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Abstract
We show that the permanent of an n × n matrix over any finite ring of r ≤ n elements can be
computed with a deterministic 2n−Ω(n

r
) time algorithm. This improves on a Las Vegas algorithm

running in expected 2n−Ω(n/(r log r)) time, implicit in [Björklund, Husfeldt, and Lyckberg, IPL 2017].
For the permanent over the integers of a 0/1-matrix with exactly d ones per row and column, we
provide a deterministic 2n−Ω( n

d3/4 ) time algorithm. This improves on a 2n−Ω(n
d

) time algorithm
in [Cygan and Pilipczuk ICALP 2013]. We also show that the number of Hamiltonian cycles in
an n-vertex directed graph of average degree δ can be computed by a deterministic 2n−Ω(n

δ
) time

algorithm. This improves on a Las Vegas algorithm running in expected 2n−Ω( n
poly(δ) ) time in

[Björklund, Kaski, and Koutis, ICALP 2017].
A key tool in our approach is a reduction from computing the permanent to listing pairs of

dissimilar vectors from two sets of vectors, i.e., vectors over a finite set that differ in each coordinate,
building on an observation of [Bax and Franklin, Algorithmica 2002]. We propose algorithms that
can be used both to derandomise the construction of Bax and Franklin, and efficiently list dissimilar
pairs using several algorithmic tools. We also give a simple randomised algorithm resulting in Monte
Carlo algorithms within the same time bounds.

Our new fast algorithms for listing dissimilar vector pairs from two sets of vectors are inspired
by recent algorithms for detecting and counting orthogonal vectors by [Abboud, Williams, and Yu,
SODA 2015] and [Chan and Williams, SODA 2016].
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1 Introduction

In recent years, the apparent impossibility of finding a pair of orthogonal vectors among
two sets of N Boolean vectors in N2−ε time (the OV problem) has been used to derive
conditional hardness results for many problems (e.g., [2] to name just one). However, when
the dimensionality of the vectors is at most d log(N) for a constant d, N c-time algorithms do
exist for some c < 2, and these algorithms for OV have been used to derive faster algorithms
for other problems; a prominent example is counting satisfying assignments to sparse CNF
formulas [11]. In this paper we consider a natural generalisation of the OV problem, design
algorithms for it, and apply those algorithms to derive faster deterministic algorithms for
two other notoriously hard, well-known problems:
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25:2 Computing permanents by listing dissimilar vectors

1. Computing matrix permanents over finite rings and regular 0/1 matrices over the integers.
2. Counting Hamiltonian cycles in sparse directed graphs.

The natural generalisation of OV is a problem we call listing dissimilar vector pairs:
Given N vectors over a finite set of size r, list all pairs of vectors that differ in every coordinate.
This problem can easily be reduced to listing orthogonal vector pairs (see Proposition 9). We
also propose some tailored algorithms for listing dissimilar pairs for ease of understanding.
(and in the hopes that our new algorithmic ideas will lead to interesting future work). As
in the literature on orthogonal vector detection and counting [1, 11], we show how fast
rectangular matrix multiplication can be used to list dissimilar vector pairs; we apply a fast
algorithm for counting (not listing) orthogonal vectors ([11]) as a black box to derandomise
our application algorithms.

A key difference in our work is that our applications to counting problems require us to list
all dissimilar vector pairs, rather than merely finding one. The task of listing OV pairs also
arises in the fastest known online algorithm for Boolean matrix-vector multiplication [15].

1.1 Faster Algorithm for Ring Permanents
The permanent of a square matrix M = {mi,j} ∈ Kn×n over a ring K is defined as

per(M) =
∑
σ∈Sn

n∏
i=1

mi,σ(i), (1)

where Sn is the symmetric group on n elements. The problem of computing permanents is
known to be #P-complete, even for sparse binary (i.e., 0/1) matrices over the integers [22],
and hence we only expect exponential-time algorithms for the problem in general.

An inclusion–exclusion formula by Herbert Ryser from 1963 [18] states that

per(M) =
∑
X⊆[n]

(−1)n−|X|
n∏
i=1

∑
j∈X

mi,j

 . (2)

By enumerating the subsets X in a Gray code order (i.e., an enumeration that lists each
subset exactly once by only adding or removing one element at a time) one can compute
each term

∏n
i=1

(∑
j∈X mi,j

)
in only O(n) operations per subset, leading to an algorithm

using O(n2n) additions and multiplications. To date, this is still the fastest method known
for computing the permanent over general rings, and it is a major open question whether
there is a O((2− ε)n) time algorithm for some constant ε > 0, even for the special case of
binary matrices over the integers. For other special cases, like sparse matrices or finite rings,
such algorithms do exist, and even for the computation of binary matrices over the integers,
somewhat faster algorithms than Ryser’s are known; see the Related Work section.

In this paper, we provide a faster algorithm for permanents over finite rings.

I Theorem 1. There is a deterministic algorithm that computes the permanent of a matrix
M ∈ Kn×n over any finite ring K on r ≤ n elements in 2n−Ω(n/r) time.

The previous best bound is a 2n−Ω(n/(r log r)) expected time algorithm implicit in [6].1 Note
that our result is much more than a “log-shaving” of the running time in the classical sense,
as we are improving the exponent of the running time; moreover, our new algorithm is
deterministic as opposed to the previous one.

1 The randomised algorithms in that paper are stated for computations modulo a fixed prime and their
first powers, but the algorithms can be adapted for finite rings on r elements.
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We also provide a faster algorithm for d-regular 0/1 matrices with exactly d ones in each
row and column.

I Theorem 2. There is a deterministic algorithm that computes the permanent of a d-regular
matrix M ∈ {0, 1}n×n over the integers in 2n−Ω(n/d3/4) time.

This improves on the 2n−Ω(n/d) time bound of an algorithm for average d ones per row
by Cygan and Pilipczuk [13].

1.2 Hamiltonian cycles
A Hamiltonian cycle in a directed graph is a simple cycle through all vertices. Counting
Hamiltonian cycles is #P-complete, even in planar graphs of degree at most three [21, 16].
We provide a faster algorithm for sparse graphs.

I Theorem 3. There is a deterministic algorithm that counts the number of Hamiltonian
cycles in an n-vertex directed graph of average degree δ in 2n−Ω(n/δ) time.

The previously fastest counting algorithm (sensitive to the average degree) is a Las Vegas
algorithm running in expected 2n−Ω(n/ poly(δ)) time outlined in [8]. The polynomial in the
exponent is at least δ4 log δ.2

1.3 Related Work
The fastest known algorithms for the n×n matrix permanent over the integers, and counting
Hamiltonian cycles in an n-vertex directed graph, are those of Björklund, Kaski, and
Williams [9] which run in 2n−Ω

(√
n/ log logn

)
time.

For permanents over the integers of binary matrices with d ones per row on average,
Servedio and Wan [19] showed how to compute the permanent in 2n−Ω(n/ exp(d)) time
and polynomial space. Using exponential space, Izumi and Wadayama [14] derived a
2n−Ω(n/(d log d)) time algorithm. Cygan and Pilipczuk [13] gave a 2n−Ω(n/d) time algorithm
that works over any ring, where d denotes the average number of non-zero entries per row.
Björklund, Husfeldt, and Lyckberg [6] showed that the integer permanent can be computed
modulo p(1−λ)n/p in cnp,λ time, for cp,λ < 2 depending only on the fixed prime p and λ > 0.

The fastest known algorithm for detecting the Hamiltonian cycles in an undirected graph
is the O(1.657n) time Monte Carlo algorithm of Björklund [4]. For directed graphs, no
detection algorithm running in O((2−ε)n) time for any ε > 0 is known, although for bipartite
directed graphs, Hamiltonicity can be decided in O(1.733n) time [8]. Intriguingly, computing
the parity of the number of Hamiltonian cycles can be done in O(1.619n) time [5], and they
can be counted modulo certain integers with all prime factors at most p, in 2n−Ω(n/p) time [8].

There are also 6pw(G) poly(n) time and 15tw(G) poly(n) time algorithms parameterised by
the pathwidth and treewidth of the underlying graph [10].

1.4 Our techniques and contributions
For binary 0/1 matrices over the integers, Bax and Franklin [3] gave a 2n−Ω(n1/3/ logn)

expected time Las Vegas algorithm for the n × n matrix permanent. Their algorithm is
slower than the state-of-the-art algorithm of [9] (based on entirely different techniques), but
still uses very interesting ingredients whose potential has probably not yet been fully utilised.

2 See Theorem 8 in Appendix B of [7] for details.
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25:4 Computing permanents by listing dissimilar vectors

Our algorithms in this paper stem from two ideas in Bax and Franklin’s paper:
1. Perturb the input in a way that does not affect the answer, but “zeroes out” all but a tiny

fraction of terms in an 2n-sized formula for computing the answer (e.g., for permanents,
we will zero-out most terms in Ryser’s formula (2)). Hence to evaluate the sum, it is
sufficient to list only the non-zero terms, offering an approach to a faster algorithm.

2. Divide the columns of the matrix in two halves of about n/2 columns each, construct
vectors representing the terms restricted to the halves, and find ways to “combine” pairs
of vectors corresponding to non-zero terms in the exponential sum.

By design, the vector pairs corresponding to non-zero terms will be those differing in
each coordinate, which we call dissimilar pairs. Recently, Björklund, Kaski, and Koutis,
translated this idea to the problem of counting Hamiltonian cycles [8]. In this paper, we
present two new methods of listing dissimilar pairs that are more efficient than the simple
tabulation-based schemes used in [3] and [8]. Our first listing algorithm is deterministic:

I Theorem 4. Given two lists X and Y of N vectors in [r]d with d < log3(N)/20, and an
integer s > N , the first s dissimilar pairs (x, y) ∈ X × Y can be listed in Õ(N

√
s) time.3

The algorithm applies fast rectangular matrix multiplication. In particular, we use:

I Theorem 5 (Coppersmith, 1984 [12]). Over any finite field F, the number of arithmetic
operations needed to multiply an N × Nα sized matrix with an Nα × N sized matrix, for
α < 0.17, is N2 · poly log(N).

Our second listing algorithm is randomised, and based on hashing. It is arguably much
more implementable, as it does not rely on fast matrix multiplication.

I Theorem 6. Given two lists X and Y of N vectors in [r]d, the set of dissimilar pairs
S ⊆ X × Y can be listed in Õ(|S|+ 2d ·N) time with probability of success 1− o(1).

We also prove a stronger upper bound on the number of non-zero terms needed to
analyse in the special case of d-regular 0/1 matrices. The result can be seen as a sparsity
parameterisation of Bax and Franklin’s algorithm [3].

Outline. We describe our two dissimilarity listing algorithms in Sections 2 and 3. In
Section 4 we review the (randomised) reductions from the permanent and Hamiltonian cycle
counting to listing dissimilar vector pairs. Finally, in Section 5 we show how the randomised
reductions can be derandomised by applying an algorithm for counting OV pairs, and using
the method of conditional expectation.

2 Listing dissimilar vectors with fast matrix multiplication

We first describe a deterministic algorithm for listing dissimilar pairs based on fast rectangular
matrix multiplication. Given two sets X ,Y ⊆ [r]d with |X | = |Y| = N and a positive integer
s, we want to output a set of the (lexicographically) first s pairs (x, y) ∈ X × Y that are
dissimilar, i.e., for all i = 1, . . . , d, xi 6= yi.

I Reminder of Theorem 4. Given lists X and Y of N vectors in [r]d with d < log3(N)/20,
and N < s ≤ N2, the first s dissimilar pairs (x, y) ∈ X × Y can be listed in Õ(N

√
s) time.

3 Note that s ≤ N2 implies s ≤ N
√
s, so the running time is at least s. Also note that for s = 2n−δn and

N = 2n/2 (our applications of interest), N · s1/2 ≤ 2n−δn/2.
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Proof. The idea of the algorithm is to partition both X and Y in m = s1/4
√
N pieces, each

of size at most N/m, as X = X1 ∪ X2 ∪ · · · ∪ Xm and Y = Y1 ∪ Y2 ∪ · · · ∪ Ym. First, the
algorithm locates all pairs (i, j) ∈ [m]× [m] such that Xi×Yj contains a dissimilar vector pair.
This is achieved for all pairs simultaneously through several rectangular matrix products.
Then the algorithm “brute-forces” all pairs in those Xi × Yj containing dissimilar pairs.

Given a pair (x, y) ∈ X × Y, consider the following polynomial defined over Z:

p(x, y) =
d∏
i=1

(xi − yi)2. (3)

Note that p(x, y) > 0 if (x, y) is a dissimilar vector pair, otherwise p(x, y) = 0.
We can write p(x, y) as a sum of 3d products:

p(x, y) =
∑

z∈{0,1,2}d
(−2)ones(z)

 d∏
j=1

x
zj
j

( d∏
k=1

y2−zk
k

)
, (4)

where ones(z) counts the number of coordinates i in z such that zi = 1.
Let c(i, j) be the sum of p(x, y) over all pairs (x, y) ∈ Xi ×Yj , and note c(i, j) > 0 if and

only if some pair in Xi × Yj is dissimilar. We wish to compute whether c(i, j) > 0 for all
i, j. To this end, we construct an m × 3d integer matrix MX representing X , with row i

representing Xi, and columns representing different terms in (4), labeled by the corresponding
z-vector. Formally, the entry at row i and column z ∈ {0, 1, 2}d is

MX ,i,z =
∑
x∈Xi

(−2)ones(z)
d∏
j=1

x
zj
j . (5)

Similarly, we construct an m× 3d integer matrix MY representing Y:

MY,i,z =
∑
y∈Yi

d∏
k=1

y2−zk
k . (6)

We consider P = MX ·MYT, and observe that Pi,j = c(i, j) for all i, j = 1, . . . ,m. All
entries in the result are poly(logN, log r)-bit non-negative integers. To see if c(i, j) > 0, we
compute P modulo the first poly(logN, log r) primes using Theorem 5. If any of the products
has Pi,j 6= 0, we know that c(i, j) > 0 and mark (i, j) as containing dissimilar pairs.

Next, we loop over all marked entries (i, j) of the matrix, and test every (x, y) ∈ Xi × Yj
for dissimilarity by brute force in lexicographical order. As soon as s dissimilar pairs have
been listed, the algorithm terminates.

Noting that the dimensions of the matrices obey the condition for Coppersmith’s algorithm
(Theorem 5), i.e., 3d < m0.17, the running time is

(3dN +m2 + s(N/m)2) poly(logN, log r) = N
√
spoly(logN, log r).

Here, the first two summands come from building the matrices and computing the product P ,
and the last summand arises from the worst case of the brute-force listing part, when every
Xi × Yj with c(i, j) > 0 contains only one dissimilar pair. This concludes the proof. J

3 Listing dissimilar vectors by hashing

In this section, we give an alternative listing method that avoids fast rectangular matrix
multiplication. However, it is randomised, and only provides Monte Carlo algorithms running
in the same time as the deterministic algorithms of Theorem 1, 2, and 3.

ICALP 2019



25:6 Computing permanents by listing dissimilar vectors

I Reminder of Theorem 6. Given two lists X and Y of N vectors in [r]d, the set of
dissimilar pairs S ⊆ X × Y can be listed in Õ(|S|+ 2d ·N) time with probability of success
1− o(1).

Proof. Let H be the family of hash functions h : [r]→ {0, 1}. Pick t := 3 · 2d log(N) vectors
of d hash functions hj = (hj,1, hj,2, . . . , hj,d) ∈ Hd for j = 1, 2, . . . , t.

Consider a pair (x, y) ∈ X × Y. We say (x, y) passes the hash j if

∀i ∈ 1, . . . , d, hj,i(xi) 6= hj,i(yi). (7)

Note that a similar vector pair never passes any j. Let ϕj,(x,y) be the indicator for the event
that a dissimilar pair (x, y) passes j, then

E[ϕj,(x,y)] = Pr[(x, y) pass j] = 1
2d . (8)

Form the sum

X =
t∑

j=1

∑
x,y∈S

ϕj,(x,y). (9)

The quantity X is the number of the vector pairs in S that survive some j, counted with
multiplicity when they pass several hashes. Applying linearity of expectation to (8) and (9),

E[X] = t|S|
2d = 3|S| log(N). (10)

Applying Markov’s inequality to (10),

Pr [X > 10E[X]] ≤ 1
10 . (11)

Also, the probability that a particular (x, y) ∈ S does not pass any j, is

2d3 logN∏
j=1

Pr[(x, y) does not pass j] =
(

1− 1
2d

)3·2d log(N)
< exp(−3 logN). (12)

By a union bound, the probability that some dissimilar pair does not pass any j is at most

N2 exp(−3 logN) < 1
N
. (13)

Suppose we list all pairs (x, y) that pass some j. From (11) and (13), we see that with
probability at least 9

10 −
1
N , we will list all dissimilar pairs (possibly with repetition), and we

do not list more than 30 logN times the number of dissimilar pairs.
Now we describe how to list these pairs. Iterate over j ∈ [t]. For each j, iterate over

y = (y1, . . . , yd) ∈ Y , compute its hash vector hj(y) := (hj,1(y1), . . . , hj,d(yd)) ∈ {0, 1}d, and
build lists `j(v) for all relevant vectors v ∈ {0, 1}d, where `j(v) := {y ∈ Y | hj(y) = v}. Note
that

∑
v∈{0,1}d |`j(v)| = N . Next, iterate over x = (x1, . . . , xd) ∈ X , and output the pair

(x, y′) for each y′ ∈ `j(hj(x)), where hj(x) := (1− hj,1(x1), . . . , 1− hj,d(xd)).
Observe the running time is Õ(tN +X) ≤ Õ(N · 2d + |S|). J
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4 Reductions to listing dissimilar vectors

Here we outline reductions from our two application problems to the problem of listing
dissimilar vectors, roughly following Bax and Franklin [3] for the permanent, and Björklund
et al. [8] for Hamiltonian cycles. We also provide bounds on the number of dissimilar pairs
that are needed for the analysis of the resulting algorithms. In particular, in Section 4.2 we
provide a novel stronger bound on the number of dissimilar pairs than was previously known,
for the reduction from 0/1 matrix permanents with d ones in each row and column.

4.1 Reduction for the permanent
In the following, let K be a ring on r elements denoted by e1, . . . , er.

Bax and Franklin [3] observed the following simple but intriguing fact. For anyM ∈ Kn×n,
let 0n be the 1× n row vector of all zeros, and let q ∈ Kn×1 be any column vector. Form
the (n+ 1)× (n+ 1) matrix

Mq =
[
M q

0n 1

]
. (14)

Then we have

per(Mq) = per(M). (15)

The equation (15) follows because every summand in the permanent (1) must include the 1
on the last row of Mq, and hence cannot include any elements of the vector q. The usefulness
of this simple fact can be seen from inspecting Ryser’s formula (2), partitioned in the form

per(Mq) =
∑
X⊆[n]

(−1)n−|X|f(Mq, X), f(Mq, X) =
n∏
i=1

gi(Mq, X), gi(Mq, X) = qi+
∑
j∈X

Mi,j .

(16)

Note that f(Mq, X) = 0 if and only if gi(Mq, X) = 0 for some i. So in order to compute
per(M), it is enough to list those subsets X ⊆ [n] such that gi(Mq, X) 6= 0 for all i, and
accumulate their contributions. We call such X’s contributing terms. Furthermore, we say a
subset X ⊆ [n] is k-weakly contributing if gi(Mq, X) is non-zero for all i ≤ k.

In particular, by choosing q uniformly at random, we can easily compute the expected
number of k-weakly contributing terms, as the events gi(Mq, X) 6= 0 for i = 1, . . . , k are
mutually independent (they depend on different qi). Let Y be the random variable equal
to the number of k-weakly contributing terms under a random q ∈ Kn×1, i.e., Y =

∑
X YX

where YX is the indicator of whether X is k-weakly contributing. By linearity of expectation,

E(Y ) =
∑
X⊆[n]

E(YX) = 2n
(

1− 1
r

)k
< 2n exp(−k/r). (17)

Thus, if we could efficiently list the k-weakly contributing terms for some k ≥ Ω(n), we would
have a Las Vegas algorithm running in expected 2n−Ω(n/r) time. In Theorem 1, we claim
a deterministic algorithm, in which case we cannot choose q at random. We will address
this issue later in Section 5. For now, we concentrate on finding the contributing terms for
a fixed q. We describe next how k-weakly contributing terms can be viewed as dissimilar
vector pairs from two sets of short vectors.

ICALP 2019
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4.1.1 Contributing terms as dissimilar vectors
Here we show how to reduce the problem of listing contributing terms to the problem of
listing dissimilar vectors, implying a randomised version of Theorem 1. Assume WLOG
that our matrix M is n × n and n is even; recall its entries are elements from the ring
K = {e1, . . . , er}. We begin by partitioning the columns in two halves L = {1, . . . , n/2} and
R = {n/2 + 1, . . . , n}. Let L be the power set of L, and R the power set of R. Define a map
φ : K → [r] by φ(ei) := i.

For every A ∈ L, construct a vector vA ∈ [r]k for i ∈ {1, . . . , k} as

vAi = φ

(∑
k∈A

Mi,k

)
, for all i = 1, . . . , k. (18)

Similarly, but asymmetrically, for every B ∈ R we construct the vector vB ∈ [r]k as

vBi = φ

(
−qi −

∑
k∈B

Mi,k

)
, for all i = 1, . . . , k. (19)

Recall two vectors u and v are dissimilar if they differ in each coordinate. One can easily
verify for all A ∈ L and B ∈ R, the two vectors vA and vB are dissimilar if and only if the
subset X = A ∪B is k-weakly contributing. Note that L and R describe N = 2n/2 vectors
each of dimension k. For k ≥ Ω(n), the number of k-weakly contributing terms in (17) is
(expected to be) at most 2n−cn/r for a constant c > 0. In that case, the number of dissimilar
vector pairs s in our instance of O(2n/2) vectors is at most 2n−cn/r.

Given an algorithm that efficiently lists dissimilar vector pairs, we can then efficiently
list all 2n−cn/r of the k-weakly contributing terms in the modified Ryser’s formula (16).
Given the list of contributing terms, we can then compute the permanent via (16), in time
2n−cn/r · poly(n). Using the listing algorithm of Theorem 4 with s = 2n−cn/r, we obtain an
algorithm with running time 2n−Ω(nr ) as claimed.

4.2 The permanent algorithm for regular matrices
We now turn to giving a Las Vegas version of Theorem 2, showing that for d-regular matrices
the permanent can be computed in 2n−Ω(n/d3/4) time. Later in Section 5, we will outline
how to derandomise the algorithm.

Let M ∈ {0, 1}n×n have exactly d ones in every row and column. As in the case of
permanents over finite rings, we reduce to dissimilar pair listing and apply the algorithm of
Theorem 4 to locate k-weakly contributing terms for the permanent of the perturbed matrix
Mq of (14). However, here we will pick the vector q from a different distribution, and we
may also permute the rows of M to select a suitable subset of rows to use in the reduction
to dissimilar pair listing. Our choices drastically reduce the number of contributing terms.

Index the rows and columns of M by [n]. For i = 1, . . . , n, the ith row of M naturally
corresponds to a d-size subset Ri of [n] indicating which columns have a 1 in the row.

We first consider the case d ≥ n4/5. Here our algorithm will work as in Bax and Franklin [3]
(whose analysis works for d ∈ Ω(n), for which the slightly better bound 2n−Ω(n1/3) can be
argued). The probability for a fixed row i ∈ [n], that the sieved row sum |X ∩Ri| is deviating
significantly from its expectation, is small:

Pr
X

[∣∣∣∣|X ∩Ri| − d

2

∣∣∣∣ > d3/4
]
≤ exp(−Ω(

√
d)), (20)
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as seen by a standard Chernoff bound. Note that n
d3/4 ≤ n2/5 ≤

√
d for d ≥ n4/5. By a union

bound, the probability that some row has intersection with X outside of the 2d3/4-length
interval in (20) is at most n · exp(−Ω(

√
d)) ≤ exp(−Ω(n/d3/4)). Hence there are at most

2n−Ω(n/d3/4) such deviating subsets X ⊆ [n].
Therefore, if we run our previous permanent algorithm but with the vector q taking

random values in the range [ d2 −d
3/4, d2 +d3/4], we see that the probability that any X within

the 2d3/4-span for every row, is k-weakly contributing, is at most

Pr
q

[X passes] ≤
(

1− 1
2d3/4

)k
. (21)

Hence for k ≥ Ω(n), the expected number of non-zero terms is only 2n−Ω(n/d3/4), so we only
need to list that many dissimilar vector pairs in our reduction.

Now consider the more interesting case of d < n4/5. First, we preprocess the matrix via a
process we call P , which puts the row sets representing M into a number of ordered lists.

Process P : Start with an empty list L1, and put the first row set R1 in L1. While
there is another row set Ri, not yet assigned to a list, that has at most d3/4 elements
in common with the union of the row sets in L1, insert Ri into L1. This operation
is repeated until there either are no more row sets that meet this criterion, or L1
contains n/(2d5/4) row sets. In the latter case we say that the list is full. We consider
L1 finished, put it aside, and start building a new, initially empty, list L2. We insert
row sets into L2 in the same way, continue with a third list L3 once L2 is finished, and
so on. The process P terminates when every row set has been assigned to some list.

After we have constructed the lists L1, L2, . . ., we reorder the rows and columns of M
according to the insertion order of the row sets during process P . This permutation does not
change the value of the permanent. The following lemma ensures that the first n/2 rows of
M , after the reordering step, can be partitioned into full lists.

I Lemma 7. The first d5/4 lists produced by process P are full, i.e., each list contains
n/(2d5/4) row sets.

Proof. Assume there are at least n/2 + n/(2d5/4) row sets left to place when we start
populating the list Lj . After we have put t sets into a list Lj , their union covers no more
than td elements. Each element of [n] is covered d times in total, since M is d-regular. Thus
there are at most td2−3/4 row sets left that has an overlap of more than d3/4 with the union.

Therefore, as long as n
2 + n/(2d5/4)− t > td2−3/4, i.e., t < n

2(d2−3/4) , there is still a row
set that can be put into Lj . Hence we can put at least n

2d5/4 row sets into Lj , making it full.
We can repeat this for j = 1, 2, . . . , d5/4, as there are still n/2 + n/(2d5/4) row sets left when
we start to populate Ld5/4 . J

Next we need a Chernoff-like concentration bound on the sum of variables with bounded
dependence resulting from a list Lj .

I Lemma 8. Let L be an ordered list of d-subsets S1, ..., Sm of [n] such that for all i,
|Si ∩ (∪i−1

j=1Sj)| < d3/4. Pick X ⊆ [n] uniformly at random. Let Zi be the indicator variable
for the event d

2 − 3d3/4 ≤ |Si ∩X| ≤ d
2 + 3d3/4. Then

Pr
X

[
m∑
i=1

Zi <
m

2

]
≤ exp(−Ω(d1/2m)). (22)
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Proof. Let U = [`] = ∪mi=1Si and X1, . . . , X` be indicator variables such that Xi = 1 ⇔
i ∈ X. Hence the Xi’s are mutually independent with E[Xi] = 1/2. Construct the sets
Ti = Si \ (∪i−1

l=1Sl) for i = 1, . . . ,m. Note that |Ti| ≥ d− d3/4 for all i, and that Ti and Tj
are disjoint for i 6= j. Letting Yi =

∑
j∈Ti Xj , we have

Pr
X

[∣∣∣∣Yi − d

2

∣∣∣∣ > 2d3/4
]
≤ exp(−Ω(d1/2)), (23)

as seen by a standard Chernoff bound. Note that if |Yi − d/2| ≤ 2d3/4, then also Zi = 1,
as there are only at most d3/4 other elements of X that are in Si \ Ti. Further note that
the events |Yi − d/2| > 2d3/4 for different i are mutually independent as they depend on
different mutually independent Xj ’s. Hence the probability that

∑
i Zi < m/2 is at most

m/2 · exp(−Ω(d1/2))m/2
(
m
m/2
)
≤ exp(−Ω(d1/2m)). J

We can now argue as in the dense case (where d is large). We first bound the number of
X’s such that for some list Li, more than half of the row sets in the list have a deviating
sieve row sum

∣∣|Rj ∩X| − d
2
∣∣ > 3d3/4. From Lemma 8, replacing m = n/(2d5/4), and a

union bound over all lists, we know that this happens for at most 2n−Ω(n/d3/4) X’s. Thus
we may restrict our analysis to the X’s that are within the 6d3/4-length interval for at least
half of the rows in the first d5/4 lists (amounting to the first n/2 rows of the matrix, after
the pre-processing reordering). Running our algorithm from before, but with the vector q
taking random values in the range [ d2 − 3d3/4, d2 + 3d3/4], we see that each of these remaining
well-behaved X’s are k-weakly contributing with probability at most

Pr
q

[X passes] ≤
(

1− 1
6d3/4

)k/2
. (24)

Hence, for k = n
c for some c > 2, we have in expectation 2n−Ω(n/d3/4) non-zero terms.

4.3 Reduction for counting Hamiltonian cycles

In the following let G′ = (V ′, A′) be the directed input graph on n = |V ′| vertices in which
we want to count Hamiltonian cycles. Let dv for v ∈ V ′ be the out-degree of the vertex
v, and let δ = |A′|/n be the average out-degree of G′. It will be convenient to work on
a slightly modified graph G = (V,E) constructed from G′ as follows: pick an arbitrary
vertex s′ ∈ V ′, and obtain G from G′ by replacing s′ with two new vertices s and t (i.e.,
V = V ′ \{s′}∪{s, t}), where s retains all outgoing arcs from s′, i.e. (s′, u) ∈ A′ ⇔ (s, u) ∈ A,
and t retains all incoming arcs to s′, i.e. (u, s′) ∈ A′ ⇔ (u, t) ∈ A. Note that the Hamiltonian
paths from s to t in G are in one-to-one correspondence with the Hamiltonian cycles in G′,
and that the average degree of G is not larger than that of G′. In the following, we consider
the problem of counting the s-t Hamiltonian paths on the modified n+ 1 vertex graph G.

4.3.1 Random columns and contributing terms

Björklund, Kaski, and Koutis [8] observed that the number of Hamiltonian cycles in a
directed graph can be evaluated as an inclusion–exclusion summation over a determinant of
a polynomial matrix representing the graph. We will use their construction, and restate the
main ideas here. The Laplacian of the graph G, is a (n+ 1)× (n+ 1) polynomial matrix
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with rows and columns indexed by the vertices V , in the variables xv for v ∈ V :

L(G)i,j =


∑

(u,v)∈A xu if i = j = v

−xu if i = u, j = v, (u, v) ∈ A
0 otherwise.

(25)

The Laplacian punctured at the vertex s ∈ V , is the matrix L(G)s obtained by omitting
row and column s from L(G). By Tutte’s directed version of the Matrix-Tree theorem of
Kirchhoff [20], we know that det(L(G)s) is a polynomial where each term corresponds to a
directed spanning out-branching rooted at s. Denote by hp(G)s,t the number of Hamiltonian
paths starting in s and ending in t. By the principle of inclusion–exclusion, we have4

hp(G)s,t =
∑

x:(V \{t})→{0,1}
xt=1

(−1)n−1−|x| det (L(G)s(x)) . (26)

The summation is over all 2n−1 assignments x with the restriction that xt = 1. Next, we
mimic the Bax and Franklin idea for computing permanents by perturbing the matrix (of
(15)): we shall parametrise the Laplacian matrices so that in expectation, many summands
in the above formula are zeroed-out. To this end we introduce fresh random variables
qv ∈ {0, 1, . . . , dv} for v ∈ V , and define the q-perturbed Laplacian of G as

Lq(G)i,j =


∑

(u,v)∈A xu − qv if i = j = v

−xu if i = u, j = v, (u, v) ∈ A
0 otherwise.

(27)

The extra qv variables may be thought of as weighted arcs originating from t: these arcs
cannot be used by any of the Hamiltonian paths from s to t. The point of our perturbation
is that irrespective of q, we can still compute the number of Hamiltonian paths:

hp(G′)s′,t′ =
∑

x:(V \{t})→{0,1}
xt=1

(−1)n−1−|x| det (Lq(G)s(x)) . (28)

However, in expectation, many assignments x may yield det (Lq(G)s(x)) = 0, particularly
when a row in Lq(G)s(x) is all-zeroes. Observe that a row in Lq(G)s(x) is all-zero if and
only if for some v ∈ V \ {s} we have xv = 0 and

∑
(u,v)∈A xu = qv. Let εv be a Boolean

variable that is true if and only if xv = 0 and
∑

(u,v)∈A xu = qv; i.e., Lq(G)s(x) is all-zero in
the row indexed by v. In analogy with the case of the permanent, we say that an assignment
x is contributing if εv is false for all vertices v ∈ V \ {s}, and x is k-weakly contributing if
εv is false for the first k vertices. As in the case of the permanent, it is sufficient to list the
k-weakly contributing terms for some k to compute the number of Hamiltonian paths in G
(and hence the Hamiltonian cycles in G′) through the formula of (28).

We can easily compute the expected number of contributing terms for a q ∈ {0, 1, . . . , dv}n
picked uniformly at random, since the events εv are mutually independent (they depend on
different q-values). The probability that Lq(G)s(x) is all-zero in the row v, with xv = 0, is

Pr
q

[εv] = 1
(dv + 1) . (29)

We will assign k := cn for some c < 1/2, and assume WLOG that the vertices are sorted by
increasing out-degree. This means by an averaging argument that for all i ≤ k, di < 2δ.

4 See [8] for a proof of (26).
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Let Zx be the indicator variable that the assignment x is k-weakly contributing, under
a randomly chosen q. Let Z be the random variable equal to the number of k-weakly
contributing terms under a random q, i.e., Z =

∑
x Zx. By linearity of expectation, and

Jensen’s inequality for concave functions,

E(Z) =
∑

X⊆V \{s}

∏
v∈X∩[k]

(
1− 1

dv + 1

)
≤ 2n

(
1− 1

2δ + 1

)k
≤ 2n · exp(−Ω(k/δ)). (30)

Thus, the expected number of k-weak contributors behaves similarly as in previous cases.

4.3.2 Contributing terms as dissimilar vectors
We now turn to describing how the contributing terms can be encoded as dissimilar vectors.
Assume WLOG that n is even, and identify V \ {s} with the set [n]. Partition the vertices
into L = {1, . . . , n/2} and R = {n/2 + 1, . . . , n}, letting L and R be the power sets of L and
R, respectively. For every C ∈ L, we construct the vector vC ∈ [2δ + 1]k for i = 1, . . . , k as

vCi =
{ ∑

(i,w)∈(A∩C) 1 if i 6∈ C,
? otherwise.

(31)

where ? is an extra symbol encoded as 2δ. Similarly, but asymmetrically, noting in particular
that i 6∈ R because k < n/2, for every D ∈ R we construct the k-length vector vD as

vDi = qi −
∑

(i,w)∈(A∩D)

1, for all i = 1, . . . , k. (32)

It is readily verified that for C ∈ L and D ∈ R, the two vectors vC and vD are dissimilar
if and only if the first k columns of Lq(G)(x′) are non-zero, where the Boolean vector x′ is
defined as x′v := 1 ⇐⇒ v ∈ C ∪D. Hence, the k-weakly contributing assignments x are
precisely those corresponding to dissimilar pairs (vC , vD).

Note that L and R each contain N = 2n/2 vectors of dimension k. Using a sufficiently fast
algorithm for listing dissimilar vector pairs, we can enumerate all k-weakly contributing terms
in (28) in N2−Ω(1/δ) time. Once we have a list of all the 2n ·exp(−Ω(k/δ)) contributing terms,
the number of Hamiltonian cycles can be computed with (28) in time 2n · exp(−Ω(k/δ)) as
well. From (30), we know that the upper bound s on the number of dissimilar pairs can
be set to 2n−cn/δ, for some positive c > 0. Applying the dissimilar pair listing algorithm of
Theorem 4, we arrive at the running time 2n−Ω(nδ ). This concludes the algorithm.

5 Derandomisation

Our deterministic algorithm for dissimilar pair listing from Section 2 can be used to list
k-weakly contributing terms efficiently in all our desired applications (Theorems 1, 2, and 3),
provided that the number of contributing terms is not much more than their expected number
would be on a random vector q.

To make all of our application algorithms fully deterministic, we must provide a determ-
inistic procedure for setting the vector q so that the number of resulting terms is bounded
by the expectation. This can be done by using other known algorithmic tools, along with
the well-known method of conditional expectation (see e.g., [17]).

It turns out that a fast deterministic algorithm for counting dissimilar pairs will suffice.
This can be obtained by reducing our problem to counting orthogonal pairs:
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I Proposition 9. Counting the dissimilar pairs on two sets of N vectors in [r]d can be
reduced in O(Nrd) time to counting orthogonal pairs on two sets of N vectors in {0, 1}rd.

Proof. Let e1, . . . , er ∈ {0, 1}r be the standard basis vectors, where ei is 1 in the ith
component and is 0 everywhere else. Map every vector x ∈ [r]d to the Boolean vector

ρ(x) = [ex1 ex2 · · · exd ].

That is, x′ ∈ {0, 1}rd is obtained by concatenating the d standard basis vectors corresponding
to the entries of x. Note x, y ∈ [r]d are dissimilar ⇐⇒ ρ(x) and ρ(y) are orthogonal. J

Applying the proposition, we can count dissimilar pairs by counting OV pairs:

I Theorem 10 (Chan and Williams [11]). For every c ≤ 2o(
√

logN), there is a deterministic
algorithm that for two sets of N vectors from {0, 1}c logN , counts the orthogonal vector pairs
in N2−1/O(log c) time.

An immediate corollary is that, for d ≤ log(N), we can deterministically count all
dissimilar pairs over N vectors in [r]d in only N2−1/O(log r) time. We can use this counting
algorithm to deterministically search for a vector q that has at most as many k-weakly
contributing terms as the expected number for a random q. We describe the procedure
generically, as it is essentially the same for all three applications in the paper:

Iterate over j = 1, . . . , k. Suppose we have determined the first j − 1 components of
our vector q, and we wish to determine the jth component, qj . Let us inductively
suppose that there are at most 2n ·

∏j−1
i=1 (1 − 1/Ci) contributing terms remaining

(where the Ci depend on the application), and let there be Cj possible values for
qj . Construct and compute Cj distinct instances of dissimilar pair counting with
j-dimensional vectors, corresponding to the Cj different values for qj . Finally, set qj
to be the value which minimises the number of dissimilar pairs obtained.

Since we always choose qj to minimise the number of dissimilar pairs, and we know a
random setting of qj reduces the number by a (1 − 1/Cj) fraction in expectation (by our
analyses in previous sections), our k-dimensional vector q produces a number of k-weakly
contributing terms which is at most the expectation. Finally, note that this initial procedure
for selecting the vector q is much faster than the overall running time in our applications.

This concludes our derandomisation, and the proofs of Theorems 1, 2, and 3.
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