn), with high probability. We
describe an algorithm below, which when applied to each of these subgraphs, it decomposes
each such subgraph into (2+ε)α′ edge-disjoint forests. Thus, overall, the graph is decomposed
into k · (2 + ε)α′ = (2 + ε)α forests. We will remark at the end of this section why we have
sufficient communication capacity to perform this algorithm on all the subgraphs in parallel.

I Lemma 3. If we randomly partition edges of a graph with arboricity α = Ω(logn/ε2) into
k = ε2α/(10 logn) parts E1, . . . , Ek, then each part is a subgraph with arboricity at most
α′ = (1 + ε)α/k, with high probability.

Proof. We focus on one part Ei. Consider an arbitrary subset of vertices V ′ ≤ V , where
|V ′| ≥ 2. The expected number of edges of V ′ that would be put in Ei at most E(V ′)/k ≤
(|V |′ − 1)α/k edges. By a basic Chernoff bound, the probability that there are more than
(|V |′ − 1)α/k(1 + ε) edges is at most 2exp(−(|V |′ − 1)α/(3k)) ≤ exp(−(|V ′| logn). Now, we
can use a union bound over all possible subset of size |V ′|, for which there are at most(
n
|V ′|

)
� 2|V ′| logn possibilities, and conclude that the edge density of each of them is at most

α′, with probability 1− exp(−Θ(|V ′| logn)) ≥ 1− 1/poly(n). Finally, a union bound over all
the n possibilities for the value |V ′| and at most α ≤ n possibilities for index i, in part Ei,
concludes the proof. J

We will next describe our forest decomposition algorithm for graphs with arboricity
α = O(logn). The algorithm we present in this section will provide a stronger structure,
called H-partition by Barenboim and Elkin [5], defined as follows: The set V of nodes will

ICALP 2019
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be partitioned into L = O(logn) disjoint sets V1, V2, . . . , VL, which we will call layers of
the H-partition, such that for each i ∈ {1, 2, . . . , L}, each node v ∈ Vi has at most (2 + ε)α
neighbors in ∪Lj=iVj .

Given such an H-partition, one can easily obtain a forest-decomposition, i.e., decompose
the graph into edge-disjoint forests F1,. . .FK , where K = (2 + ε)α, as follows: (A) orient
each edge {v, u} between two disinct sets Vi and Vj where i 6= j from the lower index one to
the higher indexed one, i.e., from Vi to Vj iff i < j. (B) orient each edge {v, u} where both
endpoints are in the same layer Vi from the lower ID node to the higher ID node. Then,
clearly each node has out-degree at most K. Each node v puts each of its outgoing edges
in a distinct one of F1 to Fk. Hence, each Fi is a directed acyclic graph with out-degree at
most one. Thus, if we ignore the directions, Fi is a forest. See section 5.1 of the book by
Barenboim and Elkin[3], for an elaborate proof.

OurH-partition Algorithm. We build our O(log log logn)-roundH-partition (and therefore
forest decomposition) algorithm in two steps. First, in Section 2.1, we present a slower
algorithm that computes H-partition in O(log logn) rounds, with high probability. Then, in
Section 2.2, we explain a topology-gathering idea (stated in Lemma 9), which allows us to
improve this round complexity to O(log log logn), thus proving the following theorem.

I Theorem 4. There is a randomized distributed algorithm that for any n-node graph with
arboricity α = O(logn) computes H-partition with parameter (2 + ε)α in O(log log logn)
rounds with high probability.

2.1 H-partition in O(log logn)
We now present our slow O(log logn) round algorithm for H-partition. This algorithm relies
on two key ingredients: (I) an iterative peeling algorithm of Barenboim and Elkin [5], which
on its own would need R = Θ(logn) rounds to build the H-partition. (II) A random edge
sampling idea which will allow us to compress the last R−O(log logn) = O(logn) rounds of
the peeling algorithm into just O(1) rounds of the congested clique.

High-Level Outline. First by running O(log logn) iterations of the peeling algorithm of
Barenboim and Elkin [5], we reduce the number of nodes to O( n

log2 n
). Then, we use an

randomized edge sampling process which allows us to generate a graph with just O(n) edges,
using which we can perform the rest of the peeling rounds. Since this graph has just O(n)
edges, we can deliver it to a single node, using Lenzen’s routing method [15], and thus
perform all these remaining peeling rounds in a centralized fashion there, without having to
use more rounds of communication in the congested clique model.

Part 1 – Slow Iterative Peeling. First, we perform O(log logn/ε) iterations. In iteration i,
we remove all nodes whose degree in the remaining graph is at most (2 + ε)α and we put
them in layer i. Then, we proceed to the next iteration. A more formal description can be
found in Algorithm 1.

I Lemma 5. After 2 log logn · 2
ε iterations of peeling, at most n

log2 n
nodes remain.

Proof. After each iteration, the number of remaining nodes reduces by a factor of 2
2+ε . This

is because any remaining graph has arboricity at most α, which means it has average degree
at most 2α, and thus only 2

2+ε fraction of its nodes can have degree higher than (2 + ε)α and
remain for the next iteration. Hence, after 2 log logn · 2

ε iterations, the number of remaining
nodes is at most ( 2

2+ε )
d2 log logn· 2ε en ≤ n

log2 n
. J
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Algorithm 1 Computing a partial H-partition for a graph G with arboricity α.
1: procedure H-PARTITION((α, ε))
2: An algorithm for each vertex v of G:
3: i = 1
4: while i ≤

⌈ 4
ε log logn

⌉
do

5: if v is active and has at most (2 + ε)α active neighbors then
6: make v inactive
7: add v to Hi

8: send the message “inactive” and “v joined Hi” to all the neighbors
9: for each received “inactive” message do
10: mark the sender neighbor as inactive
11: i = i+ 1

Part 2 – Speeding up Peeling via Random Edge Sampling. Next we focus on the remaining
nodes and we find an H-partition of them in constant rounds of the congested clique. Let
N denote the number of remaining nodes, and notice that we know N ≤ n

log2 n
. Consider

O(logn) independent sampling process where in each, each edge of the graph induced by the
remaining nodes is sampled with probability p = min( 1000 logn

ε2a , 1). Let Gi be the graph with
sampled edges in ith process. We will show in Lemma 6 that the total number of sampled
edges is O(n), with high probability. Thus, using Lenzen’s routing method [15], we can
collect all sampled edges in one node in O(1) rounds. Then, we devise an iterative processing
algorithm to compute H-partition of the remaining nodes, by processing only these sampled
edges (instead of working on the base graph). We note that this iterative process will happen
in a centralized fashion in the node that holds all the sampled edges, and thus it needs no
communication. At the end, we can report to each node of the graph the peeling iteration
in which it was removed. The peeling algorithm based on the randomly sampled edges is
described in Algorithm 2. We note that for each iteration, this algorithm uses a different
randomly sampled subgraph Gi, and these samplings are performed independent of each
other. We will show that even though we are working on a randomly sampled subgraph,
our peeling process will still produce a correct H-partition, in the following senses: On one
hand, in Lemma 7, we show that in each iteration, all nodes of degree less than (2 + ε

2 )α in
the remaining graph will be removed, with high probability. Hence, we will be done after
O(logn) iterations of peeling. On the other hand, in Lemma 8, we show that any node that
gets removed in an iteration has degree at most (2 + 2ε)α, with high probability, among the
nodes that had remained for that iteration. Hence, each node has at most (2+2ε)α neighbors
in its own layer or the future layers. We next present these lemmas and their proofs.

We first show that the number of sampled edges is small enough to allow us to deliver
them to one node, via Lenzen’s routing.

I Lemma 6. The total number of sampled edges is at most O(n), with high probability.

Proof. The number of remaining nodes isN ≤ n
log2 n

. We haveO(logn) independent sampling
process, where in each process, each edge is sampled with probability p = min( 1000 logn

ε2a , 1).
Hence, the expected number of sampled edges is O(n). Moreover, since the samplings are
independent (across different edges and different runs of the process), we can apply the
Chernoff bound and conclude that with high probability, at most O(n) edges are sampled. J

Now, we argue that in each iteration of peeling on the sampled subgraph, we will remove
all nodes of relatively small degree in the base graph (among remaining nodes).

ICALP 2019
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Algorithm 2 Computing H-partition for the remaining nodes by processing the sampled
subgraphs Gi for i ∈ 1, . . . ,Θ(logn).
1: procedure Processing Sampled graphs(Gi)
2: i = 1
3: while i ≤ Θ(logn) do
4: for for each vertex v of Gi do
5: if v has at most (2 + ε)αp neighbors in Gi then
6: add v to Hi+T

. T=Θ(log logn) is the number of iterations in Algorithm 1
7: delete v from all Gk for k ∈ {i+ 1, ...,Θ(logn)}
8: i = i+ 1

I Lemma 7. In each iteration of working with the sampled subgraphs, all nodes of degree
less than (2 + ε

2 )α in the remaining base graph will be removed, with high probability.

Proof. Consider iteration i. Let G′ be the subgraph of the base graph induced by the
nodes that remain in iteration i. Consider a remaining node v and suppose that its degree
dG′(v) ≤ (2 + ε

2 )α. We argue that such a node will be remove in this iteration, with high
probability. Then, in the sample subgraph for process i , each of these edges is sampled with
probability p. Thus, the expected number of the sampled edges of v is (2 + ε

2 )αp. Since
the sampling for this process is independent of the randomness of the previous processes,
and since different edges are sampled independently, we can apply a Chernoff bound and
conclude that the number of sampled edges of v is at most (2 + ε)αp, with high probability.
Hence, node v gets removed in this iteration. J

As mentioned before, Lemma 7 allows us to argue that after each iteration the number of
nodes reduces by a factor of 2

2+ ε
2
with high probability. Thus, after O(logn) iterations, the

number of nodes that did not find their proper partition is below 1, i.e., no node remains.
We also need to ensure that the peeling performs the correct thing in that any node that
gets removed in some iteration has degree at most (2 + 2ε)α in the base graph, among the
remaining nodes.

I Lemma 8. In each iteration of working with the sampled subgraphs, any node that gets
removed has degree at most (2 + 2ε)α in the base graph among the nodes that remained for
that iteration, with high probability.

Proof. Consider iteration i. Let G′ be the subgraph of the base graph induced by the
nodes that remain in iteration i. Consider a remaining node v and suppose that its degree
dG′(v) ≥ (2 + 2ε)α. We argue that such a node will be not be removed in this iteration, with
high probability. In the sample subgraph for process i , each of these edges is sampled with
probability p. Thus, the expected number of the sampled edges of v is at least (2 + 2ε)αp.
Since the sampling for this process is independent of the randomness of the previous processes,
and since different edges are sampled independently, we can apply a Chernoff bound and
conclude that the number of sampled edges of v is strictly exceeds (2 + ε)αp, with high
probability. Hence, node v does not get removed in this iteration. J

To conclude, as argued above Lemma 7 implies that we are done in O(logn) iterations of
peeling, and Lemma 8 shows that each node that gets removed in each iteration of peeling
has degree at most (2 + 2ε)α among the nodes that had remained for that iteration. That is,
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the nodes peeled in different iterations gives a partitioning of the nodes so that each node in
a given layer has at most (2 + 2ε)α neighbors in that layer or the future ones. This gives us
an H-partition with out-degree (2 + 2ε)α.

2.2 H-partition in O(log log logn) rounds
In this section, we explain how to speed up the O(log logn)-round algorithm described in
the previous subsection to run in O(log log logn) rounds.

Recall that our previous algorithm had two main part, a slow O(log logn) round for
iterative peeling, and a fast O(1) round algorithm where all the other peelings happen in
constant rounds of the congested clique, by processing a sparse randomly sampled subgraph
of the remaining graph. Here, we focus on the first part and improve its complexity to
O(log log logn)-round, using a topology-gathering idea.

Notice that the first part of the algorithm did not need any all-to-all communication. It
was simply iterations of peeling in the graph. Hence, if a node v knew all of the topology
within its R hops, it could simulate this peeling process for R rounds. We can learn this
R-hop topology much faster than R rounds in the congested clique model, thanks to the
all-to-all communication, but subject to some constraint: it is only possible if the topology
to be learned is relatively small. In particular, we next discuss a special case of such a
topology learning on graphs where the maximum degree is small. Later, we will discuss how
to incorporate this maximum degree limitation into our peeling algorithm.

First, we start with a generic topology-gathering lemma, for small-degree graphs. Variants
of such a statement have been used in prior work, see [16, 8], for instance.

I Lemma 9. Suppose that F is graph with n nodes and maximum degree at most log100 n.
Then we can make each node v ∈ F learns its R-hop neighborhood in F for R = O(log logn),
in O(logR) = O(log log logn) rounds in congested clique.

Proof. We use an induction to prove that for any k ≤ O(log log logn), in O(k) rounds, we
can make the nodes learn the graph F ′ = F 2k , which is formed by connecting each two nodes
that are within distance 2k. After that, each node can directly receive all the edges of all of
its F ′ neighbors and thus know the whole topology within its 2k-hop neighborhood, using
Lenzen’s routing[15]. The base case of induction where k = 1 is trivial, as that is knowing the
graph F itself. Suppose that assume that O(k) rounds have passed and each node already
knows its neighbors in the graph F 2k . Now, the number of neighbors in this graph is at
most (log100 n)(2k) ≤ 2O((log logn)2) �

√
n. Make each node send the names of each of its

neighbors in F 2k to each of its neighbors in F 2k . That is at most n messages. Hence, this
information can be routing in O(1) round using Lenzen’s routing. Then, each node knows
its neighbors of neighbors in F 2k , which means it can know it knows all of its neighbors in
F 2·2k = F 2k+1

. J

Applying Topology-Gathering to Speed Up Peeling. If we could apply the above topology
gathering to our O(log logn) round peeling algorithm, we would compress it to O(log log logn)
rounds. However, this is not immediately possible. Our original graph may have nodes of very
large degree, much larger than poly(logn), despite its small arboricity α = O(logn). This
means we cannot directly apply the topology gathering idea of the above lemma. However,
fortunately, our graph cannot have too many nodes of large degree (exactly because of its
small arboricity). This allows us to freeze those few high degree nodes, and still use a peeling
process on the rest of the graph to reduce the number of remaining nodes (including the
frozen ones) to just O( n

log2 n
).
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In particular, freeze each node whose degree is greater than log100 n. Notice that since
the graph has arboricity α = O(logn), as we justified this assumption at the beginning of
this section and in Lemma 3, the number of frozen nodes is at most 2nα

log100(n) ≤
2n

log99 n
. Now,

we apply O(log logn) iterations of the peeling algorithm on the remaining nodes, but sped
up to O(log log logn) rounds of the congested clique model, using the topology-gathering
approach of Lemma 9. The number of nodes that remain from this peeling is O(n/ log2 n).
Hence, even including the at most 2n

log99 n
frozen nodes, the number of remaining nodes is

O(n/ log2 n). That means, we can now apply the algorithm of the second part, described in
the previous subsection, to finish all of the peeling of the H-partition in O(1) rounds of the
congested clique (via working on the sampled subgraphs).

Running the Algorithm in Different Parts with Arboricity O(logn)

At the beginning of the section, we explained that we partition graphs with arboricity higher
than Θ(logn) into many α/Θ(logn) subgraphs, each with arboricity Θ(logn), and we then
decompose each subgraph separately, using the procedure described above. It remains to
explain why we can run the algorithm on all these subgraphs simultaneously. Notice that the
local communications performed for peeling are in the edges of the subgraph, and therefore
those can be performed in parallel. When performing a local topology gathering, each node
needs to send or receive 2O((log logn)2) bits of information. Hence, even over all the α/Θ(logn)
subgraphs, the total information that each each node needs to send or receive is O(n), as we
have assumed α ≤ n1−O( (log logn)2

logn ). After that, for the final step of the algorithm, we just
need to bring a graph of size O(n) to some leaders node and solve the problem of remaining
nodes there, for each subgraph. It suffices to use different such leaders for different subgraphs.

3 Constant-Time Coloring

In this section, we provide our proof of Theorem 1, thus showing a randomized distributed
algorithm that colors any graph of arboricity at most α using O(α) colors, w.h.p.

Proof of Theorem 1. The proof has several steps. We start with a high-level outline: we
will first argue that it suffices to work with graphs of arboricity at most O(logn), because
higher-arboricity graphs can be broken to this case easily, via randomness. Second, we set
aside nodes of degree higher than α10, to color them only later using some other fresh O(α)
colors. Then, we explain how we partition any graph with arboricity α = O(logn) to β/α
subgraphs, each being a graph with arboricity almost β = poly(logα) plus a small number of
extra edges. Then, we explain how we color almost the entirety of each of these subgraphs,
using different colors for different subgraphs. For this partial coloring, we will first explain a
slow algorithm in the CONGEST model and then discuss how to simulate it in O(1) rounds
of the CONGESTED-CLIQUE model. The nodes that remain uncolored will be so few that
we can gather the topology induced by them and color them using some 2α extra colors. We
next explain these steps separated by paragraph titles, to reflect the above outline.

Studying α = O(logn) Suffices. We focus on the case where α = O(logn). Coloring of
graphs with α = Ω(logn) arboricity can be transformed easily to this O(logn)-arboricity case:
place each node in a randomly chosen one of k = α/Θ(logn) parts. Each part will induce
a subgraph with arboricity Θ(logn), with high probability. The reason is that the original
graph with arboricity α admits an orientation with out-degree 2α. Fix such an orientation.
We do not need to know this orientation but use it for our analysis, only. When we randomly
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partition nodes, we expect each node’s out-degree in its own part to be 2α/k = Θ(logn).
Hence, by applying a Chernoff bound, each node’s outdegree in this imagined orientation is
at most 3α/k. Thus, each of the subgraphs admits an orientation with out-degree at most
3α/k, which means it has arboricity at most 3α/k.

We color each of these parts using Θ(logn) separate colors, all in parallel. For each part,
we apply the algorithm for graphs with arboricity at most O(logn), which we describe next.

Setting aside nodes with degree Ω(α10). As a preparation step, we set aside all nodes
which have degree at least α10. We note that a graph of arboricity α can have at most 2n/α9

such nodes, simply because it has at most nα edges. This number of left-over nodes is small
enough that allows us to deal with coloring these nodes later, using some fresh colors.

Partitioning to lower-arboricity subgraphs, plus few extra edges. We now have a graph
G = (V,E) with at most n nodes, arboricity α = O(logn), and maximum degree at most
α10. We randomly partition V into k = α

log3 α
parts V1, V2, . . . , Vk, by placing each node

in a random part Vi. In Claim 10, we show that, with high probability, the subgraph
G[Vi] induced by the nodes in each part Vi is a graph with arboricity (2 + ε) log3 α, plus at
most n/(α)10 extra edges, for an arbitrarily small constant ε > 0. We partially color each
part G[Vi] separately, using O(log3 α) different colors. This partial coloring will leave some
O(n/α5) nodes uncolored per part. In fact, the partial coloring will be done in two steps,
one leaves at most O(n/ log3 α) uncolored nodes, and the second reduces the number of
uncolored nodes to O(n/α5). At the very end, we will then gather the subgraph induced by
all these remaining nodes over all parts – which has at most k ·O(n/α5) ·α = O(n) edges – in
one node and color them using 2α extra colors.

B Claim 10. The subgraph G[Vi] induced by each part Vi is a graph with arboricity
(2 + ε) log3 α, plus at most n/(α)10 extra edges, for an arbitrarily small constant ε > 0.

Proof of Claim 10. Consider a hypothetical orientation of the graph with out-degree 2α
and call a node v bad if in the subgraph G[Vi] to which v belongs, its outdegree exceeds
2α/k(1 + ε) = (2 + ε) log3 α. Notice that the probability of a node being bad is exponentially
small in its expected outdegree, i.e., it is at most exp(−Θ(α/k)) ≤ exp(− log2 α). Hence,
the expected number of nodes that are bad is at most nexp(− log2 α). We would like to
say that, with high probability, the number of bad nodes is at most n · exp(− log2 α). We
cannot directly apply the Chernoff bound, because the events of different nodes being bad
are not independent of each other. However, the events are independent for any two nodes
that do not share a common neighbor. Since we are now on a graph with maximum degree
at most α10, as we have set aside nodes of higher degree, we can infer that the even of
each node being bad depends on the events of at most d = α20 many other nodes – all
those within 2 hops. Hence, we can apply the extension of Chernoff to the setting with
a bounded degree of dependency[24]. In particular, we get that the probability that the
number of bad nodes exceeds µ = n · exp(− log2 α) by more than a constant factor is at most
Θ(d) · exp(−Θ(µ/d)) = Θ(α10) · exp(−Θ(n · exp(− log2 α)/α20))� 1/poly(n). Hence, with
high probability, the number of bad nodes is less than Θ(n · exp(− log2 α)). A node that is
bad introduced at most α5 bad edges, in G[Vi], because it is incident on at most α10 edges.
Thus, except for at most n · exp(− log2 α) · α10 � n/(α)10 edges incident to bad nodes, all
other edges can be oriented with out-degree (2 + ε) log3 α. Hence, the subgraph is graph
with arboricity β = (2 + ε) log3 α = O((log logn)3), plus at most n/(α)10 extra edges. C
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Outline for First Partial Coloring of Each Part. We now focus on one subgraph H = G[Vi]
which is a subgraph with arboricity β = (2 + ε) log3 α = O((log logn)3), plus at most n/(α)10

extra edges. We next describe an algorithm A that runs in O(log2 β) rounds of the CONGEST
model and colors all but O(n/β) many of the nodes of H, using O(β) colors. Then, we
explain how we simulate A in just O(1) rounds of the CONGEST-CLIQUE model.

A CONGEST Algorithm for Partial Coloring of One Part. We focus on one part H = G[Vi].
First, we put aside all nodes of degree greater than β2. The number of such nodes is O(n/β).
Then, we attempt to color most of the rest, in O(log2 β) rounds, as follows. First, for
` = 40 log β iterations, in each iteration j, we remove nodes of degree at most 2.1β and put
them in layer Lj . Since the graph has arboricity β, in each iteration at least a constant
fraction of nodes get removed. Thus, We can show that the number of remaining nodes
after 40 log β iterations is O(n/(β)5). Then, we attempt to color the nodes in layers L`,
L`−1,. . .L1 using 2.2β colors. We spend one phase to color each layer layer, as follows.

We now describe each phase, which is simply 10 log β repetitions of a simple randomized
coloring attempt. In each round of the jth phase, each node of layer Lj picks a color at
random from 2.2β colors and keeps it if it is different than the colors of its neighbors in layers
Lj′ for j′ ≥ j. A node that did not choose such a color remains uncolored in this round.
After 10 log β rounds, all nodes of Lj that remain uncolored are removed. Per round, each
node gets colored with at least 0.1β/2.2β = 0.02, regardless of the choices of its other up to
2.1β neighbors. Hence, the probability of a node remaining uncolored after 10 log β rounds
is at most β5. Moreover, the events of different nodes remaining uncolored is independent,
because in the above argument we only relied on the randomness in the color choices of the
node itself. We can conclude that, with high probability, the number of these nodes in Lj is
O(n/(β)2). We then proceed to the next phase. Over all the phases, the number of nodes in
Lj that remain uncolored is at most O(n log β/(β)2). Moreover, the number of nodes that
were not in any of the layers is at most O(n/(β)2). Hence, overall, this process leaves at
most O(n/β) nodes of H uncolored.

A small final note about algorithm A is that each node uses at most O(log2 β)� O(logn)
bits of randomness, O(log β) many bits in each round where it picks a random color from
{1, 2, . . . , 2.2β}. We will use this fact about the amount of randomness, later, when we speed
up the algorithm in the CONGESTED-CLIQUE model.

CONGESTED-CLIQUE Algorithm for Partial Coloring of One Part. We focus on one
part H = G[Vi] and show how we mimic the algorithm described above, in just O(1) rounds
of CONGESTED-CLIQUE. As before, we put aside all nodes of degree greater than β2. We
next try to simulate A, using a randomized information gathering approach.

We now use an opportunistic information gathering to compress the round complexity in
CONGESTED-CLIQUE to O(1). Concretely, we make each remaining node v send a message
to all other nodes, where the message contains the name of v, its degree, and the at most
O(logn)-bits of randomness that v uses in algorithm A. Besides the above, each v also sends
each of its edges to each other node, but only randomly: each edge is sent to each node with
probability 1/β2, all independent of each other. Notice that the total number of edges that
are to be sent to each node is at most O(n) · β2/β2 = O(n), with high probability.

We say a node u successfully received the relevant ball of node v – with respect to algorithm
A – if node u received all the edges incident on all nodes w within distance Θ(log2 β) of v.
The number of such edges is at most βΘ(log2 β) ≤ 2Θ(log3 β). The probability of each of them
being sent to u is 1/β2. Thus, the probability that they are all sent to u is (1/β2)2Θ(log3 β) ≥
2−2 log β·2Θ(log3 β) ≥ 2−2Θ(log3 β) � 2−

√
logn, given that log β = Θ(log log logn). Since each
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node u successfully receives the ball of v with probability at least 2−
√

logn, and as there
are n possibilities for u, with high probability, there is at least one node u that successfully
receives the ball of v. Notice that node u realizes this successful event as it knows the degree
of each node and it can distinguish whether it has received all of the edges or not. Once u
has received the relevant ball of node v, node u can simulate the CONGEST-model algorithm
A and inform node v about the status of node v at the end of A. This status is simply
whether v is colored or not, and if yes, with which color.

Notice the small subtlety that there might be many nodes like u that receive the ball.
However, since they all use the same randomness to simulate the behavior of each node in
this ball (the randomness received from that node), they all get the same output for v.

Second Step of Partial Coloring. Finally, we go back to those O(n/β) nodes that remain
uncolored and we color enough of them that the number of uncolored nodes reduces to
O(n/α5). Given that H is a graph with arboricity at most β plus some O(n/α10) edges, the
number of edges induced by the remaining O(n/β) nodes is at most O(n). That means we
can move all these edges to one node . Then, we run a process similar to algorithm A on
these remaining nodes, but in a centralized fashion. In particular, in O(logα) iterations, we
remove nodes of degree at most 2.1β. Then, we color these removed nodes greedily from the
last layer to the beginning, using 2.2β extra colors. The only nodes that are not colored are
those that are not in any of these O(logα) layers. Since each layer of peeling and coloring
removes at least a 0.1/2.2 fraction of nodes (similar to the previous arguments), after O(logα)
such iterations, the number of nodes that remain uncolored is at most O(n/α5) many.

Final Step, Coloring the Remaining Nodes. Finally, we handle these remaining nodes of
different parts. In each of the parts G[Vi], we have O(n/α5) remaining nodes. Moreover, we
had some O(n/α9) nodes that we set aside at the very beginning, because they had degree
greater than α10. We collect the subgraph induced by all remaining nodes into one node,
which has no more than O(n/α4) edges, and we color them using 2α new colors. J
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