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Abstract
It is well-known that every planar graph has a Tutte path, i.e., a path P such that any component of
G−P has at most three attachment points on P . However, it was only recently shown that such Tutte
paths can be found in polynomial time. In this paper, we give a new proof that 3-connected planar
graphs have Tutte paths, which leads to a linear-time algorithm to find Tutte paths. Furthermore,
our Tutte path has special properties: it visits all exterior vertices, all components of G− P have
exactly three attachment points, and we can assign distinct representatives to them that are interior
vertices. Finally, our running time bound is slightly stronger; we can bound it in terms of the degrees
of the faces that are incident to P . This allows us to find some applications of Tutte paths (such as
binary spanning trees and 2-walks) in linear time as well.
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1 Introduction

A Tutte path is a well-known generalization of Hamiltonian paths that allows to visit only a
subset of the vertices of the graph, as long as all remaining vertices are in components with
at most three attachment points. (Detailed definitions are below.) They have been studied
extensively, especially for planar graphs, starting from Tutte’s original result:

I Theorem 1 (Tutte [19]). Let G be a 2-connected planar graph with distinct vertices X,Y
on the outer face. Let α be an edge on the outer face. Then G has a Tutte path from X to Y
that uses edge α.

We refer to the recent work by Schmid and Schmidt [15] for a detailed review of the
history and applications of Tutte paths. It was long not known how to compute a Tutte
path in less than exponential time. A breakthrough was achieved by Schmid and Schmidt
in 2015 [13, 14], when they showed that one can find a Tutte path for 3-connected planar
graphs in polynomial time. In 2018, the same authors then argued that Tutte paths can be
found in polynomial time even for 2-connected planar graphs [15]. For both papers, the main
insight is to prove the existence of a Tutte path by splitting the graph into non-overlapping
subgraphs to recurse on; the split can be found in linear time and therefore the running time
becomes quadratic.
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In this paper, we show that Tutte paths can be computed in linear time. To do so, we
give an entirely different proof of the existence of a Tutte path for 3-connected planar graph.
This proof is very simple if the graph is triangulated, but requires more care when faces have
larger degrees. Our path (and also the one by Schmid and Schmidt [13, 14]) comes with
a system of distinct representatives, i.e., an injective assignment from the components of
G \P to vertices of P that are attachment points. Such representatives are useful for various
applications of Tutte paths.

Our proof for 3-connected planar graphs is based on a Hamiltonian-path proof by Asano,
Kikuchi and Saito [1] that was designed to give a linear-time algorithm; with arguments
much as in their paper we can therefore find the Tutte path and its representatives in linear
time. Since 3-connected planar graphs are (as we argue) the bottleneck in finding Tutte
paths, this shows that the path of Theorem 1 can be found in linear time.

1.1 Preliminaries
We assume familiarity with graphs, see, e.g., Diestel [7]. Throughout this paper, G = (V,E)
denotes a graph with n vertices and m edges. We assume that G is planar, i.e., can be drawn
in 2D without edge crossings. A planar drawing of G splits R2 into connected regions called
faces; the unbounded region is the outer face while all others are called interior faces. A
vertex/edge is called exterior if it is incident to the outer face and interior otherwise. We
assume throughout that G is plane, i.e., one particular abstract drawing of G has been fixed
(by giving the clockwise order of edges around each vertex and the edges that are on the
outer face). Any subgraph of G inherits this planar embedding, i.e., uses the induced order of
edges and as outer face the face that contained the outer face of G. The following notion will
be convenient: Two vertices v and w are interior-face-adjacent (in a plane graph G) if there
exists an interior face that is incident to both v and w. We will simply write face-adjacent
since we never consider adjacency via the outer face.

Nooses and connectivity. For a fixed planar drawing of G, let a noose be a simple closed
curve N that goes through vertices and faces and crosses no edge except at endpoints.
A noose can be described as a cyclic sequence 〈x0, f1, x1, . . . , fs, xs=x0〉 of vertices and
faces such that fi contains xi−1 and xi, and hence is independent of the chosen drawing.
Frequently, the choice of faces will be clear from context or irrelevant; we then say that
N = 〈x0, . . . , xs=x0〉 goes through {x1, . . . , xs}. The subgraph inside/outside N is the graph
induced by the vertices that are on or inside/outside N . The subgraph strictly inside/outside
is obtained from this by deleting the vertices on N .

A graph G is connected if for any two vertices v, w there is a path from v to w in G. A
cutting k-set in G is a set S = {x1, . . . , xk} of vertices such that G \ S has more connected
components than G. We call it a cutting pair for k = 2 and a cutting triplet for k = 3. A
graph G is called k-connected if it has no cutting (k − 1)-set. Since we are only studying
planar graphs, it will be convenient to use a characterization of connectivity via nooses.
Consider a noose N that goes through {x1, . . . , xk} (and no other vertices), and there are
vertices both strictly inside and strictly outside N . Then clearly S = {x1, . . . , xk} is a
cutting k-set. Vice versa, in a planar graph, any cutting k-set S for k = 1, 2, 3 gives rise to a
noose N through S that has vertices both strictly inside and strictly outside. A strict cut
component C of S is a subgraph strictly inside a noose N through some of the vertices of S
such that C contains at least one vertex not in S and is inclusion-minimal among all such
nooses. In particular, a strict cut component C contains no vertices or edges of S. A cut
component C+ is obtained from a strict cut component C by re-inserting those vertices of S
that have neighbours of C, as well as the edges from them to C.
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Hamiltonian paths and Tutte paths. A Hamiltonian path is a path that visits every vertex
exactly once. To generalize it to Tutte paths, we need more definitions. Fix a path P in the
graph. A P -bridge C is a cut component of P ; its attachment points are its vertices on P .1
A Tutte path is a path P such that any P -bridge C has at most three attachment points, and
if C contains exterior edges, then it has at most two attachment points. Our Tutte paths
for 3-connected graphs will be such that no P -bridges contain exterior edges, so the second
restriction holds automatically.

A Tutte path with a system of distinct representatives (SDR), also called a TSDR-path
for short, is a Tutte path P together with an injective assignment σ from the P -bridges to
vertices in P such that for every P -bridge C vertex σ(C) is an attachment point of C.

Given a path P in a plane graph, we denote by F (P ) the set of all interior faces that
contain at least one vertex of P .

1.2 From 3-connected to 2-connected
In this section, we show that, to find the path of Theorem 1 efficiently, it suffices to consider
3-connected planar graphs.

We re-prove Theorem 1, presuming it holds for 3-connected planar graphs, by induction
on the number of vertices with an inner induction on the number of exterior vertices. Say we
want to find a Tutte path from X to Y that uses exterior edge α = (U,W ), where X,Y are
exterior vertices. In the base case, G is 3-connected and we are done. So assume that G has
cutting pairs. If edge (X,Y ) does not exist, then add it in such a way that α stays exterior,
and find a Tutte path P in the resulting graph recursively (it has fewer exterior vertices).
Since {X,Y } 6= {U,W} (because (U,W ) ∈ G while (X,Y ) 6∈ G), path P visits at least one
vertex other than X,Y , and so cannot use edge (X,Y ). So it is also a Tutte path of G.

Now, assume that (X,Y ) exists. Repeatedly split the graph at any cutting pair {u, v} into
cut components C1, . . . , Ck, and store the 3-connected components C+

1 , . . . , C
+
k (induced by

the cut components with an additional virtual edge between the cutting pairs) in a so-called
SPQR-tree [6, 9], which additionally creates one leaf node for every edge of G. This can be
done in linear time [10].

Root the SPQR-tree at the node of edge (X,Y ). For each 3-connected component C+

other than the root, set {XC , YC} to be the cutting pair that C+ has in common with its
parent component, and observe that these two vertices are necessarily exterior in C since
X,Y are exterior in G; see Figure 1.

If C+ has only these two vertices, then let PC be the path (XC , YC). Otherwise, define
an edge αC 6= (XC , YC) of C+ as follows: If the node of α is a descendant of C+, then let αC

be the virtual edge of C+ that it shares with the child that leads to this descendant. Note
that αC is a virtual edge, and it is necessarily on the outer face of C since α is on the outer
face of G. Otherwise (α is not in a descendant of C+) choose αC to be an arbitrary exterior
edge of C other than (XC , YC). Let PC be a Tutte path that begins at XC , ends at YC , and
uses edge αC ; we know that this exists since C+ is either a triangle or a 3-connected graph.

Now obtain the Tutte path P of G by repeatedly substituting paths of 3-connected
components. Specifically, initiate P as the virtual copy of edge (X,Y ) that was added when
we created the node for (X,Y ). For as long as P contains a virtual edge (u, v), let C+ be
the child component at this virtual edge and observe that {XC , YC} = {u, v}. Substitute PC

in place of edge (u, v) of P , i.e., set P to be X P u/v
PC v/u P Y . Note that, if C+ is not

1 Our definition of P -bridge considers only the proper P -bridges [19] that contain at least one vertex.
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Figure 1 A 2-connected graph, its SPQR-tree (leaf nodes are omitted), and its Tutte path.

the singleton-edge (u, v), then PC contains αC , which is a virtual edge. This means that the
process repeats until we have substituted the real edges from the leaves of the SPQR-trees.
In particular (due to our choice of αC), we will substitute the paths from all components
between (X,Y ) and α, which means that α is an edge of the final path P as required.

Observe that for some 3-connected components we do not substitute their paths; these
become P -bridges with two attachment points. There may also be some P -bridges within
each 3-connected components, but these have at most three attachment points since we used
a Tutte path for each component. So the result is the desired Tutte path. Since we compute
one Tutte path per 3-connected component, and this can be done in time proportional to
the size of the component, the overall running time is linear.

2 Tutte paths in 3-connected planar graphs

For triangulated planar graphs, one can quite easily find a TSDR-path by removing the
interiors of all separating triangles, and finding for the resulting 4-connected planar graph a
Hamiltonian path using the approach of Asano, Kikuchi, and Saito [1]. It is not hard to see
that we can assign representatives to all separating triangles, possibly after expanding the
path using the substitution trick described below. (We omit the details for space reasons.)

For 3-connected planar graphs that are not triangulated, we use the same approach, but
must generalize many definitions from Asano, Kikuchi, and Saito [1] and add quite a few
cases because now face-adjacent vertices are not necessarily adjacent. To keep the proof
self-contained, we re-phrase everything from scratch.2

We need a few definitions. The outer stellation of a planar graph G is the graph obtained
by adding a vertex in the outer face and connecting it to all exterior vertices. A planar
graph G is called internally 3-connected if its outer stellation is 3-connected. Note that this
implies that G is 2-connected, any cutting pair is exterior (i.e., has both vertices on the outer
face) and has only two cut components. In the following, we endow G with k corners, which
are k vertices X1, . . . , Xk that appear in this order on the outer face. Usually, k = 3 or 4,
but occasionally we allow larger k. A side of such a graph is the outer face path between
two consecutive corners that does not contain any other corners. The corner stellation Gs

is obtained by adding a vertex in the outer face and connecting it to the corners. We say

2 Indeed, due to attempts to simplify the notations similar as done in [4], the reader familiar with [1] may
barely see the correspondence between the proof and [1]. Roughly, their Condition (W) corresponds to
c3c(X, W, Y ), their Case 1 is our Case 3a, and their Case 3 combines our Case 2 with our Case 4a (but
resolves it in a symmetric fashion).
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that G is corner-3-connected with respect to corners X1, . . . , Xk (abbreviated to “G satisfies
c3c(X1, . . . , Xk)”) if Gs is 3-connected. Figure 2a illustrates this condition. It is easy to
show that G satisfies c3c(X1, . . . , Xk) if and only if k ≥ 3, G is internally 3-connected, and
no cutting pair {v, w} of G has both v and w on one side of G.

For ease of proof, we make the induction hypothesis stronger than just having a TSDR-path,
by restricting which vertices must be visited and which vertices must not be representatives.
A Tint-path is a TSDR-path P that visits all exterior vertices, and where representative σ(C)
is interior, for all P -bridges C. The goal of the remainder of this section is to prove the
following result (which immediately implies Theorem 1 for 3-connected graphs3):

I Lemma 2. Let G be a plane graph with distinct vertices X,Y on the outer face. Let
(U,W ) 6= (X,Y ) be an edge on the outer face. If G satisfies c3c(X,U,W, Y ), then it has a
Tint-path that begins at X, ends at Y , and contains (U,W ).

We need a second result for the induction. Let a Tend-path be a TSDR-path P that visits
all exterior vertices, and where representative σ(C) is interior or the last vertex of P , for all
P -bridges C.

I Lemma 3. Let G be a plane graph with distinct vertices X,Y on the outer face. Let
(U,W ) 6= (X,Y ) be an edge on the outer face. If G satisfies c3c(X,U,W, Y ) and

(A) (W,Y ) and (Y,X) are edges,

then G has a Tend-path P that begins at X, ends at Y , and uses (U,W ) and (W,Y ).4 Further,
if Y is the representative of a P -bridge C, then C has W and Y as attachment points.

See Figure 5c for a graph that satisfies (A).
We assume throughout that X,U,W, Y are enumerated in ccw order along the outer face,

the other case can be resolved by reversing the planar embedding.
The following trick will help shorten the proof: If graph G satisfies (A), then Lemma 3

implies Lemma 2. Namely, if Lemma 3 holds, then we have a Tend-path P fromX to Y through
(U,W ) and (W,Y ). If this is not a Tint-path, then some P -bridge C has Y as representative,
and by assumption also has W as attachment point. It must have a third attachment
point u, otherwise {W,Y } would be a cutting pair within one side of G, contradicting
corner-3-connectivity. It has no more attachment points since P is a Tutte path, so {W,Y, u}
is a cutting triplet. We apply the substitution trick described below (and useful in other
situations as well), which replaces (W,Y ) with a path through C that does not use u. Thus, C
no longer needs a representative and we obtain a Tint-path.

The substitution trick. This trick can be applied whenever we have an edge e = (w, y)
used by some TSDR-path P , and a P -bridge C that resides inside a noose through some
cutting triplet {u,w, y} for some vertex u. Define C+ = G[C] ∪ {(u,w), (w, y)} \ {(u, y)},
where edges are added only if they did not exist in G[C].5

3 Theorem 1 allows (U, W ) = (X, Y ), but then holds trivially since using edge (X, Y ) as path satisfies all
conditions. We require (U, W ) 6= (X, Y ) since we want not just a Tutte path but a Tint-path, and the
single-edge path (X, Y ) would allow only exterior vertices as representatives.

4 This lemma is a special case of the “Three Edge Lemma” [17], which states that for any three edges on
the outer face there exists a Tutte cycle containing them all. However, it cannot simply be obtained
from it since we require restrictions on the location of representatives.

5 We apply the substitution trick even when V (C+) = V (G) and G has a triangular outer face; not
adding edge (w, y) will ensure that C+ has fewer interior vertices and induction can be applied.
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Figure 2 (a) Corner-3-connectivity c3c(X, U, W, Y ), (b) the substitution trick, and (c) Case 1.

C+ satisfies c3c(u, v, w), else there would have been a cutting pair in G that was interior
or within one side. Hence, by induction, C+ has a Tint-path PC+ from u to y that uses edge
(u,w). It does not use the edge (u, y) since PC+ begins at u with edge (u,w). So PC+ \ (u,w)
is a path in C from w to y that does not visit u. Substitute this in place of edge (w, y) of P ;
see Figure 2b. We claim that the resulting path P ′ is a Tint-path. We prove a more general
statement in the full version [5], but roughly speaking, combining paths preserves Tint-paths
because every P ′-bridge can inherit its representative from P or PC+ , and no vertex is used
twice as representative since PC+ does not use {u, v, w} as representatives.

2.1 Proof of Lemma 2 and Lemma 3
We prove the two lemmas simultaneous by induction on the number of vertices of G, with
an inner induction on the number of interior vertices. The base case is n = 3 where G
is a triangle, but the same construction works whenever the outer face is a triangle (see
below). For the induction step, we need the notation Sxy, which is the outer face path
from x to y in ccw direction. In particular, the four sides are SXU , SUW , SW Y , and SY X .
We sometimes name sides as suggested by Figure 2a, so SXU , SUW , SW Y , and SY X are the
left/bottom/right/top side, respectively.

2.1.1 Case 1: The outer face is a triangle
Figure 2c illustrates this case. We know that X 6= Y and U 6= W , so we must have X = U

or W = Y . For Lemma 3, we know that (A) holds, which forces W 6= Y , hence X = U .
For Lemma 2, we may assume X = U by symmetry, for otherwise we reverse the planar
embedding, find a path from Y to X that uses (W,U) (with this, we have X ′ = U ′) and
then reverse the result.

So X = U . Define P to be 〈X=U,W, Y 〉 and observe that this is a Tend-path, because
the unique P -bridge C (if any) has attachment points {U,W, Y }, and we can assign Y to be
its representative. So Lemma 3 holds. Since condition (A) is satisfied, this implies Lemma 2.

2.1.2 Case 2: G has a cutting pair {u,w} with u and w on the left
and right side

Figure 3 illustrates this case. Let N be a noose through u and w along a common interior
face f∗ and then going through the outer face. Let Gt and Gb be the subgraphs inside
and outside N , named such that Gb contains the bottom side. Let G+

t /G
+
b be the graphs

obtained from Gt/Gb by adding (u,w) if not in the graph yet. We add (u, v) even if it did
not exist in G (we will ensure that the final path does not use it).
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Figure 3 (a) Case 2, (b)–(d) proof of Lemma 2 for Case 2.

We first show Lemma 2. One can easily verify that Gt satisfies c3c(X,u,w, Y ) since its
outer face is a simple cycle; see the full version [5]. Apply induction and find a Tint-path Pt

of G+
t from X to Y that uses edge (u,w). Now apply a modified substitution trick to (u,w).

Namely, by induction, there is a Tint-path Pb of G+
b from u to w that uses edge (U,W ).

Substitute Pb into Pt in place of (u,w) to get P . Path P uses (U,W ) since Pb does. It does
not use (u,w) since we removed this from Pt, and Pb starts at u, ends at w, and visits (U,W )
in between. So after inheriting representatives from Pb and Pt we obtain a Tint-path P in G.

To prove Lemma 3, note that exactly one of G+
t and G+

b contains (W,Y ); use a Tend-
path for this subgraph and create P as above. Only one graph uses Y as representative, and
one easily shows that P is a Tend-path.

2.1.3 Case 3: G has a cutting pair {y,w} with y and w on the top
and right side, respectively. Furthermore, there is an interior face
f∗ containing y and w that does not contain Y .

For later applications, we first want to point out that if G has a cutting pair {y, w} on the
top and right side for which (y, w) is an edge, then such a face f∗ always exists, because
there are two interior faces containing y and w, and not both can contain Y .

Figure 4 illustrates this case. We know that w 6= Y 6= y, else {y, w} would be a cutting
pair within one side. We may assume y 6= X; else we can use Case 2. Hence, the top side
contains at least three vertices X, y, Y , so (A) does not hold and we have to prove only
Lemma 2.

We choose {y, w} such that w is as close to W as possible (along the right side). The
face f∗ containing y, w may have multiple edges on the top side; let y be the one that is as
close to Y as possible. Define Gb, G+

b , Gt, G+
t to be as in Case 2. Since the outer face of G+

b

is a simple cycle, it satisfies c3c(X,U,W,w, y). But since we chose w to be as close to W
as possible, it also satisfies c3c(X,U,W, y). Namely, assume for contradiction that some
cutting pair {y′, w′} exists along the side SW w ∪ (w, y) of G+

b ; see Figure 4a. Since there is
no cutting pair within SW w, it must have the form {y, w′} for some w′ 6= w on SW w. As f∗
does not contain Y , neither can any face containing {y, w′}, so {y, w′} could have been used
for Case 3, contradicting our choice of w.

By induction, we can find a Tint-path Pb of G+
b from X to y that includes the edge (U,W ).

The plan is to combine Pb with a path through Gt, but we must distinguish some cases.

Case 3a: Pb does not contain (y,w) or (y,w) ∈ G. Observe that G+
t satisfies

c3c(y, w, Y ). By induction, find a Tint-path Pt in G+
t from Y to w that uses edge (y, w).

Append the reverse of Pt \ (y, w) to Pb to obtain a Tint-path; see Figure 4b.

ICALP 2019
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Figure 4 Case 3: (a) G+
b satisfies c3c(X, U, W, y), (b) Case 3a, (c) Case 3b-1, (d) Case 3b-2.

Case 3b: Pb contains (y,w) and (y,w) 6∈ G. In this case, we must remove (y, w) from
the path and hence use a subpath in Gt to reach vertex y. This requires further subcases.
Let πf be the path along f∗ from y to w that becomes part of the the outer face of Gt. Let
(y, z) be the edge incident to y on πf .

Case 3b-1: πf contains no vertex on the outer face of G other than y and w. See Fig-
ure 4c. The outer face of Gt is then a simple cycle and Gt satisfies c3c(w, y, Y ). By
induction, we can find a Tint-path Pt in Gt that begins at Y , ends at w, and uses (y, z).

Case 3b-2: πf contains a vertex x 6= y,w on the outer face of G. See Figure 4d. Since x
is on f∗, it cannot be on the top side by choice of y. So x ∈ SwY \ Y . In fact, x must
be the neighbor of w on both SwY and πf , else there would be a cutting pair within the
right side. Set G′t to be the graph inside a noose through y and x that has Y inside.
Since πf has no vertices other than y, x, w on the outer face of G, graph G′t has a simple
cycle as outer face, so it satisfies c3c(Y, y, z, x). By induction, we can find a Tint-path P ′t
of Gt that begins at Y , ends at x, and uses (y, z). We append (w, x) to obtain Pt.

In both cases, we obtain a path Pt that begins at Y , ends at w, and visits all of Gt.
Appending the reverse of this to Pb \ (y, w) gives the Tint-path.

2.1.4 Case 3′: G has a cutting pair {y,w} with y and w on the top
and left side, respectively. Furthermore, there is an interior face
f∗ containing y and w that does not contain X.

This is handled symmetrically to Case 3.

2.1.5 Case 4: None of the above
In this case, we split G into one big graph G0 and (possibly many) smaller graphs G1, . . . , Gs,
recurse in G0, and then substitute Tint-paths of G1, . . . , Gs or use them as P -bridges.

We need two subcases, but first give some steps that are common to both. Let YX be
the neighbor of Y on the top side. Define a B-necklace (for B ∈ {U,W}) to be a noose
N0 : 〈YX=x0, f1, x1, . . . , xs−1, fs, xs=B, fo〉, (where fo is the outer face) for which xi is
face-adjacent to at least one vertex on SW Y \ {B} for 1 ≤ i ≤ s− 1. See also Figure 5. We
say that the necklace is simple if it contains no vertex twice, and interior if every xi (for
0 < i < s) is an interior vertex. One can argue that if none of the previous cases applies,
then there always exists a simple interior B-necklace (see the full version [5]).
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Figure 5 Case 4. (a) A simple interior U -necklace that is not leftmost due to face f (which yields a
cutting pair {xh, xi}), and since it could include vertex z. (b) The graphs G1, . . . , Gs. (c–d) Case 4a.
The path P + after using the substitution trick and (d) assignment of the representatives.

Route N0 through the outer face such that the left side is in its interior, and let G0 (the
“left graph”) be the graph inside N0. We say that N0 is leftmost if (among all simple interior
B-necklaces) its left graph G0 is smallest, and (among all simple interior B-necklaces whose
left graph is G0) it contains the most vertices of G0. Fix a leftmost B-necklace 〈x0, . . . , xs〉.

B Claim 4. If (xi, xi+1) is not an edge for some 0 ≤ i < s, then the face fi of N0 contains
no vertex of SW Y \ {B}.

Proof. If (xi, xi+1) is not an edge of G, then both paths from xi to xi+1 on fi contain at
least one other vertex. One of them, say z, is inside N0. If fi contains a vertex of SW Y \ {B},
then xi and z are face-adjacent, z and xi+1 are face-adjacent, and z has a neighbor on
SW Y \ {B}, so x0, . . . , xi, z, xi+1, . . . , xs is a simple interior B-necklace with the same left
graph but containing more vertices of G0. Hence N0 is not leftmost, a contradiction. C

For i = 0, . . . , s− 1, let ti be the vertex on SW Y \ {B} that is face-adjacent to xi and
closest to Y (along the right side) among all such vertices. Set ts = W if xs = U , and ts = Y

otherwise. For 0 < i ≤ s, define Ni to be the noose through 〈xi−1, xi, ti, ti−1〉 such that the
left side is outside Ni. For 0 < i ≤ s let Gi be the graph inside Ni (i.e., a cut component of
{xi−1, xi, ti−1, ti}); see Figure 5b.

Let G+ be the graph obtained from G by adding virtual edges (xi, xi−1) and (ti, ti−1) (for
i = 1, . . . , s) whenever these two vertices are distinct and the edge did not exist in G. Let G+

0
be the graph obtained from G0 by likewise adding virtual edges (x0, x1), . . . , (xs−1, xs). This
makes the outer face of G0 a simple cycle, so G+

0 satisfies c3c(X,U,B=xs, . . . , x0=YX). We
distinguish two cases.

Case 4a: (A) holds, i.e., (X,Y ) and (W,Y ) are edges. We only have to prove Lemma 3
since this implies Lemma 2. Consider Figs. 5c and d. Let 〈x0=YX=X,x1, . . . , xs=W 〉 be
a leftmost W -necklace. By SW Y = (W,Y ), we have ti = Y for all i. Since x0 = YX = X,
we have that G+

0 satisfies c3c(X=x0, x1, . . . , xs=W,U). But observe that G+
0 has no cutting

pair {xh, xi} with 0 ≤ h < i ≤ s, for otherwise the face f containing xh and xi could be used
as a shortcut and N0 was not leftmost (see Figure 5a). So G+

0 actually satisfies c3c(X,W,U).
Use induction to obtain a Tint-path P0 from X to W in G+

0 that uses edge (U,W ). Then
P+ = P0 ∪ (W,Y ) is a path in G+ that contains (U,W ), and (W,Y ).

Fix some i = 1, . . . , s. If P+ used edge (xi−1, xi) and it was virtual, then by Claim 4 fi

contains no vertex of SW Y , which means that the interior of Gi is non-empty. Apply
the substitution trick to remove (xi−1, xi) from P+, replacing it with a path through Gi.
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Figure 6 Case 4b. (a) Construction of P + with representatives; (b) G�
i (Case 4b-2) and G@

i

(Case 4b-3) used to substitute virtual edges; (c) P + with representatives after all substitutions.

Otherwise, we keep Gi as a P+-bridge. We let its representative be xi if 1 ≤ i < s, and Y if
i = s. Observe that this representative is interior or Y , and was not used by P0 since P0 was
a Tint-path. So we obtain a Tend-path with the desired properties.

Case 4b: (A) does not hold. We must prove only Lemma 2 and may therefore by symmetry
assume that X 6= U . We claim that this implies that deg(YX) ≥ 3. For if deg(YX) = 2, then
its neighbors form a cutting pair, which by corner-3-connectivity means that YX is a corner,
hence YX = X. Since X 6= U , the two neighbors of YX are then Y and a vertex on the left
side, and we could have applied Case 2. So deg(YX) ≥ 3. Let (YX , x1) be the edge at YX

that comes after (YX , Y ) in clockwise order (see Figure 6a). Note that x1 is face-adjacent to
Y . It must be an interior vertex, for otherwise by deg(YX) ≥ 3 edge (YX , x1) is a cutting
pair that we could have used for Case 3 or 3′.

Let N0 = 〈x0=YX , x1, . . . , xs=U〉 be a simple interior U -necklace; see Figure 6a. We use
a U -necklace that is leftmost among all U -necklaces that contain x1. Note that Claim 4
holds for N0 even with this restriction, since (x0, x1) is an edge. We know that G+

0 satisfies
c3c(X,YX , x1, . . . , xs=U). But observe thatG+

0 has no cutting pair {xh, xi} for 1 ≤ h < i ≤ s,
for otherwise (as in Figure 5a) N0 would not be the leftmost necklace that uses x1. So G+

0
actually satisfies c3c(X,YX , x1, U).

Use induction to obtain a Tint-path P0 in G0 from U to X through edge (x1, x0). Append
the path 〈U,W, ts, . . . , t0=Y 〉 to the reverse of P0 to obtain path P+. This path begins
at X, ends at Y , and contains (U,W ). Any P+-bridge is either a P0-bridge (and receives a
representative there) or is Gi for some 1 ≤ i ≤ s. For i > 1, assign xi−1 as representative to
Gi. Graph G1 has an empty interior by choice of x1 and needs no representative.

There are two reasons why we cannot always use P+ for the result. First, it may use
virtual edges and hence not be a path in G. Second, some P+-bridge Gi may have four
attachment points. Both are resolved by expanding P+ via paths through the Gi’s. Fix
one i with 1 ≤ i ≤ s and consider the following cases:
Case 4b-1: (xi−1, xi) is virtual and used by P+, and ti−1 = ti. By Claim 4, the interior

of graph Gi is non-empty and inside the separating triplet {xi−1, xi, ti}. Replace (xi−1, xi)
by a path through Gi with the substitution trick; see graph G3 in Figure 6.

Case 4b-2: (xi−1, xi) is virtual and used by P+, and ti−1 6= ti. See Figure 6b(top). We
want to replace both (xi−1, xi) and (ti−1, ti) (which is always used by P+) with a path
through Gi. Let G�i be the graph Gi with (ti, xi) and (ti−1, xi−1) added. The outer
face of G�i is a simple cycle since fi contains no vertex of the right side by Claim 4, so
G�i satisfies c3c(ti, ti−1, xi−1, xi). By induction, find a Tint-path Pi in G�i from ti to xi
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that uses the edge (ti−1, xi−1). So removing (ti−1, xi−1) from Pi splits it into two paths:
path PR

i connects ti to ti−1, and path PL
i connects xi−1 to xi. (No other split is possible

by planarity.) Neither path uses the added edge (ti, xi) since it connects the ends of Pi.
Use PR

i to replace (ti−1, ti) and PL
i to replace (xi−1, xi) in P+.

Case 4b-3: Subgraph Gi has a non-empty interior and ti 6= ti−1. See Figure 6b(bottom).
In this case, Gi is a P+-bridge with four attachment points, a violation of Tutte path
properties. If Case 4b-2 applied to Gi, then Gi is no longer a bridge of the resulting path
and we are done. Otherwise, we do a substitution that uses a different supergraph of Gi.
Let G@

i be Gi with edges from path 〈ti−1, xi−1, xi, ti〉 added if not already in Gi.
This graph satisfies c3c(ti, ti−1, xi−1, xi) and satisfies condition (A) if we set X ′ = ti,
U ′ = ti−1,W

′ = xi−1, and Y ′ = xi. So we can find a Tend-path P ′i of G@
i from

ti to xi that uses (ti−1, xi−1) and (xi−1, xi). Thus, P ′i ends with 〈ti−1, xi−1, xi〉 and
P ′i \ {(ti−1, xi−1), (xi−1, xi)} is a path from ti−1 to ti in Gi that does not visit xi−1 or
xi. Substitute this path in place of edge (ti−1, ti) in P+. Note that one P ′i -bridge C
may use xi as its representative, but if so, then it also has xi−1 as attachment point.
We set xi−1 (which was Gi’s representative and is no longer needed as such) to be the
representative of C.

Case 4b-4: ti−1 6= ti and (ti−1, ti) is virtual. Since P+ always uses edge (ti−1, ti), we
must replace this edge with a path through Gi. This is done automatically because
Case 4b-3 applies. Namely, if (ti−1, ti) is virtual, then there is at least one vertex
between ti−1 and ti on the right side. This vertex is exterior in G and hence neither xi

nor xi−1. So it is strictly inside Ni, hence Gi has a non-empty interior and (by ti−1 6= ti)
Case 4b-3 applies.

After doing these substitutions, there are no virtual edges in the path, no bridges have
four attachment points, every bridge has an interior vertex as representative, and no vertex
was used twice as representative; see Figure 6c. This ends the proof of Lemma 2 and 3.

2.2 Linear time complexity
It should be clear that our proof is algorithmic. The main bottlenecks for its running time
are to determine which case to apply (i.e., whether there is a cutting pair) and to find the
B-necklace. Both can be done in linear time, by computing all cutting pairs [6, 9] and by
finding a leftmost path in the subgraph induced by vertices that are face-adjacent to SW Y \B.
This would yield quadratic running time overall. For triangulated planar graphs, this is easily
reduced to linear: cutting pairs correspond to interior edges where both ends are exterior,
and the necklace can be found, as in [1], with a left-first search that only advances neighbors
of SW Y \B. But for graphs that are not triangulated we need a few extra data structures.
We sketch only some ideas for this here; details are in the full version [5].

Globally, we keep track of the corners X,U,W , and Y . For each interior vertex w and
every side Sab, we keep a list V(w, Sab) of faces that contain w as well as a vertex on Sab.
In these lists, we can look up quickly whether an interior vertex is face-adjacent to a side.
Also, each face knows for each side which vertices it has on it. Finally, for each pair of
sides Sab and Scd, we store a list P(Sab;Scd) of faces that are incident to a vertex on Sab

and a (different) vertex on Scd, i.e., faces that connect cutting pairs.
This allows to test for Case 2 and Case 3 easily (“is P(SXU , SW Y ) resp. P(SW Y , SY X)

non-empty?”), and Case 1 and Case 4 are easily determined from the planar embedding.
We keep P(SW Y , SY X) in an order such that its first entry is the appropriate cutting pair
in Case 3. To find a necklace, we scan the faces incident to x1, . . . , xs. More precisely, we
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consider (for vertex xi, presuming we know face fi already) each face f in ccw order after fi,
and along face f each vertex w in ccw order after xi, until we find vertex B (then we are
done) or a vertex that is face-adjacent to a vertex in SW Y \B (then this is xi+1 and fi+1 = f

and we repeat). The running time for this is proportional to the degrees of vertices and
faces that were scanned. We also need to update the data structures when recursing into
a subgraph; here, we scan along all vertices (and their incident faces) that were in some
necklace along which we cut the graph, or that became newly exterior.

A few crucial insights are needed to bound the running time. First, by corner-3-
connectivity every face has at most two vertices on each side. In particular, the above
data structures have linear size. Second, we need to scan vertices and faces only if they
become incident to a side that they were not previously incident to. Finally, once a vertex or
face is incident to a side, it remains incident to it forever (though the side may change role,
e.g. from “left” to “top”). This means that every vertex and face is scanned only a constant
number of times, because there are only four sides to have incidences with. In fact, we only
scan vertices and faces that are incident to the outer face in some subgraph, which means
that they will be incident to the path P that we compute, and we have the following:

I Theorem 5. The Tutte path P for Theorem 1, Lemma 2 or Lemma 3 can be found in
linear time. More specifically, the running time is O(

∑
f∈F (P ) deg(f)).

3 Applications

A number of interesting properties of planar 3-connected graphs can be derived easily from
the existence of TSDR-paths. In particular, every planar 3-connected graph has a spanning
tree of maximum degree 3 [2] (a concept known in the literature as a 3-tree, but we prefer to
use the term binary spanning tree to avoid confusion with maximal graphs of treewidth 3).
Secondly, every planar 3-connected graph has a 2-walk, i.e., a walk that visits every vertex at
least once and at most twice [8]. In the full version [5], we show that, using Lemma 2, these
can be found in linear time; this was known for binary spanning trees [16, 3], but for 2-walks
the previous best running time was O(n3) [15].

I Theorem 6. Let G be a 3-connected plane graph with exterior vertex X. Then G has a
binary spanning tree T that can be found in linear time. Moreover, when rooting T at X, a
vertex v has two children only if it is an interior vertex and part of a cutting triplet {v, w, x}
of G; one of the subtrees of v contains exactly the vertices interior to {v, w, x}.

I Theorem 7. Let G be a 3-connected plane graph with exterior vertex X. Then G has a
2-walk P that can be found in linear time. Moreover, P visits X exactly once, and it visits a
vertex v twice only if v is part of a separating triplet.

4 Outlook

In this paper, we improved on a very recent result that shows that Tutte paths in planar
graphs can be found in quadratic time. We gave a different existence proof which leads to a
linear-time algorithm. For 3-connected planar graphs, we obtain not only a Tutte path, but
furthermore endow it with a system of distinct representatives, none of which is on the outer
face. With this, we can also find 2-walks and binary spanning trees in 3-connected planar
graphs in linear time.
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The main remaining questions concern how to find Tutte path in other situations or with
further restriction. For example, Thomassen [18] and later Sanders [12] improved Tutte’s
result and showed that we need not restrict the ends of the Tutte path to lie on the outer
face. These paths can be found in quadratic time [15]. But our proof does not seem to carry
over to the result by Sanders, because the ends of the path crucially must coincide with
corners of the graph. Can we find such a path in linear time?

Furthermore, the existence of Tutte paths has been studied for other types of surfaces
(see, e.g., Kawarabayashi and Ozeki [11] and the references therein). Can these Tutte paths
be found in polynomial time, and preferably, linear time?
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