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Abstract
We present two new results about exact learning by quantum computers. First, we show how to exactly
learn a k-Fourier-sparse n-bit Boolean function from O(k1.5(log k)2) uniform quantum examples
for that function. This improves over the bound of Θ̃(kn) uniformly random classical examples
(Haviv and Regev, CCC’15). Our main tool is an improvement of Chang’s lemma for sparse Boolean
functions. Second, we show that if a concept class C can be exactly learned using Q quantum
membership queries, then it can also be learned using O

(
Q2

log Q
log |C|

)
classical membership queries.

This improves the previous-best simulation result (Servedio-Gortler, SICOMP’04) by a logQ-factor.
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16:2 Two New Results About Quantum Exact Learning

1 Introduction

1.1 Quantum learning theory
Both quantum computing and machine learning are hot topics at the moment, and their
intersection has been receiving growing attention in recent years as well. On the one hand
there are particular approaches that use quantum algorithms like Grover search [18] and the
Harrow-Hassidim-Lloyd linear-systems solver [19] to speed up learning algorithms for specific
machine learning tasks (see [34, 29, 1, 9, 16] for recent surveys of this line of work). On
the other hand there have been a number of more general results about the sample and/or
time complexity of learning various concept classes using a quantum computer (see [4] for a
survey). This paper presents two new results in the latter line of work. In both cases the
goal is to exactly learn an unknown target function with high probability; for the first result
our access to the target function is through quantum examples for the function, and for the
second result our access is through membership queries to the function.

1.2 Exact learning of sparse functions from uniform quantum examples
Let us first explain the setting of distribution-dependent learning from examples. Let C be a
class of functions, a.k.a. concept class. For concreteness assume they are ±1-valued functions
on a domain of size N ; if N = 2n, then the domain may be identified with {0, 1}n. Suppose
c ∈ C is an unknown function (the target function or concept) that we want to learn. A
learning algorithm is given examples of the form (x, c(x)), where x is distributed according
to some probability distribution D on [N ]. An (ε, δ)-learner for C w.r.t. D is an algorithm
that, for every possible target concept c ∈ C, produces a hypothesis h : [N ]→ {−1, 1} such
that with probability at least 1− δ (over the randomness of the learner and the examples for
the target concept c), h’s generalization error is at most ε:

Pr
x∼D

[c(x) 6= h(x)] ≤ ε.

In other words, from D-distributed examples the learner has to construct a hypothesis that
mostly agrees with the target concept under the same D.

In the early days of quantum computing, Bshouty and Jackson [11] generalized this
learning setting by allowing coherent quantum examples. A quantum example for concept c
w.r.t. distribution D, is the following (dlogNe+ 1)-qubit state:∑

x∈[N ]

√
D(x)|x, c(x)〉.

Clearly such a quantum example is at least as useful as a classical example, because measuring
this state yields a pair (x, c(x)) where x ∼ D. Bshouty and Jackson gave examples of concept
classes that can be learned more efficiently from quantum examples than from classical
random examples under specific D. In particular, they showed that the concept class of
DNF-formulas can be learned in polynomial time from quantum examples under the uniform
distribution, something we do not know how to do classically (the best classical upper bound
is quasi-polynomial time [33]). The key to this improvement is the ability to obtain, from a
uniform quantum example, a sample S ∼ ĉ(S)2 distributed according to the squared Fourier
coefficients of c.1 This Fourier sampling, originally due to Bernstein and Vazirani [8], is very

1 Parseval’s identity implies
∑

S∈{0,1}n f̂(S)2 = 1, so this is indeed a probability distribution.
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powerful. For example, if C is the class of F2-linear functions on {0, 1}n, then the unknown
target concept c is a character function χS(x) = (−1)x·S ; its only non-zero Fourier coefficient
is ĉ(S) hence one Fourier sample gives us the unknown S with certainty. In contrast, learning
linear functions from classical uniform examples requires Θ(n) examples. Another example
where Fourier sampling is proven powerful is in learning the class of `-juntas on n bits.2
Atıcı and Servedio [6] showed that (logn)-juntas can be exactly learned under the uniform
distribution in time polynomial in n. Classically it is a long-standing open question if a
similar result holds when the learner is given uniform classical examples (the best known
algorithm runs in quasi-polynomial time [24]). These cases (and others surveyed in [4]) show
that uniform quantum examples (and in particular Fourier sampling) can be more useful
than classical examples.3

In this paper we consider the concept class of n-bit Boolean functions that are k-sparse
in the Fourier domain: ĉ(S) 6= 0 for at most k different S’s. This is a natural generalization
of the above-mentioned case of learning linear functions, which corresponds to k = 1. It also
generalizes the case of learning `-juntas on n bits, which are functions of sparsity k = 2`.
Variants of the class of k-Fourier-sparse functions have been well-studied in the area of sparse
recovery, where the goal is to recover a k-sparse vector x ∈ RN given a low-dimensional
linear sketch Ax for a so-called “measurement matrix” matrix A ∈ Rm×N . See [20, 23] for
some upper bounds on the size of the measurement matrix that suffice for sparse recovery.
Closer to the setting of this paper, there has also been extensive work on learning the concept
class of n-bit real-valued functions that are k-sparse in the Fourier domain. In this direction
Cheraghchi et al. [14] showed that O(nk(log k)3) uniform examples suffice to learn this
concept class, improving upon the works of Bourgain [10], Rudelson and Vershynin [27] and
Candés and Tao [12].

In this paper we focus on exactly learning the target concept from uniform examples,
with high success probability. So D(x) = 1/2n for all x, ε = 0, and δ = 1/3. Haviv and
Regev [21] showed that for classical learners O(nk log k) uniform examples suffice to learn
k-Fourier-sparse functions, and Ω(nk) uniform examples are necessary. In Section 3 we study
the number of uniform quantum examples needed to learn k-Fourier-sparse Boolean functions,
and show that it is upper bounded by O(k1.5(log k)2). For k � n2 this quantum bound is
much better than the number of uniform examples used in the classical case. Proving the
upper bound combines the fact that a uniform quantum example allows us to Fourier-sample
the target concept, with some Fourier analysis of k-Fourier-sparse functions. In particular,
we significantly strengthen “Chang’s lemma” for the special case of k-Fourier-sparse Boolean
functions. This lemma upper bounds the dimension of the span of the large-weight part of
the Fourier support of a Boolean function, and our Theorem 13 improves this bound almost
quadratically for the special case of k-Fourier-sparse functions. Our learner has two phases.
In the first phase, using Chang’s lemma, we show that the span of the Fourier support of
the target function can be learned from O(k(log k)2) Fourier samples. In the second phase,
we reduce the number of variables to the dimension r of the Fourier support, and then
invoke the classical learner of Haviv and Regev to learn the target function from O(rk log k)
classical examples. Since it is known that r = O(

√
k log k) [28], the two phases together

imply that O(k1.5(log k)2) uniform quantum examples suffice to exactly learn the target with
high probability.

2 We say f : {0, 1}n → {−1, 1} is an `-junta if there exists a set S ⊆ [n] of size |S| ≤ ` such that f
depends only on the variables whose indices are in S.

3 This is not the case in Valiant’s PAC-learning model [32] of distribution-independent learning. There
we require the same learner to be an (ε, δ)-learner for C w.r.t. every possible distribution D. One can
show in this model (and also in the broader model of agnostic learning) that the quantum and classical
sample complexities are equal up to a constant factor [5].

ICALP 2019
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Since r ≥ log k, the second phase of our learner is always at least as expensive as the
first phase. It might be possible to improve the upper bound to O(k · polylog(k)) quantum
examples, but that would require additional ideas to improve phase 2. We also prove a
(non-matching) lower bound of Ω(k log k) uniform quantum examples, using techniques from
quantum information theory. We omitted some proofs due to space limitations; these may
be found in [3].

1.3 Exact learning from quantum membership queries
Our second result is in a model of active learning. The learner still wants to exactly learn
an unknown target concept c : [N ]→ {−1, 1} from a known concept class C, but now the
learner can choose which points of the truth-table of the target it sees, rather than those
points being chosen randomly. More precisely, the learner can query c(x) for any x of its
choice. This is called a membership query.4 Quantum algorithms have the following query
operation available:

Oc : |x, b〉 7→ |x, b · c(x)〉,

where b ∈ {−1, 1}. For some concept classes, quantum membership queries can be much
more useful than classical. Consider again the class C of F2-linear functions on {0, 1}n.
Using one query to a uniform superposition over all x and doing a Hadamard transform, we
can Fourier-sample and hence learn the target concept exactly. In contrast, Θ(n) classical
membership queries are necessary and sufficient for classical learners. As another example,
consider the concept class C = {δi | i ∈ [N ]} of the N point functions, where δi(x) = 1 iff
i = x. Elements from this class can be learned using O(

√
N) quantum membership queries by

Grover’s algorithm, while every classical algorithm needs to make Ω(N) membership queries.
For a given concept class C of ±1-valued function on [N ], let D(C) denote the minimal

number of classical membership queries needed for learners that can exactly identify every
c ∈ C with success probability 1 (such learners are deterministic without loss of generality).
Let R(C) and Q(C) denote the minimal number of classical and quantum membership queries,
respectively, needed for learners that can exactly identify every c ∈ C with error probability
≤ 1/3.5 Servedio and Gortler [30] showed that these quantum and classical measures cannot
be too far apart. First, using an information-theoretic argument they showed

Q(C) ≥ Ω
(

log |C|
logN

)
.

Intuitively, this holds because a learner recovers roughly log |C| bits of information, while
every quantum membership query can give at most O(logN) bits of information. Note that
this is tight for the class of linear functions, where the left- and right-hand sides are both
constant. Second, using the so-called hybrid method they showed

Q(C) ≥ Ω(1/
√
γ(C)),

4 Think of the set {x | c(x) = 1} corresponding to the target concept: a membership query asks whether
x is a member of this set or not.

5 We can identify each concept with a string c ∈ {−1, 1}N , and hence C ⊆ {−1, 1}N . The goal is to learn
the unknown c ∈ C with high probability using few queries to the corresponding N -bit string. This
setting is also sometimes called “oracle identification” in the literature; see [4, Section 4.1] for more.
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for some combinatorial parameter γ(C) that we will not define here (but which is 1/N for
the class C of point functions, hence this inequality is tight for that C). They also noted the
following upper bound:

D(C) = O

(
log |C|
γ(C)

)
.

Combining these three inequalities yields the following relation between D(C) and Q(C)

D(C) ≤ O(Q(C)2 log |C|) ≤ O(Q(C)3 logN). (1)

This shows that, up to a logN -factor, quantum and classical membership query complexities
of exact learning are polynomially close. While each of the three inequalities that together
imply (1) can be individually tight (for different C), this does not imply (1) itself is tight.

Note that Eq. (1) upper bounds the membership query complexity of deterministic
classical learners. We are not aware of a stronger upper bound on bounded-error classical
learners. However, in Section 4 we tighten that bound further by a logQ(C)-factor:

R(C) ≤ O
(

Q(C)2

logQ(C) log |C|
)
≤ O

(
Q(C)3

logQ(C) logN
)
.

Note that this inequality is tight both for the class of linear functions and for the class of
point functions.

Our proof combines the quantum adversary method [2, 7, 31] with an entropic argument
to show that we can always find a query whose outcome (no matter whether it’s 0 or 1) will
shrink the concept class by a factor ≤ 1− log Q(C)

Q(C)2 . While our improvement over the earlier
bounds is not very large, we feel our usage of entropy to save a log-factor is new and may
have applications elsewhere.

2 Preliminaries

Notation. Let [n] = {1, . . . , n}. For an n-dimensional vector space, the standard basis
vectors are {ei ∈ {0, 1}n | i ∈ [n]}, where ei is the vector with a 1 in the ith coordinate and
0s elsewhere. For x ∈ {0, 1}n, i ∈ [n], let xi be the input obtained by flipping the ith bit
in x.

For f : {0, 1}n → {−1, 1} and B ∈ Fn×n
2 , define f ◦B : {0, 1}n → {−1, 1} as (f ◦B)(x) :=

f(Bx), where the matrix-vector product Bx is over F2. Throughout this paper, the rank of
a matrix B ∈ Fn×n

2 will be taken over F2. Let B1, . . . , Bn be the columns of B.

Fourier analysis on the Boolean cube. We introduce the basics of Fourier analysis here,
referring to [26, 35] for more. Define the inner product between functions f, g : {0, 1}n → R as

〈f, g〉 = Ex∈{0,1}n [f(x) · g(x)],

where the expectation is uniform over all x ∈ {0, 1}n. For S ∈ {0, 1}n, the character function
corresponding to S is given by χS(x) := (−1)S·x, where the dot product S · x is

∑n
i=1 Sixi.

Observe that the set of functions {χS}S∈{0,1}n forms an orthonormal basis for the space of
real-valued functions over the Boolean cube. Hence every f : {0, 1}n → R can be written
uniquely as

f(x) =
∑

S∈{0,1}n

f̂(S)(−1)S·x for all x ∈ {0, 1}n,

ICALP 2019



16:6 Two New Results About Quantum Exact Learning

where f̂(S) = 〈f, χS〉 = Ex[f(x)χS(x)] is called a Fourier coefficient of f . For i ∈ [n], we write
f̂(ei) as f̂(i) for notational convenience. Parseval’s identity states that

∑
S∈{0,1}n f̂(S)2 =

Ex[f(x)2]. If f has domain {−1, 1}, then Parseval gives
∑

S∈{0,1}n f̂(S)2 = 1, so
{f̂(S)2}S∈{0,1}n forms a probability distribution. The Fourier weight of function f on
S ⊆ {0, 1}n is defined as

∑
S∈S f̂(S)2.

For f : {0, 1}n → R, the Fourier support of f is supp(f̂) = {S : f̂(S) 6= 0}. The Fourier
sparsity of f is |supp(f̂)|. The Fourier span of f , denoted Fspan(f), is the span of supp(f̂).
The Fourier dimension of f , denoted Fdim(f), is the dimension of the Fourier span. We say
f is k-Fourier-sparse if |supp(f̂)| ≤ k.

We now state a few structural results about Fourier coefficients and dimension.

I Theorem 1 ([28]). The Fourier dimension of a k-Fourier-sparse f : {0, 1}n → {−1, 1} is
O(
√
k log k).

I Lemma 2 ([17, Theorem 12]). Let k ≥ 2. The Fourier coefficients of a k-Fourier-sparse
Boolean function f : {0, 1}n → {−1, 1} are integer multiples of 21−blog kc.

I Definition 3. Let f : {0, 1}n → {−1, 1} and suppose B ∈ Fn×n
2 is invertible. Define fB as

fB(x) = f((B−1)Tx).

I Lemma 4. Let f : {0, 1}n → R and suppose B ∈ Fn×n
2 is invertible. Then the Fourier

coefficients of fB are f̂B(Q) = f̂(BQ) for all Q ∈ {0, 1}n.

Proof. Write out the Fourier expansion of fB :

fB(x) = f((B−1)Tx) =
∑

S∈{0,1}n

f̂(S)(−1)S·((B−1)Tx)

=
∑

S∈{0,1}n

f̂(S)(−1)(B−1S)·x =
∑

Q∈{0,1}n

f̂(BQ)(−1)Q·x,

where the third equality used 〈S, (B−1)Tx〉 = 〈B−1S, x〉 and the last used the substitution
S = BQ. J

An easy consequence is the next lemma:

I Lemma 5. Let f : {0, 1}n → {−1, 1}, and B ∈ Fn×n
2 be an invertible matrix such that

the first r columns of B are a basis of Fspan(f), and f̂(B1), . . . , f̂(Br) are non-zero. Then
the Fourier span of fB is spanned by {e1, . . . , er}, i.e., fB has only r influential variables.
Additionally, for every i ∈ [r], f̂B(i) 6= 0.

Here is the well-known fact, already mentioned in the introduction, that one can Fourier-
sample from uniform quantum examples:

I Lemma 6. Let f : {0, 1}n → {−1, 1}. There exists a procedure that uses one uniform
quantum example and satisfies the following: with probability 1/2 it outputs an S drawn from
the distribution {f̂(S)2}S∈{0,1}n , otherwise it rejects.

Information theory. We refer to [15] for a comprehensive introduction to classical inform-
ation theory, and here just remind the reader of the basic definitions. A random variable
A with probabilities Pr[A = a] = pa has entropy H(A) := −

∑
a pa log(pa). For a pair

of (possibly correlated) random variables A,B, the conditional entropy of A given B, is
H(A | B) := H(A,B)−H(B). This equals Eb∼B[H(A | B = b)]. The mutual information
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between A and B is I(A : B) := H(A) +H(B)−H(A,B) = H(A)−H(A | B). The binary
entropy H(p) is the entropy of a bit with distribution (p, 1 − p). If ρ is a density matrix
(i.e., a trace-1 positive semi-definite matrix), then its singular values form a probability
distribution P , and the von Neumann entropy of ρ is S(ρ) := H(P ). We refer to [25, Part III]
for a more extensive introduction to quantum information theory.

3 Exact learning of k-Fourier-sparse functions

In this section we consider exactly learning the concept class C of k-Fourier-sparse Boolean
functions:

C = {f : {0, 1}n → {−1, 1} : |supp(f̂)| ≤ k}.

The goal is to exactly learn c ∈ C given uniform examples from c of the form (x, c(x)) where x
is drawn from the uniform distribution on {0, 1}n. Haviv and Regev [21] considered learning
this concept class and showed the following results.

I Theorem 7 (Corollary 3.6 of [21]). For every n > 0 and k ≤ 2n, the number of uniform
examples that suffice to learn C with probability 1− 2−Ω(n log k) is O(nk log k).

I Theorem 8 (Theorem 3.7 of [21]). For every n > 0 and k ≤ 2n, the number of uniform
examples necessary to learn C with constant success probability is Ω(k(n− log k)).

Our main results in this section are about the number of uniform quantum examples
that are necessary and sufficient to exactly learn the class C of k-Fourier-sparse functions. A
uniform quantum example for a concept c ∈ C is the quantum state

1√
2n

∑
x∈{0,1}n

|x, c(x)〉.

We prove the following two theorems here.

I Theorem 9. For every n > 0 and k ≤ 2n, the number of uniform quantum examples that
suffice to learn C with probability ≥ 2/3 is O(k1.5(log k)2).

In the theorem below we prove the following (non-matching) lower bound on the number
of uniform quantum examples necessary to learn C.

I Theorem 10. For every n > 0, constant c ∈ (0, 1) and k ≤ 2cn, the number of uniform
quantum examples necessary to learn C with constant success probability is Ω(k log k).

3.1 Upper bound on learning k-Fourier-sparse Boolean functions
We split our quantum learning algorithm into two phases. Suppose c ∈ C is the unknown
concept, with Fourier dimension r. In the first phase the learner uses samples from the
distribution {ĉ(S)2}S∈{0,1}n to learn the Fourier span of c. In the second phase the learner
uses uniform classical examples to learn c exactly, knowing its Fourier span. Phase 1 uses
O(k(log k)2) uniform quantum examples (for Fourier-sampling) and phase 2 uses O(rk log k)
uniform classical examples. Note that since r ≥ log k, phase 2 of our learner is always at
least as expensive as phase 1.

I Theorem 11. Let k, r > 0. There exists a quantum learner that exactly learns (with high
probability) an unknown k-Fourier-sparse c : {0, 1}n → {−1, 1} with Fourier dimension upper
bounded by some known r, from O(rk log k) uniform quantum examples.

The learner may not know the exact Fourier dimension r in advance, but Theorem 1 gives
an upper bound r = O(

√
k log k), so our Theorem 9 follows immediately from Theorem 11.

ICALP 2019



16:8 Two New Results About Quantum Exact Learning

3.1.1 Phase 1: Learning the Fourier span
A crucial ingredient that we use in phase 1 of our quantum learning algorithm is an
improvement of Chang’s lemma [13, 22] for k-Fourier-sparse Boolean functions. The original
lemma upper bounds the dimension of the span of the “large” Fourier coefficients as follows.

I Lemma 12 (Chang’s lemma). Let α ∈ (0, 1) and ρ > 0. For every f : {0, 1}n → {−1, 1}
that satisfies f̂(0n) = 1− 2α, we have

dim(span{S : |f̂(S)| ≥ ρα}) ≤ 2 log(1/α)
ρ2 . (2)

Let us consider Chang’s lemma for k-Fourier-sparse Boolean functions. In particular,
consider the case ρα = 1/k. In that case, since all elements of the Fourier support satisfy
|f̂(S)| ≥ 1/k by Lemma 2, the left-hand side of Eq. (2) equals the Fourier dimension r of f .
Chang’s lemma gives

r ≤ 2α2k2 log k.

We now improve this upper bound on r nearly quadratically:

I Theorem 13. Let α ∈ (0, 1) and k ≥ 2. For every k-Fourier-sparse f : {0, 1}n → {−1, 1}
that satisfies f̂(0n) = 1− 2α and Fdim(f) = r, we have

r ≤ 2αk log k.

For a proof of this theorem, see the full version of the paper. We now illustrate how
this theorem improves over Lemma 12. First, observe that α ≥ 1/k (by Lemma 2), so
αk ≤ α2k2. Second, consider a Boolean function f which satisfies α = 1/k3/4. Then, Chang’s
lemma (with ρ = 1/k1/4) upper bounds the Fourier dimension of f as r ≤ O(

√
k log k),

which already follows from Theorem 1. Our Theorem 13 gives the much better upper bound
r ≤ O(k1/4 log k) in this case.

Now that we have a better understanding of the Fourier dimension of k-Fourier-sparse
Boolean functions, we would like to understand how many Fourier samples suffice to obtain
the Fourier span of f (in fact this will be our quantum learning algorithm for phase 1). Since
the ≤ k squared non-zero Fourier coefficients of a k-Fourier-sparse function are each at least
1/k2, it is easy to see that after O(k2 log k) Fourier samples we are likely to have seen every
element in the Fourier support, and hence know the full Fourier support as well. We will
improve on this easy bound below. The main idea is to show that if the span of the Fourier
samples seen at a certain point has some dimension r′ < r, then there is significant Fourier
weight on elements outside of this span, so after a few more Fourier samples we will have
grown the span. We now state this formally and prove the lemma.

I Lemma 14. Let n > 0 and 1 ≤ k ≤ 2n. For every k-Fourier-sparse f : {0, 1}n → {−1, 1}
with Fourier span V and Fourier dimension r, the following holds: for every r′ > 0 and
S ⊂ V satisfying dim(span(S)) = r′, we have∑

S∈span(S)

f̂(S)2 ≤ 1− r − r′

k log k .

Proof. Let B ∈ Fr×r
2 be an invertible matrix such that the first r′ < r columns of B form a

basis for span(S). By Lemma 5, fB depends only on r bits, so we write fB : {0, 1}r → {−1, 1}.
Let W = span{e1, . . . , er′} ⊆ {0, 1}r. Then∑

S∈span(S)

f̂(S)2 =
∑

S∈W
f̂B(S)2. (3)
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Let us decompose fB as follows: fB(x1, . . . , xr) = g(x1, . . . , xr′) + g′(x1, . . . , xr), where

g(y) =
∑

T∈{0,1}r′

f̂B(T, 0r−r′)χT (y, 0r−r′) for every y ∈ {0, 1}r′ , (4)

and

g′(x) =
∑

S /∈W

f̂B(S)χS(x) for every x ∈ {0, 1}r.

Now by Parseval’s identity we have

Ey∈{0,1}r′ [g(y)2] =
∑

T∈{0,1}r′

ĝ(T )2 =
∑

S∈W
f̂B(S)2, (5)

where the second equality used Eq. (4). Combining Eq. (5) with an averaging argument,
there exists an assignment of a = (a1, . . . , ar′) ∈ {0, 1}r′ to (y1, . . . , yr′) such that

g(a1, . . . , ar′)2 ≥
∑

S∈W
f̂B(S)2, (6)

Consider the function h defined as

h(z1, . . . , zr−r′) = fB(a1, . . . , ar′ , z1, . . . , zr−r′) for every z1, . . . , zr−r′ ∈ {0, 1}. (7)

Note that h has Fourier sparsity at most the Fourier sparsity of fB , hence at most k. Also,
the Fourier dimension of h is at most r − r′. Finally note that

ĥ(0r−r′) = Ez∈{0,1}r−r′ [h(z)]

= Ez∈{0,1}r−r′ [fB(a, z)] (by Eq. (7))

= Ez∈{0,1}r−r′

[ ∑
S1∈{0,1}r′

∑
S2∈{0,1}r−r′

f̂B(S1, S2)χS1(a)χS2(z)
]

(Fourier expansion of fB)

=
∑

S1∈{0,1}r′

f̂B(S1, 0r−r′)χS1(a, 0r−r′) (using Ez∈{0,1}r−r′χS(z) = δS,0r−r′ )

= g(a1, . . . , ar′) (by definition of g in Eq. (4))

≥
( ∑

S∈W
f̂B(S)2

)1/2
. (by Eq. (6))

Using Theorem 13 for the function h, it follows that ĥ(0r−r′) ≤ 1 − (r − r′)/(k log k),
which in particular implies∑

S∈span(S)

f̂(S)2 =
∑

S∈W
f̂B(S)2 ≤ ĥ(0r−r′)2 ≤ 1− r − r′

k log k ,

where the first equality used Eq. (3). J

I Theorem 15. For every k-Fourier-sparse Boolean function f : {−1, 1}n → {−1, 1}
with Fourier dimension r, its Fourier span can be learned using an expected number of
O(k log k log r) quantum examples.
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Proof. We only use the quantum examples for Fourier sampling; an expected number of two
quantum examples suffices to get one Fourier sample. At any point of time let S be the set
of samples we have received. Let the dimension of the span of S be r′. Now if we receive
a new sample S such that S 6∈ span(S), then the dimension of the samples we have seen
increases by 1. By Lemma 14∑

S 6∈span(S)

f̂(S)2 ≥ r − r′

k log k .

So the expected number of samples to increase the dimension by 1 is ≤ k log k
r−r′ . Hence, the

expected number of Fourier samples needed to learn the whole Fourier span of f is at most
r∑

i=1

k log k
i
≤ O(k log k log r),

where the final inequality used
∑r

i=1
1
i = O(log r). J

3.1.2 Phase 2: Learning the function completely
In the above phase 1, the quantum learner obtains the Fourier span of c, which we will
denote by T . Using this, the learner can restrict to the following concept class

C′ = {c : {0, 1}n → {−1, 1} | c is k-Fourier-sparse with Fourier span T }

Let dim(T ) = r. Let B ∈ Fn×n
2 be an invertible matrix whose first r columns of B form a

basis for T . Consider cB = c ◦ (B−1)T for c ∈ C′. By Lemma 5 it follows that cB depends on
only its first r bits, and we can write cB : {0, 1}r → {−1, 1}. Hence the learner can apply
the transformation c 7→ c ◦ (B−1)T for every c ∈ C′ and restrict to the concept class

C′r = {c′ : {0, 1}r → {−1, 1} | c′ = c ◦ (B−1)T for some c ∈ C′ and invertible B}.

We now conclude phase 2 of the algorithm by invoking the classical upper bound of Haviv-
Regev (Theorem 7) which says that O(rk log k) uniform classical examples of the form
(z, c′(z)) ∈ {0, 1}r+1 suffice to learn C′r. Although we assume our learning algorithm has
access to uniform examples of the form (x, c(x)) for x ∈ {0, 1}n, the quantum learner knows
B and hence can obtain a uniform example (z, c′(z)) for c′ by letting z be the first r bits of
BTx and c′(z) = c(x).

3.2 Lower bound on learning k-Fourier-sparse Boolean functions
We show that Ω(k log k) uniform quantum examples are necessary to learn the concept class
of k-Fourier-sparse Boolean functions. See the full version of the paper for the proof.

I Theorem 16. For every n, constant c ∈ (0, 1) and k ≤ 2cn, the number of uniform
quantum examples necessary to learn the class of k-Fourier-sparse Boolean functions, with
success probability ≥ 2/3, is Ω(k log k).

4 Quantum vs classical membership queries

In this section we assume we can access the target function using membership queries rather
than examples. Our goal is to simulate quantum exact learners for a concept class C by
classical exact learners, without using many more membership queries. A key tool here
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will be the (“nonnegative” or “positive-weights”) adversary method. This was introduced
by Ambainis [2]; here we will use the formulation of Barnum et al. [7], which is called the
“spectral adversary” in the survey [31].

Let C ⊆ {0, 1}N be a set of strings. If N = 2n then we may view such a string c ∈ C as (the
truth-table of) an n-bit Boolean function, but in this section we do not need the additional
structure of functions on the Boolean cube and may consider any positive integer N . Suppose
we want to identify an unknown c ∈ C with success probability at least 2/3 (i.e., we want
to compute the identity function on C). The required number of quantum queries to c can
be lower bounded as follows. Let Γ be a |C| × |C| matrix with real, nonnegative entries and
0s on the diagonal (called an “adversary matrix”). Let Di denote the |C| × |C| 0/1-matrix
whose (c, c′)-entry is [ci 6= c′i].6 Then it is known that at least (a constant factor times)
‖ Γ ‖/maxi∈[N ] ‖ Γ ◦Di ‖ quantum queries are needed, where ‖ · ‖ denotes operator norm
(largest singular value) and ‘◦’ denotes entrywise product of matrices. Let

ADV(C) = max
Γ≥0

‖ Γ ‖
maxi∈[N ] ‖ Γ ◦Di ‖

denote the best-possible lower bound on Q(C) that can be achieved this way.
The key to our classical simulation is the next lemma. It shows that if Q(C) (and

hence ADV(C)) is small, then there is a query that splits the concept class in a “mildly
balanced” way.

I Lemma 17. For N ≥ 1, let C ⊆ {0, 1}N be a concept class and suppose ADV(C) =
maxΓ≥0 ‖ Γ ‖/maxi∈[N ] ‖ Γ ◦Di ‖ is the nonnegative adversary bound for the exact learning
problem corresponding to C. Let µ be a distribution on C such that maxc∈C µ(c) ≤ 5/6, and
let C be a random variable distributed according to µ. Then there exists an i ∈ [N ] such that

min(µ(Ci = 0), µ(Ci = 1)) ≥ 1
36ADV(C)2 .

Proof. Define unit vector v ∈ R|C|+ by vc =
√
µ(c), and adversary matrix

Γ = vv∗ − diag(µ),

where diag(µ) is the diagonal matrix that has the entries of µ on its diagonal. This Γ is a
nonnegative matrix with 0 diagonal (and hence a valid adversary matrix for the exact learning
problem), and ‖ Γ ‖ ≥ ‖ vv∗ ‖ − ‖ diag(µ) ‖ ≥ 1− 5/6 = 1/6. Abbreviate A = ADV(C). By
definition of A, we have for this particular Γ

A ≥ ‖ Γ ‖
maxi ‖ Γ ◦Di ‖

≥ 1
6 maxi ‖ Γ ◦Di ‖

,

hence there exists an i ∈ [N ] such that ‖ Γ ◦Di ‖ ≥ 1
6A . We can write v =

(
v0
v1

)
where

the entries of v0 are the ones corresponding to cs where ci = 0, and the entries of v1 are the
ones where ci = 1. Then

Γ =
(
v0v
∗
0 v0v

∗
1

v1v
∗
0 v1v

∗
1

)
− diag(µ) and Γ ◦Di =

(
0 v0v

∗
1

v1v
∗
0 0

)
.

6 The bracket-notation [P ] denotes the truth-value of proposition P .
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It is easy to see that ‖ Γ ◦Di ‖ = ‖ v0 ‖ · ‖ v1 ‖. Hence

1
36A2 ≤ ‖ Γ ◦Di ‖2 = ‖ v0 ‖2‖ v1 ‖2 = µ(Ci = 0)µ(Ci = 1) ≤ min(µ(Ci = 0), µ(Ci = 1)),

where the last inequality used max(µ(Ci = 0), µ(Ci = 1)) ≤ 1. J

Note that if we query the index i given by this lemma and remove from C the strings
that are inconsistent with the query outcome, then we reduce the size of C by a factor
≤ 1− Ω(1/ADV(C)2). Repeating this O(ADV(C)2 log |C|) times would reduce the size of C
to 1, completing the learning task. However, we will see below that analyzing the same
approach in terms of entropy gives a somewhat better upper bound on the number of queries.

I Theorem 18. For N ≥ 1, let C ⊆ {0, 1}N be a concept class and suppose ADV(C) =
maxΓ≥0 ‖ Γ ‖/maxi∈[N ] ‖ Γ ◦Di ‖ is the nonnegative adversary bound for the exact learning
problem corresponding to C. Then there exists a classical learner for the concept class C

using O
(

ADV(C)2

logADV(C) log |C|
)

membership queries that identifies the target concept with

probability ≥ 2/3.

Proof. Fix an arbitrary distribution µ on C. We will construct a deterministic classical
learner for C with success probability ≥ 2/3 under µ. Since we can do this for every µ,
the “Yao principle” [36] then implies the existence of a randomized learner that has success
probability ≥ 2/3 for every c ∈ C.

Consider the following algorithm, whose input is an N -bit random variable C ∼ µ:
1. Choose an i that maximizes H(Ci) and query that i.7

2. Update C and µ by restricting to the concepts that are consistent with the query outcome.
3. Goto 1.
The queried indices are themselves random variables, and we denote them by I1, I2, . . .. We
can think of t steps of this algorithm as generating a binary tree of depth t, where the different
paths correspond to the different queries made by the algorithm and their binary outcomes.

Let Pt be the probability that, after t queries, our algorithm has reduced µ to a distribution
that has weight ≥ 5/6 on one particular c:

Pt =
∑

i1,...,it∈[N ], b∈{0,1}t

Pr[I1 = i1, . . . , It = it,Ci1 . . .Cit = b]

· [∃c ∈ C s.t. µ(c | Ci1 . . .Cit = b) ≥ 5/6].

Because restricting µ to a subset C′ ⊆ C cannot decrease probabilities of individual c ∈ C′, this
probability Pt is non-decreasing in t. Because N queries give us the target concept completely,
we have PN = 1. Let T be the smallest integer t for which Pt ≥ 5/6. We will run our
algorithm for T queries, and then output the c with highest probability under the restricted
version of µ we now have. With µ-probability at least 5/6, that c will have probability at
least 5/6 (under µ conditioned on the query-results). The overall error probability under µ
is therefore ≤ 1/6 + 1/6 = 1/3.

7 Querying this i will give a fairly “balanced” reduction of the size of C irrespective of the outcome of the
query. If there are several maximizing is, then choose the smallest i to make the algorithm deterministic.
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It remains to upper bound T . To this end, define the following “energy function” in terms
of conditional entropy:

Et = H(C | CI1 , . . . ,CIt
)

=
∑

i1,...,it∈[N ], b∈{0,1}t

Pr[I1 = i1, . . . , It = it,Ci1 . . .Cit = b] ·H(C | Ci1 . . .Cit = b).

Because conditioning on a random variable cannot increase entropy, Et is non-increasing in t.
We now show that as long as Pt < 5/6, the energy shrinks significantly with each new query.

Let i1, ..., it and b be such that there is no c in C s.t. µ(c | Ci1 . . .Cit = b) ≥ 5/6 (note
that the µ-probability of getting such an i1, ..., it and b, is 1 − Pt). Let µ′ be µ restricted
to the class C′ of concepts c where ci1 . . . cit = b. The nonnegative adversary bound for this
restricted concept class is A′ = ADV(C′) ≤ ADV(C) = A. Applying Lemma 17 to µ′, there
is an it+1 ∈ [N ] with p := min(µ′(Cit+1 = 0), µ′(Cit+1 = 1)) ≥ 1

36A′2 ≥
1

36A2 . Note that
H(p) ≥ Ω(log(A)/A2). Hence

H(C | Ci1 . . .Cit
= b)−H(C | Ci1 . . .Cit

= b,Cit+1) = H(Cit+1 | Ci1 . . .Cit
= b)

≥ Ω(log(A)/A2).

This implies Et−Et+1 ≥ (1−Pt)·Ω(log(A)/A2). In particular, as long as Pt < 5/6, the (t+1)st
query shrinks Et by at least 1

6Ω(log(A)/A2) = Ω(log(A)/A2). Since E0 = H(C) ≤ log |C|

and Et cannot shrink below 0, there can be at most O
(

A2

logA log |C|
)

queries before Pt grows

to ≥ 5/6. J

Since ADV(C) lower boundsQ(C), Theorem 18 implies the bound R(C) ≤ O
(

Q(C)2

log Q(C) log |C|
)

claimed in our introduction. Note that this bound is tight up to a constant factor for the
class of N -bit point functions, where A = Θ(

√
N), |C| = N , and R(C) = Θ(N) classical

queries are necessary and sufficient.

5 Future work

Neither of our two results is tight. As directions for future work, let us state two conjectures,
one for each model:

k-Fourier-sparse functions can be learned from O(k · polylog(k)) uniform quantum ex-
amples.
For all concept classes C of Boolean-valued functions on a domain of size N we have:
R(C) = O(Q(C)2 +Q(C) logN).
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